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ABSTRACT

The technique of rendering binaural room impulse responses from
spatial data captured by spherical microphone arrays has been re-
cently proposed and investigated perceptually. The finite spatial
resolution enforced by the microphone configuration restricts the
available frequency bandwidth and, accordingly, modifies the per-
ceived timbre of the played-back material. This paper presents
a feasibility study investigating the use of filters to correct such
spectral artifacts. Listening tests are employed to gain a better un-
derstanding of how equalization affects externalization, source fo-
cus and timbre. Preliminary results suggest that timbre correction
filters improve both timbral and spatial perception.

1. INTRODUCTION

Binaural technology [1] provides a means to render headphone-
presented stimuli that mimic sounds as if they were heard in a reg-
ular, headphone-free listening situation. It has applications in psy-
choacoustics research [2], auditory neuroscience [3], architectural
acoustics [4] and audio technology [5]. In its simplest form, bin-
aural technology utilizes free field head-related transfer-functions
(HRTFs) of a mannikin or an individual subject to spatially filter
an audio signal. While such processing provides a basic means
to simulate sound localization, the absense of reverberation and
time-varying auditory cues have a negative effect with regard to
achieving an accurate sense of sound externalization [6, 7].

To obtain a more complete set of auditory cues, one may opt to
directly measure the transfer function of a room using a manikin,
which results in a Binaural Room Impulse Response (BRIR), e.g.
see [8]. This, however, results in a single transfer function com-
bining the effects of the room itself as well as the head, ears and
torso, and thus represents the anthropometric features of a specific
listener. Additionally, if one wishes to reproduce the effects of
head movements, the BRIR needs to be measured in a range of
head orientations hence making the measurement procedure inef-
ficient for many practical applications.

Rafaely and Avni [9] suggested a method to render BRIRs
in the spherical harmonics (SH) domain, by making use of pre-
measured HRTFs and a Spatial Room Impulse Response (SRIR)
which can be obtained either by means of numerical simulation

or by direct room measurement using a spherical microphone ar-
ray. More recently, Avni et al. [10] studied the perceptual effects
of recording and reproducing sound fields at different spatial res-
olutions. Among their findings, they discovered that limiting the
SH order of the recorded sound field has a prominent effect on the
frequency bandwidth of the resulting BRIR, and hence on the tim-
bre of the played-back material. In other words, a BRIR of low
spatial resolution also has a limited frequency bandwidth, which
indicates that the spatial and spectral design parameters of BRIRs
should not be seen in isolation. To address this, Villeval [11] sug-
gested a timbre equalization filter, compensating for the average
change in frequency response between BRIRs constructed at two
different spatial resolutions.

The results presented in [10] showed that there is an inherent
trade-off between the spatial resolution of the sound field recorded
with a spherical array and the spectral representation of the result-
ing BRIR. As a first step towards addressing this trade-off, this
paper presents a feasibility study on the effects of correcting low-
order BRIRs with a timbre equalization filter. The paper is struc-
tured as follows: Sec. 2 and 3 briefly outline the procedure for
computing a BRIR in the SH domain, and for equalizing it to a
desired SH order. This is followed by experimental results from a
preliminary listening test in Sec. 4, which are further discussed in
Sec. 5.

2. RENDERING BINAURAL ROOM IMPULSE
RESPONSES

To render a BRIR from sound pressure measured by a spheri-
cal microphone array, the method suggested in [9] is followed
in this paper. Let Hl(k,Ω) and Hr(k,Ω) denote a set of pre-
measured HRTFs for the left and the right ear, respectively, where
k = 2πf/c is the acoustic wavenumber, f is the frequency and
c is the speed of sound in air. Here, Ω ≡ (θ, φ) ∈ S2 de-
notes the angle in a standard spherical coordinate system [12] in
which (r, θ, φ) denote radial distance, elevation and azimuth, re-
spectively. By applying the spherical Fourier transform [13] to
Hl(k,Ω) and Hr(k,Ω), one obtains their respective representa-
tions in the SH domain, Hl

nm(k) and Hr
nm(k).

Similarly, let p(k, r,Ω) denote some pressure function on a
sphere that is square integrable over Ω and whose spherical Fourier

81

mailto:sheaffer@ee.bgu.ac.il
mailto:shaharv@ee.bgu.ac.il
mailto:br@ee.bgu.ac.il
 http://www.ee.bgu.ac.il/~acl/


Proc. of the EAA Joint Symposium on Auralization and Ambisonics, Berlin, Germany, 3-5 April 2014

transform yields the function pnm(k, r). In a room, this function
represents spatial information on a continuum of plane waves ar-
riving at the receiving position from the sound source and the dif-
ferent reflecting surfaces. The complex amplitudes of the spherical
harmonic components of these plane waves, anm(k), can be ob-
tained by performing a plane-wave decomposition of the sound
field as follows [14]:

anm(k) =
pnm(k, r)

bn(kr)
. (1)

In this paper all spherical array measurements are performed
directly over the surface of a rigid sphere and, as such, bn(kr) is
given by [15]

bn(kr) = 4πin
[
jn(kr)−

j′n(kr)

h′
n(kr)

hn(kr)

]
, (2)

where jn(·) is the spherical Bessel function, hn(·) is the spher-
ical Hankel function and j′n(·) and h′

n(·) represent their first deriva-
tives with respect to the argument. For high values of n, the result
of bn(kr) approaches zero for low values of kr, which requires a
large calculation dynamic range. To overcome this numerical lim-
itation, in this paper bn(kr) is soft-limited according to the proce-
dure suggested in [16].

