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ABSTRACT

This paper describes how to use a planar circular pressure-zone
table-top microphone array for modal beamforming. Its goals are
similar as for spherical arrays: higher-order resolution and a more-
or-less steering-invariant beampattern design in the three-dimens-
ional half space. As conventional circular arrays lack control of
the beampattern in the vertical array plane, the proposed arrange-
ment tries to fix this shortcoming to allow both horizontal and
vertical control of beamforming. To provide a fully calibrated de-
composition into the directional modes, the proposed beamforming
approach is based on measurement data. From a MIMO (multiple-
input-multiple-output) system description of the measurement data
in the spherical harmonics domain, an inverse MIMO system of fil-
ters is designed for decomposing the microphone array signals into
those spherical components eligible for modal beamforming. For
an efficient measurement and robust set of decomposition filters, a
reduced set of measurement positions and a regularisation strategy
is suggested.

1. INTRODUCTION

Beamforming denotes the discrimination between signals based on
the spatial location of sources. Whilst conventional beamforming al-
gorithms directly operate on the sensor signals, modal beamforming
approaches use directional modes that are obtained by decompos-
ing the wavefield into orthogonal solutions of the acoustic wave
equation. Overviews are given in 1, 2].

Spherical arrays are most generic, but also require a lot of
hardware effort. In real-world scenarios where acoustic sources are
restrained to the upper half of the three-dimensional space the ge-
ometry of the microphone array needs to be adopted. For example
Li and Duraiswami [3]] designed a hemispherical table microphone
for sound capture and beamforming. In order to further decrease
cost and hardware complexity, circular planar microphone arrays
are feasible. In [4] a planar circular table microphone array, consist-
ing of three near-coincident cardioid microphones, is presented that
allows for decomposition of the acoustic scene in modes of first or-
der. Using this setup looses its directivity when steering the spatial
sensitivity into the vertical direction. In order to improve the spatial
selectivity of the generated beampattern, a higher order resolution
is required. An approach for a decomposition of the soundfield in
second-order directional modes is outlined in literature by Meyer
and Elko in [5]] and [6]. They suggest a microphone array consist-
ing of omnidirectional microphones on a concentric circle and an
omnidirectional centre element. Craven et al [7] argue that acoustic
gradient sensors are preferable in signal to noise behaviour as they
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decrease the bass boosts of array processing filters. On the other
hand manufacturing of cardioid microphones usually does not yield
capsules that are as well-matched as omnidirectional ones, although
a precise match is required for accurate array processing. Addition-
ally, the orientation of the cardioid microphones needs to be precise
in order to avoid mismatch between analytic model and prototype.
This paper describes how to obtain a fully calibrated decomposition

A

Figure 1: Schematic layout of the prototype.

into the directional modes, and a beamforming approach that is
entirely based on measurement data and does not rely on an analytic
model. A schematic layout of the used microphone array is depicted
in figure[I} The central element is an omnidirectional microphone
and five equi-spaced outwards-oriented cardioid microphones lie
on a concentric circle of the radius r. The array is planar and in-
tended for use as a pressure-zone microphone that is placed for
example on table. Possible applications include beamforming for
teleconferencing and to a certain extent also 3D spatial recordings.

2. MEASUREMENTS OF MICROPHONE ARRAY
CHARACTERISTICS

The directional sensitivity of the six array microphones can be
measured for one direction by recording a sweep from a loudspeaker
that is placed there. For a complete measurement of as many
directional responses as possible, the direction-dependent response
of each microphone is measured by a hemispherically surrounding
loudspeaker array.

Measurement excitation positions (loudspeaker positions) are
set according to a spatial resolution of Ay = 10° in azimuth and
AY = 11.25° in zenith direction which leads to a grid layout of 8
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latitude circles and 36 meridians. The right half of fig. 2] depicts
the hemispherical measurement configuration of 288 loudspeakers
on a radius of 1.3m. In order to reduce the measurement effort,
the number of directions may be reduced to 6 instead of 288, see
red dots in the right half of fig.[2] In the practical setup, fig. 2} an
eight-element quarter-circular loudspeaker array could be used for
sequentially measuring 8 directions of different zenith angles at one
azimuth angle. In order to reach all 36 proposed azimuth angles,
the microphone array is rotated by a computer-controlled turntable
between the measurements.

