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Convergence results and sharp estimates for the

voter model interfaces

S. Belhaouari T. Mountford Rongfeng Sun G. Valle

Dec 5, 2005

Abstract

We study the evolution of the interface for the one-dimensional voter
model. We show that if the random walk kernel associated with the
voter model has finite γth moment for some γ > 3, then the evolution
of the interface boundaries converge weakly to a Brownian motion under
diffusive scaling. This extends recent work of Newman, Ravishankar and
Sun. Our result is optimal in the sense that finite γth moment is necessary
for this convergence for all γ ∈ (0, 3). We also obtain relatively sharp
estimates for the tail distribution of the size of the equilibrium interface,
extending earlier results of Cox and Durrett, and Belhaouari, Mountford
and Valle.

1 Introduction

In this article we consider the one-dimensional voter model specified by a ran-
dom walk transition kernel q(·, ·), which is an Interacting Particle System with
configuration space Ω = {0, 1}Z and is formally described by the generator G
acting on local functions F : Ω → R (i.e., F depends on only a finite number of
coordinates of Z),

(GF )(η) =
∑
x∈Z

∑
y∈Z

q(x, y)1{η(x) 6= η(y)}[F (ηx)− F (η)] , η ∈ Ω

where

ηx(z) =
{

η(z), if z 6= x
1− η(z), if z = x .

By a result of Liggett (see [7]), G is the generator of a Feller process (ηt)t≥0 on
Ω. In this paper we will also impose the following conditions on the transition
kernel q(·, ·):

(i) q(·, ·) is translation invariant, i.e., there exists a probability kernel p (·) on
Z such that q(x, y) = p (y − x) for all x, y ∈ Z.
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(ii) The probability kernel p (·) is irredicible, i.e., {x : p(x) > 0} generates Z.

(iii) There exists γ ≥ 1 such that
∑

x∈Z |x|γp (x) < +∞.

Later on we will fix the values of γ according to the results we aim to prove.
We also denote by µ the first moment of p

µ :=
∑
x∈Z

xp(x) ,

which exists by (iii).

Let η1,0 be the Heavyside configuration on Ω, i.e., the configuration:

η1,0(z) =
{

1, if z ≤ 0
0, if z ≥ 1 ,

and consider the voter model (ηt)t≥0 starting at η1,0. For each time t > 0, let

rt = sup{x : ηt(x) = 1} and lt = inf{x : ηt(x) = 0},

which are respectively the positions of the rightmost 1 and the leftmost 0. We
call the voter model configuration between the coordinates lt and rt the voter
model interface, and rt − lt + 1 is the interface size. Note that condition (iii)
on the probability kernel p (·) implies that the interfaces are almost surely finite
for all t ≥ 0 and thus well defined. To see this, we first observe that the rate at
which the interface size increases is bounded above by∑

x<0<y

{p (y − x) + p (x− y)} =
∑
z∈Z

|z|p (z) . (1.1)

Moreover this is the rate at which the system initially changes if it starts at
η1,0.

When γ ≥ 2, Belhaouari, Mountford and Valle [3] proved that the interface
is tight, i.e., the random variables (rt − lt)t≥0 are tight. This extends earlier
work of Cox and Durrett [4], which showed the tightness result when γ ≥ 3.
Belhaouari, Mountford and Valle also showed that, if

∑
x∈Z |x|γp (x) = ∞ for

some γ ∈ (0, 2), then the tightness result fails. Thus second moment is, in a
crude sense, optimal. In this paper we examine two questions for the voter
model interface: the evolution of the interface boundaries, and the tail behavior
of the equilibrium distribution of the interface which is known to exist whenever
the interface is tight. Third moment will turn out to be critical in these cases.

From now on we will assume p (·) is symmetric, and in particular µ = 0,
which is by no means a restriction on our results since the general case is ob-
tained by subtracting the drift and working with the symmetric part of p (·):

ps(x) =
p (x) + p (−x)

2
.
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The first question arises from the observation of Cox and Durrett [4] that,
if (rt − `t)t≥0 is tight, then the finite-dimensional distributions of(rtN2

N

)
t≥0

and
(

ltN2

N

)
t≥0

converge to those of a Brownian motion with speed

σ :=

(∑
z∈Z

z2p(z)

)1/2

. (1.2)

As usual, let D([0,+∞), R) be the space of right continuous functions with left
limits from [0,+∞) to R, endowed with the Skorohod topology. The question
we address is, as N →∞, whether or not the distributions on D([0,+∞), R) of(rtN2

N

)
t≥0

and
(

ltN2

N

)
t≥0

converge weakly to a one-dimensional σ-speed Brownian Motion, i.e, (σBt)t≥0,
where (Bt)t≥0 is a standard one-dimensional Brownian Motion. We show:

Theorem 1.1 For the one-dimensional voter model defined as above

(i) If γ > 3, then the path distributions on D([0,+∞), R) of(rtN2

N

)
t≥0

and
(

ltN2

N

)
t≥0

converge weakly to a one-dimensional σ-speed Brownian Motion with σ
defined in (1.2).

(ii) For ( rtN2

N )t≥0

(
resp. ( ltN2

N )t≥0

)
to converge to a Brownian motion, it is

necessary that∑
x∈Z

|x|3

logβ(|x| ∨ 2)
p (x) < ∞ for all β > 1.

In particular, if for some 1 ≤ γ < γ̃ < 3 we have
∑

x |x|γ̃p (x) = ∞, then

{( rtN2

N )t≥0}
(
resp. ( ltN2

N )t≥0

)
is not a tight family in D([0,+∞), R), and

hence cannot converge in distribution to a Brownian motion.

Remark 1 Theorem 1.1(i) extends a recent result of Newman, Ravishankar
and Sun [9], in which they obtained the same result for γ ≥ 5 as a corollary of
the convergence of systems of coalescing random walks to the so-called Brown-
ian web under a finite fifth moment assumption. The difficulty in establishing

3



Theorem 1.1(i) and the convergence of coalescing random walks to the Brownian
web lie both in tightness. In fact the tightness conditions for the two conver-
gences are essentially equivalent. Consequently, we can improve the convergence
of coalescing random walks to the Brownian web from a finite fifth moment as-
sumption to a finite γth assumption for any γ > 3. We formulate this as a
theorem.

Theorem 1.2 Let X1 denote the random set of continuous time rate 1 coa-
lescing random walk paths with one walker starting from every point on the
space-time lattice Z × R, where the random walk increments all have distribu-
tion p (·). Let Xδ denote X1 diffusively rescaled, i.e., scale space by δ/σ and
time by δ2. If γ > 3, then in the topology of the Brownian web [9], Xδ converges
weakly to the standard Brownian web W̄ as δ → 0. A necessary condition for
this convergence is again

∑
x∈Z

|x|3
logβ(|x|∨2)

p (x) < ∞ for all β > 1.

It should be noted that the failure of convergence to a Brownian motion
does not preclude the existence of Ni ↑ ∞ such that

( r
N2

i
t

Ni

)
t≥0

converges to a

Brownian motion. When convergence fails this is due to “unreasonable” large
jumps.

Before stating the next result we fix some notation and recall a usual con-
struction of the voter model. We start with the construction of the voter model
through the Harris system. Let {N x,y}x,y∈Z be independent Poisson point pro-
cesses with intensity p(y − x) for each x, y ∈ Z. From an initial configuration
η0 in Ω, we set at time t ∈ N x,y:

ηt(z) =
{

ηt−(z), if z 6= x
ηt−(y), if z = x .

From the same Poisson point processes, we construct the system of coalescing
random walks as follows. We can think of the Poisson points in N x,y as marks at
site x occurring at the Poisson times. For each space-time point (x, t) we start a
random walk Xx,t evolving backward in time such that whenever the walk hits
a mark in N u,v (i.e., for s ∈ (0, t), (t− s) ∈ N u,v and u = Xx,t

s ), it jumps from
site u to site v. When two such random walks meet, which occurs because one
walk jumps on top of the other walk, they coalesce into a single random walk
starting from the space-time point where they first met. We define by ζs the
Markov process which describes the positions of the coalescing particles at time
s. If ζs starts at time t with one particle from every site of A for some A ⊂ Z,
then we use the notation

ζt
s(A) := {Xx,t

s : x ∈ A} ,

where the superscript is the time in the voter model when the walks first started,
and the subscript is the time for the coalescing random walks. It is well known
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that ζt is the dual process of ηt (see Liggett’s book [7]), and we obtain directly
from the definitions that

{ηt(z) ≡ 1 on A} = {η0(z) ≡ 1 on ζt
t (A)}

for all A ⊂ Z.

Theorem 1.3 Take 2 < γ < 3 and fix 0 < θ < γ−2
γ . For N ≥ 1, let (ηN

t )t≥0

be described as the voter model according to the same Harris system and also
starting from η1,0 except that a flip from 0 to 1 at a site x at time t is suppressed
if it results from the “influence” of a site y with |x− y| ≥ N1−θ and [x ∧ y, x ∨
y] ∩ [rN

t− −N, rN
t−] 6= φ, where rN

t is the rightmost 1 for the process ηN
· . Then

(i)
(

rN
tN2

N

)
t≥0

converge in distribution to a σ-speed Brownian Motion with σ

defined in (1.2).

(ii) As N →∞, the integral

1
N2

∫ TN2

0

IrN
s 6=rs

ds

tends to 0 in probability for all T > 0.

Remark 2 There is no novelty in claiming that for ( rtN2

N )t≥0, there is a se-
quence of processes (γN

t )t≥0 which converges in distribution to a Brownian mo-
tion, such that with probability tending to 1 as N tends to infinity, γN

t is close
to rtN2

N most of the time. The value of the previous result is in the fact that
there is a very natural candidate for such a process.

Let {Θx :Ω → Ω, x ∈ Z} be the group of translations on Ω, i.e., (η◦Θx)(y) =
η(y + x) for every x ∈ Z and η ∈ Ω. The second question we address concerns
the equilibrium distribution of the voter model interface (ηt◦Θ`t

)t≥0, when such
an equilibrium exists. Cox and Durrett [4] observed that (ηt ◦ Θ`t

|N)t≥0, the
configuration of ηt ◦ Θ`t

restricted to the positive coordinates, evolves as an
irreducible Markov chain with countable state space

Ω̃ =

ξ ∈ {0, 1}N :
∑
x≥1

ξ(x) < ∞

 .

