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PREFACE 

This PhD thesis records a four-year research path that I started in November 2004. I 
really enjoyed this pleasant adventure for the unknown in research and in myself. The 
journey started in the summer of 2003, when the contents of my master thesis was 
generally decided. This master thesis was about applying rational choice models to 
explain pedestrian behavior in shopping streets. I thought this tradition in pedestrian 
modeling research should be improved or at least augmented with behaviorally more 
realistic models. Then, I contacted Prof. Harry Timmermans, whom I only knew from 
reading his and his co-workers’ papers on pedestrian behavior, and expressed my 
interest to join his research group. After reading an email from Harry on a day in late 
2003, I experienced for several minutes of confusion, because Harry asked me to write 
a research proposal for a PhD position. This was a surprise as it is not done in the PhD 
admission system in China. In the next few weeks, I struggled with this challenging 
task but learned what a research proposal should include. The development of the 
research topic was of course not a smooth process, because at the beginning, my 
motivation to improve existing models was not supported by any theoretical basis until 
one day, after a week of pondering the question, I noticed the word “bounded 
rationality” in the topic of a DDSS conference. This topic seemed to me a natural fit to 
my research motivation and the research proposal was gradually developed around it. 
Fortunately, the proposal was accepted. The happy moment of receiving Harry’s email 
about the acceptance is still so vivid to me. 

During the four years, I experienced real research life. Eindhoven is a quiet 
city, which is ideal for research and my character. Eindhoven University of 
Technology provides excellent research conditions: abundant literature access, 
generous conference subsidies, and sufficient financial support for projects, which 
allowed me, for the first time, to use all the working hours for my own interests. I 
believe I would not have tasted the charm of research, had I worked in a restricted 
research environment. I deeply learned the coexistence of promise and risk, rise and 
fall, shortcut and detour along the research road. I ecstatically experienced for one 
more year the power of computer programming by aiming to develop a decision 
modeling tool based on modularizing mental activities and gene expression 
programming. It turned out to be impractical due to computational inefficiency. 
However, the endeavor was not completely wasted, I believe, as the modeling 
experiences accumulated to a new modeling approach for studying heterogeneous 
decision heuristics at the end of the second year. What followed this breakthrough, 
was a long period of developing the coarse ideas into rigorous mathematical 
representations, collecting data, repeatedly estimating alternative models day and 
night, presenting results in seminars, conferences, and journals, and finally distilling 
the essence into this book. There are three most valuable things that I have learned 
during this rich research life: first, programming techniques, which greatly expand my 
ability to develop specific models which are not limited to existing methods in order to 
test my own ideas; second, representing ideas in mathematical language, which adds 
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rigor and quality to research; third, writing in English, which gives me much 
confidence in working in an international academic environment. 

It is my great honor to have worked under the supervision of Prof. Harry 
Timmermans. First of all, I show my deep respect to him as a highly responsible 
supervisor who always gives priority to research activities and supervises students 
with regular, frequent, and prepared communications. His comments and visions from 
a wide spectrum of different fields of expertise no doubt inspired and guided the 
orientation of my project throughout. At the same time, I never felt any restriction 
from him as he always ‘indulged’ me to try new ideas. One example is that he once 
allowed me to use his computer and office for months to experiment a computing 
network. I greatly benefited from his quick but quality paper reviews. My 
improvement in using mathematical language, making rigorous research statements, 
writing in English, and finally compiling this thesis, would not have been achieved 
without his patient, persistent, critical, and detailed reflections. Thank you very much, 
Harry! 

A lot of thanks and gratefulness must be given to Prof. De Wang, the co-
promoter of this thesis and the ex-supervisor of my master project. He has been caring 
about my research progress and career since the beginning of my PhD application. 
During the four years, all my publications in Chinese and Japanese journals and 
conferences involve his endeavor. In 2007, he generously gave full support to my field 
survey in Shanghai, from which I collected data that are crucial to the thesis. 

I must thank many other people who made possible my fruitful, smooth, and 
joyful PhD life. Associate Professor Aloys Borgers, as an experienced top expert in 
pedestrian research, always asked me incisive questions which made me struggle to 
defend, and provided valuable comments. Our group secretary, Mandy van de Sande – 
van Kasteren, gave me efficient support and useful survival information in The 
Netherlands. Peter van der Waerden, our cheerful computer administrator, helped me a 
lot in organizing a computing network by providing all the laptops and non-occupied 
desktop PCs in our group. I thank Leo van Veghel who made sure that conference 
reimbursements timely reached my account. Theo Arentze, Astrid Kemperman, 
Caspar Chorus, Qi Han, Marloes Verhoeven, and other PhD candidates all provided 
to-the-point suggestions and various help. I specially thank my friend Zhongwei Sun, 
with whom I enjoyed the daily after-work chatting on the way back home, which is 
truly relaxing and sometimes stimulating. He and his wife’s hospitality and wonderful 
cooking are my warmest memory of Eindhoven. 

Finally, I thank my parents far away in Shanghai for their endless support and 
care all along, while I feel sorry for rarely being at their side during the past four years 
and the next few years. This thesis is dedicated to them as a small make-up. 

 
 

Wei Zhu 
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Chapter 

1 INTRODUCTION 

1.1 Background 
During the last decade, pedestrian behavior research has received increasingly more 
attention. The origins of this research stream can be traced back to at least the 1970s, 
but there are some distinct differences between the early years and current trends. 
Early research on pedestrian behavior was mainly stimulated by the imminent need for 
rehabilitating old city centers in western countries and focused on aggregate patterns 
in pedestrian behavior and mechanisms that may be suggestive of policy measures to 
attract people to the targeted regional or city centers. The renewed interest in 
pedestrian behavior research is characterized by a much more diversified and detailed 
analyses of individual behavior, decisions, perceptions, cognition, and psychological 
processes. 

Although the rehabilitation problem is still a minor theme in contemporary 
western cities, the role of urban planning has shifted. While traditionally, urban 
planning authorities were primarily responsible for the public space of city centers, 
including a responsibility for creating and maintaining well-balanced retail structures, 
the gradually lesser role of urban planning in many western countries and the 
emergence of public-private partnerships has implied a shift away from government to 
an increased role of developers and retail companies. Although the role of planning 
has changed, the traditional need to predict how many pedestrians visit particular 
stores, their expenditures in these stores as a function of supply and characteristics of 
the pedestrian network has remained. It serves to assess the likely impact of land use, 
retail and transportation plans and in the new age to assess the feasibility of new retail 
developments. Thus, although the specific performance criteria may have changed, 
modeling pedestrian behavior has remained equally relevant. 

In addition, new demands and problems have risen and been crying for new 
solutions. One of these new issues is the pursuit for ecology-friendly environments, 
encompassing the policy goal of reducing car usage and encouraging walking. A 
variety of policies has been  suggested, ranging from global policies such as traffic 
regulations, incentives for green industries, subsidies for public transport, and mixed 
land-use planning (e.g., Cervero and Radisch, 1996), to local policies such as road 
safety, building facades, and creating pedestrian friendly environment style (e.g., Cao, 
et al., 2006). 

Another factor influencing the renewed interest in pedestrian behavior 
research was the tragic 9-11event, which pushed research on pedestrian behavior in 
emergency situations. Studying evacuees’ reactions to danger, response to information, 
interaction with other people, and behavior under panic is felt crucial as it may 
determine life and death in case of emergency. Many evacuation models have been 
developed (e.g., Waldau, et al., 2007). 

In addition to these content-driven causes, pedestrian research has received a 
new impulse as the result of the advancement of computer technology. The ever-
increasing computation power and object-oriented programming have allowed 
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researchers to pack a society into a PC (or at least have stimulated attempts to that 
effect) by simulating individual behavior using agent-based techniques. This coincides 
with the interest in complexity theory that emerged across many different disciplines 
and stimulated investigating emergent aggregate behavior. It also results in the fact 
that increasingly more scholars and practitioners from fields other than urban planning, 
such as computer science, cognitive psychology, artificial intelligence, and physics, 
are now contributing knowledge and techniques, originally developed in these fields, 
to pedestrian research as it developed in urban planning. 

Pedestrian behavior has always been an important topic for retail development. 
The location of shopping centers and stores, service quality and good diversity, and 
accessibility are crucial determinants for attracting consumers and increasing retail 
turnover. Pedestrian behavior research in the context of urban planning can be largely 
divided into three levels: the macro, meso, and micro level (e.g., Haklay, et al., 2001). 
Macro-level research mainly focuses on shopping patterns of consumers at the 
regional or urban scale, such as people’s shopping trip to one or more urban or 
regional centers. Because most consumers travel by vehicles and do not walk, this 
macro-level research is usually not captured in term of pedestrian behavior. 

At the meso level, a shopping center or shopping street is usually viewed as a 
closed area where the consumers that have been generated at the macro level are 
redistributed across streets and stores. Patterns and rules related to such distributions 
are the concern of meso-level pedestrian research. For urban planners and retailers, the 
number of pedestrians in certain spaces or stores at some point in time is directly 
linked to their estimates of facility service levels and the development of plans and 
strategies. To support the design and planning decisions involved, research has 
analyzed the aggregate activity patterns and pedestrian flows and has examined 
individual behavior and decisions. 

Micro-level pedestrian research concerns the local characteristics of 
pedestrian movement such as wayfinding, obstacle avoiding and crowd forming, 
which may support effective designs and arrangements of information signs, street 
furniture, safety measures, and things alike. Models of that kind thus simulate the 
micro-behavior of pedestrians, and the results provide overt useful guidelines for 
design decisions such as width of passages and impact of obstacles. This kind of 
research is not necessarily confined to public spaces, but is also highly relevant to 
semi-public spaces such as train stations (e.g., Daamen, et al., 2005a; Hoogendoorn, et 
al., 2007). 

Meso-level pedestrian behavior in shopping environments constitutes the 
subject matter of this thesis. It involves complex inter-dependent decisions, such as 
which direction should I go, which route should I take, which store should I visit, for 
how long should I stay in the store, should  I take a rest, and when should I leave?  
Together, these decisions result in a pattern of pedestrian behavior. The basic 
motivation for this thesis is to better understand how these patterns of pedestrian 
behavior and decision can be modeled to support urban and retail planning. That is, 
the model should allow, in principle, predicting the impact of planning activities, such 
as developing a new magnet store and constructing a new transport terminal, on the 
pattern of pedestrian behavior. 
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1.2 The Perspective of Bounded Rationality 
The modeling of individual decisions, not only in the field of pedestrian behavior, but 
also in transportation, consumer marketing, and several other disciplines, has 
dominantly relied on rational choice models. The best-known example is the Nobel 
price winning class of discrete choice models based on random utility theory (e.g., 
McFadden, 1974), interestingly introduced however first in urban planning and 
transportation research. Behaviorally, random utility models assume that (1) 
individuals evaluate each alternative in their choice set and attach an overall utility to 
each alternative; (2) the overall utility is a combination of the utilities derived from 
each factor or attribute of the choice alternatives that influences the decision, usually 
according to some compensatory combination rule; (3) individuals compare these 
overall utilities between alternatives and choose the alternative with the highest 
overall utility. Although random utility theory has proven its value in an impressive 
number of academic and applied research projects, the underlying assumptions of fully 
rational behavior may not be particularly valid in all application contexts. This seems 
especially true for complex decision problems that involve many choice alternatives, 
and combination of multiple sub-decisions. Pedestrian behavior is an example of such 
complex decisions. Under these circumstances, the concept of bounded rationality 
seems more appealing. 

Herbert A. Simon (1916 – 2001), who is considered the father of bounded 
rationality (BR), questioned the rational choice theory already 50 years ago (e.g., 
Simon, 1955; 1956; 1959). He argued that rational choice theory weaves a man 
(woman) who never exists, who is omniscient about the environment and has the 
unlimited ability to conduct large amount of computation in a single decision. The 
following statement reflects his motivation: 

 
“The term bounded rationality, is used to designate rational choice 
that takes into account the cognitive limitations of the decision maker 
- limitations of both knowledge and computational capacity.” (Simon, 
1987, p. 266-268) 

 
Simon advocated the development of decision theories starting by observing 

the way people actually perform in decision making, rather than extending the 
theoretical constructs of some assumed theorems. In other words, the focus of 
bounded rationality research should be on tracing decision processes. As an alternative 
to the principle of utility-maximization, Simon proposed the notion of “satisficing”, 
indicating that people just accept a satisfactory alternative, which is not necessarily the 
optimal one. 

Inspired by Simon, theories based on the principle of bounded rationality have 
been formulated in different disciplines and take on quite different forms. As Aumann 
(1997) said, there is no and there probably never will be a unified theory of bounded 
rationality. Criticisms are often thrown back by economists saying that there is no 
backbone in psychology research, but just sporadic attempts to find cracks in 
economic theories. Moreover, the interest of applied disciplines such as urban 
planning and civil engineering has been primarily on developing operational models 
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as opposed to further elaborating underlying theories of choice behavior and decision 
processes. At the same time, however, the position of random utility theory has also 
changed in the sense that some economists have argued that random utility theory 
does not necessarily mean that people behave in that manner but rather that observed 
behavior should be interpreted as if they do. 

Reflecting on this counter-argument, the first part simply articulates the 
different methodological paths taken by the two camps, while the second part indeed 
does tell the truth. Abundant research in psychology and many fields of application 
has revealed behavioral deviations from rational principles, such as intransitivity 
(Tversky, 1969), preference reversal (e.g., Grether and Plott, 1979), context 
dependency (Tversky and Simonson, 1993), and framing (e.g., Tversky and 
Kahneman, 1981). These findings appear to provide empirical evidence for Simon’s 
conjecture on limited knowledge, computation ability of individuals and the satisficing 
principle. As Payne et al. (1993) argued “When faced with more complex choice 
problems involving many alternatives, people often adopt simplifying (heuristic) 
strategies that are much more selective in the use of information. Further, the 
strategies adopted tend to be non-compensatory, in that excellent values on some 
attributes cannot compensate for poor values on other attributes.” (Payne, et al., 1993, 
p. 2) 

Although there is still quite some vagueness in the notion of bounded 
rationality, such as what is simple and what is complex, the research results showing 
that rational choice principles are rarely observed in reality are highly convincing. 
However, although these arguments have been made already some decades ago as 
indicated by the references above, the challenge is to go beyond this evidence and 
develop a model, based on the concept of bounded rationality, which represents the 
process of decision making instead of merely proving a mathematical function that 
seems to reproduce decision outcomes. If this could be done successfully, rational 
choice models would face a competing modeling framework. Models of that kind that 
can start to compete with random utility models have however not been suggested yet 
in the literature in urban planning and related disciplines. 

Back to pedestrian behavior research, the criticisms against fully rational 
behavior appear to apply to this application domain as well. It is intuitively unrealistic, 
to assume that a pedestrian knows every store, calculates the utility of each factor, 
combines these in a weighted additive manner into an overall utility, and selects the 
best store within a usually very limited decision time, since shopping is often treated 
as a leisure activity and few people are that serious or put in that much effort in their 
decisions, even if we would assume that they mentally can process that much 
information. It seems intuitively more appropriate to model pedestrian behavior using 
principles of bounded rationality, treating each pedestrian as a human being having 
limited knowledge and computation capacity. Surprisingly, heuristic models have 
never been developed and empirically tested in pedestrian research. 

1.3 Research Goals 
The main goal of this thesis, therefore, is to develop and test a model of pedestrian 
behavior, based on principles of bounded rationality, using real-world behavioral data. 
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The starting point for this work is on developing a modeling framework employing 
basic principles, key specifications and preliminary validation tests. We deliberately 
start with key principles and operational models that do not include too many 
variables to test the performance of such models. If results are positive, it is 
worthwhile to advance the models, incorporating more personal, spatial and contextual 
variables. By such means, we intend to contribute to the existing literature a basic 
tested framework for studying pedestrian behavior, based on principles of bounded 
rationality. 

However, we intend to go beyond the heuristic rules that have been examined 
in the context of choice of transport mode (e.g., Foerster, 1979) and choice of 
shopping center (e.g., Timmermans, 1983) by elaborating these approaches to 
incorporate the issue of decision heterogeneity that very recently has found increasing 
attention across different choice modeling approaches. There is good reason to believe 
that pedestrians’ decision strategies are much more heterogeneous than those of 
researchers. Hence, a second goal of this thesis is to develop a modeling approach that 
allows heterogeneity among pedestrians in terms of the decision heuristics they use. 
The formulation and development of an operational model based on principles of 
bounded rationality, that would in addition allow for decision heterogeneity was 
considered a major challenge in its own right, realizing that few, if any, models of 
heterogeneous decision strategies have been formulated for the easier class of discrete 
choice models. Therefore, the development of such a modeling approach may have 
more profound implications for pedestrian research specifically and for decision 
research in general. 

In addition to these methodological contributions, this thesis aims at enriching 
studies of pedestrian behavior. As indicated, most pedestrian research has been 
dedicated to analyzing and explaining spatial patterns of pedestrians using either 
aggregative or individual-based methods. Static analyses were prevalent in the sense 
that all the activities occurring at some place during the whole period of interest, be it 
a day, a morning, or an hour, were taken as the dependent variables. It is well-known 
that the aggregate number of pedestrian activities varies in real time. Furthermore, not 
only aggregate behavior but also individual behavior is sensitive to temporal factors. 
Capturing and explaining time-dependent behavior and decisions will make more 
sense for practitioners to optimize resource allocation and policy measures. Thus, the 
third goal of this thesis is to systematically examine time-dependent aspects of 
pedestrian behavior. 

To summarize, the goal of this thesis is not to develop the final model of 
pedestrian behavior based on principles of bounded rationality, with all complexity 
and explanatory required with specific urban and retail planning applications in mind, 
but rather to explore the fundamentals of such models and provide evidence of their 
potential power in pedestrian research. 

1.4 Thesis Structure 
To that end, the thesis is structured as follows. Chapter 2 reviews the state-of-the-art in 
modeling pedestrian behavior and bounded rationality. As for the pedestrian models, 
the focus is especially on individual-based models and techniques as they are 
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consistent with the methodological path of this thesis. We limit the review of bounded 
rationality models to the realm of decision heuristics as we think they are the only 
operationalizable models of this discipline today. Based on this literature review, the 
end of this chapter derives the potential improvements that should be made in meso-
level pedestrian modeling.  

Chapter 3 develops the theoretical and methodological foundations of the 
thesis. It starts by proposing a modeling framework which involves four pedestrian 
decisions during a shopping trip, namely the go-home, direction choice, rest, and store 
patronage decision. This is followed by introducing and developing the rationales 
underlying three types of decision models that will be specified for each proposed 
decision problem. The first model type is the discrete choice model (more specifically 
the classic multinomial logit model), which serves as a benchmark. The second model 
type concerns decision heuristics. We selected three typical heuristics for decision 
modeling, namely the conjunctive, disjunctive, and lexicographic rule. The rules are 
extended to deal with threshold heterogeneity. We propose a new model type, which 
we called the heterogeneous heuristic model, as the third model type. The model 
incorporates cognitive thresholds and implies heterogeneous decision strategies. The 
choice of strategy is simultaneously captured by assuming that choice behavior is 
affected mainly by mental effort, perception of risk, and expected outcome, and that 
the outcome of that choice can be approximated by a multinomial logit distribution. It 
should be explicitly noted that we made no references to random utility theory in this 
step, but simply use the multinomial logit model as a convenient statistical model, 
mapping mental effort, perception of risk and expected outcome into choice 
probabilities. 

Chapter 4 introduces two datasets about pedestrian behavior in shopping 
streets, which were used for empirically testing the models. One dataset was collected 
in Wang Fujing Street, Beijing in 2004 and the other was collected in East Nanjing 
Road, Shanghai in 2007. Both places are regionally famous shopping streets in China. 
The design of the surveys, administration, data processing, the basic characteristics of 
the samples and pedestrian spatio-temporal behavior are discussed. 

Chapter 5 specifies and estimates all four decision models based on the three 
types of models introduced in Chapter 3. The heuristic models are estimated using the 
data collected in Wang Fujing Street, while the heterogeneous heuristic models are 
estimated using the data collected in East Nanjing Road. In both cases, the heuristic 
models are compared with their multinomial logit counterparts, which served as 
benchmarks, in terms of goodness-of-fit statistics and behavioral implications.  

Chapter 6 validates the joint predictive ability of the proposed models, using 
multi-agent simulation. Note that although this chapter could also be used as a stand-
alone multi-agent model of pedestrian behavior, we make no such claims as the multi-
agent simulation was only developed to test the overall performance of the models. 
Having said that, it could easily be developed into a multi-agent system (or can be 
viewed as one) that can compete with such models by incorporating some constraints 
and perhaps some inter-agent interactions. A simulation platform based on NetLogo 
was developed which is used for conducting three tests. The first test examines the 
overall performance of the heuristic models on the Wang Fujing Street data. The 
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second test performs a similar analysis of the heterogeneous heuristic models on the 
East Nanjing Road data. The third test involves an assessment of the temporal 
transferability of the set of heterogeneous heuristic models by applying these models 
to another dataset, collected in East Nanjing Road in 2003. All these tests involve a 
comparison of aggregated, simulated agent activities against observed aggregate 
spatio-temporal distributions of pedestrian activities. Differences are indicative of 
possible improvements and elaborations of the model system. 

Finally, Chapter 7 discusses the findings of the research project and concludes 
this thesis with research implications, limitations, and future directions. 
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Chapter 

2 MODELS OF PEDESTRIAN BEHAVIOR AND 
BOUNDED RATIONALITY 

Modeling pedestrian behavior has appeared on the international research agenda at 
least since the early 1970s. Two major incentives may have stimulated the interest in 
this topic. First, as rehabilitation problems of old city centers in many western 
countries were becoming imminent, research had provided evidence of the tight 
relationships between pedestrian movement and the commercial viability of inner city 
shopping streets. It was realized that the impact of new retail developments is closely 
related to the locational patterns of magnet stores and the distribution of the transport 
termini (e.g., Johnston and Kissling, 1971; Pacione, 1980; Walmsley and Lewis, 1989; 
Lorch and Smith, 1993). 

Second, the increasing maturity of the models in transportation research and 
urban planning inspired city planners and researchers to adopt similar logic in models 
of pedestrian behavior. Thus, early pedestrian models were largely based on spatial 
interaction theory, and adopted an approach very similar to the models developed for 
other phenomena in transportation and urban planning. Consequently, in addition to a 
considerable amount of descriptive research into the determinants and nature of 
pedestrian behavior, models of pedestrian behavior were developed, which predicted 
destination and route choice as a function of locational patterns of stores, 
characteristics of the pedestrian network and the distribution of bus stops, train station, 
etc. These models were used to assess and/or predict the impact of retail and 
transportation plans on the commercial viability of shopping streets and shifts in 
turnover within inner-city shopping environments. 

In the late 1970s, the emergence of random utility theory and the development 
of discrete choice models (DCM) revolutionized the transportation field, and after 
some time these models started to appear in pedestrian research as well. As DCMs are 
disaggregate, individual-based models, researchers may use these finer tools to dive 
under the aggregate level and anatomize the behaviors of each pedestrian and the 
complex mechanisms between behavior and the environment. Although ultimately, 
still a single model, assumed to apply to a homogeneous set of individuals is derived, 
the fact that discrete choice models could be derived from an individual-level theory 
of choice behavior, led researchers to believe that the theoretical underpinnings of 
discrete choice models are much improved compared to the spatial interaction models, 
which were founded in social physics, assuming that concepts developed for physical 
phenomena are equally relevant and effective to predict social phenomena. 
Gravity/spatial interaction models were therefore gradually replaced by DCMs in 
pedestrian research, and remained dominant until the 1990s. 

The following decade witnessed a greater diversification process in pedestrian 
research methodologies. Modeling approaches, originally developed in quite different 
disciplines, were introduced to simulate and predict pedestrian choice behavior and 
movement patterns. Cellular automata models, originally devised for studying larger 
scale spatial phenomena such as the fractal nature in urban morphology and urban 
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land use change, for example became a popular approach in pedestrian research to 
induce local movement rules and simulate micro movement. Similarly, fluid dynamics 
and social force models, copied from concepts in physics, were applied to model 
individual and group movement patterns. Principles of cognitive science and 
psychology also received attention as pedestrian behavior could be better understood 
if the underlying decision processes could be modeled. Space syntax and visibility 
graph analysis (VGA), developed in architecture as a general theory of urban space 
and linked behavior, which assume that pedestrian movement patterns are largely 
determined by the morphology of the environment, were applied in many studies. 

Innovations in the last decade were directly triggered by the tremendous 
advancements in computing technology. The introduction of multi-agent simulation is 
an example. Each pedestrian is conceptualized as an agent, with particular 
characteristics, rules of behavior, perception of the environment, etc. The complexity 
of these multi-agent systems is rapidly increasing as more concepts are attached to the 
agents. Object-oriented programming, artificial intelligence and the ever-increasing 
computation power paved the way to developed models which include increasingly 
more heterogeneity and have the simulated objects look increasingly more like real 
human beings. In the first section that follows, we will review pedestrian research that 
is based on these modeling approaches. 

Seminal work on bounded rationality is commonly contributed by H. A. 
Simon during the 1950s (e.g., Simon, 1955; 1956; 1959). However, substantial 
progress in examining bounded rationality was not made until 20 years later, in the 
1970s. The discussion on the nature of bounded rationality is probably a major cause 
of such slow progress, as it is to a very large extent established on the notions of 
limited cognitive capacity and psychological activities, which, although intuitively 
more realistic, are too intangible to be observed, let alone be modeled formally. As a 
result, most research on bounded rationality has remained largely descriptive and 
cannot be used for prediction. This is probably one of the major reasons why the 
theory of bounded rationality is significantly less popular in practice across disciplines, 
including urban planning and transportation, than theories based on principles of 
rational choice behavior. Although in the 1970s formalism to represent simplifying 
decision strategies received some attention mostly in marketing and consumer 
research, and to a lesser extent also in planning related fields, this early formal work 
did not receive a major follow-up in the 1980s and 1990s, mainly due to the strong 
competition of DCMs. Although to the best of our knowledge full-fledged models 
based on principles of bounded rationality have never been developed for the choice 
problems discussed, developments in choice modeling since the late 1990s have 
somewhat opened up an interest in alternative modeling approaches and theories. The 
impressive generalizations of the basic multinomial logit model for more complex 
decision problems have more or less come to a stand still. Moreover, alternative 
theories have found some recognition, as evidenced by the fact that while McFadden 
won the Nobel Prize for random utility theory, Kahneman won the same prize for his 
antagonistic Prospect Theory. The new century witnessed the exploration of different 
theoretical concepts and modeling approaches, such as rule-based models, context-
dependent scripts, regret theory, and relative utility theory to name a few. In that 
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context, it seems that the time is right to explore again the usefulness of heuristic 
models, based on principles of bounded rationality as an alternative to rational choice 
models. The second subsection will dedicate a brief review of research on decision 
heuristics. 

2.1 Models of Pedestrian Behavior 

2.1.1 Aggregate models 
Originally developed in transportation research, aggregate models are used to capture 
aggregate outcomes of individual behavior, such as the distributions of traffic flows 
between residences and work places. The most widely used aggregate models are the 
gravity or spatial interaction models. In fact, in many fields of application, these 
models still dominate planning practice. Wilson (1971) reviewed this approach and 
suggested a generalized framework, which he called the family of spatial interaction 
models. The most basic rationale underlying gravity models is the assumption that the 
number of trips between a zone of origin and a destination zone is a function of the 
attraction of the destination zone and the distance between the two zones. Formally, 

ij i j ijT O A Dα β= , where ijT  is the flow generated, iO  is the total number of commuters in 
origin zone i, jA  is the attraction of destination zone j such as the number of work 
places, and ijD  is the distance or travel time between the origin and destination. The 
parameter for attraction, α , is usually estimated to be positive, whereas the parameter 
for distance decay, β , is usually estimated to be negative. Note that the original 
motivation for this formulation does not have any foundation in whatever theories of 
human behavior, but rather used laws of physics as an analogue. 

Extensions of the basic gravity model include production-constrained and 
attraction-constrained models which guarantee that the predicted total numbers of trips, 
leaving the origin or arriving at the destination zones is equal to the observed total in 
respectively origins and destinations. Doubly-constrained models ensure that both 
constraints are satisfied. Because in pedestrian and shopping research in general, the 
goal is primarily to predict the choice of store (destination), typically production-
constrained models have been developed and applied. The theoretical foundations of 
these models have remained the same. It should be noted, however, that Wilson also 
suggested using the concept of entropy to derive the most probably aggregate 
configuration of flows. Again, however, this concept is an aggregate concept, copied 
from physics, with no immediate interpretations at the individual level.1 

                                                      
1  The literature in these years also contains several attempts of formulating theories of 
individual behavior that are consistent with spatial interaction models. A discussion of these 
theories is beyond the scope of this chapter, especially because none of these did specifically 
address pedestrian behavior. Interested readers are referred to the review article by 
Timmermans and Golledge (1990). We argue, however, that demonstrating that the 
specification of an aggregate model is mathematically consistent with a theory of individual 
behavior is different from developing a formalism and mathematical specification of a theory 
of individual behavior and decision making. 
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Most gravity-based shopping models were developed for the regional level, 
predicting the choice of shopping center. Examples include Gibson and Pullen (1972); 
Ghosh (1984), Guy (1987), and Berry, et al. (1988). Usually shopping center size and 
travel distance or time were used as explanatory variables, but later additional 
variables were included. Cadwallader (1975, 1981) suggested and found that 
individuals have different cognitions of the size and distance variables. Using 
perceptions of size and distance, what he called the cognitive gravity model, was 
tested. Results were positive. 

As these applications study macro-level behavior of shoppers, they are not 
really about pedestrian behavior. However, it cannot be denied that gravity model 
represents a milestone in research on consumer spatial behavior and heralded finer-
scale pedestrian research. Scott (1974) developed a theoretical framework for 
describing and analyzing pedestrian flows in a street system, which is represented as 
nodes and links. The model maximizes the entropy of pedestrian flows within the 
network, and was shown to be a special case of the gravity model. Crask (1979), also 
inspired by the gravity model, specified a probabilistic model of individual store 
choice using Monte Carlo simulation. Hagishima, et al. (1987) applied a doubly-
constrained gravity model to study pedestrian flows in a shopping district in Fukuoka, 
Japan. They divided the district into street segments and took the number of 
pedestrians in each segment as the dependent variable. In addition to the commonly 
used retail floorspace and distance variables, other variables such as traffic condition, 
pavement, and street safety were also included in the model as explanatory variables. 

In addition to exploring different operationalizations of the basic production-
constrained models, new specifications were also formulated for predicting shopping 
behavior at the regional level. For example, Fotheringham (1983a, 1983b, 1986) and 
Fotheringham and O’Kelly (1989) proposed the competing destination model which 
emphasizes the possible misspecification of β , the distance decay parameter. They 
contented that the parameter could be flawed if the relationship between the 
destination center and other shopping centers are not considered. β  will be 
underestimated if so called “competition” effect exists between adjacent centers and 
will be overestimated if “agglomeration” effect exists. To correct this, they added an 
extra term modeling such effects. Although the number of applications of the 
competing destination model is far less than the number of applications of 
conventional gravity models, it does make good sense to take into account the context 
around a shopping destination, which reveals a tip of the complexity in consumer 
behavior. 

In some sense, it is only a small step from the competing destination model to 
models of multi-stop, multi-purpose behavior, also called trip-chaining in 
transportation research. It goes without saying that especially these models are 
potential relevant for pedestrian research as pedestrian behavior typically involves 
visits to multiple shopping centers or stores during a single trip. Conventional choice 
theory has been criticized in that no explicit consideration of multi-stop multi-purpose 
behavior is given (e.g., Hanson, 1980). Choice theory is usually based on axioms of 
single-choice single-purpose trips, independence, separability and stable utility 
functions. Choices are assumed to be independent, while the utility associated with a 
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choice alternative is not affected by the utility of any other choice alternatives, which 
is also the major reason that the competing destination model was proposed. No 
wonder, as trip-chaining behavior is dynamic, the spatial and temporal characteristics 
are much more complicated compared to single choice behavior (e.g., Hanson and 
Hanson, 1981; Kitamura, 1983; O’ Kelly and Miller, 1984; Golob, 1986) and require 
more sophisticated models. Modeling multi-stop, multi-purpose shopping behavior 
therefore continued to be an active research topic and actually still is (e.g., Dellaert, et 
al., 1998; Arentze, et al., 2005; Brooks et al., 2004, 2008). 

The contention that the concept of multi-stop, multi-purpose behavior is 
relevant for understanding pedestrian behavior is evidenced in the work of Borgers 
and Timmermans (1986a), who developed a framework for modeling and predicting 
pedestrian flows in shopping streets using time-varying Markov chains. Their work 
can be seen as an extension of the work by O’Kelly (1981) who also used time-
varying Markov chains to model multi-stop, multi-purpose trips. Borgers and 
Timmermans (1986a) represented the shopping streets as links of a network. A 
production-constrained gravity model was applied to model the transition probability 
that a certain type of purpose will be realized in a certain link, given the total retail 
floorspace of that type of service and the distance between the origin and destination. 
These probabilities however varied over time which is represented by each stop. The 
model was estimated using shopping diary data collected in the city center of 
Maastricht, The Netherlands. In order to capture the time-varying transition 
probabilities, they estimated three models using three sub-samples which include the 
first stop, the second stop and more than two stops respectively. This model serves as 
a destination choice model. In addition, they built another two models representing 
route choice behavior and impulsive stops using other types of models. They validated 
the framework by simulation, given the known distributions of pedestrians at entry 
links, and compared the aggregate number of pedestrians in links with empirical 
observations. The model performed quite well. 

In another publication (Borgers and Timmermans, 1986b), they used Monte 
Carlo simulation and incorporated two more decisions, namely the number of stops 
and the sequence of planned stops/purposes, before the destination choice and route 
choice. The simulation was implemented by drawing random numbers from observed 
and estimated distributions for each decision, taking the outcome of the previous 
decision as the input for the next one. This model also performed well. Kurose and 
Hagishima (1995) took another perspective, rather than concentrating on the dynamics. 
They estimated the transition probabilities of pedestrians between street links based on 
a gravity model using retail floorspace and inter-link distance as explanatory variables, 
and used the first eigenvector of the transition matrix as an index of the accessibility 
of street network. The accessibility eigenvectors of several cities were compared. 

2.1.2 Individual-based models 
Although aggregate models are useful for formalizing aggregate spatial movement 
patterns of commuters, they are not very appropriate to explain the behavior of 
individuals whose joint decisions result in the aggregate patterns (e.g., Timmermans 
and Veldhuisen, 1981; Cadwallader, 1981). Through aggregation, individual 
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differences are lost and there is no straightforward way to incorporate individual 
socio-demographics into the gravity models. This could be less of a problem for 
transportation research than for pedestrian research as vehicle trips are more 
homogeneous in terms of journey purposes and the movement space is usually limited 
to strictly directed road networks, whereas pedestrians in shopping environments may 
have various purposes and they are almost free to walk anywhere in any possible 
direction at whatever comfortable speed. Using individual-based models to solve these 
problems and study aggregate patterns in a bottom-up perspective has been the 
mainstream methodology in pedestrian research today and in most fields of 
application for that matter. 

2.1.2.1 Discrete choice 
Based on random utility theory, discrete choice models have been widely applied in 
transportation, consumer and pedestrian research since the late 1970s. Over the last 30 
years, DCMs have been developed into a family of models (e.g., McFadden, 1974; 
Ben-Akiva and Lerman, 1985; Train, 2003). The most basic assumption of DCM is 
that people are rational in the sense that they choose an alternative from among several 
discrete candidates by evaluating the utility of each alternative and selecting the 
alternative with the highest utility. Although the discrete choice models can be derived 
from multiple theories2, a commonly made assumption is that utility is stochastic. The 
mathematical form of utility can be formulated as: ij ij ijU V ε= + , where ijU  is the 
utility of alternative j evaluated by individual i, ijV  is the observable utility part from 
the perspective of the researcher and ijε  is the random utility part that is non-
observable by the researcher. ijV  is often specified as a linear summation of weighted 

attribute values: ij k ijk
k

V xβ=∑ , where kβ  are weight parameters to be estimated and 

ijkx  are the explanatory attributes (variables) of alternative j perceived by individual i. 
However, in most applications of DCM, except when attribute values are reported by 
individuals, attribute values of an alternative do not differ across individuals. 
Therefore, researchers just use the same jkx  for all the individuals. The alternative n 

with the highest utility is chosen, satisfying ,in imU U m n> ∀ ≠ . Assuming different 

                                                      
2 Different theories imply different implicit or explicit assumptions about the error term. Strict 
utility theory assumes that individuals have deterministic preferences but choose 
probabilistically. Random utility theory in contrast assumes that individuals have stochastic 
preferences. To reflect this theory, the multinomial logit model should be estimated at the 
individual level. If it is estimated at the aggregate level, the error terms usually are also 
assumed to reflect heterogeneity in consumer preferences. As an econometric tool, finally, 
error terms also deserve the purpose of indicating that not all influential variables are known to 
the analyst. Although there are not very strong reasons to assume any particular form for each 
of these sources, let alone their combined effect, a single error term is usually used, which 
combines all of these effects, but this is rarely made explicit. In the context of this chapter, we 
summarize the most commonly made interpretation of the model. 
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forms for the random utility part, the probability of choosing an alternative can be 
derived, and results in different models. The multinomial logit model (MNL) can be 
derived under the assumption of independently and identically Gumbel distributed 
error terms. Less rigorous assumptions lead to multinomial probit models, nested logit 
model, generalized extreme value and many other models, but MNL is the most 
widely used model in pedestrian choice modeling. 

Similar to the application of gravity models, the application of DCMs in 
consumer research started with macro-level shopping center choice behavior. For 
example, Recker and Kostyniuk (1978) used a MNL to explain the urban grocery 
shopping trip. They considered three factors as explanatory variables: individual’s 
perception of the destination, individual’s accessibility to the destination and the 
relative number of opportunities to exercise any particular choice. They found that 
accessibility was the most influential factor. Using a decompositional survey method, 
Timmermans and Borgers (1985) studied the stated choice of shopping center based 
on an MNL. They found that the model is robust in general, while the violation of the 
independence of irrelevant alternative assumption (IIA) was observed. Timmermans, 
et al. (1992) compared the MNL models under revealed choice situation and stated 
choice situation with regard to shopping center choice. They used the estimated 
models to predict the choice outcomes when introducing a new clothing store in a 
shopping center and compared the predictions with the actual choice behavior after the 
store opened the business. Very similar results were observed between the two models, 
suggesting the application validity of decompositional method. 

With the increasing need for deeper understanding of consumer preferences as 
a result of diversified marketing segmentation, more environmental and personal 
factors were included in the utility functions in later research to test their effects along 
with the conventional attraction and distance factors. For example, Borgers and 
Timmermans (1987a, b, 1988) and Fotheringham (1988) incorporated spatial structure. 
This model specification was also meant to avoid the unrealistic IIA of the MNL, 
which states that the odds of choosing a particular alternatives is independent of the 
existence and attributes of any other alternatives in the choice set. Hence, the 
multinomial logit model does not account for any similarity and substitution among 
choice alternatives. Note that Borgers and Timmermans’ (1987a, b) model is the 
utility-based equivalent of the competing destination model, discussed in the previous 
section. As an alternative, Timmermans, et al. (1991) formulated a mother logit model 
to test for any cross-effects to account for differences in choice set composition (e.g., 
competition, agglomeration, etc.). However, although these models are theoretically 
more appealing, they found only limited improvement in goodness-of-fit over the 
MNL model. This is because the similarity of alternatives is only relevant for a subset 
of alternatives while goodness-of-fit is calculated across all observations and all 
choice alternatives. 

Other evidence of a larger list of explanatory variables can be found in 
Fotheringham and Trew (1993), who modeled the influence of income and race; 
Oppewal and Timmermans (1997) who used detailed environmental factors such as 
store variety, window layout, price, quality and shopping atmosphere in their choice 
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experiment, and Van der Waerden, et al. (1998) who focused on the service level and 
location of the parking facility of a shopping center. 

All these models focused on a single shopping trip. For studying trip-chaining 
in a discrete choice context, an important contribution was made by Kitamura (1984), 
who introduced the concept of prospective utility. It states that the utility of a 
destination is not only a function of its inherent attributes and the distance to that 
destination, but also of the utility of continuing the trip from that destination. Based on 
this notion, Arentze, et al. (1993) developed a model of multi-purpose shopping trip 
behavior. It assumed a list of items that need to be purchased with a different 
frequency. The choice of shopping center to purchase a particular item is predicted as 
an MNL. The probability of buying any other good during the same trip is then the 
choice between either buying this item during the same trip or buying it during another 
trip. A recursive equation is derived from this premise, which allows one to predict the 
frequency of purchasing different goods and the distribution of visits across shopping 
centers. Dellaert, et al. (1998) generalized this approach to account for both multi-
purpose and multi-stop aspects of the trip chain. Arentze and Timmermans (2001) 
showed how store performance indicators can be derived from such models. 
Popkowski Leszczyc and Timmermans (2001) conducted a conjoint experiment in 
which they defined four single- or multi-stop shopping trip strategies for respondents 
to choose. Using an MNL model to explain the choice outcome, they found that 
single-stop shopping trip was the least-preferred strategy. Limanond, et al. (2005), 
based on the Stockholm Model System, assumed that a household’s shopping travel is 
decided through five consecutive decisions on, household tour frequency, participating 
party, shopping tour type (varies in stop and purpose number), travel mode, and 
destination choice. Each former decision determines the content of the latter decision. 
They used a nested logit model to describe such a decision structure and estimated the 
model on actual household travel data. 