Figure 2: Setup for capturing responses on a 8 x 36 longi-
tude/latitude grid; red dots mark the on-axis directions.

The measurements span an 8 X 36 set of impulse responses
hay [7], where X, p and 7 are the loudspeaker, microphone and
discrete-time indices, respectively.

The actual measurements are done according to the exponen-
tially swept-sine (ESS) method presented by Farina in [8]. The
impulse responses between the A™ loudspeaker to the ™ micro-
phone are calculated in the frequency domain by a simple division
of the two spectra defined in eq. (T)

(e))

hap 7] = IFFT {w} ,

FFT(s[r])

where x,, [7] and s [7] denote the recorded response and the ex-
ponential sweep, respectively. The influences of the loudspeaker
characteristics are minimized by equalizing according to a cali-
brated reference microphone placed in the centre of the experimen-
tal setup.

2.1. Directivity patterns

In this section, we analyse the measurement data in order to make a
statement about the three dimensional directivity patterns and their
rotational symmetry of the analysed microphones. Let us define
a vector that contains the discrete directional response of the ™
microphone (© =1, ...,6) as

hy (017 w)

hu (027 w)
= | @
hﬂ(eLv UJ)

where ) = [cos(px)sin(dy), sin(py) sin(9y), cos(¥9x)] is a
direction vector using the azimuth and zenith angle ¢ and 9 of
the A" loudspeaker (A = 1, ..., L) in spherical coordinates. The
magnitude of the directivity pattern at a specific frequency is then
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plotted using a spherical meshgrid of the available grid positions in

fig. B}

Figure 3: Directivity patterns of mounted microphones at f =~
1 kHz on the 8 x 36 measurement grid; color expresses the phase.

2.2. Directivity patterns in modal domain

From the series of L loudspeaker responses to the x™ microphone,
we obtain a single response by linear combination of all loudspeak-
ers with the weight g = [g1, . . . ,gL]T

hu(w) = hy (@) g.

As a counterpart to the weight vector of the spaced loudspeakers at
their discrete locations, we define a continuous driving distribution
g(0) depending on the direction vector 6. Such a function is related
to the loudspeaker weights gx by

3

9(0) => _6(6 —6,) g,

A=1

“

4(6 — 0,) symbolizing the directional Dirac delta function. For
a modal representation, the equation is expanded in spherical har-
monics Y, (0)

n=0m=—n A=1

(&)

=y

Y, (05) being the expansion coefficients of the Dirac delta func-
tion and v, of their weighted superposition. The resolution of
¢(0) is limited by truncating the summation in nton < N, a
number of functions we can resolve by the measurement loudspeak-
ers. In terms of matrices and vectors, we may write instead of

=25y Y (6x) 9
with Ly = [yN(Gl), Cey yN(GL)],
yn(0) = [Y5'(6), ..., X' (0)],

and N = [0, -, W]-

v = Ln g, (6)

If we wish to create specific SH coefficients yx with the loudspeak-
ers, their weights should be g = L;; v, using the pseudo-inverse
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of L. Choosing yn = yn (@), we obtain the sensitivity of the ;™
microphone interpolated in terms of SH:
hu(8,w) = hy (w) L yn(6). @)
Note that here some spherical harmonics need to be excluded from
the vector yn(0). Because the microphone array under test is a
table-top pressure-zone array, we are given a sound-rigid acoustic
boundary condition on the horizontal plane. Only the w
even-symmetric spherical harmonics st’"(e), 0 < s <mn, fulfill

this condition; others are grayed out in figl]showing 0 < n < 2.

For fine interpolation, the given grid allows to choose N = 14 at a

)
® ®
® ¢ »

Figure 4: SHs up to order 2 that satisfy the boundary condition
(colored); skew symmetric are transparent.

reasonable condition number for pseudo inversion. Figure[5]shows
the three-dimensional directivity pattern of microphone 3 at about
1kHz on a fine grid of 12000 nodes.

/2

+n B0
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Figure 5: SH-interpolated directivity pattern of microphone 3 at
f = 1kHz; color expresses the phase.

3. MODAL BEAMFORMING BY MIMO INVERSION OF
MEASURED SH DIRECTIVITIES

The targeted spherical harmonic modal beamformer is shown in
fig. @ It processes the microphone signals as to produce a set of
spherical harmonic pickup patterns of limited order n, n < 2 in
our particular case. This step is somewhat elegant as an output
directivity can be formed by subsequent frequency-independent
linear combination thereof [/1].

