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Contraction of general transportation costs along solutions to

Fokker-Planck equations with monotone drifts

Luca Natile∗ Mark Peletier† Giuseppe Savaré‡

January 30, 2010

Abstract

We shall prove new contraction properties of general transportation costs along nonnega-
tive measure-valued solutions to Fokker-Planck equations in R

d, when the drift is a monotone
(or λ-monotone) operator. A new duality approach to contraction estimates has been devel-
oped: it relies on the Kantorovich dual formulation of optimal transportation problems and
on a variable-doubling technique. The latter is used to derive a new comparison property of
solutions of the backward Kolmogorov (or dual) equation. The advantage of this technique
is twofold: it directly applies to distributional solutions without requiring stronger regularity
and it extends the Wasserstein theory of Fokker-Planck equations with gradient drift terms
started by Jordan-Kinderlehrer-Otto [14] to more general costs and monotone drifts,
without requiring the drift to be a gradient and without assuming any growth conditions.

1 Introduction

The aim of this paper is to obtain new uniqueness and contractivity results for nonnegative
measure-valued solutions to the Fokker-Planck equation

∂tρ−∆ρ−∇·(ρB) = 0, ρ|t=0
= ρ0, (1)

where B : Rd → R
d is a Borel λ-monotone operator, λ ∈ R, i.e.

〈B(x) −B(y), x− y〉 ≥ λ
∣

∣x− y
∣

∣

2
for every x, y ∈ R

d. (2)

Here we consider a weakly continuous family of probability measures (ρt)t≥0 ⊂ P(Rd) satisfying
the equation (1) in the sense of distributions

∫ +∞

0

∫

Rd

(

∂tζ +∆ζ −B · ∇ζ
)

dρtdt = 0 ∀ ζ ∈ C∞
c (Rd × (0,+∞)), (3)

with the initial datum ρ0.
Equations of this type are the subject of several papers by Bogachev, Da Prato, Krylov,

Röckner, and Stannat, who consider a very general situation where the Laplacian is replaced
by a second order elliptic operator with variable coefficients and B is locally bounded. Existence
of solutions has been proved by [6, Cor. 3.3], uniqueness has been considered in [5] under general
growth-coercivity conditions on B, and regularity has been investigated by [7]: in particular, it has
been shown that ρt is absolutely continuous with respect to the Lebesgue measure for L 1-a.e. t.

When B is Lipschitz continuous, uniqueness can be obtained by standard duality arguments,
see e.g. [3, Sec. 3]. Here we want to obtain a more precise stability estimate on the solutions of (1),
only assuming monotonicity of B without any growth condition. To achieve this aim, we adopt
the point of view of optimal transportation.
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The Wasserstein approach to Fokker-Planck equation in the gradient case. When B
is the gradient of a λ-convex function V : Rd → R then (1) can be considered as the gradient flow
of the perturbed entropy functional

H (ρ) :=

∫

Rd

u(x) log u(x) dx +

∫

Rd

V (x) dρ(x) ρ = uL
d (4)

in the space P2(R
d) of probability measures with finite quadratic moments endowed with the so

called L2-Kantorovich-Rubinstein-Wasserstein distance W2(·, ·). This distance can be defined by

W2(ρ
1, ρ2) := min

{

∫

Rd×Rd

∣

∣x1 − x2

∣

∣

2
dρ(x1, x2) : ρ ∈ P(Rd × R

d)

ρ is a coupling between ρ1 and ρ2
}

(5)

in terms of couplings, i.e. measures ρ in the product space Rd×R
d whose marginals are ρ1 and ρ2

respectively, so that ρ(E × R
d) = ρ1(E) and ρ(Rd × E) = ρ2(E) for every Borel subset E ⊂ R

d.
It is possible to prove that optimal couplings realizing the minimum in (5) always exist.

This remarkable interpretation found in [14] gave rise to a series of studies on the relationships
between certain classes of diffusion equations and distances between probability measures induced
by optimal transport problems (see e.g. the general overviews of [21, 2, 22]). One of the strengths
of this approach is a new geometric insight (developed in [16]) in the evolution process: in the case
of (1) the λ-convexity of the potential V reflects a λ-convexity property (also called displacement
convexity) of the functional H along the geodesics of P2(R

d). This nice feature, discovered
by [15], suggests that one can adapt some typical basic existence, approximation, and regularity
results for gradient flows of convex functionals in Euclidean spaces or Riemannian manifolds to
the measure-theoretic setting of P2(R

d). This program has been carried out (see e.g. [2]) and,
among the most interesting estimates, it provides the λ-contraction property

W2(ρ
1
t , ρ

2
t ) ≤ e−λt W2(ρ

1
0, ρ

2
0) for every t ≥ 0, (6)

where ρit, i = 1, 2, are the solutions to (1) starting from the initial data ρi0 ∈ P2(R
d).

Two strategies for the derivation of the contraction estimate (6) in the gradient case.

In order to prove (6) in the gradient case B = ∇V , essentially two basic strategies have been
proposed:

1. A first approach, developed by [10] for smooth evolutions and by [2] in a measure-theoretic
setting, starts from equation (1) written in the form

∂tρ+∇·(ρv) = 0, v = −
(∇u

u
+∇V

)

, ρ = uL
d, (7)

and it is based on two ingredients: the first one is the formula which evaluates the derivative
of the squared Wasserstein distance from a fixed measure σ along the (absolutely continuous)
curve ρ in P2(R

d)

d

dt

1

2
W 2

2 (ρt, σ) =

∫

Rd×Rd

〈vt(x), y − x〉dρt(x, y) for L
1-a.e. t > 0 (8)

where ρt is an optimal coupling between ρt and σ.

The second ingredient is the “subgradient” property of the vector field vt given by (7),
related to the displacement convexity of H : in the case λ = 0 it reads as

∫

Rd×Rd

〈vt(x), y − x〉dρt(x, y) ≤ H (σ) − H (ρt) if vt = −
(∇ut

ut
+∇V

)

. (9)
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Combination of (8) and (9) yields the so called Evolution Variational Inequality

d

dt

1

2
W 2

2 (ρt, σ) ≤ H (σ) − H (ρt) for every σ ∈ P2(R
d) (10)

which easily yields (6) for λ = 0 by a variable-doubling argument (see [2, Theorem 11.1.4]).