More recently, the influence of multi-purpose trips was further studied. 
Arentze, et al. (2005) used a multi-purpose trip model under a nested logit structure to 
assess retail agglomeration effects. It was found that not only the agglomeration of the 
stores which provide the goods for the shopping purposes, but also the agglomeration 
of the stores which do not provide the intended goods contributes to the utility of a trip 
destination. Ye, et al. (2007) investigated the relationship between trip-chaining 
decision and mode choice. They tested three models different in causal structures. The 
first structure implies the trip-chaining decision proceeding mode choice; the second 
structure is the reverse with mode choice decided first; the third structure implies 
simultaneous decisions. The test found a weak statistical advantage of the first 
structure, suggesting a trip-chaining-first decision structure. Thus, this review suggests 
that increasingly more complexity was added to models for predicting shopping trips. 
The latest development in this regards is to model shopping trips as part of daily 
activity-travel scheduling behavior, using context-dependent utility functions (e.g., 
Arentze and Timmermans, 2005). Shopping trips are not only explained to the 
commonly used spatial and socio-demographic variables, but also in terms of the 
larger activity schedule, and the various constrains that act on the schedule. 
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At the meso street level, pedestrian behavior can be modeled as a sequence of 
specific choices, such as the choice of an itinerary, the choice of destination, the 
choice of direction, and the choice where to stop next (Bierlaire, et al., 2003). Borgers 
and Timmermans (1986a, 1986b) presented a relatively complete model, following 
such a framework. An MNL model was used by the authors to explain route choice 
behavior and distance was used as explanatory variable. Because the choice set of 
alternative routes was not directly observed, they inferred the choice set given the 
destination link based on some reasonable assumptions such as limited length and 
degree of detour. Saito and Ishibashi (1992) used a Markov chain to predict the 
aggregate distribution of pedestrian flows between blocks with retail facilities in a 
shopping district. Unlike Borgers and Timmermans who used gravity models to 
estimate the time-varying purpose-destination distribution, they derived general time-
invariant transition probabilities of pedestrian flows between blocks by estimating the 
choice probabilities of choosing a destination block at the current location (a block) 
from all the blocks within the district, using an MNL model with total retail floorspace 
and distance between the origin and destination block as explanatory variables. They 
proved that multiplying the given initial distribution of pedestrians at entry blocks 
infinitely with the general transition probabilities can converge accurately to the 
distribution of the observed aggregate static inter-block pedestrian flows. One thing 
that needs to be noted is that the transition probabilities must have one vector, 
representing the probabilities that pedestrians end the shopping trip after visiting each 
block, or else, the infinite multiplication will lead to an infinite number of pedestrian 
visits in blocks as the number of pedestrians will just be redistributed repeatedly. Saito 
and Ishibashi (1992) added an extra choice alternative, going-home, and used a single 
parameter to represent the utility of ending the trip. This has a similar effect as 
Borgers and Timmermans (1986b) drawing the number of stops in the simulation. 

Zhu, et al. (2006b) used a similar approach but adopted a nested logit model 
to separate the shopping alternatives from the going-home alternative, based on the 
reasoning that a pedestrian’s decision process could be hierarchical, choosing between 
shopping and going-home first, and if shopping is chosen, choosing the place to shop 
next. Note that the use of different modeling approaches in these studies follows the 
overall change in modeling with new models entering the field over time. Significant 
correlations between shopping alternatives were estimated, suggesting that the 
decision is hierarchical. Along with another model which explains the store choice 
behavior of pedestrians in the entry stage (Zhu, et al., 2005), Zhu (2004) and Zhu, et 
al. (2008) simulated the pedestrian flows between the blocks and movement 
trajectories based on Markov chain. The comparisons with the observations showed 
good matches. A similar framework was adopted by Wang, et al. (2006) to study 
visitor flows in the planning Expo 2010 site in Shanghai. They collected pedestrians’ 
visit dairies through experiment. 

However, blocks may not realistically be the spatial unit perceived by 
pedestrians; individual stores are more realistic. Zhu, et al. (2006a) modeled the 
choice of stores by assuming that every store in the shopping street is a choice 
alternative, which results in a choice set with over hundred stores. Except for 
including conventional factors such as store floorspace, type and distance in the utility 
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function of a multinomial logit model, they especially focused on the temporal effect 
of pedestrian behavior. By estimating the parameters for the interaction variables 
between the elapsed time of each pedestrian’s shopping trip and other environmental 
variables, they demonstrated significant systematic changes in the utility function, 
which suggests that the hypothesis of time-varying behavior is right. To test more 
sophisticated influences of attributes, Borgers and Timmermans (2004, 2005) 
incorporated walking history attributes in a street (link) choice model based on MNL 
to introduce some degree of dependency between the separate decisions; Borgers, et al. 
(2005) modeled the behavioral differences between hedonic and utilitarian consumers; 
Dijkstra, et al. (2007) incorporated personal attitudinal attributes such as shopping 
urgency and familiarity of store in a logistic model (mathematically a special case of 
MNL) for predicting the occurrence of buying activity in a store. 

Although not based on DCM, the work by Hoogendoorn (2003a, b, 2004), 
Hoogendoorn and Bovy (2004, 2005) about meso-level pedestrian chaining decisions 
are consistent with the principle of utility-maximization at large. They assumed that 
pedestrians maximize the expected utility of activity under uncertainty and developed 
a theory and model which describe a series of decisions at what they called the tactical 
level. The model includes activity scheduling, activity area choice, and route choice. 
They also assumed that pedestrians determine all the features simultaneously for the 
expected period of activities at the start of the behavior series. More detailed elements 
were included such as travel time, obstacle, speed limit, and level of service. The key 
idea of this approach is to simulate a disutility function which is to be minimized by 
the individual based on the outcomes of the decisions. Space and time were 
represented as continuous factors in theory, but in the simulations, for illustration, 
discrete representations were taken. Dynamic programming was applied to solve the 
problem of optimal route-choice. 

Another unique line of research line about meso-level chaining behavior is 
about visit sequence given a series of stores to visit, which is a reminiscent of the 
Traveling Salesman problem. It is another perspective to study the extent and content 
of global planning underlying trip-chaining behavior instead of solely linking 
independent locally optimized decisions. Van der Hagen, et al. (1991) and Kurose, et 
al. (2001) classified the sequencing of pedestrians’ store visits in retail environments 
into several distance-minimization heuristics from the completely globally optimized 
strategies to the completely locally optimized strategies, with other intermediate 
strategies in between. The results showed that pedestrians’ strategies are much more 
diversified than what is commonly imagined as sequentially minimizing the distances 
of successive pairs of movements. This confirms the findings by Gärling, et al. (1986), 
Gärling and Gärling (1988), and Gärling (1989). Kitazawa and Batty (2004) used a 
genetic algorithm to simulate the shortest path of pedestrians in shopping malls given 
the stores, implying the global optimization strategy, and compared the simulated 
route with the observed route. They concluded that some of the mismatches could be 
caused by pedestrian using local strategies, proving further evidence to the concepts 
suggested in van der Hagen, et al. (1991). 

The application of DCM in micro-scale pedestrian movement is relatively rare. 
A unique example is Antonini, et al. (2006). They modeled the acceleration of 
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walking pedestrians as choices among segmented cones in the radial space before the 
pedestrian. Each cone was given a utility composed of the directional deviation to the 
target, the availability of obstacles, the density of activities from other pedestrians, the 
speed relative to maximum personal speed, etc. They applied a cross-nested logit and 
a mixed nested logit model because the cones have strong spatial correlations. The 
models were estimated using real pedestrian movement data, collected through video-
cameras.  

In recent work, Borgers, et al. (2004, 2006) extended the link-node type 
spatial representation from the meso destination choice level to the micro level. They 
systematically identified nodes along a street, and assigned to each node a set of links, 
connecting the node with its neighboring nodes. They assumed that the movement of a 
pedestrian is the result of sequentially choosing at each node the link with the highest 
utility, which consists of the type of link (entry, exit, transfer, center), the length of the 
link, the attraction that the link leads to, the heading of the link relative to the current 
heading, the side of the street relative to the heading of the link (right- or left-hand 
side), etc. An MNL was estimated using real pedestrian movement data and was used 
for validating the approach by simulating the number of movements in the links and 
comparing these with observations. Results were positive. Note that by focusing on a 
smaller number of links rather than on complete paths in the network, the problem of 
correlated alternatives can be expected to be dramatically reduced, implying that a 
simple MNL model as opposed to a complex discrete choice model accounting for 
such correlation structures can be used. Moreover, the choice set problem which is 
especially relevant and problematic for route choice (e.g., van der Waerden, et al., 
2004) is avoided. 

2.1.2.2 Physical analogy 
At the micro movement level, if we disregard possible influence of intention, 
perception and decision, the aggregate movement pattern of a pedestrian crowd has 
similar physical properties as particle systems like gas and water flows, provided the 
number of pedestrians is large enough. Handerson (1971, 1974) found that the 
pedestrian speed-velocity distribution resembles gaseous behavior and agreed with 
Maxwell-Boltzmann theory. However, this type of approach has not been commonly 
applied in pedestrian research because its validity relies on several restricted 
conditions. One condition is that pedestrians, like particles, must be homogeneous 
(e.g., same size, same kinetic energy). This assumption may, however, be questioned 
in many real-world situations. Moreover, the environment for measuring pedestrian 
flows has to be regular, such as a rectangle corridor, just like a test tube, which is only 
applicable to limited real-world physical environments. The fluid-dynamics equations 
are too difficult to solve and not flexible enough for incorporating the influence of 
environmental elements like obstacles which cause the pedestrian to avoid them and 
change speed (e.g., Helbing, et al., 2001). 

Another physics-analogous pedestrian model which has been applied widely 
in modeling local pedestrian movement is the social force model (e.g., Helbing and 
Molnar, 1995; Helbing, et al., 2001). Based on Newtonian mechanics, the model states 
that the movement of a pedestrian can be modeled as the result of the competing 
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forces exerted on him/her. Viewing movement as constant speed change, the basic 
social force model is represented by the equation of acceleration: / ( ) ( )d dt t tξ= +v f , 
where v  is a vector representing walking speed and t representing time. The left term 
then indicates acceleration. ( )tf  is a vector representing the aggregate influence from 
the forces at time t and ( )tξ  represents a random factor. This open-ended function, 
like the utility function in DCM, has enough flexibility for the researcher to include 
potential forces that may exert impact on acceleration. The forces may be external 
from the environment, such as the repulsive force due to boundary and obstacle, the 
repulsive interactions with other pedestrians, and the attraction force from a store or an 
interesting event. The source of the forces may also be internal, such as the preference 
of the pedestrian to walk with a certain speed, the social convention of walking 
manner (e.g., left- or right-side), and the habit of simply following other pedestrians 
(Xia, et al., 2007). Aggregating the forces in some way, usually following the 
mechanical law, determines the speed and heading of the pedestrian at the next 
moment. Helbing, et al. (2001) also found that by simulating pedestrians with the 
force model defined at the local individual level, so called self-organizing (or 
emergent) collective behavior can be realistically replicated such as queuing and trail 
formation (e.g., Helbing, et al., 1997; Bovy and Hoogendoorn, 2006). 

The social force model is probably one of the more interesting theoretical 
frameworks, based on principles of physics, ever proposed for modeling pedestrian 
micro scale movement and has inspired many extensions and applications (e.g., 
Helbing, et al., 2000; Gloor, et al., 2004; Yu, et al., 2005; Parisi and Dorso, 2005; 
Seyfried, et al., 2006). However, the major problem is that the models are very 
difficult to estimate as the observation of the acceleration and the forces requires 
considerable effort and special treatment, especially in complicated real-world 
situations. Therefore, most researchers only built simulation models and tested them 
based on arbitrary parameters in order to have a qualitative justification of model 
behavior. Work on model calibration is very rare (e.g., Hoogendoorn, et al., 2007). 
Technical problems also exist when simulations are conducted. Because the model is 
based on continuous space, it is often less convenient to implement environmental 
change in the continuous representation and it requires more computation power to let 
the simulated pedestrian interact with the environment, compared to other modeling 
approaches, such as cellular automata. 

2.1.2.3 Cellular automata 
Instead of continuous space, cellular automata (CA) use discrete space for 
representation. Although not necessary, a grid space consisting of square cells is the 
mainstream representation format in practice due to operational considerations. Each 
cell has a finite set of possible states. The state of the cells evolves synchronously in 
discrete time steps as a function of its current state and a set of rules, which relates the 
cell to other cells in the system. The purpose of the model is to simulate dynamic 
processes. CA is very suitable for representing any scales of real or virtual space and 
dynamics that can be approached by discretization. Batty (2005) reviewed the multi-
level applications of CA. However, with the increasing power of computers as well 
interests in emergent behavior, individual-based CA has become a popular language 
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for modeling pedestrian movement. The popularity is linked to the relative ease and 
computation efficiency in operationalizing CA models compared to other approaches 
(e.g., Blue, et al., 1997; Blue and Adler, 2001). The common basic treatment in 
movement simulation is that a pedestrian is assigned to a cell and movement is 
realized by making the pedestrian constantly occupy adjacent neighbor cells (8 
neighbor cells by Moore’s rule, or 4 neighbor cells by von Newmann’s rule) in 
discrete time. The occupation is controlled by drawing a stochastic cell according to 
the transition probabilities in the neighbor cells. The transition probabilities can be 
generated based on any model that suits the discrete representation and spatial 
conditions can be straightforwardly linked. 

For example, Muramatsu, et al. (1999) used a lattice gas model to study the 
jamming effect. Kirchner, et al. (2003) modeled the mechanism of pedestrian solving 
conflicts when they are going to occupy the same cell. Narimatsu, et al. (2004) studied 
a similar topic, but used some adaptive procedure to adjust the parameter responsible 
for collision avoidance. Bandini, et al. (2006b) simulated passenger behavior in a train, 
such as waiting, getting on board, choosing a seat, and getting off board, as the 
reaction to perceived signals around such as seat availability. The idea of floor field 
was introduced by Burstedde, et al. (2001), Schadschneider (2001) and 
Schadschneider, et al. (2002), which turned out to be a very useful technique in CA-
based modeling. It was devised to overcome the limitation in social force based 
modeling on representing long-range interactions, by imposing a second virtual grid 
layer (force field) upon the original layer. The force field may contain information 
about the influence from forces far away, e.g., a magnet store at two blocks away, and 
may change its status autonomously or be changed by pedestrians, analogous to an ant 
leaving chemotaxis to other ants. Complex inter-pedestrian and pedestrian-
environment interactions can be simulated more efficiently. However, the difficulty to 
estimate these models against real behavioral data is also a problem for CA-based 
pedestrian models (Batty, 2001b, 2005). Therefore, simulation models are ubiquitous. 

2.1.2.4 Cognition and psychology 
Observation-based descriptive research has already suggested that pedestrian’s 
cognitive, psychological and decision processes are too complex to be captured by any 
single mechanism. Abundant research has accumulated various cognitive, and 
psychological aspects of human behavior in spatial environments over the past 40 
years (e.g., Lynch, 1960; Golledge and Timmermans, 1990; Herzog, 1992; Zacharias, 
2001a, 2001b). Such complexity is most of the time a compound of simple but 
heterogeneous rules tailored to different problems or contexts. Peponis, et al. (1990), 
following 15 participants when they were exploring a hospital building, and derived a 
set of rules governing wayfinding behavior: (a) avoid back-tracking; (b) if all else is 
equal, continue on the same line; (c) divert from the line where a new view allows you 
to see more space and activity or a longer view and lets you see further ahead; and (d) 
confirm the unexplored parts of the building before the already explored parts. A key 
aspect of this work lies in the understanding that cognition depends in part on local 
information, in part on memory of those areas of a building already explored, and in 
part on the ability to project or develop hypotheses about those parts of a building that 



Chapter 2 

22 

have yet to be explored so that exploration could maximize new information. Chang 
(1998) also found that maintaining a straight line appeared to be preferred to 
maintaining a correctly oriented trajectory toward the final destination, with deviations 
along shorter lines taking place later in the trip to bring one to the destination. 
Hochmair (2005) explained such behavior as the result of least-angle heuristic (LA). 
He contented that one of the strengths of LA is that it requires little cognitive effort for 
the decision making process. Therefore, it can be used for situations in which 
decisions have to be made quickly, and where no detailed information is available at 
hand. LA can be used as a temporary strategy but will fail as a long-term strategy. 
Similarly, Gärling, et al. (1986) and Gärling (1989) found that the application of the 
distance-minimization strategy depends on the pedestrian’s knowledge about and the 
cognition of space: a global minimization strategy is more probably applied when the 
knowledge and cognition are good, whereas a local minimization strategy is probably 
applied when knowledge and cognition are poor. 

However, the quantification of the cognition of spatial structure, instead of 
using qualitative methods such as a cognitive map (e.g., Golledge, 1999), is a major 
problem when linking pedestrian behavior to cognition in any modeling approach. An 
extreme and therefore, highly questionable assumption by Hillier (e.g., Hillier and 
Hanson, 1984) who argued that there is a strong relationship between the morphology 
of the environment and pedestrian use patterns, and his theory has received a strong 
following in architecture and urban design. This relationship has been tested in many 
studies, based on the space syntax method. In fact, space syntax is not really a 
modeling technique. Its most widely discussed concept, the axial map, represents 
spaces (usually cities, neighborhoods, or other) as a matrix of the “longest and fewest” 
lines. The analysis involves translating the line matrix into a graph, and using various 
versions of the “topological” (i.e., nonmetric) measure of patterns of line connectivity, 
called “integration” (Hillier, 1999). The integration measure has some tangential link 
with cognitive spatial structure. For example, a higher integration usually means that a 
space has more connection to the network, which may correspond to people’s 
cognition as an important place to social life. However, it is never defined from an 
individual perspective nor applied in individual-based analysis. Basically the 
integration is a graph-theoretic measure of accessibility. Integration measures of axis 
have been correlated with pedestrian counts using log-log or even higher order log 
transformations, and not surprisingly strong correlations have been found (e.g., Penn, 
2003). Hillier, et al. (1993) even boldly concluded that if planners wish to design well-
used urban space, then it is not the local properties of a space that are important but its 
configurational relations to the larger urban system. Such statements, however, caused 
one of the major criticisms that have been raised against the method (e.g., Ratti, 2004), 
as the street network is rarely designed separately from land use planning. Important 
buildings are usually placed at accessible locations; therefore the integration measure 
already implies the land use pattern to some extent. In other words, space syntax does 
not really explain activity behavior but rather expresses a tautological relation in 
practice between accessibility, land use and user intensity. It is no surprise and highly 
revealing that correlations were significantly lower if the location of major attractors 
did not coincide with highly integrated axes (e.g. Read, 1999). The approach is also 
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taunted with abundant methodological problems, including boundary conditions, the 
calculation of correlations, the subjectivity in defining the axial map, biases in the 
axial map due to the size of area under investigation etc. (e.g., Teklenburg et al., 1993; 
Batty, et al., 1999; Batty, 2001a; Ratti, 2004). It may be used however as an easy to 
apply, simple design tool to diagnose morphological structure (e.g., Teklenburg, et al., 
1994, 1997). 

Space syntax is strongly related with visibility graph analysis (VGA), which is, 
however, easier to understand and technically more sound. Visibility graphs simulate 
people’s vision based on the notion that pedestrian movement and flows rely heavily 
on lines of sight and visibility when navigating through an area. The visibility graph is 
computed by overlaying a two-dimensional grid (at some arbitrary resolution) over a 
layout in plan view, and calculating which points within the grid are able to see which 
other points. The set of visible locations for each point are stored, and thus the 
visibility graph can be used to calculate the approximate viewable area, or isovist (e.g., 
Benedikt, 1979), from each point on the grid. Measures can be derived to characterize 
the property of space based on the isovists of each discrete point in the space, such as 
average distance, area, perimeter, compactness ratio and cluster ratio (e.g., Batty, 
2001a) and correlated with people’s behavior. For example, Turner, et al. (2001) 
conducted correlation analysis between the aggregate space occupancy in London Tate 
Gallery and the mean shortest path length of isovists, and found an inverse exponential 
relationship between the two. At the individual level, Franz and Wiener (2005) 
collected respondents’ feelings about virtual spaces and correlated them with the 
properties of the isovists of the places that the respondents were at. They found high 
correlations and concluded that isovist-based spatial measures may be a very good 
predictor of people’s spatial behavior.  

Based on the experiences with space syntax, Turner and Penn (2002) argued 
that pedestrian’s local movement may be largely explained by the configuration of 
space alone. They used exosomatic visual architecture, which is a dense-grid visibility 
graph, to represent a space. They simulated pedestrian movement in a gallery using a 
very simple mechanism under which the pedestrian randomly selects a point as the 
destination within the isovist of the current position, based on the principle of so 
called “natural” movement. The simulation showed that the best resemblance (R2=0.76) 
between the aggregate simulated pedestrian spatial distribution and the observation 
was achieved when the visual field of pedestrian was set to 170° and the mean step 
size was 3, which controls the frequency of the decision to change direction. However, 
whether such mechanism can explain pedestrian movement in other environments may 
be doubted as the spatial characteristics in a gallery are relatively homogeneous and 
visitors usually do not have a priori preference on exhibits, while many daily walking 
environments are much more diversified and pedestrians are more likely to have 
established preferences. In addition, it is not realistic to assume that pedestrian 
behavior in well-known environments is based on the visibility of stores. Many 
decisions and movement patterns will be based on memory recall or even routine. At 
least arousal levels will vary considerably while moving through the environment. 
Furthermore, in environments such as busy shopping streets visibility lines will 
typically be blurred or blocked due to other pedestrians. Therefore, the inflexibility of 
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VGA to incorporate specific environmental elements is a major problem to elaborate 
this approach into a more full-fledged modeling approach to pedestrian behavior. The 
approach as space syntax simply makes too strong implicit or explicit assumptions 
about the influence (perhaps even dominance) of morphology on pedestrian behavior. 
At best, visibility may be one of the factors influencing local movement patterns. 

2.1.2.5 Multi-agent systems 
O’Sullivan and Haklay (2000) argued that multi-agent systems (MAS) are not models 
which are conventionally understood as rules and mechanisms that explain phenomena, 
but problem solving systems which can incorporate models. It is one of the properties 
that may apply to some multi-agent systems. An agent can be thought of as an 
autonomous, goal-directed software entity, which has properties and may act, based on 
the principles of object-oriented programming. Therefore, any entity fitting this 
criterion can be treated as an agent, no matter what real-world entity it represents. It 
can be a pedestrian; it can be a unit of the environment which changes and can be 
changed. In complex simulations, agents can be programmed to interact with each 
other (e.g., pedestrian-environment, inter-pedestrian). When the computation ability is 
powerful enough to allow simulating many agents simultaneously, so-called emergent, 
or self-organizing behavior may appear. Thus, MAS are sometimes also categorized as 
an emergent algorithm, which represent any computation that achieves formally or 
stochastically predictable global effects by communicating with only a bounded 
number of immediate neighbors and without the use of central control or global 
visibility. 

These properties of MAS have greatly prompted research and development of 
pedestrian MAS since the late 1990s, and many of these studies were motivated to 
analyze emergent behavior and provide evidence of complexity theory. However, 
multi-agent systems have also been interpreted in a less stringent matter to refer to 
micro-simulation in which agents, representing decision makers, hold beliefs, have 
preferences, apply decision heuristics etc. In other words, the simulation goes beyond 
the classical Monte Carlo simulations in which the simulation was primarily based on 
draws from observed and sometimes generalized statistical distributions. 

Dijkstra and Timmermans (1999a, b; 2002) and Dijkstra, et al. (2000a, b; 
2001; 2002), developed the AMANDA system, which focuses more on pedestrian 
behavior in shopping environments. Originally, a CA model was used to simulate 
pedestrian movement, but later this representation was replaced with trajectories 
(Dijkstra, et al. 2006a, b). Although that part has not been explicitly developed, it is 
assumed that the model starts with a synthetic population of pedestrian agents, who 
enter the area of interest (inner city area or shopping mall) at various entrance points. 
Agents have an activity agenda that includes the stores they plan to visit according to a 
sequentially distance-minimizing heuristic or some other heuristic. The focus of 
development has been on what happens during these successive visits in the sense that 
the model allows for impulse stops. When moving over the network, agents are 
assumed to use perceptual fields. Perceptual fields, which guide which stores an agent 
will perceive, vary according to the agent’s awareness threshold and the signaling 
intensity of the store (Dijkstra, et al., 2005). When stores are signaled and become 
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included in an agent’s perceptual field, the agent decides whether or not to act and 
visit the store. This is called the activation of the agent, which depends among others 
on agent’s personal characteristics, motivation, familiarity with a store, suitability to 
conduct a visit, and the agent’s consideration set. A consideration set is a set of stores 
that an agent considers in performing a particular activity. If an agent is not familiar 
with a store, the activation of the agent towards this store will be lower. Similarly, 
activation will be equal to zero if the store is not suited to conduct any of the activities 
that are still scheduled to be completed. If an agent becomes activated, it gradually 
moves to the store. The model then simulates the duration of window-shopping, if any, 
the probability and duration of an actual visit to the store, and the probability of 
successfully completing the activity at the store, by drawing for probability 
distributions, empirically estimated from data of pedestrian behavior. The probability 
of a successful completion is a function of availability and predictability of the 
product, the urgency of completing the activity, the familiarity of the store to the agent, 
the duration of the visit, and the attractiveness of the store (Dijkstra, et al, 2007). 

Kerridge, et al. (2001) developed PEDFLOW, a MAS focusing on the detailed 
level of a section of a sidewalk, or in an open or enclosed space with obstructions. 
They used a grid-based spatial representation and each pedestrian occupies a cell. The 
movement rules were set in the form of decision tables which a pedestrian may look 
into under particular circumstances. The focus of the system is on the interaction of 
the pedestrian between entities, which can be another pedestrian, a possible goal point, 
a stationary object, the edge of a building, or the curb between road and pavement. 
The authors contended that in order to make the system representative of reality, not 
only objective pedestrian behavior like walking pace (e.g., Walmsley, 1989), speed 
(e.g., Willis, et al., 2004; Daamen and Hoogendoorn, 2007a, b), crowd and flow (e.g., 
Daamen and Hoogendoorn, 2003, 2007c; Daamen, et al., 2005b, Hoogendoorn and 
Daamen, 2006), speed-flow relationship (e.g., Lam, et al., 1995; Lam and Cheung, 
1997, 2000; Lam, et al., 2002, 2003; Goh and Lam, 2004; Lee, et al., 2006), and travel 
time (e.g., Lam and Cheung, 1996, 1999), but also subjective aspects such as 
perceptions, past experiences, and attitudes should be included, for example, by using 
the results of perceptual and attitudinal research (e.g., Hine, 1996). 

STREETS, another pedestrian MAS proposed by Haklay, et al. (2001), is a 
more comprehensive system. It was designed as a test bed for models of macro 
(urban), meso (district) and micro movement level behaviors. At the macro level, they 
used socioeconomic and other data about the urban area to populate the urban center 
with a statistically reasonable population of pedestrians, for example, based on gravity 
models or discrete choice models for retail center choice behavior. At the meso level, 
pedestrians take into account the spatial configuration of the street network and the 
distribution and land uses, fused by an integrated GIS, and determine the sequence of 
routes to be taken, given a predetermined plan. At the micro level, pedestrians are 
enabled to have vision and may choose target places within the visual field towards 
which they move in a grid-based spatial representation. 

Ali and Moulin (2005, 2006) also developed a MAS specific for shopping-
environments, called MAGS. It possesses the common features of most MAS with 
pedestrian agents being able to perceive, memorize, decide, navigate, avoid, and 
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interact with other pedestrians. The relatively special feature of MAGS is that a higher 
degree of segmentation such as gender, age group, marital status, and sector of 
employment of the pedestrian are used. Moreover, pedestrians have different levels of 
hunger, level of thirst, level of fear or stress, need to go to the restroom, and emotional 
states. Pedestrians may adjust the priority of tasks based on Maslow’s hierarchy of 
needs. For example, the need for eating or resting will suppress the need for shopping 
temporarily. The spatial representation is also raster (grid)-based. Different types of 
information are stored in multi-layer raster maps. There is AgentsMap which contains 
the location of agents and objects in the environment, ObstacleMap which contains the 
location of obstacles, ArianeMap which contains the paths that can be followed by 
mobile agents, HeightMap which represents the elevation of the environment, and 
other maps. The states of maps can also change, which enables complex dynamics. 

Silverman, et al (2006a, b) developed a comprehensive behavioral simulation 
package, called PMFserv, which aims to replicate human behavior highly realistically. 
Based on existing theories and models, the system was constructed as a complex of 
five inter-related major modules: (1) biology module which simulates physiological 
phenomena and stress; (2) personality and culture module which simulates 
individual’s value and emotion; (3) perception and psychology module which 
simulates how individuals perceive and represent the environment; (4) social module 
which simulates inter-personal relations such as trust; (5) decision making module 
which enables agent to make decisions based on subjective expected utility theory. 
The system provides a test-bed for separate and joint behaviors of the models. For 
example, the change of an agent’s level of stress or time pressure is specified to 
prompt changes in perception and decision strategy. Pelechano, et al (2005) 
incorporated PMFserv into their MAS, called MACES, for evacuation simulation in 
order to increase behavioral realism. Basically, MACES simulates agent’s higher level 
wayfinding behavior which is based on a mental map and shortest path algorithm, and 
lower level movement which is simulated based on the social force model. These 
behavioral simulations are enhanced by adding communication mechanism between 
agents which allows agents to learn mental maps from each other for better 
wayfinding. 

From the examples above and many other MAS, CA seems to be a popular 
framework for representing space and implementing mechanisms, compared to other 
frameworks such as continuous space representation in which coordinates of floating-
point accuracy are used for positioning agents in space (e.g., Hoogendoorn and Bovy, 
2001). Although information may be lost by discretizing space and agents are limited 
to move into a small number of neighboring cells, these limitations can be alleviated 
by using a smaller size of cells. Actually, since all MAS are run on digital computers 
and computation is intrinsically discrete, it is only a matter of the degree of 
discontinuity that the user can feel to be real or unreal (e.g., Klügl, et al., 2005). CA-
based MAS are easy to understand and operate, but consume a lot of memory once the 
scenario becomes large. Models based on continuous space, which are more 
economical in terms of memory usage, however, use significantly more CPU cycles. It 
is up to the developer to decide which framework to use or even both. For example, 
Gloor, et al. (2004) developed a hybrid MAS which is basically a continuous system. 
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But they limited agent’s walking directions like under the CA principle in order to 
save computation. The flexibility is that walking speed can be more accurately 
modeled, which is limited and problematic under the Moore’s rule of CA in the sense 
that in discrete movement the length of diagonal movement is always longer than that 
of a vertical or horizontal movement. 

Homogeneity is another unrealistic feature of CA-based MAS. Bandini and 
Simone (2004) contended that this can be overcome by introducing heterogeneous 
space in terms of property and structure, non-uniform neighborhoods, more distant 
actions, non-universal transition, and openness to outside influence. Therefore, they 
developed MMASS, the acronym for Multi-layered Multi-Agent Situated System (e.g., 
Bandini, et al., 2002, 2006a, 2006b), which is a general-purpose MAS and can be 
implemented for various types of spatial simulations. The major feature of MMASS is 
the ability to model heterogeneous spatial relationships by defining different 
topological structures between sites. The arrangement of the basic spatial unit may not 
necessarily be in a universal regular grid, but can be defined discretely in continuous 
space to represent specific environments of interest. Multiple spaces can be defined to 
represent the heterogeneity in the nature of space. Agents can be situated into different 
spaces and act based on the different rules of each space. The interaction between 
agents is implemented by using fields, which contains the properties that can be 
generated from agents and themselves may evolve according to some mechanisms. 

With the help of MAS, planners are able evaluate and adjust their plans much 
more effectively and efficiently. Lee, et al. (2001) used PEDROUTE, a pedestrian 
simulation model, to simulate the pedestrian movements within the station by 
incorporating the O-D flow matrix and the travel time functions of the nine classified 
pedestrian facilities. The simulation results matched well to the observations in terms 
of pedestrian flow and travel time. Batty, et al. (2003) applied a MAS in simulating 
pedestrian flows in Notting Hill Carnival, for the purpose of controlling the unsafe 
situations caused by small-scale events, by recursively adjusting the safety measures 
against those events and simulating pedestrian movement. Johansson and Helbing 
(2007) used a genetic algorithm to search for an optimal passage design in terms of the 
efficiency of pedestrian flows through the passage, resulting from evacuation. 

The development of MAS is not only limited to the academic world, but also 
widespread into the commercial and noncommercial world. Legion (see 
http://www.legion.com/) is one of the successful commercial simulation systems, 
which has been tested against abundant empirical data (e.g., Berrou, et al., 2007). The 
internet facilitates the MAS fans to share their knowledge and techniques in building 
MAS in the virtual noncommercial world, often in the form of open-source MAS that 
can be improved by anyone, such as NetLogo (see http://ccl.northwestern.edu/netlogo). 

2.2 Models of Bounded Rationality 

2.2.1 Decision heuristics 
We use the term “decision strategy” to refer to any rule for decision making, including 
rational choice rules and decision heuristics. A decision heuristic is commonly defined 
as an informal method to help solve a problem, which often leads to a solution that is 
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usually reasonably close to the “best” possible answer (best under the rational rule), or 
sometimes called “rule of thumb”. Such a definition may not be complete as it only 
includes the comparison on the decision outcome, while the decision process is not 
emphasized, which is often thought to be much simpler than that implied by the 
rational decision rules. Interestingly, rational decision rules gather so tightly around 
the tenet of utility-maximization that there are not many variations from the classical 
principle which states that people trade-off (expected) attribute utilities to arrive at an 
overall utility and choose the alternative with the highest overall utility, while decision 
heuristics are so diverse that even researchers sometimes feel confused to select a 
heuristic according to which they can select a heuristic for modeling the decision 
problem. The major reason is that rational decision rules are largely outcome-oriented 
and theoretical consistency is emphasized more than procedural realism in their 
development, while decision heuristics are process-oriented and empirical observation 
is an importance source for devising them. Therefore, it is not surprising that 
heuristics have different levels of complexity and accuracy, depending on factors such 
as the total amount of information processed, the selectivity in information processing, 
the pattern of processing, and whether the strategy is compensatory or non-
compensatory (Bettman, et al., 1998). Only those heuristics that are more frequently 
discussed in the literature will be reviewed below. 

2.2.1.1 Compensatory and semi-compensatory rules 

Weighted adding rule (WADD) 
WADD assumes that the individual can assess the importance of each attribute and 
assign a subjective value to each possible attribute level. Then, the individual 
considers one alternative at a time, examines each of the attributes for that option, 
multiplies each attribute’s subjective value times its importance weight, and sums 
these products across all attributes to obtain an overall value for each option. Then, the 
alternative with the highest value would be chosen. As can be seen, its rationale is 
very similar to that of a DCM with a linear utility function except that there is no role 
for a stochastic utility part. The weighted additive structure can also be found in 
multiple other normative and descriptive theories. For comparison reasons, WADD is 
often thought as a typical rational decision rule which is most accurate for a decision 
and is used as the benchmark for comparing performances of alternative decision 
strategies (e.g., Zakay and Wooler, 1984; Payne, et al., 1998; Chu and Spires, 2000). 
As the rule assumes that all alternatives and attributes are considered and the 
information processing may involve multiple multiplications and summations, it is 
believed this strategy demands most working memory and computational ability. 

Equal weight rule (EW) 
EW is sometimes also called Dawes’ rule (Dawes, 1979), which is a variation of 
WADD with the difference that attribute weights are ignored and only attribute values 
are aggregated into the overall value. The choice rule is still to select the alternative 
with the highest overall value. Since weights are ignored, EW is thought to be easier 
to implement than WADD. However, ignoring relative attribute importance may only 
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account for some real-world decision problems as people most time attach importance 
to attributes. 

Frequency of good and/or bad features rule (FGB) 
Instead of aggregating attribute values, FGB (Alba and Marmorstein, 1987) states that 
individuals may evaluate and choose alternatives by counting the number of good 
and/or bad features characterizing the alternatives. This requires the individual to 
develop thresholds for specifying good and bad features. For example, an attribute is 
considered good if the value exceeds the threshold and considered bad otherwise. The 
alternative with the largest (least) number of good (bad) attributes is chosen. Weber, et 
al. (1995) provided evidence consistent with such a strategy, noting that encoding 
such outcomes is often simple. Like WADD and EW, FGB also assumes complete 
evaluation of alternatives and attributes. Therefore, in general, it still requires quite 
much effort and does not imply attribute importance. 

The majority of confirming dimensions rule (MCD) 
Proposed by Russo and Dosher (1983), MCD assumes that alternatives are processed 
in pairs, comparing the values of the two alternatives on each attribute. The alternative 
with a majority of winning (better) attribute values is retained. The retained alternative 
is then compared to the next alternative from the choice set, and this process of 
pairwise comparison continues until all the alternatives have been evaluated and one 
option remains. Such information search pattern is said to be attribute-based rather 
than alternative-based, as in WADD, EW, and FGB, under which all the attributes of 
one alternative have to be inspected before evaluating another alternative. Attribute-
based search is believed to be more efficient than alternative-based search as it may 
save the effort from shifting cognitive paradigms between different types of attributes 
(e.g., Tversky, 1972). This has also been proven empirically by Russo and Dosher 
(1983), who inferred respondents’ information processing patterns through eye-fixing 
equipment, doubly verified by protocol analysis. The result showed that dimensional 
strategies (attribute-based) are much more frequently used than holistic strategies 
(alternative-based). MCD also implies complete information search. 

2.2.1.2 Non-compensatory rules 

Satisficing rule (SAT) 
Simon (1955) proposed the SAT rule, which assumes that the individual evaluates the 
alternatives in the choice set in some sequence and evaluates each alternative in an 
alternative-based manner. Once he/she finds that the alternative is satisfactory against 
some standard, the decision ends with this alternative being accepted; otherwise, the 
evaluation continues. Therefore, SAT may imply that not all alternatives are evaluated. 
Judging the satisfaction of an alternative is usually based on two rules: the conjunctive 
rule (CONJ) and disjunctive rule (DISJ), both using attribute thresholds. CONJ states 
that a choice alternative will only be satisfactory if it meets a set of attribute thresholds, 
implying that the least satisfactory attribute value of a choice alternative is critical to 
its acceptance. The alternative can be considered unsatisfactory once an unsatisfactory 
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attribute is found. In contrast, DISJ assumes that an alternative will be satisfactory if it 
has at least one attribute greater than the corresponding threshold. By using either rule, 
it is possible to judge an alternative only based on part of the attributes. Therefore, 
decisions using SAT tend to be quick, although the outcome may not be consistent in 
the rational sense as the sequence of evaluating alternatives may cause premature 
stopping of the search process before reaching the optimal alternative. 

Lexicographic rule (LEX) 
This rule requires a complete ranking of the attributes in terms of relative importance. 
The individual determines the most important attribute and then compares the values 
of all alternatives on that attribute. The alternative that presents the best value on the 
most important attribute is selected. If two alternatives are equal in the sense that they 
present equal values on that attribute, the second most important attribute is 
considered and the procedure continues until one option is chosen. By definition, LEX 
is attribute-based and may only require an incomplete attribute search, risking 
inconsistency as the choice outcome depends on the sequence of attribute search. 
Determining the sequence is a major challenge of similar modeling approaches. In a 
variant called Take The Best (TTB, Gigerenzer and Goldstein, 1999), attribute search 
sequence is based on the descending ordered attribute validity, which is calculated as 
the proportion of right judgments using each attribute alone for comparing the two 
alternatives, based on a training dataset. The derived attribute search sequence is then 
used to infer the judgments based on a testing dataset. The major problems of such 
validity are: on one hand, there is no sufficient evidence showing that individuals do 
so for determining attribute search sequence. On the other hand, it makes people doubt 
whether the good model estimation result is correlated with such a somehow 
tautological treatment, something like using the dependent variable to explain itself. 
The authors defined another rule called Take The Last in which the search of attribute 
starts from the one at which the previous problem stopped, based on the belief that the 
attribute which recently stopped the search tends to be more likely than others to stop 
the search. In another rule called Minimalist, the search sequence is just random, 
simulating the situation that that the individual only has the minimum (no) information 
about the search strategy. 

Elimination-by-aspect rule (EBA) 
Proposed by Tversky (1972), EBA combines elements of both the lexicographic and 
satificing strategies. Under this rule, the individual eliminates alternatives that do not 
possess certain aspects for the most important attribute. This elimination process is 
repeated for the second most important attribute, with the processing continuing until 
a single option remains. The consistency of EBA also depends on the attribute search 
sequence. The attribute search sequence is specified to be probabilistic, proportional to 
the attribute importance. An extension called elimination-by-cutoff (EBC) was 
proposed by Manrai and Sinha (1989). It overcomes the limitation of EBA that only 
discrete attribute aspects are compared by introducing thresholds for continuous 
attributes so that an alternative can be eliminated if the attribute does not exceed the 
threshold. They showed the statistical advantage of EBC over the multinomial logit 
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model using experimental choice data. Actually before them, Recker (1979) already 
used a similar concept of attribute tolerance. Attribute tolerances were estimated in 
applications of EBA to transport mode choice and shopping center choice behavior. 
However, they determined the attribute search sequence by ordering the stated 
attribute importance provided by the respondents, which means that the model 
requires extra input. In a case study of residential choice, Young (1984) assumed that 
individuals have a set of minimally acceptable satisfaction levels which are used to 
judge the satisfactoriness of corresponding attributes and are expressed as a fractional 
tolerance of the maximum satisfaction level of each attribute over all choice 
alternatives. These tolerances were estimated, while attribute importance was provided 
by respondents, using rating scales. The model showed satisfactory results. However, 
it suggested different implications compared to the compensatory logit model, because 
EBA model does not imply the IIA assumption. Therefore, the change of attributes 
does not always result in the same marginal choice probability for all the alternatives. 
One operational limitation of EBA is that the model specification becomes 
exponentially cumbersome when the number of alternatives increases. Hence, most 
theoretical statements of EBA as well applications are limited to using no more than 
three alternatives. 

Goldstein and Gigerenzer (1999, 2002) suggested the Recognition Heuristic 
(RH). It belongs to the set of so called ignorance-based strategies, but can also be 
categorized as a special case of EBA. RH only applies to the situation when some 
alternatives can be recognized by the individual while others cannot. The first (only) 
attribute for consideration is whether an alternative is recognizable and unrecognized 
alternatives are eliminated. The rationale is based on the reasoning that the inference 
task may benefit from the ecological correlation between the recognition (exposure) of 
the alternative and its property that is to be inferred. When both alternatives are 
recognizable or neither is recognizable, other information must be used for judgment. 
This fast-and-frugal, less-is-more heuristic shows its interesting inferential ability in 
an experiment in which both American and Germany students were asked to infer 
which of two cities (San Diego or San Antonio), is larger. 62% of the American 
students answered right, while this percentage was 100% for the Germany students 
because the former knew both cities, whereas all of latter had heard of San Diego, but 
only half of them knew San Antonio. A similar effect was observed by Borges, et al. 
(1999) in experiments of selecting portfolios, which showed that laypeople selected 
better stocks than experts only based on the recognition of companies. 

