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The M/G/1 + G queue revisited

Onno Boxma∗, David Perry† and Wolfgang Stadje‡

Abstract

We consider an M/G/1 queue with the following form of customer impatience: an arriving
customer balks or reneges when its virtual waiting time, i.e., the amount of work seen upon
arrival, is larger than a certain random patience time. We consider the number of customers in
the system, the maximum workload during a busy period, and the length of a busy period. We
also briefly treat the analogous model in which any customer enters the system and leaves at
the end of his patience time or at the end of his virtual sojourn time, whichever occurs first.
Key words. Single-server queue; impatience; balking; reneging; workload; number of cus-
tomers; busy period; cycle maximum.

1 Introduction

Queueing systems with customer impatience represent a wide range of service systems in which
customers may become impatient when they do not receive service fast enough. One may think of
customers at call centers, or of customers representing perishable goods, like blood samples which
wait to be tested and become obsolete after a certain due date. Depending on the application,
patience may refer to waiting time or to sojourn (= waiting plus service) time. In the Kendall
notation a single server queue with impatience is usually denoted by G/G/1 + G; we would like
to propose writing G/G/1 + Gw if patience refers to waiting time, and G/G/1 + Gs if it refers to
sojourn time. We shall assume in the latter case that an impatient customer gets served until his
patience runs out (partial rejection; his real sojourn time is the minimum of his patience and his
waiting plus service time).

A pioneering paper on queueing models with impatience is [4]; it studies the queue length distri-
bution in the M/M/s+Dw model (where D indicates deterministic patience) and the M/M/1+Ds

model with partial rejection. Gavish and Schweitzer [9] consider the workload (virtual waiting time)
and several other performance measures in the M/M/1 +Ds queue in the case of full rejection. In
[1, 2] necessary and sufficient conditions for the existence of the steady-state virtual waiting-time
distribution in the G/G/1 +Gw were obtained. The latter distribution was subsequently obtained
for M/G/1 +Mw and M/G/1 + Ewk ; see [3] for M/G/1 +Dw, and see [10] who consider all three
impatience/rejection rules. Finch [8] has derived the waiting-time distribution in the G/M/1 +Dw

queue. Stanford [12] relates the waiting-time distribution of the (successful) customers and the
workload seen by an arbitrary arrival in G/G/1 + Gw. See Stanford [13] for a brief literature
review. An important study regarding the busy period for models with customer impatience is
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Subba Rao [15]. He considers the M/G/1 +Mw model, and derives the joint distribution of num-
ber of customers served in a busy period and length of that period, given that it starts with i+ 1
customers. In [14] he studies the combined effects of customer impatience and balking. Perry et
al. [11] study the busy period for the M/G/1 and the G/M/1 model with restricted accessibility:
a customer is partially rejected if the workload at his arrival is below a certain fixed threshold.
For other variants of M/G/1 models with restricted accessibility see [10, 6]. In a recent study [7]
the busy period distribution in M/G/1 + Gw is obtained for various choices of the patience time
distribution. The main cases under consideration are exponential patience and a discrete patience
distribution.

The present paper aims to present some new approaches, novel views and results forM/G/1+Gw

and M/G/1 +Gs. The paper is organized as follows. Section 2 contains the model description and
briefly reviews a result from [2] for the workload distribution in the M/G/1 + Gw queue, which
is needed in the remainder of the paper. Section 3 considers the steady-state distribution of the
number of customers, and in Section 4 we derive the distribution of the maximum workload in a
busy period for the case of exponential service times. Finally, Section 5 presents a new view on
the busy period distribution. In each section we mainly focus on the Gw case, but we also present
analogous results for the Gs case.

For M/G/1 + Gw one can distinguish two submodels: (i) the balking case, which we also
indicate as the observable case: every customer knows his own (potential) and all prior service
requirements and patience times upon his arrival so that he either leaves immediately or stays and
will eventually receive service; (ii) the reneging case, which we also indicate as the unobservable
case: every customer enters the system and leaves only when his patience runs out or his service
terminates. Note that neither the waiting times (of eventually served customers) nor the busy
periods would be affected if customers stayed until their patience is running out; the same holds for
the workload process provided that only the work that is really carried out is taken into account.
Of course, the numbers of customers present will be different in the two submodels.