The main technical point here is that (9) requires vt ∈ L2(ρt) and (8) holds if for every
0 < t0 < t1 < +∞

∫ t1

t0

∫

Rd

|vt|
2 dρt dt =

∫ t1

t0

∫

Rd

∣

∣

∣

∣

∇ut

ut
+∇V

∣

∣

∣

∣

2

dρt dt < +∞, (11)

which should be imposed (in a suitable distributional sense) as an a priori regularity assump-
tion on the solution of (1). We do not know if solutions to (3) exhibit a similar regularization
effect. A second, even more difficult point prevents a simple extension of (10) to the general
non-gradient case: it is the lack of a potential V and therefore of an entropy-like functional
H satisfying an inequality similar to (9).

2. A second approach has been proposed by [17] and further developed in [12, 9]: it is based
on the Benamou-Brenier [4] representation formula for the Wasserstein distance

W 2
2 (ρ0, ρ1) = inf

{

∫ 1

0

∫

Rd

|vt|
2 dρt dt :

∂tρt +∇ · (ρtvt) = 0 in R
d × (0, 1), ρ0 = ρ|t=0

, ρ1 = ρ|t=1

}

(12)

and on a careful analysis of the effect of the evolution semigroup generated by the equation
on curves in P2(R

d) and its Riemannian tensor
∫

Rd |v|
2 dρ. This technique involves various

repeated differentiations and works quite well if a nice semigroup preserving smoothness and
strict positivity of the densities has already been defined. Once contraction has been proved
on smooth initial data, the evolution can be extended to more general ones but it seems hard
to extend the uniqueness result to cover a general distributional solution to the equation.

Main result of the paper: contraction estimates for distributional solutions. Our
purpose is twofold:

• First of all we want to find a new approach working directly on measure-valued solutions to
(1) just satisfying the usual distributional formulation (3).
We note that in general (1) does not exhibit the same regularization effect of the heat
equation. Even in the gradient case B = ∇V , there exist solutions ρt to (3) which are
not of class C1(Rd) for every t ≥ 0: take, e.g., the invariant measure ρt ≡ Z−1e−V for a
suitable convex function V 6∈ C1(Rd) with e−V ∈ L1(Rd). Moreover, distributional solutions
are easily obtained by approximation arguments, as regularization or splitting methods, and
they should be better suited to deal with the infinite dimensional case, as in [3]: a stability
result for such a weak class of solutions should be useful in these cases.

• Second, we want to cover the case of an arbitrary monotone field B, without any growth
restriction, and to extend contraction estimates to more general transportation costs.

To this aim, let us first introduce the general cost functional

Ch(ρ
1, ρ2) := inf

{

∫

Rd×Rd

h(|x1 − x2|) dρ(x1, x2) : ρ ∈ P(Rd × R
d),

ρ is a coupling between ρ1 and ρ2
}

.

(13)

Throughout this paper we assume that

3



January 30, 2010

h : [0,+∞) → [0,+∞) is a continuous and non-decreasing function with h(0) = 0.

Among the possible interesting choices of h, the case h(r) := rp is associated to the family
of Lp Wasserstein distances (whose L2-version has been introduced in (5)) on the space Pp(R

d)
of all the probability measures with moment of order p. When h is a bounded concave function
satisfying h(r) > 0 if r > 0, d(x, y) := h(|x − y|) is a bounded and complete distance function on
R

d inducing the usual euclidean topology so that Ch(·, ·) is a complete metric on the space P(Rd)
whose topology coincides with the usual weak one (see, e.g., [2, Proposition 7.1.5]).

Since we are not assuming any homogeneity on the general cost function h, its rescaled versions

hs(r) := h(r es) s ∈ R, r ≥ 0 (14)

will be useful. Let us now state our main result:

Theorem 1.1. If ρ1, ρ2 are two distributional solutions to (3) satisfying the summability condition

∫ t1

t0

∫

Rd

|B(x) − λx| dρt(x) dt < +∞ for every 0 < t0 < t1 < +∞, (15)

then they satisfy
Chλt

(ρ1t , ρ
2
t ) ≤ Ch(ρ

1
0, ρ

2
0) for every t ≥ 0. (16)

In particular, if ρ10 = ρ20 then ρ1 and ρ2 coincide for every time t ≥ 0.

Let us make explicit some consequences of (16) according to the different signs of λ and the
behaviour of h near 0 and +∞:

Corollary 1.2. Let ρ1, ρ2 be two distributional solutions to (3) satisfying (15).

a) If B is monotone, i.e. λ ≥ 0, then

Ch(ρ
1
t , ρ

2
t ) ≤ Ch(ρ

1
0, ρ

2
0).

b) If B is λ-monotone with λ > 0 and h satisfies for some exponent p > 0

h(α r) ≥ αph(r) for every α ≥ 1 and r ≥ 0 (17)

then
Ch(ρ

1
t , ρ

2
t ) ≤ e−pλ t Ch(ρ

1
0, ρ

2
0).

c) If B is λ-monotone with λ < 0 and h satisfies for some exponent p > 0

h(α r) ≥ αph(r) for every α ≤ 1 and r ≥ 0

then
Ch(ρ

1
t , ρ

2
t ) ≤ e−pλ t Ch(ρ

1
0, ρ

2
0).

In the particular case of the Wasserstein distance Wp, p ≥ 1, we have

Wp(ρ
1
t , ρ

2
t ) ≤ e−λt Wp(ρ

1
0, ρ

2
0). (18)

Theorem 1.1 has a simple application to invariant measures ρ∞ ∈ P(Rd), which are stationary
solutions of (3) and therefore satisfy

∫

Rd

(

∆ζ −B · ∇ζ
)

dρ∞ = 0 ∀ ζ ∈ C∞
c (Rd). (19)

4
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Corollary 1.3 (Strongly monotone operators and invariant measures). Let us suppose that B
is strongly monotone, i.e. λ > 0. Then equation (19) has at most one solution ρ∞ ∈ P(Rd)
satisfying the integrability condition

∫

Rd

|Bx− λx| dρ∞(x) < ∞. (20)

For each solution ρt to (3)-(15) and each cost h satisfying (17) we have

Ch(ρt, ρ∞) ≤ e−pλ (t−t0)Ch(ρt0 , ρ∞). (21)

Note that in the case λ > 0 condition (20) is weaker than B ∈ L1(ρ∞;Rd).

