
 

An augmented Lagrangian coordination method for distributed
optimal design in MDO: Part I formulation and algorithms
Citation for published version (APA):
Tosserams, S., Etman, L. F. P., & Rooda, J. E. (2007). An augmented Lagrangian coordination method for
distributed optimal design in MDO: Part I formulation and algorithms. (SE report; Vol. 2007-04). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/9dba27a4-fbdc-40e7-b10a-c9141c9155aa


Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands
http://se.wtb.tue.nl/

SE Report: Nr. 2007-04

An augmented Lagrangian
coordination method for

distributed optimal design in
MDO: Part I formulation and

algorithms
S. Tosserams, L.F.P. Etman, and J.E. Rooda

ISSN: 1872-1567

SE Report: Nr. 2007-04
Eindhoven, February 2007

SE Reports are available via http://se.wtb.tue.nl/sereports





Abstract

Quite a number of coordination methods have been proposed for the distributed optimal design of
large-scale systems consisting of a number of interacting subsystems. Several coordination meth-
ods are known to have numerical convergence difficulties that can be explained theoretically. The
methods for which convergence proofs are available have mostly been developed for so called
quasi-separable problems (i.e. problems with individual subsystems coupled only through a set
of shared variables, not through constraints and/or objectives). In this paper we present a new
coordination method for MDO problems with coupling variables as well as coupling objectives
and constraints. Our approach employs an augmented Lagrangian penalty relaxation in combina-
tion with a block coordinate descent method. The coordination method can be shown to converge
to KKT points of the original problem by using existing convergence results. Two formulation
variants are presented offering a large degree of freedom in tailoring the coordination algorithm
to the design problem at hand. The first centralized variant introduces a master problem to coor-
dinate coupling of the subsystems. The second distributed variant coordinates coupling directly
between subsystems. In a sequel paper we demonstrate the flexibility of the formulations, and
investigate the numerical behavior of the proposed method.



1 Introduction

Multidisciplinary design optimization (MDO) problems are encountered in the design of large-
scale engineering systems that consist of a number of interacting subsystems. The design of
systems is a complicated task since size and the required level of expertise often prohibit the
design problem to be solved as a whole. Consequently, the problem is decomposed into smaller,
more manageable parts. Each of these parts, or design subproblems, is tackled by different design
teams or disciplines, which act rather autonomously and use their own (legacy) design tools. As a
result, one design group does not know how its decisions affect the other disciplines. To deal with
multiple disciplines, a systematical coordination approach to systems design is desired. Within
the field of MDO, such coordination methods with local decision autonomy are also referred to
as multilevel methods (see, e.g., [1]).

Many coordination methods have been proposed for the distributed optimal design of MDO prob-
lems. Each method differs in the way the interaction is coordinated, and what type of problem
structures are allowed. In general, the coordination principles can be divided into three main cat-
egories: interaction approximation methods, nested bi-level programming methods, and penalty
relaxation methods.

Well-knowninteraction approximation methodsinclude Concurrent SubSpace Optimization (CSSO)
[2], the original Bi-Level Integrated System Synthesis method (BLISS) [3], and Multidisciplinary
Design Optimization with Independent Subspaces (MDOIS) [4]. These interaction approxima-
tion methods define optimization subproblems for each subsystem, in which some approximation
of the contributions of the remaining subsystems is included. Interaction approximation methods
typically do not pose restrictions on the structure of the MDO problem. Interaction approximation
methods are applicable to the most general class of MDO problems.

Numerical performance of interaction approximation methods typically depends on the quality of
the approximations, and whether or not a system analysis is required. Some methods may show
poor performance as a result of possibly infeasible subproblems [4, 5], and constraint activity
changes [3].

Bi-level programming methodsinclude Collaborative Optimization (CO) [7, 8], the Bi-Level In-
tegrated System Synthesis variant BLISS2000 [9], the constraint margin approach of Haftka and
Watson [10], and the penalty decomposition methods (IPD/EPD) of DeMiguel and Murray [11],
amongst others. Bi-level programming methods introduce a coordinating master problem, which
is superimposed over the optimization subproblems associated with the subsystems. These meth-
ods are referred to as bi-level programming methods because for a function evaluation of the
master problem, all subproblems are optimized. Bi-level programming methods are typically re-
stricted to so-called quasi-separable problems [10] in which subsystems are only coupled through
a set of coupling variables. Bi-level programming methods are not applicable to problems with
coupling constraints.

Many bi-level programming methods experience numerical difficulties when solving the master
problem due to non-smoothness or failure to meet certain constraint qualifications [12, 13, 14].
Smoothness and constraint qualification are important requirements for the use of existing ef-
ficient gradient-based solution algorithms such as Sequential Quadratic Programming (SQP).
Bi-level methods that do not satisfy these requirements have to use specialized, typically inef-
ficient algorithms to solve the associated optimization problems. To reduce the computational
costs associated with the use of inefficient solvers in combination with the bi-level formulation,
the use of response surface modeling (RSM) techniques has been proposed [9, 15, 16]. Creating
appropriate response surfaces is however not straightforward, and may become cumbersome for
an increasing number of variables and non-smooth functions. Similar difficulties may arise for
interaction approximation methods.
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Penalty relaxation methodsinclude Analytical Target Cascading (ATC) [17, 18], and the aug-
mented Lagrangian methods of Blouin et al. [19], and Tosserams et al. [20]. The penalty relax-
ation methods relax the coupling constraints of MDO problems to arrive at subproblems with
separable constraint sets. An iterative outer loop is typically introduced to restore feasibility with
respect to the relaxed constraints. An advantage of penalty methods is that they can often be
proven to converge to KKT points of the original problems [19, 20, 21]. Available penalty relax-
ations methods have however only been developed for quasi-separable problems coupled through
a set of coupling variables; coupling objectives and constraints are not allowed.

In this paper, we propose a new penalty relaxation coordination method that can be used to solve
MDO problems with coupling variables, a coupling objective, and coupling constraints. The
proposed method is derived such that convergence to KKT points of the original non-decomposed
problem can be shown under mild assumptions by combining existing results from nonlinear
programming textbooks such as Refs. [22, 23]. Furthermore, efficient gradient-based solvers
may be used to solve the associated subproblems, since the subproblem formulations are smooth
and constraint qualifications hold. The method is based on augmented Lagrangian relaxation and
block coordinate descent, two techniques used in the method of Ref. [20], and also recently linked
to ATC [24].

Two variants of the method are presented. The first follows a centralized formulation where a
single problem on the top level coordinates the coupling of the remaining subproblems on the
lower level, similar to many bi-level MDO methods. The second follows a distributed formula-
tion, similar to multilevel ATC, where coordination is performed directly between subproblems at
different levels (which may be more than two). Hybrid versions of both formulations are also pos-
sible, providing the method a high degree of flexibility in formulating the decomposed problem
to match existing organizational relations between subsystems.

Furthermore, we demonstrate that the multilevel hierarchical ATC formulation [17] and the bi-
level augmented Lagrangian method of Tosserams et al. for quasi-separable MDO problems [20]
are actually subclasses of the method proposed here.

In a sequel paper [25], we demonstrate the flexibility of the formulation, and investigate its nu-
merical behavior on a number of example problems.