2 The waiting time in steady state

Consider an M/G/1 + Gw queue with arrival rate λ, service time distribution G and patience
distribution H. If the patience Yi of the ith customer exceeds the workload present upon his arrival,
he leaves immediately. By PASTA, the steady-state workload distribution equals the steady-state
waiting-time distribution. Denote their density by f ; a level crossing argument readily implies that
it exists. Following [2], we briefly review what is known about f . By level crossing, f satisfies the
integral equation

f(x) = λ

∫ x

0
[1−G(x− w)][1−H(w)]f(w) dw + λπ[1−G(x)], (2.1)

where π is the steady-state probability that the system is empty. Define

K(x,w) = λ[1−G(x− w)][1−H(w)], x ≥ 0, (2.2)

and

Kn+1(x, y) =
∫ x

y
Kn(x,w)K(w, y) dw =

∫ x

y
K(x,w)Kn(w, y) dw, x ≥ y, n ≥ 1.
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Then (2.1) takes the form

f(x) =
∫ x

0
K(x,w)f(w) dw + πK(x, 0)

and by setting K0(x, y) =
∑∞

n=1Kn(x, y), we get

f(x) = π

∞∑
n=1

Kn(x, 0) = πK0(x, 0). (2.3)

The normalizing condition yields

π

∫ ∞
0

K0(x, 0) dx = 1− π

and

π =
[
1 +

∫ ∞
0

K0(x, 0) dx
]−1

.

In the M/G/1 + Gs (with partial rejection, as mentioned in the introduction) the balance
equation for the workload density in steady state is

f(x) = λ

∫ x

0
[1−G(x− w)][1−H(x)]f(w) dw + λπ[1−G(x)][1−H(x)], x ≥ 0, (2.4)

so that the solution of f in (2.4) is the same as that given in (2.3) with the kernel of (2.2) replaced
by the kernel

K(x,w) = λ[1−G(x− w)][1−H(x)], x ≥ 0.

3 The number of customers in the system

3.1 The M/G/1 + Gw model

We start by considering the M/G/1+Gw model for the unobservable case (reneging). In this model
every customer enters the system and only leaves the waiting line before service when his patience
runs out. We now derive the steady-state distribution of the number of customers present.

Let Wn denote the current workload when the nth customer arrives. The sojourn time of this
customer, Dn, is given by

Dn = Wn + Sn + [Yn − (Wn + Sn)] · 1{Yn<Wn}

where Yn is his patience time and Sn is his service requirement.
In the ordinary M/G/1 FCFS system there is a simple relation between the sojourn time and

the number of customers, because the customers left behind by a departing customer are exactly
the ones that arrive during his sojourn time. However, the latter argument cannot be applied in
the M/G/1 + Gw system. To see this, consider a departure due to impatience of an arbitrary
customer who was not first in line. Obviously, the customers who are in front of him in line arrived
before his arrival and thus not during his sojourn time. To deal with this difficulty we construct a
modified M/G/1 + Gw-type system based on the same collections of random variables Sn and Yn
and the same arrival process. In this modified system there are no departures due to impatience;
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its evolution proceeds as follows. All arriving customers enter the system and receive service but
each customer who reaches the end of his patience time while waiting in line only gets a service
time ε when his waiting time has elapsed, for some prespecified small ε > 0 (that will later tend
to zero). The service times of the other customers are unchanged. In this system all departures
are due to service terminations, and any departing customer leaves behind only the customers that
arrived during his sojourn time. Note that the sojourn times in the original M/G/1 +Gw system
and the sojourn times in the modified one are not the same. But the number of customers, at an
arbitrary time, in the original M/G/1 +Gw system and the number of customers in the modified
system whose service times are not (yet) changed are the same. Therefore, we will now derive the
steady-state law of the number of customers in the modified M/G/1 + Gw system whose service
times have not yet been changed.

To this end let Wε and Dmod
ε be the workload as seen upon arrival and the sojourn time in

the modified system in steady state. It should be noted that, for ε → 0, Wε will converge to the
steady-state workload W whose density was given in (2.3); however, Dmod

ε does not converge to the
sojourn time in the original system – hence the superscript mod. We have

Ee−αD
mod
ε = E

(
e−αD

mod
ε | Y < Wε

)
P(Y < Wε) + E

(
e−αD

mod
ε | Y ≥Wε

)
P(Y ≥Wε).