Remark 1.4 (An equivalent formulation of the contraction estimate). We can give an equivalent
version of (16) by keeping fixed the cost but rescaling the measures. In fact, we can associate to
the solutions ρ1, ρ2 of (3) their rescaled versions ρ̃1, ρ̃2 defined by

ρ̃j(E) := ρj(e−λt E) for every Borel set E ⊂ R
d, j = 1, 2. (22)

Then ρ̃j is the push-forward of ρj through the map x 7→ eλtx and satisfies the change-of-variables
formula

∫

Rd

ζ(y) dρ̃j(y) =

∫

Rd

ζ(eλt x) dρj(x) for every ζ ∈ Cb(R
d). (23)

Inequality (16) is then equivalent to

Ch(ρ̃
1
t , ρ̃

2
t ) ≤ Ch(ρ

1
0, ρ

2
0) for every t > 0. (24)

Strategy of the proof: Kantorovich duality and a variable-doubling technique. In
order to prove Theorem 1.1 we develop a new strategy, generalizing [18]. It relies on the well-
known dual Kantorovich formulation [21] of the transportation cost (13):

Ch(ρ
1, ρ2) = sup

{

∫

Rd

φ1 dρ1 +

∫

Rd

φ2 dρ2 :

φ1, φ2 ∈ Cb(R
d), φ1(x1) + φ2(x2) ≤ h(|x1 − x2|)

}

.

(25)

This formula reduces the estimate of the cost Ch(ρ
1
T , ρ

2
T ) of two solutions of (1) at a certain final

time T to the estimate of

Σ(φ1, φ2;T ) :=

∫

Rd

φ1 dρ1T +

∫

Rd

φ2 dρ2T (26)

for an arbitrary pair of functions φ1, φ2 satisfying the constraint

φ1(x1) + φ2(x2) ≤ h(|x1 − x2|) for every x1, x2 ∈ R
d. (27)

Assuming for the sake of simplicity that B is monotone, bounded and smooth, we can obtain an
estimate of Σ(φ1, φ2;T ) by solving the final-value problem for the adjoint equation

∂tφ
i +∆φi −B · ∇φi = 0 in R

d × (0, T ), φi(·, T ) := φi (28)

since the distributional formulation (3) yields

Σ(φ1
T , φ

2
T ;T ) = Σ(φ1

0, φ
2
0; 0) (29)

The following crucial result, based on a “variable-doubling technique”, provides the final step,
showing that φ1

0, φ
2
0 still satisfy the constraint (27) so that Σ(φ1

0, φ
2
0; 0) ≤ Ch(ρ

1
0, ρ

2
0).

5



January 30, 2010

Theorem 1.5. If φ1, φ2 ∈ C2,1
b (Rd× [0, T ]) are solutions of (28) in the case when B is monotone,

bounded and smooth, such that

φ1(x1, T ) + φ2(x2, T ) ≤ h(|x1 − x2|) ∀x1, x2 ∈ R
d,

then
φ1(x1, 0) + φ2(x2, 0) ≤ h(|x1 − x2|) ∀x1, x2 ∈ R

d.

Remark 1.6. While we prove Theorem 1.5 for bounded and smooth drifts B, and solutions
φ1,2 ∈ C2,1

b (Rd × [0, T ]), the property clearly carries over to any pointwise limit of such solutions.
We therefore expect it to hold for a much larger class of monotone drifts B and solutions.

Plan of the paper In section 2, we collect some tools useful to our arguments: we present a
slightly refined version of Kantorovich duality, an approximation technique of the cost functional,
the construction of a smooth and bounded approximation of the operator B, and a rescaling trick
which allows to consider λ = 0 in the following arguments. Section 3 is devoted to the proof of
Theorem 1.5, the last Section contains the proof of Theorem 1.1.

2 Preliminaries

In this section we collect some preliminary and technical regularization results which will turn to
be useful in the sequel.

2.1 C∞
c (Rd) functions in Kantorovich duality

Let us first show that we can assume φ1, φ2 are smooth and compactly supported in the duality
formula (25).

Proposition 2.1. If the cost function h is Lipschitz continuous and satisfies limr↑+∞ h(r) = +∞,
then

Ch(ρ
1, ρ2) = sup

{

∫

Rd

φ1 dρ1 +

∫

Rd

φ2 dρ2 :

φ1, φ2 ∈ C∞
c (Rd), φ1(x1) + φ2(x2) ≤ h(|x1 − x2|)

}

.

(30)

Proof. Let us recall that the h-transform of a given bounded function ζ : Rd → R is defined as

ζh(x) := inf
y∈Rd

h(|x− y|)− ζ(y), (31)

and it is a bounded and Lipschitz continuous function satisfying ζ(x) + ζh(y) ≤ h(|x− y|).
Let us fix c < Ch(ρ

1, ρ2) and admissible φ1, φ2 ∈ Cb(R
d) such that

∫

Rd

φ1 dρ1 +

∫

Rd

φ2 dρ2 > c. (32)

By possibly replacing φ2 with (φ1)h ≥ φ2 and φ1 with (φ1)hh ≥ φ1, it is not restrictive to
assume that φ1, φ2 are also Lipschitz continuous. Adding to φ1 and subtracting from φ2 a suitable
constant, we can also assume that φ1 ≥ 0 and φ2 ≤ 0.

Let us now consider a family of mollifiers
κη and of cutoff functions χR defined by

κη(x) := η−dκ
(

x/η
)

, χR(x) := χ(x/R) x ∈ R
d, η, R > 0, (33a)

where κ, χ ∈ C∞
c (Rd) satisfy

κ ≥ 0,

∫

Rd

κ(x) dx = 1, 0 ≤ χ ≤ 1, χ(x) = 0 if |x| ≥ 1, χ(x) = 1 if |x| ≤ 1/2. (33b)

6
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We set φ1
η := φ1 ∗ κη and φ2

η := φ2 ∗ κη − δη, where

δη := sup(φ1 ∗ κη − φ1)+ + sup(φ2 ∗ κη − φ2)+.

The definition of δη yields

φ1
η(x1) + φ2

η(x2) ≤ φ1 ∗ κη(x1)− φ1(x1) + φ2 ∗ κη(x2)− φ2(x2)− δη + h(|x1 − x2|) ≤ h(|x1 − x2|).

Moreover, since φ1, φ2 are Lipschitz, φ1
η and φ2

η converge to φ1, φ2 uniformly as η ↓ 0, so that φ1
η

and φ2
η are a smooth admissible pair still satisfying (32) and the sign condition φ1

η ≥ 0, φ2
η ≤ 0.

Let us now choose R0 > 0 such that

h(r) ≥ supφ1
η for every r ≥ R0 (34)

Setting φ1
η,R := φ1

η
χR ≤ φ1

η we easily have for R ≥ R0

inf
x1∈Rd

h(|x1 − x2|)− φ1
η,R(x1) ≥ 0 if |x2| ≥ 2R ≥ R +R0.

Since φ2
η,4R := φ2

η
χ4R satisfies φ2

η,4R(x2) = φ2
η(x2) if |x2| ≤ 2R and φ2

η,4R(x2) ≤ 0 for every

x2 ∈ R
d,

it follows that φ1
η,R, φ

2
η,4R is an admissible couple in C∞

c (Rd), and, for R sufficiently large, it
still satisfies (32).