2.2.1.3 Combined and hybrid rules 

Combined rules (COM) 
Individuals may also use a combination of decision strategies instead of relying on 
only one rule. A typical combined strategy has an initial phase in which some 
alternatives are eliminated and a second phase where the remaining options are 
analyzed in more detail. Payne (1976) found that there was a shift from compensatory 
strategies to non-compensatory strategies that involved elimination of alternatives on 
the basis of a subset of information. Moreover, having eliminated some alternatives in 
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this way, thereby having reduced task complexity, some decision makers returned to a 
compensatory strategy to decide among the remaining alternatives. Such decision 
pattern is also often discussed in the choice set formation problem under the discrete 
choice modeling framework. Borgers, et al. (1986c) adopted a two-stage model. The 
first stage was specified as a conjunctive process using attribute thresholds. They 
assumed the thresholds to be normally distributed and derived the probabilities of each 
alternative being included in the choice set as the joint probability of each attribute 
exceeding the threshold. The second stage was represented by a multinomial logit 
choice model conditional upon the choice set determined in the first stage. Applied in 
the residential choice experiment, the model was estimated using a recursive 
estimation procedure with the attribute thresholds being estimated and the 
probabilities of possible choice sets being derived first, followed by estimating the 
parameters in the MNL model, until the goodness-of-fit statistic cannot be improved. 
Although behaviorally more realistic and complex, the model only showed slight 
improvement compared with a single MNL model without choice set specification. 

Under a similar framework, Ben Akiva and Boccara (1995) incorporated the 
effects of stochastic constraints or elimination criteria and the influence of attitudes 
and perception as latent indicators on the choice set generation process. Cantillo and 
Ortuzar (2005) also applied the two-stage model with the extension that socio-
demographics were added to the distribution of attribute thresholds in the first choice 
set formation stage in order to capture heterogeneity. Because this model generated 
much better results than the one-stage MNL model, they concluded that if there is 
evidence of the existence of thresholds in the population the use of a fully 
compensatory model, such as MNL or even Mixed Logit, can lead to serious errors in 
estimation and predictions. However, a critical problem of this combined approach is 
that researchers usually cannot observe the choice set, and hence typically assume that 
all possible choice set combinations have some probability of being considered. This 
implies that the number of choice sets exponentially increases with the number of 
choice alternatives, which is not only unrealistic but also requires impractical 
computation cost. Therefore, applications of the approach are limited to cases with a 
small number of alternatives. 

Hybrid rules (HYB) 
Unlike COM, which combine pure forms of decision rules, representing either 
unbounded or bounded rationality, hybrid models usually are developed from the 
framework of rational decision models and incorporate principles of bounded 
rationality to improve the representation of the decision process. The threshold effect 
has been widely observed and mostly discussed. Many consumer decisions that 
involve accepting or rejecting a good or brand may be attributed to this effect. Kau 
and Hill (1972) proposed a multivariate probit model for such decisions in which an 
individual is assumed to calculate the overall utility of a good first based on a 
compensatory linear attribute utility function, followed by comparing this overall 
utility against a threshold value. If the threshold is exceeded, the good is accepted. By 
assuming the threshold is standard normally distributed to represent heterogeneity of 
individual decision standards, the probability of acceptation was derived. A maximum 
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likelihood estimation procedure was used to estimate the model in the context of a 
corn treatment decision. The same approach was applied by Bettman (1974) to model 
consumer’s satisfaction of brand attributes. He also suggested using dual thresholds to 
classify judgments into unsatisfactory, undecided, and satisfactory attitudes. Gilbride 
and Allenby (2004) also included this model in their comparative study as a 
compensatory screening rule for the decision stage of choice set formation. 

Discrete choice models are another important starting point for threshold-
based extensions. An early attempt was made by Krishnan (1977), who introduced a 
model that incorporates thresholds of indifference into the binary logit model. The 
model states that an alternative will be preferred only if its utility is greater than that of 
the other alternative plus some threshold value. The model was applied in the context 
of mode choice behavior. More recently, based on the observation by Gupta and 
Cooper (1992) that consumers do not buy a good unless the promotion discount is 
above a threshold level, Han, et al. (2001) proposed a hybrid model in which a good 
will only be bought when the difference between the observed price and the reference 
price is above some threshold. The inclusion of reference price borrowed the notion of 
Prospect Theory (Kahneman and Tversky, 1979) which states that people weigh loss 
more than gain relative to the reference point.3 The authors assumed the thresholds to 
be random distributions and used factors such as price volatility, discounting, and 
deal-proneness as explanatory variables. The probability of an attribute exceeding the 
threshold was further specified as a logistic function. The expected price difference 
was calculated as the multiplication between the observed price difference and the 
probability, which was inserted as a term in the utility function of an MNL model. 

Theoretically, including expected price difference in the utility function is not 
rigorous for representing threshold heterogeneity. Cantillo, et al. (2006), therefore, 
proposed a model with a similar underlying rationale but with an improved 
specification. They similarly assumed that a change in an attribute has to be larger 
than a threshold value in order to be perceived and thresholds are probabilistically 
distributed. The difference is that it is not the attribute change that is expected under 
the distribution but the probability of choice. As a result, the estimated choice 
probability is the expectation of the choice probabilities under certain thresholds 
weighted by the density of the threshold distribution, which however does not have a 
close form solution and was computed by simulation. 

Swait (2001a) incorporated attribute thresholds into the utility function of an 
MNL model in a different way. He postulated that the threshold effect may not 
necessarily be drastic, in the sense that an attribute utility becomes 0 when the 
threshold is not satisfied (or satisfied, depending on the problem definition). Instead, 
consumers may attach different degrees of penalty to the attribute utility if the 
threshold conditions are violated. Such penalties were represented by an extra 
parameter imposed on the original utility function and multiple thresholds and 
corresponding penalty parameters were allowed for an attribute. This resulted in a 
piecewise utility function with each threshold as the turning point for the marginal 
                                                      
3 The concept of reference point is not confined to prospect theory. Alternative theories and 
specifications, such as ideal point concepts and relative utility theory, also use references. A 
detailed and comparative discussion of these theories goes beyond the scope of this thesis. 



Chapter 2 

34 

utility. The author showed that with this flexible specification, CONJ can be 
approximated when the penalty parameter approaches negative infinity, and DISJ can 
be approximated when the penalty parameter approaches positive infinity. The model 
was applied to a car choice experiment. A major shortcoming of the study, also 
mentioned by the author, is that threshold values were reported by the respondents. 
The reliability of self-reported thresholds are doubtful as evidenced by for example 
Weitz and Wright (1979), who found that although respondents report whether they 
used thresholds for attributes or not, their reports of the quantitative threshold values 
are very poor. 4  In general, HYB provide more mathematical convenience than 
behavioral realism, as the major information processing structure still assumes 
complete information search and compensation. 

2.2.1.4 Comparing the rules 
With such diversified models of decision strategies in the toolbox of researchers, how 
can they know which models are appropriate for modeling individual decisions? This 
is probably the most difficult question in decision research with no concrete answer 
yet and perhaps never to come. Nevertheless, a common heuristic practice is based on 
the belief that the model which has the best goodness-of-fit in representing or 
predicting observed decision outcomes, using statistical criteria such as squared error 
and likelihood, should be the one closest to the true decision process. Although, this is 
a very partial view of validity, most research has followed this methodological 
principle and compared models of rational behavior against alternative models. 
Results generally suggested that heuristic models were more appropriate. For example, 
within the still escalating torrent of using discrete choice models in transportation field, 
Foerster (1979) is among the earliest endeavors of introducing heuristic models into 
the field. He compared the MNL model with WADD, LEX, Maximin, CONJ+WADD, 
and CONJ+LEX in an application of transport mode choice, and found that almost all 
heuristic models performed better than the MNL model, especially the two COM 
models. Therefore, he tentatively suggested exploring decision processes in 
transportation with more diversified models other than rational choice models. 

Similarly, Phipps and Meyer (1985) compared the predictive ability of a 
normative stopping model, based on maximizing expected utility when making 
sequential decisions, and a heuristic stopping model, to explain the behavior of 
subjects in an apartment search game. The results tended to favor the heuristic model: 
stopping appears best characterized by a set of individual-specific utility-difference 
thresholds. Martignon and Schmitt (1999) compared TTB with a multiple regression 
model and a Bayesian network model using cross-validation and found that TTB was 
robust, at least for small sample size. A more systematic comparison was conducted 
by Czerlinski, et al. (1999), who compared TTB, Minimalist, EW and WADD on 20 
                                                      
4 There is a larger literature and discussion on the identification of thresholds and bifurcation 
points, for example in the literature on willingness to pay. Rather than asking respondents to 
report thresholds and bifurcation directly, double anchors have been used. Wang, et al. (2004) 
developed a stepwise elicitation method. Thus, although thresholds can be measured in a more 
sophisticated manner, still asking respondents to self-report and articulate thresholds remains 
problematic. 
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decision problems. It turned out that TTB and Minimalist only took one third of the 
information on average. When fitting the existing data, Minimalist and TTB scored 
69% and 75%, while EW and WADD scored 73% and 77%. For predicting new data, 
TTB scored 71%, Minimalist scored 65%, EW scored 69%, and WADD scored 68%. 
The robustness of TTB was again verified. Gilbride and Allenby (2004) compared five 
models as screening rules applied in a choice experiment: heterogeneous probit model, 
compensatory screening rule, CONJ, DISJ, and a structural heterogeneous rule 
composed of CONJ and DISJ. The best result was attained for CONJ. Even under the 
heterogeneous rule, CONJ represented 99% of the respondents’ decision strategies. 
Finally, the hybrid models proposed by Swait (2001a) and Cantillo, et al. (2006) were 
also tested to be better than the MNL models in terms of commonly used goodness-of-
fit statistics. 

Of course, there is also counter-evidence, although relatively little. 
Timmermans (1983) tested whether some of the non-compensatory rules can 
reproduce overt shopping choice behavior. He found that their predictive ability was 
significantly less than that of compensatory decision rules.  

Overall, this review of the literature suggests that the use of decision strategy 
may depend on the decision problems and the situational and contextual circumstances 
embedding the decision problem. In many cases, however, the literature suggests that 
non-compensatory heuristics outperform the dominant multinomial logit model. The 
major problem of research on decision heuristics is the seemingly arbitrariness in 
proposing and applying heuristics. As the true decision processes cannot be observed, 
and are difficult to be elicited directly, admitting that this is an important area of 
ongoing research, researchers can at best infer the processes from the behavior of the 
decision makers. Such an inference process may entangle experience, knowledge, and 
intuition of the researcher. 

Having said that, it should be realized that a best fit only shows that the 
assumed model and its underlying theory is consistent with observations and more 
successful than other models/theories. It should also be realized that different models 
may be almost equally successful in reproducing observations. In such situations, 
which heuristic to apply or to select as the “true” process is a highly arbitrary 
judgment. 

A related problem is that the motivation to select one champion strategy as the 
“true” strategy for all decision cases is unjustified in the first place. Compared to the 
evidence of the coexistence of heterogeneous strategies for a decision, the modeling of 
such coexistence is scarce. Gilbride and Allenby (2004) provided an example, which 
however, is not flexible enough to incorporate in single model more strategies other 
than the conjunctive and disjunctive rule. 

Another problem is about modeling the sequence of information search when 
the related models are applied such as SAT, LEX, and EBA. The search sequence may 
virtually be more important than the judgment rules as it largely determines the 
efficiency and consistency of a decision. Most current researches still treating this 
process as a separate part and derive the sequence from respondent’s report, rather 
than integrating it in the whole modeling framework. Fixing this insufficiency will 
make a stronger normative heuristic model. 
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2.2.2 Choice of strategies 
Another factor complicating the modeling of individual decision making with a single 
decision strategy is that an individual does not always stick to a single strategy, which 
is also rarely true for the group of individuals under investigation. This is because 
personal preference, the aim of the decision, the context and framing of the problem, 
time constraints, incentives, and other factors may all influence the use of decision 
strategy. Beach and Mitchell (1978) and Payne (1982) called this a contingent process. 
A mainstream theory about this process assumes that people choose a strategy among 
the repertoire of alternative strategies in their mind for solving the problem at hand, or 
in simple words, this involves a decision of a decision. This means in principle that if 
we understand the mechanisms underlying this lower level decision making, the 
problem at the upper level (the observed behavior or decision) can be deduced. The 
funny thing is that this lower problem level is at least as complicated as the upper level 
as the problem series is epistemologically endless – we may dive into the problem as 
deep as we want to explain the decision of the decision of the decision of … 
Nevertheless, solving the first order problem, if we can, is already sensible enough for 
practical problems (e.g., Conlisk, 1996). 

The problem is usually formalized by starting to assume that there is a choice 
set of decision strategies for each individual, not matter the set is static or dynamic 
(e.g., constructive, as suggested by Bettman, et al., 1998). An accuracy-effort (cost-
benefit) framework is dominantly used to predict the choice of strategy. This 
framework states that an individual will minimize the cognitive effort required for 
executing a strategy and maximize the accuracy of the decision outcome under the 
strategy, implying that a rational utility-maximizing mechanism is assumed. The 
definition and measurement of accuracy is relatively straightforward, and usually 
takes the decision outcome under the rational choice rules (e.g., WADD) as the 
benchmark of the most accurate strategy. The accuracy of other strategies is 
represented as some relative measure to the benchmark accuracy. In contrast, the 
measurement of effort is much more difficult as it can only be perceived by the 
decision maker (and only if he/she is conscious about it) and any indirect 
measurement by the researcher may be distorted. 

Wright (1975) conducted an experiment in which respondents were asked to 
apply some of 15 decision rules, including WADD, EW, LEX, CONJ, DISJ, etc., and 
report their feeling about each strategy, regarding ease of use, usage frequency, 
confusion, storage difficulty, etc.. The complexity of the experiment was controlled by 
adjusting the number of alternatives presented to the respondent. Interestingly, not all 
results supported the hypotheses. For example, compensatory rules were not reported 
as particularly strenuous to execute, although perceived strain increased as alternatives 
increased. They were not seen as very likely optimizers by the respondents, but were 
reported being used at least as frequently as CONJ or LEX for six alternatives or less. 
CONJ was perceived at least as difficult to execute as a compensatory strategy under 
these conditions. It shortcuts the procedure only when it happens to detect quickly a 
“veto” property. Also somewhat unexpected was the perception of CONJ as a more 
likely optimizer than the other strategies, since CONJ was the only one not entailing 
alternative vs. alternative comparisons. LEX was generally viewed as quite simple to 
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execute for up to six alternatives. For 10 alternatives, it had no advantage as a 
simplifier. Results did not support the prediction that using thresholds is necessarily 
simpler for an individual than using compensatory strategies. Using thresholds would 
not seem to be a preferred simplifying tactic if as many as four constraints must be 
kept in mind. Individuals might employ thresholds on only one or two key dimensions 
when simplifying becomes important. 

Wright’s work suggests an important characteristic of strategy choice: 
context-dependency. No single strategy is optimal in all environments. This was also 
demonstrated by Payne, et al. (1988) using simulation. After comparing the accuracy 
and effort of 10 strategies, they found that in some environments, heuristics can 
approximate the accuracy of WADD, with substantial savings in effort. But a 
combination of EBA+WADD performed well across all task conditions. They 
suggested that if a decision maker wants to achieve both a reasonably high level of 
accuracy and low effort, he or she would have to use a repertoire of strategies, with 
selection contingent upon situational demands. The authors used a different approach 
to estimate effort, called Elementary Information Process (EIP), such as reading an 
item of information, comparing two items of information, adding items of information, 
or eliminating items of information, and so on. The effort of each strategy is 
constructed by organizing the EIPs according to the information flow. 

Chu and Spires (2000) demonstrated the calculations of several typical 
strategies. They tested the shifts of strategy use when a decision is aided by computer. 
Four rules were compared, WADD, EW, LEX, and EBA. As the rule that was used by 
the respondent is not observable, to provide a rough measure of the likelihood that a 
rule would be the chosen strategy, the proportion of the iso-preference-line slopes that 
would favor the rule over WADD, represented by the angle difference between the 
line linking the point in the accuracy-EIP chart representing the rule and that of the 
WADD, and the vertical line, was calculated. The smaller the angle, means the more 
preferred the strategy over WADD. The effects of the decision aid were tested to be 
significant as expected. If cognitive limitations are removed by the aid, decision 
makers may increase their effort to achieve better solutions. The aid may also change 
the cost-benefit relationships for various strategies such that a more effortful strategy 
is preferred. Some flaws of the EIP method are apparent. First, they were only 
hypothetical and never estimated. Second, the magnitudes, due to operational ease, of 
each elementary process are often assumed to be the same, which is also unjustified. 
These flaws may affect the calculation of the effort and the conclusions. 

Shugan (1980) focused on calculating the effort under different sequences of 
comparing attributes between two alternatives. He incorporated the criterion that the 
decision maker tolerates a mistaken decision as a probabilistic stopping rule for 
information search. In order to make the calculation, the approach assumes a sampling 
procedure of the individual on items to be chosen so that attribute variances can be 
derived. Whether such a sampling process is applied in reality by decision makers is 
questionable. Similarly, Swait and Adamowicz (2001) assumed a pre-evaluation stage 
to empirically derive the prior choice probabilities needed to calculate a complexity 
measure of a choice task, using an entropy type index. Then, a latent class structure 
was specified to derive the expected choice probabilities of alternatives under different 
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choice strategies whose probability of being applied is a logistic function of the 
complexity measure. The model was estimated to be better than an MNL model 
against experimental choice data. 

Besides effort and accuracy, other influential factors were also discussed. Ben 
Zur and Breznitz (1981) found through experimentation that under high time pressure, 
individuals tend to use less risky strategies than under low time pressure. Bockenholt, 
et al. (1991) tested the influence of information pattern. An analysis of the number of 
processed attributes revealed that individuals employed selective information 
processing rather than processing all features of a choice pair. They selected more 
attributes with small differences and less with large attribute differences. They 
terminated their information search earlier when an alternative was dominant than 
when none of the alternatives were dominant. Finally, the effects of cost and reward 
on strategy choice were experimentally tested by Gilliland, et al. (1993) and the more 
cost – less information search, more reward – more information search phenomena 
were clear. 

2.3 Summary 
Pedestrian modeling is a multilevel, multidisciplinary research field in which different 
methodologies have been applied. The state-of-the-art in this field of research 
demonstrates various lines of rapid development. In the context of this thesis, some of 
these approaches seem more valuable than others as a starting point for studying 
meso-level pedestrian behavior. Some aspects need further improvement and 
exploration. 

First, meso-level pedestrian studies have been dominated by rational choice 
models. Although these models can capture some essence of individual decision 
making and provide a convenient and flexible framework, it is well known that 
normative choice theory will not fully cover real-life human choice behavior (e.g., 
Hoogendoorn, 2003a). The general criticisms against the unrealistic assumptions of 
rational decision models also apply to current practice of pedestrian modeling. 
Assuming omniscience of pedestrians’ knowledge about the environment and ignoring 
pedestrians’ cognitive limitations and decision processes may lead to wrong policy 
recommendations and policy measures. It has shown that models of bounded 
rationality have been widely studied in psychology and consumer research and they 
are in many cases at least as competitive as rational choice model in predicting 
decision outcomes with the extra advantage of explicitly representing decision process. 
In fact, much of this research is already quite old, but it never led to a strong 
consistent modeling tradition. Especially, developments and applications of BR 
models in urban planning and transportation are scarce, and most surprisingly, to the 
best of our knowledge, no such models have ever been empirically tested to meso-
level pedestrian behavior. Perhaps one of the most important reasons is that the study 
of consumer research has traditionally focused on experimental hypothesis testing and 
has kept away from and still does not show many signs of model building. Attempts of 
model building are more common in econometrics and applied disciplines, but these 
are dominantly inspired by rational choice theories. In other words, these fields have 
largely developed in their own right as two separate research communities and very 
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few people or groups would have been able to bridge the gaps between these 
communities and traditions. Developments in modeling in general however do provide 
new opportunities. Therefore, in the context of exploring an alternative modeling 
approach, BR models are definitely worth trying. 

Second, taste variation has been partially represented in random utility models 
by estimating parameter distributions. However, the decision strategy implied in these 
models is homogeneous across the sample. As has been shown by BR research, this is 
rarely true. People’s use of a decision strategy is contingent upon both internal and 
external decision situations. Therefore, modeling and identifying pedestrians’ different 
decision strategies will be very helpful for segmenting the pedestrians based on their 
distinct ways of information processing and for developing tailored policy measures 
for each targeted group. In this regard, modeling strategy choice will be a good 
starting point. However, although the general relationships between the choice 
outcome and influential factors such as accuracy, effort, and others have been 
qualitatively verified, operational models which can be applied universally in various 
situations, like the MNL, are not available yet. Problems such as the definition, 
calculation, and operationalization of the factors have to be solved before strategy 
choice models can really take off. 

Third, the framework of studying pedestrian behavior as a trip chain is useful 
for modeling behavioral dynamics. Approaches of different degree of realism and 
complexity may be incorporated in such a framework. Markov chain models are 
capable of capturing the general dynamics quite well, except for their major limitation 
of state independence. This problem has been partially solved by incorporating 
independent variables which represent the behavior of other states, such as visit 
history, while still keeping the generally independent model structure. Models 
concerning expectations of long-term activities over local decisions, such as multi-
purpose multi-stop models and route planning models, are theoretically more complete, 
but of course more complex and require more information for modeling. Although 
studying expectation and scheduling behavior is itself a very interesting and 
meaningful topic, we will ignore it in this thesis as our major aim is to test the general 
validity of BR models in modeling pedestrian behavior rather than a full-fledged 
model. Therefore, we believe that capturing the general dynamics will suffice for basic 
planning practice and we will adopt the methodology which assumes local and 
independent decisions. On the other hand, we feel that it could be more relevant for 
planning practice to enrich pedestrian behavior study by considering more basic 
behavioral elements in the first place, such as the influence of time. This is based on 
the fact that temporal effects on decisions and behavior have been insufficiently 
studied, while the spatio-temporal dynamics is critical for planning, retailing, and 
public space administration. Although the time-varying Markov chain is theoretically 
reasonable, it was only modeled in separate stops. Considering real time will be more 
realistic and useful for practice. 

Fourth, multi-agent systems are a very useful tool for simulating pedestrian 
behavior and testing theories and models. With the help of MAS, one emerging trend 
in pedestrian modeling is that the models are increasingly more built for pedagogic 
use while less and less calibrated against data (e.g., Batty, 2001b). What the 
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researchers commonly do is setting the parameters based on past experience or just 
arbitrarily, and simulating individual behaviors, investigating the aggregate patterns 
and comparing these with observations. Based on the discrepancy, they adjust the 
parameters to reduce such discrepancy and repeat the process until satisfactory results 
are obtained. Although this can also be viewed as a calibration procedure, the 
accuracy of the estimates is discounted because such a recursive procedure can only 
be limitedly conducted by human intervention, especially when the simulation takes a 
long time. This trend is partially caused by the complex interdependency between 
behaviors, which if it would be formulated as a statistical model system and calibrated, 
must employ complex variance-covariance structures which could very likely have no 
analytical solutions and more computational expensive algorithms, such as simulation-
based estimation, have to be used. Another reason is that as very detailed behaviors 
are studied, the corresponding conditions influencing the behaviors and decisions are 
difficult to measure, such as the service level of a place at the moment of the decision 
and the perception of the environment. Nevertheless, at least for the purpose of 
understanding pedestrian behavior, model calibration should be carried out whenever 
possible, which will be the basic methodology of this thesis. MAS will serve as a test 
bed for the estimated models. 

Therefore, the methodological path of this thesis is a four-step procedure: 
setting up conceptual frameworks and developing models, collecting data, estimating 
models against data, and validating models through multi-agent simulation. The next 
chapter will articulate the development of the conceptual framework. 
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Chapter 

3 CONCEPTUAL FRAMEWORK 

The major conclusion of the literature review is that models of bounded rationality 
(BR) have not yet been empirically tested in pedestrian behavior research. The success 
of BR models in other fields suggests that pedestrian behavior research may benefit 
from further examining the process of individual decision making instead of merely 
applying conventional outcome-based modeling approaches. This potential 
improvement is also consistent with today’s decision environment with an ever 
increasing ocean of information, and the advancement of technology and media, 
exponentially increasing the choice complexity faced by decision makers. For a 
decision maker, knowing what to choose and how to choose is important; for a 
researcher, knowing how a decision maker knows what to choose and how to choose 
is important; for retailers, planners, policy-makers, knowing the mechanism of 
decision making is important too in order to provide effective information and plans. 

Returning to pedestrian behavior and other planning-related fields, the what to 
choose problem and the related choice set problem, have been discussed for quite 
some time (e.g., Ben-Akiva and Boccara, 1995; Haab and Hicks, 1997; Swait, 2001b), 
while the problem of how to choose (information selection, cognition, manipulation, 
etc.) has received much less research attention. Conventional rational choice models 
emphasize the concept of utility to represent individual’s preferences for alternatives. 
By assuming that utility is a combination (often linear) of weighted part-worth utilities, 
defined for attribute values, the models cannot reflect the process of information 
processing. The compensatory specification suggests that individuals make decisions 
as if the information comes altogether into the mind of the individual. However, in 
complex decision environments like shopping streets, this kind of model specification 
is far from realistic. Individuals will usually not take complicated decisions between 
various possible alternative behaviors, but apply an optimized behavioral strategy, 
which has been learned over time by trial and error (Helbing, et al., 2001). BR models, 
in particular, heuristic models emphasize the non-compensatory nature of decision 
processes and the attribute-by-attribute information processing, which is often easier 
than alternative-based evaluation as implied by compensatroy-utility choice models 
(e.g., Tversky, 1972). This seems a more naturally way of studying decision processes, 
although also not without limitations. 

The purpose of this chapter is to develop the conceptual framework for 
analyzing and modeling pedestrian behavior using principles of bounded rationality. 
The first section will discuss the major decisions during a pedestrian’s shopping trip 
that are modeled. The following three sections will introduce different approaches for 
modeling these decisions, while the second section will give a brief introduction to the 
classic multinomial logit model. Section 3 will then discuss the specifications of three 
types of well-known heuristic models: the conjunctive, disjunctive and lexicographic 
model. Section 4 will address the limitations of the conventional heuristic modeling 
approach and propose an extended approach (called the Heterogeneous Heuristic 
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Model), which captures heterogeneity in decision strategies and the selection of these 
strategies. The final section will provide a summary of this chapter. 

3.1 Decisions to Model 
Models are developed to serve the purpose of research or practice. For example, 
shopping center choice models have been developed to predict the distribution of 
demand across shopping centers, given overall demand; route choice models have 
been formulated for predicting the distribution of pedestrians in different streets of the 
shopping area, given the total number of pedestrians; local movement models have 
been suggested for predicting the microscopic behavior of individuals to optimize the 
setting of the walking environment. The purpose of the model system advanced in this 
thesis is to predict (1) the spatial distribution of pedestrian activities; (2) the temporal 
distribution of pedestrian activities; and (3) the distribution of pedestrian activities in 
space and time simultaneously, given the total number of pedestrians in the shopping 
area. Four decisions will be modeled: go-home, direction choice, rest and store 
patronage. Figure 3.1 shows the assumed relationships between these decisions. 

Go-home decision 
The go-home decision refers to a pedestrian deciding whether or not to end the 
shopping trip and leave the shopping area. In principle, when leaving the shopping 
area, pedestrians do not necessarily need to go home, but as we are not modeling the 
trip chain, it does not matter. Thus, we use the term go-home as a general term for the 
decision to end the shopping trip. This decision has most impact on the distributions of 
pedestrian activities, because if the pedestrian decides to go home, no more activities 
will be generated. Time constraints, fatigue, personal schedule and other factors may 
influence this decision. 

Direction choice decision 
After the pedestrian decides not to go home (keep shopping) or when he/she just 
enters the shopping area, he/she will choose a walking direction, if there are 
alternative directions. This is probably the second most important decision because it 
determines the activity space of the pedestrian. Pedestrians can only visit the stores 

 

 
Figure 3.1  The decisions to be modeled 
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that belong to a pedestrian’s activity space and not the stores outside this space. This 
decision is similar to the one studied by Borgers and Timmermans (1986b). They 
defined the shopping streets as links and nodes and assumed that pedestrians choose 
alternative links when they are at a certain node. Factors influencing this choice may 
be the retail attractiveness of the link, amenities of the walking environment, 
landmarks, and orientation habits. 

Rest decision 
Pedestrians may take a rest when they feel tired. Modeling the decision to take a rest is 
not negligible because rest behavior takes time and space too. Given a fixed personal 
time budget, the more time the pedestrian uses for rest the less time can be allocated to 
other activities (shopping, dining, and walking). Rest behavior may also be influenced 
by the physical environment. At some specific locations, such as near large shopping 
facilities, pedestrians may have a common feeling of tiredness after spending 
sufficiently long time on conducting activities. Consequently, at these locations, the 
aggregate demand for rest may be high. 

Store patronage decision 
If the pedestrian decides not to rest, store visits will continue and the problem then is 
which store to visit next. This store patronage decision directly influences the 
distribution of pedestrian in-store activities, which is the most relevant decision for 
retailers. Pedestrians may evaluate stores in terms of type, variety, quality, price level, 
and location. 
 
Although more detailed pedestrian behavior can be studied with more sophisticated 
models, these four decisions may be sufficient for modeling the general activity 
distributions in space and time, such as how many pedestrians are in a certain part of 
the street during certain time period, how many pedestrians are resting in a certain 
place, how many pedestrians are shopping in stores, and how many pedestrians are 
walking in the street. 

3.2 Multinomial Logit Model 
Discrete choice models have been the work horse for modeling individual choice 
behavior. Among these, the multinomial logit model (MNL) is the most fundamental 
one, which has been most frequently applied in various fields, mainly because it is 
easy to apply. It assumes that, when an individual chooses an alternative from multiple 
alternatives 1,...,i I= , he/she evaluates the utility of each alternative, iu , and selects 
the one with the highest utility. By assuming that the utility is composed of an 
observable part iv  which is often specified as a linear combination of factor values 

{ , 1,..., }jX x j J= =  weighted by parameters jβ , and a stochastic unobserved part iε  
which is further assumed to be an independently and identically Gumbel distribution 
across decision cases, of the form, 
Equation 3.1 
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The probability of an alternative being chosen, ip , is derived as 
Equation 3.2 
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Applying the model to the pedestrian decisions, the go-home decision can be 
modeled as a choice between the alternative “keep shopping” and the alternative “go 
home”; the direction choice decision can be more straightforwardly modeled as a 
choice among alternative directions; the rest decision can also be modeled as a choice 
between “take a rest” and “keep shopping”; the store patronage decision can be 
modeled as choosing the store with the highest utility composed of attractiveness and 
spatial factors. More detailed model specifications will be given in the next chapter. 

3.3 Heuristic Models 
Satisficing is a fundamental decision mechanism in the theory of bounded rationality. 
It assumes that alternatives are evaluated on an attribute-based, non-compensatory 
manner with certain stopping conditions controlling the decision process. If some 
conditions are met (or say, when people feel satisfied or unsatisfied with the results), 
the search for more alternatives or more factors may stop. In contrast, rational choice 
models imply that all alternatives are evaluated and all factors are taken into account. 

Let { , 1,..., }jX x j J= =  be the set of factors to be taken into account during 
the decision process, and let the satisficing function ( , )j j jS x c  represent the judgment 
process which gives a positive response when some condition jc  for factor jx  is 
satisfied, and gives a negative response otherwise. In many empirical cases, including 
those to be studied in this thesis, factors are coded into real values and therefore 
conditions can be represented by real valued thresholds, jδ . In turn, the satisficing 
function can be implemented as a comparison relationship j j jS x δ= ≥  (for the less 
than relationship, just simply change the signs of the arguments). Such relationships 
are the fundamental building blocks of various heuristic models. 

Aside from being used as the mechanism for evaluating alternatives, 
satisficing is also used for determining the inclusion of alternatives in order to limit 
the consideration set, especially when the number of available alternatives is large. A 
common assumption is that the decision maker will stop looking for more alternatives 
when the first satisfactory alternative is found, or when the first X-number of 
alternatives have been evaluated. 

The following discussions will only concern the heuristic models for 
alternative evaluation, as there is not much opportunity, if at all, to apply the 
mechanism of alternative inclusion in our empirical study. First, the go-home and rest 
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decision involve the dichotomous rejection/acceptation problem, for which the 
inclusion mechanism is irrelevant. Second, the empirical cases have at most three 
alternatives. Assuming full inclusion of alternative will therefore not be too unrealistic. 
Third, stopping at the first satisfactory store will be assumed in the store patronage 
models. In the next section, we will discuss three typical models: the conjunctive, 
disjunctive and lexicographic model. 

3.3.1 Conjunctive model 
The conjunctive rule is a typical heuristic decision rule which states that all thresholds 
of related factors have to be met in order to arrive at a positive overall judgment. Thus, 
the choice probability or decision outcome can be expressed as, 
Equation 3.3 
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The individual applying this rule evaluates the factors in some sequence. Once a factor 
does not meet the threshold value, the information search will immediately stop and 
the alternative will no longer be considered. The search process continues if the 
threshold is met until all factors have been evaluated. 

However, at the aggregate level, a single threshold value for each factor is 
unrealistic because people likely have different habits, purposes, schedules, taste 
variations or behavioral heterogeneities. These factors must cause threshold values to 
differ among decision makers. Incorporating such heterogeneity into the model 
specification makes the model more general and may improve its performance. 
Assuming that the thresholds belong to some probability distribution with density 
function jf  and cumulative density function jF , and that the thresholds are 
independent of each other, the relevant equations become, 
Equation 3.4 
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The probability of an alternative being satisfactory is the joint product of the 
cumulative densities of the thresholds at respective factor values. 

Heuristic models also emphasize the sequence of information search because 
the result of a decision may differ under different sequences. However, it does not 
apply to this conjunctive model since the model formulations will be the same under 
difference sequences. The limitation is that individual patterns of information search 
cannot be identified from the model. 

3.3.2 Disjunctive model 
The disjunctive rule adopts another organization of the building block relationships, 
which says that an alternative is satisfactory if at least a single factor meets the 
threshold value. Expressed formally, 
Equation 3.5 
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Under this rule, the individual also evaluates factors in some sequence. The 
information search process stops and the alternative is accepted when a single factor 
turns out to be satisfactory; the process continues when the threshold value is not met. 
The alternative is rejected when all factors have been evaluated and none is 
satisfactory. Given the same assumption of probabilistically distributed threshold 
values, the probabilistic version of Equation 3.5 is, 
Equation 3.6 

 

1 2 1 2

2 2 3 2 3

1 1

1 1 1

' '
' ' '

......
' ' '

......
'

i i i i i

i i i i i

ij ij ij ij ij

iJ iJ iJ iJ iJ

p p p p p
p p p p p

p p p p p

p p p p p

+ +

− − −

= + −

= + −

= + −

= + −

 (3.6) 

 

Here, the probability that an alternative is satisfactory is a nested structure of 
probabilistic “or” relationships. In the equation, ip  is still the final probability that the 
alternative is judged satisfactory. Starting from the last line, 1 'iJp −  is the joint 
probability that either factor 1J −  or J  is satisfactory, which then is further joined 
with the probability of factor 2J −  being satisfactory, 2 'iJp − , to derive the probability 
of any of the factors 2J − , 1J − , and J  being satisfactory. This procedure continues 
until all the factors have been evaluated and joined into ip . However, similar to the 
conjunctive model, the model specifications are the same under different factor search 
sequences. Therefore, the subscripts in the equation do not refer to any specific factor. 

3.3.3 Lexicographic model 

3.3.3.1 Specification in case of comparison judgment 
The lexicographic rule is usually used to represent decision processes for comparing 
two alternatives with comparable factors and selecting the better one. It assumes that 
alternatives are compared on an attribute-by-attribute basis following some 
information search sequence which is organized according to descending factor 
importance. Thus, alternatives are first compared in terms of the most important 
attribute; if they tie the factor next in importance is evaluated and so on until a choice 
can be made or all factors have been evaluated. In the latter case, the two alternatives 
are indifferent. The comparisons between factors depend on the levels of each factor. 
There must be at least two levels to differentiate the alternatives. In this simplest 
situation, let jδ  be the threshold which divides the factor into a higher level when 

j jx δ≥  and into a lower level when j jx δ< . There are three situations after 
comparing factor levels of two alternatives, 
Equation 3.7 
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where B
ikjp  is the result that factor j  of alternative i  is better than factor j  of 

alternative k , W
ikjp  means worse, and T

ikjp  means the two alternatives tie on this factor. 
When thresholds are heterogeneous, the probability versions of the first two 
components in Equation 3.7 are, 
Equation 3.8 
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If the factor search sequence (importance) is 1 2 ... Jx x x→ → → , the probability of 
alternative i  being better than alternative k , ikp , is 
Equation 3.9 
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This nested probability structure means that at each factor, the probability of i  being 
better than k  is composed of the probability that i  is better than k  on this factor, and 
the joint product of the probability of being a tie and the expected probability of being 
better on the factors considered later. Note that the last equation means that when all 
factors have been searched and all turn out to tie, a uniform random selection will be 
applied. Finally, when there are multiple alternatives, the probability of alternative i  
being chosen is, 
Equation 3.10 

 i ik
k

p p=∏  (3.10) 
 

Different from the conjunctive and disjunctive model, when the factor search 
sequence changes, the model specifications of the lexicographic model will change 
accordingly. Consequently, the choice probabilities may also change. This property 
allows investigating the effects of information search patterns on decision outcomes 
and identifying the optimal search sequence through model comparison. The number 
of potential models equals the number of factor permutations !J . 
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3.3.3.2 Specification for judging a single choice alternative 
If we just keep the logic of the lexicographic rule and disregard the comparison task to 
which it is usually applied, some modifications make the rule suitable for satisficing 
tasks. Assume that the individual uses two thresholds for each factor, a lower 
threshold L

jδ , and a higher threshold H
jδ , which divide the factor into three states. For 

example, an individual may think that a factor is unsatisfactory when L
j jx δ< , feels 

neutral when L H
j j jxδ δ≤ < , and that the factor is satisfactory when H

j jx δ≥ . 
Expressed in probabilities: 
Equation 3.11 
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Here, S
ijp  is the probability that the factor is satisfactory, which is the joint probability 

of the factor exceeding both threshold values5; U
ijp  is the probability that the factor is 

unsatisfactory which is the joint probability of the factor exceeding neither threshold; 
N
ijp  is the probability of being neutral. The decision process is that, under a certain 

factor search sequence, the individual accepts the alternative that is satisfactory on the 
factor considered; rejects the alternative when the factor is unsatisfactory, and 
continues searching for the factor next in importance when the current factor is neutral. 
If all factors have been searched and turn out to be neutral, the individual makes a 
random choice, captured by a uniform distribution. Given the search sequence 

1 2 ... Jx x x→ → → , the probability of alternative i  being accepted is, 
Equation 3.12 

 

1 1 2

2 2 2 3

1

'

' '
......

' '

......
' 0.5

S N
i i i i

S N
i i i i

S N
ij ij ij ij

S N
iJ iJ iJ

p p p p

p p p p

p p p p

p p p

+

= +

= +

= +

= +

 (3.12) 

 

All these heuristic models will be more specifically tailored to the decision 
problems under investigation in the next chapter. 
                                                      
5 From the perspective of a single decision maker, it may be more realistic to assume that the 
thresholds are inter-dependent as the higher threshold must be larger than the lower threshold, 
if the decision maker makes consistent judgments and classification of response into the three 
categories is done simultaneously. In that case, the joint distributions should be specified and 
estimated, making the model more complex and more difficult to estimate. We leave that for 
future research and view the current specification as a limiting case, where decision makers use 
a simplifying strategy and judge the thresholds independently. 
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3.4 The Heterogeneous Heuristic Model 
Although the existing heuristic models are of interest, the state-of-the-art indicates 
some shortcomings. First, the models are limited in the sense that they focus on the 
non-compensatory nature of the decision rule. The process that leads to the selection 
of factors entered in the decision process is usually not modeled. A common practice 
is that factor selection and search sequence are a priori assumed by the researcher (e.g. 
Tversky, 1972), obtained from direct reports of respondents (e.g., Recker, 1979; 
Gensch and Svestka, 1984; Young, 1984), or derived from statistical analyses related 
to factor importance (e.g., Gigerenzer, et al., 1999). 

Second, heuristic models have been developed in a fairly fragmented manner. 
Except the three typical heuristic rules that have been discussed before, there are many 
other rules, such as Dawes’ rule (Dawes, 1979), frequency of good/bad features rule 
(Alba and Marmorstein, 1987), and elimination-by-aspect (Tversky, 1972). The 
number of possible models is even significantly higher when a decision can be 
characterized by some complex hybrid process that combines the features of several 
simple heuristics (e.g., Payne, et al., 1988). Such a top-down way of researching 
heuristics leaves considerable arbitrariness in selecting a heuristic decision rule. The 
major problem is that a bottom-up mechanism to generate heuristics has not been 
systematically studied, with a few exceptions. One stream of research does not really 
aim to reveal the mechanism; rather, the researchers try to use functions that 
approximate the heuristic rules. For example, Einhorn (1970) used a hyperbolic 
function to approximate disjunctive rules and a parabolic function to approximate 
conjunctive rules. He admitted the difficulty in approximating the lexicographic rule. 
Swait (2001a) showed that incorporating attribute cutoffs and varying utility functions 
in conventional logit models can approximate disjunctive and conjunctive rule. 
However, approximation is not exact. It is unclear what heuristics are represented 
when indicator parameters are somewhere between conjunctive and disjunction rules. 
Moreover, the information search process cannot be identified and cutoffs were self-
reported in his experiment. Another stream of research attempted to model the 
mechanisms underlying the formation of elements in heuristics rules, including 
threshold selection and variability, using a cost-benefit framework (e.g., Grether and 
Wilde, 1984). 

Third, researchers typically have selected a particular heuristic model, or at 
best have compared particular alternative models. In reality, however, it is unlikely 
that different individuals will use the same choice rule. Even for the same individual, 
decision strategies may be context-dependent (Bettman, et al., 1998). Thus, the 
meaning of such comparison is that it indicates which model specification performs 
best at the aggregate level. An approach that accounts for heuristic heterogeneity 
would thus enhance models of bounded rationality. The general idea about this 
question tightly relates to how different individuals select a certain decision strategy as 
a result of trading off cognitive effort and accuracy of applying the strategy (e.g., 
Payne, 1982, 1988; Russo and Dosher, 1983), under different circumstances. This 
notion assumes that decision makers select strategies in a specific situation based on 
some compromise between the desire to make an accurate decision and the desire to 
minimize cognitive effort. As defining accuracy is relatively straightforward which is 
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usually realized by using some relative measures of predictive ability of a heuristic 
against that of a rational choice model, most discussions concentrated on decision 
effort. To represent effort, one stream of research uses elementary information 
processes (EIP) such as reading the values of two alternatives on an attribute, 
comparing them, and so forth (e.g., Newell and Simon, 1972; Payne, et al, 1988; 
Bettman, et al, 1998; Chu and Spires, 2000). EIP may be a close representation of the 
information processing mechanism and operationally manageable in experiment-based 
studies when the decision problem is specific, relatively simple and the data size is 
limited, but it still costs the researcher a lot of EIP to carefully trace the flow of 
information for a given strategy. It is very difficult to automate the calculation of EIPs 
of heterogeneous strategies when some generalized approach has to be applied to 
general decision problems. Shugan (1980) focuses on calculating the effort under 
different sequences of comparing attributes between two alternatives. The effort 
accumulates through information search until the decision stops at some stage. It 
incorporates a probabilistic stopping rule for information search. At the same time, the 
decision maker tolerates a mistaken decision (low accuracy) due to incomplete 
information. The approach assumes a sampling procedure which is used by the 
individual to obtain attribute variances for estimating the degree of inaccuracy. 
Whether people actually do such sampling is disputable. Similarly, Swait and 
Adamowicz (2001) assumed a pre-evaluation stage to empirically derive the prior 
choice probabilities needed to calculate the complexity measure (an entropy type 
index) of a choice task. They specified a latent class structure to derive the expected 
choice probabilities of alternatives under different choice strategies, in which the 
probability of being applied is a logistic function of the complexity measure. Thus, in 
conclusion, decision strategy heterogeneity and its determinants have been identified 
for quite some time in the literature, but formal operational models representing the 
mechanism underlying the choice of strategy are still scarce and immature. 