3.1. Decomposer Unit

The goal is to design a unit that transforms the recorded microphone
signals into the spherical harmonic spectrum =,;", which are the
target signals for spherical-harmonic-based modal beamforming.
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Figure 6: Scheme of modal beamforming stages; s(61) denotes the
output signal for a beam steered towards 0.

91— h,
9> _>m hz
g; —»

: h
9; am v
i H h

Figure 7: MIMO system.

The multiple-input-multiple-output system (MIMO, see fig. m)
of the device under test is described as

h(w) = H(w) g, ®)

where H (w) represent measured MIMO responses, and h.(w) are
now all the M microphone responses due to the loudspeaker weights
g. Omitting (w) for brevity, the matrix H contains responses from
Eq. @)

H=hy,..., ha]" ©)

Hatted variables iLM (w) are used to denote a coarse selection of
measurements out of h, (w), see red dots in fi g. This is preferable
in practical and repeated calibration measurement, so that modal
beamformer design only uses the 6 loudspeaker positions 8,, =
[cos(,) sin(d,.), sin(p,) sin(d,), cos(9,)]T aligned with all 6
pointing directions of the microphone array elements. The fine 288
measurement grid is only used for later verification. We control the
reduced loudspeaker weights § by the smaller 6 x 6 matrix Y !
instead of LT,

with Y = [y2(61), ..., y2(0m)],

;1)

Insertion in Eq. (8) transforms the loudspeaker side of the MIMO
system to a modal representation of limited order n < 2 resolvable
by the microphones

G=Y ', (10)

and v2 = [78,

h=HY '~. an

‘We may further transform the MIMO system H from the micro-
phone side into the spherical harmonics domain by using the same
expression Y !, yielding the modal signal outputs 2 of the mi-

crophone array
X2 = Yy ! I;[Y71’72. (12)

In the underlying analytical model [9], this operation would render
the system

Y 'AYy'=cC (13)
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perfectly diagonal. We therefore expect some of the paths in the
6 x 6 MIMO system C' to be vanishing. Indeed, no perfect but a
diagonalizing effect on the measured MIMO system is observed
in C, fig.[8] In order to obtain a correct mapping of the spheri-
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Figure 8: Magnitudes of the MIMO system C for f = 2kHz.
Values are normalized to a range of 30 dB.

cal harmonics modes at the loudspeaker side to the modes at the
microphone side, a decomposition matrix that is inverse to the
transformed MIMO system C is introduced

X2 =D Cry2 =e. (14)

A decomposition matrix D = C~! would yield a perfect but
non-robust decomposition of the microphone signals into the mode
strengths x2 = 2.

3.2. Regularised inversion of the transformed MIMO system

The transformed MIMO system is square and may be exactly in-
verted to get D if it is non-singular. The condition number «(+) of
a matrix indicates the distance to a regular matrix and is defined
as the ratio between the maximal and minimal singular value [10].
A perfectly regular matrix has a condition number (-) = 1, but
we expect k(C) > 1 in our case. By applying the singular value
decomposition (SVD, [11]) on C, we obtain

c=uUsv", (15)
where U and V' are unitary matrices column-wisely containing the
left and right singular vectors of C, and S is the diagonal matrix
containing the singular values in descending order

S = diag(o), o =[o1,...,0n]". (16)

We define a regularised inverse of the MIMO system matrix C' as

D =vVvS§8'U", with §" = diag(5) ',

ando =0+ 011 + Omaz C2,
e~ N——r

a7
18)

local global

where & denotes the regularised singular values, o1 denotes the
highest singular value of the system matrix at frequency f (local),
Omaz = maxy(o1(f)) refers to the maximal singular value over
the entire frequency range (global), and c1, c2 are scalar regularisa-
tion constants. They are used to control the amount of regularisation.
Local and global regularisation improve the system conditioning
to obtain a robust modal decomposer D. The local regularisation
is used to avoid an extreme amplification of the inverse system at
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frequencies where just a few components are under-represented in
C, whereas the global regularisation avoids amplification at fre-
quencies where transfer function components in C' are too weak,
altogether. Global regularisation is essential in the lower frequency
range, whereas local and global regularisation affect the approxi-
mation at higher frequencies to the same extent. Fig. [0]shows that
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Figure 9: , Maximal and minimal singular values of the transformed
MIMO system and the regularised system for co = 0.008 and
CcC1 = 0.01.

regularisation mainly affects the small singular values to improve
the robustness of D while accepting it being a less accurate inverse
DC =1

3.3. Modal Beamforming Unit

Decomposition Steering Summation
0 Yo%®) Wo
yo — e
ne,)
| s©)

Figure 10: Scheme of beamforming unit.