Clearly, Y < Wε implies that Dmod
ε = Wε + ε and Y ≥Wε implies that Dmod

ε = Wε +S, where Wε,
Y and S represent generic random variables for the waiting time in steady state, the patience time
and the service time, respectively, and are independent. Thus,

Ee−αDmod
ε = Ee−α(Wε+ε)1{Y <Wε} + Ee−α(Wε+S)1{Y≥Wε}

= e−αεE[e−αWεH(Wε)] +G∗(α)E[e−αWε(1−H(Wε))].
(3.1)

In the case that 1−H(x) = e−ξx we get in (3.1)

Ee−αD
mod
ε = e−αε[E[e−αWε ]− E[e(α+ξ)Wε ]] +G∗(α)E[e−(ξ+α)Wε ].

At any moment of departure from the modified system two types of customers are left behind. We
call customers of type 1 those whose service time has not (yet) been changed and customers of
type 2 those whose service time has been changed to ε. Let θεn be the probability that n waiting
customers of type 1 are left behind at a moment of departure. Then

θεn =
∫ ∞

0

∞∑
k=n

(
k
n

)
pnt q

k−n
t

e−λt(λt)k

k!
dFDmod

ε
(t) (3.2)

=
∫ ∞

0

e−λptt(λptt)n

n!
dFDmod

ε
(t)

where FDmod
ε

is the distribution function of Dmod
ε (whose Laplace-Stieltjes transform is given in

(3.1)), pt is the probability that an arbitrary customer who arrived during a time interval of length
t is of type 1 and qt = 1 − pt. Given the number of customer arrivals during a time interval of
length t is k, their arrival times have the same joint distribution as the order statistics taken from
a uniform sample of size k ≥ n. Thus,

pt =
1
t

∫ t

0
[1−H(t− s)] ds =

1
t

∫ t

0
[1−H(s)] ds.
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Therefore

θεn =
∫ ∞

0

e−λ
R t
0 [1−H(s)] ds(λ

∫ t
0 [1−H(s)] ds)n

n!
dFDmod

ε
(t). (3.3)

Computing the generating function Θε(z) =
∑∞

n=0 θ
ε
nz

n from (3.3) we get

Θε(z) =
∫ ∞

0
exp

{
−λ(1− z)

∫ t

0
[1−H(s)] ds

}
dFDmod

ε
(t).

Now let ε → 0. Then Dmod
ε converges in distribution to the steady-state sojourn time of the

modified M/G/1 +Gw system and, by (3.3) and the fact that the integrand in (3.3) is a bounded
continuous function, θεn converges to the steady-state probability θn that in the original system a
departing customer leaves n customers behind. In particular, with Dmod denoting the steady-state
sojourn time and FDmod its distribution function,

Θ(z) = lim
ε→0

Θε(z) =
∫ ∞

0
exp

{
−λ(1− z)

∫ t

0
[1−H(s)] ds

}
dFDmod(t) (3.4)

is the generating function of the number of customers left behind in the original M/G/1 + Gw

system. By ASTA, Θ(z) is also the generating function of the number of waiting customers in
steady state. Note that the LST of Dmod can be expressed in terms of the steady-state waiting
time W in the form

Ee−αD
mod

= E[e−αWH(W )] +G∗(α)E[e−αW (1−H(W ))]. (3.5)

The density f of W is given by (2.3).

We now turn to the case of balking (observable case). Again, we construct a modified system in
which every customer enters the system but, in contrast to the ”non-observable case”, the service
requirement of a customer of type 2 is changed to ε upon his arrival. Then, a customer is of type 1
if and only if his patience is greater than his waiting time. Accordingly, the number of customers
of type 1 left behind at a departure (and thus also in steady state) is given by

θεn =
∫ ∞

0

e−λtP(Y >Wε)(λtP(Y > Wε))n

n!
dFDmod

ε
(t),

with generating function

Θε(z) =
∫ ∞

0
e−λP(Y >W )(1−z)tdFDmod

ε
(t).

Notice that Ee−αDmod
ε is still given by (3.1). For ε→ 0 we get, using a similar continuity argument

as for the unobservable case:

Θ(z) = lim
ε→0

Θε(z) =
∫ ∞

0
e−λP(Y >W )(1−z)tdFDmod(t).

In case that Y is exp(ξ)-distributed we get

Θ(z) =
∫ ∞

0
e−λW

∗(ξ)(1−z)tdFDmod(t), (3.6)

where W ∗(ξ) is the LST of the steady-state workload W .
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3.2 The M/G/1 + Gs model

We now turn to the case of patience referring to sojourn time, allowing partial rejection. We restrict
ourselves to the unobservable variant, so

Dn = min(Yn,Wn + Sn).

