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Abstract

The statistics of extremes has been well developed for the case of Li.d. observa­
tions. In a growing number of applications, however, the data appears dependent
and heavy-tailed.

We deal with problems of tail index, tail constant and quantile estimation from
a sample of dependent random variables. Consistency and asymptotic normality of
the corresponding estimators is established under mild mixing conditions.

1 Introduction

Statistics of extremes aims to estimate the tail probability IP(X > x) when x is "large".
The other quantities of interest are the tail index (defined below) and quantiles. These
problems have important applications in finance, insurance, network modelling, meteo­
rology, etc.; they attracted significant interest from researchers (see, e.g., [4, 12, 28] and
references therein).

In the case of a parametric family of distributions and i.i.d. data, the maximum like­
lihood approach yields natural estimators of the tail probabilities (see [12] and references
therein). Unfortunately, one cannot be confident that the distribution belongs to a par­
ticular parametric family. Besides, the assumption of independence appears unrealistic in
a growing number of applications.

The present paper deals with the problems of non-parametric tail index and quantile
estimation from a sample of dependent data. We show that, under mild mixing conditions,
the estimators have the same accuracy as if the data were independent, while asymptotic
variances may be larger.

Our main tool is the ratio estimator of the tail index.
We recall the main properties of the ratio estimator (in the i.i .d. case) before presenting

the results.

1 AMS 1991 Subject Classification: primary 62G05, secondary 60G70.
]{ey words and phrases: tail index estimation, quantile estimation, dependence.
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Unless otherwise specified, the limits are as n -+ 00. We write an rv bn if an/bn -+ 1,
an «bn if an/bn -+ 0, and an X bn if 0 < lim inf an/bn < lim sup an/bn < 00 .

We say that the distribution has a heavy tail if

G(x) IP(X > x) = L(x)x- l/a (a > 0) (1)

for all large enough x, where the (unknown) function L is slowly varying at infinity:

lim L(xt)/ L(x) = 1
x-+oo

(Vt> 0). (2)

In the case L(x) = C(1 + 0(1)), C is called the tail constant. The number l/a is called
the tail index.

Distributions that obey (1) form a non-parametric class of probability laws. Our
purpose is to estimate the index a, the quantiles, and the tail constant (if it exists) from
a sample Xl, ... , X n of random variables (r.v.s) distributed according to (1).

The ratio estimator

n n

an = an(xn) = I:ln(Xdxn)ll{Xi > xn}/I: ll{Xi > Xn} (3)

was introduced by Goldie and Smith [14]. The threshold level X n needs to be chosen
properly. If X n is too small then the bias of the ratio estimator is large (see Figure 1
below); if X n is too large then the bias is small but the variance is large (since only a
small part of a sample contributes to the inference).

Let X(n) :::; ... :::; X(1) be the sample order statistics. Denote x~ = X(knH) , where kn
is an integer number. Then the statistic an(x~) is Hill's estimator a;{ = k;;l I:7~lln(X(i)/ X(kn+l»)
A number of other estimators of the tail index can be found in [4,5,28,33]. A comparison
of the asymptotic performance of some tail index estimators is given in [15].

Denote pn = IP(X > Xn) ,

The ratio estimator (3) is the sample analog of a*(xn). According to the relation (7)
below, a*(x) -+ a as x -+ 00. The assumption

Pn -+ 0, nPn -+ 00 (4)

guarantees the consistency of the ratio estimator (see [21]). It is shown in [20, 21] that

(5)

if and only if npnv2 -+ 0; if vJnPn -+ b then JnPn(an/a -1) => N(b; 1). In these limit
theorems, Jnpn may be replaced by N~/2, where

is the number of exceedances over the threshold x n •
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The important question is how to choose the threshold x n • The theoretically optimal
threshold xc:r is the value Xn minimising the main terms in the asymptotic expansion
for the mean squared error IE(an - a)2 . The ratio estimator (3) seems to be the only tail
index statistic for which the asymptotics of the bias and the mean squared error have
been calculated (see [20, 22]):

The condition vJnpn -:-+ b =I- 0 balances the terms on the right-hand side of (6). Using
the relation

(k E IN) , (7)

where
Vk - Vk(X n) = 1= hn(u)e-Uduk/k!, hn(u) = L-l(xn)L(xneau) -1 (8)

(see [25]), an explicit expression for xc:r can be drawn ~nder additional restrictions on
the distribution (1).

Consider, for instance, the following particular subcla~s of the non-parametric family
(1 ): ,

Pa,b,c,d = {IP : IP(X > x) = CX- l/a (1 + dx-1la + o(x-bla )))} .

If IP E P.,b",d then, using (7), one gets v(x) ~ -bd(l +b,_lX-bl•. Hence the asymptoti­
cally optimal value of the threshold Xn is x~Pt = (2bcDn) 1;2b , where D = (bd/(1 +b))2,
and

( )
2 1 I -2b

IE an(x~Pt)/a-1 rv(1+2b)Dl+2b(2bcn)1+2b (9)
I

(see [25]). The rate ni+22bb is, in a sense, the best possib~e: a lower bound of that order
can be deduced from Theorem 3.1 of Pfanzagl [27]. !

