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We study Derrida’s generalized random energy model �GREM� in the presence of
uniform external field. We compute the fluctuations of the ground state and of the
partition function in the thermodynamic limit for all admissible values of param-
eters. We find that the fluctuations are described by a hierarchical structure which is
obtained by a certain coarse graining of the initial hierarchical structure of the
GREM with external field. We provide an explicit formula for the free energy of the
model. We also derive some large deviation results providing an expression for the
free energy in a class of models with Gaussian Hamiltonians and external field.
Finally, we prove that the coarse-grained parts of the system emerging in the ther-
modynamic limit tend to have a certain optimal magnetization, as prescribed by the
strength of the external field and by parameters of the GREM. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2962982�

I. INTRODUCTION

Despite the recent substantial progress due to Guerra,1 Aizenman et al.,2,3 and Talagrand4 in
establishing rigorously the Parisi formula for the free energy of the celebrated Sherrington–
Kirkpatrick �SK� model, understanding of the corresponding limiting Gibbs measure is still very
limited.

Due to the above mentioned works, it is now rigorously known that the generalized random
energy model �GREM� introduced by Derrida5 is closely related to the SK model at the level of
free energy, see, e.g., Bovier6 Sec. 11.3. Recently Bovier and Kurkova7–9 have performed a
detailed study of the geometry of the Gibbs measure for the GREM. This confirmed the predicted
in the theoretical physics literature hierarchical decomposition of the Gibbs measure in rigorous
terms.

As pointed out by Bovier and Kurkova7 �see also Ben Arous et al.10�, the GREM-like models
may represent an independent interest in various applied contexts, where correlated heavy-tailed
inputs play an important role, e.g., in risk modeling.

One of the key steps in the results of Bovier and Kurkova7 is the identification of the fluc-
tuations of the GREM partition function in the thermodynamic limit with Ruelle’s probability
cascades. In this paper we also perform this step and study the effect of external field on the
fluctuations �i.e., the weak limit laws� of the partition function of the GREM in the thermodynamic
limit. We find that the main difference introduced by the presence of external field, comparing to
the system without external field, is that the coarse graining mechanism should be altered. This
change reflects the fact that the coarse-grained parts of the system tend to have a certain optimal
magnetization as prescribed by the strength of the external field and by parameters of the GREM.
We use the general line of reasoning suggested by Bovier and Kurkova,7 i.e., we consider the point
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processes generated by the scaling limits of the GREM Hamiltonian. We streamline the proof of
the weak convergence of these point processes to the corresponding Poisson point process by
using the Laplace transform.

A. Organization of the paper

In the following subsections of the Introduction we define the model of interest and formulate
our main results on the fluctuations of the partition function of the random energy model �REM�
and GREM with external field and also on their limiting free energy �Theorems 1.1–1.4�. Their
proofs are provided in the subsequent sections. Section II is devoted to the large deviation results
providing an expression for the free energy for a class of models with Gaussian Hamiltonians and
external field �Theorem 2.1�. In Sec. III we resort to more refined analysis and perform the
calculations of the fluctuations of the ground state and of the partition function in the REM with
external field in the thermodynamic limit. Section VI contains the proofs of the results on the
fluctuations of the ground state and of the partition function for the GREM with external field.

B. Definition of the model

Derrida’s GREM was proposed as a mean-field spin-glass model with a Gaussian Hamiltonian
and hierarchical correlation structure. In this paper, we consider the GREM with uniform external
�magnetic� field. In contrast to the work of Derrida and Gardner,11 we consider here the model
with the external field which depends linearly on the total magnetization �i.e., the uniform mag-
netic field�. Derrida and Gardner11 considered the “lexicographic” external field which is particu-
larly well adapted to the natural lexicographic distance generated by the GREM Hamiltonian.

Given N�N, consider the standard discrete hypercube �N��−1;1�N. It will play the role of
the index set. Define the �normalized� lexicographic overlap between the configurations
��1� ,��2���N as

qL���1�,��2�� � �0, �1
�1� � �1

�2�

1

N
max�k � �1;N� � N:���1��k = ���2��k� , otherwise. 	 �1.1�

We equip the index set with the lexicographic distance defined as

dL���1�,��2�� � 1 − qL���1�,��2�� .

This distance is obviously an ultrametric, that is, for all ��1� ,��2� ,��3���N, we have

dL���1�,��3�� � max�dL���1�,��2��,dL���2�,��3��� .

Throughout the paper, we assume that we are given a large enough probability space �� ,F ,P�
such that all random variables under consideration are defined on it. Without further notice, we
shall assume that all Gaussian random variables �vectors and processes� are centered.

Let GREMN��GREMN�������N
be the Gaussian random process on the discrete hypercube

�N with the covariance of the following form:

E�GREMN���1��GREMN���2��� = ��qL���1�,��2��� , �1.2�

where � : �0;1�→ �0;1� is the nondecreasing right-continuous function such that ��0�=0 and
��1�=1. Given h�R+, consider the Gaussian process X�XN��XN�h ,������N

defined as

XN�h,�� � GREMN��� +
h


N
�
i=1

N

�i, � � �N. �1.3�

The second summand in �1.3� is called the external field. The parameter h represents the strength
of external field. Denote the total magnetization by
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mN��� �
1

N
�
i=1

N

�i, � � �N. �1.4�

The random process �1.3� induces the Gibbs measure GN�� ,h��M1��N� in the usual way,

GN��,h������ �
1

ZN���
exp��
NXN��−1h,��� ,

where the normalizing constant ZN��� is called the partition function ZN�� ,h� and is given by the
following sum of 2N correlated exponentials:

ZN��,h� � �
���N

exp��
NXN�h,��� . �1.5�

The real parameter ��0 is called the inverse temperature. The important quantities are the free
energy defined as

pN��,h� �
1

N
log ZN��,h� , �1.6�

and the ground state energy

MN�h� � N−1/2 max
���N

XN�h,�� . �1.7�

In what follows, we shall think of � and h as fixed parameters. We shall occasionally lighten our
notation by not indicating the dependence on these parameters explicitly.

In this paper we shall mainly be interested in the weak limit theorems �i.e., fluctuations� of the
partition function �1.5� and of the ground state as N↑ +�. To be precise, the general results on
Gaussian concentration of measure imply that �1.7� and �1.6� are self-averaging. By the fluctua-
tions of the ground state, we mean the weak limiting behavior of the rescaled point process
generated by the Gaussian process �1.3�. This behavior is studied in Theorems 1.1 and 1.2 below.
These theorems readily imply the formulas for the limiting free energy �1.6� and the ground state
�1.7�. A recent account of the mathematical results on the GREM without external field and, in
particular, on the behavior of the limiting Gibbs measure can be found in the paper of Bovier and
Kurkova.12 The GREM with external field was previously considered by Jana and Rao13 �see also
Jana14�, where its free energy was expressed in terms of a variational problem induced by an
application of Varadhan’s lemma. In this work, we apply very different methods to obtain precise
control of the fluctuations of the partition function for the GREM with external field. As a simple
consequence of these results, we also get a rather explicit1 formula for the limiting free energy in
the GREM with external field �see Theorem 1.4�.

C. Main results

In this paper, we shall consider the case of the piecewise constant function � with a finite
number of jumps. Consider the space of discrete order parameters,

Qn� � �q:�0;1� → �0;1��q�0� = 0,q�1� = 1,

q is nondecreasing, piecewise constant with n jumps� . �1.8�

Recall the function � from �1.2�. Assume that ��Qn�. In what follows, we shall refer to � as the
discrete order parameter. In this case, it is possible to construct the process GREMN as a finite
sum of independent Gaussian processes. Assume that

1In contrast to Jana and Rao13 Theorem 5.1 and Jana14 Corollary 4.3.5, who stop at the level of variational problem.
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��x� = �
k=1

n

qk1�xk;xk+1��x� , �1.9�

where

0 � x0 	 x1 	 ¯ 	 xn = 1, �1.10�

0 � q0 	 q1 	 ¯ 	 qn = 1. �1.11�

Let �ak�k=1
n �R be such that ak

2=qk−qk−1. We assume that, for all k� �1;n��N, we have xkN
�N 2 and also ak�0. Denote 
xl�xl−xl−1.