A block diagram of the beamformer unit is depicted in fig[T0]
Thereby, the input signals are the unified modes in the spherical har-
monics domain +,;" that are generated in the decomposer unit using
the MIMO filter D. In the steering unit, these signals are weighted
with the spherical harmonics evaluated at the lookdirection 8, and
in a next step they are multiplied with frequency independent or-
der weights w,, e.g. the max-rg weights [1,0.775, 0.4], that are
designed to form specific beampattern shapes (see [12], [13l], [[14]
and [9]]). In the last unit, the summation unit, the obtained signals
are summed up. The beampattern is normalized by its lookdirection
amplitude n(68)) = 32 _ S0 wy, [Y,257™(61)]? to remove its
dependency on the zenith angle.
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4. RESULTING BEAMPATTERNS

The horizontal slices of the achievable beampatterns with max-rg
order weighting w, = [1,0.775,0.4] steered towards the hori-
zontal array plane are shown in fig. E It is striking that the

Figure 11: Horizontal slice of supercardioid beampattern steered
toward z = 0 at frequencies of [400, 1000, 2000, 4000] Hz and
usage of regularised decomposition filters; radial divisions are
10 dB steps.

obtained directional characteristics are frequency dependent and
that the beampatterns evolve from a nearly first order supercardioid
at low frequencies to a second order supercardioid characteristic
at high frequencies. The vertical slices of a hypercardioid beam
(wn = [1, 1, 1]) steered towards the z-direction are shown in ﬁg.
where one can observe a similar behaviour as for the horizontal
slices, namely that the higher order pattern is just available at higher
frequencies. The quasi order-limited beamforming is caused by the

90°

Figure 12: Vertical slice of hypercardioid beampattern steered to-
wards the z-direction at frequencies of [400, 1000, 2000, 4000 H z
and usage of regularised filters; radial divisions are 10 dB steps.
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filter regularisation, as the higher-order modes are weakly present
at low frequencies. This order limitation improves the white noise
gain (WNG) and accordingly the robustness of the beamforming
system [15]].

4.1. Does every array need calibration?

The filters designed by limiting the condition number to ~ 30dB
(see fig. ) still yield a robust decomposition if the array parameters
deviate within 1%. But is the MIMO decomposer also applicable
to different copies of the microphone array?

In order to test the portability of the regularised decomposi-
tion filters to an array duplicate with same geometry, we generated
filters with the circularly rotated data of the measured matrix H.
The beamforming system for the rotated filters was tested on the
original microphone array. The obtained beampatterns of this setup
highly vary from the beampatterns produced with the original data,
see fig. @ Thus, the designed filters are not necessarily applica-
ble to arrays where the array characteristics differ from the array
prototype. In [9]] it is shown that minor mounting errors (about

0°

Figure 13: Horizontal slice of supercardioid beampattern steered
toward z = 0 at frequencies of [400, 1000, 2000, 4000]H z and
usage of rotated regularised decomposition filters; radial divisions
are 10 dB steps.

4°) of the microphone orientation, gain mismatches between the
channels as well as deviations of microphone characteristics lead
to major decomposition errors. This highlights the importance of a
calibration procedure for every microphone array duplicate.

5. CONCLUSIONS

In this paper, we presented and tested a novel modal beamforming
approach for a six channel pressure-zone table-top microphone
array. The design using five cardioid microphones and one omni-
directional central microphone yields robust frequency responses
for creating 2nd order modal beampatterns. A measurement-based
decomposition for modal beamforming that exploits the benefits
of gradient transducers of reasonable manufacturing accuracy is
proposed. The practical approach includes a regularised inversion
of a MIMO system and is easy to use as only 6 x 6 MIMO response
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measurements are necessary. The low complexity of this calibration
procedure is paramount as exchangeability of the MIMO decompo-
sition filters to array duplicates is not possible for superdirectional
beamforming.
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