For instance, the standard Cauchy distribution bel~ngs to the class Pl,2,1/'rr,-1/3,

1/5 2 ~ ( )1/5 ( )4/5x~Pt = (16n/817r) ~ 2.29 and IE (an(x~Pt)/a - 1) rv f ~~ ; . Adaptive ver-
sions of x~Pt may be constructed by replacing the numbds a, b, c, d with their consistent
estimators it, b, c, d such that lit - al + Ib - bl = op(1/ In t).

A simple practical approach is to plot anU and theillchoose Xn from an interval in
which the function anU demonstrates stability. The b ckground for this approach is
provided by our consistency result. Indeed, if the sequen e {xn } obeys (4) then so does
{txn} for every t > O. Hence there must be an interval 0 threshold levels [x_; x+] such
that an(x) ~ a for all x E [x_; x+]. I

Embrechts et al. ([12], p. 355) recommend choosing ~he minimal value Y such that
the empirical mean excess function '

n i

Mn(y) = L(Xi - y)lI{Xi > y}JNn(y)

is approximately linear (assuming a < 1). This appro~ch makes the variance of the
estimator "small", but the bias may become "large".
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Denote
n

Mn,t(Y) = L XfII{Xi > y}INn(y).

Let [x;;-; x~] be the interval where the function Mn,t{x) is approximately linear.
We suggest choosing the average value it of an(x) from this interval. To justify this

approach, we recall that
£(1n(X/y)IX > y) ===? £(1]a) ,

where the random variable 1]a has the exponential distribution with IE1]a = a. From (7)
and the dominated convergence theorem,

IE{(X/y)tlx > y} = IE{etln(X/y)IX > y} -+ IEet'IJa = 1/(1 - at)

if at < 1. Hence IE1/t{XtIX > y} and its empirical counterpart M~::(y) are asymptot­
ically linear. Our simulation results (see Section 4 below) demonstrate that it seems to
approximate the index a better than an (x;;-) .

Since a is not known, the question is which t to choose. We suggest the following
3-step procedure: (1) construct a rough estimate an of a; (2) with t := 1/2an, choose
[x;;-; x~] as described above; (3) get the final estimator.

Hone believes that vJnpn -+ 0, then [ani (1 +qeN;;1/2) ;anl (l-qeN;;1/2)] with
<I> ( -qe) = c/2 is the asymptotic confidence interval of level 1 - c for the index a.
The asymptotic confidence intervals do not take into account the accuracy of normal
approximation, and hence may be too far from exact ones if the sample size is not large
and the rate of convergence in the corresponding limit theorem is not fast. The non­
asymptotic confidence intervals

were introduced in [24]. Here <I> ( -Ye) = (c/2 - C*N;;1/2 -12v~ - v;I/J27l"e t and C* ::;
0.8 is the constant from the Berry-Esseen inequality.

While efforts of researchers were concentrated mainly on the case of independent
observations, increasing amount of data sets exhibiting heavy tails and dependence have
been encountered in finance, teletraffic engineering, meteorology, hydrology, etc. (see
[12, 28]). This stimulated recent studies of statistics of extremes in the case of dependent
data.

Hsing [18] and Resnick & Starica [29] suggested sufficient conditions for consistency
of Hill's estimator of the tail index in the case of m-dependent sequences and some
stationary processes. Complicated sufficient conditions for the asymptotic normality of
Hill's estimator in the case of dependent data are given by Starica [34] and Drees [8]. The
latter paper presents also conditions of the asymptotic normality of empirical quantiles.

In this paper, we introduce a new quantile estimator and suggest simple sufficient
conditions for the consistency and asymptotic normality of estimators of the tail index,
tail constant and quantiles. In contrast to the results of the papers [34, 8], the accuracy
of estimators appears to be of the same order as if the data were independent.
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In Section 2 we develop procedures of tail index and tail constant estimation from a
sample of dependent random variables. Our approach differs from those in [8, 18, 29, 30,
34]. Roughly speaking, we assume that a mixing coefficient tends to zero not slower than
(In l)-c for some constant c > 1. This condition is fulfilled in many particular models,
including the popular GARCH model.

We suggest a procedure of bias reduction in the CLT for the ratio estimator. Consis­
tency of the tail constant estimator in the case of dependent data seems to be established
for the first time.

Section 3 is devoted to the problem of quantile estimation. The problem arises, for
example, when one measures the risk of heavy losses of a portfolio. In particular, Value
at Risk is usually defined as the m %-quantile for a small m.

There are two different approaches to quantile estimation. The classical one suggests
using the empirical quantile Qn = F;:l , where Fn is the empirical distribution function.
Sharp results on asymptotics of Qn in the case of i.i.d. data can be found in [3, 9, 11,
32], see also references therein. Normal approximation for a weighted empirical quantile
process in the case of dependent data is presented in [8].

The empirical quantile Qn(q) becomes unreliable if q is small, which is not a rare
situation when one estimates risk of heavy losses. In such cases, the Extreme Value Theory
(EVT) approach suggests using the features of the distribution (1) when constructing a
quantile estimator. The EVT approach is the only one that works for "very small" q (in
particular, for q < lin, when Fn =0).

The EVT aproach to the problem of quantile estimation seems to have been introduced
by Smith [33]. Although Smith dealt with the problem of tail estimation, the link to
quantile estimation is evident. In the case of a parametric family of distributions and
i.i.d. data, heuristic explanation of the EVT approach is given in [12], Section 6.5, and
[19] .