2 Decomposition of the original all-in-one problem

The multidisciplinary design optimization problem withM subsystems, here referred to as the
original all-in-one (AIO) problem, is given by:

min
z=[yT ,xT

1 ,...,xT
M ]T

f0(y,x1, . . . ,xM)+
M
∑
j=1

f j(y,x j)

subject to g0(y,x1, . . . ,xM)≤ 0,
h0(y,x1, . . . ,xM) = 0,
g j(y,x j)≤ 0 j = 1, . . . ,M,
h j(y,x j) = 0 j = 1, . . . ,M,

(1)

where the vector of design variablesz = [yT ,xT
1 , . . . ,xT

M]T ∈ Rn consists of a number of coupling

variablesy∈Rny
, and a number of local variablesx j ∈Rnx

j associated exclusively to subsystemj,
andny +∑M

j=1nx
j = n. The coupling variables may be common design variables shared by multiple

subsystems, and input-output variables that link the analysis models of different subsystems. The
coupling objectivef0 : Rn 7→ R and coupling constraintsg0 : Rn 7→ Rmg

0 andh0 : Rn 7→ Rmh
0 are

non-separable and may depend on all design variablesz. Local objectivesf j : Rn j 7→R, and local

3 Decomposition of the original all-in-one problem
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Figure 1: Functional dependence table for four-element example
original MDO problem of the form (1)

constraintsg j : Rn j 7→ Rmg
j andh j : Rn j 7→ Rmh

j are associated exclusively to subsystemj, and
may depend on the coupling variablesy and the local variablesx j of only a single subsystem
j, such thatn j = ny + nx

j . Furthermore,mg
0 + ∑M

j=1mg
j = mg andmh

0 + ∑M
j=1mh

j = mh. Unless
indicated otherwise, all vectors in this paper are assumed to be column vectors.

Figure 1 illustrates the structure of the original AIO problem in the functional dependence table
(FDT) for a four element example. Similar to Ref. [26], we shade the(i, j)-entry of the table if
the function of rowi depends on the variables of columnj. Throughout this section, we use the
functional dependence table to illustrate the effect of the proposed problem transformations on
the problem structure. Observe the coupling of the problem through both the coupling variables
y, as well as the coupling functionsf0, g0, andh0. Without these shared quantities, the problem
would be block-diagonal, and fully decomposable intoM smaller subproblems that can be solved
independently. When no coupling functionsf0, g0, andh0 are present, (1) reduces to a quasi-
separable MDO problem, as considered in, e.g., Ref. [10].

The AIO problem can be solved directly with so called single-level MDO methods such as the “in-
dividual discipline feasible” (IDF) approach, or “multidisciplinary feasible” (MDF) algorithms.
These single-level MDO methods facilitate disciplinaryanalysisautonomy, rather thandecision
autonomy as obtained with multi-level decomposition methods. The reader is referred to Ref. [27]
for an overview of single-level formulations.

The augmented Lagrangian coordination method presented in this paper solves the original MDO
problem by the following four steps:

1. Introduction of auxiliary variables and consistency constraints

2. Relaxation of the coupling and consistency constraints

3. Formulation of the decomposed problem

4. Distributed solution of the decomposed problem

Here, Steps 1 through 3 are problem transformation steps, and Step 4 entails the actual solution
algorithms.

Existing convergence proofs for the solution algorithms of Step 4 only apply to problems with
fully separable constraint sets. The separability of constraint sets implies that a subproblem’s
constraints may only depend on the variables associated with that subproblem, but not on vari-
ables of other subproblems. However, the local constraint sets of the original AIO problem (1)
are not separable because of the coupling variablesy, and the coupling constraintsg0 andh0.
To obtain a decomposed problem formulation with fully separable constraint sets, the first three
problem transformation steps have to be taken first.
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The structure of the decomposed formulation of Step 3 is determined by the definition of the
consistency constraints in Step 1. A degree of flexibility exists in the definition of these con-
straints, and as a result, we are able to manipulate the structure of the decomposed problem.
In the following two sections we demonstrate two alternative formulations, each resulting in a
different decomposed problem. In the first alternative (Section 3), consistency constraints are
defined such that the final decomposed problem has a bi-level structure, similar to existing bi-
level MDO methods such as CO, and BLISS2000. In this “centralized” bi-level formulation, a
central coordinating subproblem on the top level is superimposed over theM subproblems, asso-
ciated with theM subsystems of the original problem. The second alternative (Section 4) gives
a multilevel “distributed” formulation in which no artificial coordination problem is introduced,
but coordination is handled directly between the subsystems (similar to ATC). Hybrid versions
of both formulations are also possible, providing a large degree of freedom in formulating the
decomposed problem such that the problem structure becomes compatible with the real-life orga-
nizational relations between the subsystems. The solution algorithms used in Step 4 are presented
separately in Section 5.

3 Variant 1: Centralized coordination

This section presents the centralized decomposed formulation of the original AIO problem (1). In
this centralized formulation, a top level central coordinating problem is positioned on top of the
M subsystem design subproblems at the lower level (illustrated in Fig. 4). The solution algorithms
of Step 4 alternate between solving the master problem and the subproblems, in contrast to the
nested bi-level programming methods such as collaborative optimization and BLISS2000.

3.1 Step 1: introduction of auxiliary variables and consistency constraints

In the first transformation, auxiliary coupling variablesy j ∈Rny
are introduced at each subsystem

to separate the local constraint setsg j andh j , j = 1, . . . ,m. To assure consistency amongst the
auxiliary variables,consistency constraintsare introduced that forcey1 = y2 = . . . = yM. There
are many alternatives for these consistency constraints, and each alternative gives a specific final
structure of the decomposed problem.

In this section, we choose to link all auxiliary coupling variablesy j to the original coupling vari-
ablesy, and therefore define the consistency constraintsc : R(M+1)·ny 7→Rmc

asc(y,y1, . . . ,yM) =
[cT

1 , . . . ,cT
M]T = 0 with:

c j = y−y j = 0, (2)

where,mc = M ·ny, andc j : R2·ny 7→Rny
denotes the vector of inconsistencies between the original

vector of coupling variablesy and the auxiliary coupling variablesy j at subsystemj. The original
vectory can be seen here as a central ‘master copy’.

Themodified AIO problemafter introduction of the auxiliary variables and consistency constraints
is given by:

min
y,y1,x1,...,yM ,xM

f0(y,x1, . . . ,xM)+
M
∑
j=1

f j(y j ,x j)

subject to g0(y,x1, . . . ,xM)≤ 0,
h0(y,x1, . . . ,xM) = 0,
g j(y j ,x j)≤ 0 j = 1, . . . ,M,
h j(y j ,x j) = 0 j = 1, . . . ,M,
c(y,y1, . . . ,yM) = 0.

(3)

Observe that the solutions to the modified AIO problem (3) and the original AIO problem (1) are

5 Variant 1: Centralized coordination
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Figure 2: Functional dependence table for four-element example
modified AIO problem (3) with only coupling constraints

equal because of the consistency constraints. In Theorem 4.1 of Ref. [11], solution equivalence
is proven for quasi-separable problems, and we expect that the result can be extended to the
modifications presented here.

The FDT of the modified AIO problem (3) is illustrated in Fig. 2, where separability of the
local constraint sets can be observed, as well as non-separability of the introduced consistency
constraintsc and the coupling constraintsg0, andh0. By introducing the auxiliary variables and
consistency constraints, we have only coupling constraints, instead of both coupling variables and
constraints.