Consider the family of independently and identically distributed standard Gaussian random
variables,

�X���1�,��2�, . . . ,��k���k � �1;n� � N,��1� � �x1N, . . . ,��k� � �xkN� .

Using these ingredients, for �=��1� 
��2� 
 . . . 
��n���N, we have

GREMN��� � �
k=1

n

akX���1�,��2�, . . . ,��k�� . �1.12�

Equivalence �1.12� is easily verified by computing the covariance of the right hand side. The
computation gives, for � ,���N,

Cov�GREMN���GREMN���� = qNqL��,��.

D. Limiting objects

We now collect the objects which appear in weak limit theorems for the GREM partition
function and for the ground states. We denote by I : �−1;1�→R+ Cramér’s entropy function, i.e.,

I�t� � 1
2 ��1 − t�log�1 − t� + �1 + t�log�1 + t�� . �1.13�

Define

��t� � 
2�log 2 − I�t�� ,

M�h� � max
t��−1;1�

���t� + ht� . �1.14�

Suppose that the maximum in �1.14� is attained at t= t�= t��h�. �The maximum exists and is unique,
since ��t�+ht is strictly concave.� Consider the following two real sequences:

AN�h� � ���t��
N�−1, �1.15�

BN�h� � M�h�
N +
AN�h�

2
log�AN�h�2�I��t�� + h�

2
�1 − t�
2�

� . �1.16�

Define the REM scaling function uN,h�x� :R→R as

2This condition is for notational simplicity. It means that we actually consider instead of N the increasing sequence
�N����N�N such that N�↑ +� as �↑ +�, satisfying N�xk�N, for all ��N and all k� �1;n��N.
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uN,h�x� � AN�h�x + BN�h� . �1.17�

Given f :D�R→R+, we denote by PPP�f�x�dx ,x�D� the Poisson point process with intensity f .
We start from a basic limiting object. Assume that the point process P�1� on R satisfies

P�1� � PPP�exp�− x�dx,x � R� �1.18�

and is independent of all random variables around. The point process �1.18� is the limiting object
which appears in the REM.

Theorem 1.1: If n=1 (the REM case), then, using the above notations, we have

�
���N

�uN,h
−1 �XN�h,��� →

N→�

w

P�1�, �1.19�

where the convergence is the weak one of the random probability measures equipped with the
vague topology.

Remark 1.1: It is easy to check that, for h=0, Theorem 1.1 reduces to the results of Bovier
and Kurkova.15 Indeed, in this case t��0�=0, and, hence, ��0�=M�0�=
2 log 2, which in turn
implies that the scaling constants �1.15� and �1.16� coincide with that of the REM without external
field.

To formulate the weak limit theorems for the GREM �i.e., for the case n�1�, we need a
limiting object which is a point process closely related to the Ruelle probability cascade
�Ruelle16�. Define, for j ,k� �1;n+1��N, j	k, the “slopes” corresponding to the function � in
�1.2� as

� j,k �
qk − qj−1

xk − xj−1
.

Define also the following h-dependent “modified slopes”:

�̃ j,k�h� � � j,k��t��� j,k
−1/2h��−2. �1.20�

Define the increasing sequence of indices �Jl�h��l=0
m�h�� �0;n+1��N by the following algorithm.

Start from J0�h��0 and define iteratively

Jl�h� � min�J � �Jl−1;n + 1� � N:�̃Jl−1,J�h� � �̃J+1,k�h�, for all k � J� . �1.21�

Note that m�h��n. The subsequence of indices �1.21� induces the following coarse graining of the
initial GREM:

q̄l�h� � qJl�h� − qJl−1�h�, �1.22�

x̄l�h� � xJl�h� − xJl−1�h�, �1.23�

�̄l�h� � �Jl−1,Jl
. �1.24�

The parameters �1.22� induce the new order parameter ��J�h���Qm� in the usual way,

��J�h���q� � �
l=1

m�h�

qJl�h�1�xJl�h�;xJl+1�h��
�x� .

Define the GREM scaling function uN,�,h :R→R as
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uN,�,h�x� � �
l=1

m�h�

�q̄l�h�1/2Bx̄l�h�N��̄l�h�−1/2h�� + N−1/2x .

Define the rescaled GREM process as

GREMN�h,�� � uN,�,h
−1 �GREMN�h,��� .

Define the point process of the rescaled GREM energies EN as

EN�h� � �
���N

� GREMN�h,��. �1.25�

Consider the following collection of independent point processes �which are also independent of
all random objects introduced above�:

�P�1,. . .,�l−1

�k� ��1, . . . ,�l−1 � N;l � �1;m� � N� ,

such that

P�1,. . .,�k−1

�k� � P�1�.

Define the limiting GREM cascade point process Pm on Rm as follows:

Pm � �
��Nm

��P�1���1�,P
�1

�2���2�,. . .,P
�1,�2,. . .,�m−1

�m� ��m��. �1.26�

Consider the following constants:

�̄l�h� � ��̃Jl−1,Jl
�1/2,

and define the function Eh,f :Rm→R as

Eh,�
�m��e1, . . . ,em� � �̄1�h�e1 + ¯ + �̄m�h�em.

Note that due to �1.21�, the constants ��̄l�h��l=1
m form a decreasing sequence, i.e., for all l

� �1;m��N, we have

�̄l�h� � �̄l+1�h� . �1.27�

The cascade point process �1.26� is the limiting object which describes the fluctuations of the
ground state in the GREM.

Theorem 1.2: We have

EN�h� →
N↑+�

w �
Rm

�Eh,�
�m��e1,. . .,em�Pm�de1, . . . ,dem� �1.28�

and

MN�h� →
N↑+�

�
l=1

m�h�

��q̄l�h�x̄l�h��1/2M��̄l�h�−1/2h�� , �1.29�

almost surely and in L1.
Theorem 1.2 allows for complete characterization of the limiting distribution of the GREM

partition function. To formulate the result, we need the �-dependent threshold l�� ,h�
� �0;m��N such that above it all coarse-grained levels l� l�� ,h� of the limiting GREM are in
the “high temperature regime.” Below this threshold the levels l� l�� ,h� are in the “frozen state.”
Given ��R+, define

125202-6 A. Bovier and A. Klimovsky J. Math. Phys. 49, 125202 �2008�
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l��,h� � max�l � �1;n� � N:��̄l�h� � 1� .

We set l�� ,h��0, if ��̄1�h��1. The following gives full information about the limiting fluctua-
tions of the partition function at all temperatures.

Theorem 1.3: We have

exp�− �
N �
l=1

l��,h�

�q̄l�h�1/2Bx̄l�h�N��̄l
−1/2h���exp�− N�log 2 + log ch��h�1 − xJl��,h�

��

+
1

2
�2�1 − qJl��,h�

���ch2/3��h�1 − xJl��,h�
��ZN��,h�

→
N↑+�

w

K��,h,���
Rl��,h�

exp��Eh,�
�l��,h���e1, . . . ,el��,h���Pl��,h��de1, . . . ,del��,h�� , �1.30�

where the constant K�� ,h ,�� depends on �, h, and � only. Moreover, K�� ,h ,��=1, if ��l��,h�+1

	1 and K�� ,h ,��� �0;1�, if ��l��,h�+1=1.
The above theorem suggests that the increasing sequence of the constants ��l

� �̄−1�l=1
m�h��R+ can be thought of as the sequence of the inverse temperatures at which the phase

transitions occur: at �l the corresponding coarse-grained level l of the GREM with external field
“freezes.”

As a simple consequence of the fluctuation results of Theorem 1.3, we obtain the following
formula for the limiting free energy of the GREM.