2.2 Regularization of the cost function.

In this section we shall show that it is sufficient to consider nonnegative, Lipschitz, and unbounded
costs (as those considered in Proposition 2.1) in the proof of Theorem 1.1.

Lemma 2.2. If (16) holds for every nonnegative Lipschitz and nondecreasing cost function h with
limr↑+∞ h(r) = +∞, then it holds for every continuous and nondecreasing cost h.

Proof. We first prove that it is sufficient to consider nonnegative Lipschitz costs; in a second step,
we deal with the asymptotic requirement.
Step 1: h Lipschitz. Adding a suitable constant we can assume that h(r) ≥ h(0) = 0. We can
then approximate h from below by the increasing sequence of nonnegative Lipschitz functions

hn(r) := inf
s≥0

h(s) + n|r − s|

which satisfies
0 = hn(0) ≤ hn(r) ≤ h(r), lim

n↑+∞
hn(r) = h(r) ∀ r ≥ 0,

the convergence being uniform on each compact interval of [0,+∞). Applying Lemma 2.3 below
we find

Chλ t
(ρ1t , ρ

2
t )

(37)
= lim

n↑+∞
Chn

λ t
(ρ1t , ρ

2
t )

(16)

≤ lim inf
n↑+∞

Chn(ρ10, ρ
2
0)

(37)
= Ch(ρ

1
0, ρ

2
0).

Step 2: limr↑+∞ h(r) = +∞. Let us set ρ0 := ρ10 + ρ20, let us introduce the function

m(r) := ρ0(R
d \ r U), U :=

{

x ∈ R
d : |x| < 1

}

,

and let us consider a sequence rn in [0,+∞) such that

r0 := 0, r1 := 1, rn+1 − rn ≥ rn − rn−1 and m(rn+1) ≤ 2−n.

It is easy to check that rn is a diverging increasing sequence; if g is the piecewise linear function
satisfying g(rn) = n, i.e.

g(r) := n+
r − rn

rn+1 − rn
if r ∈ [rn, rn+1],

7
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then g is Lipschitz continuous, increasing, unbounded, concave, and it satisfies g(0) = 0 and

G :=

∫

Rd

g(|x|) dρ0(x) =

∫

Rd

(

∫ |x|

0

g′(r) dr
)

dρ0(x) =

∫

Rd

(

∫ +∞

0

g′(r)1r≤|x| dr
)

dρ0(x)

=

∫ ∞

0

g′(r)m(r) dr =

+∞
∑

n=1

1

rn − rn−1

∫ rn

rn−1

m(r) dr ≤

+∞
∑

n=0

m(rn) < +∞.

We can thus consider the perturbed cost

hε(r) := h(r) + ε g(r)

which is Lipschitz, increasing, unbounded. Since g is concave, increasing, and g(0) = 0, we have

g(|x1 − x2|) ≤ g(|x1|+ |x2|) ≤ g(|x1|) + g(|x2|) for every x1, x2 ∈ R
d, (35)

so that if ρ0 is an optimal coupling between ρ10 and ρ20 for the cost h (we can assume that the
initial cost is finite), then

Ch(ρ
1
0, ρ

2
0) ≤ Chε(ρ10, ρ

2
0) ≤ Ch(ρ

1
0, ρ

2
0) + ε

∫

Rd×Rd

g(|x1 − x2|) dρ0(x1, x2)

(35)

≤ Ch(ρ
1
0, ρ

2
0) + ε

∫

Rd×Rd

(

g(|x1|) + g(|x2|)
)

dρ0(x1, x2) = Ch(ρ
1
0, ρ

2
0) + εG.

Therefore, if Theorem 1.1 holds for hε we have

Ch(ρ
1
t , ρ

2
t ) ≤ Chε(ρ1t , ρ

2
t ) ≤ Chε(ρ10, ρ

2
0) ≤ Ch(ρ

1
0, ρ

2
0) + εG.

Passing to the limit as ε ↓ 0 we conclude.

The following result provides a variant of well known stability properties of transportation
costs (see [19, Theorem 3], [22, Theorem 5.20]) and holds the much more general setting of optimal
transportation in Radon metric spaces [2, Chapter 6].

Lemma 2.3 (Lower semicontinuity of the cost functional w.r.t. local uniform convergence of h).
Let h : [0,+∞) → [0,+∞) be a continuous cost function and let hn : [0,+∞) → [0,+∞) be
a sequence of lower semicontinuous functions converging to h locally uniformly in [0,+∞). For
every couple ρ1, ρ2 ∈ P(Rd) we have

lim inf
n↑+∞

Chn(ρ1, ρ2) ≥ Ch(ρ
1, ρ2). (36)

In particular, if hn ≤ h for every n ∈ N then

lim
n→+∞

Chn(ρ1, ρ2) = Ch(ρ
1, ρ2). (37)

Proof. Let us set Hn(x1, x2) := hn(|x1 − x2|) and observe that Hn converges to H(x1, x2) :=
hn(|x1 − x2|) uniformly on compact sets of Rd × R

d. If ρn ∈ P(Rd × R
d) is an optimal coupling

between ρ1, ρ2 with respect to the cost hn then

Chn(ρ1, ρ2) =

∫

[0,+∞)

z dρn(z), where ρn = (Hn)#ρn.

Since the marginals of ρn are fixed, the sequence (ρn)n∈N is tight and up to the extraction
of a suitable subsequence (still denoted by ρn) we can suppose that ρn converge to to some
limit coupling ρ between ρ1, ρ2 in P(Rd × R

d). Since ρn weakly converge to ρ = H#ρ by [2,
Lemma 5.2.1], standard lower semicontinuity of integrals with nonnegative continuous integrands
[2, Lemma 5.1.7] yields

lim inf
n→+∞

∫

[0,+∞)

z dρn(z) ≥

∫

[0,+∞)

z dρ(z) =

∫

Rd×Rd

H(x1, x2) dρ(x1, x2) ≥ Ch(ρ
1, ρ2).
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2.3 Bounded, smooth approximations of a monotone operator

If A : Rd → R
d is a monotone operator then there exists [8, Corollary 2.1] a maximal monotone

multivalued extension A : Rd
⇉ R

d (thus taking values in 2R
d

) such that A(x) ∈ A(x) for every
x ∈ R

d. We denote by A
◦(x) the element of minimal norm in (the closed convex set) A(x).