We apply the non-parametric EVT approach to the problem of quantile estimation
from a sample of dependent data. A new quantile estimator is introduced. We show
that, under mild assumptions, our estimator is consistent and asymptotically normally
distributed.

In Section 4, we illustrate our results by examples of simulated data. Proofs are
assembled in Section 5.

2 Tail index estimation

Given a sample Xl,' .. , X n from a (strictly) stationary sequence X, Xl, X 2 , • •• of random
variables (r.v.s) with marginal distribution (1), we want to estimate the tail index, the
tail constant (when it exists) and quantiles.

Remind the definition of the mixing coefficients p(.) and ep(.):

p(l)

ep(I)

s~p sup {corr(~7J) : ~ E FI,i, 7J E Fi+l,oo, lE(e + 1]2) < oo} ,
l

s~p {IIP(BIA) - IP(B)I : A E FI,i, BE .1i+l,oo} ,
l
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Proposition 1 If
I>-lp(i) < 00

i>l

(10)

then an p-+ a. If L(x) = C(1 + 0(1)) as x -+ 00 and (Inxn)2(v2 + l/npn) -+ 0 then

n

Cn = x~/ann-l 2: lI{Xi > x n}

is a consistent estimator of the tail constant: Cn p-+ C .

The estimator Cn was introduced by Goldie and Smith [14]. In the case of i.i.d.
data, sufficient conditions for consistency and asymptotic normality of Cn are gIven III

[14, 20, 21].

Denote lIi = 1I{Xi> x n } , and let

Throughout the paper we assume that (10) holds and cp(l) -+ 0 as I -+ 00. Since
p(l) ~ 2cpl/2(l) (see [2]), this condition is valid if

2: i- lcpl/2(i) < 00 .

i>l

(ll)

Condition (10) is satisfied even if p(l) decays like (In l)-c for some e > 1. In many
models (like popular GARCH processes) cp(.) (and hence p(.)) decay exponentially fast
(see [7]).

Theorem 2 Suppose that (a* - a)Jnpn -+ p and IE (En Yi*)2 rv a 2npn for some a E

(0; (0) , f1 E IR. Then
an - a
--Jnpn =* N(p/a; 1).

a

In the i.i.d. case we have a = a, and (12) becomes

(an/a - I)Jripn =* N(p/a; 1).

(12)

(13)

According to (12), an = a +en/Jnpn , where the distribution of the r.v. en converges
to a normal one. If (12) holds together with the convergence of the second moment and

(3b> 0)IP(X > x) = ex- l
/

a (1 +0 (x- bla ))

then (8) and (12) imply

MSE(an) = IE(an - a)2 = 0 (n- 2b/(l+2b))

6
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(17)

if X n ::=::: n a /(l+2b) . In other words, the rate of approximation an ~ a is the same as if the
data were independent.

It follows from (7) and moment inequalities for sums of dependent r.v.s (see Utev [35])

that Var (2::£=1 lik-11Ii) ~ Cknpn for every k E IN. In the i.i.d. case,

for some ak E (0; 00) , a12 E IR, where Yi = Yi - a*Pn . One can expect that (15) holds
also in the case of weakly dependent observations.

Denote Tk,j = 2::1:U-1)r+1 r?lIl , and let (0 ~ 1< m, k 2: 1, 1 :S r :S n)

W~ ~~
A 2 _ A 2() N-1 "" T2 A - A () N- 1 "" T Ta k = ak n = n L.J k-1,j' aim = aim n = n L.J 1-1,j m-1,j·

j=1 j=1

Corollary 3 Suppose that a 2 = (aat)2 + ai - 2aa12 > 0, 1 « r = r(n) « nand
(a* - a)Jnpn -+ /1. If (15) holds for k = 1,2 then Va, (2::£=1 li*) rv a 2nPn and

an - a
A Jnpn ===} N(j1,ja; 1), (16)
a

where &2 == &2(n) = (ano-t)2 + o-i - 2an&12.

Remark 1. In Theorem 2, Corollary 3 and Theorem 6 below, Jnpn may be replaced
by N~/2.

From a practical point of view, it can sometimes be preferable to drop the accuracy
of approximation in order to eliminate the asymptotic bias Il/a. Note that the accuracy
of normal approximation in (12) reduces when we use the estimator & instead of the
unknown a since & - a = Op ((nPn/rt1/2) . Therefore, though (at least in the i.i.d.
case, d. [22, 24])

s~p lIP (an -: a Jnpn < Y) - <P;;1 (Y)I ~ C(nPn)-1/2,

where <Pa;b is the distribution function of the normal N(a; b) law, the right-hand side
of (17) may become C(nPn/r)-1/2 if a is replaced by 0- in the left-hand side. Thus,
we do not loose much if we switch to an estimator an r such that the rate of normal

approximation for an,r - a is, in a sense, 0 ((nPn/rt1/;) .
Let

L
[n/rj L[n/rj

N nr = . lIir , anr = anr(xn) = . l'ir/Nnr.
, t=1 " t=1 '

Theorem 4 Suppose that r = r(n) E {I, ... , n} is chosen so that

npn/r -+ 00, v 2npn = o(r).

Then

(18)

(a:,r _ 1) JnPn/ r ===} N(O; 1), (a:,r - 1) J Nn,r ===} N(O; 1) . (19)
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If we assume conditions of Corollary 3 then (18) holds, e.g., with r = Jnpn.