Theorem 1.4: We have

lim
N↑+�

pN��,h� = � �
l=1

l��,h�

��x̄lq̄l�1/2��t���̄l
−1/2h�� + hx̄lt���̄l

−1/2h�� + log 2 + log ch��h�1 − xJl��,h�
��

+
1

2
�2�1 − qJl��,h�

� , �1.31�

almost surely and in L1.
Remark 1.2: For h=0, since ��t��0��=��0�=
2 log 2 (see Remark 1.1), we have

�̃ j,k�h� =
� j,k

2 log 2
,

which together with �1.21� recovers the coarse-graining algorithm of Bovier and Kurkova7 �1.15�
for the GREM without external field.

II. PARTIAL PARTITION FUNCTIONS, EXTERNAL FIELDS, AND OVERLAPS

In this section, we propose a way to compute the free energy of disordered spin systems with
external field using the restricted free energies of systems without external field. The computation
involves a large deviations principle. For gauge invariant systems, we also show that the partition
function of the system with external field induced by the total magnetization has the same distri-
bution as the one induced by the overlap with fixed but arbitrary configuration. This section is
based on the ideas of Derrida and Gardner.11

Fix p�N. Given some finite interaction p-hypergraph �VN ,EN
�p��, where VN= �1;n��N and

EN
�p�� �VN�p, define the p-spin interaction Hamiltonian as

125202-7 Fluctuations in the GREM with external field J. Math. Phys. 49, 125202 �2008�
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XN��� � �
i�EN

�p�
Ji

�N,p��i1
�i2

¯ �ip
, � � �N, �2.1�

where J�N,p���Ji
�N,p��i�E

N
�p� is the collection of random variables having the symmetric joint distri-

bution. That is, we assume that, for any ��1� ,��2�� �−1; +1�EN
�p�

and any t�REN
�p�

,

E�exp�i �
r�EN

�p�
tr�r

�1�Ji
�N,p��� = E�exp�i �

r�EN
�p�

tr�r
�2�Ji

�N,p��� , �2.2�

where i�C denotes the imaginary unit.
A particular important example of �2.1� is Derrida’s p-spin Hamiltonian given by

SKN
�p���� � N−p/2 �

i1,. . .,ip=1

N

gi1,. . .,ip
�i1

�i2
¯ �ip

,

where �gi1,. . .,ip
�i1,. . .,ip=1

N is a collection of independently and identically distributed standard Gauss-
ian random variables. Note that the condition �2.2� is obviously satisfied.

Given ���N, define the corresponding gauge transformation T� :�N→�N as

T����i = �i�i, � � �N. �2.3�

Note that the gauge transformation �2.3� is obviously an involution. We say that a d-variate
random function f :�N

d →R is gauge invariant, if, for any ���N and any ���1� , . . . ,��d����N
d ,

f�T����1��, . . . ,T����d��� � f���1�, . . . ,��d�� ,

where � denotes equality in distribution. Define the overlap between the configurations � ,��
��N as

RN��,��� �
1

N
�
i=1

N

�i�i�. �2.4�

Note that the overlap �2.4� and the lexicographic overlap �1.1� are gauge invariant.
Given a bounded function FN :�N→R, define the partial partition function as

ZN
�p���,q,�,XN,FN� � �

�:�FN���−q���

exp��
NXN���� . �2.5�

Denote

UN � FN��N�, U � � �
N=1

�

UN� . �2.6�

�The bar in �2.6� denotes closure in the Euclidean topology.� Note that for the case FN=RN we
obviously have

UN = �1 −
2k

N
:k � �0;N� � Z�, U = �− 1;1� .

Proposition 2.1 (Ref. 11): Assume that XN is given either by �2.1� or XN�GREMN. Fix some
gauge invariant bivariate function FN :�N

2 →R, and q�R.
Then, for all �� ,����N, we have

ZN
�p���,q,�,XN,FN�· ,���� � ZN

�p���,q,�,XN,FN�· ,���� . �2.7�

In particular, the partial partition function �2.5� with FN�RN�· ,��� has the same distribution as
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the partial partition function which corresponds to fixing the total magnetization �1.4�, i.e.,

ZN
�p���,q,�,XN,RN�· ,���� � ZN

�p���,m,� ,� � �
�:�m���−q�	�

exp��
NXN���� .

Remark 2.1: The proposition obviously remains valid for the Hamiltonians XN given by the
linear combinations of the p-spin Hamiltonians �2.1� with varying p�N.

Proof:

�1� If XN is defined by �2.1�, then �2.7� follows due to the gauge invariance of �2.1� and FN.
Indeed, there exists ���N such that ��=T�����. Define

Ji
�N,p,�� � Ji

�N,p��i1
¯ �ip

.

Due to the symmetry of the joint distribution of J�N,p�, we have

�XN�������N
� �XN����J�N,p�=J�N,p,������N

,

which implies �2.7�.
�2� If XN=GREMN, then, since XN is a Gaussian process, to prove the equality in distribution, it

is enough to check that the covariance of XN is gauge symmetric. Equivalence �2.7� follows
due to �1.2� and the fact that the lexicographic overlap �1.1� is gauge invariant.

�
The partial partition function �2.5� induces the restricted free energy in the usual way,

pN
�p���,q,�,XN,FN� �

1

N
log ZN

�p���,q,�,XN,FN� . �2.8�

Given ��1� ,��2���N, let

CN���1�,��2�� � E�XN���1��XN���2���, C̃N���1�� � CN���1�,��1�� .

Define

VN � �CN��,��:� � �N�, V � � �
N=1

�

VN� .

The following result establishes a large deviation-type relation between the partial free energy and
the full one.

Theorem 2.1: Assume XN= �XN�������N
is a centered Gaussian process and FN :�N→R are

such that, for all N ,M �N, all ��1� ,��2���N, and all ��1� ,��2���M,

CN+M���1� 
 ��1�,��2� 
 ��2�� �
N

N + M
CN���1�,��2�� +

M

N + M
CM���1�,��2�� , �2.9�

FN+M���1� 
 ��1�� �
N

N + M
FN���1�� +

M

N + M
FM���1�� . �2.10�

Assume that CN and FN are bounded uniformly in N.

�1� The following holds:

pN��,XN,FN� �
1

N
log �

���N

exp��
NXN��� + NFN����

→
N↑+�

p��,X,F�, almost surely and in L1. �2.11�
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�2� The limiting free energy p�� ,X ,F� is almost surely deterministic.
�3� We have

lim
�↓+0

lim
N↑+�

pN
�p���,q,�,XN,FN� � p�p���,q,X,F� = sup

v�V
inf

��R,��R
�− �q − �v + p��,X,�F

+ �C̃��, almost surely and in L1. �2.12�

�4� Finally,

p��,X,F� = sup
q�U

�p�p���,q,X,F� + q� . �2.13�

Remark 2.2:

�1� If there exists �constN�R+�N=1
� such that, for all ���N,

C̃N��� = constN, �2.14�

then �2.12� simplifies to

p�p���,q,X,F� = inf
��R

�− �q + p��,X,�F��, almost surely and in L1. �2.15�

�2� Inequality �2.10� can alternatively be substituted by the assumption (see Guerra and
Toninelli17 Theorem 1) that FN���= f�SN����, where f :R→R, f �C1�R�, and SN :�N→R is
the bounded function such that, for all ���N, ���M,

SN+M�� 
 �� =
N

N + M
SN��� +

M

N + M
SM��� .

�3� It is easy to check that the assumptions of Proposition 2.1 are fulfilled, e.g., for

XN � c1GREMN + c2SKN
�p�,

and

FN�·� � f1�RN�· ,��N��� + f2�qL�· ,��N��� ,

where ��N���N, c1 ,c2�R, and f1 , f2 :R→R, such that f1�C1�R�, f2 is convex. Note that in
this case, due to Proposition 2.1, the free energies �2.11� and �2.12� do not depend on the
choice of the sequence ���N��N=1

� ��N.

Proof: Similarly to Contucci et al.18 Theorem 1 and Guerra and Toninelli17 Theorem 1, we
obtain �2.11�. Then �2.11� implies that

p��,XN,�FN + �C̃N� →
N↑+�

p��,X,�F + �C̃�, almost surely and in L1.