Therefore a unique equilibrium distribution π exists for (ηt ◦ Θ`t
|N)t≥0 if and

only if it is a positive recurrent Markov chain. Cox and Durret proved that,
when the probability kernel p (·) has finite third moment, (ηt◦Θ`t |N)t≥0 is indeed
positive recurrent and a unique equilibrium π exists. Belhaouari, Mountford and
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Valle [3] recently extended this result to kernels p (·) with finite second moment,
which was shown to be optimal.

Cox and Durrett also noted that if the equilibrium distribution π exists,
then excluding the trivial nearest neighbor case, the equilibrium has Eπ[Γ] = ∞
where Γ = Γ(ξ) = sup{x : ξ(x) = 1} for ξ ∈ Ω̃ is the interface size. In fact, as
we will see, under finite second moment assumption on the probability kernel
p (·), there exists a constant C = Cp ∈ (0,∞) such that

π{ξ : Γ(ξ) ≥ M} ≥ Cp

M
for all M ∈ N,

extending Theorem 6 of Cox and Durrett [4]. Furthermore, we show that M−1

is the correct order for π{η : Γ(η) ≥ M} as M tends to infinity if p (·) possesses a
moment strictly higher than 3, but not so if p (·) fails to have a moment strictly
less than 3.

Theorem 1.4 For the non-nearest neighbor one-dimensional voter model de-
fined as above

(i) If γ ≥ 2, then there exists C1 > 0 such that for all M ∈ N

π{ξ : Γ(ξ) ≥ M} ≥ C1

M
. (1.3)

(ii) If γ > 3, then there exists C2 > 0 such that for all M ∈ N

π{ξ : Γ(ξ) ≥ M} ≤ C2

M
. (1.4)

(iii) Let α = sup{γ :
∑

x∈Z |x|γp (x) < ∞}. If α ∈ (2, 3), then

lim sup
n→∞

log π{ξ : Γ(ξ) ≥ n}
log n

≥ 2− α. (1.5)

Furthermore, there exist choices of p (·) = pα(·) with α ∈ (2, 3) and

π{ξ : Γ(ξ) ≥ n} ≥ C

nα−2
(1.6)

for some constant C > 0.

This paper is divided in the following way: Sections 2, 3 and 4 are respec-
tively devoted to the proofs of Theorems 1.1 and 1.2, 1.3, and 1.4. We end with
section 5 with the statement and proof of some results needed in the previous
sections.
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2 Proof of Theorem 1.1 and 1.2

By standard results for convergence of distributions on the path space D([0,+∞), R)
(see for instance Billingsley’s book [2], Chapter 3), we have that the convergence
to the σ-speed Brownian Motion in Theorem 1.1 is a consequence of the follow-
ing results:

Lemma 2.1 If γ ≥ 2, then for every n ∈ N and 0 ≤ t1 < t2 < ... < tn in [0,∞)
the finite-dimensional distribution(

rt2N2 − rt1N2

σN
√

t2 − t1
, ... ,

rtnN2 − rtn−1N2

σN
√

tn − tn−1

)
converges weakly to a centered n-dimensional Gaussian vector of covariance
matrix equal to the identity. Moreover the same holds if we replace rt by lt.

Proposition 2.2 If γ > 3, then for every ε > 0 and T > 0

lim
δ→0

lim sup
N→∞

P

 sup
|t−s|<δ
s,t∈[0,T ]

∣∣∣∣rtN2 − rsN2

N

∣∣∣∣ > ε

 = 0 . (2.1)

In particular if the finite-dimensional distributions of
( rtN2

N

)
t≥0

are tight, we
have that the path distribution is also tight and every limit point is concentrated
on continuous paths. The same holds if we replace rt by lt.

By Lemma 2.1 and Proposition 2.2 we have Theorem 1.1.

Lemma 2.1 is a simple consequence of the Markov property, the observations
of Cox and Durrett [4] and Theorem 2 of Belhaouari-Mountford-Valle [3] where
it was shown that for γ ≥ 2 the distribution of rtN2

σN converges to a standard
normal random variable (see also Theorem 5 in Cox and Durrett [4] where the
case γ ≥ 3 was initially considered).

We are only going to carry out the proof of (2.1) for rt since the result of the
proposition follows for lt by interchanging the roles of 0’s and 1’s in the voter
model.

By the Markov property, recurrence, the right continuity of paths and the
fact that the voter model is attractive, we have that (2.1) is a consequence of
the following result: for all ε > 0

lim sup
δ→0

δ−1 lim sup
N→+∞

P

[
sup

0≤t≤N2δ

|rt| ≥ εN

]
= 0 . (2.2)

Let us first remark that in order to show (2.2) it is sufficient to show that

lim sup
δ→0

δ−1 lim sup
N→+∞

P

[
sup

0≤t≤N2δ

rt ≥ εN

]
= 0 . (2.3)

7



Indeed, from the last equation we obtain

lim sup
δ→0

δ−1 lim sup
N→+∞

P
[

inf
0≤t≤N2δ

rt ≤ −εN

]
= 0 . (2.4)

To see this note that rt ≥ lt − 1, thus (2.4) is a consequence of

lim sup
δ→0

δ−1 lim sup
N→+∞

P
[

inf
0≤t≤N2δ

lt ≤ −εN

]
= 0 , (2.5)

which is equivalent to (2.3) by interchanging the 0’s and 1’s in the voter model.

The proof of (2.3) to be presented is based on a chain argument for the
dual coalescing random walks process. We first observe that by duality, (2.3) is
equivalent to showing that for all ε > 0,

lim
δ→0

δ−1 lim sup
N→+∞

P
[
ζt
t ([εN,+∞)) ∩ (−∞, 0] 6= φ for some t ∈ [0, δN2]

]
= 0 .

Now, if we take R := R(δ,N) =
√

δN and M = ε/
√

δ, we may rewrite the last
expression as

lim
M→+∞

M2 lim sup
R→+∞

P
[
ζt
t ([MR,+∞)) ∩ (−∞, 0] 6= φ for some t ∈ [0, R2]

]
= 0 ,

which means that we have to estimate the probability that no dual coalescing
random walk starting at a site in [MR, +∞) at a time in the interval [0, R2]
arrive at time t = 0 at a site to the left of the origin. It is easy to check that the
condition above, and hence Proposition 2.2 is a consequence of the following:

Proposition 2.3 If γ > 3, then for R > 0 sufficiently large and 2b ≤ M <
2b+1, for some b ∈ N the probability

P
[
ζt
t ([MR, +∞)) ∩ (−∞, 0] 6= φ : for some t ∈ [0, R2]

]
is bounded above by a constant times∑

k≥b

{
1

22kR
γ−3

2

+ e−c2k

+ 2kR4e−c2k(1−β)R
(1−β)

2 + 2ke−c22k

}
(2.6)

for some c > 0 and 0 < β < 1.

Proof:

The proof is based on a chain argument which we first describe informally.
Without loss of generality we fix M = 2b. The event stated in the proposi-
tion is a union of the events that some backward random walk starting from
[2kR, 2k+1R] × [0, R2] (k ≥ b) hits the negative axis at time 0. Therefore it
suffices to consider such events.
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The first step is to discard the event that at least one of the coalescing
random walks Xx,s starting in Ik,R = [2kR, 2k+1R]× [0, R2] has escaped from a
small neighborhood around Ik,R before time K1b s

K1
c (in the dual voter model).

The constant K1 will be chosen later. We call this small neighborhood around
Ik,R the first-step interval, and the times {nK1}0≤n≤bR2

K1
c the first-step times.

So after this first step we just have to consider the system of coalescing random
walks starting on each site of the first-step interval at each of the first-step times.

In the second step of our argument, we let these particles evolve backward
in time until they reach the second-step times: {n(2K1)}0≤n≤b R2

2K1
c. I.e., if a

walk starts at time lK1, we let it evolve until time (l − 1)K1 if l is odd, and
until time (l − 2)K1 if l is even. We then discard the event that either some
of these particles have escaped from a small neighborhood around the first-step
interval, which we call the second-step interval, or the density of the particles
alive at each of the second-step times in the second-step interval has not been
reduced by a fixed factor 0 < p < 1.

We now continue by induction. In the jth-step, we have particles starting
from the (j−1)th-step interval with density at most pj−2 at each of the (j−1)th-
step times. We let these particles evolve backward in time until the next jth-step
times: {n(2j−1K1)}0≤n≤b R2

2j−1K1
c. We then discard the event that either some

of these particles have escaped from a small neighborhood around the (j−1)th-
step interval, which we call the jth-step interval, or the density of the particles
alive at each of the jth-step times in the jth-step interval has not been reduced
below pj−1.

We repeat this procedure until the Jth-step with J of order log R, when the
only Jth-step time left in [0, R2] is 0. The rate p will be chosen such that at the
Jth-step, the number of particles alive at time 0 is of the order of a constant
which is uniformly bounded in R but which still depends on k. The Jth-step
interval will be chosen to be contained in [0, 3 · 2kR].

We now give the details. In our approach the factor p is taken to be 2−1/2.
The constant K1 = 7K0 where K0 is the constant satisfying Proposition 5.4,
which is necessary to guarantee the reduction in the number of particles. Note
that K1 is independent of k and R. The jth-step interval is obtained from the
(j-1)th-step intervals by adding intervals of length βR

j 2kR, where

βR
JR−j =

1
2(j + 1)2

,

and

JR = 1 +
⌈

1
log 2

log
(

R2

K1

)⌉
is taken to be the last step in the chain argument. We have chosen JR because
it is the step when 2JR−1K1 first exceeds R2 and the only JRth-step time in
[0, R2] is 0. With our choice of βR

j , we have that the JRth-step interval lies within
[0, 3(2kR)], and except for the events we discard, no random walk reaches level
0 before time 0.
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Let us fix γ = 3 + ε in Theorem 1.1. The first step in the chain argument
described above is carried out by noting that the event we reject is a subset of
the event{

For some k ≥ b and (x, s) ∈ [2kR, 2k+1R]× [0, R2],

|Xx,s
u − x| ≥ βR

1 2kR for some 0 ≤ u ≤ s−K1b
s

K1
c
}

.