Remark 2. Weak dependence conditions are often expressed in terms of either a, 13, tp

or p mixing coefficients (the definitions of mixing coefficients can be found, e.g., in [2]).
Using "blocks" approach, one can check that an 7 a if (10) is replaced by the condition

-1 r

(np;/2) L a 1
/
2(i) + rpn + [n/r](lPn + a(l)) --+ 0

i=1
(20)

for some sequences l = l(n) , r = r(n) such that 1 ::; l ::; r ::; n .
Conditions of (20)-iype appear when one uses Berstein's blocks method. Typically,

conditions are formulated in terms of the mixing coefficient a(·) (though in [34, 8], con­
ditions are given in terms of the stronger coefficient 13('))' In particular, Starica ([34],
formulas (2.20) and (3.2)) assumes that

nr-1f3(l) +rk-1/2+c + krn-1 --+ 0 (21)

for some c E (0; 1/2) and some sequences l = l(n), k = k(n), r = r(n) such that
l«l::;r«n,l«k«n.

Our condition (11) is preferable if the mixing coefficients 13(') and tp(.) have the
same rate of decay. To illustrate this point, compare, for instance, (11) with (21) in the
situation where f3(l);:::: tp(l) ;:::: (lnl)-3. Since nr- 1 f3(l) = 0(1) and k = o(n/r) , we have
k = o((lnl?). Therefore, rk- 1/2+c » r(lnl)-4.5+3c ~ l(lnl)-4.5+3c --+ 00. Hence (21)
does not hold while (11) is evidently valid.

Sufficient conditions for the asymptotic normality of the ratio estimator (in terms
of the mixing coefficient a(·)) can be deduced from the results of Rootzen et al. [30].
Sufficient conditions for the asymptotic normality of Hill's estimator (in terms of the
mixing coefficient 13(')) are obtained by Starica [34] for the stationary solution of a
stochastic difference equation

Xi = AiXi-1 + Bi , (22)

where (Ai, Bi), i ~ 1 is an i.i.d. sequence of r.v.s. According to Goldie [13], (14) holds
under some natural assumptions on the LV.S Ai, Bi . Starica [34] shows that

Vk (a!J. /a - 1) ===? N(O; 1 - 26) (23)

if the sample fraction kn obeys (In n )2+1$ « kn « n K for some c > 0, where 6 =
L.i=:1f~IP(Al x ... xAj > va)dv and K, = (2/3+c)/\a/(a+1)/\b/(b+1) < 2b/(2b+1).
\Ve know from the results for the i.i.d. case (see [16, 17]) that the optimal rate of the
sample fraction is kn ;:::: n2b/( 2b+l): it yields MSE (a!J.) = 0 (n- 2b/(l+2b)) . The assumption

kn «nK means that the rate of approximation a!J. ~ a in (23) is worse than in the i.i.d.
case.

Theorem 3.1 and Corollary 3.3 by Drees [8] imply the asymptotic normality of Hill's
estimator under mixing conditions similar to those of Starica [34] plus the assumption
that the sample fraction kn obeys the condition In2 n In4(ln n) « kn « n2b/( 2b+l). Hence
the rate of approximation a!J. ~ a is again sub-optimal.
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3 Quantile estimation

This section is devoted to the problem of quantile estimation in the case of dependent
data.

Let Yq = inf{t : G(t) ~ q} . Given q = q(n) "close" to zero, we want to construct an
estimator Yq = Yq (n) such that

(24)

Since Yq = Yq(n) may be so large that only few elements of the sample exceed it,
the sample quantile can hardly be regarded as a reliable estimator. The idea of the EVT
approach is to use a "pilot" level X n when constructing an estimator of Yq . More precisely,
(1) entails the weak convergence

£((Xjy)IX > y) ===} Fa,

( )
-l/a

where Fa(x) = 1 - x- 1
/
a (x 2: 1). Hence G(Yq) ;:::::: ~n ~ •

Let an be a consistent estimator of the index a. Since G(Yq) rv q by formula (29)
below, one can expect that the statistic

(25)

approximates Yq.

Proposition 5 Suppose that

1 ~ Yqjx n ~ c*
for some constant C* E [1; 00). Then (24) holds.

From now on, Yq = Yq(an(Xn), xn), where an is the ratio estimator (3). Denote

A - (01 0"12) B _ (1 0) B _ ( 1 0)
0- 2, - l' *- * 1 .0"12 0"2 -a -a

Theorem 6 Suppose that (26) holds) 0"2 _ (aO"d 2+ai - 2aa12 > 0 and

(26)

for some constants d, Il, 1/. Then

where a~ = cAcT , C = (a, d) and A = BAoB
T

•

9
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Notice that a~ = (a(1 - d)ad 2+ (da2)2 + 2ad(l- d)a12 and A = (1 :2)' where
- _ 2a - a12 - aa1.

Concerning the last relation in (27), note that

(29)

as q --+ 0 (see Theorem 1.5.12 in [1]). If G(y) is strictly monotone for all large enough
y then q = G(Yq) , and the last relation in (27) may be rewritten as

Define Ao, i3 and A similarly to Ao , B , A with 0"1, a2 , a12 , a replaced by 0-1 , 0-2 ,
0-12 and an' Denote o-~ o-~(n) = cAcT , where c= (an, dn) and dn = a;;-1In(Yq/xn) .