Hence, we can apply the quenched large deviation results Bovier and Klimovsky19 Theorems 3.1
and 3.2 which readily yield �2.13� and �2.12� �or �2.15��, in the case of �2.14�. �

Remark 2.3: Derrida and Gardner11 sketched a calculation of the free energy defined in
�2.11� in the following case:

FN = qL and XN = GREMN. �2.16�

This case is easier than the case �1.6� we are considering here, since both qL and GREMN have
lexicographic nature, cf. �1.2� and �1.1�.

125202-10 A. Bovier and A. Klimovsky J. Math. Phys. 49, 125202 �2008�

Downloaded 22 Mar 2010 to 131.155.151.27. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



III. THE REM WITH EXTERNAL FIELD REVISITED

In this section, we recall some known results on the limiting free energy of the REM with
external field. However, we give some new proofs of these results which illustrate the approach of
Sec. II. Moreover, we prove the weak limit theorem for the ground state and for the partition
function of the REM with external field.

Recall that the REM corresponds to the case n=1 in �1.12�. This implies that the process X is
simply a family of 2N independently and identically distributed standard Gaussian random vari-
ables. To emphasize this situation we shall write REM��� instead of GREM���.

A. Free energy and ground state

Let us start by recalling the following well-known result on the REM.
Theorem 3.1 (Derrida,20 Eisele,21 and Olivieri and Picco22): Assume that n=1 and let

p�� ,h� be given by �1.6�. The following assertions hold.

�1� We have

lim
N→�

pN��,0� = ��2

2
+ log 2, � � 
2 log 2,

�
2 log 2, � � 
2 log 2,
	almost surely and in L1. �3.1�

�2� For all ��
2 log 2 and N�N, we have

0 � E�pN��,0�� � �
2 log 2. �3.2�

See, e.g., Bovier6 Theorem 9.1.2 for a short proof.
Given k� �0;N��N, define the set of configurations having a given magnetization

�N,k ��� � �N:�
i=1

N

�i = N − 2k� . �3.3�

Lemma 3.1: Set tk,N�N−2k /N. Given any ��0, uniformly in k� �0;N��N such that

tk,N � �− 1 + �;1 − �� ,

we have the following asymptotics:

�N

k
� =

N↑+�

 2




2Ne−NI�tk,N�


N�1 − tk,N
2 �

�1 +
1

N
� 1

12
+

1

3�1 − tk,N
2 �� + O� 1

N2�� . �3.4�

Proof: A standard exercise on Stirling’s formula. �

Theorem 3.2 (Dorlas and Wedagedera23): Assume that n=1 (the REM case) and let p�� ,h�
be given by �1.6�. We have

p��,h� � lim
N→�

pN��,h�

= �log 2 + log ch �h +
�2

2
, � � 
2�log 2 − I�t��� � �0

��
2�log 2 − I�t��� + ht��, � � 
2�log 2 − I�t���
	, almost surely and in L1,

�3.5�

and t�� �−1;1� is a unique maximizer of the following concave function:

�− 1;1� � t � ht + 
2�log 2 − I�t�� .

125202-11 Fluctuations in the GREM with external field J. Math. Phys. 49, 125202 �2008�

Downloaded 22 Mar 2010 to 131.155.151.27. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Proof: For the sake of completeness, we give a short proof based on �the ideas of� Theorem
2.1. Put

Mk,N � ��log2�N

k
�� , k � �1;N − 1� � N ,

1, k � �0,N� ,
	

where �x� denotes the largest integer smaller than x. Consider the free energy �cf. �2.8�� of the
REM of volume Mk,N,

pk,N��� �
1

Mk,N
log �

���N
k

exp��Mk,N
1/2REM���� ,

where REM��REM�������N
is the family of standard independently and identically distributed

Gaussian random variables. Let

p̃k,N��� �
Mk,N

N
pk,N�� N

Mk,N
�1/2

�� . �3.6�

Note that �3.6� is the restricted free energy �cf. �2.8�� of the REM, where the restriction is imposed
by the total magnetization �1.4� given by tk,N.

We claim that the family of functions P��E�pN�·���N�N is uniformly Lipschitzian. Indeed,
uniformly in ��0, we have

��E�pN���� = N−1/2E�GN��,0��XN����� � N−1/2E�max
���N

X���� →
N↑+�


2 log 2.

Hence, the family P has uniformly bounded first derivatives.
Given t� �−1;1� and tkN,N�UN �cf. �2.6�� such that limN↑+� tkN,N= t, using �3.4�, we have

lim
N↑+�

MkN,N

N
= 1 − I�t�log2 e . �3.7�

Using �3.7� and the uniform Lipschitzianity of the family P, we get

lim
N↑+�

p̃kN,N��� = �1 − I�t�log2 e�p� �


1 − I�t�log2 e
� . �3.8�

Combining �3.8� with �2.13� and �2.15�, we get

p��,h� = max
t��−1;1�

�t�h + �1 − I�t�log2 e�p� �


1 − I�t�log2 e
�� . �3.9�

To find the maximum in �3.9�, we consider two cases.

�1� If ��
2�log 2− I�t���, then according to �3.1�, we have

p� �


1 − I�t�log2 e
� = log 2 +

�2

2�1 − I�t�log2 e�
.

Hence, �3.9� implies

p��,h� = max
t��−1;1�

�t�h +
�2

2
+ log 2 − I�t�� = log 2 + log ch �h +

�2

2
, �3.10�

where the last equality is due to the fact that the expression in the curly brackets is concave
and, hence, the maximum is attained at a stationary point. The stationarity condition reads
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t = t0��,h� � tanh �h . �3.11�

It is easy to check that the following identity holds:

I�t� = t tanh−1 t − log ch tanh−1 t . �3.12�

Combining �3.12� and �3.11�, we get �3.10�.
�2� If ��
2�log 2− I�t���, then again by �3.1�, we have

p� �


1 − I�t�log2 e
� =

�
2 log 2

1 − I�t�log2 e

.

Hence, �3.9� transforms to

p��,h� = max
t��−1;1�

�t�h + �
2�log 2 − I�t��� = ��
2�log 2 − I�t��� + ht�� , �3.13�

where the last equality is due to the concavity of the expression in the curly brackets.
Combining �3.10� and �3.13�, we get �3.5�. �

Remark 3.1: We note that due to the continuity of the free energy as a function of �, we have
at the freezing temperature �0,

t0��0,h� = t��h� . �3.14�

Theorem 3.2 suggests that the following holds.
Theorem 3.3: Under the assumptions of Theorem 3.2, we have

lim
N↑+�

1

N

max
���N

XN�h,�� = 
2�log 2 − I�t��� + ht�, almost surely and in L1. �3.15�

Proof: We have

1

�
pN��� �

1

N
log�N�
N max

���N

XN�h,��� =
log N

�N
+

1

N

max
���N

XN�h,�� . �3.16�

In view of �3.5�, relation �3.16� readily implies that


2�log 2 − I�t��� + ht� � lim
N↑+�

N−1/2 max
���N

XN�h,�� . �3.17�

We also have

1

�
pN��� �

1

N

max
���N

XN�h,�� ,

which combined again with �3.5� implies that


2�log 2 − I�t��� + ht� � lim
N↑+�

N−1/2 max
���N

XN�h,�� . �3.18�

Due to the standard concentration of Gaussian measure �e.g., Ledoux24 �2.35�� and the fact that the
free energy �1.6� is Lipschitzian with the constant �
N as a function of XN�h , ·� with respect to the
Euclidean topology, the bounds �3.17� and �3.18� combined with the Borell–Cantelli lemma give
the convergence �3.15�. �

B. Fluctuations of the ground state

In this subsection, we shall study the limiting distribution of the point process generated by
the properly rescaled process of the energy levels, i.e., �1.25�.
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Proof of Theorem 1.1: Let us denote

EN�h� � �
���N

�uN,h
−1 �XN�h,���. �3.19�

We treat EN�h� as a random pure point measure on R. Given some test function ��C0
+�R� �i.e., a

non-negative function with compact support�, consider the Laplace transform of �3.19� corre-
sponding to �,

LEN�h���� � E�exp�− �
���N

��uN,h
−1 �XN�h,������

= �
k=0

N � 1

2

�

R
exp�− ��uN,h

−1 �x +
h


N
�N − 2k��� −

x2

2 �dx��N
k �

. �3.20�

Introduce the new integration variables y=uN,h
−1 �x+h /
N�N−2k��. We have

�3.20� = �
k=0

N �AN�h�
2


�
R

exp�− ��y� −
1

2�uN,h�y� −
h


N
�N − 2k��2�dy��N

k �

= exp��
k=0

N �N

k
�log�1 −

AN�h�

2


�
R

�1 − e−��y��exp�−
1

2�uN,h�y� −
h


N
�N − 2k��2��� .