Since βR
1 = 1/(2J2

R) ≥ C/(log R)2, Lemma 5.5 implies that the probability of
the above event is bounded by∑

k≥b

CK1(log R)2(3+ε)

22k+3εRε
(2.7)

for R sufficiently large. Therefore, for each k ≥ b, instead of considering all the
coalescing random walks starting from [2kR, 2k+1R] × [0, R2], we just have to
consider coalescing random walks starting from [(1 − βR

1 )2kR, (2 + βR
1 )2kR] ×

{nK1} where {nK1}0≤n≤bR2
K1

c are the first-step times. By this observation, we

only need to bound the probability of the event

Ak,R =
{

Xx,nK1
u ≤ 0 for some n = 1, ...,

⌊
R2

K1

⌋
, u ∈ [0, nK1]

and x ∈
[(

1− βR
1

)
2kR,

(
2 + βR

1

)
2kR

]}
.

We start by defining events which will allow us to write Ak,R in a convenient
way. For n1 := n ∈ N and for each 1 ≤ j ≤ JR − 1, define recursively

nj+1 =

{ ⌊
nj−1

2j

⌋
2j , if

⌊
nj−1

2j

⌋
2j ≥ 0

0 , otherwise .

For a random walk starting at time nK1 in the dual voter model, njK1 is its
time coordinate after the jth step of our chain argument. Then define

W k,R
1 =

{
|Xx,nK1

u − x| ≥ βR
2 2kR for some n = 1, ...,

⌊
R2

K1

⌋
,

u ∈ [0, (n− n2)K1] and x ∈
[(

1− βR
1

)
2kR,

(
2 + βR

1

)
2kR

] }
,

and for each 2 ≤ j ≤ JR − 1

W k,R
j =

{ ∣∣Xx,nK1
(n−nj)K1+u −Xx,nK1

(n−nj)K1

∣∣ ≥ βR
j+12

kR for some n = 1, ...,

⌊
R2

K1

⌋
,

u ∈ [0, (nj − nj+1)K1] and x ∈
[(

1− βR
1

)
2kR,

(
2 + βR

1

)
2kR

] }
.

Note that W j
k,R is the event that in the (j + 1)th step of the chain argument,

some random walk starting from a jth-step time makes an excursion of size

10



βR
j+12

kR before it reaches the next (j + 1)th-step time. Then we have

Ak,R ⊂
JR−1⋃
j=1

W k,R
j ,

since on the complement of
⋃JR−1

j=1 W k,R
j the random walks remain confined in

the interval [(
1−

JR∑
i=1

βR
i

)
2kR,

(
2 +

JR∑
i=1

βR
i

)
2kR

]
.

Now let Uk,R
j , 1 ≤ j ≤ JR − 1, be the event that for some 0 ≤ n ≤ b R2

2jK1
c the

density of coalescing random walks starting at (x, s) ∈
[(

1− βR
1

)
2kR,

(
2 + βR

1

)
2kR

]
×

{lK1 : lj+1 = n2j} that are alive in the (j + 1)th-step interval at time n2jK1 is
greater than 2−

j
2 . In other words, Uk,R

j is the event that after the (j +1)th-step
of the chain argument, the density of particles in the (j + 1)th-step interval at
some of the (j + 1)th-step times {n2jK1}0≤n≤b R2

2jK1
c is greater than 2−

j
2 . The

chain argument simply comes from the following decomposition:

JR−1⋃
j=1

W k,R
j ⊂

JR−1⋃
j=1

(
W k,R

j ∪ Uk,R
j

)

=
JR−1⋃
j=1

(
(W k,R

j ∪ Uk,R
j ) ∩

j−1⋂
i=1

(
W k,R

i ∪ Uk,R
i

)c)

=
JR−1⋃
j=1

(
W k,R

j ∩
j−1⋂
i=1

(
W k,R

i ∪ Uk,R
i

)c) (2.8)

∪
JR−1⋃
j=1

(
Uk,R

j ∩
j−1⋂
i=1

(
W k,R

i ∪ Uk,R
i

)c)
. (2.9)

We are going to estimate the probability of the events in (2.8) and (2.9).

We start with (2.9). It is clear from the definitions that the events Uk,R
i were

introduced to obtain the appropriate reduction on the density of random walks
at each step of the chain argument. The event Uk,R

j ∩
⋂j−1

i=1

(
W k,R

i ∪ Uk,R
i

)c
implies the existence of jth-step times t1 = (2m + 1)2j−1K1 and t2 = (2m +
2)2j−1K1 such that, after the jth-step of the chain argument, the walks at time
t1 and t2 are inside the jth-step interval with density at most 2−

j−1
2 , and in

the (j + 1)th-step these walks stay within the (j + 1)th-step interval until the
(j + 1)th-step time t0 = m2jK1, when the density of remaining walks in the
(j + 1)th-step interval exceeds 2−

j
2 . We estimate the probability of this last

event by applying three times Proposition 5.4 with p = 2−
1
2 and L equal to the

size of the (j+1)th-step interval, which we denote by Lk,R
j+1.

11



We may suppose that at most 2−
j−1
2 Lk.R

j+1 random walks are leaving from
times t1 and t2. We let both sets of walks evolve for a dual time interval of
length 7−1 · 2j−1K1 = 2j−1K0. By applying Proposition 5.4 with γ = 2−

j−1
2 ,

the density of particles starting at times t1 or t2 is reduced by a factor of 2−
1
2

with large probability. Now we let the partivles evolve further for a time interval
of length 2jK0. Apply Proposition 5.4 with γ = 2−

j
2 , the density of remaining

particles is reduced by another factor of 2−
1
2 with large probability. By a last

application of Proposition 5.4 for another time interval of length 2j+1K0 with
γ = 2−

j+1
2 we obtain that the total density of random walks originating from

the two jth-step times t1 (resp. t2) remaining at time t0 (resp. t1) has been
reduced by a factor 2−

3
2 . Finally we let the random walks remaining at time

t1 evolve untill the (j+1)th-step time t0, at which time the density of random
walks has been reduced by a factor 2 · 2− 3

2 = 2−
1
2 with large probability. By a

decomposition similar to (2.8) and (2.9) and using the Markov property, we can
assume that before each application of Proposition 5.4, the random walks are all
confined within the (j + 1)th-step interval. All the events described above have

probability at least 1 − Ce
−c 2kR

2j/2 . Since there are (b R2

2jK1
c + 1) (j + 1)th-step

times, the probability of the event in (2.9) is bounded by

C

JR∑
j=0

R2

2jK1
exp

{
−c

2kR

2j/2

}
.

It is simple to verify that this last expression is bounded above by

C

∫ +∞

1

u2e−c2kudu ≤ Ce−c2k

.

Now we estimate the probability of the event in (2.8). For every j =
1, ..., JR − 1,

W k,R
j ∩

j−1⋂
i=1

(
W k,R

i

)c ∩ j−1⋂
i=1

(
Uk,R

i

)c
is contained in the event that at the jth-step times {n2j−1K1}1≤n≤b R2

2j−1K1
c,

the random walks are contained in the jth-step interval with density at most
2

j−1
2 , and some of these walks move by more than βR

j+1 2kR in a time interval
of length 2jK1. The probability of this event is bounded by

R2

2j−1K1

2kR

2
j−1
2

P

(
sup

0≤t≤2jK1

|Xt| ≥ βR
j+1 2kR

)
, (2.10)

since
R2

2j−1K1

2kR

2
j−1
2

(2.11)

12



bounds the number of walks we are considering. By Lemma 5.1 the probability
in (2.10) is dominated by

exp
{
−c
(
βR

j+1 2kR
)1−β

}
+ exp

{
−c

(
βR

j+1 2kR
)2

2jK1

}
+

(
1

βR
j+1 2kR

)3+ε

2jK1 .

Then multiplying by (2.11) and summing over 1 ≤ j ≤ JR, we obtain by
straightforward computations that if R is sufficiently large, then there exist
constants c > 0 and c′ > 1 such that the probability of the event in (2.8) is
bounded above by a constant times

2kR4e−c2(1−β)kR
(1−β)

2 + 2k

∫ ∞

1

u3e
− c22ku2

log(c′u) du +
1

2(2+ε)kR
ε
2

. (2.12)

Adjusting the terms in the last expression we complete the proof of the propo-
sition. �

Proof of (ii) in Theorem 1.1:
For the rescaled voter model interface boundaries ltN2

N and rtN2

N to converge
to a σ-speed Brownian motion, it is necessary that the boundaries cannot wander
too far within a small period of time, i.e., we must have

lim
t→0

lim sup
N→∞

P
[

sup
0≤s≤t

rtsN2

N
> ε

]
= lim

t→0
lim sup
N→∞

P
[

inf
0≤s≤t

lsN2

N
< −ε

]
= 0. (2.13)

In terms of the dual system of coalescing random walks, this is equivalent to

lim
t→0

lim sup
N→∞

P
{
ζs
s ([εN,+∞)) ∩ (−∞, 0] 6= φ for some s ∈ [0, tN2]

}
= 0 (2.14)

and the same statement for its mirror event. If some random walk jump orig-
inating from the region [εσN,∞) × [0, tN2] jumps across level 0 in one step
(which we denote as the event DN (ε, t)), then with probability at least α for
some α > 0 only depending only on the random walk kernel p(·), that random
walk will land on the negative axis at time 0 (in the dual voter model). Thus
(2.14) implies that

lim
t→0

lim sup
N→∞

P[DN (ε, t)] = 0 (2.15)

and the same statement for its mirror event. Since random walk jumps origi-
nating from (−∞,−εN ] ∪ [εN,+∞) which crosses level 0 in one step occur as
a Poisson process with rate