Corollary 7 Assume the conditions of Theorem 6. If (15) holds then

(30)

We can eliminate the asymptotic bias (dJ-l - v)/ac but at a cost of a slower rate of
normal approximation. Denote Yq,r = Yq (an,r) .

Theorem 8 Assume the conditions of Theorem 6. If (15) and (18) hold then

(Yq,r/yq - 1) (andn)-1 N~:r2 ===> N (0,1) .

4 Examples

(31 )

In Examples 1 and 2 below, the marginal distribution IPo is that of lXI, where X has
the standard Cauchy distribution.

Example 1. We simulated 1000 i.i.d.r.v.s according to the distribution lPo .
The first picture of Figure 1 shows that the ratio estimator an ( x) behaves rather stable

in the interval x E [0.5; 17] . The curve over the interval [0.5; 17] is formed by 701 points
(out of 1000). If x E [0.5; 17] then an(x) ranges from 0.9235 to 1.3481. The second
picture is even more convincing: it demonstrates the behavior of the ratio estimator when
the threshold x ranges in [1; 14] . The corresponding fragment of the curve is formed by
479 points, an(x) ranges from 0.9235 to 1.1824 .

It is reasonable to pick up the estimate of the index a from the interval [1; 14] - say,
taking the average value it of an(x) in the interval x E [1; 14]: it = 0.9983.

The plot of the tail constant estimator Cn (.) is presented in the first picture of Figure
2. The plot of Cn (-) looks undersmoothed. The plot of a smoothed version C~ (.) of the
estimator Cn (.) is shown in the second picture.

The plots of the quantile estimator (25) are given in Figure 3.
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Figure 1: Tail index estimation from the distribution IPo , n = 1000. The average value a of
an(x) in the interval x E [1; 14] is a= 0.9983.
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Figure 2: Tail constant estimation. Estimator (\(.) seems to be stable when x E [1.5; 3.5].
The corresponding fragment of the curve is formed by 229 points, the average value of CnO in
that interval is 0.5854 (the actual value of C is 2/rr ~ 0.6366).
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Figure 3: Quantile estimator (25). The first picture presents Yq for the case q = 0.05, the
true value is Yq = 12.706. The plot demonstrates stability in the interval x E [1.5; 14] (formed
by 345 points). The average value of Yq in that interval is 10.52. The empirical 0.95% quantile
equals 9.91. The second picture displays Yq for the case q = 0.01, the true value is Yq = 63.657 .
The plot looks stabile in the interval [5.5; 18] . The corresponding fragment of the curve is formed
by 67 points, the average value of Yq in that interval is 59.88. The empirical 0.99% quantile
equals 41.34.

Let a be the tail index estimate obtained at the step of tail index estimation (in our
example, a= 0.9983). It can sometimes be worth using the estimator

flq = (Nn/qn)n X n

instead of (25). The simulation results are presented in Figure 4 below.

q = 0.05

"" .~ .. \.. ."
10.

'" .-..
.~ .... . .

q = 0.05

10
THRESHOLD

15 20 3

THRESHOLD

Figure 4: Quantile estimator Yq. The plots demonstrate stability in the interval x E [1.5; 4]
(formed by 256 points). The average value of Yq in that interval is 11.201, the true value is
Yq = 12.706.

Example 2. Consider the following model:

Xl = el, Xi = Oiei +(1 - Oi)Xi- 1

12

(i ~ 2) , (32)



where 6,6, ... ,01,02, ... are independent random variables, ei :1::. X (Vi), the distribution
of the random variable X obeys (1), and IP(Oi = 1) = 1 - IP(Oi = 0) = () E (0; 1) (Vi).

This model was introduced by Smith and Weissman [32]. It is a particular case of
a stochastic difference equation (22). It is easy to see that (32) is a stationary Markov
chain, the extremal index equals (), and clusters have geometric distribution with the
mean 1/(). It is shown in [23] that r.p(k) :s: (1 - ())k. Hence (11) and (10) hold.

We prove in Section 5 that

Var(2:
n r:*)

Var(2:
n

r/lIi)

nIE(y*)2 [1 + 2(()-1 -1) (1- K n )] '" npn (2()-1 -1) a2 , (33)

'" npn (~-1) a
2k

(2k)!, IE(2:~=llIi) (2:~=1 fi) '" npn (~-1) a,

where K n = l-(~;B)n . Hence the conditions of Theorem 2 and Corollary 3 are fulfilled,
and the results of Sections 2 entail

(an/a - 1) y'npn ==} N (m; 2()-1 - 1) (34)

if vy'npn -t m; y'nPn in (34) may be replaced by N~/2.

This is a generalisation of the limit theorem (13): if 0i = 1 then (32) is a sequence
of independent f.v.s, () = 1, and (34) implies (13). Notice that the accuracy of the
approximation an ~ a is the same as if the data were independent, but the asymptotic
variance of the ratio estimator can be only larger.

We simulated the f.V.S Xl, ... , X iOOO according to the model (32) with the standard
Cauchy marginal distribution and () = 1/2 (see Figure 5). The estimation results (based
on absolute values jXi I) are presented in Figure 5.

o
N

'"0L- ---_---~-----J

1510

lHRESHOLD

0:'"
0.-'

~
~
w
o
~ ~ +------"---~'J-'.......,l_=......., ....,...----------1

....... ,. . .)1.