Other instances of the modified all-in-one problem (3) have appeared in the MDO literature. For
example, Cramer et al. [27] have used the term “All-At-Once ” approach, and Alexandrov and
Lewis [12] presented the modified AIO problem as “Distributed Analysis Optimization ”.

Although the local constraint setsg j andh j are now fully separable with respect to the subsystem
design variables, the consistency constraintsc and the coupling constraintsg0 andh0 are not, and
prevent application of the distributed optimization techniques in Step 4.

3.2 Step 2: relaxation of the consistency and coupling constraints

The second transformation relaxes the consistency and coupling constraints to arrive at a problem
with fully separable constraint sets.

First, the consistency constraints are relaxed using an augmented Lagrangian penalty function
φc : Rmc 7→ R:

φc(c) = vT
c c+‖wc◦c‖2

2 =
M

∑
j=1

φc, j(c j) =
M

∑
j=1

vT
c, jc j +

M

∑
j=1

∥∥wc, j ◦c j
∥∥2

2 , (4)

whereφc, j(c j) : Rny 7→ R is the penalty function on the consistency constraintsc j for subsystem
j, vc = [vT

c,1, . . . ,v
T
c,M]T ∈ Rmc

is the vector of Lagrange multiplier estimates for the consistency

constraints, andwc = [wT
c,1, . . . ,w

T
c,M]T ∈ Rmc

is the vector of penalty weights, andvc, j ∈ Rny
,

andwc, j ∈ Rny
. The symbol◦ represents the Hadamard product: an entry-wise multiplication of

two vectors, such thata◦b = [a1, ...,an]T ◦ [b1, . . . ,bn]T = [a1b1, . . . ,anbn]T .

Second, the coupling equality constraintsh0 are relaxed using an augmented Lagrangian penalty
functionφh : Rmh

0 7→ R:

φh(h0) = vT
h h0 +‖wh◦h0‖2

2 , (5)

wherevh ∈ Rmh
0 is the vector of Lagrange multiplier estimates for the system-wide equality con-

6



i
i

“fdtrel2˙temp” — 2007/1/30 — 18:19 — page 1 — #1 i
i

i
i

i
i

y x1 x2 x3 x4

f1 g1 h1

f2 g2 h2

f3 g3 h3

f4 g4 h4

c

y1 y2 y3 y4

g  h

f0

x0

Figure 3: Functional dependence table for four-element example re-
laxed AIO problem (7) with block-diagonal constraint structure

straints, andwh ∈ Rmh
0 is the vector of penalty weights.

Third, the coupling inequality constraintsg0 are relaxed using an augmented Lagrangian penalty
functionφg : R2·mg

0 7→ R:

φg(g0,x0) = vT
g (g0 +x2

0)+
∥∥wg◦ (g0 +x2

0)
∥∥2

2 , (6)

wherevg ∈ Rmg
0 is the vector of Lagrange multiplier estimates for the coupling inequality con-

straints,wg ∈Rmg
0 is the vector of penalty weights,x0 ∈Rmg

0 are slack variables, andx2
0 = x0◦x0.

Because augmented Lagrangian methods drive its argument (g0 + x2
0 in this case) to zero, the

slack variables allow for non-positive values for the inequality coupling constraints after relax-
ation (see [22]). Without the slack variables, the coupling inequality constraint values would be
driven to zero and therefore act as equality instead of inequality constraints.

Therelaxed AIO problemis given by:

min
y,x0,y1,x1,...,yM ,xM

f0(y,x1, . . . ,xM)+
M
∑
j=1

f j(y j ,x j)+φc(c(y,y1, . . . ,yM))

+φg(g0(y,x1, . . . ,xM),x0)+φh(h0(y,x1, . . . ,xM))
subject to g j(y j ,x j)≤ 0 j = 1, . . . ,M,

h j(y j ,x j) = 0 j = 1, . . . ,M.

(7)

The FDT of the relaxed AIO problem is illustrated in Fig. 3. The full separability of constraints
can be seen in the block-diagonal structure. The figure also shows the non-separability of the
penalty termsφc, φg, andφh. In step 4, this coupling is accounted for by the solution strategy.

The solution to the relaxed problem (7) is not equal to the original problem (1), because are-
laxation error is introduced by relaxing the coupling constraints. By appropriate selection of
the Lagrange multiplier estimatesv = [vT

c ,vT
g ,vT

h ]T , and penalty weightsw = [wT
c ,wT

g ,wT
h ]T , this

relaxation error can be driven to zero. In fact, the algorithms we propose in Section 5 solve the
decomposed problem for a sequence of penalty parameters.

Note that any penalty function can be used to relax the problem. Here we use the augmented
Lagrangian function for a number of reasons. First, the augmented Lagrangian function is con-
tinuous and also has continuous first and second order derivatives. Second, it avoids the ill-
conditioning of the relaxed problem, encountered for some classes of penalty functions. Third,
it is additively separable with respect to the individual consistency constraintsc j , which allows
for a degree of parallelism during distributed optimization in Step 4. Finally, the augmented La-
grangian function has been extensively studied in the field of nonlinear programming, providing
a large knowledge-base of theory and parameter update strategies (see, e.g., Refs. [22, 28, 29] for
overviews).

7 Variant 1: Centralized coordination



After relaxation of the coupling and consistency constraints, the constraint sets are separable
with respect to the subsystem variables, as illustrated in Fig. 3, and we are ready to formulate the
decomposed problem.

3.3 Step 3: formulation of the decomposed problem

In the third transformation, we decompose the relaxed problem into a number of subproblemsPj ,
j = 1, . . . ,M, each associated with a subsystem of the original problem, and a coordinating master
problemP0. The block coordinate descent algorithm we propose for Step 4 iterates between solv-
ing the relaxed AIO problem (7) for a subset of variables, while holding the remaining variables
fixed at their previous value. The master problemP0 is equivalent to solving the relaxed problem
for the master copy of coupling variablesy and the slack variablesx0, while fixing the remaining
variables. SubproblemsPj , j = 1, . . . ,M, are solved for the subsystem variables(y j ,x j), while
fixing the remaining variables.

In the master problemP0 only the penalty terms have to be included that depend on the master
problem variablesy andx0. The remaining functions are independent ofy andx0 and are therefore
constant. The master problemP0 is given by:

min
x0=[yT ,xT

0 ]T
f0(y,x1, . . . ,xM)+

M

∑
j=1

φc, j(c j(y,y j))

+φg(g0(y,x1, . . . ,xM),x0)+φh(h0(y,x1, . . . ,xM)),
(8)

Note that subproblemP0 is an unconstrained minimization problem, however lower and upper
bounds on the shared variablesy may be included in the problem.

TheM subproblemsPj , j = 1, . . . ,M associated with the original subsystems are solved forx j ,
j = 1, . . . ,M, and are given by:

min
x j=[yT

j ,xT
j ]T

f0(y,x1, . . . ,xM)+ f j(y j ,x j)+φc, j(c j(y,y j))

+φg(g0(y,x1, . . . ,xM),x0)+φh(h0(y,x1, . . . ,xM))
subject to g j(y j ,x j)≤ 0,

h j(y j ,x j) = 0.