Based on this previous research, the following subsections propose an 
alternative approach, called the Heterogeneous Heuristic Model (HHM), which 
overcomes the limitations discussed above. It provides richer behavioral implications, 
including: (1) factor thresholds are incorporated in the utility function and estimated; 
(2) heterogeneous decision heuristics can be exactly identified; (3) the application of 
heuristics is modeled as a latent class structure which can be used further to study the 
context-dependent nature of strategy selection; (4) mental effort, risk perception and 
expected outcome of heuristics are defined and their influences on heuristic choice are 
estimated. 

3.4.1 A two-level two-stage framework 
Decision heuristics do not come out of the blue. It is logical to contend that there must 
be reasons behind the execution of a heuristic so that the individual knows to stop 
information search after finding some evidence rather than another. Heuristics are easy 
to implement and reasonably accurate because they are based on good reasons which 
however may take much effort to establish. For example, habit is the heuristic of 
everyday life, which can be executed even unconsciously. However, to form a habit 
may take months or years of time. Therefore, we propose a two-level structure for 
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understanding the formation of decision heuristics. At the lower level, there is 
preference structure, which is a value system involving the relevant cognized factors 
and relationships between these factors and defining the preference. The computations 
related to the preference structure may be relatively complicated, like algebraic rules. 
The establishment of the preference structure may take times of try and error. On the 
contrary, the heuristics at the higher level requires simple computations such as logical 
judgments. A heuristic is a logical inference of the preference structure. It achieves the 
same preference by referring to the internal relationships of the preference structure. 
Multiple heuristics may be inferred from the same structure (see later). As an analogy, 
we may imagine a multiplication table as such a preference structure. To get the result 
of m×n, we do not go through the process of adding m times n, but just locate the 
number at the intersection of the mth row and nth column in the table. 

It is common that people have different value systems, and for the same 
person, his/her value inclination also shifts with the situation. That means people’s 
preference structures are heterogeneous, so as to the heuristics. We assume that the 
individual has a repertoire of heuristics for dealing with different decision problems or 
the same problem under different situations/contexts. Upon making the decision, 
he/she first select a heuristic from the repertoire (e.g., to locate m before n, or the 
reverse?), then uses the chosen heuristic to make the decision. Therefore, every 
decision is a two-stage process. Figure 3.2 illustrates such a two-level two-stage 
decision framework in general. We will articulate each elements of this framework in 
the following sections. 

 

 
Figure 3.2  The two-level two-stage decision framework 
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3.4.2 Preference structure 
Based on the concept of bounded rationality, any decision or choice process can be 
understood as a problem-solving process in which an individual processes information 
to arrive at a decision that achieves a particular goal within some margin of accuracy. 
Based on this principle, assume that individuals will construct a mental representation 
of the decision problem. Literally, such representation can be depicted as a value 
system, from which the individual judges what is good, bad, right, or wrong. The 
establishment of this system may involve a long learning time, may use the structure 
of other systems for reference, or may be quickly created on the spot when the 
problem is unfamiliar. This cognitive process is assumed to consist of at least three 
sequential processes: filtering of information, factor representation into states, and 
judging the resulting states, individually and combined. Jointly, these processes lead to 
preference formation. 

Let { , 1,..., }jX x j J= =  represent the set of attributes or factors influencing 
the decision of interest. Assume that individuals do not necessarily take all these 
factors into account, but rather solve a decision problem by mentally (re)constructing 
the problem and selecting a subset of these factors. This filtering process is not 
invariant, but will depend on the decision problem, and more importantly on the 
activation level of the individual. This process may either be memory-based or 
triggered by environmental factors. In the latter case, filtering and 
translation/representation will take place, mapping environmental factors into mental 
states of the environment. 

Let jδ  represent an activation threshold for factor jx . These thresholds act as 
filters. Thus, by applying these thresholds, a subset of activated factors will enter the 
decision making process. Only if all thresholds are equal to zero (assuming that all 
factor stimulation can be transformed into positive real numbers and larger values 
represent stronger stimulation), all factors will be considered. Mathematically, this can 
be expressed as: 
Equation 3.13 
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where js  is the state of the factor in mental representation. Consequently, the set of 
factors considered, ' { | 1,  }j jX x s j= = ∀ . 

Once the irrelevant factors have been filtered and the relevant factors kept, the 
principle of bounded rationality suggests that individuals tend not to discriminate 
between all possible values of factors as this may cost a lot of cognitive effort to 
differentiate small but insignificant differences to the problem result at large. Rather, 
they will categorize the continuous factors into discrete classes or states, or re-
categorize discrete factors. Assume that in case of continuous factors, this process of 
factor representation involves the application of a monotonically increasing set of 
threshold values, which discretize the continuous factors into an ordered set of discrete 
classes. Let 1{ , 1,..., }j j jn jN n N∆ δ δ δ= < < =  be a set of successively increasing 
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activation thresholds for jx , corresponding to stricter judgment standards. (Note that 
N can be factor-dependent, so it should be jN . For representation simplicity, however, 
the subscript is ignored.) A factor may then meet one or more of these increasingly 
stricter activation thresholds and hence becomes more informative. The relevant 
equations then become, 
Equation 3.14 
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Thus, filtering and factor representation transforms categorical and continuous factors 
into a set of activated and non-activated internal (mental) factor states. 

Individuals will judge these states by (1) attaching values, (2) assigning 
relative importance weights, (3) integrating these values for individual states in some 
way to arrive at an overall judgment, and (4) evaluating the overall judgment against 
some overall threshold value in light of underlying goals. Attaching judgment values 
to states implies that the state is judged and valued in light of the decision goal. 
Weights indicate the relative importance of states in the decision problem. Because 
these values and weights are all unknown parameters in this approach, they are 
combined into a single value, jnw , which can be interpreted as a part-worth utility. Let 

jn jn jnu w s=  denote the value judgment of state n of factor jx . All states that are 
incorporated in the decision making process need to be combined according to some 
integration rule to arrive at an overall value judgment for each choice alternative. 
Various rules can be used. Thus, if an additive integration rule is assumed, the overall 
value judgment of choice alternative i equals: 
Equation 3.15 

 i ijn
j n

v u=∑∑  (3.15) 

 

In the final step, assume that the overall values are also categorized and 
mapped by checking them against a set of successively increasing overall thresholds 

1{ , 1,..., }m M m MΛ λ λ λ= < < = , resulting in the overall states, imp . This can be 
expressed as: 
Equation 3.16 
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In case this mapping only involves two preference orders (reject or accept), only one 
λ  is needed and 1 0ip =  defines rejecting the alternative, whereas 1 1ip =  implies 
accepting it. For representation simplicity, the following model formulations assume 
only two preference levels exist. 

Define a state value set for each factor, which includes all possible value 
judgments related to the factor, 
Equation 3.17 
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Let kv  represent any factorial combination from value judgments in the sets, that is, 
Equation 3.18 
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Ordering all the kv  ascending forms an overall value set, 
Equation 3.19 

 1{ ; 1,2,..., ; ( 1)}k K j
j

V v v v k K K N= < < = = +∏  (3.19) 

 

Checking these overall value judgments against the overall threshold λ  results in a 
unique pattern of relationships with some value judgments above the threshold, and 
some below the threshold. Thus, the set of overall value judgments V  can be divided 
into a subset 0V  of rejected overall value judgments and a set 1V  of accepted ones. 
This pattern can be viewed as a discrete preference structure, Φ , that is used to 
classify overall value judgments of alternatives into an ordered set of preferences (in 
this case reject or accept). Mathematically, 
Equation 3.20 
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For example, assume the decision problem has two related factors, Ax  and Bx . 
Ax  is represented into three states, 1 3

A As s− , divided by two thresholds, 1
Aδ  and 2

Aδ . 
Bx  is represented into four states, 1 4

B Bs s− , divided by three thresholds, 1 3
B Bδ δ− . Such 

a representation can be expressed in a tree structure, called preference tree, as shown 
in Figure 3.3. At the bottom, the ovals represent overall value judgments V , each 
element of which is a value combination from a state value of Ax  and a state value of 

Bx . 

 
Figure 3.3  An example of a preference tree of a two factor decision 
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3.4.3 Decision heuristics 
Once the preference structure is established, it serves as a template based on which 
information is represented and organized. It is part of a person’s value system. 
Assume that in every choice context, individuals will define a set of threshold values 
and apply choice heuristics which are logically consistent with the preference structure. 
Because for different individuals or in different contexts preference structures may 
differ in terms of the pattern of the sets of accepted and rejected values, this implies 
that the cognitive process model automatically generates heterogeneous choice 
heuristics. One extreme is the strictest preference structure in the sense that no single 
value (judgment) combination survives the overall threshold, 
Equation 3.21 

 { }0 |k kΦ v V v λ= ∈ <  (3.21) 
 

That means that regardless of the states of the factors, the choice alternative under 
consideration will be rejected. In this case, no choice heuristics are implied (or the 
unconditional rejection heuristic) since the individual has no need to evaluate any 
information. To illustrate for the above example, it corresponds to the situation when 

12vλ > . 
Relaxing λ  a little could lead to a preference structure where only the value 

combination of factor states with the highest threshold values is accepted, 
Equation 3.22 
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This preference structure implies a conjunctive rule according to which an alternative 
will be accepted only when all factors are acceptable at their highest states. During the 
decision process, any single unsatisfactory factor will cause the decision process to 
stop, regardless of the states of the other factors. In the example, this may correspond 
to the situation when 11 12v vλ< ≤ . To explain further, two decision trees, one starting 
searching from Ax  and the other from Bx , are shown in Figure 3.4. The alternative 

 

 
Figure 3.4  Two conjunctive heuristics 
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will be rejected when either Ax  is not in 3
As  or Bx  is not in 4

Bs . Not all factor 
thresholds will be used for a particular decision. As can be seen from the figure, only 

2
Aδ  and 3

Bδ  are actually effective. Some factor states lead to the same result and may 
be treated as a single state. 

At the opposite end is the most relaxed preference structure, representing the 
case that all factor combinations are accepted. 
Equation 3.23 

 { }1 |k kΦ v V v λ= ∈ ≥  (3.23) 
 

This preference structure implies the unconditional acceptation heuristic since factors 
being in whatever state will lead to the alternative being accepted. In the example, 

1vλ ≤  represents such a situation. 
A little less tolerance for λ  may result in a preference structure where all but 

the value combinations of non-activated factor states are accepted, 
Equation 3.24 
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Disjunctive heuristics can be inferred from this preference structure since any 
satisfactory factor state (except the non-activated state) will cause the decision process 
to stop and the choice alternative to be accepted, regardless of the state of the other 
factors. Figure 3.5 shows two disjunctive heuristics for the example, when 1 2v vλ< ≤ . 
The alternative will be accepted either when Ax  is in 2 3/A As s  or Bx  is in 2 3 4/ /B B Bs s s . 
Then only the lowest thresholds for both factors are effective. 

Within the spectrum, various other preference structures and heuristics can be 
identified. For example, the lexicographic heuristic is implied by a preference 
structure, 
Equation 3.25 

 

 
Figure 3.5  Two disjunctive heuristics 
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According to this preference structure, there exists at least one factor j. When some 
states of this factor are not activated, the decision process will stop and the alternative 
will be rejected. When some states are activated, the decision process will stop and the 
alternative will be accepted. In-between are those states whose status cannot determine 
whether the alternative is accepted or rejected and further evaluation of other factors is 
needed. In the example, this preference structure can be found when 4 5v vλ< ≤ . The 
two implied heuristics are shown in Figure 3.6. 

Different from the above preference structures, however, the lexicographic 
heuristic only holds when Bx  is evaluated first. That is, the alternative will be 
accepted if Bx  is in 3 4/B Bs s , and will be rejected if Bx  is in 1

Bs . However, the 
individual needs to further evaluate Ax  if Bx  is in 2

Bs . The lexicographic 
interpretation does not hold when Ax  is evaluated first because Ax , regardless of its 
state, will not generate a definite outcome and Bx  must be evaluated anyway. The 
effort of decision making then may differ between using the two heuristics although 
they generate the same result. 

By varying the value of the overall threshold, many other decision rules can 
be identified based on this approach. Some may have been independently proposed; 
some could be a hybrid of other heuristics. The location of λ  determines how a 
problem will be looked at (a serious problem with very high standard or a minor 
problem with very low standard) and the involvement of the decision maker (extensive 
or limited information search), which, of course, vary from person to person, from 
context to context. 

 

 

Figure 3.6  Lexicographic heuristic from evaluating Bx  first 
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3.4.4 Choice of heuristic 
Assume that different individuals or the individual in different contexts may apply 
different preference structures and corresponding choice heuristics to solve problems. 
That is, people have a context-dependent repertoire of preference structures and 
corresponding heuristics, as suggested by many researchers (e.g., Beach and Mitchell, 
1978; Payne, et al., 1988). Although we should always try to specify the context as 
much as possible, there will always remain some stochastic element from the 
viewpoint of the analyst. Such randomness can be mathematically included into the 
overall threshold, so that we get ~ fλ , where f is a probability density function. 
Because V  is a discrete set, between consecutive pairs of kv , there is a range of λ , 
satisfying 1k kv vλ− < ≤ . It represents the range of an invariant preference structure. 
The probability of this preference structure kΦ  being applied, kp , equals the 
probability of λ  being in this range, given f is a continuous distribution: 
Equation 3.26 
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We may equivalently view this as the probability of applying choice heuristics implied 
by the preference structure. Thus, any single decision may be a two-stage process, (1) 
choosing an appropriate preference structure and applying this structure to the choice 
task, and then (2) forming preferences among alternatives and making the choice. 
Because the preference structure actually applied by the decision maker is usually 
unknown, the final probability of an alternative being satisfactory can be modeled as 
the expected result of choice outcomes aggregated across all possible choice outcomes 
under these latent preference structures, or mathematically: 
Equation 3.27 
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where |i kp  is the probability that alternative i is satisfactory when preference structure 

k is applied. It has the same specification as imp  in Equation 3.16. However, because 
within an invariant range the value of λ  does not affect choice outcomes, λ  does not 
need to be identified. Instead, the upper bound of λ , kv , is enough as a critical value 
for the overall threshold. Although the process of selecting a preference structure itself 
may be susceptible to bounded rationality, here only the outcome of this process is 
modeled. Assuming the distribution of preference structures can be represented by a 
multinomial logit distribution, the individual selects the preference structure 
probabilistically based on its expected value. The probability of a preference structure 
being applied can then be modeled as 
Equation 3.28 
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where ku  is the value that the individual expects from applying preference structure k. 
In fact, Equation 3.28 represents the probability that the heuristics which are implied 
by the preference structure are selected. Because for certain preference structure 
applying different heuristics does not affect the choice outcome, Equation 3.28 can 
also be formulated as the aggregation of the probabilities of the heuristics being 
chosen, 
Equation 3.29 
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where khu  is the expected value of heuristic h implied by preference structure k. We 
assume that this value is composed of three factors: mental effort, risk perception and 
expected outcome. 

3.4.4.1 Mental effort 
It is the obvious that the more factors considered and the more alternatives evaluated 
to make a decision, the more mental effort has to be invested. In this thesis, the 
influence of the number of alternatives will not be modeled. It is treated as part of the 
context of the decision problem. The emphasis is on the factors involved, and 
moreover, on the factor search sequence. This emphasis is motivated by the fact that 
the influence of factors on decisions differs. Important factors may be decisive for a 
decision and if they are evaluated earlier, they may obliterate the need to search other 
factors, which costs less mental effort. However, different types of information may 
also cause the processing effort to differ between factors. For example, judging the 
shape of an object may be more difficult than judging color. A complicating factor is 
that individuals cannot be sure about the amount of mental effort that will be involved 
in the decision that follows. They can only subjectively estimate it based on their 
uncertain (probability) beliefs jnp  that the activated factors occupy certain states that 
make any further consideration of subsequent factors useless. 

To illustrate, let three factors 1x , 2x , and 3x  have, A, B, and C states 
respectively ( 1,..., ;  1,..., ;  1,...,a A b B c C= = = ). Assume that the heuristic under 
consideration implies the factor search sequence 1 2 3x x x→ → . Let 1e , 2e , and 3e  
denote the amount of the expected mental effort inflicted when searching and 
evaluating factors 1x , 2x , and 3x  respectively, and let ap , bp , and cp  represent the 
individual’s beliefs that the factors are in the states with value judgments av , bv , and 

cv  respectively, such that 1, 1, 1a b c
a b c

p p p= = =∑ ∑ ∑ . The expected amount of 

mental effort is then defined as: 
Equation 3.30 

 1 2 3( )h a a a b ab
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Equation 3.31 
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Equation 3.32 
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Equation 3.30 reflects the fact that 1e  is inevitably fully inflicted since 1x  is searched 
first. For each possible state of 1x , expected efforts are derived from two terms. First, 
the effort of searching 2x  is weighted by the probability of 1x  being in a particular 
state and aY , an identity function defined by Equation 3.31. aY  represents a judgment 
process, according to which an individual checks whether all subsequent value 
combinations |abcv a , are inactivated against λ , or all values are activated. If all value 
combinations are inactivated, the corresponding factor is not searched and no 
additional mental effort is involved. If all value combinations are activated, it means 
that that the same decision or preference applies to all instances of that factor and 
hence searching the factor will not have any effect on the preference ordering or 
decision. In these cases, 0aY = . In contrast, when 1aY = , 2x  needs to be searched.  

According to the same logic, the second term relates to searching 3x  when at a 
state of 2x . 3e  is weighted by a bp p , the joint probability of being in the previous two 
factor states, and abY  is another identity function judging whether the simultaneous 
conditions | ,abcv a b  against λ  are satisfied or not. According to this definition, due to 
the fact that efforts of searching factors may differ and different factor values may 
cause earlier or later termination of the decision process, the expected efforts of 
different search sequences may differ as well when the expected overall values are 
homogeneously against the overall threshold. 

3.4.4.2 Risk perception 
The saying “Don’t put all eggs in one basket” suggests that extreme investment is very 
risky. Avoiding extreme situations seems to be human nature. For example, humans 
try to maintain biological diversity so that creatures will be less vulnerable to 
catastrophic environmental changes; many social phenomena are normally distributed, 
etc. Assume that this rule also applies to individuals selecting a decision strategy. By 
selecting a very high or very low λ  within the overall value space, the individual will 
have a very high probability to reject or accept an alternative since most of the 
information will fall into the overall value set that is lower or higher than λ . The 
advantage of judging the alternative in a nearly monotonic way is that the decision 
process will be very simple and will cost little effort. However, the expected 
opportunity costs will increase if the result would be better when the alternative is 
looked at in another way. Such opportunity costs are tightly related to the expected 
regret resulting from a potentially false rejection or false acceptation. This notion is 
similar to what Bettman, et al. (1998) called negative experienced emotion, which is 
to be minimized in a decision. In contrast, selecting a mild λ  will control the expected 



Conceptual Framework 

61 

regret to a minimum by staying uncertain about the outcome at every stage of 
information search. It will induce looking for more information in order to get a 
comprehensive view of the choice alternatives. The drawback of doing so is it requires 
more effort. 

For this reason, more outcome variety after every factor search means lower 
decision risk. The risk perception is determined by the location of λ  and the 
probability beliefs. To model this property, Shannon’s Information Entropy is applied 
because it has been developed specifically for measuring information uncertainty. Let 

kp , corresponding to kv , be the factorial joint product of the probability beliefs on 
factor states. The probability of a positive, khr+ , respectively negative, khr− , outcome 
equals: 
Equation 3.33 
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where ( )Y ζ  is an identity function being 1 when ζ  is true and 0 when ζ  is false. It 
follows that the risk perception for heuristics implied by the same preference structure 
is the same because different information search sequences do not change the 
preference/choice outcome. Therefore, subscript h may be excluded. Then, the risk 
perception of a preference structure is, 
Equation 3.34 

 2 2log ( ) log ( )k k k k kr r r r r+ + − −= − −  (3.34) 
 

The property of the Information Entropy measure is that its value is at its maximum 
when all outcomes are equally possible and at its minimum when the outcomes are 
absolutely certain. In this case, the maximum value is 0.5, which represents the lowest 
risk perception, and the minimum value is 0, which represents the highest risk 
perception. 

3.4.4.3 Expected outcome 
Individuals may have expectations about the outcome of a decision which is directly 
related to the context of the decision problem because people may favor some 
outcomes more than others. This makes the selection of judgment standards not a 
neutral process but it likely involves value biases. A decision standard which leads to 
more probable occurrences of preferred outcomes is more likely to be selected. 
Assuming that each outcome brings a particular value, the expected outcome can be 
represented as: 
Equation 3.35 

 k k k k ko o r o r+ + − −= +  (3.35) 
 

where ok
+ is the value of the satisfactory outcome and ok

- is the value of the 
unsatisfactory outcome. Like in the risk perception, the factor search sequence does 
not have an influence either. Various rules can be applied to represent the joint effects 
of the three elements. If a linear weighted linear combination rule is assumed, then we 
have, 
Equation 3.36 
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 e r o
kh kh k ku e r oβ β β= + +  (3.36) 

 

where eβ  is the parameter for effort, and is assumed to be negative because khe  
represents a kind of costs, rβ  is a parameter for risk perception and is also assumed to 
be positive because people are assumed to prefer low decision risks, and oβ  is a 
parameter for expected outcome. We do not have any a priori expectations about the 
sign of oβ . These weights are influenced by a variety of decision problem 
characteristics, such as the importance, irreversibility, and time limit for a decision. In 
general, for a relatively important and irreversible decision, a low weight for effort 
and a high weight for risk perception may be expected; the situation will be the 
reverse when the decision has to be made quickly. 

3.4.5 Extension to comparative choice decisions 
The previous model specifications are based on situations where an individual needs 
to decide whether an alternative is satisfactory, judged against some existing standards. 
This subsection extends this approach to comparative choice decisions, involving two 
alternatives. 

Assume that the formation of preference structure involves alternative-based 
comparison of alternatives as in the discrete choice models, and people prefer the 
alternative with the higher utility. Further, assume that people compare the ranks of 
utilities instead of the utility itself. This means that only the relative relationships 
between the utilities count in this cognitive system and that their absolute values do 
not matter. Based on Equation 3.16, the probability that alternative i is better than 
alternative l is, 
Equation 3.37 
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where R
iv  is the rank of alternative i within the set of value combinations V . R

ilv  is the 
rank difference between alternative i and l. Here Rλ  represents the discriminant 
threshold against which the rank difference is judged. Thus, the number of rank 
differences and Rλ  are limited to K, the maximum number of overall value judgments. 
Equation 3.37 implies that an individual sets a discriminant threshold to judge whether 
an alternative is sufficiently better than another, which may be a more realistic 
assumption than assuming an individual discriminates alternatives in terms of 
infinitively small utility differences. Note that R

ilp  is not equivalent to the probability 
that alternative i is chosen over alternative l, which is defined as: 
Equation 3.38 
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This means that alternative i is chosen when it has sufficiently higher rank than 
alternative l. It is assumed that a uniform random choice is applied when neither 
alternative is sufficiently better, given the discriminant threshold. 

The heuristic rule for guiding information search may be formed based on the 
cognitive structure. The procedure is shown in Figure 3.7. Given discriminant 
threshold Rλ  and factor search sequence 1 ... J→ → , the individual searches the first 
factor of both alternatives. Assuming that alternative i is in state n and alternative l is 
in state m, let ijnv  and ljmv  represent the state values of factor j for the two alternatives. 

Define iv  and lv , as the cumulative state values of the factors that have been 
evaluated for each alternative, given that factor j is the latest one that has been 
evaluated, 
Equation 3.39 
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Then the individual calculates the minimum and maximum expected overall values, iv  

 

 
Figure 3.7  Procedure of forming a heuristic rule for comparison 
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and iv , by adding the current alternative values with the sum of the minimum or 
maximum state values of the unsearched factors, jv  respective jv , 
Equation 3.40 
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Let R
iv  and R

iv  be the ranks of the minimum and maximum expected overall values in 
V . Next, the individual judges whether the information search process should stop. 
There are two stopping conditions: (1) when the two alternatives can be definitely 
discriminated, 
Equation 3.41 

 arg min(| |,| |)R R R R R
i l l iv v v v λ− − ≥  (3.41) 

 

 (2) when the two alternatives can definitely not be discriminated: 
Equation 3.42 

 arg max(| |,| |)R R R R R
i l l iv v v v λ− − <  (3.42) 

 

Figure 3.8 gives an illustration of some possible situations satisfying the two stopping 
conditions. 

If neither of these conditions is met, the decision cannot be made and another 
factor has to be searched. This procedure is repeated until the stopping conditions are 
met or the last factor is searched. In case that the alternatives cannot be discriminated 
after all the factors are evaluated, random choice is assumed. After practicing this 
judgment procedure a sufficient number of times, the individual may establish the 
decision rules (e.g., in the form of if…then…else) for fast decisions. 

Again, the variation of Rλ  controls the heterogeneity of comparison strategies. 
The general trend is that when Rλ  is large, it is less likely that the alternatives will be 
discriminated, so that random choice will be more frequent and the decision requires 
less effort. When Rλ  is small, the decision also requires less effort because the 
alternatives will be easier to discriminate. When Rλ  has an intermediate value, more 
extensive search is required to discriminate the alternatives. 

Similarly, the expected choice probability considering latent preference 
structures turns out to be: 
Equation 3.43 

  
Condition 1: definite discrimination 

 
Condition 2: definite indiscrimination 

 

 
Figure 3.8  The stopping conditions for comparative choice 
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The same specification as in Equation 3.29 can be used to model the selection of 
comparison heuristics, with some extra modifications on mental effort, risk perception 
and expected outcome. The stopping rule for factor search under a heuristic depends 
on whether two alternatives can or cannot be discriminated when subsequent possible 
value ranks are considered. Based on Equation 3.30-32, expected effort is defined as: 
Equation 3.44 
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Equation 3.46 
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In Equation 3.44, because searching one factor implies factors of both alternatives are 
searched, the major difference is that the factor state probabilities of both alternatives 
have to be included in order to form a joint probability. Identity function R

aY  is 0 when 
after 1x  is searched, all subsequent possible value rank differences, | |

R
il abcv  (|il| means 

regardless of comparison sequence between alternatives), are all smaller than the 
discriminant threshold, meaning alternatives cannot be discriminated, or are all equal 
to or larger than the discriminant threshold, meaning alternatives can be discriminated. 
The search process can stop here. Otherwise, factor search will continue and the effort 
for searching the next factor must be paid. The same definition logic applies to R

abY . 
For the specification of risk perception, only rkh

+ needs to be modified as, 
Equation 3.47 
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where isp  is the probability of alternative i having overall value sv , and R
stv  is the rank 

difference between the overall value ranks of the two alternatives. The specification of 
the expected outcome changes accordingly, with o+  representing the situation that the 
two alternatives can be discriminated under Rλ , and o−  representing the situation that 
they cannot be discriminated. 

3.5 Summary 
This chapter discussed the building blocks of the models that are to be empirically 
tested in the next few chapters. Four major decision models for predicting and/or 
simulating pedestrian behavior were outlined. They are expected to significantly 
influence the general spatio-temporal distributions of pedestrian activities. The 
specification of the multinomial logit model was also given, which will be applied to 
all the decision problems and serve as the benchmark for the heuristic models. 
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Moreover, the rationales underlying three typical heuristic models (conjunctive, 
disjunctive and lexicographic model) were introduced. By incorporating threshold 
heterogeneity, these models were specified in a probabilistic manner so that 
likelihood-based model estimation techniques can be used. 

To overcome some limitations in modeling bounded rationality, the 
Heterogeneous Heuristic Model was proposed, which adopts a two-level two-stage 
modeling framework. By introducing factor thresholds, the mechanisms of factor 
filtering, problem representation, and the formation of preference structures were 
modeled. It was shown that the variation of the overall threshold may lead to 
heterogeneous decision heuristics. Evidence of utility-maximizing behavior would be 
obtained if estimated thresholds would be such that all factors are taken into account, 
the number of states for each factor would be high as this would indicate detailed 
discrimination. Any deviations from this outcome, in contrast, would support aspects 
of bounded rationality. This property allows capturing individual- or context-
dependent decision strategies in one single model by applying a latent class structure. 
The choice of heuristic was further looked into, whose outcome was modeled in terms 
of an MNL distribution which is proportional to the value of each heuristic, defined as 
a combined evaluation of mental effort, risk perception, and expected outcome. 
Finally, the approach was extended to model comparative choice decisions. 

Without requiring more input information from data than conventional 
rational choice models, HHM provides much richer behavioral output. Estimates of 
factor thresholds will show how the environment is cognized and represented by 
pedestrians. Perhaps the most valuable behavioral output is the set of different 
decision heuristics that can be probabilistically estimated. These advantages will be 
shown in the applications discussed in the next chapter by empirically estimating these 
models on pedestrian behavioral data. 
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Chapter 

4 DATA 

This chapter introduces the data that were used to estimate the models proposed in the 
previous chapter. Two datasets on pedestrian shopping behaviors were collected, one 
in Wang Fujing Street (WFS), Beijing, and the other one in East Nanjing Road (ENR), 
Shanghai, China. Both streets are located in the downtown shopping areas. The WFS 
dataset was collected in 2004, before the PhD project started. It was used to estimate 
the conventional heuristic models. The ENR dataset was collected in 2007. Some 
modifications were made to the data collection format used for WFS. It was used to 
estimate the HHMs.  

The chapter includes three sections. This first section introduces the data 
collection in WFS. It includes five subsections. The first subsection introduces the 
survey design. The second subsection introduces the survey area. The administration 
of the data collection is introduced in the third subsection. In the fourth subsection, an 
approach that was specifically developed for estimating spatio-temporal information 
of pedestrian behavior is discussed. This is followed by a brief overview of the basic 
characteristics of the samples, such as pedestrians’ socio-demographics, and activities 
in space and time. The second section introduces the data collection in ENR with the 
same subsections. The last section is a short summary. 

4.1 Wang Fujing Street 

4.1.1 Survey design 
In order to model the four decisions (go-home, direction choice, rest, and store 
patronage), data on pedestrian behavior, resulting from these decisions must be 
obtained. The data should be able to tell when the pedestrians decided to go home, 
which direction was chosen, when and where a rest stop was made, and which stores 
were patronized. Behavioral data should also pertain to a certain time span to model 
the influence of time on decisions. The demands on the data collection are therefore 
quite high. 

Two types of survey methods are commonly used in pedestrian behavior 
research: collecting data in experiments or in the real world. The major advantage of 
experimentation is that the researcher can control the conditions that generate 
particular behavioral responses. The major disadvantage is that the experiment cannot 
replicate the complexity of the real world. Although some new technologies such as 
Virtual Reality have been applied to collect pedestrian data (e.g., Tan, et al., 2006), 
the representations, however realistic, still do not allow respondents to experience 
subjective feelings such as fatigue, boredom, and sense of time, which are not 
ignorable for studying time-dependent pedestrian behavior. Therefore, a real-world 
survey method was applied to collect data. Instead of using high accuracy tracking 
methods such as GPS, mobile phone, RFID, or tracking the pedestrian (for 
comprehensive review on this topic, see Hoogendoorn, et al., 2003; Bandini, et al., 
2007, Millonig and Gartner, 2007, Borgers, et al., 2008), a questionnaire was used 
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because it is relatively easy to administer, implying that a large number sample (which 
provides stable behavioral heterogeneity) and rich information can be obtained for 
limited resources. Although the method could reduce data accuracy, it may be 
tolerated given the research aim (e.g., Hill, 1984). 

The major purpose of the survey was to collect detailed information about 
pedestrian shopping diaries. These diaries include two types of questions: (1) 
pedestrian’s socio-demographics, such as gender, age, income, purpose, etc.; (2) the 
activities a pedestrian conducted since the beginning of the shopping trip, including 
the sequence of visits to stores, types of activities, items bought, plan of visits and 
activities, expenditures, start time of the trip, (expected) end time of the trip, and entry 
and (expected) exit point of the survey area. Figure 4.1 illustrates the questions related 
to activities. The arrival time was recorded first. Then, in sequence, the pedestrian 
reported the entry point and all following stores or places that were visited, which 
were recorded using pre-defined code.  For each visited store, the interviewer recorded 
whether the visit was planned or not, the activity in the store (e.g., cloth, fast food, 
visiting), whether this activity was planned or not, and the expenditure. Note that 
multiple visits of the same store for different activities were recorded separately. 
Finally, the pedestrian was asked to estimate the expected time for ending the 
shopping trip. 

The major disadvantage of this method of data collection is that the quality of 
interview, especially for the second type of questions, is difficult to control because it 
largely depends on respondent’s self report, which may be affected by memory loss, 
fatigue, intention to cooperate and other factors. As a result, biases are inevitable and 
hard to identify, at least from the survey itself. 

4.1.2 Background 
Located in the center of Beijing city, Wang Fujing Street (WFS) is a shopping street 
with over 700 hundred years of history. It is now a modern multifunctional city center 
with retail, entertainment, leisure, culture, office, hotel and other functions. The 
survey area is about 1.3 km2 around the street and includes the major section of WFS 
where most retail stores in this area are located (Figure 4.2). The street is about 1,200 
m long from south to north, of which about 530 m is the pedestrianized section which 
was constructed in 1999. Public transportation concentrates at the southern end of the 
street, including a metro station of the two most important lines and several bus stops. 

Please report in sequence your activities 
Arrival time: 14:00        
 Entry Visit 1 Visit 2 Visit 3 … Visit 20 Exit 
Store/Place (No.) 1 101 101 204   20 
Planned visit (0/1)  1 1 0    
Activity (No.)  1 2     
Planned activity (0/1)  1 0     
Expense  200 0     
   Departure time: 18:00  

Figure 4.1  Illustration of the questions about activities 
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Some bus stops are also located in the middle section and northern end of the street. 
The Forbidden City and Tianan Men Square are located 1,000 m to its west. The north 
of the street locates many cultural facilities such as China Fine Art Museum and 
Beijing People’s Art Theater. The street is one of the busiest shopping areas in Beijing. 
The latest estimate of the number of pedestrians is 250,000 per day on normal days 
and 300,000 on holidays (Beijing Dong Cheng District Government, 2005). In this  
 linear shopping space, large department stores are all located south to the northern 
end of the pedestrianized section, with approximately 320,000 m2 total retail 
floorspace. The rest retail floorspace, about 37,000 m2, is distributed in the section to 
the northern end of the pedestrianized section. 

4.1.3 Data collection 
Twenty undergraduate students from the Department of Regional and Urban Planning, 
Peking University, administered the survey on May 17 (Monday) and 22 (Saturday), 
2004. At 9 survey spots evenly distributed along the street from 11:00 to 20:00, they 
asked randomly selected pedestrians who indicated that they had completed their 
shopping trip, to fill out a questionnaire. The selection of these pedestrians was based 
on the consideration that their diaries are nearly complete, which provides the largest 
degree of accuracy for studying the full activity chain. However, this sampling 
procedure may result in a sample that is not representative of the population in the 
street, because the surveying time did not spread across store operation hours. As a 
result, the sample may only represent a sub-population of pedestrians who ended the 

 
The non-pedestrianized section 

 
The pedestrianized section 

Figure 4.2  The survey area of WFS 
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trip relatively early. Consequently, some systematic bias related to the number of 
visits and time use may have been introduced. Those pedestrians who agreed to 
participate usually spent 15-20 minutes completing the interview. Answers depended 
on memory recall. Interviewers provided two maps to respondents for improving 
recall. One map portrayed the survey area and identified entry/exit points; the other 
map portrayed the WFS with the names and locations of major stores. A total of 760 
valid diaries were collected, 275 (36%) during the first day and 485 (64%) during the 
second day. 

4.1.4 Time estimation 
Compared to the spatial information collected from the pedestrian diaries, the 
temporal information is much scarcer: only the start time and the (expected) end time 
of the trip is available. Although it is not impossible to ask respondents about the 
clock time they conducted a certain activity at a particular place, respondents may 
have difficulty to recall the time because people usually do not notice it. The 
reliability of their answers is therefore probably very low and even worse, the quality 
of other questions may be harmed when respondents become anxious due to such 
annoying, difficult-to-report questions. An approach was therefore developed to 
estimate the missing time information. It consists of the following steps: 

 
Figure 4.3  The grid space 
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(1) Represent the survey area into a grid space composed of 5 * 5 m cells (Figure 

4.3). The grid size was determined through a balance between accuracy and 
computation cost. Each cell was assigned an arbitrary walking cost, assuming 
that the pedestrianized section has the least cost (1 in this case), which implies 
that pedestrians will prefer walking in this type of cell to others. The non-
pedestrianized section of the shopping street has cost 2 and other normal 
streets have cost 3. These are the walkable cells. All relevant spatial points 
(entry/exit points and stores) were assigned to their nearest walkable cells. 

(2) Generate a dataset in which each record represents a movement pair with an 
origin and a destination, based on the consecutive visits in the activity diary. 

(3) Simulate pedestrian “walking” in the space for each movement pair and 
estimate the distance between origin and destination using a shortest path 
algorithm, given the assumed preference on walking costs. 

(4) Estimate the walking duration based on the distance, given a walking speed of 
1 m/s. Although researches have suggested that pedestrian walking speed in 
non-shopping environments is about 1.5 m/s (e.g., Willis, et al., 2004), it is 
reasonable to use this slower average speed because shopping behavior is 
more leisurely and people search information from the environment more 
frequently, especially tourists. 

(5) Estimate the duration for each activity, represented by j, using equation 
( ) /a e s m

j j
j

t t t t N= − − ∑ , where a
jt  is activity duration, et  is the end time of the 

shopping trip and st  is the start time, m
jt  is the walking duration for a 

movement pair, N  is the total number of activities that the pedestrian 

 

 
Figure 4.4  Relationship between spatial and temporal information 
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conducted during the shopping trip. This means that activity duration is the 
average of the overall duration in the street, excluding walking duration 
(Figure 4.4). 

4.1.5 Basic sample characteristics 
Table 4.1 lists some basic characteristics of the sample. There are slightly more male 
pedestrians than female pedestrians. Young pedestrians are the major group, followed 
by middle-aged and old pedestrians. More than half of the pedestrians lived in the city 
while the rest came from outside. Among the major purposes for visiting WFS, leisure 
is the most-reported one; tourism also has a large percentage. The number of 
pedestrians purely shopping is relatively low. This finding can probably be explained 
by the many historical sites near this area, WFS itself being one of these. Most 
pedestrians used public transport to reach the survey area, mainly bus and metro. This 
makes that the overall distributions of activities is strongly affected by the locations of 
metro and bus stops. Most pedestrians were with a companion. 

The distribution of pedestrians’ arrival hours is shown in Figure 4.5. It is 
almost a single modal distribution with the peak hour between 13:00 – 14:00. The 
mean is 12:55, with a standard deviation of 2.3 hours. Figure 4.6 shows the cumulative 
distribution of the pedestrians’ total duration in the street. The value, as said before, 
was calculated as the difference between the self-reported end time and arrival time. 
There are frequent small jumps in the figure, because people are used to round time to 
the nearest quarter. The mean is 4.4 hours, and the standard deviation is 2.2 hours. The 
distribution of the number of store visits is shown in Figure 4.7. It shows that about 
10% of the pedestrians did not visit any store during the trip. 80% of the pedestrians 
conducted no more than 4 activities. There are very few pedestrians who conducted 
more than 8 activities. The mean is 3.1 times, and the standard deviation is 2.3 times. 
The distribution of the number of stops to rest is as follows: 0 time = 51.7%, 1 time = 
39.2%, 2 times = 7.4%, 3 times = 1.2%, and 4 times = 0.5%. 90% of the pedestrians 
rested no more than once, while half of the pedestrians did report not to have taken 
any rest at all. The mean is 0.6 stops, and the standard deviation is 0.7 stops. Figure 

 
Table 4.1  Basic characteristics of the sample (WFS)(1) 

Gender Male Female    
 54 46    
Age(2) Young Middle Old   
 53 34 13   
Residence In town Out of town    
 55 45    
Purpose Shopping Tourism Leisure Others  
 26 29 31 14  
Transport Metro Bus Car, Taxi Walk Others 
 31 36 19 10 4 
Group size 1 person 2 persons ≥ 3 persons   
 23 69 8   
(1) Numbers in percentages 
(2) Young = 16 – 29; middle = 30 – 49; old ≥ 50 
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4.8 shows the distribution of activity duration. The mean is 62.7 minutes, and the 
standard deviation is 49.4 minutes. 

 

 
Figure 4.5  Distribution of arrival hour (WFS) 

 

 
Figure 4.6  Cumulative distribution of total duration (WFS) 

 

 
Figure 4.7  Cumulative distribution of the number of store visits (WFS) 
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Figure 4.8  Cumulative distribution of activity duration (WFS) 

 

 
Figure 4.9  Distribution of entries (WFS) 

 

 
Figure 4.10  Distribution of activities (WFS) 
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Figure 4.9 shows that the main entrance where near to 50% of the pedestrians 
entered the survey area is at the southern end of WFS, where the only metro station in 
this area and several bus stops are located. 10% of the pedestrians entered from a point 
somewhere 400 m to the west of the major entrance, because several tourism sites 
including The Forbidden Palace are located in that direction. It is reasonable to infer 
that the pedestrians either entered from the west or east side of the main entrance and 
finally converged to this site because it is a good place to start the shopping trip. 
Taking this into account, nearly 60% of the pedestrians started at the southern end of 
WFS, while 11% of the pedestrians entered at the northern end of the street. 