1000800400 600

theta. 112
200

Figure 5: Process (32) with the standard Cauchy marginal distribution, () = 1/2, n = 1000.
The ratio estimator demonstrates stability in the interval x E [1.5; 14] (formed by 322 points).
The average value of an(x) as x E [1.5; 14] is 1.0248.

The tail constant can be estimated as well.
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Recall that it is the accepted tail index estimate (in our case, it = 1.0248). It can
sometimes be worth using the estimator Cn(x) = x~/aNn/n instead of Cn(x).

The estimation results are presented in Figure 6. The plot of the estimator Cn (x) is
less volatile than that of Cn (x) .

3
THRESHOLD

...•
~.

~ L-,----,---------:_---,-._--::---:::,,_~
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..,.". ~,..•• \'0'

.
THRESt-tOLD

Figure 6: Tail constant estimators Cn(X) , Cn(x) and a smoothed version of Cn(x). The
average value of Cn (x) as x E [2; 12] is 0.6204, the interval is formed by 300 points. The true
value is C = 2/rr ~ 0.6366).

The results of quantile estimation are given in Figure 7. Both Yq and Yq yield satis­
factory estimates.

q =0.05 q = 0.05

..\

~;! .\\oe ~::.:~. :: .'
::;; .'
~ N f--.1.......-----'t----+-----------i----j
UJ ..... • •

~
5~

10
THRESHOLD

15 10
THRESHOLD

15

Figure 7: Quantile estimators Yq and Yq, q = 0.05. The plot of Yq looks stable in the interval
x E [2; 11] that is formed by 249 points. The average value of Yq in that interval is 13.34 (the
true value is Yq = 12.706). The plot of Yq is stable in the interval x E [2; 18] that is formed by
279 points. The average value of Yq in that interval is 13.28.

Example 3. The ARCH(blc) process is defined as a solution of the stochastic difference
equation

Xn= ZnVb+ CX'LI (n ~ 2),

where {Zi} is a sequence of normal N(O; 1) r.v.s, b > 0, c ~ O. With a special choice

14



of the initial r.v. Xl, the process is stationary, and

IP(!XI > x) '" Cx- l/a (x---+oo).

Explicit expressions for the constants a and C are given in [13] and [12], section 8.4. In
particular, a = 0.5 and C = 1.37 if b = c = 1.

We simulated 10000 LV.S from the ARCH(111) process with Xl = Zl (see Figure 8),
and then estimated a from the absolute values of the last 1000 observations (which can
be considered as a stationary sequence).

~..--------------------,

o 200 400
TIME

600 800 1000

Figure 8: ARCH(lll) process, n = 1000.

The estimation results are presented in Figures 9 and 10.

Conclusion. Our simulation results show that the statistical procedures based on the
ratio estimator perform quite satisfactory. This can be a bit surprising in view of Resnick
[28]. The possible explanation is that the plot of Hill's estimator gives the same respect to
25% smallest and 25% largest elements of a sample - i.e., to its 25% least and 25% most
informative parts. In all our examples, 25% smallest elements lie below the threshold 0.5
(and hence should not be given any attention), approximately half of the sample elements
lie below the threshold 1. The feature of the ratio estimator plot is that it reduces the
least informative part of a sample and highlights the most informative part.

5 Proofs

Below, symbols Ci denote positive constants; a bar over a random variable means that it
is centred by its expectation.
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Figure 9: Tail index estimation from ARCH(111) process. The ratio estimator an(x) behaves
stable in the interval x E [2; 4] . This interval is formed by 179 points (out of 1000). The second
picture focuses on that interval. The average value of the ratio estimator in that interval is
a= 0.5096. Another interval of stable behavior of an (x) is [5;11]. We reject it since it is formed
by 51 points only.
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Figure 10: ARCH(111) process, tail constant estimators Cn(x) and (7n(x). The interval [2; 3]
(formed by 127 points) seems to be the only interval of stable behavior of Cn(x) . The average
value of this estimator as x E [2; 3] is 0.9996 (the true value is C = 1.3705). The estimator
Cn(x) is more stable in the interval [2; 9] (formed by 243 points). The average value of Cn(x)
as x E [2; 9] is 1.0912.
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Proof of Proposition 1. The first part of the statement (consistency of the ratio estimator
an) is established in [25]. We present its proof for the sake of completeness.

One can check that (10) is equivalent to the condition Li>1 p(2i) < 00 (in partic­
ular, this yields p(l) --+ 0 as l --+ 00) and that (11) is eqcivalent to the condition
Li>1 cp1/2(2i ) < 00. We use Chebyshev's inequality, (7) and an estimate of a variance of
a sum of dependent random variables (see Peligrad [26] or Utev [35]). For any c > 0,
denote Zi = }£* - (lli - Pn)c. Then

IP(an - a* > c) lP (2:;=1 (Yi - a*)lIi > c 2:;=1 lli)

lP (2:;=1 Zi > cnPn) :::; (cnPnt
2

Var (2:;=1 Zi)

By Theorem 1.1 in [35], there exists a constant Cp (depending only on p(.)) such that
Var (Li=1 Zi) :::; cpnVar Zl :::; cnpn (we have used also (7)). Hence IP(an - a* > c) --+ O.
Similarly one checks that lP(an - a* < -c) --+ O. Remind that a* --+ a as X n --+ 00.