(9)

If the original AIO problem satisfies standard smoothness and constraint qualification assump-
tions, then these assumptions also hold for the master problem and the subproblems (this easily
follows from the observation that the augmented Lagrangian function is smooth). Therefore, we
are able to use existing efficient gradient-based algorithms such as SQP for their solution. More-
over, the Lagrange multipliers associated with the local constraintsg j andh j at the solution to the
decomposed problem are equal to those of the original AIO problem when the penalty parameters
v andw are selected appropriately (Proposition 2.11 of Ref. [28]).

The structure of the decomposed problem (8)–(9) is depicted in Fig. 4. Dashed lines indicate
coupling through either the system objectivef0 or the penalty functionsφg and φh, and solid
lines indicate coupling throughφc, j . These solid lines clearly reflect the centralized character
of the consistency constraints defined by (2). As illustrated in this figure, the subproblems of
the decomposed problems are still coupled. How to account for the coupling of subproblems is
discussed in Section 5.

The decomposed problem (8)–(9) is highly coupled because of the system-wide objective and
system-wide constraints. Any sparsity in the original problem (1) is however directly reflected
in sparsity in the decomposed problem. When e.g. elements 2 and 3 are not linked through a
coupling objective or coupling constraints in the original problem, the associated subproblemsP2

8



i
i

“central3˙temp” — 2005/9/30 — 13:41 — page 1 — #1 i
i

i
i

i
i

P0

P2 P3 P4P1

f0 g h

c

Figure 4: Bi-level decomposed problem structure for the centralized formulation

andP3 will not be linked in the decomposed problem. Such problem sparsity gives opportunities
for parallelization, and can be exploited in the solution strategies of Step 4.

3.4 Coupling variable sparsity

So far, we assumed that all subsystems depend on the complete set of coupling variablesy. In
practice however, each subsystem may depend only on a subset of coupling variables. The theory
presented in this section can be applied straightforwardly in such a case, however it would be
unnatural to include coupling design variables in subproblems that do not depend on them.

To reflect such coupling variables sparsity in the formulation, a binary selection matrixSj of size
ny

j × ny can be defined for each subsystem. The matricesSj are defined such that the matrix
multiplicationSjy collects only theny

j components ofy relevant to subsystemj, whereny
j ≤ ny.

With the selection matrices, centralized consistency constraintsc = [cT
1 , . . . ,cT

M]T = 0 similar
to (2) are defined, however with:

c j = Sjy−y j = 0 j = 1, . . . ,M, (10)

where the auxiliary variablesy j ∈Rny
j and inconsistenciesc j ∈Rny

j are only introduced for those

ny
j components relevant to subsystemj, and thereforec : Rny+∑M

i=1 ny
j 7→Rmc

with mc = ∑M
i=1ny

j ≤
M ·ny. The definition ofy j introduced here differs from the definition in (2), where copies of all of
the coupling variablesy are included iny j . Here, only theny

j components relevant to subsystem
j are included.

The inconsistency penalty termsφc, j of subproblemj in problem (8)–(9) are in the sparse case
given by:

φc, j(y,y j) = v
T

c, j(Sjy−y j)+
∥∥wc, j ◦ (Sjy−y j)

∥∥2
2 . (11)

where in this caseφc, j : Rny+ny
j 7→ R, and the penalty termsvc, j ∈ Rny

j , andwc, j ∈ Rny
j are only

introduced for the relevant coupling variable inconsistencies. The remainder of the decomposed
problem is unchanged.

To illustrate the use of the selection matricesSj , consider a four-subsystem problem where sub-
systems 2, 3 and 4 are coupled through variabley1, y2 couples subsystems 1 and 2 , andy3 couples
subsystems 1 and 3. The assembled vector of coupling variables becomesy = [y1,y2,y3]T , and
ny = 3. For the consistency constraints of (10), the selection matrices areS1 = [0 1 0;0 0 1],
S2 = [1 0 0;0 1 0], S3 = [1 0 0;0 0 1], andS4 = [1 0 0], which leavesy1 = [y[1]

2 ,y[1]
3 ]T , y2 =

[y[2]
1 ,y[2]

2 ]T , y3 = [y[3]
1 ,y[3]

3 ]T , andy4 = [y[4]
1 ], where the top-right index denotes the subproblem of

computation. Furthermore,ny
1 = 2, ny

2 = 2, ny
3 = 2, andny

4 = 1. Under these conventions, the
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mc = ∑M
j=1ny

j = 7 consistency constraints (10) are given byc = [cT
1 ,cT

2 ,cT
3 ,cT

4 ]T = 0, where:

c1 = S1y−y1 = [y[0]
2 −y[1]

2 , y[0]
3 −y[1]

3 ]
T

= 0,

c2 = S2y−y2 = [y[0]
1 −y[2]

1 , y[0]
2 −y[2]

2 ]
T

= 0,

c3 = S3y−y3 = [y[0]
1 −y[3]

1 , y[0]
3 −y[3]

3 ]
T

= 0,

c4 = S4y−y4 = [y[0]
1 −y[4]

1 ].

(12)

4 Variant 2: Distributed coordination

In this section, we present a distributed decomposed formulation of the original AIO problem (1).
In this formulation, the subsystem design subproblems can be positioned in a user-specified (pos-
sibly multilevel) structure. No coordinating master problem is introduced, and coordination of the
coupling variables is handled directly between subproblems, similar to analytical target cascad-
ing. The distributed formulation is able to reflect a multilevel (organizational) structure present
in the original AIO design problem.

Similar to the previous section, the non-sparse case is given first, after which an extension to
coupling variables sparsity is presented.

4.1 Step 1: introduction of auxiliary variables and consistency constraints

For each subsystem we again introduce auxiliary coupling variablesy j ∈ Rny
to separate the

local constraint sets. However, we omit the use of the original vector of coupling variablesy
in the modified problem. Instead, we introduce consistency constraints that only depend on the
auxiliary coupling variables.

As observed in the previous section, the definition of the consistency constraints results in a spe-
cific decomposed problem structure. Many choices for the consistency constraintsc are possible,
and each set of constraints given as specific final problem structure. In the centralized approach,
we link the auxiliary coupling variables (y j ) to a central master copy of the coupling variables (y),
which resulted in a bi-level decomposed problem. A similar bi-level structure can be obtained by
takingc(y1, . . . ,yM) = [cT

M1, . . . ,c
T
M(M−1)]

T = 0 where:

cM j = yM −y j = 0. (13)

For this choice, the consistency constraintscM j : R2·ny 7→ Rny
link the auxiliary shared variable

copies of subsystemsj = 1, . . . ,M−1 to those of subsystemM. For this choice, the subproblem
associated with subsystemM will assume the role of subproblemP0, as illustrated in Fig. 5(a).
The use of the double index for the consistency constraints allows for a more general notation of
the consistency constraints in this section.

By defining alternative consistency constraints, other problem structures can be obtained. For
example if the consistency constraints are given byc = [cT

12, . . . ,c
T
(M−1)M]T = 0 with:

c j( j+1) = y j −y j+1 = 0, (14)

inconsistencies are defined between coupling variables of subsystemj and its neighboring sub-
systemj +1, instead of subsystemM. Under these conventions narrow-tree structures as depicted
in Fig. 5(b) are formed.

The multilevel structure of Fig. 5(c) is generated by defining the consistency constraints asc =

10
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[cT
23,c

T
41,c

T
42]

T = 0 where:

c4 j = y4−y j = 0 j = 1,2, (15)

c23 = y2−y3 = 0.