∑∞
k=εN F (k) where F (k) =

∑
|x|≥k p(x), condition

(2.15) implies that

lim sup
N→∞

N2
∞∑

k=εN

F (k) ≤ C < +∞. (2.16)
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In particular,

sup
N∈Z+

N2
∞∑

k=N

F (k) ≤ Cε < +∞. (2.17)

Let H(y) = y3 log−β(y ∨ 2) for some β > 0. Let H(1)(k) = H(k) − H(k − 1)
and H(2)(k) = H(1)(k)−H(1)(k− 1) = H(k)+H(k− 2)− 2H(k− 1), which are
the discrete gradient and laplacian of H. Then for k ≥ k0 for some k0 ∈ Z+,
0 < H(2)(k) < 8k log−β k. Denote G(k) =

∑∞
i=k F (i). Then (2.17) is the same

as G(k) ≤ Cε

k2 for all k ∈ Z+. Recall that ps(k) = p(k)+p(−k)
2 , we have by

summation by parts

∑
k∈Z

H(|k|)p(k) =
∞∑

k=1

2H(k)ps(k)

=
k0−1∑
k=1

2H(k)ps(k) + H(k0)F (k0) +
∞∑

k=k0+1

H(1)(k)F (k)

=
k0−1∑
k=1

2H(k)ps(k) + H(k0)F (k0)

+H(1)(k0 + 1)G(k0 + 1) +
∞∑

k=k0+2

H(2)(k)G(k)

≤
k0−1∑
k=1

2H(k)ps(k) + H(k0)F (k0)

+H(1)(k0 + 1)G(k0 + 1) +
∞∑

k=k0+2

8k

logβ k
· Cε

k2

< ∞

for β > 1. This concludes the proof. �

We end this section with

Proof of Theorem 1.2: In [5, 6], the standard Brownian web W̄ is defined as
a random variable taking values in the space of compact sets of paths (see [5, 6]
for more details), which is essentially a system of one-dimensional coalescing
Brownian motions with one Brownian path starting from every space-time point.
In [9], it was shown that under diffusive scaling, the random set of coalescing
random walk paths with one walker starting from every point on the space-time
lattice Z× Z converges to W̄ in the topology of the Brownian web (the details
for the continuous time walks case is given in [11]), provided that the random
walk jump kernel p(·) has finite fifth moment. To improve their result from finite
fifth moment to finite γ-th moment for any γ > 3, we only need to verify the
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tightness criterion (T1) formulated in [9], the other convergence criteria require
either only finite second moment or tightness.

Recall the tightness criteria (T1) in [9],

(T1) g̃(t, u;L, T ) ≡ t−1 lim sup
δ→0+

sup
(x0,t0)∈ΛL,T

µδ(At,u(x0, t0)) → 0 as t → 0+,

where ΛL,T = [−L, L]× [−T, T ], µδ is the distribution of Xδ, R(x0, t0;u, t) is the
rectangle [x0−u, x0+u]×[t0, t0+t], and At,u(x0, t0) is the event that the random
set of coalescing walk paths contains a path touching both R(x0, t0;u, t) and (at
a later time) the left or right boundary of the bigger rectangle R(x0, t0; 2u, 2t).
In [9], in order to guarantee the continuity of paths, the random walk paths
are taken to be the interpolation between consecutive space-time points where
jumps take place. Thus the contribution to the event At,u(x0, t0) is either due
to interpolated line segments intersecting the inner rectangle R(x0, t0;u, t) and
then not landing inside the intermediate rectangle R(x0, t0; 3u/2, 2t), which can
be shown to have 0 probability in the limit δ → 0 if p(·) has finite third moment;
or it is due to some random walk originating from inside R(x0, t0; 3u/2, 2t) and
then reaches either level −2u or 2u before time 2t. In terms of the unscaled
random walk paths, and note the symmetry between left and right boundaries,
condition (T1) reduces to

lim
t↓0

1
t

lim sup
δ→0

P
{

ζs1
s2

([
uσ

2δ
,
7uσ

2δ
]) ∩ (−∞, 0] 6= φ for some 0 ≤ s2 < s1 ≤

t

δ2

}
= 0,

which by the reflection principle for random walks is further implied by

lim
t↓0

1
t

lim sup
δ→0

P
{

ζs
s ([

uσ

2δ
,
7uσ

2δ
]) ∩ (−∞, 0] 6= φ for some 0 ≤ s ≤ t

δ2

}
= 0,

which is a direct consequence of Proposition 2.3. This establishes the first part
of Theorem 1.2.

It is easily seen that the tightness of {Xδ} imposes certain equicontinuity
conditions on the random walk paths, and the condition in (2.15) and its mirror
statement are also necessary for the tightness of {Xδ}, and hence the convergence
of Xδ (with δ = 1

N ) to the standard Brownian web W̄. Therefore, we must also

have
∑

x∈Z
|x|3

logβ(|x|∨2)
p (x) < ∞ for all β > 1. �

3 Proof of Theorem 1.3

In this section we assume that 2 < γ < 3 and we fix 0 < θ < γ−2
γ .

We recall the definition of (ηN
t )t≥0 on Ω. The evolution of this process is

described by the same Harris system on which we constructed (ηt)t≥0, i.e., the
family of Poisson point processes {N x,y}x,y∈Z, except that if t ∈ N x,y ∪ N y,x,
for some y > x with y − x ≥ N1−θ and [x, y] ∩ [rN

t− − N, rN
t−] 6= φ, then a flip
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from 0 to 1 at x or y, if it should occur, is suppressed. We also let (ηN
t )t≥0 start

from the Heavyside configuration η1,0. We also recall that we denote by rN
t the

position of its rightmost ”1”.

Since (ηt)t≥0 and (ηN
t )t≥0 are generated by the same Harris system and

they start with the same configuration, it is natural to believe that rN
t = rt

for ”most” 0 ≤ t ≤ N2 with high probability. To see this we use the additive
structure of the voter model to show (ii) in Theorem 1.3.

For a fixed realization of the process (ηN
t )t≥0, we denote by t1 < ... < tk the

times of the suppressed jumps in the time interval [0, TN2] and by x1, ..., xk the
target sites, i.e., the sites where the suppressed flips should have occurred. Now
let (ηti,xi

t )t≥0 be voter models constructed on the same Harris system starting
at time ti with configurations δx,xi

. As usual we denote by rti,xi

t , t ≥ ti, the
position of the rightmost ”1”. It is straightforward to verify that

0 ≤ rt − rN
t = max

1≤i≤k
(rti,xi

t − rN
t ) ∨ 0 .

The random set of times {ti} is a Poisson point process on [0, N2] with rate
at most ∑

x≤z<y,−N≤z≤0:
y−x≥N1−θ

{p(y − x) + p(x− y)} ≤
∑

|x|≥N1−θ

|x|p(x) + N
∑

|x|≥N1−θ

p(x) ,

which is further bounded by

2
∑

x∈Z |x|αp(x)
N (1−θ)α−1

for every α > 1. Therefore if we take α = γ, then by the choice of θ and the
assumption that the γ-moment of the transition probability is finite, we have
that the rate decreases as N−(1+ε) for ε = (1− θ)γ − 2 > 0.

Lemma 3.1 For every random set of space-time points {(ti, xi)} where a flip
is suppressed in ηN

t for 0 ≤ t ≤ TN2, let

τi = inf{t ≥ ti : ηxi,ti

t ≡ 0 on Z} − ti .

Then
P[τi ≥ N2 for some i] → 0 as N →∞ ,

and
E[τi; τi ≤ N2] ≤ CN .

Moreover, from these estimates we have that

N−2E

[
k∑

i=1

τi

∣∣∣τi ≤ N2 for all i

]
→ 0 as N →∞ .
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Proof:
The proof is basically a corollary of Lemma 5.6, which gives that the lifetime

τ of a single particle voter model satisfies

P[τ ≥ t] ≤ C√
t

for some C > 0. Thus, by the Markov Property

P[τi ≥ N2 for some i] =
+∞∑
k=0

P[τk ≥ N2| |{ti}| ≥ k] P[|{ti}| ≥ k]

≤ P[τ1 ≥ N2]
+∞∑
k=0

P[|{ti}| ≥ k]

≤ C

N
· TN2 ·

2
∑

x∈Z |x|γp(x)
N (1−θ)γ−1

=
C ′

N ε
,

which gives the first assertion in the lemma. The verification of E[τi; τi ≤ N2] ≤
CN is trivial. Now from the first two assertions in the lemma we obtain easily
the third one. �

Now to complete the proof of (ii) in Theorem 1.3, observe that if s ∈ [0, TN2]
then rN

s 6= rs only if s ∈ ∪k
i=1[ti, (τi + ti) ∧ TN2), and then∫ TN2

0

IrN
s 6=rs

ds ≤
k∑

i=1

((τi + ti) ∧ TN2)− ti) ≤
k∑

i=1

(τi ∧ TN2) .

The result follows from the previous lemma by usual estimates.

Now we show (i) in Theorem 1.3. The convergence of the finite-dimensional
distributions follows from a similar argument as the proof of (ii) in Theorem
1.3, which treats ηN

t as a perturbation of ηt. We omit the details. Similar to
(2.1) — (2.3) in the proof of Theorem 1.1, tightness can be reduced to showing

lim sup
δ→0

δ−1 lim sup
N→+∞

P

[
sup

0≤t≤δN2
rN
t ≥ εN

]
= 0, (3.1)

for which we can adapt the proof of Theorem 1.1. As the next lemma shows,
it suffices to consider the system of coalescing random walks with jumps of size
greater than or equal to N1−θ suppressed.

Lemma 3.2 For almost every realization of the Harris system in the time in-
terval [0, δN2] with sup0≤t≤δN2 rN

t ≥ εN for some 0 < ε < 1, there exists a dual
backward random walk starting from some site in {Z ∩ [εN,+∞)} × [0, δN2]
which attains the left of the origin before time 0 in the voter model by making
no jumps of size greater than or equal to N1−θ.