Figure 4.10 shows the distribution of activities in individual stores. Large 
retail facilities like department stores and shopping malls attracted more than 50% of 
the total number of activities. The first 1/3 section of the street starting from the 
southern end has most activities, because this is the part where the stores are most 
densely located and it is closest to the main entrance. The 1/3 section in the middle 
locates a department store and a shopping mall, both locally famous, which attracted 
most activities in this section. The last 1/3 section is non-pedestrianized. Substantially 
fewer activities were conducted here. Although a department store is also located at 
the northern end, it only attracted 2% of the total activities. 

4.2 East Nanjing Road 

4.2.1 Survey design 
The same survey method as the one used to WFS case was applied in the ENR case, 
albeit with some modifications. One modification is that multiple activities in the 
same store were not recorded separately. Instead, the visit to a store was only recorded 
once and pedestrians were asked to estimate the amount of time they spent in that 
store. This additional question was based on the consideration that averaging the 
duration across all types of activities is not realistic since, for example, people usually 
spend more time in large stores than in small stores; spend more time on shopping 
than on rest. It was expected that, by doing so, the general differences in activity time 
use can be obtained, although it might not be accurate because people’s estimation 
might be crude. 

The second modification is that no prior conditions were set for inviting 
respondents. Administrators were instructed to invite respondents completely at 
random, regardless of respondents’ current status. Furthermore, respondents’ status 
was recorded as “Just started”, “In-between”, or “Almost finished” for analysis 
purposes. This decision aimed at reducing potential sample bias due to selection 
strategy. It was expected that, by doing so, the obtained sample and pedestrian 
behaviors would be closer to the population characteristics. However, one drawback is 
that the number of records with complete trip chains is reduced. Thus, it is more 
problematic to represent full behavioral complexity and heterogeneity in some 
analyses. Based on the reported sequences of store visits, it is not difficult to elicit 
pedestrians’ routes since both streets are almost linear. However, this method cannot 
guarantee that pedestrians did not move to somewhere outside the space between 
origins and destinations. Thus, the third modification is recording “turning points” 
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where pedestrians changed their walking direction. This will provide more accurate 
data for direction choice modeling. 

4.2.2 Background 
ENR is named “The No. 1 shopping street in China” both for its historic position and 
its current symbolic meaning for Chinese retailing. In the early 20th century, when the 
area near ENR was leased to the British, several English retail department stores were 
established in ENR, followed by hundreds of retailers opening their businesses before 
the 1920s. Many of these old brand stores still exist today, adding much charm and an 
international ambiance, with many other modern stores. It is also a famous tourism 
site so that there is a saying “You don’t really have been in Shanghai if you haven’t 
been to Nanjing Road”. The latest estimate of the number of pedestrians reported by 
the Research Center of Shanghai Commercial Economy (2006) is an average of 
680,000 per day on normal days. The number is 97% higher during important holidays 
such as May 1st and October 1st. Part of ENR was pedestrianized in 1999. The street 
is about 1,600 m long, and 1,000 m of this is pedestrianized (Figure 4.11). People’s 
Square, a multifunctional place for gathering, leisure, shopping, museums and a public 
transportation terminal, is located at the western end of the street. The eastern end 
locates The Bund, an internationally famous tourism site featuring buildings of the 
early 20th century. Many public transport stops are located near the Bund. There are 
two metro stations in the area, one near People’s Square, and the other at the eastern 
end of the pedestrianozed section, Mid Henan Road. There are two very important 

  

 

 
Pedestrianized section 

 
Non-pedestrianized section 

Figure 4.11  The survey area of ENR 
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metro lines running across these two stations, which carry a huge number of 
passengers everyday. Most of the shops are located along both sides of the street, 
shaping a linear shopping space. The west end locates 4 department stores, forming a 
strong retail magnate. There are also several department stores along the 
pedestrianized section but not in the non-pedestrianized section, leading to much a 
significant difference in total retail floorspace between the two sections: 330,000 m2 
versus 25,000 m2. 

4.2.3 Data collection 
Twenty students from the Department of Urban Planning, Tongji University, 
administrated the survey during two days, May 19 (Saturday) and May 22 (Tuesday), 
2007. Each day from 12:00 to 20:00, they randomly invited pedestrians to answer the 
questions and recorded the respondent’s activity diary, up to the moment of the 
interview. The administration procedures were the same as those in WFS case. 
However, due to practical reasons, almost all administrators were arranged in the 
pedestrianized section because there are no resting facilities in the non-pedestrianized 
section, which makes it very difficult to intercept pedestrians when they are moving. 
As can be expected, most of the time interviewers asked pedestrians who were resting 
in the pedestrian section to participate because the questionnaire requires some effort 
to complete. Such arrangement may cause some biases in the distributions of 
pedestrian activities in the street, such as that it ignores the pedestrians who did not 
take any rest during the whole shopping trip. Therefore, the average number of rest 
activity for each pedestrian may be overestimated. The valid number of records is 811, 
393 (48.5%) of which were collected on Saturday, while 418 (51.5%) were collected 
on Tuesday. 

4.2.4 Time estimation 
The grid-based approach was also used in this case for estimating unknown time 
information during a pedestrian’s shopping trip. The improvement is that the duration 
estimates could now be based on reported activity durations. First, distances between 
the origin and the destination of each movement pair were calculated using the 
shortest route algorithm. Then, walking durations, m

jt , were estimated still using the 
assumed 1 m/s walking speed. Next, the total duration, T, was calculated as the 
difference between the end time, et , and the start time, st . The definition of the end 
time differs between pedestrians of different status. For pedestrians who reported that 
they had almost finished their shopping trip, the end time is their expected time to 
finish the trip. For pedestrians who reported that they just started or were in-between, 
their expected end time is much more unreliable. For them, the time when the 
interview started was treated as the latest time for calculating duration. The total 
activity duration, aT , was derived by subtracting the sum of the walking durations, 

m m
j

j

T t=∑ , from the total duration. This total activity duration may not be consistent 

with the sum of the reported in-store/rest durations, r
jt . If the reported durations are 

assumed to be accurate and the average walking duration of a movement pair is 53 
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minutes, which is unrealistically long since finishing the whole street may take no 
more than 30 minutes. That means that respondents in general underestimated activity 
durations. However, the relative ratios between reported durations may be more 
reliable. Based on this reasoning, the estimated activity durations, a

jt , are the 
reallocation of the total activity duration according to the ratios between reported 
durations. That is /a a r r

j j j
j

t T t t= ∑ . Figure 4.12 illustrates this procedure. 

4.2.5 Basic sample characteristics 
Table 4.2 shows some socio-demographics of the sample. There were 10% more male 
pedestrians than female pedestrians, almost the same as in the WFS case. The 
distribution of age is also very similar, with the young pedestrians being the dominant 
group, followed by the middle aged and the old pedestrians. 60% of the pedestrians 
were from within town while the rest were from the outside. The distribution of the 

 
Figure 4.12  Procedure for estimating time information (ENR) 
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major purposes differs more from the WFS case. The percentages of shopping and 
tourism increased, especially tourism, reflecting the number of tourists in ENR. 
Accordingly, the percentages of leisure and other purposes dropped. Public 
transportation is the major transport mode that the pedestrians used. Probably because 
of the better accessibility of public transportation, the use of car and taxi is less. 
Nearly half of the respondents were with a companion, but this percentage is still 
much less than in the WFS case. In contrast, the percentage of larger groups is higher, 
because many respondents were member of some tourism group. As for the 
pedestrians’ status when they were being interviewed, half of them had visited some 
stores and indicated they would continue the shopping trip; 34% of them reported that 
they were preparing to leave; the remaining 14% just started the trip. 

The distribution of pedestrians’ arrival hours (Figure 4.13) has two peaks. The 
first peak is between 10:00 – 11:00; the second peak, same as for the WFS case, is 
between 13:00 – 14:00. The mean arrival hour is 12:30, and the standard deviation is 
2.5 hours. Figure 4.14 shows the distribution of total duration. Because the end time 
reported by the respondents who just started or were in-between the shopping trip 
might not be reliable, this distribution only uses the respondents who were near the 
end of the trip. The mean total duration is 4.2 hours, and the standard deviation is 2.4 
hours. This same subsample is also used for generating the distributions of the number 
of store visits and rest behavior. In Figure 4.15, 80% of the pedestrians visited less 
than 5 stores. The mean is 2.9 stores, and the standard deviation is 1.9 stores. The 
distribution of number of stops to rest is: 0 stop = 44.5%; 1 stop = 51.3%; 2 stops = 
3.8%; 3 stops = 0.4. 96% of the pedestrians rested no more than once. The mean is 0.6 
stops, and the standard deviation is 0.6 stops. The distribution of the activity durations 
can be differentiated between four activity types, shop, eat, rest, and tour. From Figure 
4.16, it seems that the pedestrians spent the least amount of time on rest, with a mean 
of 38.9 minutes and standard deviation of 44.2 minutes. The duration of shopping is 
more than resting with a mean of 47.6 minutes and standard deviation of 52.9 minutes. 
The duration of eating is even longer, with a mean of 58.2 minutes and standard 
deviation of 55.6 minutes. The duration of tourism activities, in this case visiting The 

Table 4.2  Basic characteristics of the sample (ENR) 

Gender Male Female    
 55 45    
Age Young Middle Old   
 51 32 17   
Residence In town Out of town    
 60 40    
Purpose Shopping Tourism Leisure Others  
 29 34 22 15  
Transport Metro Bus Car, Taxi Walk Others 
 37 34 12 9 8 
Group size 1 person 2 persons ≥ 3 persons   
 18 47 35   
Status Just started In-between Almost finished   
 14 52 34   
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Bund, is the longest, with a mean of 109.9 minutes and standard deviation of 108.2 
minutes. 

 

 
Figure 4.13  Distribution of arrival hour (ENR) 

 

 
Figure 4.14  Cumulative distribution of total duration (ENR) 

 

 
Figure 4.15  Cumulative distribution of the number of store visits (ENR) 
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Figure 4.16  Cumulative distribution of activity duration (ENR) 

 

 
Figure 4.17  Distribution pedestrians in entries (ENR) 

 

 
Figure 4.18  Distribution of activities in stores (ENR) 
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Figure 4.17 suggests that three entry clusters can be identified. The largest 
cluster is the western end of ENR, where 50% of the pedestrians entered. The location 
with the highest number of entries (18%) is a metro terminal with 4 lines. The second 
largest cluster is at the eastern end of the street, near The Bund. Around 20% of the 
pedestrians entered from here as there are many bus stops. The third cluster is at the 
eastern end of the pedestrianized street, where about 17% of the pedestrians entered 
because of a nearby metro station. The distribution of activities in individual stores is 
shown in Figure 4.18. Similar to the WFS case, large stores attracted significantly 
more pedestrians than small stores. At the western end, 20% of the activities 
concentrated in the four department stores. That is why this area is named “The 
Golden Triangle”. In the middle section, one department store received outstanding 
attention. In general, the activity intensity in the non-pedestrianized section is 
significantly lower than that in the pedestrianized section. 

4.3 Summary 
Two pedestrian behavior datasets and their collection have been discussed in this 
chapter. These descriptive analyses are kept concise for the purpose of clarifying the 
necessary information for understanding the data. For more detailed information about 
the two places and pedestrian behavior, readers are referred to Wang, et al. (2003, 
2004, 2006) and Zhu, et al. (2005, 2007). The major content of the data is a pedestrian 
shopping diary which will be used for model estimation, the results of which will be 
described in the next chapter. In both cases, questionnaire-based personal interviews 
were used so that the complexity of pedestrian behavior and their reaction to the 
environment can remain real. However, a negative effect of the data collection 
approaches is that sampling bias seems inevitable either from the focus on pedestrian’s 
specific status or from the uneven distribution of survey locations. Nevertheless, we 
argue that the validity of the methods can be inferred to some extent from generally 
consistent pedestrian behaviors in both cases, including the number of store visits, the 
number of rest stops, activity duration, and the relationship between the entry 
distribution and public transport. Moreover, two approaches for estimating the 
temporal information of pedestrians’ activities were developed. 
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 Chapter 

5 MODEL ESTIMATION 

In Chapter 3, four decisions (go-home, direction choice, rest and store patronage) were 
proposed as the major decisions that determine the general spatio-temporal behavior 
of pedestrians. The basic rationales underlying three different mode types 
(multinomial logit model, heuristic model, and the heterogeneous heuristic model) 
were also discussed as general-purpose decision models, but these models were not 
tailored to each proposed decision problem. We argued that models based on the 
principle of bounded rationality are theoretically more appropriate than conventional 
rational choice models for representing the decision processes of pedestrians, which 
can be assumed to be often characterized by simplifying decision heuristics. However, 
without justification, this argument will be nothing more than just an argument. 

The purpose of this chapter therefore is to provide a partial justification (as it 
is indirect and incomplete) for the appropriateness of models based on the principle of 
bounded rationality and their advantage over rational choice models. This is the core 
and main purpose of this thesis. The proposed models are estimated using the real-
world data of pedestrian behavior, discussed in Chapter 4. As the emphasis is on 
testing the appropriateness of alternative modeling approaches, comparing the 
empirical results of the various models will be the major concern. The first section 
will apply the heuristic models and the multinomial logit models to the WFS case for 
all four pedestrian decisions and compare their results. The second section will apply 
the HHM to the ENR case. MNL models will be applied to this data and results will be 
compared with those of HHM too. The third section will provide a summary for this 
chapter. 

5.1 Heuristic Models and the WFS Case 

5.1.1 Go-home decision 
Because data on when pedestrians decided to go home is not available, it was assumed 
that the go-home decision is considered consciously or unconsciously by pedestrians 
every time after they completed a visit to a store or took a rest. Thus, if there are, for 
example, 10 visits during a shopping trip, the pedestrian is assumed to have decided to 
continue shopping after each of the first 9 visits, and assumed to have decided to go 
home after finishing the 10th visit. That is, every visit was treated as a decision case 
and this led to a total of 2,741 cases. 

To understand the factors influencing pedestrians’ go-home decisions, 
respondents were asked for their major reasons for going home. Figure 5.1 shows the 
distribution of the answers. Except for the “others” option, which only represents a 
small part, the remaining four options all suggest that there are some limits that do not 
allow pedestrians to continue shopping. Figure 5.1 indicates that important reasons for 
going home are that they completed their shopping list and that they felt tired. 
Although it is possible to ask respondents for such information and build a model 
based on such data, such an information-eager model could be too specific to be useful 
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in a new environment when such detailed personal information is missing. In order to 
develop a more general model, time was therefore selected as a substitute factor. This 
choice is based on the reasoning that time is generally highly correlated with the 
specific reasons listed in Figure 5.1. The more time a pedestrian spends on shopping, 
the more likely  he/she has bought the items on the shopping list, has visited the places 
he/she intended to visit, has become tired, or has felt the urge to conduct other planned 
activities. 

Two kinds of real time were used in the models: relative time ( Rt ) and 
absolute time ( At ), both in minutes. Relative time refers to the time elapsed since the 
pedestrian started the shopping trip. It correlates with the progress of purchasing the 
planned items during the shopping trip, visiting schedules and how tired the pedestrian 
has become. Absolute time refers to the time difference between the current activity 
time and the 0:00 base. It correlates with available time budgets reflecting when 
pedestrians must turn to other business. Four models will be specified and estimated 
for comparison. The first is the conventional multinomial logit model (MNL). The 
remaining three heuristic models are specified based on the conjunctive, disjunctive 
and lexicographic model respectively. 

5.1.1.1 Models 

MNL 
Under the discrete choice framework, the go-home decision can be seen as a choice 
between two options: keep shopping and going home. Their respective observable 
utilities are specified as, 
Equation 5.1 

 
S R R A A

H H

v t t
v

β β

β

= +

=
 (5.1) 

 

where Sv  is the observable utility of shopping which is the sum of Rt  and At  
weighted by their parameters, Rβ  and Aβ , respectively. It is hypothesized that the 

 
Figure 5.1  Reasons for going home 
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utility of shopping should decrease as time increases, implying these two parameters 
should be negative. The observable utility of going home, Hv , is represented by Hβ , 
an alternative-specific constant whose sign is not hypothesized. The probability of 
going home then equals: 
Equation 5.2 

 exp( )
exp( ) exp( )

H
H

S H

vp
v v

=
+

 (5.2) 

 

This linear additive utility function is typical for MNL models. However, the 
pedestrian may not necessarily use both Rt  and At  for the decision. Another 
unrealistic characteristic is that a smaller value in one factor can be (at least partially) 
compensated by higher values of one or more other factors, so that, for example, even 
when the absolute time is very late (e.g., the stores are going to close at 22:00), the 
pedestrian could still decide to shop if he arrives at the shopping street at exactly this 
time as long as the utility of  Rt  is large enough compared to that of At . 

Conjunctive model 
Applied to the go-home decision, the conjunctive model implies that both time limits 
have to be reached before the pedestrian end the shopping trip. Let Rδ  and Aδ  be the 
threshold values for Rt  and At  respectively. The decision mechanism is simply that if 
the pedestrian finds that both thresholds are exceeded, he/she will decide to go home 
and keep shopping if otherwise. Formally, 
Equation 5.3 

 
1    if 
0    otherwise

R R A A
H t t

p
δ δ⎧ ≥ ∧ ≥

= ⎨
⎩

 (5.3) 

 

Considering threshold heterogeneity, that is, pedestrians have their own time 
thresholds. We assumed that the threshold values of Rt  and At  follow the distributions, 

~ ( , )R R R Rδ α β θ+ Γ  and ~ ( , )A A A Aδ α β θ+ Γ . Here Γ  represents the standard 
gamma distribution, α  is a constant, β  is the shape parameter and θ  is the scale 
parameter. Note that by introducing α , the thresholds may also be negative under this 
gamma-based distribution. The reason for assuming this distribution is that it is 
relatively flexible. Then, transforming Equation 5.3 into the probabilistic case yields: 
Equation 5.4 

 
1

1

    ,

( , , )

H X

X
X X X X X X

p p X R A

p G t α β θ

= =

= −

∏
 (5.4) 

 

The probability of going home is the joint product of the probabilities that both factors 
exceed their corresponding thresholds. These probabilities are just simply the 
cumulative probabilities of factor values under their respective cumulative density 
functions, G. 

To sum up, there are six parameters related to threshold distributions to be 
estimated in this model. Different from the conventional utility models, the influence 
of the parameters depends on the model specification and a parameter value of 0 does 
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not necessarily means that the corresponding parameter has no effect. For this 
conjunctive model, it can be seen from the first line in Equation 5.4 that a factor will 
have a null effect (or is ineffective) if its probability of being satisfactory is 1. It 
indicates that if the factor is always satisfactory under all circumstances, it is virtually 
useless for the decision and can be simply ignored. Therefore, if the estimated 
threshold distribution is such that most of the relevant values in the data are larger 
than the threshold, all parameters for this distribution have little effect and can be 
ignored (e.g., Dist 1 in Figure 5.2). Even if this is not the case, Xα  will also be 
ineffective if it is equal 0, suggesting a standard gamma distribution; Xβ  will be 
ineffective if it is very close to 0, meaning that the distribution is highly concentrated 
around Xα  and the threshold can be treated as “hard” - a single value (e.g., Dist 2 in 
Figure 5.2); Xθ  will be ineffective if it equals 1, meaning that no scaling on the 
variable is needed. Empirically, we statistically test whether the parameter estimates 
are close enough to these null-effect values. 

Disjunctive model 
If the decision rule is disjunctive, the pedestrians decides to go home on the finding 
that either Rt  or At  exceeds the threshold value. Formally, 
Equation 5.5 

 
1    if 
0    otherwise

R R A A
H t t

p
δ δ⎧ ≥ ∨ ≥

= ⎨
⎩

 (5.5) 

 

In a probabilistic format, given the same specification of threshold distributions as in 
the conjunctive model, 
Equation 5.6 

 1 1 1 1
H R A R Ap p p p p= + −  (5.6) 

 

The specific impact of parameter values is slightly different from the 
conjunctive model. Here, a factor will be ineffective if its probability of being 
satisfactory is very close to 0 for all cases in the data, implying that another factor 
must be searched anyway. Hence, a factor has null effect if the threshold distribution 

 
Figure 5.2  Two examples of parameter ineffectiveness of the threshold distribution in the 

conjunctive go-home model 
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is estimated to have a large enough Xα , larger than almost all the variable values. The 
way of judging the effect of Xβ  and Xθ  is the same as in the conjunctive model, if 

Xα  is smaller than some values of the corresponding variable. 

Lexicographic model 
Since the go-home decision implies judging satisfaction, the satisficing specification 
of the lexicographic model should apply if the pedestrians use the lexicographic rule 
for their decision. Assume that a pedestrian applies two thresholds for each factor, 

1 2 1 2{ , ; }R R R Rδ δ δ δ<  for Rt , and 1 2 1 2{ , ; }A A A Aδ δ δ δ<  for At . Thus, a pedestrian feels 
satisfied with a factor, say Rt , when 2

R Rt δ≥ , feels unsatisfied when 1
R Rt δ< , and 

feels neutral when 1 2
R R Rtδ δ≤ < . The decision process is, supposing Rt  is searched 

first, that when the pedestrian finds Rt  satisfactory, he/she will decide to go home; 
when Rt  is found to be unsatisfactory, the decision is to keep shopping; when Rt  is 
neutral, the pedestrian will continue to search At . In the last situation, if At  is 
satisfactory, the decision will be to go home; to keep shopping if At  is unsatisfactory; 
and to make a random decision when At  is neutral. This process can be represented 
formally as follows: 
Equation 5.7 

 2 1 2 2 1 21    if ( ( ( )))
0    otherwise

R R R R R A A A A A
H t t t t

p
Ηδ δ δ δ Ε δ δ⎧ ≥ ∨ ≤ < ∧ ≥ ∨ ≤ <

= ⎨
⎩

 (5.7) 

 

where ( )HE ζ  represents the random decision process under condition ζ  and the 
result is going-home. Also assuming that all threshold values conform to gamma-
based distributions, that is ( , )  ( 1,2; , )X X X X X

j j j j j j X R Aδ α β θ= + Γ = = , the probability 
of going-home is, 
Equation 5.8 

 
1 1 0 1 1 0

1 1 1 1 1 2 2 2 2

0 1 1 1 1 2 2 2 2
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p p p p p p p

p G t G t

p G t G t

α β θ α β θ

α β θ α β θ

= + − − + − −

= − −

= − − − −

 (5.8) 

 

Note that the probability of a factor being satisfactory is the joint probability that both 
thresholds are exceeded, and the probability of being unsatisfactory is the joint 
probability that neither threshold is exceeded. The remainder is the probability of 
being neutral. 

Different from the conjunctive and the disjunctive model, the formulation of 
the lexicographic model changes when the sequence of information search changes. 
This allows identifying which sequence might be more appropriate for the decision 
based on model estimation. In total, 12 parameters related to threshold distributions 
are to be estimated. Judging the effects of parameters becomes more complicated. 
Looking at the first line in Equation 5.8, 1

Xp  and 0
Xp  being 0 will have nil impact on 

the probability of going home. Especially when both these probabilities are 0, it means 
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the probability of the factor being neutral is 1. In that case, the factor is virtually 
useless for reaching a decision and the other factor must be searched. For 1

Xp  to be 
equal to 0, at least one term on the right hand side of the second line in Equation 5.8 
should be equal to 0, which means that either the lower or the higher threshold should 
be very large. In contrast, if either the lower or higher threshold is very small 0

Xp  will 
be equal to zero. Consequently, for this to happen 1

Xα  and 2
Xα  are either very small so 

that all variable values exceed the thresholds implied by the threshold distribution, or 
they are so large that no variable value exceeds any threshold value. Table 5.1 
summarizes the critical values of the parameters in all the heuristic go-home models 
for judging whether they have any effect in the decision making process. 

5.1.1.2 Estimation issues 
Given the specifications of choice probabilities, all the parameters of the four models 
can be estimated using maximum likelihood estimation. The assumption applied to the 
models is that all probability distributions are independently and identically distributed 
across cases, so that the objective function is: 
Equation 5.9 

 
1

ln( ) ln( )
CN

H H S S
n n n n

n
LL y p y p

=

= +∑  (5.9) 
 

where LL is the log-likelihood, ( , )Y
ny Y S H=  is the observed decision outcome 

(shopping or going-home) of case n, Y
np  is their respective probabilities, and CN  is 

the number of cases. This assumption may be criticized in that pedestrians are 
involved in a similar decision multiple times and hence the observations may not be 
independent. However, the assumption of independence is commonly made in models 
of complex behavior. It serves as a benchmark and we leave more complex covariance 
structures for future tests. 

Different estimation algorithms were used to estimate the models. Algorithms 
for calibrating MNL models have been quite mature. In this case, SAS software was 
used to estimate the MNL models. However, there are no existing algorithms for 
calibrating the proposed heuristic models. Moreover, the LL functions of some models, 
such as the lexicographic models and HHM, are multi-modal and non-smooth (e.g., 
see Figure 5.3). Consequently, conventional gradient-based algorithms may be trapped 
in local optimums easily. Therefore, a hybrid algorithm was developed, which is 
composed of a genetic algorithm for global search, the Taxi-Cab algorithm providing 
tunneling-like functionality when the genetic algorithm gets stuck, and a gradient-
based algorithm for optimizing the final estimation locally. MATLAB was used as the 
platform for coordinating these algorithms. Global optima are not guaranteed using 

Table 5.1  Critical parameters for having no effect (go-home) 

Conjunctive Disjunctive Lexicographic 
Xα → −∞  Xα →∞  1 2, ,X Xα α → −∞ ∞  

Common: 0Xβ → , 1Xθ =  
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these algorithms, although different starting points were tried and much computation 
time was invested. 

To select the optimal model in the sense of being closest to the true model, 
model selection methods were applied. Various model selection methods and selection 
criteria have been proposed in the literature (e.g., Bozdogan, 2000; Browne, 2000; 
Busemeyer and Wang, 2000; Cutting, 2000; Forster, 2000; Myung, 2000; Zucchini, 
2000). Among the criteria suggested, Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC) and Consistent AIC (CAIC) are the most frequently 
applied mainly because they are easy to calculate. They are defined as the trade-off 
between model goodness-of-fit and model complexity: 
Equation 5.10 

 
2 2
2 ln( )

2 (ln( ) 1)

P

P C

P C

AIC LL N
BIC LL N N
CAIC LL N N

= − +

= − +

= − + +

 (5.10) 

 

where PN  is the number of free parameters in the model. All three criteria use log-
likelihood as a goodness-of-fit measure. Only the complexity components are different. 
AIC only uses the number of parameters; BIC adds the number of cases into 
complexity, implying that a larger sample size will result in a larger BIC; CAIC just 
adds one more PN  compared to BIC. Under each criterion, the model with the 
smallest index is chosen as the best model. Using different criteria for model selection 
may lead to different optimal models. 

 

 
Figure 5.3  Illustration of an objective function with two threshold variables 
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Dayton and Lin (1997) compared the accuracy of the three criteria through 
experiments and found pros and cons of each. They did find evidence however of a 
general tendency to prefer BIC and CAIC over AIC. In this thesis, we therefore 
decided to use CAIC to select models because it is more complete as it takes into 
account data complexity (sample size) and is the strictest which in turn, leads to the 
selection of the most parsimonious model specification that may have good robustness. 
 
Table 5.2  Estimation results of the go-home models (WFS) 

MNL normal variables MNL logged variables Conjunctive 
Parameter Estimate Parameter Estimate Parameter Estimate 

Rβ  -0.007 * Rβ  -1.471 * 
Rα  0 

Aβ  -0.008 * Aβ  -8.510 * Rβ  2.575 * 
Hβ  -10.501 * Hβ  -67.117 * Rθ  57.648 * 

    Aα  671.078 * 
    Aβ  4.335 * 
    Aθ  75.640 * 

CN  2,741 CN  2,741 CN  2,741 
PN  + 3 PN  3 PN  5 

LL -1,121 LL -1,085 LL -1,075 
CAIC 2,269 CAIC 2,197 CAIC 2,195 

Disjunctive Lexicographic R At t→  Lexicographic A Rt t→  
Parameter Estimate Parameter Estimate Parameter Estimate 

Rα  98.919 * 1
Rα  0 1

Rα  0 
Rβ  1.365 * 2

Rα  ∞ 2
Rα  0 

Rθ  309.229 * 1
Rβ  2.656 * 1

Rβ  1.025 * 
Aα  768.613 * 2

Rβ  - 2
Rβ  4.605 * 

Aβ  2.621 * 1
Rθ  55.523 * 1

Rθ  400.251 * 
Aθ  178.723 * 2

Rθ  - 2
Rθ  28.228 * 

  1
Aα  0 1

Aα  0 
  2

Aα  0 2
Aα  ∞ 

  1
Aβ  5.340 * 1

Aβ  92.724 * 
  2

Aβ  32.922 * 2
Aβ  - 

  1
Aθ  170.454 * 1

Aθ  10.152 * 
  2

Aθ  33.664 * 2
Aθ  - 

CN  2,741 CN  2,741 CN  2,741 
PN  6 PN  6 PN  6 

LL -1,141 LL -1,072 LL -1,073 
CAIC 2,336 CAIC 2,198 CAIC 2,200 
* Parameters are effective / significant 
+ Only effective parameters are counted 
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5.1.1.3 Results 
Table 5.2 shows the estimation results of all proposed models. Note that not all 
parameter estimates are shown because those that have a negative influence on CAIC 
have been excluded and may be considered to have insignificant effects. One more 
version of the MNL model was added, which uses the natural logs of the time 
variables to represent their marginally decreasing effects on utility. The MNL model 
with normal variables performed quite well with LL = -1,121, which corresponds to a 
0.41 McFadden’s Likelihood Ratio (MLR). Parameters for the time variables are all 
significant and negative as hypothesized, suggesting that the utility of shopping 
decreases with time and correspondingly the impetus for going home increases. When 
the variables are logged, the MNL model fitted the data much better, suggesting that 
this nonlinear utility specification is more appropriate. 

The conjunctive model has a better LL, with an insignificant constant 
parameter for Rt . In contrast, the LL of the disjunctive model is the worst of all 
models. The two lexicographic models have the highest LLs, with the one under the 
factor search sequence from Rt  being slightly better. However, in both models, there 
are more insignificant parameters, which suggests that the model specifications are 
saturate relative to the data and some factor thresholds are redundant. In the model of 
searching Rt  first, 2

Rα  is positive infinite, suggesting that the higher threshold is so 
large that there is actually no satisfactory judgment against this standard. In this sense, 
the model does not have a pure lexicographic form, but rather regresses closer to the 
conjunctive form. When the search sequence is reversed, 2

Aα  appears to be positive 
infinite, suggesting a similar decision pattern. 

Table 5.2 demonstrates that the conjunctive model has the smallest CAIC. 
Thus, it should be considered as the optimal model to represent pedestrian go-home 
decision process. This result suggests that the go-home decision process is quite 
simple. All the factors are not necessarily considered and the decision process may 
stop before complete information search. Thus, the conjunctive rule is fast, effort-
saving, but also fugal in this case. It also reflects the fact that pedestrians set strict 
standards for the go-home decision so that they may have enough opportunity to fulfill 
their purposes or spend their time. 

Figure 5.4 shows the two cumulative densities of the estimated time threshold 
distributions according to the conjunctive model. For Rt , there is approximately a 
15% probability that the threshold is less than 1 hour, 30% for between 1 - 2 hours, 
40% for between 2 - 4 hours and 15% for over 4 hours. The mean is 148 minutes, or 
about 2.5 hours. For At , the probability that the thresholds are located before 14:00 is 
14%, 32% between 14:00 - 16:00, 28% between 16:00 - 18:00, and 26% later than 
18:00. The mean is 999 minutes, which is near to 16:30 hour. These estimates are 
behaviorally reasonable. Note that the CAIC of the MNL model with logged variables 
is very close to that of the conjunctive model, which means the model is at least 
statistically competitive for predicting decision outcomes. However, behaviorally, it is 
less realistic since both factors are implied to be considered and calculating utilities 
every time the situation changes is mentally more costly than threshold-based 
true/false judgments. The lexicographic models seem less appropriate because they 
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gain in goodness-of-fit at larger number of parameters. The disjunctive model, 
although also simple in mechanism, represents the least probable decision strategy 
being used by pedestrians for their go-home decisions. 

5.1.2 Direction choice decision 
If the pedestrian decides to continue shopping, the next decision assumed in the 
framework is to select a walking direction. It is assumed, similar as in the go-home 
decision, that the pedestrian makes direction choice decisions each time after visiting a 
store or resting at some place. Pedestrian may also simply change direction, but as this 
was not observed in the WFS data, the model could only be based on this subset of 
observations. Although respondents did not explicitly report their chosen directions, it 
is not difficult to infer the choice outcome from the destination of their next movement 
relative to their current location. The situation in WFS is relatively simple because the 
street is almost linear, and only two directions, north and south, relative to the current 
location of the pedestrian need to be identified as choice alternatives. The current 
location is the store or place where the pedestrian just conducted some activities. 

For each direction, three factors were considered relevant for the pedestrian’s 
decision. The first factor is whether the direction is the same as the one that the 
pedestrian just came from, represented by a dummy variable Yd  (Y = N (North), S 
(South)). Because there is a natural tendency that pedestrians follow the previous 
direction and try to minimize the number of back-turns, a positive influence is 
expected from this factor. The second factor is the total retail floorspace in the 
direction, Yq . Although a pedestrian does not actually know the total amount of 
floorspace, the variable substitutes the pedestrian’s estimate about the attractiveness of 
retail activities based on his/her perception of the environment. The third factor, Yl , is 
the length of the part of the street that is pedestrianized in the direction, representing 
the amenity of walking. Because there is a considerable number of observations in the 
data showing that pedestrians turned back at the end of the pedestrianized section and 
did not go further into the non-pedestrianized sections, it is reasonable to hypothesize 
that the longer the pedestrianized part the more attractive the direction. 

 
Figure 5.4  CDFs of the time thresholds in the conjunctive go-home model 
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5.1.2.1 Models 

MNL 
Assume that the pedestrian chooses the direction that has the highest utility. Under the 
MNL framework, the probability of choosing a particular direction then equals: 
Equation 5.11 
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where Yp  is the choice probability, Yv  is the observable utility and the β s are 
parameters for the respective variables. 

Conjunctive model 
If satisficing is the rule underlying direction choice decision rather than utility 
maximization, the decision process is assumed to consist of two stages. The first stage 
is the screening stage in which the pedestrian judges whether a direction is satisfactory. 
If the rule for judging satisfaction is conjunctive, this process can be represented as, 
Equation 5.12 
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where 1
Yp  is the probability that the direction is satisfactory, 1

Yxp  is the probability that 
an individual factor is satisfactory. That implies all the factors have to be satisfactory 
in order to have a satisfactory direction at large. For the factor of previous direction, d, 
there are only two possible values. Being 1 means the direction is the same as the 
previous direction, and being 0 means it is not the same. Because the pedestrian may 
be satisfied with either situation, dβ  is the parameter representing the probability of 
being satisfied when the direction is the same as the previous direction, and dα  
represents the probability of being satisfied if the direction is opposite to the previous 
direction. Gamma-based distributions, as in the go-home decision, were assumed to be 
the distributions for factor thresholds, qδ  and lδ , of Yq  (floorspace) and Yl   (length 
of pedestrianized street) whose probabilities of being satisfactory are the cumulative 
densities of their values under the threshold distributions. 

If only one direction survives the screening, then the decision process stops 
with this direction chosen. If both directions are satisfactory or unsatisfactory, then the 
decision enters the second stage. To simplify the specification, assume that a random 
choice is applied in the second stage. Aggregating the two stages, the overall 
probability that a direction is chosen, Yp , is 
Equation 5.13 
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If dα  and dβ are equal to 1, the corresponding variables will have no effect on the 
probability of the direction being satisfactory. The other parameters of the threshold 
distributions have the same effect as those discussed for the go-home conjunctive 
model. 

Disjunctive model 
If it is assumed that the satisficing stage follows a disjunctive rule, the first expression 
in Equation 5.12 needs to be replaced by 
Equation 5.14 

 1 1 1 1 1 1 1 1 1
Y Yx Yd Yq Yd Yl Yq Yl Yx
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which is a function of “or” relationship between the three factors. If dα  and dβ  are 0, 

1
Yp  is not affected. 

Lexicographic model 
In the MNL, conjunctive, and disjunctive model, the way of evaluation is said to be 
alternative-based because either utility or satisfaction related to an alternative has to be 
evaluated before looking into another alternative. In contrast, the lexicographic rule is 
said to be attribute-based because attributes of alternatives are compared sequentially 
and the utility or satisfaction of an alternative is not necessarily evaluated. The 
comparison depends on the number of levels of factors and implies that at least two 
levels for each factor are needed in order to differentiate the alternatives. Assume that 
each factor has two levels: a higher level and a lower level. Once the pedestrian finds 
one direction better than the other direction, this direction will be chosen. The 
probabilities of factor comparison are equal to: 
Equation 5.15 
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Here, 1
Yxp  represents the probability that factor x of direction Y is at the higher level, 

and 0
Yxp  refers to the probability of being at the lower level; Yx

Bp  is the probability that 
the factor of this direction is better than that of the other direction, while Yx

Wp  means it 
is worse. Parameter Yx

Tp  represents the probability of a tie, i.e., the two directions 
cannot be discriminated based on this factor. In the last situation, another factor is 
used to compare the two directions. If they still cannot be discriminated after the last 
factor is compared, a random choice is assumed. The probability of a direction being 
chosen given this assumed decision process, assuming the sequence of factor 
comparison is d q l→ → , can thus be expressed as: 
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Equation 5.16 

 

'

' ''

'' 0.5

Y Yd Yd
B T

Yq Yq
B T
Yl Yl
B T

p p p p

p p p p

p p p

= +

= +

= +

 (5.16) 

 

There are 6 (3!) possible factor comparison sequences implied by this lexicographic 
model. From Equation 5.16, it can be seen that if Yx

Bp  and Yx
Wp  are 0, they will not 

affect the probability of the alternative being chosen. That means the alternative is not 
better or worse than the other. If these two conditions are met simultaneously, the two 
alternatives will be indiscriminant based on this factor, which is equivalent to 
disregarding the factor. Such indiscrimination will appear when dα  or dβ  is 0 or 1, 

qα  or lα  approaches −∞  or ∞ . Table 5.3 summaries the critical values for judging 
whether a factor has an effect for the direction choice models. 

5.1.2.2 Results 
Table 5.4 shows the estimation results of the 10 models. The goodness-of-fit of the 
MNL model with normal variables is good with a MLR of 0.32. The parameters for 
previous direction and length of the pedestrianized street are significant and their signs 
are consistent with the formulated hypotheses. The parameter for floorspace is 
insignificant, probably because of its high correlation with length of the pedestrianized 
street as most retail activities concentrate in the pedestrianized section. Introducing 
nonlinearity into the MNL model leads to a slightly worse LL, although all three 
parameters are significant. 

All the heuristic models are statistically better than the MNL models. In case 
of the conjunctive model, the two parameters for previous direction have a reasonable 
relationship, with d dβ α> , which means that a higher satisfaction is more probable 
when the direction is the same as the previous walking direction. This relationship also 
holds for the other heuristic models. As for floorspace, the gamma distribution part 
turned out to have no effect and only the constant is significant. This means that qδ  
was estimated as a single value and the result of the judgments is binary (0/1). The 
constant part of the distribution of lδ  is negative, which means that the threshold can 
be negative and the direction without the pedestrianized street could also be 
satisfactory. The disjunctive model is the worst heuristic model and is very close to 
the MNL model with normal variables as it excludes the influence of floorspace by 
setting its threshold to ∞. This means that considering floorspace in the early stage of 

Table 5.3  Critical parameters for having no effect (direction choice) 
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the decision process does not lead to an outcome so that other factors need to be 
searched. 

In general, the lexicographic models perform better than the other models, 
suggesting that attribute-based comparison of choice alternatives is more appropriate 
for the direction choice decision. The influence of factor search sequence is notable. 
The sequences starting from d have an inferior CAIC compared to other sequences. 
Although judging and following the previous direction is much easier, the condition of 
shopping environments seems to be more important. This is understandable since most 
pedestrians visit the street for fulfilling their needs. In particular, floorspace appears to 
be more important than pedestrianized street, which is reflected in that the optimal 
search sequence is q d l→ →  and its counter sequence l d q→ →  is much worse. It 
looks like a wise decision strategy, well balanced between accuracy and speed. 
 
Table 5.4  Estimation results of the direction choice models (WFS) 

MNL normal variables MNL logged variables Conjunctive 
Parameter Estimate Parameter Estimate Parameter Estimate 

dβ  1.058 * dβ  1.089 * dα  0.508 * 
qβ  0 qβ  0.214 * dβ  1.000 
lβ  0.003 * lβ  0.195 * qα  46,516.155 * 

    qβ  - 
    qθ  - 
    lα  -952.698 * 
    lβ  110.709 * 
    lθ  9.044 * 

CN  2,098 CN  2,098 CN  2,098 
PN  2 PN  3 PN  5 

LL -989 LL -991 LL -966 
CAIC 1,996 CAIC 2,008 CAIC 1,975 

Disjunctive Lexicographic d q l→ →  Lexicographic d l q→ →  
Parameter Estimate Parameter Estimate Parameter Estimate 

dα  0 dα  0.638 * dα  0.638 * 
dβ  0.518 * dβ  1.000 dβ  1.000 
qα  ∞ qα  46,727.287 * qα  46,889.179 * 
qβ  - qβ  - qβ  - 
qθ  - qθ  - qθ  - 
lα  0 lα  333.952 * lα  320.443 * 
lβ  23.868 * lβ  0.278 * lβ  0.382 * 
lθ  19.813 * lθ  587.799 * lθ  400.694 * 
CN  2,098 CN  2,098 CN  2,098 
PN  3 PN  5 PN  5 

LL -987 LL -963 LL -962 
CAIC 2,000 CAIC 1,968 CAIC 1,968 
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Comparing floorspace first, although it could involve more mental effort, has the 
highest probability to guarantee that pedestrian needs will be better realized in the 
chosen direction. Moreover, when the directions are not differentiated under 
floorspace, comparing with the previous direction is quick and easy. In the optimal 
model, both threshold values are hard. Directions with a total floorspace larger than 
18,000 m2 and a length of pedestrianized street longer than 350 m will be considered 
satisfactory for these factors respectively. 