For a general problem structure, the consistency constraintsc must meet the following require-
ments:

1. The consistency constraintsc must forcey1 = y2 = . . . = yM

2. The consistency constraintsc must be linearly independent

The first requirement makes sure that the auxiliary coupling variables all take the same values,
as is obviously necessary for consistency. The second requirement assures that the Lagrange
multipliers associated with the consistency constraints are unique, which is important for the
solution algorithms of Step 4. As will be discussed in Section 5, the penalty parametersv have
to approach the optimal Lagrange multipliers in order to reduce the relaxation error. Therefore,
non-uniqueness of these multipliers may complicate, or even prevent convergence to the optimal
solution. Although some algorithms may not be hindered by this, we can simply prevent possible
difficulties by making sure that consistency constraints are linearly independent.

The number of consistency constraints can easily be determined from the number of subsystems
M, and the number of coupling variablesny. Observe that in the original AIO problem, one has
ny degrees of freedom through the coupling variablesy. For each subsystem, auxiliary copies are
introduced, resulting in a total ofM ·ny degrees of freedom. The consistency constraintsc force
y1 = y2 = . . . = yM (requirement 1), reducing the degrees of freedom again tony. Hence, there
must be exactlyM ·ny−ny = (M−1) ·ny linearly independent consistency constraints.

11 Variant 2: Distributed coordination



Although the number of consistency constraints may seem trivial, consider the case where three
subsystems are linked through a vector of coupling variablesy, as illustrated in Fig. 6. For this
system, it might seem natural to define the following consistency constraints:c = [cT

12,c
T
23,c

T
13]

T

where
c12 = y1−y2,
c23 = y2−y3,
c13 = y1−y3.

The aboveM ·ny consistency constraints however are linearly dependent (c13 = c12+c23). As dis-
cussed, linearly dependent consistency constraints have non-unique Lagrange multipliers, which
may cause numerical difficulties in the solution algorithms of Step 4. By removing one of the
dependent vectors of consistency constraints,(M−1) ·ny linearly independent consistency con-
straints remain and forcey1 = y2 = y3, which is required for the consistency constraints.

In general, the consistency constraintsc can be defined as a collection of consistency constraints
c jn defined between subsystemsj = 1, . . . ,M and their set ofNj neighbors:

c jn = y j −yn = 0 {n∈N j |n > j} j = 1, . . . ,M (16)

that must forcey1 = y2 = . . . = yM. The neighborsN j are defined as the subsystems to which
subsystemj is coupled to through theconsistency constraints. Coupling through the coupling
objective or constraints is not considered. Furthermore, the conditionn > j makes sure that only
one of the linearly dependent pairc jn andcn j is included in the consistency constraints (e.g., only
c12 = y1−y2, and not alsoc21 = y2−y1).

Before defining the modified AIO problem, the functional dependency of the coupling objective
and constraints have to be reallocated. In the original AIO problem (1), these functions depend on
the coupling variablesy. For the distributed formulation of this section, the use of the master copy
y has been omitted. Instead, and without loss of generality, the functional dependencies of the
coupling objectivef0 and coupling constraint penalties are modified to depend on the coupling
variables of subsystemM, yM, instead of the master copyy, which gives f0(yM,x1, . . . ,xM),
g0(yM,x1, . . . ,xM), andh0(yM,x1, . . . ,xM). In this case, subsystemM has been given the design
freedom with respect to the coupling variables in the coupling functions. The components ofy
can also be distributed over two or more subsystems by using selection matrices, as described for
the sparse case in Section 4.4.

The modified AIO problem for the multilevel formulation is now given by:

min
y1,x1,...,yM ,xM

f0(yM,x1, . . . ,xM)+
M
∑
j=1

f j(y j ,x j)

subject to g0(yM,x1, . . . ,xM)≤ 0,
h0(yM,x1, . . . ,xM) = 0,
g j(y j ,x j)≤ 0 j = 1, . . . ,M,
h j(y j ,x j) = 0 j = 1, . . . ,M,
c jn = y j −yn = 0 {n∈N j |n > j} j = 1, . . . ,M.

(17)

Observe that the solutions to the modified AIO problem (17) and the original AIO problem (1)
are equal because of the consistency constraints.

4.2 Step 2: relaxation of the consistency and coupling constraints

Again, the consistency and coupling constraints are non-separable. An augmented Lagrangian
penalty function is used to relax the consistency constraintsc jn of the modified AIO problem (17):

φc, jn = v
T

jn(c jn)+
∥∥w jn ◦ (c jn)

∥∥2
2 , (18)
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with φc, jn : Rny 7→ R, and wherev jn ∈ Rmc
, andw jn ∈ Rmc

.

The coupling constraints are again relaxed using an augmented Lagrangian function, similar to
the centralized approach of Section 3 (see Eqs. (5) and (6)).

Therelaxed AIO problemfor the multilevel formulation is given by:

min
y1,x1,...,yM ,xM

f0(yM,x1, . . . ,xM)+
M
∑
j=1

f j(y j ,x j)+
M
∑
j=1

∑
{n∈N j |n> j}

φc, jn(c jn(y j ,yn))

+φg(g0(yM,x1, . . . ,xM),x0)+φh(h0(yM,x1, . . . ,xM))
subject to g j(y j ,x j)≤ 0 j = 1, . . . ,M,

h j(y j ,x j) = 0 j = 1, . . . ,M.

(19)

4.3 Step 3: formulation of the decomposed problem

After relaxation, the constraint sets are fully separable with respect to the subsystem variables.
For the distributed solution algorithms of Step 4 we defineM variable subsetsx j = [yT

j ,x
T
j ]

T ∈
Rn j , j = 1, . . . ,M, where each subset is associated with one of the subsystem.

The slack variablesx0 can no longer be appointed to the central master problem present in the
centralized formulation. Instead, the slack variables are included in one of the subsystem variable
subsetsx j . Without loss of generality, the slack variables are included in subsystemM such that

xM = [yT
M,xT

M,xT
0 ]T ∈ Rny+nx

M+mg
0.

Thegeneral distributed subproblem Pj only has to include the functions that depend onx j , and is
given by:

min
x j=[yT

j ,xT
j (,xT

0 )]T
f0(yM,x1, . . . ,xM)+ f j(y j ,x j)

+ ∑
{n∈N j |n> j}

φc, jn(c jn(y j ,yn))+ ∑
{n∈N j |n< j}

φc,n j(cn j(yn,y j))

+φg(g0(y,x1, . . . ,xM),x0)+φh(h0(y,x1, . . . ,xM))
subject to g j(y j ,x j)≤ 0,

h j(y j ,x j) = 0,

(20)

where the slack variablesx0 are only included in subproblemPM. The consistency constraint
penalty ofPj only includes terms that depend ony j and hence consists of two parts. The first part
is associated with the consistency constraints between subsystemj and its neighbors that have a
higher subsystem indexn > j. The second part accounts for the consistency constraints between
subsystemj and its neighbors that have a lower indexn∈N j |n < j.

4.4 Coupling variable sparsity

Coupling variable sparsity may also exist in distributed problems since a subproblemPj may not
depend on all coupling variablesy, but only on a selection. Similar to the centralized formulation,
auxiliary coupling variables and consistency constraints are only introduced for the coupling
variables relevant to subsystemj.