17



Proof:
Since (ηN

t )t≥0 starts from the Heavyside configuration, it is straightforward
to verify that for a realization of the Harris system with sup0≤s≤δN2 rN

s ≥
εN , there exists a dual backward random walk starting in some site on {Z ∩
[MN,+∞)} × [0, δN2] which attains the left of the origin before dual time t.
Then we consider a dual random walk Xx,s with x > 0 and 0 < s < t which
attains the origin before time 0 in the voter model. If by the time the walk first
reaches the left of the origin, it has made no jumps of size greater than or equal
to N1−θ, we are done; otherwise when the first large jump occurs the random
walk must be to the right of the origin, and by the definition of ηN

t , either the
jump does not induce a flip from 0 to 1, in which case we ignore this large jump;
or the rightmost 1 must be at least at a distance N to the right of the position
of the random walk before the jump, in which case since ε < 1, at this time
there is a dual random walk in Z ∩ [εN,+∞) which also attains the left of the
origin before time 0 in the voter model. Now either this second random walk
makes no jump of size greater than or equal to N1−θ before it reaches level 0,
or we repeat the previous argument to find another random walk starting in
{Z∩ [εN,+∞)}× [0, δN2] which also attains the left of the origin before time 0
in the voter model. For almost surely all realizations of the Harris system, the
above procedure can only be iterated a finite number of times. The lemma then
follows immediately. �

Lemma 3.2 reduces (3.1) to an analogous statement for a system of coalescing
random walks with jumps larger than or equal to N1−θ suppressed.

Take 0 < σ < θ and let ε′ := (1−θ)(3−γ)
σ . Then∑

|x|≤N1−θ

|x|3+ε′p(x) ≤ N (1−θ)(3+ε′−γ)
∑
x∈Z

|x|γp(x) ≤ CN (1−θ+σ)ε′ . (3.2)

The estimate required here is the same as in the proof of Theorem 1.1, except
that as we increase the index N , the random walk kernel also changes and its
(3+ε′)th-moment increases as CN (1−θ+σ)ε′ . Therefore it remains to correct the
exponents in Proposition 2.3. Denote by ζN the system of coalescing random
walks with jumps larger than or equal to N1−θ suppressed, and recall that
R =

√
δN and M = ε/

√
δ in our argument, (3.1) then follows from

Proposition 3.3 For R > 0 sufficiently large and 2b ≤ M < 2b+1 for some
b ∈ N, the probability

P
{

ζN,t
t ([MR,+∞)) ∩ (−∞, 0] 6= φ : for some t ∈ [0, R2]

}
is bounded above by a constant times∑

k≥b

{
1

22kδε′R
(θ−σ)ε′

2

+ e−c2k

+ 2kR4e−c2k(1−β)R
(1−β)

2 + 2ke−c22k

}
(3.3)

for some c > 0 and 0 < β < 1.
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The only term that has changed from Proposition 2.3 is the first term, which
arises from the application of Lemma 5.5. We have incorporated the fact that
the 3 + ε′ moment of the random walk with large jumps suppressed grows as
CN (1−θ+σ)ε′ , and we have employed a tighter bound for the power of R than
stated in Proposition 2.3. The other three terms remain unchanged because the
second term comes from the particle reduction argument derived from applica-
tions of Proposition 5.4, while the third and forth terms come from the Gaussian
correction on Lemma 5.1. The constants in these three terms only depend on
the second moment of the truncated random walks which is uniformly bounded.
The verification of this last assertion only need some more concern in the case
of the second term due to applications of Lemma 5.2. But if we go through
the proof of Theorem T1 in section 7 and Proposition P4 in Section 32 of [10],
we see that in order to obtain uniformity in Lemma 5.2 for a family of random
walks, we only need uniform bounds on the characteristic functions associated
to the walks in the family, which are clearly satisfied by the family of random
walks with suppressed jumps. This concludes the proof of Theorem 1.3. �

4 Proof of Theorem 1.4

4.1 Proof of (i) in Theorem 1.4

We start by proving (i) in Theorem 1.4. Since (ηt ◦ Θ`t |N)t≥0 is a positive
recurrent Markov chain on Ω̃, by usual convergence results, we only have to show
that starting from the Heavyside configuration for every t and M sufficiently
large

P (rt − lt ≥ M) ≥ C

M
,

for some C > 0 independent of M ant t. Now fix λ > 0, this last probability is
bounded below by

P (rt − lt ≥ M, rt−λM2 − lt−λM2 ≤ M)
= P (rt − lt ≥ M |rt−λM2 − lt−λM2 ≤ M)P (rt−λM2 − lt−λM2 ≤ M) ,

which by tightness is bounded below by

1
2
P (rt − lt ≥ M |rt−λM2 − lt−λM2 ≤ M)

for M sufficiently large. To estimate the last probability we introduce some
notation first, let (X−M

t )t≥0 and (XM
t )t≥0 be two independent random walks

starting respectively at −M and M at time 0 with transition probability p(·).
Denote ZM

t = XM
t −X−M

t . For every set A ⊂ Z, let τA be the stopping time

inf{t ≥ 0 : ZM
t ∈ A} .
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If A = {x}, we denote τA simply by τx. Then by duality and the Markov
property after translating the system to have the leftmost 0 at the origin by
time t− λM2 we obtain that

P (rt−lt ≥ 2M |rt−λM2−lt−λM2 ≤ M) ≥ P (τ0 > λM2;X−M
λM2 ≥ M ;XM

λM2 ≤ −M) .

Part (i) of Theorem 1.4 then follows from the next result:

Lemma 4.1 If p(·) is a non-nearest neighbor transition probability and has zero
mean and finite second moment, then we can take λ sufficiently large such that
for some C > 0 independent of M and for all M sufficiently large,

P (τ0 > λM2;X−M
λM2 ≥ M ;XM

λM2 ≤ −M) ≥ C

M
. (4.1)

Let As(M,k, x) be the event

{τx,x+k
0 > λM2 − s; Xx+k

λM2−s ≥ M ;Xx
λM2−s ≤ −M} ,

where as before, for every x and y, (Xx
t )t≥0 and (Xy

t )t≥0 denote two independent
random walks starting respectively at x and y with transition probability p(·),
and

τx,x+k
0 = inf{t ≥ 0 : Xx+k

t −Xx
t = 0} .

To prove Lemma 4.1 we apply the following result:

Lemma 4.2 Let K ∈ N be fixed. For all l ∈ N sufficiently large, there exists
some C > 0 such that for all s ≤ λM2/2, |x| < lM and 0 < k ≤ K, and M
sufficiently large

P (As(M,k, x)) >
C

M
.

Proof of Lemma 4.1:
Let Z− denote Z∩ (−∞, 0]. The probability in (4.1) is then bounded below

by

P

(
τZ− <

λM2

2
; τ0 > λM2; X−M

λM2 ≥ M ;XM
λM2 ≤ −M

)
which by the Strong Markov property is greater than or equal to∑
|x|≤lM

∑
1≤k≤K

∫ λM2/2

0

P
(
τZ− ∈ ds;X−M

s = x + k,XM
s = x

)
P (As(M,k, x)) ,

where l ∈ N is some fixed large constant. Now applying Lemma 4.2 we have
that the probability in (4.1) is bounded below by

C

M

∑
|x|≤lM

∑
1≤k≤K

P

(
τZ− <

λM2

2
;X−M

τZ−
= x + k, XM

τZ−
= x

)
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Thus to finish the proof we have to show that∑
|x|≤lM

∑
1≤k≤K

P

(
τZ− <

λM2

2
;X−M

τZ−
= x + k,XM

τZ−
= x

)
(4.2)

is bounded below uniformly over M by some positive constant.
Let D = {(x, x + k) : 1 ≤ k ≤ K and |x| < lM}, then this last expression

can be rewritten as

P

(
τZ− ≤

λM2

2
;
(
XM

τZ−
, X−M

τZ−

)
∈ D

)
≥ P

(
τZ− ≤

λM2

2

)
− P

(
τZ− ≤

λM2

2
; X−M

τZ−
−XM

τZ−
= 0 or > K

)
−P

(
τZ− ≤

λM2

2
;
∣∣∣XM

τZ−

∣∣∣ ≥ lM

)
≥ P

(
τZ− ≤

λM2

2

)
− P

(
ZM

τZ−
= 0 or < −K

)
− P

(
sup

0≤t≤λM2/2

∣∣XM
t

∣∣ ≥ lM

)
.

We claim that the second term can be bounded uniformly away from 1 for large
M by taking K large. This follows from a standard result for random walks
(see, e.g., Proposition 24.7 in [10]), which states that: if a mean zero random
walk ZM

t starting from 2M > 0 has finite second moment, then the overshoot
ZM

τZ−
converges to a limiting probability distribution on Z− as 2M → +∞. The

distribution is concentrated at 0 only if the random walk is nearest-neighbor.
Then by Donsker’s invariance principle, the first term can be made arbitrarily
close to 1 uniformly over large M by taking λ large, and finally the last term
can be made arbitrarily close to 0 uniformly over large M by taking l sufficiently
large. With appropriate choices for K, λ and l, we can guarantee that (4.2) is
bounded below by a positive constant uniformly for large M , which completes
the proof of the Lemma. �

It remains to prove Lemma 4.2.

Proof of Lemma 4.2:

By the Markov property the probability of As(M,k, x) is greater than or
equal to∑

(l1,l2)∈D1

P
(
τx,x+k
0 > λM2/4, Xx

λM2/4 = l1; Xx+k
λM2/4 = l2

)
P (Bs(l1, l2,M)) ,

where
D1 = {(l1, l2) : l2 − l1 > 2M ; l2 < 2lM ; l1 > −2lM} .

and for r = r(M, s) := 3λM2/4− s

Bs(l1, l2,M) = {τ l1,l2
0 > r(M, s), X l2

r(M,s) ≥ M ; X l1
r(M,s) ≤ −M}
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The proof is then complete with the following two claims.

Claim 1: There exists C > 0 such that

inf
(l1,l2)∈D1

inf
s≤λM2/2

P (Bs(l1, l2,M)) ≥ C

uniformly over M sufficiently large.