�3.21�

Note that the integration in �3.21� is actually performed over y�supp �, since the integrand is
zero on the complement of the support. It is easy to check that uniformly in y�supp � the
integrand in �3.21� and, hence, the integral itself is exponentially small �as N↑ +��. Consequently,
we have

�3.21� =
N↑+�

exp�− �
supp �

�1 − e−��y����
k=0

N �N

k
�AN�h�


2

exp�−

1

2�uN,h�y� −
h


N
�N − 2k��2��

��1 + o�1��� . �3.22�

Denote tk,N�N−2k /N. Using Lemma 3.1, we get

�3.22� =
N↑+�

exp�− �1 + o�1���
supp �

�1 − e−��y����
k=0

N
AN�h�


�N�1 − tk,N
2 ��1/2exp�N�log 2 − I�tk,N��

−
1

2
�uN,h�y� − htk,N


N�2��� . �3.23�

Note that despite the fact that Lemma 3.1 is valid only for tk,N� �−1+� ;1−��, we can still write
�3.23�, since the both following sums are negligible:

0 � �
k:tk,N���−1;−1+����1−�,1��

AN�h�

�N�1 − tk,N

2 ��1/2exp�N�log 2 − I�tk,N�� −
1

2
�uN,h�y� − htk,N


N�2�
� KN exp�− LN�

and

125202-14 A. Bovier and A. Klimovsky J. Math. Phys. 49, 125202 �2008�

Downloaded 22 Mar 2010 to 131.155.151.27. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



0 � �
k:tk,N���−1;−1+����1−�,1��

�N

k
�AN�h�


2

exp�−

1

2
�uN,h�y� − htk,N


N�2� � KN exp�− LN� .

Consider the sum appearing in �3.23�,

SN�h,y� � �
k=0

N
AN�h�


�N�1 − tk,N
2 ��1/2exp�N�log 2 − I�tk,N�� −

1

2
�uN,h�y� − htk,N


N�2� . �3.24�

Introduce the functions fN ,gN : �−1;1�→R as

fN�t� � I�t� +
1

2�uN,h�y�

N

− ht�2

− log 2,

gN�t� �
AN�h�


�N�1 − t2��1/2 .

Note that definition �1.14� implies

I��t�� = h��t�� . �3.25�

A straightforward computation using �1.15�, �1.16�, and �3.25� gives

fN� �t� = I��t� + h � 0, �3.26�

fN� �t�� = −
h

�2��t��N��2y + log� I��t�� + h

4
�1 − t�
2��log 2 − I�t���N

�� = O� log N

N
� , �3.27�

fN�t�� = −
1

N
�y +

1

2
log� I��t�� + h

4
�1 − t�
2��log 2 − I�t���N

�� + o� 1

N
� . �3.28�

Hence, since �3.27� vanishes even after being multiplied by 
N, �3.27� is negligible for the
purposes of the asymptotic Laplace principle. This readily implies that uniformly in y�supp �,

SN�h,y� �
N↑+�

NgN�t��
2

�2
fN� �t��
N

�1/2

exp�NfN�t��� . �3.29�

Using �3.26�–�3.28� in the right hand side of �3.29�, we obtain that uniformly in y�supp �,

SN�h,y� �
N↑+�

exp�− y� . �3.30�

Finally, combining �3.30� and �3.23�, we obtain

lim
N↑+�

LEN�h���� = exp�− �
R

�1 − e−��y��e−ydy� . �3.31�

The right hand side of �3.31� is the Laplace transform of PPP�e−xdx ,x�R�. Then a standard result
implies the claim �1.19�. �

C. Fluctuations of the partition function

In this subsection, we compute the weak limiting distribution of the partition function under
the natural scaling induced by �1.17�. Define
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CN��,h� � exp��M�h�N +
�

2��t��
log� I��t�� + h

4
�1 − t�
2��log 2 − I�t���N

�� , �3.32�

DN��,h� � ch−2/3��h�exp�N�log 2 + log ch �h +
�2

2
�� , �3.33�

���,h� �
�

��t��
. �3.34�

Theorem 3.4: If ����t��, then

ZN��,h�
CN��,h�

→
N↑+�

w �
R

e���,h�xdP�1��x� . �3.35�

If �	��t��, then

ZN��,h�
DN��,h�

→
N↑+�

w

1. �3.36�

Proof: This is a specialization of Theorem 1.3 which is proven in Sec. IV B. �

IV. THE GREM WITH EXTERNAL FIELD

In this section, we obtain the main results of the paper concerning the GREM with external
field. We prove the limit theorems for the distribution of the partition function and that of the
ground state. As a simple consequence of these fluctuation results, we obtain an explicit formula
for the free energy of the GREM with external field.

A. Fluctuations of the ground state

As in the REM, we start from the ground state fluctuations �cf. Theorem 1.1�. The following
is the main technical result of this section that shows exactly in which situations the GREM with
external field has the same scaling limit behavior as the REM with external field.

Proposition 4.1: Either of the following two cases holds.

�1� If, for all l� �2;n��N,

log 2 − I�t���l,n
−1/2h��

log 2 − I�t��h��
	 �l,n, �4.1�

then we have

�
���N

�uN,h
−1 �XN�h,��� →

N↑+�

w

PPP�e−x,x � Rd� . �4.2�

�2� If, for all l� �2, . . . ,n��N,

log 2 − I�t���l,n
−1/2h��

log 2 − I�t��h��
� �l,n, �4.3�

and there exists (at least one) l0� �2;n��N,

log 2 − I�t���l0,n
−1/2h��

log 2 − I�t��h��
= �l0,n, �4.4�

then there exists the constant K=K�� ,h�� �0;1�, such that
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�
���N

�uN,h
−1 �XN�h,��� →

N↑+�

w

PPP�Ke−x,x � R� . �4.5�

Remark 4.1: If condition �4.3� is violated, i.e., there exists l0� �2;n��N such that

log 2 − I�t���l,n
−1/2h��

log 2 − I�t��h��
� �l,n, �4.6�

then the REM scaling [cf. �1.19� and �1.17�] is too strong to reveal the structure of the ground
state fluctuations of the GREM. Theorem 1.2 shows how the scaling and the limiting object should
be modified to capture the fluctuations of the GREM in this regime.

Proof:
�1� Denote Nl�
xlN, for l� �1;n�. We fix arbitrary test function ��CK

+ �R�, i.e., a non-
negative function with compact support. Consider the Laplace transform LEN�h���� of the random
measure EN�h� evaluated on the test function �:

LEN�h���� � E�exp�− �
���N

�� � uN,h
−1 ��XN�h,����� = E� �

���N

exp�− �� � uN,h
−1 ��XN�h,����� .

�4.7�

Consider also the family of independently and identically distributed standard Gaussian random
variables,

�X���l�,��2�, . . . ,��n���l � �1;n� � N,��l� � �Nl
, . . . ,��n� � �Nn

� .