We use the same arguments as above, featuring customers of type 1 and customers of type 2. The
formula for the generating function Θ(z) of the number of customers in steady state as given in
(3.4) still holds but the distribution FmodD (t) has to be modified. As before, in the modified system
a customer with patience less than his waiting time gets a service time ε when his waiting time has
elapsed; eventually ε ↓ 0. Distinguishing between the events {Y < W}, {W ≤ Y < W + S} and
Y ≥W + S}, it is seen that FmodD has LST

Ee−αDmod
= E[e−αWH(W )] + E[

∫W+S
W e−αydH(y)]

+E[e−α(W+S)(1−H(W + S))].
(3.7)

Remark.
For the special cases M/M/1 + Mw and M/M/1 + M s it is possible to obtain the law of the
number of customers in steady state in a more straightforward manner. In both cases the number
of customers constitutes a Markov process. Thus, for the special case M/M/1+Mw with impatience
rate η we have the balance equations

λpn = (µ+ nη)pn+1, n = 0, 1, . . .

and for M/M/1 +M s we get

λpn = [µ+ (n+ 1)η]pn+1, n = 0, 1, . . .

These recursive equations can be easily solved. Note that it is enough to solve only theM/M/1+Mw

case, since the solution for M/M/1 +M s is the same as that for the M/M/1 +Mw case in which
µ is replaced by µ+ η.

Remark.
¿From (3.4) and (3.6) it is possible to derive the appropriate Little’s law for the M/G/1 +Gw and
the M/G/1 + Gs systems, respectively. Let X be the number of customers in steady state. Then
by taking derivatives in (3.4) and setting z = 1 we obtain for M/G/1 +Gw in the reneging case

EX = λ

∫ ∞
0

[1−H(s)][1− FDmod(s)] ds.

Similarly, for M/G/1 +Gw in the balking case

EX = λEDmod · P(Y > W ),

where Y is the generic patience and W is the steady state waiting time. The same expressions hold
for the M/G/1 +Gs system, but then Dmod is the sojourn time whose LST is given in (3.7).

Remark.
One can derive a simple (though important) conservation law holding for the M/G/1+Gw and the
M/G/1 + Gs systems. Let ξ be the rejection rate of the customers who eventually do not receive
service in the M/G/1 +Gw system. Then clearly

λ = ξ +
1− π
ES

,

where π is the steady-state probability of an empty system and S is a generic service time.
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4 The maximum workload during a busy cycle

4.1 The M/M/1 + Gw model

Assume that at time zero a new customer enters an empty system. Let V (t) denote the workload
at time t. We want to compute the LST of M = max0≤t≤B V (t), the maximum workload during
a busy period B. The problem can be ‘discretized’ as follows. Let X1 = V (0), X2, X3, . . . be the
sequence of successive record values of the process {V (t) : t ≥ 0}. Then M = XN where N is
the number of record values in the first busy period. But N = j means that for i = 1, . . . , j − 1
in the time between the ith and the (i + 1)st record, V (t) does not reach zero but it becomes
zero between the jth and the (j + 1)st record. This problem is solvable explicitly in the case
M/M/1 +Gw of exp(µ)-distributed service times (and general patience times); in general it seems
analytically intractable because the segments of the sample path in the above decomposition are
not independent.

By the lack-of-memory property of the exp(µ) distribution of the upward jumps of workload V
for M/M/1+Gw, the jth record value exceeds the (j−1)th one by an exp(µ)-distributed ‘overshoot’
independent of the past.

Now let γ(x) be the conditional probability that the system will become empty between the
ith and the (i + 1)st record time given that Xi = x (clearly γ(x) does not depend on i). Let
us determine the probability to hit zero before reaching a new record value when starting from a
record value at level x+ dx. For small dx we have the equation

γ(x+ dx) = [1− λ(1−H(x)) dx] [γ(x) + (1− γ(x))µdxγ(x)] + o(dx). (4.1)

Indeed, except for terms of order o(dx) one has to go down during the first dx time units without
new arrivals entering the system (the probability of the latter event is 1−λ(1−H(x)) dx+ o(dx)),
then continue from level x and either (i) hit zero before exceeding x (probability γ(x)) or (ii) not
hit zero before jumping back to the interval (x, x+ dx] and then continue from there and hit zero
before the next record (probability (1− γ(x))µ dx γ(x) + o(dx)).

This leads to the Bernoulli differential equation

γ′(x) = −λ [1−H(x)] γ(x) + µ(1− γ(x))γ(x).