Claim 2: There exists C > 0 such that

inf
1≤k≤K

inf
|x|≤lM

∑
(l1,l2)∈D1

P
(
τx,x+k
0 > λM2/4, Xx

λM2/4 = l1, Xx+k
λM2/4 = l2

)
≥ C

M

(4.3)
uniformly over M sufficiently large.

Proof of claim 1:
Since Bs(l1, l2,M) contains{

max
m<r(M,s)

X l1
m < l1 + M ; X l1

r(M,s) < −(2l − 1)M
}

∩
{

min
m<r(M,s)

X l2
m > l2 −M ; X l2

r(M,s) > (2l − 1)M
}

,

By independence and reflection symmetry,

P (Bs(l1, l2,M)) ≥ P

{
min

t<r(M,s)
X0

t > −M ; X0
r(M,s) > (2l − 1)M

}2

.

Since λM2/4 ≤ r(M, s) ≤ 3λM2/4, by Donsker’s invariance principle the above
quantity is uniformly bounded below by some C > 0 for M sufficiently large.
This establishes Claim 1.

Proof of Claim 2:
We write the sum in (4.3) as

CP
(
τx,x+k
0 > λM2/4; (Xx

λM2/4, X
x+k
λM2/4) ∈ D1

)
which by the definition of D1 is greater than or equal to

P
(
τx,x+k
0 > λM2/4; Xx+k

λM2/4 −Xx
λM2/4 > 2M

)
−P

(
τx,x+k
0 > λM2/4; Xx+k

λM2/4 > 2lM or Xx
λM2/4 < −2lM

)
.

The first term in this expression is bounded below by C/M for some con-
stant C > 0, dependent only on K. This follows from Theorem B in the
Appendix of [4], which states that the conditional distribution of Zk

λM2/M :=
(Xx+k

λM2−Xx
λM2)/M conditioned on τ0 > λM2 converges to a two-sided Rayleigh
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distribution. For the second term, we apply Lemma 2 in [3] and then Lemma
5.2, to dominate it by

CP (τx,x+k
0 > λM2)P

 sup
0≤t≤λM2

2

X0
t > lM

 ≤ C

M
P

 sup
0≤t≤λM2

2

X0
t > lM

 ,

where C depends only on K. Since P
(
sup

0≤t≤λM2
2

X0
t > lM

)
can be made

arbitrarily small uniformly for large M if l is sufficiently large, and 1 ≤ k ≤ K,
we obtain the desired uniform bound in Claim 2. �

4.2 Proof of (ii) in Theorem 1.4

We still consider the voter model (ηt : t ≥ 0) starting from the initial Heavyside
configuration. Under the assumption γ > 3, P(rt − `t ≥ M) converges to
π(ξ : Γ(ξ) ≥ M) as t → +∞. Therefore, to prove Theorem 1.4 (ii), it suffices to
show that, for every M > 0, if t is sufficiently large, then

P(rt − lt ≥ M) ≤ C

M

for some C > 0 independent on M and t.
We now fix N ∈ N and assume M = 2N , which is not a restriction to the

result since 2N ≤ M < 2N+1 for some N ∈ N and the inequality (1.4) remains
valid by replacing C with 2C. In the following t will be >> 22N . Let ∆t(s), for
s < t, be the event that a crossing of two dual coalescing random walks starting
at time t (in the voter model) occurs in the dual time interval (s, t] and by the
dual time t they are on opposite sides of the origin, i.e, there exists u, v ∈ Z
with Xu,t

s < Xv,t
s and Xv,t

t ≤ 0 < Xu,t
t .

¿From the estimates in the proof of lemma 5 in Cox and Durrett [4], one
can show that P(∆t(s)) ≤ C/

√
s, if we have that P(0 ∈ ζs

s (Z)) ≤ C/
√

s, which
holds if p(·) has finite second moment (see Lemma 5.6). Therefore, all we have
to show is that

P
(
{rt − lt ≥ 2N} ∩ (∆t(4N ))c

)
≤ C

2N
(4.4)

for some C independent of t and N . We denote the event {rt − lt ≥ 2N} ∩
(∆t(4N ))c by V N which is a subset of ∪N

k=0V
N
k where V N

k is the event that
there exists x, y ∈ Z with y − x ≥ 2N such that, for the coalescing walks Xx,t

s

and Xy,t
s ,

(i) Xx,t
s < Xy,t

s for every 0 ≤ s ≤ 4k−1;

(ii) There exists s ∈ (4k−1, 4k] with Xx,t
s > Xy,t

s ;

(iii) Xx,t
t > 0 and Xy,t

t ≤ 0.
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For k = 0 we replace 4k−1 by 0. We will obtain suitable bounds on V N
k which

will enable us to conclude that
∑N

k=0 P (V N
k ) ≤ C

2N .
Fix 0 ≤ k ≤ N . For 0 ≤ s ≤ t and y ∈ Z, we call

Ry(s) :=
{

supx∈Z{|x− y| : Xx,t
s = y} , if there exists x such that Xx,t

s = y
0 , otherwise

the range of the coalescing random walk at (s, y) ∈ (0, t]× Z. Obviously V N
k is

contained in the event that there exists x, y in ζt
4k−1(Z) with x < y such that

(i) Rx(4k−1) + Ry(4k−1) + |y − x| ≥ 2N ;

(ii) There exists s ∈ (4k−1, 4k] with Xx,t−4k−1

s−4k−1 > Xy,t−4k−1

s−4k−1 ;

(iii) Xx,t−4k−1

t−4k−1 > 0, Xy,t−4k−1

t−4k−1 ≤ 0,

which we denote by Ṽ N
k .

We call the crossing between two coalescing random walks a relevant crossing
if it satisfies conditions (i) and (ii) in the definition of Ṽ N

k up to the time of the
crossing. We are interested in the density of relevant crossings between random
walks in the time interval (4k−1, 4k] and (as is also relevant) the size of the
overshoot, i.e., the distance between the random walks just after crossing. To
begin we consider separately three cases:

(i) The random walks at time 4k−1 are at x < y with |x − y| ≤ 2k−1 (so it
is ”reasonable” to expect the random walks to cross in the time interval
(4k−1, 4k], and either Rx(4k−1) or Ry(4k−1) must exceed 2N−2 ).

(ii) The random walks are separated at time 4k−1 by at least 2k−1 but no
more than 2N−1 (so either Rx(4k−1) or Ry(4k−1) must exceed 2N−2).

(iii) The random walks are separated at time 4k−1 by at least 2N−1. In this
case we disregard the size of the range.

Before dealing specifically with each case, we shall consider estimates on the
density of particles in ζt

4k(Z) with range greater than m2k. We first consider
the density of random walks at time 4k which move by more than m2k in the
time interval (4k, 4k+1]. By the Markov property and the fact that the density
of particles in ζt

4k(Z) is bounded by C
2k , we obtain from Lemma 5.1 the following

result:

Lemma 4.3 For every 0 < β < 1, there exists c, C ∈ (0,∞) so that for every
k ∈ N and m ≥ 1, the density of y ∈ ζt

4k(Z) such that on the (dual) time
interval (4k, 4k+1] the corresponding random walk distances itself from y by m2k

is bounded by

C

2k

(
e−c(m2k)1−β

+ e−cm2
+

1
m3+ε2k(1+ε)

)
.
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As a corollary, we have

Lemma 4.4 For every 0 < β < 1, there exists c, C ∈ (0,∞) so that for every
k ∈ N and m ≥ 1, the density of y ∈ ζt

22k(Z) whose range is greater than m2k

is bounded by

C

2k

(
2ke−c(m2k)1−β

+ e−cm2
+

1
m3+ε2k(1+ε)

)
.

Proof:
Let dl,k be the density of coalescing random walks remaining at time 4l,

which on interval (4l, 4l+1] move by more than( ∞∑
r=1

1
r2

)−1
m2k

(k − l)2
.

By Lemma 4.3 we have that dl,k is bounded above by

C

2l

[
e
−c

�
m2k

(k−l)2

�1−β

+ e
−c(m2k−l)2

(k−l)4 +
(k − l)2(3+ε)

(m2k−l)3+ε2l(1+ε)

]
.

It is not difficult to see that
∑

l<k dl,k provides an upper bound for the density
we seek. Summing the above bounds for dl,k establishes the lemma. �

We can now estimate the relevant crossing densities and overshoot size in
cases (i), (ii) and (iii) above. More precisely, we will estimate the expectation
of the overshoot between two random walks starting at x < y at time 4k−1

restricted to the event that: x, y ∈ ζt
4k−1(Z), Rx and Ry are compatible with

y − x as stated in cases (i)–(iii), and the two walks cross before time 4k. From
now on, we fix β ∈ (0, 1).

Case (i): Since if the two events {x ∈ ζt
4k−1(Z)} ∩ {Rx(4k−1) > 2N−2} and

{y ∈ ζt
4k−1(Z)} both occur, they always occur on disjoint trajectories of random

walks in the dual time interval [0, 4k−1], we may apply the van den Berg-Kesten-
Reimer inequality (see Lemma 4 in [1] and the discussion therein) which together
with the previous lemma implies that the probability that x, y ∈ ζt

4k−1(Z) and
at least one has range 2N−2 is less than

C

4k

(
2ke−c2N(1−β)

+ e−c4N−k

+
4k

2N(3+ε)

)
.

Moreover the expectation of the overshoot (see [4])

Xx,t−4k−1

τ −Xy,t−4k−1

τ

on the event τ ≤ 4k − 4k−1 = 3 · 4k−1 where

τ = inf{s > 0 : Xx,t−4k−1

s −Xy,t−4k−1

s ≥ 0}
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is the time of crossing, is uniformly bounded over k and y − x.

Case (ii): In this case we must also take into account that the probability of the
two random walks crossing before time 4k is small. We analyze this by dividing
up the crossing into two cases. In the first case the two random walks halve the
distance between them before crossing. In the second case the crossing occurs
due to a jump of order y − x.

Let

τ ′ = inf
{

s > 0 : Xy,t−4k−1

s −Xx,t−4k−1

s <
y − x

2

}
.