Given l� �1;n��N and y�R, define

LN�l,v� � E� �
��l�
. . .
��n����1−xl−1�N

exp�− � � uN,h
−1 �v + alX���l�� + ¯ + anX���l�, . . . ,��n��

+ h�1 − xl−1�
Nm���l�, . . . ,��n����� . �4.8�

We readily have

LEN�h���� = LN�1,0� . �4.9�

Due to the treelike structure of the GREM, for l� �1;n−1��N, we have the following recursion:

LN�l,v� = �
��l���Nl

E�LN�l + 1,v + alX + h
xl

Nm���l���� , �4.10�

where X is a standard Gaussian random variable. Introduce the following quantities:

YN�h,y,v,t,l� � uN,h�y� − h�1 − xl−1�
Nt − v .

We claim that, for any l� �1;n��N, uniformly in v�R satisfying

v � 
N�M�h� − � − �1 − ql−1���h� − h�1 − xl−1�t���l,n
−1/2h�� ,

we have
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log LN�l,v� �
N↑+�

−
AN�h�


2
�1 − ql−1�
�
k=0

�1−xl−1�N ���1 − xl−1�N
k

�
��

R
�1 − e−��y��exp�−

1

2�1 − ql−1�
YN�h,y,v,tk,�1−xl−1�N,l�2�dy� . �4.11�

We shall prove �4.11� by a decreasing induction in l starting from l=n.
�2� The base of induction is a minor modification of the proof of Theorem 1.1. By the

definition �4.8� and independence, we have

LN�n,v� = �
k=0

Nn

�E exp�− �� � uh,N
−1 ��anX + h
xn


Ntk,Nn
+ v����Nn

k
� . �4.12�

For fixed k� �0;Nn��Z,

E�exp�− �� � uN,h
−1 ��anX + h
xn


Ntk,N + v���

= �2
�−1/2�
R

dx exp�− x2/2 − �� � uN,h
−1 ��anx + h
xn


Ntk,N + v�� . �4.13�

We introduce in �4.13� the new integration variable,

y � uN,h
−1 �anx + h
xn


Ntk,Nn
+ v� . �4.14�

Using the change of variables �4.14�, we get that the right hand side of �4.13� is equal to

AN�h�

2
an

�
R

dy exp�−
1

2an
2YN�h,y,v,tk,Nn

,n�2 − ��y�� . �4.15�

Combining �4.12� and �4.15�, we get

LN�n,v� = �
k=0

Nn � AN�h�

2
an

�
R

dy exp�−
1

2an
2YN�h,y,v,tk,Nn

,n�2 − ��y����Nn
k

�

= �
k=0

Nn �1 −
AN�h�

2
an

�
R

dy�1 − e−��y��exp�−
1

2an
2YN�h,y,v,tk,Nn

,n�2���Nn
k

�
.

Define

VN�h,v,t,n� �
AN�h�

2
an

�
R

dy�1 − e−��y��exp�−
1

2an
2YN�h,y,v,t,n�2� .

Given any small enough ��0, it straightforward to show that uniformly in v�R such that

v � 
N�M�h� − h
xnt��h�n−1,n
−1/2 � − �� ,

we have

LN�n,v� =
N↑+�

�
k=0

Nn �1 − �Nn

k
�VN�h,v,tk,Nn

,n���1 + O�e−CN�� . �4.16�

Indeed, we have
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exp�−
1

2an
2YN�h,y,v,tk,Nn

,n�2� � exp�− Nn�log 2 − I�tn��� .

Next, using the fact that �1−e−��·���CK
+�R�, we get for some C�0,

�
R

dy�1 − e−��y��exp�−
1

2an
2YN�h,y,v,tk,Nn

,n�2� � C exp�− Nn�log 2 − I�tn��� .

Applying the elementary bounds

x − x2 � log�1 + x� � x for �x� 	
1
2 �4.17�

to

x � −
AN�h�

2
an

�
R

dy�1 − e−��y��exp�−
1

2an
2YN�h,y,v,tk,Nn

,n�2� ,

and using the fact that, due to �3.4�, there exists C�0 such that uniformly in k� �1;Nn��N,

x2 � exp�− 2Nn�log 2 − I�tn����Nn

k
� � e−CN,

we get �4.16� and, consequently, �4.11� holds for l=n.
�3� For simplicity of presentation, we prove only the induction step l=n� l=n−1. Due to

�4.10�, we have

LN�n − 1,v� = �
kn−1=0

Nn−1

E�LN�n,v + an−1X + h
xn−1

Ntkn−1,Nn−1

���Nn−1
kn−1

� . �4.18�

Define

t�kn,kn−1� �
1

1 − xl−2
�
xntkn,Nn

+ 
xn−1tkn−1,Nn−1
� .

Fix an arbitrary ��0 and ��0. Due to �4.11� with l=n, there exists some C�0, such that
uniformly for all kn ,kn−1 with

tkn,kn−1
� �t � �− 1;1�:�t���n−1,n

−1/2 h� − tkn,kn−1
� � �� ,

and uniformly for all v ,x�R satisfying


xn�log 2 − I�tkn,Nn
�� �

1

2an
2 �M�h� − � − an−1x − N−1/2v − h�
xntkn,Nn

+ 
xn−1tkn−1,Nn−1
��2,

�4.19�

we obtain

�log LN�n,v + an−1x + h
xn−1

Ntk,Nn−1

�� � CN exp�− N/C� . �4.20�

Define

xN�v� �

N

an−1
�M�h� − � − vN−1/2 − an�2
xn�log 2 − I�tkn,Nn

���1/2 − h�
xntkn,Nn
+ 
xn−1tkn−1,Nn−1

�� .

�4.21�

Using the elementary bounds
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1 + x � ex � 1 + x + x2 for �x� 	 1, �4.22�

and the bound �4.20�, we obtain

E�1�X�xN�v��LN�n,v + an−1X + h
xn−1

Ntkn−1,Nn−1

��

=
N↑+�

P�X � xN�v�� + E�1�X�xN�v�� log LN�n,v + an−1X + h
xn−1

Ntkn−1,Nn−1

�� + O�N exp�− N/C�� .

�4.23�

Given kn−1� �1;Nn−1��N, we have

E�1�X�xN�v�� exp�−
1

2an
2YN�h,y,v + an−1X + h
xn−1


Ntkn−1,Nn−1
,tkn,Nn

,n�2��
=

1

2


�
−�

xN�v�

dx exp�−
x2

2
−

1

2an
2 �uN,h�y� − an−1x − h
N�
xntkn,Nn

+ 
xn−1tkn−1,Nn−1
� − v�2�

= exp�−
1

1 − qn−2
YN�h,y,v,t�kn,kn−1�,n − 1�2�

�
1


2

�

−�

xN�v�

exp�−
an

2 + an−1
2

2an
2 �x −

an−1

an
2 + an−1

2 YN�h,y,v,t�kn,kn−1�,n − 1��2�dx . �4.24�

We claim that due to the strict inequalities �4.1�, we have

1

2


�
−�

xN�v�

exp�−
an

2 + an−1
2

2an
2 �x −

an−1

an
2 + an−1

2 YN�h,y,v,t�kn,kn−1�,n − 1��2�dx →
N↑+�

an

�an
2 + an−1

2 �1/2 ,

�4.25�

uniformly in v�R such that

v � 
N�M�h� + �� − h�
xntkn,Nn
+ 
xn−1tkn−1,Nn−1

� − �an
2 + an−1

2 ���h�� � vN
max, �4.26�

where 0	�� exists due to strict inequality �4.1�, for l=n. Indeed, due to the standard bounds on
Gaussian tails, to show �4.25� it is enough to check that

an−1

an
2 + an−1

2 YN�h,y,v,t�kn,kn−1�,n − 1� + �
N � xN�v� , �4.27�

for v satisfying �4.26�. Due to �4.1� with l=n, there exists �3�0 such that we have