Introducing ν(x) = 1
γ(x) , we have

ν ′(x) = ν(x) (λ [1−H(x)]− µ) + µ. (4.2)

Solving for ν(x) in (4.2) we get, using that ν(0) = γ(0) = 1:

γ(x) =
[
µ

∫ x

0
exp

{∫ x

v
[λ(1−H(u))− µ] du

}
dv

+ exp
{∫ x

0
[λ(1−H(u))− µ] du

}]−1

. (4.3)

Theorem 1.

P(M > x) = exp
{
−µ
∫ x

0
γ(u) du

}
.
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Proof. The hazard rate h(x) dx = Pr(M ∈ (x, x+ dx] |M > x) is given by

h(x) dx = µγ(x) dx+ o(dx).

Indeed, conditional on M > x the cycle maximum falls in (x, x+ dx] if and only if there is a record
value in this interval (this has probability µ dx+ o(dx)) such that before the next record value is
reached the system becomes empty (which has probability γ(x) +O(dx)).

By the above structural results we can also write down explicit expressions for certain functionals
of the cycle records, for example

Ee−αM1{N=j} = µj
∫ ∞

0
. . .

∫ ∞
0

e−(α+µ)(u1+···+uj)(1− γ(u1))(1− γ(u1 + u2))

. . . (1− γ(u1 + · · ·+ uj−1))γ(u1 + · · ·+ uj) du1 . . . duj .

Remark.
In the special case of infinite patience, it follows from (4.3) that

γ(x) =
1− ρ

1− ρe−µ(1−ρ)x
. (4.4)

It is well-known (cf. Section 29 of [16]) that, for the M/G/1 queue,

Pr(M < x) =
Pr(W + S < x)

Pr(W < x)
,

where W denotes waiting time or workload and S denotes service time. Hence for M/M/1

Pr(M < x) =
1− e−µ(1−ρ)x

1− ρe−µ(1−ρ)x
.

Now it is easy to verify that the failure rate of M , i.e., d
dxP(M < x)/P(M ≥ x), equals µγ(x) as

given in (4.4), in agreement with Theorem 1.

Remark.
It should be noticed that these results for M correct Theorem 4 of [5], where in M = X1 + · · ·+XN

the dependence of N and the Xj was ignored.

4.2 The M/M/1 + M s model

Now let us again consider the system with sojourn time impatience. For the steady-state law of the
cycle maximum we restrict the attention to the M/M/1 +M s system (in the case of sojourn time
impatience, non-exponential impatience destroys the lack-of-memory property which we used to
derive (4.1)) and apply Section 4.2 of [5]. We obtain the differential equation (4.1) with 1−H(x) =
e−ξx and with µ+ ξ replacing µ. That is, we get

γ(x+ dx) =
[
1− λe−ξx dx

]
[γ(x) + (1− γ(x)) (µ+ ξ) dx γ(x)] + o(dx). (4.5)

The solution is given in (4.3) but with µ + ξ replacing µ and with 1 − H(x) = e−ξx. Then, the
hazard rate function is rM (x) = (µ+ ξ)γ(x) and

P(M > x) = exp
{
−(µ+ ξ)

∫ x

0
γ(u) du

}
.
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5 The busy period

5.1 The M/G/1 + Gw model

Let B be the duration of a busy period, initiated by a customer arriving at an empty system, of the
M/G/1 + Gw queue under consideration. In this section we present a novel, algorithmic, method
for obtaining the LST of B (see [15, 7] for other studies of the busy period in M/G/1 + Gw) and
some more general level crossing results. Let {V (t) : t ≥ 0} be the virtual waiting-time process and
define the stopping time

Tx = inf{t : V (t) = x}

and
Γ(α;u, x) = E(e−αTx | V (0) = u), u > x ≥ 0,

which is the conditional LST of the time it takes the workload to move from level u down to level
x. We also need the conditional LST

Ψ(α;x) =
∫ ∞

0
Γ(α;x+ y, x) dG(y). (5.1)

Lemma 1. We have

Ψ(α, x) =
∫ ∞

0
exp

{
−
[
αy + λ

∫ y

0
[1−H(x+ u)][1−Ψ(α;x+ u)] du

]}
dG(y). (5.2)

Proof. Considering what can happen in an infinitesimally small interval (x+y, x+y+dy) we obtain

Γ(α;x+ y + dy, x) = [1− λ(1−H(x+ y))dy][1− α dy]Γ(α;x+ y, x)
+λ(1−H(x+ y))Ψ(α;x+ y)Γ(α;x+ y, x)dy + o(dy).