Then as in Case (i),

E[Xx,t−4k−1

τ −Xy,t−4k−1

τ | τ ′ < τ ]

is uniformly bounded by some constant C > 0. Therefore

E
[
Xx,t−4k−1

τ −Xy,t−4k−1

τ ; τ ′ < τ ≤ 3 · 4k−1; x, y ∈ ζt
4k−1(Z); Rx or Ry ≥ 2N−2

]
≤ C P

(
τ ′ < 3 · 4k−1

)
P
(
x, y ∈ ζt

4k−1(Z); Rx or Ry ≥ 2N−2
)

≤ C P
(
x, y ∈ ζt

4k−1(Z); Rx or Ry ≥ 2N−2
)

×
(

e−c|x−y|1−β

+ e−c
(x−y)2

4k +
4k

|x− y|3+ε

)
≤ C

4k

(
2ke−c2N(1−β)

+ e−c4N−k

+
4k

2N(3+ε)

)
×
(

e−c|x−y|1−β

+ e−c
(x−y)2

4k +
4k

|x− y|3+ε

)
.

On the other hand it is easily seen (by estimating the rates at which a large
jump occurs, see Section 3 for details) that

E[Xx,t−4k−1

τ −Xyt−4k−1

τ , τ = τ ′ < 3 · 4k−1] ≤ C
4k

|x− y|2+ε

and so we have a contribution

C

4k

(
2ke−c2(1−β)N

+ e−c4N−k

+
4k

2N(3+ε)

)
4k

|x− y|2+ε
.

Case (iii): In this case we argue as in (ii) except the factor(
2ke−c2(1−β)N

+ e−c4N−k

+
4k

2N(3+ε)

)
is dropped as we make no assumption on the size of Rx or Ry. So our bound is

C

4k

(
4k

|x− y|2+ε
+ e−c|x−y|1−β

+ e−c
(x−y)2

4k +
4k

|x− y|(3+ε)

)
.
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¿From the three cases above, we can sum over y ∈ Z and verify that, for a
given site x ∈ Z, the total expected overshoot associated with relevant crossings
in the time interval (4k−1, 4k] involving (x, 4k−1) and (y, 4k−1) for all possible
y ∈ Z is bounded by

C

(
1

2N(1+ε)
+ e−c2N(1−β)

+
e−c4N−k

2k

)
. (4.5)

We say a d-crossover (d ∈ N) occurs at site x ∈ Z at time s ∈ (4k−1, 4k]
if at this time (dual time, for coalescing random walks) a relevant crossing
occurs leaving particles at sites x and x + d immediately after the crossing. We
denote the indicator function for such a crossover by Ik(s, x, d). By translation
invariance, the distribution of {Ik(s, x, d)}s∈(4k−1,4k] is independent of x ∈ Z.

Let Xx
s and Xx+d

s be two independent random walks starting at x and x+d
at time 0, and let τx,x+d = inf{s : Xx

s = Xx+d
s } . Then

P (Ṽ N
k ) ≤

∑
d∈N

∑
x∈Z

E

[∫ 4k

4k−1
Ik(s, x, d)P

(
Xx

t−s ≤ 0 < Xx+d
t−s , τx,x+d > t− s

)
ds

]

=
∑
d∈N

{
E

[∫ 4k

4k−1
Ik(s, 0, d)ds

]∑
x∈Z

P
(
Xx

t−s ≤ 0 < Xx+d
t−s , τx,x+d > t− s

)}
.

If we know that∑
x∈Z

P
(
Xx

t−s ≤ 0 < Xx+d
t−s , τx,x+d > t− s

)
≤ Cd (4.6)

for some C > 0 independent of k, d, s, t and N , and

E

[∑
d∈N

d

∫ 4k

4k−1
Ik(s, 0, d)ds

]
≤ C

(
1

2N(1+ε)
+ e−c2N(1−β)

+
e−c4N−k

2k

)
, (4.7)

then substituting (4.6) and (4.7) into the bound for P (Ṽ N
k ) gives

N∑
k=0

P (Ṽ N
k ) ≤ C

N∑
k=0

(
1

2N(1+ε)
+ e−c2N(1−β)

+
e−c4N−k

2k

)
≤ C ′

2N

for some C ′ > 0 uniformly over all large t and N and we are done.
If we denote Zd

s′ = Xx+d
s′ −Xx

s′ , (Zd
s′)

+ = Zd
s′ ∨ 0 and τ0 = inf{s′ : Zd

s′ = 0},
then by translation invariance, it is not difficult to see that∑

x∈Z
P
(
Xx

t−s ≤ 0 < Xx+d
t−s , τx,x+d > t− s

)
= E[(Zd

t−s)
+, τ0 > t− s] ≤ Cd,

where the inequality with C > 0 uniform over d and t is a standard result for
random walks (see Lemma 2 in [4]).
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Finally, to show (4.7), we note that the left hand side is the expected over-
shoot of relevant crossings where one of the two random walks after the crossing
is at 0. By translation invariance this is bounded above by the expected over-
shoot associated with relevant crossings in the time interval (4k−1, 4k] involving
(0, 4k−1) and (y, 4k−1) for every y > 0, which is estimated in (4.5). Indeed, let
Fk(x, y;m,m+d) be the indicator function of the event that a relevant crossover
occurs before time 4k due to random walks starting at sites x and y at time
4k−1, and immediately after the crossover the walks are at positions m and
m + d. Then by translation invariance and a change of variable

E

[∑
d∈N

d

∫ 4k

4k−1
Ik(s, 0, d)ds

]
≤ E

[∑
d∈N

d
∑
x<y

Fk(x, y; 0, d)

]

= E

∑
d∈N

d
∑

x∈Z,y>0

Fk(x, x + y; 0, d)


=

∑
y>0

E

[∑
d∈N

d
∑
x∈Z

Fk(0, y;−x,−x + d)

]
.

4.3 Proof of (iii) in Theorem 1.4

We know from [3] that if γ ≥ 2, then the voter model interface evolves as a
positive recurrent chain, and hence the equilibrium distribution π exists. In
particular, π{ξ0} > 0 where ξ0 is the trivial interface of the Heavyside configu-
ration η1,0. Let ξt denote the interface configuration at time t starting with ξ0,
and let ν denote its distribution. Then

π{ξ : Γ(ξ) ≥ n} > π{ξ0}ν{Γ(ξt) ≥ n} (4.8)

for all t > 0. To prove (1.5), it then suffices to show

lim sup
n→∞

log ν{Γ(ξn2) ≥ n}
log n

≥ 2− α. (4.9)

Let X2n
t and X5n

t denote the positions at time t of two independent random
walks starting at 2n and 5n at time 0. Let A denote the event that X2n

t ∈ [n, 3n]
for all t ∈ [0, n2], and Let Bs, s ∈ [0, n2], denote the event that X5n

t ∈ [4n, 6n]
for all t ∈ [0, s) and X5n

t ∈ (−∞,−n] for all t ∈ [s, n2]. Event Bs can only occur
if X5n

t makes a large negative jump at time s. By duality between voter models
and coalescing random walks,

ν{Γ(ξn2) ≥ 3n} ≥ P

 ⋃
s∈[0,n2]

(A ∩Bs)

 = P (A) P

 ⋃
s∈[0,n2]

Bs

 . (4.10)
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Condition on X5n
t staying inside [4n, 6n] before time s and making a negative

jump of size at least −8n at time s, we have by the strong Markov property
that

P

 ⋃
s∈[0,n2]

Bs

 ≥
∫ n2

0

P

 ⋂
t∈[0,s)

{
X5n

t ∈ [4n, 6n]
}

 ∑
y≤−8n

p(y)


· P

 ⋂
t∈[s,n2]

{
X5n

t ≤ −n
} ∣∣∣ X5n

s ≤ −2n

 ds.

By Donsker’s invariance principle, the probability of each of the three events:
A,

⋂
t∈[0,s)

{
X5n

t ∈ [4n, 6n]
}

and
{ ⋂

t∈[s,n2]

{X5n
t ≤ −n} |X5n

s ≤ −2n
}

, is at least

β for some β > 0 independent of n and s ∈ [0, n2]. Therefore,

ν{Γ(ξn2) ≥ n} ≥ ν{Γ(ξn2) ≥ 3n} ≥ β3n2

 ∑
y≤−8n

p(y)

 , (4.11)

which we may symmetrize to obtain

ν{Γ(ξn2) ≥ n} ≥ β3

2
n2

 ∑
|y|≥8n

p(y)

 . (4.12)

If (4.9) fails, then there exists some n0 ∈ N and ε > 0 such that, for all n ≥ n0,∑
|y|≥8n

p(y) ≤ 2
β3n2

ν{Γ(ξn2) ≥ n} ≤ C

nα+ε
, (4.13)

which implies that ∑
y∈Z

|y|α+ ε
2 p(y) < ∞, (4.14)

contradicting our assumption. This proves the first part of the proposition.
To find random walk jump kernel p(·) satisfying (1.6), we can choose p(·) with∑

|y|≥n p(y) ∼ Cn−α for some C > 0. (1.6) then follows directly from (4.8) and
(4.12). �

5 Technical Estimates

The following lemmas for random walks will be needed.
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Lemma 5.1 Let Xt be a centered continuous time one-dimensional random
walk starting at the origin and with finite 3 + ε moment for some ε > 0. Then
for every 0 < β < 1, there exists c, C > 0 such that

P
(

sup
t≤T

|Xt| ≥ M

)
≤

 C
(
e−cT + e−

cM2
T + T

M3+ε

)
, T > M

C
(
e−cM1−β

+ T
M3+ε

)
, T ≤ M

for all T,M > 0. In particular

P
(

sup
t≤T

|Xt| ≥ M

)
≤ C

(
e−cM1−β

+ e−
cM2

T +
T

M3+ε

)
for all T,M > 0.