5.1.3 Rest decision 
It is assumed in the framework that after the walking direction has been decided, 
pedestrians make decisions about whether or not to take a rest. The data only recorded 
the behavior of pedestrians taking a rest. That implies for cases in which the behavior 
is not resting, the true decision outcome could be to rest but the intention was not 
realized due to other limits such as unavailability of seats. In fact, although throughout 
WFS there are rest facilities within reasonable walking distances, the survey did not 
collect information about the service level of those facilities. Therefore, the 
assumption made for modeling the rest decision is that rest facilities were always 

Table 5.4   Estimation results of the direction choice models (WFS) (continued) 

Lexicographic q d l→ →  Lexicographic q l d→ →  Lexicographic l d q→ →  
Parameter Estimate Parameter Estimate Parameter Estimate 

dα  0.381 * dα  0 dα  0 
dβ  0.767 * dβ  0.732 * dβ  0.698 * 
qα  17,999.620 * qα  17,998.930 * qα  17,953.650 * 
qβ  - qβ  - qβ  - 
qθ  - qθ  - qθ  - 
lα  348.636 * lα  0 lα  0 
lβ  - lβ  0.863 * lβ  0.958 * 
lθ  - lθ  961.738 * lθ  787.450 * 
CN  2,098 CN  2,098 CN  2,098 
PN  4 PN  4 PN  4 

LL -946 LL -953 LL -970 
CAIC 1,926 CAIC 1,941 CAIC 1,974 

Lexicographic l q d→ →  
Parameter Estimate Parameter Estimate Parameter Estimate 

dα  0 qα  17,997.180 * lα  0 
dβ  0.732 * qβ  - lβ  0.863 * 

  qθ  - lθ  961.737 * 
CN  2,098     
PN  4     

LL -953     
CAIC 1,941     
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available when the decision was made; the reason that the pedestrian did not take a 
rest was purely because he/she did not want to. 

Among those factors influencing the rest decision, tiredness is naturally one. 
Because it was not directly observed, a time variable call action time, Ct , was derived. 
It was defined as the difference between the current time when the rest decision was 
being made and the time when the last rest or meal related activity was completed, 
assuming that the pedestrian regained strength when conducting these activities. It is 
reasonable to assume that a pedestrian becomes more tired as action time increases. 
The decision may also be affected by a pedestrian’s intention to shop. We may expect 
that for the same degree of tiredness, the pedestrian may have a stronger intention to 
shop and a higher tolerance for resting in the earlier stages of the shopping trip, while 
being more inclined to take a rest later during the trip and when the shopping intention 
is weaker. Relative time, Rt , was used to approximate the intention of shopping, and 
thus impacting the rest decision. The last factor included is absolute time, At , to 
represent some scheduled time for rest. 

5.1.3.1 Models 
Similar to the go-home decision, the rest decision can be modeled as a binary 
acceptation/rejection decision, and the same set of models will be applied and 
compared. 

MNL 
Under the framework of discrete choice, the two choice options in the rest decision 
can be defined as taking a rest or shopping. Pedestrians were assumed to choose the 
option with the highest utility, which can be formulated as: 
Equation 5.17 
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where Ev  is the observable utility for taking a rest, Sv  represents the observable 
utility of shopping/non-rest, Sβ  is an alternative-specific parameter for the shopping 
alternative, and Xβ  are parameters for corresponding factors which are hypothesized 
to be positive as the need for rest should increase with the time factors. 

Conjunctive model 
If pedestrians use the conjunctive rule to decide to rest or shop, the outcome will be 
positive only when all time factors exceed their thresholds. Similar as the go-home 
model, we assume that factor thresholds conform to the gamma-based distributions 

( , )X X X Xδ α β θ= + Γ . The decision process can be represented probabilistically as: 
Equation 5.18 
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Here, 1
Xp  is the probability that a factor is considered satisfactory (the threshold is 

exceeded), which is the product of the cumulative density functions of the threshold 
distributions. 

Disjunctive model 
In contrast, under the assumption that a disjunctive rule is used by pedestrians for their 
rest decision, any factor being satisfactory will make the pedestrian decide to rest and 
the factor being unsatisfactory will prompt for searching for another factor. The 
probability of taking a rest is then equal to: 
Equation 5.19 

 1 1 1 1 1 1 1 1
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Lexicographic model 
Assuming that pedestrians use a lower and a higher threshold for each factor under the 
lexicographic rule for the rest decision, they will decide to rest when the searched 
factor is satisfactory (factor exceeding the higher threshold) and they will decide to 
shop if the searched factor is unsatisfactory (factor being less than the lower threshold). 
Another factor has to be searched if the factor value is between the two thresholds. 
Since there are three factors involved in the rest decision, there are 6 (3!) possible 
model specifications under the lexicographic rule. For example, under the factor 
search sequence C R At t t→ → , the probability of taking a rest is, 
Equation 5.20 
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Again, gamma-based distributions were assumed for the factor thresholds. The 
probability of a factor being satisfactory, 1

Xp , is the joint probability that both 
thresholds are exceeded. The joint probability of neither threshold being exceeded is 
just the probability of the factor considered unsatisfactory, 0

Xp . 

5.1.3.2 Results 
Some preliminary analyses showed that action time statistically has very little impact 
on the decision to rest, probably because of high correlations with the other two time 
factors. In the data, rest behavior occurred mostly near the end of the shopping trip 
and most respondents (91%) reported taking no more than 1 rest during the whole trip 
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(the sample mean of the number of rests is 0.62, the standard deviation is 0.72). Thus, 
the values of Ct  overlap with those of Rt  and At  considerably. For this reason, Ct  was 
excluded from the models and will not be shown in the results. Consequently, only 
two models were left relevant for the lexicographic model, one starting with searching 

Rt  and the other starting with searching At . 
Table 5.5 shows the estimation results of the 6 models. The MNL model with 

normal variables fits the data well with a MLR of 0.42. Both parameters for time are 
significant and positive, which means that the need for rest strengthens as the 
 
Table 5.5  Estimation results of the rest models (WFS) 

MNL normal variables MNL logged variables. Conjunctive 
Parameter Estimate Parameter Estimate Parameter Estimate 

Rβ  0.003 * Rβ  2.929 * Rα  -2,100.360 * 
Aβ  0.004 * Aβ  0.312 * Rβ  529.570 * 
Sβ  5.170 * Sβ  22.812 * Rθ  4.114 * 

    Aα  -997.209 * 
    Aβ  18.178 * 
    Aθ  121.811 * 

CN  2,741 CN  2,741 CN  2,741 
PN  3 PN  3 PN  6 

LL -1,108 LL -1,105 LL -1,089 
CAIC 2,243 CAIC 2,237 CAIC 2,232 

Disjunctive Lexicographic R At t→  Lexicographic A Rt t→  
Parameter Estimate Parameter Estimate Parameter Estimate 

Rα  82.000 * 1
Rα  -656.494 * 1

Rα  -1,068.340 * 
Rβ  0.328 * 2

Rα  ∞ 2
Rα  ∞ 

Rθ  20,958.620 * 1
Rβ  59.362 * 1

Rβ  146.467 * 
Aα  -1,891.760 * 2

Rβ  - 2
Rβ  - 

Aβ  40.828 * 1
Rθ  12.389 * 1

Rθ  7.822 * 
Aθ  85.777 * 2

Rθ  - 2
Rθ  - 

  1
Aα  0 1

Aα  0 
  2

Aα  ∞ 2
Aα  ∞ 

  1
Aβ  9.880 * 1

Aβ  9.876 * 
  2

Aβ  - 2
Aβ  - 

  1
Aθ  87.466 * 1

Aθ  87.630 * 
  2

Aθ  - 2
Aθ  - 

CN  2,741 CN  2,741 CN  2,741 
PN  6 PN  5 PN  5 

LL -1,093 LL -1,091 LL -1,091 
CAIC 2,240 CAIC 2,226 CAIC 2,226 
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shopping duration increases. The MNL model with logged variables improves the 
goodness-of-fit only slightly. All heuristic models outperform the MNL models in 
terms of LL. The negative Rα  in the conjunctive model means that Rδ  could be less 
than zero. It reflects the fact that there were some pedestrians taking a rest in the very 
beginning of their shopping trips probably because they were already tired from 
traveling or conducting other activities before arriving in the street. The decision 
patterns implied by the two lexicographic models are almost identical. For both Rt  
and At , there is a infinitive threshold, which means that only the lower thresholds are 
actually effective and the decision process is very similar to the conjunctive rule 
except that a random decision is assumed when both factors exceed the lower 
thresholds. 

The two lexicographic models have the best, almost identical, CAIC of all 
models. However, as said before, the decision processes implied by these models are 
not really lexicographic, but a hybrid of a conjunctive rule with a random choice. 
Based on the model starting from searching At , which is slightly better, Figure 5.5 
shows the two cumulative distributions of the time thresholds. There is a 21% 
probability that the threshold for Rt  is less than 0; a 23% probability that it is between 
0 – 1 hours; 24% that it is between 1 – 2 hours; 18% that it is between 2 – 3 hours, and 
14% that it is more than 3 hours. The mean is approximately 77 minutes. As for the 
threshold of At , there is a 33% probability that it is before 12:00, a 34% probability 
that it is between 12:00 – 16:00; a 21% probability that it is between 16:00 – 20:00, 
and an 8% probability that it is between 20:00 – 24:00. The mean of pedestrians’ 
scheduled resting time is approximately 14:30 hour. 

5.1.4 Store patronage decision 
If the pedestrian’s decision outcome about resting is negative, he/she will look for a 
store to visit, as assumed in the framework. The modeling of this decision is largely 
inherited from shopping choice models developed for larger geographical areas such 
as store and shopping center choice (e.g., Gautschi, 1981; Opperwal and Timmermans, 

 
Figure 5.5  CDFs of the time thresholds in the lexicographic rest model 
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1997), in which consumers are assumed to choose a shopping center among 
alternative centers whose utilities are usually specified to consist of attractiveness 
factors like center size and friction factors like spatial or temporal distance. 

Following the same framework, the pedestrian store patronage decision has 
been modeled as a choice among alternative stores, similarly based on the utility 
composed of store attractiveness factors such as floorspace and friction factors like 
distance between a pedestrian’s current location and the store (e.g., Saito and Ishibashi, 
1992). The left picture in Figure 5.6 displays this framework, named the Simultaneous 
Choice Framework (SCF). Defining an individual’s choice set is an important 
procedure in the framework. However, the researcher usually does not know this 
choice set and therefore assuming that all the stores in the shopping area form the 
choice set is common practice. This assumption is obviously unrealistic in the sense 
that a pedestrian with limited mental capacity and decision time considers the 
information of each store and compares their utilities in a single decision, even though 
the distance factor can sometimes be interpreted as information decay, which relaxes 
the common choice set assumption somewhat. As it is also well-known that the 
parameter estimates depend on the definition of the choice set (e.g. William and 
Ortuzar, 1982; Pellegrini, et al., 1997), different interpretations may be derived if 
researchers define different choice sets based their own research assumptions. 

Instead, the framework displayed in the right picture of Figure 5.6 is more 
realistic and will be applied to the models developed in this thesis. We named it the 
Sequential Satisficing Framework (SSF). It assumes that a pedestrian judges stores 
one by one whether it is satisfactory. Stores are judged in sequence based on their 

  

  
The Simultaneous Choice Framework:  

Pedestrian calculates the utility of each store 
based on attractiveness and distance, and 

patronizes the store with the highest utility. 

The Sequential Satisficing Framework: 
Pedestrian sequentially judges if a store is 
satisfactory based on attractiveness, and 

patronizes the first store that is found 
satisfactory. 

Figure 5.6  Two modeling frameworks for store patronage decision 



Model Estimation 

103 

distance to the pedestrian, with the nearest store being judged first. It simulates the 
fact that store patronage decision is most of the time a process of searching for an 
ideal store which may satisfy pedestrians’ needs. We may often observe that when a 
pedestrian walks through a street, he/she constantly looks around in the vicinity 
environment to find a satisfactory store. A Chinese saying in retail business, “Don’t 
miss it when you pass by it”, also implies that such “walk and see” strategy does 
capture the essential characteristic of pedestrian store patronage behavior. The search 
process stops until a satisfactory store is found and the pedestrian visits this store. By 
such means, not all stores in the shopping area are necessarily evaluated. Although 
distance is not explicitly incorporated in the satisficing function, it does have its 
functionality since the opportunity of more distant stores being visited is possibly 
intercepted by nearer stores. Another theoretical difference between the two 
frameworks is that SCF assumes that the choice of store depends on its relative utility 
against other stores, while SSF assumes that the satisfaction of a store may only 
depend on some priori criterion and does not necessarily take into account the 
influence of other stores. 

However, although SSF improved some extent of realness of modeling store 
patronage behavior, it at the same time goes to the opposite of evaluating all the stores 
in the street, by assuming only one store is evaluated in each decision, while actually it 
is possible that some small number of alternative stores are evaluated. The pedestrian 
may even suppress the visit to the satisfactory store and try to find a better store in the 
next few searches. Such kind of behavior may be viewed as that the pedestrian is 
adapting his/her standard to the shopping environment. Either the size of the choice set 
or the adaptation behavior is itself a question of bounded rationality. As a first attempt 
to test the validity of the proposed models, we will keep the decision model simple. 

5.1.4.1 Models 

MNL 
Under SSF, not all stores in the walking direction are necessarily evaluated by the 
pedestrian; only the stores from the pedestrian’s current location up to the chosen store 
are. Let 1,...,i I=  represent these stores in order of ascending distance to the 
pedestrian’s current location, id . The last store I is chosen because it is satisfactory to 
the pedestrian and stores evaluated earlier are unsatisfactory. Expressed in 
probabilistic terms: 
Equation 5.21 
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where S
ip  is the probability of the store being considered satisfactory and U

ip  the 
probability of being considered unsatisfactory. 

Modeling the satisficing judgment as a binary choice and representing it in 
MNL framework gives: 
Equation 5.22 
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The observable store utility, S
iv , is composed of: (1) ic , the number of activities that 

the pedestrian has conducted in the store. Noting that different activities in a store 
were recorded separately, it is hypothesized that the probability to conduct activities in 
the store will decrease if the store has been visited during the trip, implying its 
parameter cβ  should be negative; (2) iq , the retail floorspace of the store representing 
store attractiveness, whose parameter qβ  is hypothesized to be positive; (3) ijs , a 
dummy variable representing the type of the store. Sixteen store types were identified 
and each store was labeled a retail type, including, department store (j = 1, Dept), 
clothes (j = 2, Clth), shoe (j = 3, Shoe), fast food (j = 4, Fdfa), formal meal (j = 5, 
Fdfo), food retail (j = 6, Fdre), equipment (j = 7, Equi), pharmaceutical (j = 8, Phar), 
sport (j = 9, Spor), jewelry (j = 10, Jewe), optical (j = 11, Opti), book & media (j = 12, 
Book), fine arts (j = 13, Arts), children (j = 14, Chil), tourism (j = 15, Tour), and other 
types (j = 16, Oths). s

jβ  is the parameter for each corresponding type. Because only 
the relative utility between alternatives matters in MNL models, one type variable can 
be excluded and the remaining 15 type parameters need to be estimated. The category 
“other types” was set as the base and the other type parameters mean the relative 
attractiveness compared to the “other” store types. Finally, U

iv  is the utility of not 
visiting the store (it is not satisfactory), represented by parameter Uβ . 

Conjunctive model 
If the decision rule is conjunctive, all three factors, c, q, and s, must be satisfactory in 
order to make an overall satisfactory judgment. Assume that pedestrians use 
thresholds for this purpose on c and q, ~ ( , )  ( , )x x x x x x c qδ α β θ+ Γ = , which are 
gamma-based distributions. The probability of a store being satisfactory is: 
Equation 5.23 
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where 1
c
ip  is the probability of the number of store visits being less than threshold cδ , 

1
q
ip  is the probability of the store floorspace being larger than threshold qδ , and 1

s
ip  is 
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the probability of certain store type being satisfactory. Note that all store types have to 
be included and their parameters, s

jβ  between 0 - 1, will be estimated. If cα  is very 

large, qα  is very small, and s
jβ  is equal to 1, the probability of store satisfaction will 

not be affected. 

Disjunctive model 
If pedestrians use the disjunctive rule for judging store satisfaction, then any of the 
three factors being satisfactory will make the pedestrian patronize the store. Under the 
same assumption of threshold distributions, simply replacing the first line in Equation 
5.23 with the probabilistic “or” relationship between factor satisfactoriness will yield: 
Equation 5.24 

 1 1 1 1 1 1 1 1
S x c q c s q s x
i i i i i i i i i

x x

p p p p p p p p p= − − − +∑ ∏  (5.24) 
 

Contrary to the conjunctive model, the factors will have no effect and can be ignored 
if cα  is very small, qα  is very large, and s

jβ  is 0. 

Lexicographic model 
Similar to the previous lexicographic models for the go-home and rest decisions, 
assume that each factor has three judgment levels, unsatisfactory, neutral and 
satisfactory. The pedestrian will patronize the store when a factor is found satisfactory; 
will skip the store when a factor is unsatisfactory; will continue the search for another 
factor when the considered factor is neutral. A random decision is made when all three 
factors are found neutral. Two thresholds are applied to c and q, with 

~ ( , )  ( , ; 1,2)x x x x x
k k k k k x c q kδ α β θ+ Γ = = . Again, 6 potential factor search sequences are 

implied. If the sequence is c q s→ → , the probability that the store is satisfactory 
equals: 
Equation 5.25 
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The probability that the store type is not satisfactory ( 0
s
ip ) and the probability that it is 

( 1
s
ip ), are represented by two sets of 0 – 1 parameters, s

jα  and s
jβ , respectively. Then 

1s s s
j j jθ α β= − −  is defined as the probability that the pedestrian regards store type as 

neutral. s
jα  and s

jβ  being 0 simultaneously (the probability of neutral being 1) will 
make the type factor redundant. Table 5.6 gives an overview of parameters for judging 
whether a factor has any effect on the store patronage decision. 

5.1.4.2 Results 
Table 5.7 shows the results of five models. Because presenting all the results of the 
lexicographic models takes a lot of space, we will report the results of the best 
lexicographic model only. The MNL model with normal variables performs well with 
an MLR of 0.83. When the variable for floorspace is logged, the LL is much better, 
suggesting that the increase in utility from store size decreases marginally. The 
negative parameter for the number of visits is consistent with the hypothesis that 
pedestrians tend to switch stores. Among the parameters for store type, the one for 
tourism is the highest. Since there is only one tourism site in WFS, this parameter is 
alternative-specific. The second most attractive store type is department store, 
followed by sports store, book store, and art store. The parameter for dummy variable, 

Uβ , is quite high compared to the other parameters, implying a high average 
probability of rejecting (i.e., not visiting) a store, because there are much more 
rejection decisions in the data compared to the acceptation decisions. 

The LL of the conjunctive model is even better. Only the shape parameter in 
the distribution of the threshold for the number of visits is significant. This distribution 
implies that the probability of this factor being satisfactory is 1, when the pedestrian 
has not patronized this store. It drops drastically to 0.08 when the store has been 
patronized once, and to 0.02 when the store has been patronized twice. This suggests 
that pedestrians’ intention to switch stores is quite strong. The constant in the 
distribution of the threshold for floorspace is negative, implying the thresholds can be 
negative and very small stores can also be satisfactory. The parameters for store types 
directly reflect the probabilities of being satisfactory. The pattern of the five most 
satisfactory types is the same as the pattern estimated by the MNL model with logged 
variables. The disjunctive model has the worst LL of all models, suggesting that this 
rule is not strict enough for judging whether a store is satisfactory in general. 

 

Table 5.6  Critical parameters for having no effect (store patronage) 
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The best model both in terms of LL and CAIC is the lexicographic model with 
factor search sequence s c q→ → . This means that store type is the factor being 
searched first when evaluating a store, which is consistent with common sense that 
people patronize a store which can satisfy their needs. However, the parameters show 
that most judgments based on store type do not follow the lexicographic pattern, 
otherwise all three state judgments, unsatisfactory, neutral, and satisfactory should 
have significantly non-zero probability for rejecting the store, continuing the search or 
accepting the store, represented by s

jα , s
jθ , and s

jβ  respectively. As can be seen, only 

 
Table 5.7  Estimation results of the store patronage models (WFS) 

MNL normal variables MNL logged variables Conjunctive 
Parameter Estimate Parameter Estimate Parameter Estimate 

cβ  -3.100 * cβ  -3.017 * cα  0 
qβ  1.290e-5 * qβ  0.415 * cβ  0.296 * 
s
Deptβ  2.843 * s

Deptβ  1.801 * cθ  1.000 
s
Clthβ  0.527 * s

Clthβ  0.742 * qα  -57,712.774 * 
s
Shoeβ  0.589 * s

Shoeβ  1.245 * qβ  92.275 * 
s
Fdfaβ  0.785 * s

Fdfaβ  0.876 * qθ  709.857 * 
s
Fdfoβ  0 s

Fdfoβ  -0.699 * s
Deptβ  0.443 * 

s
Fdreβ  0 s

Fdreβ  0 s
Clthβ  0.134 * 

s
Equiβ  0 s

Equiβ  0 s
Shoeβ  0.149 * 

s
Pharβ  0 s

Pharβ  0 s
Fdfaβ  0.166 * 

s
Sporβ  2.123 * s

Sporβ  1.651 * s
Fdfoβ  0.044 * 

s
Jeweβ  0 s

Jeweβ  0.745 * s
Fdreβ  0.086 * 

s
Optiβ  0 s

Optiβ  0 s
Equiβ  0.050 * 

s
Bookβ  2.361 * s

Bookβ  1.417 * s
Pharβ  0.098 * 

s
Artsβ  1.737 * s

Artsβ  1.270 * s
Sporβ  0.330 * 

s
Chilβ  0 s

Chilβ  0 s
Jeweβ  0.089 * 

s
Tourβ  3.555 * s

Tourβ  3.021 * s
Optiβ  0.074 * 

Uβ  4.547 * Uβ  6.867 * s
Bookβ  0.321 * 

    s
Artsβ  0.245 * 

    s
Chilβ  0.042 * 

    s
Tourβ  1.000 

    s
Othsβ  0.070 * 

CN  63,328 CN  63,328 CN  63,328 
PN  11 PN  13 PN  19 

LL -7,471 LL -7,291 LL -7,201 
CAIC 15,075 CAIC 14,739 CAIC 14,632 
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department stores and sport stores conform to this requirement. The judgment patterns 
represented by the parameters of the remaining store types may be conjunctive (when 

0s
jα > , 0s

jθ > , and 0s
jβ = ), disjunctive (when 0s

jα = , 0s
jθ > , and 0s

jβ > ), solely 

type-dependent (when 0s
jα > , 0s

jθ = , and 0s
jβ > ), or something else. Apparently, 

the higher the values of s
jβ  and s

jθ , the less probable a store will be finally rejected. 
In this sense, the tourism site still has the highest probability of being accepted, 
followed by department stores. 

 
Table 5.7   Estimation results of the store patronage models (WFS) (continued) 

Disjunctive Lexicographic s c q→ →  
Parameter Estimate Parameter Estimate Parameter Estimate 

cα  -0.471 * 1
cα  -0.146 * 1

qα  -43,185.510 * 
cβ  0.787 * 2

cα  1.000 * 2
qα  ∞ 

cθ  0.116 * 1
cβ  7.489 * 1

qβ  606.187 * 
qα  -108,618.887 * 2

cβ  0.010 2
qβ  - 

qβ  182.620 * 1
cθ  0.010 * 1

qθ  87.302 * 
qθ  1,350.234 * 2

cθ  1.000 2
qθ  - 

s
Deptβ  0.170 * s

Deptα  0.149 * s
Deptβ  0.062 * 

s
Clthβ  0.007 * s

Clthα  0 s
Clthβ  0 

s
Shoeβ  0.009 * s

Shoeα  0 s
Shoeβ  0 

s
Fdfaβ  0.013 * s

Fdfaα  0.977 * s
Fdfaβ  0.023 

s
Fdfoβ  0 s

Fdfoα  0.802 * s
Fdfoβ  0 

s
Fdreβ  0 s

Fdreα  0 s
Fdreβ  0 

s
Equiβ  0 s

Equiα  0.609 * s
Equiβ  0 

s
Pharβ  0 s

Pharα  0 s
Pharβ  0 

s
Sporβ  0.074 * s

Sporα  0.455 * s
Sporβ  0.032 * 

s
Jeweβ  0 s

Jeweα  0.989 * s
Jeweβ  0.011 

s
Optiβ  0 s

Optiα  0 s
Optiβ  0 

s
Bookβ  0.097 * s

Bookα  0 s
Bookβ  0 

s
Artsβ  0.048 * s

Artsα  0 s
Artsβ  0 

s
Chilβ  0.019 * s

Chilα  0.971 * s
Chilβ  0.029 

s
Tourβ  0.259 * s

Tourα  0 s
Tourβ  0.254 * 

s
Othsβ  0 s

Othsα  0.442 * s
Othsβ  0 

CN  63,328 CN  63,328   
PN  15 PN  18   

LL -7,601 LL -7,126   
CAIC 15,382 CAIC 14,469   
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The number of activities that have already been conducted in the store is the 
second factor searched if the judgment based on store type does not generate a choice. 
The assumed two threshold distributions are both significant. Nevertheless, they imply 
a very simple judgment pattern. The distribution for the lower threshold, 1

cδ , implies 
that the probability of being satisfactory when the store has not been patronized is only 
1.5%, and is 0 when the store has been patronized at least once. The distribution for 
the higher threshold, 2

cδ , is completely hard, and hence equal to 1. Consequently, the 
probability of the factor being less than the higher threshold when the pedestrian has 
not patronized the store during the trip is 1, and is 0 when the store has been 
patronized. Jointly, if the store has been patronized, it will be rejected. Otherwise, the 
probability of being accepted is only 1.5%; the probability of being rejected is 0; the 
remaining 98.5% is left for searching the third factor, floorspace. Only the lower 
threshold for floorspace is significant. The higher threshold is positive infinitive 
against which each store is unsatisfactory. Thus, the judgment pattern on this factor is 
conjunctive. 

Figure 5.7 shows the probability of the thresholds being less than 6,000 m2 is 
only 3.9%. Small stores are very likely rejected. The probability is 51.6% for the 
thresholds between 6,000 – 10,000 m2, 42% for thresholds between 10,000 – 14,000 
m2, and 2.6% for thresholds larger than 14,000 m2. The second best model which is 
not shown is another lexicographic model with factor search sequence c s q→ → . For 
both models, retail floorspace seem to be the least import factor for pedestrians when 
judging if a store is satisfactory. 

5.2 HHM and the ENR Case 
By comparing different models according to some criterion as in the WFS case, a best 
fitting model can always be identified. This is conventional practice of modeling 
bounded rationality. Sometimes such optimal models are considered the one closest to 
the true decision process. This may be true. However, it is not enough for negating 
other less true models as alternatives. As can be seen in the previous section, the 
goodness-of-fit statistics of different models may be very close. In such situations, 
interpreting all the decision outcomes as the result of a single decision model may just 
give a partial view of reality. One major advantage of the HHM is that the coexistence 

 
Figure 5.7  CDF of the floorspace threshold in the store patronage model 
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of heterogeneous decision strategies can be estimated probabilistically, so that our 
understanding of pedestrian decision processes can potentially be more comprehensive. 

5.2.1 Go-home decision 

5.2.1.1 Models 

MNL 
The same two time factors, relative time ( Rt ) and absolute time ( At ), were used to 
explain the go-home decision as was done in the WFS case. Therefore, the 
specification of the MNL model is the same as Equation 5.1 and Equation 5.2. 

HHM 
Under the framework of HHM, the pedestrian decides to go home, if 
Equation 5.26 

 ( )     ,X X X

X
t X R AλΨ ≥ ≥ =∑W ∆  (5.26) 

 

Here 1[ ,..., ,..., ]X X X X
n Nw w w=W  is an N-element (more accurately, N is specific to each 

X) row vector of factor state values, T
1[ ,..., ,..., ]X X X X

n Nδ δ δ=∆  is a column vector of 
factor threshold values, and ( )ψΨ  is an element-wise identity function being 1 for the 
true relationships ψ , being 0 for the false relationships. That means that if the overall 
value of going-home, represented by the left term in the equation aggregated from the 
state values of the two time factors, is larger than the overall threshold, λ , then the 
pedestrian will go home. Otherwise, he/she will keep shopping. As has been explained 
in Chapter 3, λ  is assumed to be a multinomial logit distribution from which 
heterogeneous decision strategies originate. 

To estimate this distribution as depicted by Equation 3.29, the value of each 
decision heuristic was calculated. The estimations of XW  and X∆  provide the 
cognitive structure, from which the stopping conditions for each heuristic can be 
inferred. To complete the calculation of mental effort, the effort for searching each 
factor can be estimated as separate effort parameters. However, empirical results 
showed that estimating factor-specific effort parameters does not bring significant 
improvement to the model compared to only one effort parameter for all factors. This 
is largely because XW  is already flexible enough to adjust the relationships for factor 
importance. Furthermore, it is easy to see that this effort parameter cannot be 
separated from the weight parameter eβ  in Equation 3.36. Thus, eβ  was set to be 
negative to represent some kind of cost. 

The last element required for calculating mental effort is the probability 
beliefs of factors being in certain states. Although people may have different 
distributions which can be estimated for each factor state, empirical results showed 
that they add more complexity than goodness-of-fit to the model compared with 
uniform probability beliefs. The uniform probability means that the belief that a factor 
being in a particular state is equally probable. With the probability beliefs, the risk 
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perception of each heuristic can be calculated. Interestingly, single factor search effort 
and uniform state beliefs were found to be valid for all decision models that will 
follow. This could be the result of following reasons. First, as the main statistical 
functionality of probability belief is adjusting the importance relationship between 
factors, the value parameters have captured enough variance in the data and made the 
need for varying probability beliefs unnecessary. Second, pedestrians’ beliefs are so 
heterogeneous that no particular factor state is at the aggregate level believed to be 
more probable than another. Third, pedestrians could be ignorant about the situation, 
or not willing to put more effort in recognizing the situation as more complex than a 
uniform distribution. This is related to the fourth reason, that if a cognitive structure is 
used by a pedestrian as some kind of universal decision machine that can be 
transferred to solving other similar problems, then a uniform belief may on average fit 
other situations better than a belief specifically estimated against a particular situation. 

Given the estimated distribution of preference structures, the expected 
probability of a pedestrian deciding to go home is estimated using the latent class 
structure described in Equation 3.27. In total, the parameters that were simultaneously 
estimated include, factor state weights, XW , and factor thresholds, X∆ . The number 
of their elements were not set a priori, but estimated through model selection. The 
parameter for mental effort, eβ , as discussed before, is assumed to be negative; the 
parameter for risk perception, rβ , is assumed to be positive because pedestrians, 
ceteris paribus, are assumed to prefer diverse decision outcomes to betting on very few 
highly probable outcomes; the sign of the parameter for expected outcome, oβ , is not 
assumed, but determined empirically. 

5.2.1.2 Results 
A subsample of the respondents who reported to be near the end of the shopping trip 
was used to estimate the models. This is because their reported end time should be 
most reliable. The other reason is that their decision cases are relatively complete and 
the bias, if any, from the concentration of decision cases around earlier shopping 
stages can be avoided. Of course, the disadvantage is the smaller sample size, with 
808 decision cases, which may not be representative of the heterogeneity in the 
behavior of the population. 

Table 5.8 shows the results of the two MNL models and the HHM. The MRL 
of the MNL model with normal variables is 0.26, which means it performs well. The 
signs of the parameters are consistent with our hypotheses. When the time variables 
are logged, the goodness-of-fit is better, as in the WFS case, suggesting a marginally 
decreasing increment of the utilities with time. The optimal HHM turns out to have 
two thresholds for Rt  and three thresholds for At . The pedestrians seem to have 
represented Rt  into three states [< 70 min, 70 – 240 min, ≥ 240 min) and represented 

At  into four states [< 14:30, 14:30 – 16:00, 16:00 – 20:00, ≥ 20:00). These segments 
are quite reasonable and conform with people’s habit of using typical clock hours as 
decision references. The positive weights mean that as time goes by, the value of 
going home increases, but not in a linear fashion. The negative oβ  suggests that 
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decision strategies with strict judgment standards are preferred by the pedestrians. As 
a result, it is less likely that pedestrians decide to go home earlier during the trip so 
that they may have more opportunities to enjoy shopping. 

Three states for relative time and four states for absolute time mean that the 
number of preference structures implied by this cognitive structure is 13 = 3 * 4 + 1. 
Every preference structure implies 2 heuristics, one from searching Rt  and the other 
from searching At . The probabilities of these 26 heuristics were estimated; the results 
are shown in Figure 5.8. In the figure, the larger the index for a preference structure, 
the higher the overall threshold or the judgment standard. The general trend is that the 
probability increases as the standard becomes stricter, due to the negative oβ , 
implying that simpler rules are preferred. The probabilities drop at 11Φ and 12Φ  
(preference structure) because they imply risky heuristics with high probabilities of 
rejection. However, although 13Φ  implies one of the most risky strategies - 

 
Table 5.8  Estimation results of the go-home models (ENR) 

MNL normal variables MNL logged variables 
Parameter Estimate Parameter Estimate 

Rβ  -0.005 * Rβ  -0.869 * 
Aβ  -0.004 * Aβ  -4.402 * 
Hβ  -6.006 * Hβ  -35.424 * 
CN  808 CN  808 
PN  3 PN  3 

LL -415 LL -410 
CAIC 854 CAIC 843 

HHM 
Parameter Estimate Parameter Estimate 

1
Rδ  (1) 70 min 1

Aδ  14:30 

2
Rδ  240 min 2

Aδ  16:00 
( 1

Rw ) (2) 1.000 * 3
Aδ  20:00 

2
Rw  0.766 * 1

Aw  0.822 * 
eβ  -2.690 * 2

Aw  0.710 * 
rβ  4.526 * 3

Aw  2.566 * 
oβ  -1.026 *   
CN  808   
PN  8   

LL -396   
CAIC 853   
(1) Thresholds are not counted as free parameters as only their corresponding weights 
potentially have an effect 
(2) Parameters in ( ) were set for the estimation. One value parameter is set to 1 because only 
the relative relationships between the values matter. 
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unconditional rejection, its probability is still high because it costs almost no effort. 
Looking at the distributions of the two factor search sequences, they differ 

very little before 6Φ . That means that when the judgment standard is low (i.e. under 
which pedestrians are more prone to go home), the factor search sequence does not 
matter too much. We may imagine that in similar situations some people may say 
“Anything will be OK.” While after this point, when the judgment standard becomes 
stricter, the importance of search sequence increases and At  becomes the first factor to 
search most of the time. This is probably because judgments based on external 
reference, such as checking the watch or agenda, usually gives people the feeling of 
certainty, compared to the fuzzy feeling of fatigue, boredom, level of fulfillment, or 
saves effort from estimating how much time has passed. Excluding the “no action” 
heuristics implied by 1Φ  and 13Φ , the probability of At  to be searched first is 62% in 
total, while Rt  has a probability of 18%. 

The best model in terms of CAIC is the MNL model with logged variables. 
The LL of HHM is the highest, but the complexity of the model is much higher. 

5.2.2 Direction choice decision 

5.2.2.1 Models 

MNL 
The full sample was used for calibrating the direction choice models because the 
influence of time was tested to have no significant effect on the decision. Therefore, 
the bias from incomplete trip diaries and missing decision cases is negligible. The 
physical environment is a little more complicated in ENR than in WFS. There may be 
up to four directions for each decision (e.g., East, South, West, North), depending on 
specific locations. The specification of the MNL model here is generally the same as 
in the WFS case, except the definition of the utility function. The factor about walking 
direction, Yd  (Y = E (East), S (South), W (West), N (North)), is now a dummy variable 
representing whether the alternative direction is the direction where the pedestrian just 
came from (1 – Yes, 0 – No). Its parameter, dβ , is hypothesized to be negative to 

 
Figure 5.8  Distribution of preference structures (go-home) 
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represent pedestrian’s unwillingness to turn back. The factor of total retail floorspace 
and the length of the pedestrianized section are still kept. Tailored to the situation of 
ENR, an additional factor is the location of The Bund. Because The Bund is a special 
landmark in this area and just located at the eastern end of ENR, it is common among 
pedestrians to use it for orientation, especially for tourists. It is represented by a 
dummy variable, Yb , being 1 when The Bund is located in the direction and being 0 
when it is not. Then the utility function is, 
Equation 5.27 

    , , , ; , , ,Y x Y

x
v x x d q l b Y E S W Nβ= = =∑  (5.27) 

 

HHM 
The framework of comparison choice under HHM applies to the direction choice 
decision. The value function of each direction is defined as, 
Equation 5.28 

 ( )     ,Y x Y x d Y b Yv x w d w b x q l= Ψ ≥ + + =W ∆  (5.28) 
 

where xW  and x∆  are vectors of state values and factor thresholds, similarly defined 
as in the go-home model; dw  and bw  are scalar state values for the two dummy 
variables. It is assumed that the pedestrian pairwise compares the values of alternative 
directions under a certain discriminant threshold, Rλ , and the direction with the 
highest value rank is selected. If no choice can be made on this basis, random choice is 
assumed. The choice probability of each direction is the expected outcome under the 
latent multinomial logit distribution of Rλ , which is also estimated by calculating the 
mental effort, risk perception, expected outcome, and value of each heuristic. 

5.2.2.2 Results 
Table 5.9 shows the estimation results. The MNL model with normal variables has a 
good goodness-of-fit with MLR equal to 0.41. The parameters for floorspace and 
length of pedestrianized section are positive, suggesting the attractiveness of retail 
activity and walking condition. The positive parameter for the location of The Bund 
articulates its role as a point of orientation. The negative parameter for previous 
direction is consistent with the hypothesis that pedestrians are less willing to make 
back-turns. Introducing non-linearity into q and l results in a lower LL, probably 
because logged variables make the alternatives less discriminable based on utility. A 
similar result is also observed in the WFS case. 

HHM has a significant improvement over the MNL models both in terms of 
LL and CAIC. It shows that only one threshold, 2,005 m2, is used for representing 
retail floorspace. Directions with the more retail floorspace than this number are 
satisfactory on this factor. The length of the pedestrianized section is represented into 
three states [< 110 m, 110 – 341 m, ≥ 341 m). Maybe 100 m should be considered as 
the least length for a pedestrianized street to be constructed. The signs of bw  and dw  
are both consistent with those of the MNL models. The positive oβ  suggests that 
smaller overall thresholds were preferred so that alternatives can be differentiated 
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more easily. Nevertheless, Figure 5.9 shows that risk perception is the dominant force 
controlling the choice of heuristic. It indicates that the distribution concentrates around 

7Φ . From this point, when preference structure becomes smaller, the probability drops, 
suggesting that pedestrians tend to avoid using extremely low discriminant thresholds 
which would make an alternative preferable to another even with trivial factor 
advantages, although the decision process tends to be quick. When the preference 
structure becomes larger, the probability also drops due to the fact that fewer 
alternatives can be differentiated under such high standards and random choices has to 
be made, which gives the pedestrians the feeling of loosing control. The exception is 
that the probability of PS 24 is high, even though pedestrians make random choices all 
the time without considering any information, because this strategy is almost effortless. 
In general, pedestrians are risk averse and prefer information search in this particular 
decision problem. Their way of decision making approaches rational mechanisms. 

The full factorial combination implies 24 factor search sequences, 6 for each 
factor. The figure also shows the probabilities of factors being searched first 
aggregated from all the 6 sequences starting from each factor. Under all preference 
structures, the length of pedestrianized section is always the most probable factor to be 
searched first. The second most probable first-to-search factor is the previous direction. 

 
Table 5.9  Estimation results of the direction choice models (ENR) 

MNL normal variables MNL logged variables 
Parameter Estimate Parameter Estimate 

qβ  3.466e-6 * qβ  0.432 * 
lβ  1.287e-3 * lβ  0.137 * 
bβ  0.638 * bβ  0.509 * 
dβ  -0.983 * dβ  -1.020 * 
CN  2,268 CN  2,268 
PN  4 PN  4 

LL -1,048 LL -1,056 
CAIC 2,131 CAIC 2,147 

HHM 
Parameter Estimate Parameter Estimate 

qδ  2,005 m2 bw  0.787 * 
( qw ) 1.000 * dw  -6.936 * 

1
lδ  110 m eβ  -3.437 * 

2
lδ  341 m rβ  7.652 * 

1
lw  7.452 * oβ  4.116 * 

2
lw  6.111 *   
CN  2,268   
PN  8   

LL -1,002   
CAIC 2,074   
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This relationship explains the fact that there were many pedestrians who stopped 
following their current walking direction into the non-pedestrianized section and 
turned back at the end of the pedestrianized section. The probabilities of searching 
floorspace and The Bund first are relatively low. Excluding 24Φ , the aggregate 
probabilities of factors being searched first are, l – 41%, d – 26%, q – 12%, and b – 
9%. 

5.2.3 Rest decision 

5.2.3.1 Models 

MNL 
Again the subsample of the near-the-end respondents was used for modeling the rest 
decision because the influence of time is considered. The same three factors as in the 
WFS case, action time ( Ct ), relative time ( Rt ), and absolute time ( At ), were used as 
explanatory variables. Therefore, the specification of the MNL model is also the same 
as Equation 5.17. 

HHM 
Similar to Equation 5.29, the pedestrian will decide to take a rest if: 
Equation 5.29 

 ( )     , ,X X X

X
t X C R AλΨ ≥ ≥ =∑W ∆  (5.29) 

 

That is, if the overall value aggregated from the factor values in the left side of the 
equation is larger than the assumed multinomial logit distribution λ , the pedestrian 
will take a rest. Otherwise, he/she will look for a store for patronage. 

5.2.3.2 Results 
In the results of the three models shown in Table 5.10, action time appears to have no 
effect again. The MLR of the MNL model with normal variables is 0.38. The 
parameters for the time variables are both positive as hypothesized. The LL improves 
when the variables are logged, suggesting that pedestrians’ utility derived from time is 

 
Figure 5.9  Distribution of preference structures (direction choice) 
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more appropriately represented as nonlinear function. Once more, the MNL model 
with logged variables outperforms the more complex HHM in terms of CAIC, even 
though the LL of the HHM is better. 

Under the HHM model, Rt  is represented into three states, [< 3 min, 3 – 179 
min, ≥ 179 min). The first state reflects that some pedestrians rested just after they 
arrived, probably because they had already felt tired from traveling or other activities. 
The second threshold is the 3rd hour from the start of the trip. At  is also represented 
into three states, [< 11:44, 11:44 – 19:50, ≥ 19:50). The first rest reference is near 
noon and the other threshold is around 20:00, probably after dinner. Their values are 
all positive, meaning that the need for rest becomes higher as time elapses. 