This equation can be written as

dΓ(α;x+ y, x)/dy)/Γ(α;x+ y, x) = −α− λ[1−H(x+ y)][1−Ψ(α;x+ y)].

Integrating it from 0 to y and using Γ(α;x, x) = 1 yields:

Γ(α;x+ y, x) = e−[αy+λ
R y
0 [1−H(x+u)][1−Ψ(α;x+u)] du],

and the proof is completed by substituting Γ(α;x+ y, x) in (5.1).

The lemma provides a complicated functional equation for the function x 7→ Ψ(α;x) for any
fixed α > 0. This equation uniquely determines Ψ(α; ·) for every sufficiently large α. To see this,
let B be the set of bounded functions in C[0,∞) which, endowed with the supremum norm, is a
Banach space. For fixed α > 0 define the operator Iα : B → B by

(Iαf)(x) =
∫ ∞

0
e−[αy+λ

R y
0 [1−H(x+u)][1−f(x+u)]du]dG(y), x ∈ [0,∞), f ∈ B.
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If α is large enough, this operator is a contraction because for f, f̃ ∈ B,

|(Iαf)(x)− (Iαf̃)(x)|

≤
∫ ∞

0
e−αy

∣∣∣∣e−λ R y
0 [1−H(x+u)][1−f(x+u)] du − e−λ

R y
0 [1−H(x+u)][1−f̃(x+u)] du

∣∣∣∣dG(y)

≤
∫ ∞

0
e−αyλ

∣∣∣∣ ∫ y

0
[1−H(x+ u)][1− f(x+ u)] du

−
∫ y

0
[1−H(x+ u)][1− f̃(x+ u)] du

∣∣∣∣ dG(y)

≤ λ
∫ ∞

0
ye−αy||f − f̃ ||∞dG(y),

yielding
||Iαf − Iαf̃ ||∞ ≤ λJ(α)||f − f̃ ||∞,

where J(α) =
∫∞

0 ye−αydG(y). Clearly J(α) → 0 as α → ∞. It follows that Iα is a contraction if
λJ(α) < 1, which holds if

α > α0 = sup{β ≥ 0 | J(β) ≥ 1/λ}.

In this case Iα has a unique fixed point in B, which is of course given by Ψ(α; ·). Moreover, for
arbitrary f0 ∈ B the sequence (Iα)nf0, n ≥ 1, converges to Ψ(α; ·) uniformly on [0,∞) at an
exponential rate.

Now setting x = 0 in (5.1) we get

Ψ(α; 0) = Ee−αB.

Hence, (5.2) yields

Theorem 2. The LST of B is given by

Ee−αB =
∫ ∞

0
exp

{
−
[
αy + λ

∫ y

0
[1−H(u)][1−Ψ(α;u)] du

]}
dG(y).

Thus, we have a method to compute Ee−αB for α > α0. Note that the distribution of B is
uniquely determined by its LST on the interval (α0,∞).

5.2 The M/G/1 + Gs model

For the busy period of the sojourn time impatience model corresponding to M/G/1 + Gs we use
the same arguments as for M/G/1 +Gw. First define

Φ(α;x) =
∫ ∞

0
Γ(α;x+ v, x) {(1−H(x+ v))dG(v) + (1−G(v))dH(x+ v)} . (5.3)

Notice that the busy period LST is obtained as Ee−αB = Φ(α; 0).

Lemma 2. We have

Φ(α, x) =
∫ ∞

0
exp

{
−
[
αy + λ

∫ y

0
[1−H(x+ u)] du− λ

∫ y

0
Φ(α;x+ u) du

]}
(5.4)

× {(1−H(x+ y))dG(y) + (1−G(y))dH(x+ y)} .
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Proof. Starting from

Γ(α;x+ y + dy, x) = [1− λ(1−H(x+ y))dy][1− α dy]Γ(α;x+ y, x)
+λΦ(α;x+ y)Γ(α;x+ y, x)dy + o(dy),

we get

Γ(α;x+ y, x) = exp
{
−
[
αy + λ

∫ y

0
[1−H(x+ u)] du− λ

∫ y

0
Φ(α;x+ u) du

]}
.

Now use (5.3).

This lemma provides a complicated functional equation for the function x 7→ Φ(α;x) for any
fixed α > 0. This equation uniquely determines Ψ(α; ·) for every sufficiently large α. Notice the
similarity to the functional equation for the busy period LST in an ordinary M/G/1 queue.
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