The reflection of this sparsity in the consistency constraints requires the definition ofNj selection

matricesSjn ∈ Rny
jn×ny

j for each of the subsystemj = 1, . . . ,M, whereNj denotes the number
of neighbors of subsystemj, andny

jn is the number of variables shared by subsystemsj andn,
thereforeny

jn = ny
n j, ny

jn ≤ ny
j andny

jn ≤ ny
n. The selection matrixSjn collects the set of coupling

variables fromy j that are shared with neighbor subsystemn. With the selection matrices, the
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consistency constraints between subsystemsj and their neighborsN j are defined by:

c jn = Sjny j −Sn jyn = 0, {n∈N j |n > j} j = 1, . . . ,M (21)

where typicallySjn 6= Sn j.

An additional difficulty arises for the coupling variablesy in the coupling objective and con-
straints. For shared variable sparsity, none of the subproblems may depend on all of these cou-
pling variables, and therefore solving fory in the coupling objective and constraints cannot be
appointed to a single subproblem. Hence, the solution has to be distributed over more than one
subproblem.

To achieve this distribution, the solution of every component ofy is assigned to a subprob-

lem through the definition of selection matricesT j ∈ Rnt
j×ny

j , j = 1, . . . ,M. These selection
matrices collect the subset ofnt

j coupling variables fromy j solved for in the coupling func-
tions by subsystemj. Note that each component of the coupling variablesy in the original
all-in-one problem (1) is only solved for at a single subproblem, and therefore the vectory′ =
[(T1y1)T , . . . ,(TMyM)T ]T ∈ Rny

has the same components asy but not necessarily in the same
order, and∑M

j=1nt
j = ny.

The general distributed subproblemPj for sparsity of coupling variables is defined by:

min
x j=[yT

j ,xT
j (,xT

0 )]T
f0(T1y1,x1, . . . ,TMyM,xM)+ f j(y j ,x j)

+ ∑
{n∈N j |n> j}

φc, jn(c jn(y j ,yn))+ ∑
{n∈N j |n< j}

φc,n j(cn j(yn,y j))

+φg(g0(T1y1,x1, . . . ,TMyM,xM),x0)+φh(h0(T1y1,x1, . . . ,TMyM,xM))
subject to g j(y j ,x j)≤ 0,

h j(y j ,x j) = 0,
(22)

with the inconsistency penaltyφc, jn given by (18) but with the consistency constraints defined

by (21), andv jn ∈ Rny
jn , w jn ∈ Rny

jn . One may also define different sets of selection matricesT j
for the coupling objective and each of the coupling constraints.

To illustrate both types of selection matrices, again take the four-subsystem example of the pre-
vious section. Recall that subsystems 2, 3, and 4 sharey1, subsystems 1 and 2 sharey2, and
subsystems 1 and 3 sharey3. The total vector of coupling variables isy = [y1,y2,y3]T , and the

coupling variable copies arey1 = [y(1)
2 ,y(1)

3 ]T , y2 = [y(2)
1 ,y(2)

2 ]T , y3 = [y(3)
1 ,y(3)

3 ]T , y4 = [y(4)
1 ]. The

top-right index again refers to the subsystem of computation. In the problem structure of Fig. 7,
the neighbors1 for each subsystem are given byN1 = {2,3}, N2 = {1,3,4}, N3 = {1,2}, and
N4 = {2}. The selection matrices areS12 = [1, 0], S13 = [0, 1], S21 = [0, 1], S23 = [1, 0],
S24 = [1, 0], S31 = [0, 1], S32 = [1, 0], andS42 = [1], which gives the consistency constraints
c = [cT

12,c
T
13,c

T
23,c

T
24]

T as in (21) with:

c12 = y(1)
2 −y(2)

2 = 0

c13 = y(1)
3 −y(3)

3 = 0

c23 = y(2)
1 −y(3)

1 = 0

c24 = y(2)
1 −y(4)

1 = 0

Furthermore assume that the system objective and coupling constraints depend on all three of the
coupling variables. To solve fory1 in subproblemP4, y2 in P1, andy3 in P3, defineT1 = [1, 0],
T2 = [ ], T3 = [0, 1], andT4 = [1], which leavesy′ = [(T1y1)T ,(T2y2)T ,(T3y3)T ,(T4y4)T ]T =
[y2, [ ], y3, y1]T = [y2, y3, y1]T .

1Recall that the neighborsN j of subsystemj are defined as the subsystems to which subsystemj is coupled to through
the inconsistency penalties(solid lines).
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structure for sparse shared variable coupling

5 Solution algorithms

Now that the decomposed problems are formulated, a solution strategy is required to solve them.
Although the decomposed problems presented in the previous sections have different formula-
tions, they are all obtained through the same principle, namely augmented Lagrangian relaxation.
Therefore a generic solution strategy can be formulated that can easily be adapted to both formu-
lations.

Solution strategies for solving generalized ATC problems have two tasks:

1. minimizing the relaxation error by appropriate penalty parameter setting, and

2. accounting for the coupling of subproblems through the non-separable objective.

Similar to ATC [30, 37] and the augmented Lagrangian approach of Ref. [20], we propose a
strategy that consists of inner and outer loops. In the outer loops, penalty parametersv andw
are updated, and in the inner loops, the coupled decomposed problem is solved for fixed penalty
parameters. Such a nested solution strategy is of the form:

Step 0Set initial guess and penalty parameters

Step 1(Inner loop) Solve decomposed problem for fixed penalty parameters with block coordi-
nate descent algorithm

Step 2If converged stop, otherwise go to Step 3

Step 3(Outer loop) Update penalty parameters with method of multipliers and return to Step 1

5.1 Outer loop: method of multipliers

In the outer loop, the penalty parametersv = [vT
c ,vT

g ,vT
h ]T , andw = [wT

c ,wT
g ,wT

h ]T are updated
to reduce the relaxation error. This error can be reduced by two mechanisms [22]:

1. selectv close toλ
∗

2. increasew to +∞
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whereλ
∗ = [λ ∗T

c ,λ ∗T
g ,λ ∗T

h ]T is the vector of optimal Lagrange multipliers associated with the
coupling constraintsc, g0, and h0 at the solution to the modified problem (3). Furthermore
λ
∗
c ∈ Rmc

, λ
∗
g ∈ Rmg

0, λ
∗
h ∈ Rmh

0, andλ
∗ ∈ Rmc+mg

0+mh
0.

Many convergent methods have been proposed to use either one or both of the error reduction
mechanisms. From duality theory (see, e.g., [22, 28]),dual methodsutilize the first mecha-
nism but are not applicable to general non-convex problems. From nonlinear programming (see,
e.g., [22]),penalty methodscan be adapted to use the second mechanism. Such methods how-
ever have problems with ill-conditioning because the weightsw have to approach infinity for
convergence.

Here, we use the well-knownmethod of multipliers(see e.g. [22, 28, 29]), which is specifically
designed for the augmented Lagrangian function, and uses both mechanisms simultaneously. The
method of multipliers is often more efficient when compared to both dual methods and penalty
approaches alone [28].