[1, Corollary 1.4] shows that the set A(x) ⊂ R
d reduces to the singleton {A(x)} L d-almost

everywhere: in fact it satisfies

A(x) = {A◦(x)} = {A(x)} for L
d-a.e. x ∈ R

d, A(x) = conv
{

lim
n→∞

A(xn) for some xn → x
}

(38)
We recall the following important approximation result [13, Theorem 4.1]: we denote by U the
open unit ball in R

d.

Theorem (Fitzpatrick-Phelps). For every maximal monotone operator A : Rd
⇉ R

d, there exists
a sequence of maximal monotone operators An : Rd

⇉ R
d such that, for each x ∈ R

d and all n,

A(x) ∩ nU ⊂ An(x) ⊂ nU, An(x) \ A(x) ⊂ n ∂U for every x ∈ R
d. (39)

Notice that (39) yields in particular

|A◦
n(x)| = min

(

|A◦(x)|, n
)

for every x ∈ R
d. (40)

Theorem 2.4. Let A : R
d
⇉ R

d be a maximal monotone operator and (βn)n∈N a vanishing
sequence of positive real numbers. There exists a sequence of smooth, globally Lipschitz, and
bounded monotone operators An : Rd → R

d such that

Lip(An) ≤ n, |An(x)| ≤ min
(

|A◦(x)|, n
)

+βn, lim
n→+∞

An(x) = A
◦(x) for every x ∈ R

d. (41)

Proof. Let An be a sequence of maximal monotone operators satisfying (39) and let Yn : Rd → R
d

be the Moreau-Yosida approximation of An of parameter n−1 [8, Proposition 2.6]

Yn(x) := n
(

x− (I + n−1
An)

−1x
)

Note that Yn is a n-Lipschitz monotone map satisfying

|Yn(x)| ≤ |A◦
n(x)|

(40)
= min

(

|A◦(x)|, n
)

for every x ∈ R
d (42)

Let us fix x ∈ R
d and let xn ∈ R

d be the unique solution of

xn + n−1
An(xn) ∋ x so that Yn(x) = n(x− xn) ∈ An(xn). (43)

If n > |A◦(x)| then (42) yields Yn(x) /∈ n ∂U ; applying (39) and (42) again we get

Yn(x) ∈ A(xn), |Yn(x)| ≤ |A◦(x)|, |x− xn| ≤ n−1 |A◦(x)| for every n > |A◦(x)|. (44)

Since the graph of A is closed, any accumulation point y of the bounded sequence Yn(x) satisfies

y ∈ A(x), |y| ≤ |A◦(x)|. (45)

We thus conclude that limn↑+∞ Yn(x) = A
◦(x) for every x ∈ R

d.
To conclude the proof we need to regularize Yn: to this aim we consider the family of mollifiers

κη as in (33a) and we set

An := Yn ∗ κη with η := (n k)−1βn where k :=

∫

Rd

|x|κ(x) dx, (46)

so that
|An(x)− Yn(x)| ≤ η k Lip(Yn) ≤ n η k ≤ βn.
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We consider now a radial smoothing:

Proposition 2.5. Let An : R
d → R

d be smooth, Lipschitz, and bounded monotone operators
satisfying (41). For every m ∈ N there exists bounded, smooth, Lipschitz, and monotone operators
An,m such that

Lip(An,m) ≤ n, sup
x∈Rd

|An,m(x)| ≤ n+ βn, sup
x∈Rd

∣

∣DAn,m(x) · x
∣

∣ ≤ 2m (n+ βn) (47)

lim
m↑+∞

An,m(x) = An(x) for every x ∈ R
d. (48)

Proof. We consider a family of mollifiers κη = η−1κ(·/η) ∈ C∞
c (R), where κ satisfies

supp(κ) ⊂ [0, 2], 0 ≤ κ ≤ κ(1) = 1, (1− x)κ′(x) ≥ 0,

∫

R

κ(x) dx = 1, (49)

and the function ϑ ∈ C∞
c (0,+∞) defined by ϑ(r) := κ(− log r), r > 0. We set

An,m(x) := m

∫ +∞

0

A(rx)ϑ(rm)
dr

r
(50)

The change of variable r = e−z shows that

An,m(x) = m

∫

R

An(x e
−z)κ(mz) dz = Ax

n ∗ κ1/m(0), where Ax
n(z) := An(x e

z) for z ∈ R.

It is then easy to check that |DAn,m| ≤ n since

|DAn,m(x)| ≤ m

∫

R

∣

∣DAn(x e
−z)

∣

∣e−z κ(mz) dz
(41)

≤ n

∫

R

e−y/m κ(y) dy
(49)

≤ n,

and An,m converges pointwise to An as m ↑ +∞.
Concerning the second bound of (47) we easily have

DAn,m(x) · x = m

∫ +∞

0

DAn(rx) · xϑ(r
m) dr = m

∫ +∞

0

d

dr

(

An(rx)
)

ϑ(rm) dr

= −m2

∫ +∞

0

An(rx)ϑ̃(r
m)

dr

r
where ϑ̃(r) := rϑ′(r),

so that the inequality follows choosing κ even and nondecreasing in [0,+∞), so that
∫ +∞

0
|ϑ′(r)| dr =

2.

2.4 λ-monotonicity and rescaling

We show here a simple rescaling argument (inspired by [11], where the rescaling technique has
been applied to a wide class of diffusion equations), which is useful to deduce the estimates in the
general λ-monotone case to the simpler case of a monotone operator.

We therefore assume that λ 6= 0, and we introduce the time rescaling functions

s(t) :=

∫ t

0

e2λr dr =
1

2λ

(

e2λt − 1
)

, t(s) :=
1

2λ
log(1 + 2λs) s ∈ [0, S∞) (51)

where

S∞ :=

{

+∞ if λ > 0,

−1/(2λ) if λ < 0.
(52)

10



2.4 λ-monotonicity and rescaling January 30, 2010

We associate to a family of probability measures ρt, t ∈ [0, T ], their rescaled versions σs,
s ∈ [0, S∞), defined by

σs(E) := ρt(s)(e
−λt(s) E) for every Borel set E ⊂ R

d. (53)

If B : Rd → R
d is a λ-monotone Borel map we set A := B − λI and

B̃(y, s) := e−λt(s)B(e−λt(s) y), Ã(y, s) = e−λt(s)A(e−λt(s) y) for y ∈ R
d, s ∈ R. (54)

Notice that if B is λ-monotone, then A and Ã(·, s), s ∈ [0, S∞), are monotone.