In Figure 5.10, the pattern of the distributions resembles that of the go-home 
decision. Strict heuristics are preferred in general, except 8Φ  and 9Φ  whose risk 
perception are high. The probability of applying the strategy of unconditional rejection 
implied in 10Φ  is also high. This explains the fact that only 17% of the activities were 
rest and 45% of the respondents did not report any rest behavior. Under those relaxed 
preference structures, before 5Φ , the two factors have almost no difference in 

 
Table 5.10  Estimation results of the rest models (ENR) 

MNL normal variables MNL logged variables. 
Parameter Estimate Parameter Estimate 

Rβ  0.004 * Rβ  0.353 * 
Aβ  0.002 * Aβ  1.868 * 
Hβ  4.131 * Hβ  15.636 * 
CN  822 CN  822 
PN  3 PN  3 

LL -351 LL -342 
CAIC 724 CAIC 707 

HHM 
Parameter Estimate Parameter Estimate 

1
Rδ  3 min 1

Aδ  11:44 

2
Rδ  179 min 2

Aδ  19:50 
( 1

Rw ) 1.000 * 1
Aw  0.884 * 

2
Rw  0.347 * 2

Aw  5.742 * 
eβ  -3.377 *   
rβ  5.568 *   
oβ  -2.229 *   
CN  822   
PN  7   

LL -329   
CAIC 713   
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probability of being searched first. But after this point, At  is dominantly searched first, 
suggesting that absolute time is still preferred as the reference for making the rest 
decision over relative time, as in the go-home decision. In total, At  has a much higher 
probability to be searched first with 63% against 10% for Rt . 

5.2.4 Store patronage decision 

5.2.4.1 Models 

MNL 
Because the temporal effect was still tested to be insignificant in the pedestrians’ 
utility function or the usage preference structure, the full sample was used for 
calibrating the store patronage decision. Four factors were considered to influence the 
decision. The three factors, number of visits in the store ic , store floorspace iq , and 
store type ijs , were inherited from the WFS case. The extra factor is called store 
dominance, im , defined as the ratio of the store floorspace to the total floorspace of 
the stores within 100 m radius of the store, to represent the uniqueness or 
competitiveness of a store relative to its retail environment. The value is between 0 – 1. 
Moreover, two more store types were added. The new coding is: art (j = 1, Arts), book 
& media (j = 2, Book), children (j = 3, Chil), clothes (j = 4, Clth), department (j = 5, 
Dept), equipment (j = 6, Equi), drink and food (j = 7, Fddr), fast food (j = 8, Fdfa), 
formal meal (j = 9, Fdfo), food retailing (j = 10, Fdre), jewelry (j = 11, Jewe), optical 
(j = 12, Opti), pharmaceutical (j = 13, Phar), shoe (j = 14, Shoe), sports (j = 15, Spor), 
tobacco (j = 16, Toba), tourism (j = 17, Tour), and others (j = 18, Oths). The utility 
function of each store is, 
Equation 5.30 

 
17

1
   , ,S x s

i i j ij
x j

v x s x c q mβ β
=

= + =∑ ∑  (5.30) 

 

Here the parameter for the others type was set to 0 and the other parameters for store 
types represent the relative attractiveness to the others type. 

 
Figure 5.10  Distribution of preference structures (rest) 
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HHM 
For the continuous and ordinal variables, c, q, and m, thresholds were used for 
representing factors. For discrete variable, s, each store type is represented as an 
interest category. This set of categories reflects that the pedestrian may recognize 
different types of stores into limited degrees of interests, with 

1{ ,..., ,..., ; }k KZ z z z K J= ≤ . Then each category is assigned a value, z
kw . The 

pedestrian will patronize the store, if he/she finds that, 
Equation 5.31 

 
1

( )     , ,
K

x x z
i k ik

x k
x w z x c q mλ

=

Ψ ≥ + ≥ =∑ ∑W ∆  (5.31) 
 

The number of the interest categories, K, is determined by model selection, as was 
done for determining the numbers of thresholds for the other variables. 

5.2.4.2 Results 
The estimation results in Table 5.11 show that the number of visits in the store does 
not have any impact on all the three models. This difference from the WFS case is 
because multiple visits in one store were not recorded in the ENR survey. In the 
estimation, it was assumed that the store is not considered by the pedestrian just after 
it has been patronized. However, it is still possible to consider the patronized store 
later if it is in the intended walking direction. Nevertheless, the decision cases 
including the patronized stores are much less. 

The MNL model with normal variables performs well with MLR equal to 0.78, 
because most of the rejection decisions can be modeled easily. The model improves 
considerably when the floorspace variable is logged, suggesting a decreasing trend in 
utility increment relative to increasing store size. Store dominance has no significant 
effect. Tourism site, in this case only The Bund, is the most attractive type as its 
parameter is the highest. The second most attractive store type is department store, 
followed by food store and book store. The stores for formal meals seem to be the 
least attractive to the pedestrians. 

The HHM has the best LL as well as CAIC. Floorspace is represented into 
four states, [< 50 m2, 50 – 420 m2, 420 – 24,000 m2, ≥ 24,000 m2). The surprising 
thing is that, in the third state stores with the floorspace over 50 times difference, 
could be treated similarly attractive on size. The influence of store dominance is 
effective. Its threshold value is near 1, suggesting that a dominant store to other stores 
can enhance the attractiveness of the store, probably because pedestrians can fully 
concentrate their attention on the store. However, since only one store suffices this 
condition, there is the possibility that this variable represents alternative-specific tastes. 
As for store type, four interest categories were estimated, from the most interesting (4) 
to the least interesting (1). The most interesting category only includes tourism sites, 
in this case only The Bund, which can also be treated as an alternative-specific effect. 
The second most interesting category includes department store and food store, mainly 
those selling local special food. 

Figure 5.11 indicates that in most decisions the pedestrians could have 
rejected the stores being evaluated without considering any information. This is 
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understandable since there are so many stores which are assumed to be potentially 
evaluated by the pedestrian before the satisfactory store is found. The negative oβ  
suggests pedestrians using high decision standards in general. A similar decreasing 
trend as in the go-home and rest decision is found after 25Φ  as the result of high 
decision risk. Store type seems to be the most important factor for store evaluation 
since it almost always has the highest probabilities to be searched first in the 
preference structures implying information search behavior. This is consistent with the 
result of the lexicographic model in the WFS case. The probabilities of floorspace and 
store dominance being searched first are very similar. In total, the aggregated 
probabilities of first-to-search factors are, s – 41%, q – 17%, and m – 14%. 
 
Table 5.11  Estimation results of the store patronage models (ENR) 

MNL normal variables MNL logged variables 
Parameter Estimate Parameter Estimate 

qβ  2.480e-5 * qβ  0.193 * 
mβ  0 mβ  0 
s
Artsβ  0 s

Artsβ  0 
s
Bookβ  1.151 * s

Bookβ  0.817 * 
s
Chilβ  1.268 * s

Chilβ  0 
s
Clthβ  0.575 * s

Clthβ  0.410 * 
s
Deptβ  2.217 * s

Deptβ  1.823 * 
s
Equiβ  0 s

Equiβ  0 
s
Fddrβ  0 s

Fddrβ  0 
s
Fdfaβ  0.660 * s

Fdfaβ  0.546 * 
s
Fdfoβ  0 s

Fdfoβ  -1.154 * 
s
Fdreβ  0.954 * s

Fdreβ  0.895 * 
s
Jeweβ  0 s

Jeweβ  0 
s
Optiβ  -0.788 * s

Optiβ  -0.670 * 
s
Pharβ  0 s

Pharβ  0 
s
Shoeβ  0 s

Shoeβ  0 
s
Sporβ  0 s

Sporβ  0 
s

Tobaβ  0 s
Tobaβ  0 

s
Tourβ  3.328 * s

Tourβ  2.935 * 
Uβ  3.977 * Uβ  4.892 * 
CN  47,111 CN  47,111 
PN  10 PN  10 

LL -7,138 LL -7,095 
CAIC 14,394 CAIC 14,308 
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Table 5.11  Estimation results of the store patronage models (ENR) (continued) 

HHM 
Parameter Estimate Parameter Estimate Parameter Estimate 

1
qδ  50 m2 Clthz  2 Sporz  2 

2
qδ  420 m2 Deptz  3 Tobaz  1 

3
qδ  24,000 m2 Equiz  2 Tourz  4 

1
qw  4.293 * Fddrz  2 ( Othsz ) 1 

2
qw  4.775 * Fdfaz  2 ( 1

zw ) 0 

3
qw  1.405 * Fdfoz  1 ( 2

zw ) 1.000 * 
mδ  0.999 Fdrez  3 3

zw  3.895 * 
mw  9.370 * Jewez  1 4

zw  9.770 * 

Artsz  1 Optiz  1 eβ  -2.893 * 

Bookz  2 Pharz  1 rβ  6.450 * 

Chilz  2 Shoez  1 oβ  -2.894 * 
CN  47,111     
PN  10     

LL -7,012     
CAIC 14,141     
 

 

 
Figure 5.11  Distribution of preference structures (store patronage) 

 

5.3 Summary 
This chapter applied the heuristic models and HHM to the two pedestrian behavior 
datasets collected in WFS and ENR respectively. They were also compared with the 
MNL models. The results are summarized in Table 5.12. In the WFS case, the 
heuristic models perform ubiquitously better than the MNL models both in terms of 
LL and CAIC, on the four decision problems. This suggests that pedestrians use 
simplifying decision strategies rather than the principle of rational choice, at least as 
represented by the MNL model, for making the decisions examined in this thesis. One 
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commonality is that the disjunctive rule is never the optimal strategy and often has 
significantly worse goodness-of-fit statistics than the other models, suggesting that 
pedestrians’ judgment standards are not low in general. A further look into the optimal 
lexicographic models reveals that some of them do not have a pure lexicographic form. 
The one for the rest decision actually is a combination of a conjunctive rule with 
random choice. The one for the store patronage model is a more complicated mixture 
of conjunctive, disjunctive, lexicographic, and other unnamed rules. Table 5.2 also 
shows that there are always models, including the MNL model, which are nearly as 
competitive as the best performing model. These results provide strong evidence of 
the coexistence of different decision strategies for a single decision. 

The application of HHM to the ENR data showed a way to overcome this 
limitation by estimating heterogeneous decision heuristic probabilistically. The 
distributions of the preference structures of the three satisficing decisions (go-home, 
rest, and store patronage) share similar patterns. Strict and simple decision heuristics 
are generally preferred by the pedestrians. However, strict but too risky heuristics, 
such as pure conjunctive rules, are rarely applied. The exception is the unconditional 
rejection heuristic, just because it costs little mental effort. In contrast, in the direction 
choice decision, pedestrians appear to be very risk-averse as the distribution of the 
preference structure concentrates around low-risk heuristics which imply extensive 
information search. Although the HHMs are the best models in terms of LL, only two 
of them outperformed MNL in terms of CAIC. The two MNL models with logged 
variables are better in the go-home and rest decision mainly because their simple 
model specifications are enough for the simple data, while HHM requires more 
parameters to model both outcome and process. This fact already shows that using 
such model selection criterion might be too crude to give a fair comparison, let alone 
the fact that there has not been any convincing solution for comparing non-nested 
models (e.g., Timmermans, et al., 1992). The HHMs estimated much simpler 
cognitive structures which are composed of limited numbers of factor states divided 
by factor thresholds, compared with the continuous utility functions in the MNL 
models which imply projecting every unit change of the variable values. The final 
merit of HHM is the capability to show factor importance for a decision from factor 
search sequence. It gives a more direct indication than comparing weight parameters 
in conventional utility-based models. 

Having derived these model estimations, we may conclude the empirical 
validity of BR models for modeling pedestrian behavior. Whether they can be useful 
for practical prediction of spatio-temporal behavior will be further tested in the next 
chapter. 

Table 5.12  Results of model comparison 

Decision WFS ENR 
 Best LL Best CAIC Best LL Best CAIC 
Go-home LEX R At t→  CONJ HHM MNL logged 
Direction choice LEX q d l→ →  LEX q d l→ →  HHM HHM 
Rest CONJ LEX A Rt t→  HHM MNL logged 
Store patronage LEX c s q→ →  LEX s c q→ →  HHM HHM 
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Chapter 

6 MODEL VALIDATION 

It has been shown in the previous chapters that models of bounded rationality do have 
theoretical as well empirical advantages in modeling pedestrian shopping behavior. 
Then, the next question is that whether they are practically useful, too. In urban 
planning and retail development, policy makers usually care more about aggregate 
level behavior such as the number of pedestrians in certain public spaces or individual 
stores within a certain period of time. However, each of the four decision models is 
estimated separately to the specific decision problem and independence between these 
decisions is assumed. This is insufficient to judge the practical usefulness of these 
models. Therefore, the purpose of this chapter is to validate the ability of the estimated 
models of bounded rationality, as an integrated system, to reproduce aggregate spatio-
temporal pedestrian shopping behaviors. This is realized using multi-agent simulation. 

The chapter includes three sections. The first section will introduce the 
development of the multi-agent simulation platform, the procedures used in the 
simulation, and the generation of the aggregate behavior from the simulation, which 
will be compared with observed behavior. It is followed by three tests in the second 
section of this chapter. The first test concerns the WFS 2004 case to validate the 
heuristic models. The HHM models will be validated in the second test using the ENR 
2007 data. The third test is conducted on another dataset, collected in ENR in 2003, 
using the models estimated on the basis of the 2007 data, in order to validate model 
transferability. The third section is a summary. 

6.1 The Simulation Platform 

6.1.1 System construction 
Although many multi-agent pedestrian simulation systems have been developed over 
the years, they are based on mechanisms for simulating pedestrian behavior, different 
from those developed in this thesis. For this reason, a specific simulation platform 
tailored to the models of bounded rationality suggested in this study was developed 
using NetLogo (see http://ccl.northwestern.edu/netlogo), an open-source multi-agent 
programmable modeling environment. This platform is not designed for specific 
problems, but allows defining almost any problem of interest through programming. It 
also provides a graphical representation, called World, which is especially useful for 
visualizing spatial activities. World is a grid-based graph composed of cells, each cell, 
called patch, with definable size, where an agent, called turtle, stands and moves. The 
simulation of agent movement is controlled by the commands which adjust the 
heading and the number of movement steps, with each step occupying a cell. NetLogo 
is designed to be object-oriented, implying that agents and cells may contain 
properties implemented as variables, and behaviors which are programmed procedures. 
It simulates the real world situation by representing changes in the status of multiple 
agents “simultaneously” (of course, processed sequentially in computation) as if they 
occur in parallel. Interactions between agents can also be modeled. 
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This specific pedestrian simulation platform consists of the following four 
components (Table 6.1). (1) Global variable, used to store global information that is 
accessible throughout the simulation process. Model parameters are stored as global 
variables that can be accessed by each agent and cell. (2) Agent represents a pedestrian 
who makes decisions and moves in space. Each agent is assigned a need which 
includes five main intentions, going home, choosing direction, taking rest, patronizing 
store, and staying at the same place. Different needs are assigned at different stages to 
indicate to the agent which decision should be made next. Agents of course contain 
their own location and orientation information in order to move in the grid space. An 
agent’s activity history is also recorded for related decisions. (3) Grid space represents 
the physical environment. Each cell in the grid space represents a 5 * 5 m area in the 
real environment. The size is determined considering the required accuracy relative to 
simulation speed. Five meters is representative for the width of narrow streets and the 
facades of small stores. This implies that detailed movement pattern of agents within 
the cell cannot be simulated. Nevertheless, the micro-scale movement simulation is 
not the focus of this study. Although many agents may simultaneously step into the 
same cell and make the space unrealistically dense, or walk in the streets which are 
supposed for vehicles, such problems may be tolerated as long as its impact on the 
aggregate behaviors of interest is limited. 

Each cell has a type which includes 6 categories (Figure 6.1): (i) block, where 
agents cannot stand or move into, (ii) street, where agents can stand or move into, (iii) 
entry, where agents enter the shopping area and start the trip, (iv) waypoint, which 
may serve as general orientation guidance for agents and is usually set at street 

Table 6.1  Components of the simulation platform 

Component Function / Behavior Element / Property 
Global 
variable 

Provides information that can be used by all 
the agents and cells in the system 

Model parameters, time, 
counter, etc. 

Agent Represents pedestrian, makes decisions, 
moves in grid space 

Need, location, orientation, 
duration, activity history, etc. 

Grid space 
Represents physical environment, contains 
physical information, records individual 
activities 

Type, area, store type, utility, 
direction, activity counter, etc. 

Interface Controls and visualizes simulation Control button & slide, grid 
space, result output 

   

 

 
Figure 6.1  Illustration of the grid space 
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intersections or locations where the street shape changes sharply, (v) rest place, where 
agents may take rests, and (vi) store, where agents shop and each store of whatever 
size is represented by a cell. Except waypoint, which is virtual, the other types of cells 
all resemble the actual physical environment to be simulated. The physical properties 
of a place are stored in the variables of the cell representing this place, for example, 
the area of store floorspace and store type. For computation efficiency, some reusable 
derivative variables such as the utility of a store are also calculated and stored as cell 
properties in the beginning of the simulation so that they do not have to be repeatedly 
calculated by each agent during simulation. Each cell also has some count variables to 
record the number and time of activities that happen on it, which are very useful for 
studying aggregate behavior. (4) Interface provides a convenient means for controlling 
the simulation processes and visualizing the real time situation of the simulated 
environment. In the left of Figure 6.2, the controls include buttons and slides. Here 
one slide is used for adjusting the number of agents for simulation, and the other slide 
is for adjusting the walking speed. As assumed in the data processing and model 
estimation, 1 m/s is the default walking speed for all agents. This means that each 
simulation step represents 5 seconds in reality. The grid space is put in the middle in 
which agents are represented by a small triangle with the tip indicating the heading. 
The space in the right is arranged for output units, including a clock displaying the real 
time in the simulation, a line graph instantly updating the number of agents conducting 
different activities at each simulation step, and a text form for outputting required 
information after the simulation ends. 

6.1.2 Simulation procedures 
Figure 6.3 shows the flowchart of the simulation. The simulation of each agent starts 
with entering the shopping area at one of the entries. This entry is randomly drawn 
from the observed distribution of pedestrians’ starting locations in the case 
environment. Also, the time when the agent enters is drawn from the observed time 
distribution of pedestrians’ arrival time. These are the only two given individual 
conditions in this simulation system. For the three tests that will follow, the actual 
time distributions are derived by counting the number of pedestrians in each hour. In 
the simulations, the generation of agents within each hour is set at a constant rate for 
the ease of operation. However, since the actual hourly distributions are not uniform, 
some small differences may happen in the final results. Especially, because 
pedestrians tended to report their arrival time at those integer clock hours or quarters, 
the actual start time distributions are concentrated around these time spots. 

After entering, the first decision that the agent will make is the direction 
choice decision, based on the direction choice models, if there are alternative 
directions. The decision is simulated by calculating utilities, generating random factor 
thresholds and random overall thresholds based estimated probabilities of preference 
structures. This treatment also applies to simulating all the other decisions. The chosen 
direction defines the search space of the agent in the following activities. Stores and 
rest places in the non-chosen directions will be ignored. The heading of the agent is 
immediately adjusted to the nearest waypoint in the chosen direction. 
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(See clockwise) 

 
Figure 6.2  Screenshot of the interface 
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* Stores and rest places within 100 m search range are searched. 

Figure 6.3  Flowchart of the multi-agent simulation 
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Based on the modeling framework in Figure 3.1, the next need of the agent is 
to rest. This is simulated by first checking whether rest is already in the need stack. 
Agent’s need stack is designed for storing unsatisfied needs which simulates the fact 
that pedestrians may postpone the pursuit of certain need if it cannot be satisfied under 
the current situation and give the priority to another need. In this system, only two 
needs may enter the need stack. Shopping is the default need always in the stack. Rest 
is the other which may be in or out of the stack depending on related decisions and 
behaviors. The priorities of the two needs may alternate. The mechanism will be 
detailed later. Obviously, for agents just entering the area, rest is not in the need stack. 
Then, an agent will make the rest decision based on the rest models. The proposed rest 
models require relative and absolute time as explanatory variables. This information 
can be easily derived based on the current simulation time and the recorded start time 
of the agent when his/her simulation begins. The positive decision outcome will lead 
to the same behavior as the agents who already have had rest in the need stack, which 
is to find a rest place. 

The search for a rest place is limited within the chosen direction. Another 
agent variable has to be mentioned is the search range which can be understood as 
pedestrian’s perceptual distance. The range is arbitrarily set to be 100 m. Note that 
setting this search range is largely for the simulation efficiency. It imposes very little 
impact on agent behavior represented by the models. However, reality is not 
completely ignored since a larger range can always increase computation efficiency. 
Moreover, the range just suffices to cover some large intersections so that stores in 
one corner can still be perceived by the agent at the opposite corner. The simulation 
runs in such a way that if the agent finds that there is a rest place within the search 
range, he/she will go for the nearest place and rest is removed from the need stack. 
The assumption here is that the rest place is always available regardless of its capacity 
and service level, even though many agents could be resting there. By doing so, we 
may at least identify the potential demands for rest at certain locations. When the 
agent reaches the rest place, the duration for this rest is predicted from the activity 
duration model (introduced later). Then, the agent just stays in the rest place until this 
duration has elapsed. After the rest, the agent thinks about whether to go home, based 
on the go-home model. A positive outcome will lead to the end of the shopping trip 
and the agent simply disappears from the environment. A negative outcome leads the 
agent back to the direction choice decision. 

At the node of searching for a rest place, if no place is found within the search 
range, it is assumed that the agent will push the need for rest into the need stack and at 
the same time give priority to shopping. The agent will start searching for a store only 
if there are still stores available in the chosen direction from the current location, 
otherwise a new direction choice is simulated. The procedure of searching for a store 
is similar as searching for a rest place. The agent evaluates each store from the nearest 
to the farthest one within the search range, based on the store patronage model. Once a 
satisfactory store is found, the agent will head for it. Upon reaching the target, the 
duration of the shopping activity is predicted from the shopping duration model and 
the agent will stay there until this time has elapsed. After that, the go-home decision is 
prompted again. If no satisfactory store is found within the search range, rest will 
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receive a higher priority if it is in the need stack. Then again, the availability of the 
current direction is checked. In case that direction is available, the agent will move 20 
steps (about 100 m search range) towards the nearest waypoint and start searching for 
a place to rest at the new location if rest is in the need stack, or start searching for a 
store when rest is not needed. The unavailability of the chosen direction will lead to a 
new decision about the direction to take. 

6.1.3 Comparison statistics 
The final step of a validation involves comparing simulated aggregated spatio-
temporal agent behavior with the observed aggregate pedestrian behavior. First, the 
distributions of different types of activities over time are obtained, including shopping, 
resting, and walking. These statistics can indicate the service levels of corresponding 
types of space, stores, rest facilities and streets. Aggregating the agents of the three 
types will give the total number of agents. Furthermore, the cumulative distribution of 
the number of agents having gone home is a good indication of agents’ go-home 
behavior. The temporal distributions are obtained by taking snapshots of the numbers 
of agents at 12 integer hours from 10:00 – 21:00, the normal store operation hours. 
Second, the shopping streets are divided into several segments and the distributions of 
the numbers of agents in each segment over time are obtained. These spatio-temporal 
distributions are useful for evaluating the performance of different parts of the 
shopping environment. Third, the number of visits and the total duration in individual 
stores are compared with the observations. These statistics are a direct indication of 
store attractiveness and could be most useful for retail developers. All the statistics are 
the averages of the results of 20 simulations for each test, in order to average out 
random fluctuations and obtain stable distributions. 

6.2 Tests 

6.2.1 Test 1 – WFS 2004 

6.2.1.1 Settings 
The map of WFS is simplified for the ease of simulation. The grid space concentrates 
on the close vicinity to the shopping street. Branch streets which are unlikely to be 
used are truncated and treated as blocks. The street is divided into 6 segments (Figure 
6.4). Segment 1 starts from the southern end of the street to the southern end of the 
pedestrianized section. Segment 2, 3 and 4 compose the whole pedestrianized section. 
Segment 5 and 6 are non-pedestrianized. Four main entries are used as the starting 

 

 
Figure 6.4  Segments of WFS 
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points of agents. The numbers of pedestrians entering from the other entries are 
aggregated into their nearest main entries. From the left to the right of the figure, entry 
1 is at the southern end of the street, where 70% of the pedestrians started the 
shopping trip. Entry 2 is at the southern end of the pedestrianized section where 5% of 
the pedestrians entered. The other end of the pedestrianized section locates entry 3 
where 10% of the pedestrians entered. Entry 4 is at the northern end of the street 
where 15% of the pedestrians entered. 

The distribution of entry time directly uses the observation as in Figure 4.5, 
from which an agent’s start time of the shopping trip is drawn. In order to predict the 
activity duration, the observation is fitted using a gamma distribution (Table 6.2). The 
fit is good in general, except that it is less peaked than the observation. Because the 
activity duration is averaged across all activities, the difference in time use by 
different activity types cannot be identified. The activity duration is predicted by 
simply drawing a random number from this distribution. The four major decisions are 
simulated based on the best heuristic models in terms of CAIC (Table 5.12). The 
simulation of a decision is implemented as such in general. First, a factor is selected 
for consideration based on the search sequence suggested by the heuristic. For the 
conjunctive model, the sequence does not matter. Second, factor threshold values are 
randomly drawn from respective estimated threshold distributions. Third, factor values 
are compared with the thresholds and judgments can be made according to the 
heuristic. Drawing random thresholds every time an agent is making a decision may 
be unrealistic since individual’s judgment standards are relatively stable, if not 
constant. However, because, to keep the models simple, we estimated the models 
under the assumption of independent decision cases, the simulation has to follow the 
models. To correct the problem requires modeling more complex correlation 
structures within each individual. The total number of simulated agents is 694, which 
is the number of respondents with complete shopping diaries. 

Table 6.2  Estimation results of activity duration (WFS) 

Fit chart Parameter Estimate 
α  (shape) 2.345 
β  (scale) 26.728 
NC 2,740 
LL -13,626 
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6.2.1.2 Results 
The distributions of agents conducting different activities over time are shown in 
Figure 6.5, where the x-axis lists the 12 clock hours. Figure-a compares the simulated 
and observed total numbers of agents in the street. The fit appears to be very good and 
the single modal shape peaked around 15:00 is well captured. The simulated numbers 
before 15:00 almost match the observations perfectly, while after this point, there is 
evidence of some overestimation, suggesting that the go-home model does not 
generate agents’ go-home decisions early enough. 

In Figure-b, the match between the simulated and the observed numbers of in-
store agents is good, too, except for some minor underestimations and overestimations 
that occur before and after 15:00. The number of agents who are taking a rest is 
compared in Figure-c. The simulated distribution is slightly flatter compared to the 
observed distribution. The simulation fits the observation well before 14:00 and after 

  

 

 

 
Figure 6.5  Distributions of agents by activities over time  (WFS) 
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17:00. However, it does not capture the fast increase at 15:00 and the peak at 16:00.  
The fit between the simulated and observed numbers of walking agents is the 

worst among all, although the general trend is right. However, this could be partially 
tolerated as the numbers of observation are small compared to other activities. 
Therefore, the distribution is more sensitive to random fluctuations and more difficult 
to capture. 

Finally, the two cumulative distributions of agents who have gone home stay 
very close in Figure-e. The slight bend-down in the simulation confirms the conjecture 
from Figure-a that the thresholds estimates should be a little more relaxed in the go-
home model. 

In Figure-b – d, the percentages of agents conducting different activities are 
also shown, with the right y-axis being their scales. One interesting phenomenon from 
the observation is that the percentage of in-store activities constantly drops and the 

  

 

 

 
Figure 6.6  Distributions of agents in segments over time  (WFS) 
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percentage of rest keeps rising as time goes by. This can be reasonably explained as 
the result of high motivation for shopping in the early stage of the trip, which becomes 
lower in the later stage as the pedestrian could have fulfilled the needs or feels fatigue 
or bored. The simulated percentages for both activities are flatter than the observations. 
This could be a result of averaging duration across all activity types, which cannot 
reflect the influence of shopping habits on changes of duration. The distribution of the 
percentage of walking agents is actually random, while a downward trend is simulated. 

The distributions of agents in segments over time are shown in Figure 6.6. 
Although the simulation captures the general trends in the observations, there is 
increased evidence of more under- and overestimations. Segment 1 is the closest 
segment to the southern entry where most agents enter. The number of agents in this 
segment increases fast before 12:00 in the observations. However, the simulation 
underestimates the numbers before 14:00 and overestimates these after this point. 
Segments 2 and 3 are the two segments with the highest peak in the numbers of 
pedestrians. This is reflected in the simulation but with some underestimations. In 
contrast, the simulated numbers of agents in segments 4, 5 and 6 which actually have 
much fewer pedestrian activities are overestimated. This result suggests that the store 
patronage model seems to have made the stores in segments 4 – 6 more attractive than 
they really are. In the simulation, these stores absorbed the agents entering at the two 
northern entries and reduced the probability of the agents searching stores in segments 
1 – 3. On the other hand, the influence of walking environment seems to be limited 
than it actually is since it is the last factor for consideration in the lexicographic 
direction choice model. As a result, the behavior that the pedestrians walking 
northwards in the pedestrianized section and then turn back at the end of this section is 
weakened in the simulation, while the probability of agents continuing walking into 
the northern segments becomes higher. 

The final comparison is between the simulated and observed numbers of 
agents and total durations that the agents spend in each store (Figure 6.7). Figure-a 
shows the numbers of visits. The scatter points gather close to the iso-value line, 
suggesting a good match. It seems that the number of agents in the large stores has 
been overestimated, implying that the store patronage model overemphasizes the 

  

  
Figure 6.7  Number of visits and duration in stores (WFS) 
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attraction of large stores. The observed total number of in-store visits is 2,293, while 
the simulated number is 2,364. The overestimation is 3.1%. In Figure-b, the dispersion 
of total duration is smaller. The simulated sum across all stores is 148,226 minutes. 
Compared to the observations (141,075 minutes), there is a 5.1% overestimation. The 
average in-store duration is 61.5 minutes in the observations and 62.7 minutes in the 
simulation. 

6.2.2 Test 2 – ENR 2007 

6.2.2.1 Settings 
The map of ENR in 2007 is divided into 12 segments (Figure 6.8), with the smaller 
numbers representing segments near the western end and the larger numbers near the 
eastern end. Thus, the pedestrianized section starts from segment 2 to 8. Some branch 
streets are also counted as segments if there are at least 50 m of stores along the street, 
such as Segments 3, 7, 9 and 11. The surrounding less relevant streets are truncated, 
assuming that the agents only walk in these remaining main segments, which is 
consistent with the behavior of most pedestrians in reality. All the entries are kept as 
they are and no aggregation is implemented on the entry distribution. The original 
distribution as in Figure 4.17 is directly used for drawing at random the entries for the 
agents. 

Unlike the treatment in WFS, activity durations were asked from the 
respondents and corrected. It is possible to differentiate duration between activity 
types. Their differences are shown in Figure 4.16. Four models are estimated to the 
durations for the four activity types: shopping, meal, rest, and tourism. Each model is 
specified as, 
Equation 6.1 

 ( , )q R R A A g gD q t tα β β β α β= + + + + Γ  (5.32) 
 

Here, duration, D, is assumed to be a linear function of the following variables: (1) α , 
an intercept which serves as a type-specific parameter adjusting the average duration; 
(2) q, the retail floorspace of a store. Hypothesizing that large stores can attract 
pedestrians to stay longer, its parameter should be positive; (3) Rt , relative time could 
also have some effect considering the changes of pedestrian’s shopping motivation 
and need for rest during different stages of the shopping trip; (4) At , absolute time 

 

 
Figure 6.8  Segments of ENR 07 
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may have an impact if pedestrians are faced with external scheduling constraints; (5) 
Γ , a gamma distribution, representing the unobservable random part. Because the 
function includes time variables, the subsample of respondents with complete diaries 
is used so that the time distributions are not biased due to incomplete trips, however, 
at the risk of reducing completeness due to small sample size. 

The estimation results are shown in Table 6.3. The models have been tested to 
be much better than the conventional linear regression model with a normally 
distributed random part and a pure gamma distribution. The positive qβ  in the 
shopping and meal model is consistent with the hypothesis. The magnitude of this 
parameter in the shopping model is much smaller because there are more larger stores 
for shopping activities than for meal activities, implying that the parameter cannot be 
too high. The parameters for Rt  are all positive, which means that pedestrians spend 
more time on activities during the later stage of the trip probably due to the 
diminishing tendency to switch between stores and accumulating fatigue or boredom. 
In contrast, the parameters for At  are ubiquitously negative, which could be explained 
as absolute time approaching some schedule deadline, the pedestrian has to limit the 
duration in order to meet the deadline. 

The major decisions are simulated based on the four HHM models. Although 
in reality it is much easier for the pedestrian to search factors sequentially based on 
selected decision heuristics, operationally it is more convenient to simulate decision 
outcomes based on overall value (utility). The treatment is that, in the initialization of 
a simulation, the overall value set is calculated based on the value (weight) parameters 
of each model, and the estimated probability distribution of preference structures is 
input. For some static factors such as floorspace, their values are calculated and stored 
during the initialization. To generate a decision outcome during simulation, the overall 
threshold is drawn from the overall value set according to the distribution of 
preference structures. Then, the overall value of the alternative is calculated or 
retrieved from the storage. The outcome is simply derived by checking the overall 
value against the overall threshold. The number of simulated agents is 236, the same 
as the subsample size of near-the-end respondents. 

 
Table 6.3  Estimation results of activity duration (ENR 07) 

Parameter Estimate 
 Shopping Meal Rest Tourism 
α  23.238 28.843 32.761 94.653 

qβ  1.360e-4 0.003 - - 
Rβ  0.025 0.026 0.014 0.079 
Aβ  -0.028 -0.028 -0.036 -1.000 
gα  1.384 0.968 1.272 0.838 
gβ  43.633 72.690 39.600 131.781 
CN  549 90 142 21 

LL -2,784 -471 -696 -113 
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6.2.2.2 Results 
Figure 6.9 shows the activity-time distributions. The simulated total number of agents 
fits the observations quite well. The distribution has the similar shape as in WFS case 
with 15:00 being the single peak. Slight underestimation can be found before this time 
mainly because the agent generation procedure, based on constant hourly generation 
rates, does not generate as many agents as in reality near the clock hours which in fact 
are more frequently reported by respondents as their arrival time. The mismatches 
become more apparent in the in-store distributions when the numbers of agents are 
fewer. Nevertheless, almost every turning-point is well captured. The number of 
agents taking rests rises steeply from 12:00 to 15:00, which was well reproduced by 
the simulation. After 15:00, the simulated numbers drop too fast. 

  

  

  

 
Figure 6.9  Distributions of agents by activities over time  (ENR 07) 



Model Validation 

137 

The fit between the simulated and observed number of walking agents is poor, 
largely due to the small numbers in the sample. The two distributions of the 
cumulative number of agents who have gone home are very close. The changes of the 
activity percentages over time display very similar patterns as in the WFS case. The 
percentage of in-store activities drops from about 90% in the beginning to about 60% 
in the end; the percentage of resting keeps increasing from none to about 40%. The 
percentage of walking is the smallest most of the time. 

The magnitudes of the simulated number of agents in segments are largely 
correct (Figure 6.10), although with more severe under- and overestimation. The fits 
in the segments with very small numbers of pedestrians, such as Segments 1, 3, 7, 9 
and 11, are poor. This is what one should expect for small numbers. However, at least 
they reflect the fact that branch streets are not very competitive compared to the main 
shopping street. Actually the under-development of branch streets has been a topic for 
the local planning authority for quite some time. The distributions in Segments 2 and 4, 
the two segments closest to the western end, are simulated relatively well. The 
numbers in the two segments in the middle, Segments 5 and 6, are underestimated, 
mainly because the attractiveness of some stores of special fame in these segments are 
not represented in the store patronage model. Thus, the probability of agents just 
walking through these segments becomes higher in the simulations. In the non-
pedestrianized section, as the number of pedestrians drops, the simulated numbers 
appear to be more erratic, with the numbers in Segment 10 overestimated and those in 
Segment 12 underestimated. 

  

  

  
Figure 6.10  Distributions of agents in segments over time  (ENR 07) 
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Figure 6.10  Distributions of agents in segments over time  (ENR 07) (continued) 
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Figure 6.11  Number of visits and duration in stores (ENR 07) 

 
Figure 6.11-a shows that the simulated number of visits in stores reflect the 

general trend, however, with more dispersion compared with the WFS case. This is 
not very surprising since the shopping environment in ENR is more prosperous and 
complicated than the one in WFS, and pedestrians are more heterogeneous as ENR’s 
stronger regional fame attracts diverse consumer groups from within the area. 
Moreover, the inability of the store patronage model to consider more specific 
decision factors such as store reputation, retail strategy, window display, and 
atmosphere could also be responsible (e.g., Sen, et al., 2002; Teller and Reutterer, 
2008). The overall observed number of visits is 655, while the simulated number of 
visits is 682, indicating overestimation of 4.1%. In Figure-b, most scatter points gather 
closer to the iso-value line except two points representing two large stores. The 
simulated overall in-store duration is 46,019 minutes, compared to the observation 
44,083 minutes. The mean simulated duration is 67.5 minutes, which is very close to 
the observed 67.3 minutes. 

6.2.3 Test 3 – ENR 2003 
In August of 2003, a pedestrian survey was carried out in ENR. The survey methods 
and questions were similar to the WFS case. The interviewers, in two normal days 
from 13:00 – 20:00, invited respondents who were near the end of their shopping trips 
to participate. Respondents’ shopping diaries were recorded, however, without rest 
behavior. The sample size is 809. The physical environment of the street in 2007 was 
not fundamentally different from the situation in 2003, except that two large 
department stores and a new metro line had been opened at the western end, and some 
other smaller scale retail redevelopments took place at other places along the street. To 
test the temporal transferability of the proposed approach, the models estimated from 
the ENR 07 data will be directly used to simulate agent behavior in the simulated 
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environment of ENR 03. The simulated aggregate behavior will be compared with 
observed data collected in 2003. 

6.2.3.1 Settings 
Because the stores in the branch streets were not taken into account in the 2003 survey, 
the simulated environment is simpler than the one for the ENR 07 case with 7 
segments (Figure 6.12). Nineteen entries surrounding ENR were used as agents’ 
starting points. The entry distribution and starting time distribution were derived from 
the 2003 data. The simulation models were completely transferred from the 07 case. 
The number of agents to simulate is 508; the same as the number of the respondents 
with complete shopping diaries. 

6.2.3.2 Results 
The test was run in three rounds. The first round completely used the ENR 07 models 
to simulate the ENR 03 situation, except that the rest decision module was taken out. 
The result is not satisfactory. Figure 6.13 shows that after 15:00 the simulated total 
number of agents drops much faster and the number of agents having gone home 
accumulates much faster than the observations. The go-home model based on the 07 
data generates go-home behavior too early, which in turn decreases the accuracy of all 
other distributions. Therefore, the HHM go-home model was estimated again, this 
time using the 03 data. This newly estimated model replaced the 07 go-home model in 
the second round. This modification solved the problem in the sense that the go-home 
data were much better predicted. However, another problem occurred in that the total 

 
Figure 6.12  Segments of ENR 03 

 

  

  
Figure 6.13  Distributions of agents by activities over time  using the ENR 07 models 

(ENR 03) 
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number of store visits was heavily overestimated because the mean in-store duration is 
about 62 minutes in the 07 data, while it is about 81 minutes in the 03 data. This large 
difference is partially due to the difference between the two data collections. Recall 
that rest behavior was not recorded separately during the survey in the 03 data, but 
mixed with in-store duration. To avoid this bias, the duration model was re-estimated 
using the 03 data. The third round of tests was run with replacing the 07 duration 
model with the 03 version. 

After these two rounds of corrections, the distributions of the simulated total 
number of the active agents and the gone-home agents fit the observations almost 
perfectly (Figure 6.14). Without the simulation of rest behavior, in-store activity 
accounts for over 90% of the activities, while walking behavior represents only a 
small proportion. The direction model and store patronage model were not modified. 
In Figure 6.15, the distributions of agents in segments display similar patterns as in the 
07 case. The distributions of the two segments closest to the western end (Segments 1 
and 2) are reproduced relatively well. The distributions in Segments 3 and 4, the two 
middle segments, are still underestimated, even more. Much stronger overestimation 
can be seen in Segments 5 – 7. These results suggest that pedestrians in the 03 case 
had stronger preferences for the stores in the pedestrianized section than the 
pedestrians in the 07 case. The store patronage model based on the 07 data fails to 
capture this trend. At the same time, the direction choice model could not have 
emphasized the 03 pedestrians’ preference for the pedestrianized section enough. 

  

  

 
Figure 6.14  Distributions of agents by activities over time  (ENR 03) 
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Figure 6.15  Distributions of agents in segments over time  (ENR 03) 
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The correction of the duration model leads to significant improvement (Figure 
6.16). The simulated total number of store visits is 1,878, almost the same as the 
observed 1,877. The simulated aggregate overall in-store duration is 147,275 minutes, 
compared to the observed 151,245 minutes an underestimation of only 2.6%. The 
mean durations are 78 minutes in the simulation and 81 minutes in the observations. 

Although the overall durations are well predicted, comparisons of individual 
stores do not show that good consistency. Both the number of visits of and total 
durations in large stores seem to be underestimated. Since the overall sums are very 
close to observations, it implies that activities in small stores are overestimated. This 
renders further proof of our conjecture that the direction choice model underestimated 
the attraction of the pedestrianized street and the store patronage model 
underemphasizes the larger stores most of which are located in the pedestrianized 
street. 

6.3 Summary 
This chapter first introduced the construction and operation of a multi-agent pedestrian 
simulation platform, which was specifically developed to incorporate the bounded 
rationality models that were estimated. The purpose of this multi-agent simulation, 
although this can be viewed as a model in its own right, was primarily to validate the 
joint predictive ability of these models, which were formulated and estimated 
independently as a first prototype. The validation is based on a comparison of 
aggregated simulated agent behavior and observed aggregated behavior in the original 
data. The comparison statistics include the number of agents conducting different 
activities over time, the number of agents in street segments over time, the number of 
agents visiting individual stores, and the total duration of activities that the agents 
conduct in individual stores. 

Three tests were run for this purpose. The first and second test simulated the 
environment of WFS in 2004 and ENR in 2007. In general, the comparisons suggested 

 
Figure 6.16  Number of visits and duration in stores (ENR 03) 
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good predictive abilities of the heuristic models and the HHM models. In particular, 
the distributions of activities by type over time were reproduced very well. The 
models also performed very well for the go-home decision. The simulations of rest 
behavior were only slightly worse, while walking behavior seems to be the most 
difficult to predict accurately. However, there was reason to believe that these tests 
would not perform very well due to the larger random fluctuations in the small 
numbers of observations. The two tests showed consistent percentages of activities 
over time, suggesting the general characteristics of pedestrians’ temporal behavior and 
also the stability of the survey method. The percentage of in-store activity decreases 
over time and the percentage of rest behavior increases over time. In-store activity is 
the dominant activity throughout the whole shopping trip with an average percentage 
about 80%. These trends were also captured well in both tests, except the changes 
were not sharp enough as the observations, largely due to the averaging effects of the 
model estimations. The averaging effects in the store patronage models and direction 
choice models caused more discrepancies in the comparisons of activity distributions 
in street segments, even though the general percentages of the activity numbers in 
segments were right. The simulations overestimated the activities in the stores along 
the non-pedestrianized sections and underestimated the activities in the stores along 
the pedestrianized sections. Again, distributions in segments with large number of 
activities were predicted better than those segments with a limited number of activities. 
Roughly, 50 should be the smallest number for an activity distribution to represent 
stable trends. The overall sums of the simulated number of visits and duration in 
individual stores, as well the average duration, were very close to observations. 
However, more specific factors have to be included in the store patronage model for 
higher predictive accuracy at the individual store level. 