Hence an ----p+ a .
Now we show that en ----p+ C. We apply Theorem 1.1 by Utev [35] to check that

Var (2::7=1 lli) :::; cpnpn . An application of Chebyshev's inequality yields

(35)

Hence en = Cx~/an-l/a(1 + op(I)). We have to prove that (an - a) In X n ----p+ O. Because
of the assumption, (a* - a)lnxn --+ O. It remains to check that (2::n }£*)(lnxn)/npn
----p+ O. The latter follows from Chebyshev's inequality, the assumption and the estimate
Var (2::n }£*) :::; Cp,anpn . 0

Denote Gn = Nn/n.

Lemma 9 If CPn(l) --+ 0 as l --+ 00 and (15) holds then

(G~:n) - 1, an - a*) Jnpn ===? N(O; A).

Proof of Lemma 9. Note that

(36)

Taking into account (35), we shell check that

Notice that (:It, }£*)T = B*(i, where (i = (It, fif . In order to check that 2::i=1 Cd Jnpn =?

N(o; Ao) , we apply the following result of Utev [36].
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Theorem A. Let {ei,n : 1 :::; i :::; kn}n>l be a triangular array of r.v.s, Sn = Ef~l ei,n,
z; = VarSn , and let <Pn(-) be the corr~sponding mixing coefficient. If SUPn 'Pn(ljn) -t 0
as I -t 00 for some sequence {jn} of integer numbers, and

then Sn/zn ===? N(O; 1).

Let c = (Cl, C2) E IR? . We want to show that

n

L c(d.Jnpn ===? N(O; cAocT
).

("IE> 0) (37)

(38)

Put ei = C1Ui + C2(Yi - a*Pn) and jn = 1. By the assumption, Var (En ei) ,...., (J'2 npn . To
check (37), it suffices to show that

for any c> O. According to [1, 31],

(
rXY w(z) )

L(xy)/L(x) ,...., exp Jx -z-dz (x-too)

uniformly in y 2:: 1 , where w( z) -t 0 as z -t 00 • Therefore,

= L(xnee~)L -l(xn)e-ey'npn/a = e-(e/a+o(l))~ -t O.

Using (7), we derive

J82 {y2 ll{Y > E.Jnpn }IX > x n} :::; IE{y4IX > xn}IP (Y > E.Jnpn IX > x n) -t O.

Hence (37) holds, and Theorem A entails (38) and (36).

Proof of Theorem 2. Arguments of the proof of Lemma 9 yield also that

Taking into account (35) and the assumptions of the theorem, we get (12).

Lemma 10 If (15) holds then

o

o

(k E IN). (39)

18



Proof of Lemma 10. First of all, notice that

(k E IN). (40)

Indeed, denote Rn = Var (:L[n/r1Tk,j) - [nlr]Var Tk,l . By Utev's Theorem 1.1 [35], Rn =

o([nlr]VarTk,d. Therefore, Var (:L[n/r1Tk,j) rv [nlr]VarTk,l ~ C1npn, and

(""n k) (",,[n/r1 )Var ~ li lIi = Var ~ Tk,j +o(npn) = [nlr]VarTk,l +o(npn).

By the assumption, rln -t O. Thus, VarTk- 1,1 Var (:Lr lik-11Ii) rv O'~rpn, and (40)
follows.

We use Chebyshev's inequality to prove (39). Note that O'~ - [nlr]IETf-1,1/nPn = 0(1) .
Using Theorem 1.1 and Corollary 2.3 by Utev [35], we get Var T'f,l ~ IETt,l ~ C2rpn and

Hence the probability IP(a~ - O'~ > 2e:) is not greater than

(I:[n/r1 2 2 2 I:n - ) CeIP . (Tk_1J. - IETk_1J.) - (a + 2e:) . lIi > e:npn ~ - -t 0
J=l" ~=1 npn

("Ie: > 0). Similarly we check that IP(a~ - O'~ < -e:) -t O. Thus, ak 7 O'k.
It remains to show that a12 70'12. Remaind that li* = 1£ - a*lIi . According to

(15),

Similarly to (40), one can check that IE (:Lr lIi ) (:Lr 1£+r) rv O'12rpn' Using Theorem 1.1
and Corollary 2.3 by Utev [35], we get Var (:L1~;1 To,jT1,j) rv ~Var (TO,lT1,d ~ cnpn.
Note that

By Chebyshev's inequality, IP (a12 - 0'12 > 2e:) is not greater than

("Ie: > 0).
2Var (:L1~;1 To,jT1,j) +2(0'12 + 2e:)2Var (:Ln lIi ) <~ -t 0

(e:npn)2 - npn

Similarly one checks that IP (a12 - 0'12 < -2e:) -t O. The proof is complete.
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Proof of Corollary 3. LLN (35) and Lemma 9 imply

Since (a* - a)Jnpn --+ I-l as n --+ 00 ,

Now (16) follows from this relation, (35) and Lemma 10.