Proposition 2.6. A continuous family ρt ∈ P(Rd) is a distributional solution of (3) if and only
if the rescaled measures σs defined by (53) and (51) satisfy

∫ S∞

0

∫

Rd

(

∂sϕ+∆ϕ− Ã(·, s) · ∇ϕ
)

dσs ds = 0 ∀ϕ ∈ C∞
c (Rd × (0, S∞)). (55)

If ρ satisfies (15) then
∫ s1

s0

∫

Rd

|Ã(x, s)| dσs ds < +∞ for every 0 < s0 < s1 < S∞, (56)

and in this case σ satisfies
∫

Rd

ϕ(·, s1) dσs1 −

∫

Rd

ϕ(·, s0) dσs0 =

∫ s1

s0

∫

Rd

(

∂sϕ+∆ϕ− Ã(y, s) · ∇ϕ
)

dρs ds. (57)

for every test function ϕ ∈ C2,1
b (Rd × [s0, s1]) with bounded first and second derivatives.

Proof. We introduce the change of variable map X(x, t) := (eλtx, s(t)) and for a given smooth
function ϕ ∈ C∞

c (Rd × (0, s∞)) we set ζ(x, t) := ϕ(eλs(t), s(t)) = ϕ ◦ X. Denoting by (y, s) ∈
R

d × [0, s∞) the new variables, easy calculations show that in R
d × (0,+∞) we have

∂tζ = s
′
(

∂sϕ+ λe−2λt∇yϕ · y
)

◦ X, ∇xζ = eλt ∇yϕ ◦ X

∆xζ = e2λt ∆yϕ ◦ X B · ∇xζ = e2λt
(

B̃(y, s) · ∇yϕ
)

◦ X,

where we used the fact that B = eλtB̃ ◦ X. In particular we have

∂tζ −B · ∇xζ = s
′
(

∂sϕ− Ã(y, s) · ∇yϕ
)

◦ X

We thus have
∫

Rd

(

∂tζ +∆xζ −B · ∇xζ
)

dρt = s
′(t)

∫

Rd

(

∂sϕ+∆yϕ− Ã(y, s) · ∇yϕ
)

◦ Xdρt

= s
′(t)

∫

Rd

(

∂sϕ+∆yϕ− Ã(y, s) · ∇yϕ
)

dσs(t)

since σs(t)(E) = ρt(e
−λt E) for every Borel set E ⊂ R

d. Eventually we obtain

∫ +∞

0

∫

Rd

(

∂tζ +∆xζ −B · ∇xζ
)

dρt dt =

∫ s∞

0

∫

Rd

(

∂sϕ+∆yϕ− Ã(y, s) · ∇yϕ
)

dσs ds

(56) follows by a simple application of the change of variable formula (23), since for every t > 0
∫

Rd

∣

∣Ã(y, s)
∣

∣dσs(y)
(54)
= e−λt(s)

∫

Rd

∣

∣A(e−λt(s)y)
∣

∣ dσs(y)

(53)
= e−λt(s)

∫

Rd

∣

∣A(x)
∣

∣ dρt(s)(x) = e−λt(s)

∫

Rd

∣

∣B(x) − λx
∣

∣ dρt(s)(x).

11
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Since t
′(s) = e−λt(s) we eventually get for ti = t(si)

∫ s1

s0

∫

Rd

|Ã(x, s)| dσs ds =

∫ s1

s0

(

∫

Rd

∣

∣B(x) − λx
∣

∣ dρt(s)(x)
)

t
′(s) ds

=

∫ t1

t0

∫

Rd

∣

∣B(x) − λx
∣

∣ dρt(x) dt
(15)
< +∞.

(57) follows from (55) when ϕ belongs to C∞
c (Rd × [s0, s1]). If ϕ ∈ C2,1

b (Rd × [s0, s1]) via a stan-
dard convolution and truncation argument we find an approximation sequence ϕk ∈ C∞

c (Rd ×
[s0, s1]) such that ϕk, ∂tϕk,∇ϕk,∆ϕk remains uniformly bounded and converge pointwise to
ϕ, ∂tϕ,∇ϕ,∆ϕ respectively. By (56) we can apply the Lebesgue Dominated Convergence the-
orem to pass to the limit in (57) written for ϕk, thus obtaining the same identity for ϕ.

We conclude this section by a simple remark combining the regularization technique of Sec-
tion 2.3 and the time rescaling (54).

Lemma 2.7. Let A := B−λI be a monotone operator, let us consider a sequence An,m, n,m ∈ N,
of smooth monotone operators given by Theorem 2.4 and Proposition 2.5, and let us set

Ãn,m(y, s) := e−λt(s)An,m(e−λt(s)y) y ∈ R
d, s ∈ [0, S∞) (58)

defined as in (54), (51). Then Ãn,m are Lipschitz in R
d × [0, S] for every S ∈ [0, S∞).

Proof. We just have to check that |∂sÃn,m(·, s)| is uniformly bounded in R
d × [0, S]: sine t

′(s) =
e−λt(s) a simple calculation yields

∂sÃn,m(y, s) = −λe−λt(s) Ãn,m(y, s)− λe−2λt(s)DAn,m(e−λt(s)y) · y = −λe−λt(s)Q̃n,m(y, s)

where
Qn,m(x) = An,m(x) + DAn,m(x) · x, x ∈ R

d.

Since e−λt(s) is uniformly bounded with all its derivative in each compact interval [0, S], S < ∞,
(47) show that Qn,m is bounded and therefore Ãn,m is Lipschitz with respect to s.

3 A comparison result for the backward equation

In this section we give the proof of Theorem 1.5 in a slightly more general form, in order to be
applied to (a suitably regularized version of) the rescaled formulation considered in Proposition 2.6.

Let us suppose that Ã : (y, s) ∈ R
d× [0, S∞) → Ã(y, s) ∈ R

d is a smooth vector field satisfying

sup
Rd×[0,S]

|Ãs|+ |∂sÃ|+ |DB̃| < +∞ for every S ∈ [0, S∞), (59)

Ã(·, s) is monotone for every s ∈ [0, S∞). (60)

We denote by L [·] the differential operator defined by

L [ϕ](y, s) := ∆yϕ(y, s)− Ã(y, s) · ∇yϕ(y, s) ϕ(·, s) ∈ C2(Rd), (y, s) ∈ R
d × [0, S∞). (61)

Thanks to (59) and (60), we can apply the existence result [20, Theorem 3.2.1] and for every
S ∈ [0, S∞) and φ ∈ C∞

c (Rd) we can find a solution ϕ ∈ C2,1
b (Rd × [0, S)) of the backward

evolution equation
∂sϕ+ L [ϕ] = 0 in R

d × [0, S], ϕ(·, S) = φ(·). (62)

We have

12
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Theorem 3.1. Let h : [0,+∞) → R be a continuous and non-decreasing function. Let ϕ1, ϕ2 ∈
C2,1

b (Rd × [0, S]) be solutions of the “backward” inequality

∂sϕ+ L [ϕ] ≥ 0 in R
d × [0, S] (63)

such that
ϕ1(y1, S) + ϕ2(y2, S) ≤ h(|y1 − y2|) for every y1, y2 ∈ R

d.