�2
xn�log 2 − I�tkn,Nn
���1/2 � ��h� − �3. �4.28�

Choosing a small enough ���0, we have

xN�v� −
an−1

an
2 + an−1

2 YN�h,y,v,t�kn,kn−1�,n − 1� + �
N

= an
2�M�h� − vN−1/2 − h�
xntkn,Nn

+ 
xn−1tkn−1,Nn−1
��

− �an
2 + an−1

2 ��an�2
xn�log 2 − I�tkn,Nn
���1/2 − ��

�
4.26

an
2��an

2 + an−1
2 ���h� − ��� − �an

2 + an−1
2 ��an�2
xn�log 2 − I�tkn,Nn

���1/2 − ��

�
4.28

an
2��an

2 + an−1
2 ���h� − ��� − �an

2 + an−1
2 ��an

2��h� − ��
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= �an
2 + an−1

2 ���3an
2 + �� − an

2��

� 0,

which proves �4.27�.
We claim that there exists C�0 such that uniformly in kn−1� �1;Nn−1��N and in v�R

satisfying �4.26� we have

�Nn−1

kn−1
�P�X � xN�v�� � exp�− N/C� . �4.29�

Indeed, in view of �3.4� and due to the classical Gaussian tail asymptotics, to obtain �4.29� it
is enough to show that

Nn−1�log 2 − I�tkn−1,Nn−1
�� �

1
2xN

2 �vN
max� . �4.30�

Using �4.26� and �4.21�, we obtain

xN�vN
max� =

N1/2

an−1
��an

2 + an−1
2 ���h� − an�2
xn�log 2 − I�tkn,Nn

���1/2 + �� − �� . �4.31�

If n�2, then due to strict inequality �4.1�, for l=n−2, there exists ���0 such that we have

�an
2 + an−2

2 ���h� − �� � ��log 2 − I�t���l,n
−1/2h����an

2 + an−2
2 ��
xn + 
xn−1��1/2

� �2an−1
2 
xn−1�log 2 − I�tkn−1,Nn−1

���1/2 + �2an
2
xn�log 2 − I�tkn,Nn

���1/2,

�4.32�

where the last inequality may be obtained as a consequence of Slepian’s lemma.25 If n=2, then
�4.32� follows directly from Slepian’s lemma. Combining �4.31� and �4.32�, we get �4.30�. Note
that �4.29�, in particular, implies that

P�X � xN�v�� � exp�− N/C� . �4.33�

Given kn−1� �1;Nn−1��N, denote

LN�n − 1,v,kn−1� � E�LN�n,v + an−1X + h
xn−1

Ntkn−1,Nn−1

���Nn−1
kn−1

� .

Due to �4.33� and �4.23�, we have

LN�n − 1,v,kn−1� = E��1�X�xN�v�� + 1�X�xN�v���LN�n,v + an−1X + h
xn−1

Ntkn−1,Nn−1

���Nn−1
kn−1

�
= �1 + E�1�X�xN�v��LN�n,v + an−1X + h
xn−1


Ntkn−1,Nn−1
��

+ O�P�X � xN�v�� + N exp�− N/C����Nn−1
kn−1

� .

Using �4.29� and the standard bounds �4.17� and �4.22�, we get

LN�n − 1,v,kn−1� = exp��Nn−1

kn−1
�E�1�X�xN�v��log LN�n,v + an−1X + h
xn−1


Ntkn−1,Nn−1
��

+ O�N exp�− N/C��� .

Applying �4.25�, �4.24�, and �4.11�, for l=n, we obtain
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log LN�n − 1,v,kn−1� = −
AN�h�


2
�an
2 + an−1

2 �
�
kn=0

Nn ��Nn

kn
��Nn−1

kn−1
��

R
�1 − e−��y��

�exp�−
1

2�an
2 + an−1

2 �
YN�h,y,v,tkn,kn−1

,n − 1�2�dy� + O�N exp�− N/C�� .

Finally, we arrive at

log LN�n − 1,v� = �
kn−1=0

Nn−1

log LN�n − 1,v,kn−1�

= −
AN�h�


2
�an
2 + an−1

2 �
�
kn=0

Nn

�
kn−1=0

Nn−1 ��Nn

kn
��Nn−1

kn−1
�

� �
R

�1 − e−��y��exp�−
1

2�an
2 + an−1

2 �
YN�h,y,v,tkn,kn−1

,n − 1�2�dy�
+ O�N2 exp�− N/C��

= −
AN�h�


2
�an
2 + an−1

2 �
�
k=0

Nn+Nn−1 ��Nn + Nn−1

k
�

� �
R

�1 − e−��y��exp�−
1

2�an
2 + an−1

2 �
YN�h,y,v,tk,Nn+Nn−1

,n − 1�2�dy�
+ O�N2 exp�− N/C�� .

�4� Combining �4.9� and �4.11� for l=1, we obtain

LEN�h���� = exp�− �
R

�1 − e−��y��SN�h,y�dy + o�1�� , �4.34�

where SN�h ,y� is given by �3.24�. Invoking the proof of Theorem 1.1, we get that

LEN�h���� →
N↑+�

exp�− �
R

�1 − e−��y��e−ydy� = LP�e−x���� .

This establishes �4.2�.
�5� The proof of �4.5� is very similar to the above proof of �4.2�. The main difference is that

�4.25� does not hold. Instead, if �4.4� holds for l0=n, then we have

1

2


�
−�

xN�v�

exp�−
an

2 + an−1
2

2an
2 �x −

an−1

an
2 + an−1

2 YN�h,y,v,t�kn,kn−1�,n − 1��2�dx

→
N↑+�

an

�an
2 + an−1

2 �1/2P�X 	

N

an−1

an

2 + an−1
2

�M�h� − vN−1/2 − �1 − xn−2�ht��h�n,n
−1/2�

− �an
2 + an−1

2 ���h��� , �4.35�

uniformly in
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v � 
N�M�h� − �1 − xn−2�ht��h�n,n
−1/2� − �an

2 + an−1
2 ���h�� − ��.

The subsequent applications of the recursion �4.10� to �4.35� give rise to the constant K�h ,��
� �0;1� in �4.5�. �

Proof of Theorem 1.2: The existence of the right hand side of �1.28� follows from the result of
Bovier and Kurkova7 Theorem 1.5 �ii�. It remains to show convergence �1.28� itself. We apply
Proposition 4.1 to each coarse-grained block. Note that the assumption �4.1� of Proposition 4.1 is
fulfilled due to the construction of the blocks, cf. �1.21� and �1.27�. The result then follows from
the result of Bovier and Kurkova7 Theorem 1.2.

The representation of the limiting ground state �1.29� is proven exactly as in Bovier and
Kurkova7 Theorem 1.5 �iii�. �

B. Fluctuations of the partition function

In this subsection we compute the limiting distribution of the GREM partition function under
the scaling induced by �1.17�. The analysis amounts to handling both the low and high temperature
regimes. The low temperature regime is completely described by the behavior of the ground states
which is summarized in Theorem 1.2. The high temperature regime is considered in Lemma 4.1
below.

Lemma 4.1: Assume l�� ,h�=0. Then

exp�− N�log 2 + log ch �h +
�2

2
��ch2/3��h�ZN��,h� →

N↑+�

w

K��,h� , �4.36�

where K�� ,h�=1, if ��̄1�h�	1, and K�� ,h�� �0;1�, if ��̄1�h�=1.
Proof: We follow the strategy of Bovier and Kurkova7 Lemma 3.1. By the very construction

of the coarse-graining algorithm �1.21�, we have

�̃1,k � �̃1,J1
= �̄1�h�2, k � �1;J1� � N ,

�̃1,k 	 �̃1,J1
, k � �J1;n� � N . �4.37�

Assume ��̄1�h�	1. Hence, due to �4.37�, we have

��̃1,k
1/2 	 1, k � �1;n� � N . �4.38�

Strict inequality �4.38� implies that there exists ��0 such that, for all k� �1;n��N,

��2 −
1

2
�� − ��2�qk 	 xk�log 2 − I�t��h�xk/qk�1/2��� . �4.39�

We have

E�ZN��,h�� = �
k=0

N �N

k
�exp��htk,NN +

�2N

2
� � SN��,h� . �4.40�

Note that due to �3.4�

SN��,h� �
N↑+�

�
k=0

N

gN�tk,N�exp�Nf�tk,N�� , �4.41�

where

f�t� � log 2 − I�t� + �ht + �2/2,
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gN�t� � � 2


N�1 − t2��
1/2

.