Proof of Theorem 4. Using Theorem 1.1 by Utev [35], we conclude that

Var (2:~~:] :ITjr) '" [n/r]Var:IT1 '" npn/r ,

Var (2:~~:]Yj;) '" [n/r]Var 1";* '" a2npn/r .

o

Hence Nn,r/ (npn/r) 7 1. Using the same arguments as in the proof of Lemma 9, we

show that IP (Y > cJnPn/rlX > xn) --+ O. Theorem A with ei = Yi; and jn = 1 yields

",,[nlr] (Y *:IT)
L.Jj=1 jr - a jr N()===? 0; 1 .

avnPn / r

Note that

(a*/a -l)JNn,r = vJnPnJNn,r/nPn 70

by (18) and the LLN for Nn,r = 2:};';] :ITjr . The result follows. o

Proof of Proposition 5. We write en r;: ''In if en = ''In(l + op(l)). First, we want to
show that

G(fJq)/G(Yq) 7 1 .

Evidently, G(Yq) / G(Yq) equals

G(fJq) G(xn) = G(xn) G((Gn/q)anxn ) = G(xn) (Gn)-an1a L((Gn/q)anXn ) .
G(xn) G(Yq) G(Yq) G(xn) G(Yq) q L(xn)

(41)

By (35), (Gn/G(xn))an1a --p+ 1. Properties of slowly varying functions and the assumption
imply lIn (G(xn)/G(Yq)) I ::; C1 < 00. Hence (1 - an/a) In (G(xn)/G(Yq)) --p+ O. Taking
into account (29), we deduce

L((Gn/q)anxn )
L(xn)
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Note that
Yq 7;' (G(Xn)jG(yq))fLnXn ~ Xn 7 00 .

By the canonical representation of a slowly varying function (see [1, 31]),

(42)

where w(u) -+ 0 as u -+ 00. Therefore, L((Gn/q)fLnxn)/L(xn) = exp(o(anln(Gn/q))).
Because of (26),

1::; G(xn
)::; (c;/a +0(1)) exp (f yq

\w(u)l du) =c;/a+ o(I).
G(~) kn U

Hence L((Gn/q)fLnxn)jL(xn) 71, and (41) holds.
Taking into account (1), we rewrite (41) as y~l/aL(fJq) rp y~l/aL(Yq). This implies

Because of (2), (26) and (42),

Yq ::; Xn (G(xn)/G(C*;rn))fLn (1 + op(1)) 7;' C*xn .

Hence xn(1 + op(I)) ::; Yq::; C*xn(1 + op(l)). This and (26) entail

C;l yq (l + op(1)) ::; Yq ::; C*yq(1 + op(1)).

The first statement in (24) follows from (2) and (43).

(43)

o

Actually, we have showed that G(Yq)/q 7 1 ¢::::::} yq/Yq 71 in the assumptions of
Theorem 5.

Proof of Theorem 6. Note that

Therefore,

yqqajLa(xn) = (Gn/G(xn)tn(G(xn)/qtn- a

= 1 + (GnjG(xn) - 1) an + (an - a) In (G(xn) / q) + dn ,

where dn = op (11 - Gn(Xn)/G(xn)1 + Ian - aD . By Lemma 9,

(L~(~:) -1) Jnpn ===*N(dp,cAcT
).
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Hence (Yq/Yq -1) Jnpn ====} N(dp- v,cAcT ). 0

Corollary 7 follows from Theorem 6 and Lemma 10. We should mention only that

In G(xn) = ! In Yq + In L(xn) = ~ In '!-!..:£ +0(1).
G(Yq) a Xn L(Yq) a Xn

Hence a~lln(Yq/xn) 7 d. 0

Proof of Theorem 8. Arguments similar to those in the proof of Theorem 6 yield

yq,rqa (Gn) G(xn) (I Gn I I)La(xn) - 1 = G(x
n

) - 1 an,r + (an,r - a) In q + op 1 - G(x
n

) + an,r - a

According to Lemma 9, Gn(xn)/G(Xn) -1 = Op (I/JnPn) . Therefore,

(f:(x
q
:) - 1) JnPn/r = (an,r - a)d;:;;;::F (1 +op(I)) +op(I).

Because of the assumptions, (yqqaL-a(xn) -1)JnPn/r rv v/VF ---+ O. Hence

(Yq/Yq - 1) JnPn/r ::::} N(O, a2d2
)

by Theorem 4. The result follows. 0

Proof of relation (33). By the well-known formula,

lE (L:n
Yi*f = n [lE(Y*? + 2L:~=l (1 - i/n) lE~*Yi~l] . (44)

Notice that
lE~*Yi~l = (1 - 0)ilE(y*)2 (i ~ 1). (45)

Indeed, if Q2 = ... = Qi+l = 0 then Yi~l = ~* , and lE~*Yi~l = lE(y*)2. Otherwise the
random variables ~* and Yi~l are independent, and hence lE~*Yi~l = O. Relation (33)
follows from (44), (45) and (7).

-k -k· i -k2 --.By the same argument, lE~ 111Yi+llli+l = (1-0) lE(Yl ) lit, and lElllYi+l = lEYj.JIi+l =
(1 - 0)ilElllY1 = (1 - O)ia*Pn(1- Pn). Hence (k ~ 0)

Var (L:;~l Y;'lli) n Var(yk) [1 + 2(1 ; 0) (1 _1- (~O- o)n)]
rv n(20- l

- l)lEy2k
rv nPn(20- l -1)a2k(2k)!

Similarly one can check that

IE(t lli) (tfi) = n [lEll,l'i +t, (1 -~) (lEll,fi+I + IEI1;+I Y')] ~ npn (~-1) a.

The proof is complete. o
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