Once a plane wave decomposition is performed, a BRIR can
be calculated as follows [9]:

pl(k) =

∞∑
n=0

n∑
m=−n

ã∗
nm(k)Hl

nm(k), (3)

where ãnm(k) = (−1)ma−m
n (k) is the representation of a∗(k,Ω)

in the SH domain, and pl(k) denotes the resulting pressure at the
left ear. For the right ear, Eq. (3) is computed with the corre-
sponding right ear HRTF in a similar fashion. In the limiting case,
evaluation of the sum in Eq. (3) results in a plane wave represen-
tation of the BRIR. In practice, however, the functions p(k, r,Ω),
Hl(k,Ω) and Hr(k,Ω) are sampled in space with finite resolu-
tion, which implies that the infinite series in (3) must be truncated
at some order N to avoid introducing any detrimental effects of
spatial aliasing.

3. TIMBRE EQUALIZATION

The practical constraint regarding this series truncation motivates
a perceptual comparison of BRIRs generated with different trunca-
tion orders. Avni et al. [10] showed that truncating (3) not only re-
stricts the spatial resolution of pl(k), but also affects its frequency
content due to the explicit dependency of bn on kr and the in-
creased truncation error for kr > N [17], with N being the order
limit. This direct impact on the resulting timbre may affect percep-
tion and obscure psychoacoustic investigations. To compensate for
this effect, Villeval [11] suggested an equalization method, which
shall be briefly described in this section.

As a first approximation, the transfer function of the human
head can be seen as that of a rigid sphere, which provides an ana-
lytic means to quantify the frequency related effects of construct-
ing an incident wave with a finite series of spherical harmonics. In
a reverberant setting, the sound field is comprised of a large num-
ber of plane waves of random incidence directions. Assuming that
a receiver, representing the sound pressure at the ear, is placed at

some point Ω0 on the surface of a rigid sphere, then the average
magnitude response over all incident waves is given by [11]

p(kr,Ω0) =

√√√√ 1

4π

N∑
n=0

n∑
m=−n

|bn(kr)|2 |Y m
n (Ω0)|2, (4)

which reduces to

p(kr) =
1

4π

√√√√ N∑
n=0

|bn(kr)|2 (2n+ 1), (5)

where bn(kr) is as defined before, and Y m
n (·) are the spherical

harmonics [15]. Accordingly, one can describe the transfer func-
tion of a timbre correction filter, that equalizes the frequency re-
sponse of some finite series of order N to that of an order Nh, as
follows:

H(k)
∣∣
N→Nh

=
p(kr)Nh

p(kr)N
. (6)

For example, the magnitude response of two timbre correction
filters, equalizing orders N = 3 → 19 and N = 2 → 10, are
shown in Figure 1.
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Figure 1: Magnitude response of two timbre correction filters,
equalizing orders 3 to 19 and 2 to 10.

4. LISTENING TEST

Following the proposed timbre correction filters, the objective of
the listening test is to investigate the filters’ effects on three per-
ceptual attributes, namely:

1. Externalization. When binaurally reproducing a sound field
over headphones, the listener may or may not experience a
sense of externalization and, accordingly, judges whether
the sound is arriving from within the headphones or from a
more distant location.

2. Localization blur / focus. Whether the sound is externalized
or not, it is spatially localized with some error. Thus, a
source perceived as having a well defined position in space
is here referred to as having a low localization blur or, a
high localization focus.
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3. Timbre. As discussed in Sec. 3, limiting the order of Equa-
tion (2) has an effect on the frequency bandwidth. Accord-
ingly, the perceived timbre of the recorded material is mod-
ified.

4.1. Methodology

A binaural representation of a sound field was rendered using the
method described in Sec. 2, by making use of a pre-measured
HRTF set and a SRIR measured using a spherical microphone
array. The HRTF set consists of measurements of a Neumann
KU-100 manikin, based on a Gaussian sampling scheme with a
total resolution of 16020 measurement points distributed around
the manikin with no spatial gaps. All technical details regarding
the used HRIRs, including the measurement procedure and post-
processing can be found in [18]. The chosen SRIR was of the
WDR small broadcast studio, having a floor area of 201m2 and
a total volume of 1246m3 [19], and was sampled using a 1202
points nearly-uniform scheme. Both the HRTFs and the SRIR can
be found on-line as part of the the WDR impulse response compi-
lation [20].