The third test was meant to validate the temporal transferability of the HHM 
models by simulating the ENR 03 situation using the ENR 07 models. The 
transferability turned out to be very limited as the simulation results deviated 
substantially from the observation on all statistics under the original models. One of 
the obvious reasons was that the interviewing protocols between the two data 
collection differed substantially on some questions. Once this was taken into account, 
results improved significantly. However, the results also suggest that pedestrian 
behavior changed as a result of the change in the retail environments around ENR 
during three years between the two surveys. Within ENR, new developments and 
redevelopments of small but special stores has intensified competition and reduced the 
dominance of magnet stores. Therefore, the store patronage model derived from the 07 
data over-emphasized small stores. Outside ENR, retail developments in nearby areas 
may also have competed with ENR, implying that pedestrians stayed shorter in ENR 
to visit other shopping areas. Considering these complications, the transferability test 
cannot be conclusive. 

However, after accounting for some effects, the transferability test did provide 
insight into the function of each model within the whole model system. The go-home 
model seems to be the most important model for predicting aggregate behavior on all 
aspects. If the model generates the go-home decision outcome too early or too late, 
significant under- or overestimation must happen in other activities as the pool size is 
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already wrong. Although not as influential as the go-home model, the duration model 
should be the second most important model to be studied carefully. This is because, on 
the one hand, based on the assumption of independence of each decision, every go-
home decision has the probability to generate a positive outcome. On the other hand, 
as it is assumed that the go-home decision is made after each shopping or rest activity, 
activity duration is the factor directly influencing the frequency of the go-home 
decision. For example, if the duration is underestimated as in the first round of test 3, 
the frequency of the go-home decision will increase, causing the probability of going 
home to increase accordingly. Another apparent effect of the duration model is on the 
number of store visits, less duration, more visits, and vice versa. 

Compared to the go-home and duration models, other models are not really 
effective in controlling the overall number of active agents and they do not even have 
to be very accurate in order to predict the proportions of activity types. The latter point 
is supported by the result that, in the third round, even though the store patronage 
model was not estimated to the 03 data, the distribution of in-store activity was still 
simulated well. This means, for this task, that the store patronage model or rest model 
only have to capture the general probability that the behavior of interest will occur, no 
matter where it occurs. However, for predicting spatial distributions, the store 
patronage model and direction choice model are fully responsible for allocating the 
“resources” in the pool to different places, and must be fitted well to the local 
conditions. 
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Chapter 

7 CONCLUSION AND DISCUSSION 

Understanding pedestrian decisions is an important task for urban and retail planning 
as planning decisions influence pedestrian behavior which in turn affects spatial usage, 
retail turnover, and the vitality of particular urban areas. Pedestrian decision research 
dominantly relies on rational choice models which typically assume that pedestrians 
are rational agents who have complete knowledge about the choice set, use all factors 
relevant to characterize the choice alternatives, aggregate their part-worth into an 
overall utility, and choose the alternative with the highest overall utility. A substantial 
amount of counterevidence has accumulated over the years to indicate that these 
assumptions are rarely satisfied in reality. In contrast, due to the fact that their 
cognitive capacity and computation ability are limited, people often use simplifying 
decision strategies which allow them to use information selectively, process 
information in non-compensatory manners, make choices with simple rules-of-thumb, 
and accept satisfactory alternatives which may not be optimal. This evidence and these 
conjectures are founded on the theory of bounded rationality. 

Guided by the motivation to investigate pedestrian behavior using 
behaviorally more realistic modeling approaches, the aim of this thesis is to test the 
validity of models, incorporating principles of bounded rationality, to explain spatio-
temporal pedestrian behavior in meso-level shopping environments. Under the 
proposed general framework for modeling spatio-temporal decisions, most emphasis 
was put on exploring, extending, estimating, and validating heuristic decision models. 
Comparing the estimation results of conventional rational choice models and bounded 
rationality models on real-world pedestrian shopping diary data suggested the 
promising theoretical and empirical potential of the latter for pedestrian modeling. To 
support this overall conclusion, we will complete this thesis by discussing the main 
findings of each chapter (which also serves as a summary), reflect on these findings 
and articulate some directions of future research. 

7.1 Findings 
In the literature review (Chapter 2), we focused on the two realms of models that are 
directly related to our research project: models of pedestrian behavior and models of 
bounded rationality. Over the decades, models of pedestrian behavior have become 
increasingly more complex in terms of detail, content of pedestrian behavior, and the 
modeling techniques. Aggregate models have been replaced by various, multi-
disciplinary individual-based models and techniques that allow much more detailed 
and flexible analyses of individual behavior and underlying mechanisms. Examples 
are discrete choice models, physics-analogous models, cognitive and psychological 
models, cellular automata models, and multi-agent systems. It should be noted that 
behavioral realism in these alternative approaches differs dramatically. In comparison, 
approaches of bounded rationality are much more diverse and concentrate around 
decision heuristics. Different compensatory or non-compensatory, alternative-based or 
attribute-based, singular or combined decision heuristics which more or less deviate 
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from rational choice principles, or are completely based on different principles, have 
been proposed and tested. More importantly, endeavors have been made to explain the 
choice of decision strategies, contingent upon personal and environmental 
characteristics involved in a decision. Although most research only revealed the 
general relationships between strategy use and influencing factors and very few 
operational formal models are available, they have opened a door which leads to much 
deeper understanding of human decision making. 

Based on this review, it was argued that bounded rationality models have 
never been empirically tested in pedestrian research and that it will therefore be of 
value to make such an attempt. In this context, the heterogeneity of decision strategies, 
although being an old idea, is still an infant research topic. Hence, developing a formal 
model of this process may not only benefit the understanding of complex pedestrian 
behavior but also decision research at large. Moreover, the content of meso-level 
pedestrian research can be enriched by considering the influence of time on pedestrian 
behavior and decisions, which however was at most modeled as discrete stops. Multi-
agent simulation can be a useful validation tool with the support from concrete 
calibration results against real-world data. 

Consequently, based on these main findings of the literature review, we set 
out to explore the potential of developing and applying pedestrian models based on 
principles of bounded rationality in general. More specifically, one of the main goals 
is to examine how the idea of heterogeneous decision strategies can be incorporated in 
such a modeling approach.  This also defines the major contributions of this thesis to 
the international state-of-the-art in modeling pedestrian behavior at the meso level. 
Some other minor contributions and relatively unique aspects of this study will be 
articulated later on. 

Given this objective, Chapter 3 discussed the conceptual framework of this 
thesis for modeling pedestrian behavior. It started by proposing a modeling framework 
which consists of four inter-dependent decisions, namely the go-home, direction 
choice, rest, and store patronage decision, based on which, aggregate spatio-temporal 
pedestrian activities can largely be recovered. The go-home decision determines the 
duration of each pedestrian’s shopping trip and affects the aggregate number of 
activities in the whole shopping area. The direction choice model determines the 
activity space of each pedestrian and in turn the aggregate activity levels in different 
parts of the shopping area. The rest decision determines the occurrence of rest taking 
behavior, which also takes space and time and obviously competes with shopping 
behavior. The store patronage decision determines which stores are visited by the 
pedestrian and is most relevant for retail development. This is followed by introducing 
the rationales of three model prototypes that are to be specified for each decision. The 
first prototype is the multinomial logit model. It is representative of rational choice 
models and serves as a benchmark in this study. The second prototype includes three 
typical decision heuristics: conjunctive rule, disjunctive rule, and lexicographic rule. 
Extensions were made based on the original logic of each rule by incorporating 
threshold heterogeneity and deriving probabilistic formulations. The third prototype, 
the heterogeneous heuristic model (HHM), is the major methodological contribution 
of this thesis. It models selective consideration of factors in decision making by 
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incorporating factor thresholds as filtering mechanism, and translation of these factors 
into limited discrete states. By attaching values to each factor state and weights to 
each factor and aggregating factor values into an overall value in an assumed linear 
combination manner, it constructs a mental representation of the decision problem by 
individuals. Checking the overall value against some overall threshold leads to a 
judgment. Although this is a semi-compensatory process, it was shown that under 
reasonable assumptions of a stochastic overall threshold, heterogeneous non-
compensatory decision heuristics can be exactly identified through logical inference, 
including the three rules of the second prototype. 

Based on this finding, the choice of heuristic was modeled, assuming that each 
individual has a repertoire of decision strategies and chooses the decision strategy 
probabilistically in proportion to the joint influence of mental effort, risk perception, 
and expected outcome. Finally, a latent class structure was used to estimate the choice 
outcome. With HHM, the diversity of decision processes can be explicitly studied by 
estimating the probability of each decision strategy with different sequence of 
information search, which is completely impossible for rational choice models and 
limited in separately specified heuristic models. 

The data used for empirical model tests were introduced in Chapter 4. They 
include two pedestrian shopping dairy datasets collected in two shopping centers in 
China. We decided to use real-world behavioral data instead of experimental data 
mainly based on the consideration that there are still many aspects such as sense of 
time and fatigue that cannot be realistically replicated in virtual environments, but 
which, by no means, are negligible when modeling spatio-temporal behavior. The first 
dataset was collected in Wang Fujing Street, Beijing, in 2004 and the second dataset 
was collected in East Nanjing Road, Shanghai, in 2007. Questionnaire-based surveys 
were used to record pedestrians’ socio-demographics and shopping dairies. In addition 
to this information, temporal information corresponding to each activity was estimated 
for modeling time related decisions using a grid-based estimation approach. Although 
the two cities are in different regions in China and pedestrians are somehow different 
in socio-demographics, their behaviors in general are similar in terms of the number of 
store visits, the number of rests, activity duration, the relationship between the entry 
distribution and public transport, the relationship between the activity distribution and 
store type and walking environment, which suggests underlying consistency of 
pedestrian behavior and validates the survey method to some extent. 

In Chapter 5, the three prototype models were tailored to each four decision 
problems. The models were estimated against the two datasets in order to compare 
their statistical performances. The heuristic models were estimated against the WFS 
data and the HHMs were estimated against the ENR data. The MNL models were 
estimated against both datasets. It was found that, for the WFS case, all the MNL 
models were outperformed by the heuristic models in terms of log-likelihood (LL) and 
Consistent Akaike Information Criterion (CAIC). In particular, disjunctive models 
were never the optimal strategy for all the decisions, suggesting that pedestrians’ 
decision standards are not low in general. Except that the go-home decision was best 
modeled by a conjunctive model, the other three decisions were all best modeled by 
lexicographic models. However, none of the lexicographic models were in the pure 
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lexicographic form, but rather a combination with other rules. Especially for the store 
patronage decision, the model implies a complex combination of conjunctive, 
disjunctive, lexicographic, and other unnamed rules. However, it should be noted that 
the goodness-of-fit statistics of some other non-optimal models (sometimes heuristics 
models and sometimes MNL models) was sometimes very close to that of the best 
fitting model. 

The advantage of HHM to estimate such coexisting heuristics was further 
demonstrated by the model estimations for the ENR case. Although all the HHMs on 
the four decisions were the best in terms of LL, only the two for the direction choice 
decision and the store patronage decision were the best in terms of CAIC, and the go-
home decision and the rest decision were best modeled by MNL. This was mainly 
caused by the small sample size for the go-home and rest decision and the extra 
parameters in the HHMs for modeling choice of strategies. Considering the latter 
reason along with the unresolved difficulty in comparing non-nested models, the 
statistical advantage of HHMs is still acceptable. 

The estimated decision processes by the HHMs suggested some interesting 
implications. It was found that the preference structures underlying pedestrians’ go-
home, rest, and store patronage decisions (the three binary rejection/acceptation 
decisions) share some similar characteristics, with strict and simple decision strategies 
being preferred in general. However, extremely risky strategies are avoided, except the 
unconditional rejection strategy which is almost effortless. In contrast, pedestrians 
turned out to be risk-averse for the direction choice decision, which is a comparative 
decision. The probabilities of using mild decision standards (discriminant thresholds 
for differentiating two alternatives) appeared to be high as the implied heuristics tend 
to make the individual uncertain about the comparison at each stage of factor search, 
which therefore stimulates more information search. Heuristics with too small 
discriminant thresholds which lead to easy differentiation between alternatives and 
those with too large discriminant thresholds which lead to random choice were not 
preferred, except the effortless unconditional random choice strategy. 

The sequences of factor search were also estimated. For the go-home and rest 
decision in which time factors are influential, absolute time is more frequently 
searched first than relative time, at least under mid and high level decision standards. 
For the direction choice decision, the length of the pedestrianized street and whether 
the direction is the same as the previous direction are more frequently searched first 
than retail floorspace and the location of landmark. For the store patronage decision, 
pedestrians seemed to care about store type most, followed by retail floorspace of that 
store and its dominance within the vicinity. These findings are direct indications of 
factor importance in each decision. 

Although the influence of time on direction choice and store patronage 
decision was also investigated by incorporating time factors into the choice of 
strategies in order to test the change of strategy usage over time, temporal influence 
was tested to be insignificant, which is contradictory with the findings by Zhu, et al. 
(2006a) where an MNL with time variables was specified. The statistical explanation 
is that the heterogeneity in the data was well captured without time factors, since the 
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numbers of factor thresholds were not set a priori but estimated to the largest number 
that the CAIC allows. 

Chapters 3 and 5 showed the theoretical and empirical advantages of the 
bounded rationality models. To validate the modeling framework and the bounded 
rationality models as a practically useful tool, Chapter 6 described the results of a 
multi-agent simulation, using NetLogo, for testing the predictive ability of the model 
system. The estimated models were incorporated into the platform to simulate agents’ 
decisions and behaviors. The simulated individual behavior was aggregated into 
aggregate behavior in space and time and compared with observed behavior in order 
to evaluate the models. Three aspects of aggregate behavior were generated, the 
distribution of the different types of activities over time, the distribution of the 
activities in street segments over time, and the number of visits and duration in 
individual stores. Three tests were conducted. The first test tested the heuristic models 
on WFS data. The second test tested the HHMs on ENR data. The third test tested the 
temporal transferability of the HHMs on another data collected in ENR in 2003. Test 1 
and 2 demonstrated that the distributions of activity types over time were very close to 
the observations, especially for those activities with a large number of observations 
like the total number of pedestrians, the number of in-store pedestrians, and the 
cumulative number of gone-home pedestrians. When the number of observations was 
low as for resting and walking behavior, more mismatches appeared as these 
observations are more susceptible to random fluctuations. The distributions of spatial 
activities over time were simulated less well, although still satisfactory in general. 
Similarly, the matches in segments where a large number of pedestrian activities were 
observed were better than those in segments with smaller numbers of observations. 
Different degrees of under- and overestimation were found mainly due to the 
averaging effects of the models. Such effects also affected the simulation of store 
visits. Numbers in large stores were underestimated, while numbers in small stores 
were overestimated. However, the simulated total number of store visits, the total 
amount of in-store duration, and the average in-store duration were very close to the 
observations. 

Test 3 suggested limited transferability of the HHMs to the new data. 
However, many other aspects, besides the model itself, must be taken into account, 
such as potential biases caused by survey administration, changes in the shopping 
environment over the years, and changes in pedestrian behavior. Nevertheless, with 
some corrected simulations, the results did reflect the different functionalities of each 
decision model in the whole system. The go-home decision appeared to be the most 
important decision for predicting aggregate behaviors accurately, because it 
determines the pool of pedestrians at any time from which activities are generated. 
The duration model is also important since it determines the frequency of the go-home 
decision as assumed in the simulation framework. If only the number of activities is 
concerned, the rest and store patronage model does not have to be estimated very 
accurately as long as they may predict the average occurrence rate of these behaviors 
well. To this effect, the transferability of these models to a new environment should be 
satisfactory, as it has been shown in Chapter 4 that pedestrian behaviors are generally 
consistent on these aspects. But if the spatial activities should also be predicted well, 
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then the store patronage model and direction choice model must be carefully fitted to 
the local conditions. 

7.2 Discussion 
Pedestrian behavior is the result of complex interactions between individuals and the 
environment. From the standpoint of a pedestrian, such complexity is mainly due to 
the objective environment in the sense that he/she is constantly exposed to all kinds of 
information, large number of stores, advertisements, window displays, lights, sounds, 
and the behavior of other pedestrians. Moreover, pedestrians need to make a series of 
decisions under such circumstances. However, that does not necessary mean that such 
objective complexity is subjectively experienced by the pedestrian. Actually, we argue 
this will be rarely the case since we believe that most people will agree that shopping 
is among the most relaxed activities in life and is often experienced as “time out”. 
Then why is shopping still thought as more relaxed than many other decisions such as 
for example choosing a holiday destination, although it potentially involves tons of 
information? We conjecture it is logical to infer that most information must be ignored 
by pedestrians, that their actual decision making is probably very simple and requires 
limited involvement and information processing. This inference already qualitatively 
justifies the argued need to develop models of bounded rationality instead of rational 
decision models for pedestrian decision modeling. And fortunately, the model 
estimation and validation results in this thesis also gave quantitative support for this 
conjecture. 

This is the first contribution of this thesis to the state-of-the-art in research on 
pedestrian behavior. Although comparing goodness-of-fit statistics of models is not 
sufficient as proof of the true underlying mechanisms, the results at least suggest that 
BR models are statistically as competitive as rational choice models, at least the MNL 
in this case, to predict pedestrian behavior. Whether this will open a new line of 
research and practice depends largely on the practical effectiveness of the policy 
measures that are developed from the results of BR models. In theory, BR models may 
suggest quite different policies from rational choice models. In terms of the evaluation 
of alternative, under the typical compensatory rule, rational choice models may 
suggest enhancing one factor as long as the improved utility may cover the disutility 
from other factors. In contrast, BR models may suggest that several factors must 
satisfy certain criteria in order to make the alternative acceptable to the consumer, and 
after reaching the criteria any enhancement may not be virtually effective at all. The 
continuous utility functions in conventional choice models suggest gradual changes in 
choice probabilities along with factor changes. In threshold-based mechanisms, 
however, choice probabilities will only change after factor shifts into another state. 
For example, to attract more pedestrians to visit a store, in theory, increasing the same 
amount of retail floorspace could help store patronage rate or be ineffective at all, 
depending on whether the additional floorspace can lead the status-quo into a higher 
state in individual’s mind. In terms of the choice from a choice set, rational choice 
models will not suggest any extra policy or marketing measure for guiding consumers’ 
search priority since the models assume each alternative will be evaluated anyhow. 
BR models, however, suggest that extra eye-catching measures could determine the 
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success or failure of an alternative since consumers’ evaluation may not be complete 
and some alternatives may be ignored. 

However, despite the theoretical and empirical advantage of BR models, the 
difficulty of operationalizing these models may be a large barrier deterring their 
application. The classic MNL model is mathematically succinct and has a regular 
objective function, which is easy to estimate using mature and widely available 
algorithms. BR models often have irregular objective functions which easily cause 
conventional algorithms to get trapped in local optima. Using more sophisticated 
global search algorithms no doubt cost much more computation and time and in 
principle cannot guarantee a global optimum. Solving such technical problems either 
by improving the formulation of BR models or the estimation algorithms is a 
fundamental prerequisite for the future of BR models in pedestrian research and 
practice. 

The second contribution of this thesis is the heterogeneous heuristic model 
which, we argue, will not only contribute to the pedestrian behavior research but also 
to decision research at large. Although we also proposed some new specifications for 
the conventional heuristic models, these are relatively minor contributions compared 
to the more theoretically general HHM. The contribution can be understood in two 
ways. First, it is shown that some common decision heuristics can be exactly inferred 
from a single model. It is assumed that the heuristics are inferred by the individual 
from the preference structures under the stochastic overall threshold. A decision rule is 
formalized when the individual logically goes through the preference structure and 
checks whether the information gathered at each stage of factor search may lead to a 
definitive decision outcome under some factor search sequence. Although a complete 
cognitive structure (preference tree) may include many factors and factor states, only 
parts of these may be actually used under the certain overall threshold. Therefore, the 
model automatically leads to heterogeneous decision heuristics. 

Incorporating heterogeneity in rational choice models has been suggested, as 
for instance exemplified by the mixed logit model (e.g., Hensher and Green, 2003) 
which represents decision heterogeneity by assuming that parameters are random 
distributions. However, in fact, these model are based on the assumption that the 
nature of the decision making process represented by the functional form is invariant 
across individuals; only the relative weights of the attributes differs. In HHM, the 
decision making process in itself can also differ between individuals. Although the 
approach currently cannot embody many other decision heuristics such as frequency 
of good/bad features rule (Alba and Marmorstein, 1987) and the majority of 
confirming dimensions rule (Russo and Dosher, 1983), it provides a potential 
systematic, semi-unified framework which explains the origin of heuristics and can be 
used for proposing new heuristics. 

It must be noted that components of HHM have been suggested and examined 
in other contexts before. Threshold effect has long been discovered and incorporated 
in decision models, although most of the time only a single threshold is specified for 
each factor. We elaborated and generalized this notion by allowing multiple thresholds, 
which enables more graded mental states. This is similar to multiple activation 
thresholds in artificial neural network models (ANN). In this sense, HHM possesses 
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some properties similar to data mining tools. However, the basic model form is still 
largely bounded by the theoretical assumptions rather than highly nested and layered 
value functions in ANN which sometimes are just used as concept-free equations to 
generate accurate predictions. A linear combination function is assumed for 
aggregating the weighted factor values, which may be viewed as a discrepancy with 
the main theme of the thesis. Choosing such formalism does not mean that we 
consider it as a way of representing a decision process (which is the subject of 
heuristics) but a cognitive (value) structure that has been established for some time 
and serves as the reference for inferring decision heuristics. Actually only the relative 
relationships, be it compensatory or non-compensatory, between the factor state values 
matter. Therefore, using linear combination is largely a mathematical convenience. 
Other forms of representations such as multiplication value functions can serve the 
same purpose. Having said that, as an alternative, a process-oriented modeling 
approach can be examined in future research. 

The second aspect of HHM’s contribution is that we provided an operational 
framework to explain the distribution of heterogeneous heuristics as the outcome of a 
choice process. Although theories which state that people select a decision strategy 
contingent upon factors such as implementation effort, decision accuracy, personal 
characteristics, and decision context have been proposed before (e.g., Beach and 
Mitchell, 1978; Payne, 1976, 1982) and general relationships between these 
influencing factors and the usage of decision strategy have been verified, very few 
formal models that may at least reproduce the choice outcomes are available (e.g., 
Swait and Adamowicz, 2001). The diversity of decision heuristics is the major cause 
of this problem. Because the decision heuristics were proposed sporadically from 
observations rather than systematically derived from a bundle of theorems, it becomes 
much more difficult to find some common rationales that are shared by the heuristics, 
based on which an integrated framework can be established and operated. The lack-of-
backbone problem really hits BR modeling at this point. Since the inference 
mechanism in HHM provides a potential backbone for identifying heterogeneous 
heuristics from preference structures, it naturally provides a platform for 
systematically studying the problem of heuristic choice. 

We assumed that the distribution of the usage of heuristics can be modeled by 
a multinomial logit model. It should be noted however that the choice of the MNL 
model does not imply that we implicitly and certainly not explicitly explain the choice 
process based on random utility theory. Similar to other choice models, we do assume 
that individuals demonstrate probabilistic choice behavior, proportional to the value of 
the heuristic, jointly composed of effect of mental effort, risk perception and expected 
outcome. This proportionality is depicted by the MNL specification for convenience 
and robustness. 

According to the information processing flow implied in a heuristic, the 
definition of mental effort is more systematic and consistent than some existing 
measures such as EIP (e.g., Bettman, et al., 1998). And more valuable, it can be 
empirically estimated and tested, even though it may just be an indirect estimate of the 
true mental effort. However, the definition concentrates on the effort inflicted during 
factor search and ignores the mental operations which are the major concern of EIP. 
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Although it may not be complete, we believe that information search behavior usually 
costs significantly more effort (due to engagement, attention, and using auxiliary 
equipments), than mental operations which manipulate the collected information in the 
brain, only costing little electronic-chemical neural activities. The definition of risk 
perception can achieve a similar effect as decision accuracy, as low-risk strategies 
imply extensive information search and therefore guarantee accuracy, and vice versa, 
although the formalization using information entropy may be disputable. As for 
expected outcome, which is usually not considered under the conventional effort-
accuracy framework, it was also tested to be influential in strategy choice. This is not 
surprising because except the general influence from effort and accuracy, the context 
of a decision is often more important. Although the expected outcome, which 
represents an individual’s value bias and inclination for decision goals in general, may 
just be an element of the decision context, more elements can be incorporated in this 
modeling framework, such as time pressure, involvement, and socio-demographics. 
However, our definitions and specifications of these three elements may just be 
alternatives among other candidate representations. It can also be seen that the 
specifications inherits a lot of notions of expected utility. Whether these or other 
simpler definitions are more appropriate for representing decision maker’s real 
evaluations of these elements, can be a topic of future research. 

Thus, our two-level two-stage decision modeling framework provides a 
powerful structure which allows testing many interesting elements, which are not 
realizable through most existing decision models: (1) individual’s cognitive structure; 
(2) heterogeneous decision heuristics; (3) influences of endogenous and contextual 
factors on the usage of heuristics. The estimation of these elements may have 
profound practical implications. Since the rational choice models do not provide 
insights into information search, they give no suggestions on how information should 
be provided as long as it is provided. In contrast, knowing the individuals’ decision 
processes, the preferences for information search, and the relationships between 
strategy usage and explanatory factors, practitioners may utilize this as reference for 
providing information in a way that is more accessible and acceptable by individuals 
or even may guide the usage of strategies and pattern of information search, which 
may in turn benefit the intended policy target. According to some strategies, not all 
information needs to be provided, which may save operation costs. It also provides a 
better basis for developing customization policies in which different customers are 
provided with different sets of information, information quality, and information 
priority. 

The third contribution of the thesis is that it is the first time that the role of 
real time is reflected in a formal modeling of the meso-level pedestrian behavior. It 
was shown that by only including two time-related decisions, go-home and rest 
decision, the model system can already predict the aggregate spatio-temporal activity 
distributions quite well. Compared to the existing stop-based time representation, the 
proposed approach is closer to pedestrian behavior and more meaningful for practice. 
Urban planners and retailers may know during what time period, how many 
pedestrians will be in certain public space, using certain rest facilities, and visiting 
certain stores; therefore they may develop plans and allocate resources more 
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effectively by taking the advantage of the spatio-temporal usage patterns. We also 
provided time estimation procedures based on spatial information and respondent’s 
estimation, which are simple to administrate and robust for reflecting the general time 
use pattern. However, this must have caused more or less errors in the data and reduce 
the credibility of the empirical results. More advanced survey methods, such as GPS 
or RFID, are required for obtaining accurate time information. 

Although the empirical results of the case studies suggested interesting and 
reasonable behavioral characteristics and practical implications, considering this is the 
first time that models of bounded rationality are applied to meso-level pedestrian 
behavior modeling and only two cases in one corner of the world were studied, we are 
not going to conclude that the empirical findings obtained in these studies represent 
general rules of pedestrian behavior. Rather, we prefer qualifying these findings as 
tentative modeling results, shedding some light on further research endeavors. 

At a more detailed level, we should also emphasize that we often made 
simplifying operational definitions and assumptions for ease of computation and to set 
a benchmark. Examples are the independent judgment of thresholds, the assumed 
independence of decisions in the full visit to the street and the corresponding 
formulation of the log likelihood function. Variations on these decisions, which would 
make the models more complex and difficult to estimate, could be examined. 

7.3 Future Directions 
The thesis is no exception and in itself also a product of bounded rationality. 
Limitations of time, knowledge, computation ability and data availability were 
instrumental in proposing an approach to modeling bounded rational pedestrian 
behavior that should improve behavioral realism, while at the same time should 
produce results that are at least competitive to those of commonly used approaches. 
The decision was to focus first on principles with a limited number of explanatory 
variables as these can be easily included in further research without the need of 
changing the basic, underlying principles. Although we argue that we have established 
some degree of success, much more is still waiting to be explored, studied, and 
integrated. It should also be emphasized that we used the MNL model with a limited 
number of explanatory variables as a benchmark. More complex specifications, still 
consistent with the random utility theory could be chosen as a comparison. In addition, 
even within the MNL framework, interactions and other principles to cope with 
observed problems could have been applied. It is even possible, as argued in the 
literature review, to use multiplicative specifications, apply the usual principles of 
random utility theory, and arrive at model specifications that very closely approximate 
the models that we developed in this thesis. Thus, from a mathematical and model 
specification perspective, the difference between rational choice models and models of 
bounded rationality is smaller than often debated. However, there will always remain 
differences in overall framework and the key concepts that are assumed to be captured 
by the mathematical expressions. If one relies on empirical observations only, 
interpretations in terms of decision strategy by definition are limited. 

As for the further development and application of HHM, the following paths 
may be interesting to explore. First, context factors and socio-demographics can be 
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easily incorporated into the model of strategy choice so that their influence on the 
distributions of strategy usage can be tested. For example, the effect of gender can be 
included in the relevant function such that the parameters for mental effort, risk 
perception, and expected outcome will reflect taste variations due to gender. Then, it 
will be possible to develop group-specific measures according to respective 
preferences on decision strategies. 

Second, although heterogeneous decision heuristics can be inferred from the 
cognitive structure, for the ease of operation, the model still assumes that each 
respondent’s cognitive structure is the same, which however may not be true. A more 
realistic improvement could assume that people have different cognitive structures and 
therefore different repertoires of decision strategies. For example, individual A’s 
cognitive structure may just be part of a more complex structure of individual B. Then 
it is possible that even though the involved factor states are the same for a decision, 
the inferred lexicographic heuristic for individual B could be a conjunctive heuristic 
for individual A. Such consideration may result in a quite complicated model 
specification. 

Third, the model can be extended to other decision problems than the binary 
rejection/acceptation decision and comparative decision. It will be relatively 
straightforward to use the model for categorization problems in which an object is 
designated into a category usually by judging whether it possesses some properties 
(e.g., factor states). The optimization of property search sequence also applies as the 
processing of an important property earlier may obliterate the need for searching for 
minor properties. A similar extension may apply to the formation and evolution of 
concepts, which can be understood as a wrap of elements, properties, and relations. It 
will also be interesting to extend the elicitation of factor search sequence to decision 
sequences. People sometimes make a series of decisions for satisficing some general 
goal, such as to go shopping at a near shopping street by foot or at a far away 
shopping center by car. There may be several combinations of sub decision outcomes 
that lead to a similar degree of satisfaction in light of the general goal. Through 
repetition, people may develop an optimized decision sequence that costs least 
information search effort, like forming a habit. 

Finally, but above all, the approach must be validated against real human 
decision processes. That means that the actual processes, information representation 
and search must be observed first in order to compare them with the processes 
estimated by the model, which is never an easy task. Indirect methods may be easier to 
implement but with less reliability. For example, the processes may be obtained from 
protocol analysis, which has been found to be accurate for justifying qualitative 
aspects like using or not using some factors or thresholds when these factors require 
conscious cognition, but very inaccurate for identifying usage and quantitative 
threshold values when the decision involves unconscious and automatic information 
processing (e.g., Weitz and Wright, 1979). Computer-based process tracking can be 
useful. Experiments are often implemented by tracking click behaviors of the user 
when they use the mouse to open some closed information tags containing factor 
values. The major disadvantage is that by breaking the information about an object 
down into pieces, some sense of realism is lost because actual information is often 
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holistically available and people do not engage searching information consciously. To 
replicate the experiment environment with good realism and reduce the bias caused by 
measurement equipments, techniques like eye-fixing may be used for capturing 
focusing behavior and infer decision processes, if it can be assumed that these 
concepts are strongly related, which needs evidence in its own right. The imperfection 
is that focus does not necessarily mean that only the focal information is processed. 
Much other information in the non-focal visual area may also be processed but maybe 
with little accuracy and effort if the information is quite salient. Direct measurements 
into the neural activities in the human brain such as through MRI have the potential to 
be reliable indications for information processing. However, as brain activities are so 
complex and intertwined, how to separate the activities of interest with other noisy 
activities and linking these activities with mental processes constitutes enormous 
technological and theoretical challenges. Some combination of these measurement 
techniques overcoming the cons and utilizing the pros of each may be valuable for 
validation. However, as discussed earlier, it is an open question whether this increased 
amount of detail is required to better predict the impact of urban planning scenarios, as 
long we have found a robust way of capturing the basic principles underlying 
pedestrian behavior in different environments. 

Because our main objective of this thesis is to test the validity of BR models 
in pedestrian research and minor effort was made to develop a full-fledge framework 
for modeling meso-level pedestrian behavior, this still leaves many opportunities for 
enhancing the four-decision framework. First, the interdependencies between 
decisions have not been modeled. The go-home decision may not only depend on time 
factors, but also on the attractiveness of the environment. Pedestrians may suppress 
the influence of time pressure with a positive impact of an interesting street or store 
nearby. Considering interesting directions may be part of the go-home decision 
process and serves as the screening phase for direction choice later. The continuous 
unsatisfactory judgments on stores, when accumulated to some extent, may also 
stimulate the go-home decision. The shopping duration in the street may also be linked 
to the larger area where the street is located. The development of other attractive 
places within the area may compete with the street. As a result, pedestrians may lessen 
the trip duration in the street. 

 Second, replacing the simultaneous store choice framework with a sequential 
satisficing framework avoided the still unsolved, or at least not very convincingly 
solved, choice set problem in the store patronage model. However, it may have led to 
another arbitrary extreme which assumes that only one store is evaluated each time. If 
a pedestrian is faced with two adjacent, identical stores, both meeting all satisfaction 
thresholds, our model predict that the closest one will be invariably chosen, which 
may not be very realistic. The decision to use this conceptualization was that it would 
serve as a benchmark. It may be possible that pedestrian use a bound of spatial 
indifference. A more general model which estimates such a bound, the size of choice 
set and its distribution, may increase the realism of the store patronage model. 

Third, the temporal effects on the choice of decision strategies were tested to 
be insignificant, which is counter-intuitive. Nevertheless, whether this is prevalent 
requires more tests on more cases. 
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Fourth, for the simplicity of the study, we did not include many other 
explanatory variables in the models which may also be useful for urban and retailing 
planning, such as width of street, density of stores, window displays, price levels, and 
level of service. It will be interesting to test their influences under the BR models and 
compare different implications with the results under the rational choice models. 

Fifth, our modeling of the spatial decisions still largely follows traditional 
treatments, selecting some explanatory factors based on past experiences or intuition, 
obtaining their physical measurements as factor values, and directly linking these 
values with some mapping mechanisms. Pedestrian’s perceived factors and values 
were not included. Making this step explicit may improve the model.  

Sixth, the survey methods need to be diversified in order to obtain detailed 
behavioral and contextual information if more ambitious researched goals are 
expected. Questionnaire-based survey methods, although not very accurate in 
recording all the activities that are conducted by the pedestrian, still suffice for 
reflecting and studying general sample characteristics, movement patterns, the 
occurrence and content of different types of activities, and choice preferences, and 
most of all, can guarantee a large sample size for a relatively small budget. To get 
higher-quality individual shopping diary data, techniques such as manual, cell-phone, 
and GPS tracking may be applied. However, for a fixed budget, the resulting sample 
size may be too small. Moreover, there may be ethical issues and the data collection 
may need cooperation of respondents which in turn may introduce sample biases. 
Nevertheless, these technologies can be valuable as a complementary survey method. 

Finally, with the help of more detailed survey methods, it is possible to study 
pedestrian’s learning behavior and the adaptation of decision strategy. In this thesis, 
pedestrians were assumed to be homogeneous agents in terms of their degree of 
knowledge about the shopping environment and use decision strategies from the same 
repertoire of strategies all the time. All these assumptions can be challenged and the 
proposed model could and perhaps should be elaborated along each of these lines. 
Pedestrians have different knowledge levels (e.g., cognitive structures, beliefs), may 
use different decision strategies and may change the usage as they learn. For example, 
strangers in a shopping street may ponder much for visiting a store in the beginning of 
the shopping trip as they know little about the place and their cognitive structure is yet 
to be established or modified based on some old structure. That may take several 
rounds of trial-and-error. After they have visited the street more often, their cognitive 
structure will become more or less stable, implying their decision will be quick and 
easy. In contrast, local pedestrians with good knowledge who know where the shops 
are, may apply completely different decision heuristics such as visit the store that was 
visited last time and probably optimize visit sequence. Their behavior tends to be more 
routinized as opposed to the explorative behavior of strangers. Studying such 
dynamics and heterogeneity is an interesting topic of pedestrian behavior research, but 
also complicated and require more subtle input information. 
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SUMMARY: BOUNDED RATIONALITY AND SPATIO-
TEMPORAL PEDESTRIAN SHOPPING BEHAVIOR 

Understanding pedestrian decisions is an important task for urban and retail planning 
as these decisions affect spatial usage, retail turnover, and the vitality of particular 
urban areas. Pedestrian decision research dominantly relies on conventional rational 
choice models which assume that pedestrians are rational agents who have complete 
knowledge about the choice set, use all factors relevant to characterize the choice 
alternatives, aggregate these in a compensatory manner into an overall utility, and 
choose the alternative with the highest overall utility. A substantial amount of 
counterevidence has accumulated over the years to indicate that these assumptions are 
rarely satisfied in reality. In contrast, due to the fact that their cognitive capacity and 
computation ability are limited, people often use simplifying decision strategies which 
allow them to use information selectively, process information in non-compensatory 
manners, make choices with simplified rules-of-thumb, and accept satisfactory 
alternatives which may not be optimal. This evidence and these conjectures are 
founded on the theory of bounded rationality. 

Guided by the motivation to investigate pedestrian behavior in meso-level 
shopping environments using behaviorally more realistic modeling approaches, the 
aim and the contribution of this thesis is three-fold: (1) to develop and test a model of 
pedestrian behavior based on principles of bounded rationality; (2) to develop a 
modeling approach that allows heterogeneity among pedestrians in terms of the 
decision heuristics they use; (3) to systematically examine time-dependent aspects of 
behavior. 

To that end, the emphasis of the thesis is put on exploring, extending, 
estimating, and validating heuristic decision models. Chapter 2 reviews the state-of-
the-art in modeling pedestrian behavior and bounded rationality. As for the pedestrian 
models, the focus is especially on individual-based models and techniques. We limited 
the review of bounded rationality models to the realm of decision heuristics. Based on 
this review, it is argued that bounded rationality models have never been empirically 
tested in pedestrian research and that it will therefore be of value to make such an 
attempt. In this context, the heterogeneity of decision strategies, although being an old 
idea, is still an infant research topic and developing a formal model of this process 
may not only benefit the understanding of complex pedestrian behavior but also 
decision research at large. The content of meso-level pedestrian research can be 
enriched by considering the influence of time on pedestrian behavior and decisions. 

Chapter 3 discusses the conceptual framework for modeling pedestrian 
behavior. It starts by proposing a modeling framework which consists of four inter-
dependent decisions, namely the go-home, direction choice, rest, and store patronage 
decision, based on which, aggregate spatio-temporal pedestrian activities can largely 
be recovered. This is followed by introducing the rationales of three model prototypes 
that are to be specified for each decision. The first prototype is the multinomial logit 
model, as the representative of rational choice models and a benchmark for 
comparison. The second prototype includes three typical decision heuristics: the 
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conjunctive, disjunctive, and lexicographic rule. Extensions are made by incorporating 
threshold heterogeneity and deriving probabilistic formulations. The third prototype, 
the heterogeneous heuristic model (HHM), is the major methodological contribution 
of this thesis. In HHM, (1) factor thresholds are introduced as the fundamental 
cognitive mechanisms for information representation and factor selection; (2) 
heterogeneous non-compensatory decision heuristics can be identified under the 
assumption of stochastic individual decision standards; (3) choice of heuristics is 
modeled by estimating mental effort, risk attitude, and expected outcome involved in 
the evaluation of heuristics under decision uncertainty. 

The data used for empirical model tests are introduced in Chapter 4. They 
include two pedestrian shopping dairy data sets, one collected in Wang Fujing Street 
(WFS) in 2004, Beijing, and the other collected in East Nanjing Road (ENR) in 2007, 
Shanghai. The data collection procedure, estimation of temporal information, and the 
basic characteristics and pedestrian behavior of the samples are discussed. 

In Chapter 5, the three prototype models are tailored to each decision 
problems. The models are estimated against the two data sets in order to compare their 
statistical performances. The heuristic models are estimated against the WFS data and 
the HHMs are estimated against the ENR data. The MNL models are estimated against 
both data sets. It is found that, for the WFS case, all MNL models are outperformed by 
the heuristic models in terms of log-likelihood (LL) and the Consistent Akaike 
Information Criterion (CAIC). The advantage of HHM to estimate the coexisting 
heuristics is further demonstrated by the model estimations for the ENR case. In 
addition, HHM provides more insight into the decision process by estimating the 
distribution of pedestrian’s preference on decision heuristics of different degrees of 
strictness and risk, and the sequence of information search. These properties are 
discussed for each of the four decision problems. 

To validate the modeling framework and the bounded rationality models as a 
practically useful tool, Chapter 6 describes the results of a multi-agent simulation, 
using NetLogo, for testing the predictive ability of the model system. The estimated 
models are incorporated into the platform to simulate agents’ decisions and behaviors. 
The simulated individual behavior is aggregated into aggregate behavior in space and 
time and compared with observed behavior in order to evaluate the models. The 
results show that the observed aggregate spatio-temporal pedestrian behavior can be 
simulated satisfactory by both the heuristic models and HHMs. However, the temporal 
transferability of the models is limited when they are used for simulating new data. 

In conclusion, the research suggests that models of bounded rationality may 
be a better representation of pedestrian behavior than rational choice models. This 
may have profound implications for planning practice as the decision processes 
implied in the models may lead to policy measures which are established on 
satisficing instead of maximizing, partial information rather than full information. The 
proposed modeling approach provides a theoretical perspective on the formation of 
decision heuristics, which may push forward a more systematic endeavor of proposing 
and testing heuristics. In practice, the estimation of heterogeneous decision heuristics 
may be valuable for developing more customized, effective, and efficient strategies in 
urban and retail planning. 
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