Proof: By the reflection principle for random walks, we only have to show that
for every 0 < β < 1, there exists c, C > 0 such that

P (|XT | ≥ M) ≤

 C
(
e−cT + e−

cM2
T + T

M3+ε

)
, T > M

C
(
e−cM1−β

+ T
M3+ε

)
, T ≤ M

(5.1)

for all M,T > 0. To prove this inequality, we consider the following usual repre-
sentation of Xt: there exist centered i.i.d. random variables (Yn)n≥1 on Z with
finite 3 + ε moment and a Poisson process (Nt)t≥0 of parameter 1 independent
of the Yn’s, such that

Xt =
Nt∑
j=0

Yj := SNt
,

where Y0 = 0. The analogue of (5.1) for discrete time random walks appears as
corollary 1.8 in [8], from which we obtain

P (|Sn| ≥ M) ≤ C

(
e−

cM2
n +

nE[|Y1|3+ε]
M3+ε

)
. (5.2)

It then follows that

P (|XT | ≥ M) =
∑

k

P (|Sk| > M)P (NT = k)

≤ C
∑

k

(
e−

cM2
k +

kE[|Y1|3+ε]
M3+ε

)
P (NT = k)

≤ C

(
P (NT ≥ 3T ) + e−

cM2
3T +

E[NT ]E[|Y1|3+ε]
M3+ε

)
. (5.3)

By basic large deviations results for Poisson distribution, we have P (NT ≥
3T ) ≤ C ′e−c′T for some c′, C ′ > 0. Then after adjusting the constants, we
obtain

P (|XT | ≥ M) ≤ C

(
e−cT + e

−cM2
T +

TE[|Y1|3+ε]
M3+ε

)
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for every M > 0 and T > 0.
We now suppose T ≤ M . Back to the term after the first inequality in

equation (5.3),

C
∑

k

(
e−

cM2
k +

kE[|Y1|3+ε]
M3+ε

)
P (NT = k)

≤ C

(
P (NT ≥ M1+β) + e−cM1−β

+
TE[|Y1|3+ε]

M3+ε

)
.

Since

P (NT ≥ M1+β) = e−T
∑

k≥M1+β

T k

k!
≤ TM1+β

(M1+β)!
≤ MM1+β

(M1+β)!
.

By Stirling’s formula, we can choose C > 0 large enough such that for all M > 0,
P (NT ≥ M1+β) ≤ Ce−cM1−β

, thus concluding the proof. �

Lemma 5.2 Let Xx
t and Xy

t be two independent identically distributed contin-
uous time homogeneous random walks with finite second moments starting from
positions x and y at time 0. Let τx,y = inf{t > 0 : Xx

t = Xy
t } be the first

meeting time of the two walks. Then there exists C0 > 0 such that

P (τx,y > T ) ≤ C0√
T
|x− y|

for all x, y and T > 0.

Proof. This is a standard result. See, e.g., Proposition P4 in Section 32 of
[10], or Lemma 2.2 of [9]. Both results are stated for discrete time random
walks, but the continuous time analogue follows readily from a standard large
deviation estimate for Poisson processes.

Lemma 5.3 Given a system of 2J coalescing random walks indexed by their
starting positions {x(1)

1 , x
(1)
2 , ..., x

(J)
1 , x

(J)
2 } at time 0, if

x
(1)
1 < x

(1)
2 < · · · < x

(i)
1 < x

(i)
2 < · · · < x

(J)
1 < x

(J)
2 ,

and supi |x
(i)
1 − x

(i)
2 | ≤ M for some M > 0, then for any fixed time T >

C2
0M2 with C0 satisfying Lemma 5.2, the number of coalesced walks by time T

stochastically dominates the sum of J independent Bernoulli random variables
{Y1, ..., YJ}, each with parameter 1− C0M/

√
T . In particular

P (the number of coalesced particles by time T is smaller than N)

≤ P

(
J∑

i=1

Yi ≤ N

)
.
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Proof: To prove the lemma, we construct the system of coalescing random
walks from the system of independent walks. Given the trajectories of a system
of independent walks starting from positions {x(1)

1 , x
(1)
2 , ..., x

(J)
1 , x

(J)
2 } at time 0,

the first time some walk, say x
(i)
1 , jumps to the position of another walk, say x

(j)
2 ,

the walk x
(i)
1 is considered coalesced, i.e., from that time on, it follows the same

trajectory as walk x
(j)
2 , while the trajectory of walk x

(j)
2 remains unchanged.

Among the remaining distinct trajectories, we iterate this procedure until no
more coalescing takes place. Note that this construction is well defined, since
almost surely no two random walk jumps take place at the same time. The
resulting collection of random walk trajectories is distributed as a system of
coalescing random walks.

In the above construction, almost surely, the number of coalesced walks by
time T in the coalescing system is bounded from below by the number of pairs
{x(i)

1 , x
(i)
2 } (1 ≤ i ≤ J) for which x

(i)
1 and x

(i)
2 meet before time T in the

independent system. If x
(i)
1 meets x

(i)
2 in the independent system at time t ≤ T ,

then in the coalescing system, either x
(i)
1 and x

(i)
2 haven’t coalesced with other

walks before time t, in which case the two will coalesce at time t; or one of
the two walks has coalesced with another walk before time t. In either case,
whenever x

(i)
1 and x

(i)
2 meet in the independent system, at least one of them

will be coalesced in the coalescing system. The asserted stochastic domination
then follows by noting that Lemma 5.2 implies that each pair {x(i)

1 , x
(i)
2 } has

probability at least 1− C0M/
√

T of meeting before time T in the independent
system. �

Proposition 5.4 Let 1
2 < p < 1 be fixed. Consider a system of coalescing

random walks starting with at most γL particles inside an interval of length L

at time 0. Let K0 = 64C2
0

(2p−1)4 , where C0 is as in Lemma 5.2. If γL ≥ 8
2p−1 , then

there exist constants C, c depending only on p such that, the probability that the
number of particles alive at time T = K0

γ2 is greater than pγL is bounded above
by Ce−cγL.

Proof: The basic idea is to apply Lemma 5.3 and large deviation bounds for
Bernoulli random variables. The choice of the constants K0 and T will become
apparent in the proof.

Without loss of generality, we assume γL ∈ N. We only need to consider a
system starting with γL particles. If the initial number of particles is less than
γL, we can always add extra particles to the system which only increases the
probability of having pγL particles survive by time T .

Let M be a positive integer to be determined later. Since the γL particles
partition the interval of length L into γL + 1 pieces, the number of adjacent
pairs of particles of distance at most M − 1 apart is at least γL − 1 − L

M .
Therefore the number of disjoint pairs of adjacent particles of distance at most
M − 1 apart is at least 1

2 (γL− 2− L
M ). Each such pair coalesces before time T
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with probability at least 1−C0M/
√

T . By Lemma 5.3, the number of coalesced
particles stochastically dominates the sum of m := 1

2 (γL−2− L
M ) i.i.d. Bernoulli

random variables with parameter 1−C0M/
√

T , which we denote by Y1, · · · , Ym.
If by time T , more than pγL particles survive, then we must have

m∑
i=1

Yi ≤ (1− p)γL. (5.4)

Let p = 1+ε
2 with ε ∈ (0, 1), then we can rewrite (5.4) as

1
m

m∑
i=1

Yi ≤ (1− p)γL
1
2 (γL− 2− L

M )
=

1− ε

1− 2
γL −

1
γM

. (5.5)

By our assumption 2
γL ≤ 1

4 (2p − 1) = ε
4 . If we choose M = 4

εγ , and let

T = (2C0M
ε )2 = 64C2

0
ε4γ2 = K0

γ2 , then we have

1
m

m∑
i=1

Yi ≤
1− ε

1− ε/2
< 1− C0M/

√
T = 1− ε/2.

By standard large deviation estimates for Bernoulli random variables with pa-
rameter 1 − ε/2, the probability of the event in (5.4) is bounded above by
Ce−c′m for some C, c′ depending only on p. Since m = 1

2 (γL − 2 − L
M ) ≥

(1/2 − ε/4)γL by our choice of M and the assumption γL ≥ 8
2p−1 , we have

Ce−c′m ≤ Ce−c′(1/2−ε/4)γL = Ce−cγL, which concludes the proof of the lemma.
�

The next result allows us to carry out the first step in the chain argument
of section 2.

Lemma 5.5 In the system of backward coalescing random walks {Xx,s}(x,s)∈Z×R
dual to the voter model, assume the random walk increment distribution p (·) has
finite 3 + ε moment. Then there exist C > 0 depending only on p (·), such that
for all K ≥ 1,

P
{

for some (x, s) ∈ [2kR, 2k+1R]× [0, R2],

|Xx,s
u − x| ≥ 2kR

(log R)2
for some 0 ≤ u ≤ s−Kbs− 1

K
c
}

is bounded above by
CK(log R)2(3+ε)

22k+3εRε

for all R sufficiently large.

Proof: Let Vx,s be the event as above but concerning only the random walk
Xx,s

u , then denote the event in the statement by V which is the union of Vx,s
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over all (x, s) ∈ [2kR, 2k+1R]× [0, R2]. Due to the coalescence, event V occurs
only if Vx,s occurs either for some (x, s) with s ∈ {K, 2K, · · · , bR2

K cK} ∪ {R2},
or for some (x, s) which is a Poisson point in the Harris representation of the
voter model detailed in Section 1. Therefore we can bound P (V ) by the ex-
pected number of such points, which by the Strong Markov property of Poisson
processes can in turn be bounded by(

2kR(
R2

K
+ 1) + 2kR3

)
P

(
|Xu| ≥

2kR

(log R)2
for some 0 ≤ u ≤ K

)
,

where Xu is a random walk starting at the origin with transition probability
p (·). By our assumption that p (·) has finite 3+ε moment, we can apply Lemma
5.1 and obtain

P (V ) ≤
(

2kR(
R2

K
+ 1) + 2kR3

)
C ·

(
e
−c( 2kR

log2 R
)1−β

+
K

( 2kR
log2 R

)3+ε

)
,

where C depends only on p (·). The Lemma then follows if we take R sufficiently
large. �

We finish by stating a result on the lifetime of a single particle voter model.

Lemma 5.6 Let ζZ
t be the process of coalescing random walks starting from

Z at time 0 where all random walk increments are distributed according to a
transition probability p(·) with finite second moment. Then for all t > 0

P(0 ∈ ξZ
t ) ≤ C√

t

for some C > 0.

Proof: See Lemma 2.0.7 and the remark that follows it in [11].
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