To account for head movements (which are required for achiev-
ing an effective sense of externalization), BRIR sets were com-
puted for a range of head rotation angles (360◦ in a 1◦ resolu-
tion), by multiplying Hl

nm(k) and Hr
nm(k) by respective Wigner-

D functions [21]. In the sound reproduction stage, a pair of AKG
K702 headphones were fitted with an Attitude and Heading Refer-
ence System (Razor IMU) which was used to obtain real-time data
on the subject’s head orientation. All stimuli were processed with
a matching headphone compensation filter, were generated pre-test
and were played-back using the SoundScape Renderer auralization
engine [22]. The total latency of the playback system was 5.3ms.

Eleven subjects (all male, ages 24-37) participated in a multi-
ple stimuli, hidden-reference listening test. The labeled reference
was based on a BRIR constructed using the method described in
Sec. 2, with the SH series truncated at N = 19. Similarly, the re-
maining test samples were based on a BRIR constructed at N = 3
(also serving as a low-anchor) and the same BRIR equalized to
N = 19 using the method described in Sec. 3. To obtain the final
test samples, these BRIRs were convolved with anechoic record-
ings of a classical guitar and of speech. In each screen listeners
were asked to rank, on a scale of 1 to 5, how similar each test sam-
ple is to the reference in terms of externalization, focus and tone
(timbre).

Figure 2 shows the sixth-octave smoothed spectrum of the
anechoic speech recording used in the listening experiment. To
demonstrate the effects of timbre equalization, the anechoic signal
was convolved with three left-ear BRIRs based on N = 19 (ref-
erence curve), N = 3 and N = 3/E19 (corresponding to order
3 equalized to order 19). Observe that up to kr ≈ 3 (equivalent
to f = 1.9kHz for a sphere of r = 85mm), which represents
the frequency range of the filter’s stop-band, the three curves are
nearly identical. Above kr = 3, which represents the filter’s pass-
band, the N = 3/E19 curve is amplified compared to the N = 3
curve. Because the filter is designed based on the pressure magni-
tude averaged over all incident directions, then for any room other
than a perfectly diffuse field, the accuracy of compensation will
always be dependent on the specific directional characteristics of
the SRIR.
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Figure 2: Sixth-octave smoothed spectra for the anechoic speech
recording, after convolving it with left-ear BRIR based on N = 19,
N = 3 and N = 3/E19.

4.2. Results

Figure 3 shows the mean scores (x̄) and confidence intervals (t.95,11 =
2.26) for the different test samples used in the experiment. All
eleven subjects gave the hidden reference a score of "5", and as
such, this listening condition is excluded from the results.

For the case of timbre, there is a significant difference between
equalized and unequalized test samples, for both speech (x̄ =
2.27, σ = 0.786 compared to x̄ = 1.09, σ = 0.301) and classical
guitar (x̄ = 2.45, σ = 0.82 compared to x̄ = 1.36, σ = 0.67).
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Figure 3: Mean score and 95% confidence intervals for subjective
evaluation of timbre (Tim), focus (Foc) and externalization (Ext),
testing for speech (dark bars) and classical guitar (light bars).
Equalized BRIRs are marked with "EQ".

A similar trend is evident in results of the focus test (x̄ =
2.45, σ = 0.68 compared to x̄ = 1.36, σ = 0.50 for speech, and
x̄ = 2.45, σ = 0.52 compared to x̄ = 1.36, σ = 0.67 for classical
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guitar), suggesting a significant spatial improvement.
In the externalization test, however, the improvement in the

mean score is smaller (a difference of only ∆x̄ = 0.54 points
for both classical guitar and speech) and the confidence intervals
overlap. While this does not necessarily indicate a lack of statisti-
cal significance (the data is dependent), a more rigorous testing is
required to investigate this effect.

5. CONCLUDING REMARKS

A preliminary study on the effects of timbre correction filters on
low-resolution BRIR rendering was presented in this paper. A per-
ceptual comparison of equalized vs. unequalized samples revealed
a significant improvement in the perceived timbre and a reduc-
tion of localization blur. Such localization errors are known to
decrease as the order of the microphone array is increased [23].
This immediately suggests that spectral equalization of low order
array recordings could be beneficial not only for timbre restora-
tion, but also for improving the perceived spatial resolution, most
noticeably in terms of sound localization. One possible reason for
this result may be related to the recovery of high-frequency audi-
tory cues, which contribute to sound localization [24] as well as
the spatial perception of an enclosed space [25].

Future tests will involve a more systematic comparison of lis-
tening conditions, taking into account a wider range of trunca-
tion orders, room characteristics, source positions and program-
materials.
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