Then
ϕ1(y1, 0) + ϕ2(y2, 0) ≤ h(|y1 − y2|) for every y1, y2 ∈ R

d.

Proof. By approximating h from above, it is not restrictive to assume that h ∈ C1[0,+∞) with
h′(0) = 0; in particular the map H(y1, y2) := h(|y1 − y2|) is of class C

1 in R
d × R

d and satisfies

∇y1
H(y1, y2) = −∇y2

H(y1, y2) = g(y1, y2)(y1 − y2), (64)

where

0 ≤ g(y1, y2) = g(y2, y1) :=

{

h′(|y1−y2|)
|y1−y2|

if y1 6= y2,

0 if y1 = y2.
(65)

The argument combines a variable-doubling technique and a classical variant of the maximum
principle. Let us first show that if ϕ1, ϕ2 satisfy the strict inequality

∂sϕ
j + L [ϕj ] > 0 in R

d × [0, S), j = 1, 2. (66)

then the function
f(y1, y2, s) := ϕ1(y1, s) + ϕ2(y2, s)−H(y1, y2)

cannot attains a (local) maximum in a point (ȳ1, ȳ2, s̄) with s̄ < S. We argue by contradiction
and we suppose that (ȳ1, ȳ2, s̄) is a local maximizer of f with s̄ < S; we thus have

∂sf(ȳ1, ȳ2, s̄) ≤ 0, ∇y1
f(ȳ1, ȳ2, s̄) = 0, ∇y2

f(ȳ1, ȳ2, s̄) = 0;

so that
∂tϕ

1(ȳ1, s̄) + ∂tϕ
2(ȳ2, s̄) ≤ 0 (67)

∇y1
ϕ1(ȳ1, s̄) = ∇y1

H(ȳ1, ȳ2)
(64)
= g(ȳ1, ȳ2)(y1 − y2)

∇y2
ϕ2(ȳ2, s̄) = ∇y2

H(ȳ1, ȳ2)
(64)
= g(ȳ1, ȳ2)(y2 − y1).

It follows that

Ã(ȳ1, s̄) · ∇y1
ϕ1(ȳ1, s̄)+Ã(ȳ2, s̄) · ∇y2

ϕ2(ȳ2, s̄)

= g(ȳ1, ȳ2)
(

Ã(ȳ1, s̄)− Ã(ȳ2, s̄)
)

· (ȳ1 − ȳ2)
(65)

≥ 0
(68)

On the other hand, since H(ȳ1 + z, ȳ2 + z) = H(ȳ1, ȳ2), the function

R
d ∋ z 7→ ϕ1(ȳ1 + z, s̄) + ϕ2(ȳ2 + z, s̄)−H(ȳ1, ȳ2) = f(ȳ1 + z, ȳ2 + z, s̄)

has a local maximum at z = 0 so that

∆y1
ϕ1(ȳ1, s̄) + ∆y2

ϕ2(ȳ2, s̄) ≤ 0. (69)

Combining (67),(68), and (69) we obtain

(∂sϕ
1 + L [ϕ1])(ȳ1, s̄) + (∂sϕ

2 + L [ϕ2])(ȳ2, s̄) ≤ 0,

which contradicts (66).
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Suppose now that ϕ1, ϕ2 satisfy the inequality (63) and let us set for ε, δ > 0

ϕj
ε,δ(yj , s) := ϕj(yj , s)− δ(S − s)− εe−s|yj |

2 j = 1, 2.

We easily get

∂sϕ
j
ε,δ = ∂sϕ

j + δ + εe−s|yj|
2

L [ϕj
ε,δ] = L [ϕj ]− e−s

(

dε+ 2εÃ(yj , s) · yj
)

∂sϕ
j
ε,δ + L [ϕj

ε,δ] ≥ δ + εe−s
(

|yj |
2 − d− Cn|yj |

)

,

where Cn = supy,s |Ãn(y, s)| < +∞.
It follows that for every δ > 0 there exists a coefficient ε > 0 sufficiently small such that

ϕ1
ε,δ, ϕ

2
ε,δ satisfy (66). On the other hand, the continuous function

(y1, y2, s) 7→ fε,δ(y1, y2, s) := ϕ1
ε,δ(y1, s) + ϕ2

ε,δ(y2, s)− h(|y1 − y2|) y1, y2 ∈ R
d, s ∈ [0, S],

attains its maximum at some point (ȳ1, ȳ2, s̄) ∈ R
d × R

d × [0, S]; by the previous argument, we
conclude that s̄ = S and therefore for every y1, y2 ∈ R

d

ϕ1
ε,δ(y1, 0) + ϕ2

ε,δ(y2, 0)− h(|y1 − y2|) ≤ fε,δ(ȳ1, ȳ2, S) ≤ ϕ1(ȳ1, S) + ϕ2(ȳ2, S)− h(|ȳ1 − ȳ2|) ≤ 0.

Passing to the limit as ε, δ ↓ 0 we conclude.

We conclude this section by recalling two well known estimates:

Lemma 3.2 (Uniform estimates). Let ϕ ∈ C2,1
b (Rd × [0, S]) ∩C∞(Rd × (0, S)) be the solution of

(62). Then
sup

Rd×[0,S]

|ϕ| ≤ sup
Rd

|φ|, sup
Rd×[0,S]

|∇ϕ| ≤ sup
Rd

|∇φ|. (70)

Proof. The first inequality is direct application of the maximum principle (see e.g. [20, Theo-
rem 3.1.1]. By differentiating the equation with respect to y we obtain

∂s Dϕ+ L [Dϕ]−DÃDϕ = 0

and then
1

2
∂t|Dϕ|2 +

1

2
L [|Dϕ|2]−DÃDϕ ·Dϕ− |D2ϕ|2 = 0.

Since Ã is monotone the quadratic form associated to DÃ is nonnegative and therefore

∂t|Dϕ|2 + L [|Dϕ|2] ≥ 0.

A further application of the maximum principle yields (70).