Let q be the vector of linking constraints defined by the concatenation of the consistency and
coupling constraints vectors:

q =

 c
g0 +x2

0
h0

 (23)

Then, the method of multipliers updates the estimates of the Lagrange multipliers for outer loop
iterationk+1 by:

vk+1 = vk +2wk ◦wk ◦qk (24)

wherewk are the penalty weights at iterationk, and the constraint valuesq are evaluated at the
inner loop solution of outer loop iterationk.

We increase the weights by a factorβ only when the reduction in the linking constraint value is
smaller than some fractionγ [22]. As a result, the penalty weights are only increased when the
contribution of the Lagrange multiplier update (24) did not lead to a large enough reduction in
the violation of the linking constraints.

For theith linking constraintqi , i = 1, . . . ,mc +mg
0 +mh

0 of q, the associated penalty weightwi is
updated as:

wk+1
i =

{
wk

i if |qk
i | ≤ γ|qk−1

i |
βwk

i if |qk
i |> γ|qk−1

i | i = 1, . . . ,mc +mg
0 +mh

0 (25)

whereβ > 1 and 0< γ < 1. Typically γ = 0.25 and 2< β < 3 are recommended to speed up
convergence [22]. In combination with the block coordinate descent inner loop, we observe that
β = 2.2 andγ = 0.4 perform well in general.

Convergence to local solutions of the modified AIO problem has been proven for the method
of multipliers algorithm under mild assumptions: local solutions must satisfy second order suf-
ficiency conditions, andw sufficiently large (see, e.g., Proposition 2.4 in Ref. [28]). Under the
more strict assumption of convexity, the method of multipliers can be shown to converge to the
globally optimal solution of the original AIO problem for any positive penalty weight, as long as
the sequence of weights is non-decreasing. The weight update scheme of (25) makes sure that
weights eventually become large enough to assure convergence.

The solution procedure is terminated when two conditions are satisfied. First, the change in the
maximal linking constraint value for two consecutive outer loop iterations must be smaller than
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some user-defined termination toleranceε > 0:

‖qk−qk−1‖∞ < ε (26)

Second, the maximal linking constraint violation must also be smaller than toleranceε > 0:

‖qk‖∞ < ε (27)

For original AIO problems that do not have a feasible solution, the second criterion will never
be satisfied, and the algorithm will not be terminated. In such cases, one may omit the second
criterion, but at the risk of converging prematurely at a non-feasible solution because of a (locally)
small reduction inq. Another option is to monitor the value of the penalty term, which goes to
zero for feasible solutions. For non-feasible solutions, the value of the penalty term will go to
infinity. Therefore, if the second criterion is not satisfied, and the penalty term grows very large,
then it is likely that the problem does not have a feasible solution.

5.2 Inner loop: block coordinate descent

The update algorithms of the outer loop require the solution to the relaxed AIO problem for fixed
weights. To find the solution to the relaxed AIO problem (7) and (19) for fixed weights, we use
the iterative block coordinate descent (BCD) algorithm [22]. Instead of solving the relaxed AIO
problem as a whole, the block coordinate descent method sequentially solves the disciplinary sub-
problemsP1, . . . ,PM, and, for the centralized formulation, also the master problemP0. The BCD
method is also know as the “nonlinear Gauss-Seidel” method [31], or “alternating optimization”
[32, 36].

Convergence to KKT points of the relaxed AIO problem for fixed penalty parameters has been
proven under mild conditions: global solutions to subproblemsP1, . . . ,PM are uniquely attained,
and the objectivesf j , j = 1, . . . ,M of the relaxed AIO problem are continuously differentiable
(Proposition 2.7.1 in Ref. [22]).

The inner loop BCD algorithm is terminated when the relative change in the objective function
value of the relaxed AIO problem for two consecutive inner loop iterations is smaller than some
user-defined termination toleranceεinner > 0. Let F denote the objective of the relaxed prob-
lem (7) and (19), then the inner loop is terminated when:

|Fξ −Fξ−1|
1+ |Fξ |

< εinner, (28)

whereξ denotes the inner loop iteration number. The division by 1+ |Fξ | is used for proper
scaling of the criterion for very large as well as very small objectives [33]. The termination
toleranceεinner should be smaller than the outer loop termination toleranceε to assure sufficient
accuracy of the inner loop solution. We useεinner = ε/100.

An alternative termination strategy is to use looser tolerances when the penalty parameters are
still far from their optimal values. The tolerances are tightened ask increases, and the penalty
parameters approach their optimal values. With this strategy we do not waste costly inner loop
iterations for finding a solution to the relaxed problem that is far from the optimal solution. More
formally, such an inexact approach uses a different toleranceεk

inner for each outer loop iteration.
Providing that the sequence{εk

inner} is non-increasing, andεk
inner→ 0, convergence of the inner

loop solutions to a KKT point of the original problem has been proven (Proposition 2.14 in [28]).

In this inexact inner loop, more moderate values forβ (smaller) andγ (larger) are advised for
efficiency. Experiments indicate thatβ = 2.0 andγ = 0.5 give good results.
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It would be possible to terminate the inner loop after a single iteration, similar to the alternating
direction method of multipliers [31]. Such an approach proved to be very efficient for ATC [24]
and the augmented Lagrangian approach of Ref. [20] for quasi-separable problems. An alternat-
ing direction variant of the solution algorithms presented here, though, would not be within the
assumptions of the convergence proof as given in Ref. [31]. This proof is only valid for linear
coupling constraints and an additively separable objective. The problems considered in this study,
however, may have nonlinear coupling constraints and a non-separable objective. Although the
proof does not apply to the problems considered in the current study, experiments on a number
of example problems indicate that the performance of an alternating direction variant depends on
the problem at hand. For some problems, the algorithm finds accurate solutions very efficiently.
For other problems though, the algorithm terminates prematurely at non-optimal designs, which
is clearly not desired.

Part of the block coordinate descent algorithm can be parallelized, since subproblems that are not
directly coupled can be solved in parallel. The general convergence proof however is not valid
for fully parallelized subproblem solutions, as in a Jacobi-like scheme (Ref. [31]). Although
parallelization methods exist, the associated convergence proofs often require convexity of the
original problem, and additive separability of the objective and/or coupling constraints (see, e.g.,
Refs. [34, 35]).

5.3 Initial weight selection

Although the above algorithms converge for any positive initial weight, the performance of the
outer loop method of multipliers depends on the choice of the initial weightw (see, e.g., [22, 28,
29]). To select the initial weights, we use an approach similar to the one suggested in Ref. [20].
With this approach, the weights are chosen such that the sum of the penalty terms is a fractionα

of the objective function value:φ ≈ α| f |, with α = 0.1.

Similar to Ref. [20], we initially setv = 0, and take all weights equalw = w, such thatφ = w2qTq
with q defined by Eq. (23). The initial weights are then selected as:

w =

√
α| f̂ |
q̂T q̂

(29)

where f̂ andq̂ are estimates of typical objective function and the linking constraint values. For
many engineering problems, a reasonable (order of magnitude) estimate of the objective function
minimum in the optimum can often be given. The approach assumes that the estimate of the
objective is non-zero, which is often the case in engineering design. However, iff̂ happens to be
zero, a non-zero, conservative “typical value” should be taken for the objective function.

The estimates for the linking constraintsq̂ are obtained by solving the decomposed problem for
small weightsw, and zero Lagrange multipliersv = 0. For these weights, the penalty term will
be small when compared to the objective function value. As a consequence, the allowed linking
constraint violations will be large, and the solution of the relaxed all-in-one problem will produce
an estimatêq j for the size of the linking constraint values.