A straightforward computation gives

f��t0� = �h − tanh−1�t0��,h�� = 0,

f��t0� = − �1 − t0
2�−1 = − ch2��h� ,

gN�t0� = � 2


N�1 − t2��
1/2

= � 2


N
�1/2

ch��h� .

The asymptotic Laplace method then yields

SN��,h� �
N↑+�

ch−2/3��h�exp�N�log 2 + log ch �h +
�2

2
�� . �4.42�

For p�q, define

GREMN
�p,q����1�, . . . ,��q�� � �

k=p

q

akX���1�, . . . ,��k�� .

Consider the event

EN��� � �GREMN
�1,k����1�, . . . ,��k�� 	 �� + ��qk


N for all k � �1;n� � N� .

Define the truncated partition function as

ZN
�T���,h� � �

���N

1EN��� exp��
NXN�h,��� . �4.43�

The truncation �4.43� is mild enough in the following sense:

E�ZN
�T����� = SN��,h�P�GREMN

�1,k����1�, . . . ,��k�� 	 �qk

N, for all k � �1;n� � N�

�
N↑+�

E�ZN��,h�� . �4.44�

We write

ZN���
E�ZN����

=
ZN

�T����
E�ZN

�T�����
�

E�ZN
�T�����

E�ZN����
+

ZN��� − ZN
�T����

E�ZN����
� �I� � �II� + �III� .

Due to �4.44�, we get

�II� �
N↑+�

1, �III� →
N↑+�

L1

0.

To estimate �I�, we fix any ��0 and use the Chebyshev inequality

P���I� − 1� � �� � ��E�ZN
�T������−2 Var�ZN

�T����� . �4.45�

Expanding the squares, we have
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Var�ZN
�T����� = E�ZN

�T����2� − E�ZN
�T�����2

= �
p=1

n

�
��1�
. . .
��k���xkN

E�exp�2�
N�GREMN
�1,p����1�, . . . ,��p��

+ 2�hxpmxpN���1�, . . . ,��p��
N��

� �
��p+1�
. . .
��n�,

��p+1�
. . .
��n����1−xp�N,

��p+1����p+1�

exp��
N�GREMN
�p+1,n����1�, . . . ,��n��

+ GREMN
�p+1,n����1�, . . . ,��n�� + h�1 − xp�
N�m�1−xp�N���p+1�
 . . . 
��n��

+ m�1−xp�N���p+1�
 . . . 
��n�����1EN���1�
. . .
��n��1EN���1�
. . .
��n��� . �4.46�

Hence, due to the independence, we arrive at

Var�ZN
�T����� � �

p=1

n

�
k=0

xkN �N

k
�E�exp�2�
N�GREMN

�1,p����1�, . . . ,��p��

+ hxptk,N

N��1�GREMN

�1,p����1�,. . .,��p��	��+��qp

N��

� � �
k=0

�1−xp�N ��1 − xp�N
k

�E�exp��
N�GREMN
�p+1,n����1�, . . . ,��n���

+ h�1 − xp�tk,�1−xp�N
N���2

. �4.47�

Assume that X is a standard Gaussian random variable. Using the standard Gaussian tail bounds,
we have

E�exp�2�
N�GREMN
�1,p����1�, . . . ,��p�� + hxptk,N


N��1�GREMN
�1,p����1�,. . .,��p��	��+��qp


N��

= exp�N�2�2qp + �htk,N��P�X � �� − ��
qpN�

�
N↑+�

C exp�N�2�2qp + �htk,N − 1
2 �� − ��2qp�� . �4.48�

Similarly to �4.41�, using �3.4� and �4.48�, we have

�
k=0

xkN �N

k
�E�exp�2�
N�GREMN

�1,p����1�, . . . ,��p�� + hxptk,N

N��1�GREMN

�1,p����1�,. . .,��p��	��+��qp

N��

�
N↑+�

C�
k=0

xkN

exp�N�xp�log 2 − I�tk,xpN�� + 2�2qp + 2�hxptk,xpN −
1

2
�� − ��2qp��

� PN�p� . �4.49�

Using �3.4�, we also obtain
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�
k=0

�1−xp�N ��1 − xp�N
k

�E�exp��
N�GREMN
�p+1,n����1�, . . . ,��n�� + h�1 − xp�
Ntk,�1−xp�N���

�
N↑+�

C �
k=0

�1−xp�N

exp�N��1 − xp��log 2 − I�tk,�1−xp�N�� +
1

2
�1 − qp��2 + �h�1 − xp�tk,�1−xp�N��

� P̃N�p� . �4.50�

Combining �4.47�, �4.49�, and �4.50�, we get

Var�ZN
�T����� �

N↑+�
�
p=1

N

PN�p�P̃N
2 �p� . �4.51�

For any p� �1;n��N, we have the following factorization:

E�ZN
�T����� = �

k=0

xpN �xpN

k
�E�exp��
N�GREMN

�1,p����1�, . . . ,��p�� + hxptk,xpN

N��

� �
k=0

�1−xp�N ��1 − xp�N
k

�exp��
N�GREMN
�p+1,n����1�, . . . ,��n��

+ h�1 − xp�Ntk,�1−xp�N
N��1EN���1�
. . .
��n��� . �4.52�

Hence, again similarly to �4.41�, we obtain

E�ZN
�T����� �

N↑+�
C�

k=0

xpN

exp�N�xp�log 2 − I�tk,xpN�� +
1

2
qp�2 + �hxptk,xpN��

� �
k=0

�1−xp�N

exp�N��1 − xp��log 2 − I�tk,�1−xp�N�� +
1

2
�1 − qp��2 + �h�1 − xp�tk,�1−xp�N��

� QN�p�P̃N�p� . �4.53�

Denote

RN�p� � qp�2 + 2xp max
t��−1;1�

�log 2 − I�t� + �ht� .

We observe that similar to �4.42� we have

QN
2 �p�

exp�NR�p��
�

N↑+�
C . �4.54�

Combining �4.51�, �4.53�, �4.54�, and �3.14�, we get

�4.45� �
N↑+�

C�
p=1

n
PN�p�
QN

2 �p�
= C�

p=1

n
PN�p�/exp�NR�p��
QN

2 �p�/exp�NR�p��

�
N↑+�

C�
p=1

n
PN�p�

exp�NR�p��
�

N↑+�
C�

p=1

n

exp�N���2 −
1

2
�� − ��2�qp − �log 2 − I�t0��xp��

= C�
p=1

n

exp�N���2 −
1

2
�� − ��2�qp − �log 2 − I�t��h�xp/qp�1/2���xp��
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→
N↑+�

0, �4.55�

where the convergence to zero in the last line is assured by the choice of � in �4.39�. Finally,
combining �4.45� and �4.55�, we get

�I� →
N↑+�

P

1.

This finishes the proof of �4.36� in the case ��̄1�h�	1.
The case ��̄1�h�=1 is a little bit more tedious and uses the information about the low tem-

perature regime obtained in Theorem 1.2 in the spirit of the proof of Bovier and Kurkova7 Lemma
3.1. The lemma follows. �

Proof of Theorem 1.3: The proof is verbatim the one of Bovier and Kurkova7 Theorem 1.7,
where the analysis of the high temperature regime Bovier and Kurkova7 Lemma 3.1 is substituted
by Lemma 4.1. The low temperature regime is governed by the fluctuations of the ground state
which are summarized in Theorem 1.2. �

C. Formula for the free energy of the GREM

Proof of Theorem 1.4: The L1 convergence follows immediately from Theorem 1.3. Almost
sure convergence is a standard consequence of Gaussian measure concentration, e.g., Ledoux24

�2.35�, and the Borell–Cantelli lemma. �
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