4 Proof of Theorem 1.1

We split the proof in various steps. Just to fix some notation, we consider a family An,m of smooth,
bounded, Lipschitz, and monotone operators approximating A := B − λI as in Proposition 2.5
and their rescaled version Ãn,m defined by (58). Ln,m[·] are the associated differential operators

Ln,m[ϕ](y, s) := ∆yϕ(y, s)−Ãn,m(y, s)·∇yϕ(y, s) ϕ(·, s) ∈ C2(Rd), (y, s) ∈ R
d×[0, S∞), (71)

as in (74). Lemma 2.7 show that Ã satisfy (59).
Step 1: reduction to the monotone case λ = 0. When λ 6= 0 we apply the rescaling argument
of section 2.4: we thus introduce the time rescaling t(s) defined by (51) and the corresponding
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measures σi
s = ρ̃i

t(s) as in (53), which satisfy (56) and (57) for the rescaled operators Ã of (54).

Taking into account Remark 1.4 and the fact that σi
s = ρ̃i

t(s), the thesis follows if we show that

Ch(σ
1
s , σ

2
s ) ≤ Ch(σ

1
0 , σ

2
0) for every s ∈ [0, S∞), (72)

(see (52) for the definition of S∞).
Step 2: If

Ch(σ
1
s1 , σ

2
s1) ≤ Ch(σ

1
s0 , σ

2
s0) for every 0 < s0 < s1 < S∞, (73)

then (72) holds. When h is bounded, (73) implies (72) by taking a simple limit as s0 ↓ 0 and using
the fact that the map (σ1, σ2) 7→ Ch(σ

1, σ2) is continuous with respect to weak convergence in
P(Rd)×P(Rd). If (72) holds for every bounded Lipschitz cost, then it holds for every continuous
and nondecreasing e cost by Lemma 2.2.
Step 3: We claim the following:

Let φ1, φ2 ∈ C∞
c (Rd) be satisfying the constraint φ1(y1) + φ2(y2) ≤ h(|y1 − y2|) Then

∫

Rd

φ1 dσ1
s1 +

∫

Rd

φ2σ2
s1 ≤ Ch(σ

1
s0 , σ

2
s0 ) + ℓKn,m (74)

where ℓ := supRd |∇φ1|+ supRd |∇φ2| and

Kn,m :=

∫ s1

s0

∫

Rd

|Ãn,m − Ã| dσ1
s ds+

∫ s1

s0

∫

Rd

|Ãn,m − Ã| dσ2
s ds.

Indeed, applying [20, Theorem 3.2.1] we can introduce the solutions ϕ1
n,m, ϕ2

n,m ∈ C2,1
b (Rd ×

[s0, s1]) of the backward equations

∂sϕ
j
n,m + Ln,m[ϕj ] = 0 in R

d × [s0, s1], ϕj
n,m(·, s1) = φj(·) in R

d.

Identity (57) shows that, for j = 1, 2,

∫

Rd

ϕj(·, s1) dσ
j
s1 −

∫

Rd

ϕj(·, s0) dσ
j
s0 =

∫ s1

s0

∫

Rd

(

Ãn,m − Ã
)

· ∇ϕj
n,m dσj

s ds

(70)

≤ ℓ

∫ s1

s0

∫

Rd

∣

∣Ãn,m − Ã
∣

∣ dσj
s ds

Summing up the these equation for j = 1, 2 we obtain

∫

Rd

ϕ1 dσ1
s1 +

∫

Rd

ϕ2 dσ2
s1 ≤

∫

Rd

ϕ1
n,m(·, s0) dσ

1
s0 +

∫

Rd

ϕ2
n(·, s0) dσ

2
s0 + ℓKn,m (75)

Theorem 3.1 yields ϕ1
n,m(y1, s0) + ϕ2

n,m(y2, s0) ≤ h(|y1 − y2|) which implies (74).
Step 4:

lim sup
n↑+∞

(

lim sup
m↑+∞

Kn,m

)

= 0. (76)

Let us first notice that setting ti := t(si) and recalling that t′(s) = e−λt(s) we have

∫ s1

s0

∫

Rd

|Ãn,m − Ã| dσ1
s ds =

∫ s(t1)

s(t0)

t
′(s)

∫

Rd

|An,m −A| dρit(s) ds =

∫ t1

t0

∫

Rd

|An,m −A| dρit dt

so that

Kn,m = K1
n,m +K2

n,m, Kj
n,m :=

∫ t1

t0

∫

Rd

|An,m −A| dρjt dt j = 1, 2.
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We can estimate Kj
n,m by

Kj
n,m ≤

∫ t1

t0

∫

Rd

|An,m −An| dρ
j
t dt+

∫ t1

t0

∫

Rd

|An −A| dρjt dt,

observing that by (47), (48), and the Lebesgue Dominated Convergence Theorem we get

lim
m↑+∞

Kj
n,m =

∫ t1

t0

∫

Rd

|An −A| dρjt dt.

Since |An(x)| ≤ |A◦(x)| ≤ |A(x)| = |B(x) − λx| for every x ∈ R
d, the integrability assumption

(15), a further application of the Lebesgue Theorem, and (41) yield

lim
n↑+∞

(

lim
m↑+∞

Kn,m

)

=

∫ t1

t0

∫

Rd

|A◦ −A| dρjt dt. (77)

This last integrand is 0 if A coincides with the minimal selection of A, in particular when A
is continuous. In the general case, the regularity result of [7] shows that ρjt ≪ L d for L 1 a.e.
t ∈ (0,+∞) and (38) says that A◦ = A L d-a.e. in R

d; therefore the last integral of (77) vanishes
and we get (76).
Step 5: conclusion.

Thanks to (76), passing to the limit in (74) we obtain

∫

Rd

φ1 dσ1
s1 +

∫

Rd

φ2 dσ2
s1 ≤ Ch(σ

1
s0 , σ

2
s0).

Taking the supremum with respect to φ1, φ2 ∈ C∞
c (Rd) and recalling Proposition 2.1 we obtain

(73).

Remark 4.1. As it appears from the final argument of the previous step 4, in the case when
A = B−λI is the minimal selection A

◦ of A (in particular when B is continuous), we do not need
to invoke the regularity result of [7] to conclude our proof.

Proof of Corollary 1.2. For (a), it is sufficient to observe that eλt ≥ 1; this implies h(r) ≤ hλt(r)
and so

Ch(ρ
1
t , ρ

2
t ) ≤ Chλt

(ρ1t , ρ
2
t )

(16)

≤ Ch(ρ
1
0, ρ

2
0).

Similarly, for (a) and (b)

epλtCh(ρ
1
t , ρ

2
t ) ≤ Chλt

(ρ1t , ρ
2
t )

(16)

≤ Ch(ρ
1
0, ρ

2
0).

We conclude recalling that

Wp(ρ
1, ρ2) = Ch(ρ

1, ρ2)
1/p

with h(r) = |r|
p

and applying (a) and (b).
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[8] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces
de Hilbert, North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematics
Studies, No. 5. Notas de Matemática (50).
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