6 Existing subclasses of the proposed method

In this section, we demonstrate that the hierarchical and multilevel analytical target cascading
formulation is actually a subclass of the distributed formulation as presented in Section 4. Second,
we show that the augmented Lagrangian method of Ref. [20] is a subclass of the centralized
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approach of Section 3.

6.1 Analytical target cascading (ATC)

ATC subproblems [17, 24, 37] have more specific characteristics when compared to the subprob-
lems (22) of Section 4. These characteristics and their effects on the subproblem formulation
are:

1. A subproblem does not have system objectives or system constraints, thereforef0 = 0,
g0 = [ ], andh0 = [ ].

2. A subproblem is only connected to its single parent subsystemp j and its set ofc j children
C j = {k1, . . . ,kc j}, thus the set of neighbors is given byN j = {p j ,k1, . . . ,kc j}.

3. The shared variables for a subproblem are given by the responses to their parent and the
targets sent to their children, which givesy j = [rT

j , t
T
k1

, . . . , tT
kcj

]T .

4. The selection matrixSjp j picks the responsesr j = Sjp j y j from the vector of shared vari-
ables, henceSjp j = [I , 0, . . . , 0], whereI is the identity matrix.

5. The selection matrixSjk, k∈ C j picks the targetstk = Sjky j for child k from the vector of
shared variables:Sjk = [0, 0, . . . , I , . . . , 0], where the identity matrixI is inserted at the
appropriate position for childk.

Under these assumptions and after expansion of the inconsistency penalties of (21), the general
distributed subproblem (22) for ATC is given by:

min
x j=[yT

j ,xT
j ]T

f j(y j ,x j)+v
T

p j j(t j − r j)+ ∑
k∈C j

v
T

jk(tk− rk)

+
∥∥wp j j ◦ (t j − r j)

∥∥2
2
+ ∑

k∈C j

∥∥w jk ◦ (tk− rk)
∥∥2

2

subject to g j(y j ,x j)≤ 0,
h j(y j ,x j) = 0,

where y j = [rT
j , t

T
k1

, . . . , tT
kcj

]T .

The termsvT
p j j t j and−vT

jkrk drop out of the objective because they do not depend on any of the
subproblem variablesx j . Furthermore, the first index of the penalty parametersvp j j , wp j j , v jk,
w jk, can be dropped because it always refers to the unique parent of the element designated by the
second index. The uniqueness is guaranteed by the pure hierarchical formulation of ATC. When
finally all variables, functions, and parameters are augmented with a level indexi denoting the
level at which the associated subsystem is located, the ATC subproblem (30) in the formulation
of Ref. [24] is obtained, which shows that the ATC formulation is a subclass of the distributed
formulation presented in this paper.

min
xi j

fi j (xi j )−vT
i j r i j + ∑

k∈Ci j

vT
(i+1)kt(i+1)k

+
∥∥wi j ◦ (t i j − r i j )

∥∥2
2

+ ∑
k∈Ci j

∥∥w(i+1)k ◦ (t(i+1)k− r (i+1)k)
∥∥2

2

subject to gi j (xi j )≤ 0,
hi j (xi j ) = 0,

where xi j = [xT
i j , r

T
i j , t

T
(i+1)k1

, . . . , tT
(i+1)kci j

]T .

(30)

Note that ATC problems may also be coordinated using the centralized approach of Section 3.
With this approach, all subproblems of all levels are allocated to the bottom level and can be
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solved in parallel, and the master subproblemP0 is superimposed to coordinate consistency
amongst all subproblems.

6.2 Augmented Lagrangian method for quasi-separable problems of Ref. [20]

The augmented Lagrangian method of Tosserams et al. [20] has been proposed to solve quasi-
separable MDO problems. Such problems have subsystems that are coupled through shared vari-
ables only, and not through a shared objective or constraints. To solve these problems, several
other coordination methods have been developed such as Collaborative Optimization [7, 8], Bi-
Level Integrated System Synthesis [9], the constraint margin approach of Ref. [10], and Multidis-
ciplinary Design Optimization based on Independent Subspaces [4]. Note that ATC coordinates
quasi-separable problems that have a hierarchical structure.

The general quasi-separable AIO problem is given by the general AIO problem (1), without
coupling functions (f0 = 0, andg0 = 0, h0):

min
z=[yT ,xT

1 ,...,xT
M ]T

M
∑
j=1

f j(y,x j)

subject to g j(y,x j)≤ 0 j = 1, . . . ,M,
h j(y,x j) = 0 j = 1, . . . ,M,

(31)

The decomposed formulation presented in Ref. [20] is given by a master subproblemP0:

min
x0=[y]

M
∑
j=1

φc, j(y,y j), (32)

and disciplinary subproblemsPj , j = 1, . . . ,M:

min
x j=[yT

j ,xT
j ]T

f j(y j ,x j)+φc, j(y,y j)

subject to g j(y j ,x j)≤ 0,
h j(y j ,x j) = 0.

(33)

This formulation is equal to the centralized formulation of (8)–(9) when excluding thef0, φg and
φh terms, illustrating that the method presented in this paper is a generalization of the augmented
Lagrangian method of Ref. [20]. Note that a distributed formulation variant of the centralized
formulation of [20] for quasi-separable problems can be formed by the techniques of Section 4.

7 Conclusions

This paper presents a new augmented Lagrangian coordination method for multilevel MDO prob-
lems with coupling variables as well as coupling objectives and constraints. The coordination
method is derived from available techniques as found in the nonlinear programming literature.
The main techniques used are augmented Lagrangian relaxation and block coordinate descent.
Convergence to KKT points of the original problem can be shown under mild assumptions by
combining existing results on convergence analysis.

When compared to existing coordination methods for MDO, the proposed method has several
advantages. Besides being provably convergent, the proposed formulations have smooth master
and subproblems that can be solved efficiently using gradient-based techniques. The solution al-
gorithm solves the subproblems sequentially, with the freedom to choose the number of iterations
before the penalty parameters are updated in the outer loop.
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The proposed method offers a large degree of flexibility to the designer through the two for-
mulation variants. With the centralized variant, the coupling between subsystems is coordinated
through a central master problem, as is often seen in classic MDO coordination methods. The dis-
tributed formulation variant gives the designer the opportunity to coordinate subsystem coupling
aligned with an existing (possibly multi-level) organizational structure of the design problem.
Hybrid approaches that use a combination of both centralized and distributed coordination are
also possible.

Another degree of flexibility is offered through the distinction between coupling variables and
coupling functions. With coupling constraints, each subsystem optimizes only for its own set of
design variables, while fixing the variables of the other subsystems. For coupling variables on
the other hand, each subsystem is given additional design freedom by introducing local copies of
the variables coupling the subsystems. Which situation is desired typically depends on the design
problem at hand, and should not be prescribed by the coordination algorithm used.

Furthermore, we showed that the hierarchical Analytical Target Cascading method and the cen-
tralized augmented Lagrangian method of Ref. [20] are subclasses of our method proposed here.
Hence the flexibility our method offers can be used, e.g., to centralize coordination of ATC, or
employ distributed coordination in the method of Ref. [20].

In a sequel paper [25], we demonstrate our method on a number of example problems, and inves-
tigate its numerical behavior.
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