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Abstract: Substantial effort has been invested to understand the effect of boundary slippage in
microfluidics. However, a satisfactory understanding is still lacking due to extremely precise
experiments required. Here, we apply the lattice Boltzmann method to model hydrophobic
microchannel flows. We find a possible explanation for experiments observing slip depending
on the flow velocity – in contradiction to previous studies. We show that these observations can
be explained by not fully developed flow profiles in the channel. Further, we show a decreasing
slip length with increasing viscosity and demonstrate the effect of adding surfactant to fluid
flow in hydrophobic microchannels.
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1 Introduction

Microflow devices are used for chemical, biological, or
medical analysis techniques. Putting the ‘lab on a chip’
allows to minimise the time needed for the analysis with
only small amounts of fluid. Also, such microdevices are
more mobile and allow a parallel treatment of multiple
fluids. Other microflow systems are used as sensors and
actors for devices like chemical reactors, cars, airplanes
and inkjet printers.

In these miniature apparatuses, a number of effects
appear which cannot easily be explained with our
conventional physical understanding. A common example
is the violation of the no-slip boundary condition. The
no-slip boundary condition is one of the fundamental
assumptions common in classical fluid mechanics, stating
that the velocity of a fluid at a wall is equal to the
velocity of the wall. For macroscopic applications no-slip

is undoubted but during recent years a number of
experiments found a violation of the no-slip boundary
condition on a length scale of nanometers up to
micrometers (Lauga et al., 2005; Neto et al., 2005).
Numerous experiments (Lauga et al., 2005; Neto et al.,
2005; Vinogradova, 1995; Vinogradova and Yakubov,
2003; Vinogradova, 1998; Henry et al., 2004; Craig et al.,
2001; Neto et al., 2003; Bonaccurso et al., 2003) utilise
a modified Atomic Force Microscope (AFM) with an
oscillating colloidal sphere at the tip of its cantilever to
measure the force needed to displace the fluid between
the colloidal sphere and a wall. From the detected force,
the amount of wall-slippage can be estimated as described
in Vinogradova (1995). Other authors like Tretheway
and Meinhart apply Particle Image Velocimetry (PIV) to
observe the flow near the fluid-wall boundary directly to
quantify wall slippage (Tretheway and Meinhart, 2002,
2004). However, it is still an open question if the detected

Copyright © 2008 Inderscience Enterprises Ltd.
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slip is a fundamental property or appears due to surface
variations, uncertainties in the experimental setups, or the
complex interactions between fluid and wall.

Instead of the no-slip boundary condition, Navier
introduced in 1823 a slip boundary condition where the
transversal velocity near the wall vz(x = 0) is proportional
to the shear rate ∂vz

∂x and the so called slip length β (Navier,
1823),

vz(x = 0) = β
∂vz

∂x
|x=0. (1)

Here, the boundary is at x = 0. z is the flow direction and
vz is the fluid velocity in flow direction, parallel to the wall.
The slip lengthβ can be interpreted as the distance between
the wall and the virtual point inside the wall at which the
extrapolated flow velocity would be zero.

Due to the large number of tunable experimental
parameters like temperature, viscosity, flow velocity,
pressure, or surface properties, as well as their individual
dependencies on each other, it is not possible to cover
all occuring phenomena in a single experiment. In fact, a
change in the surface properties usually implies a different
experimental setup and a change of viscosity without
varying the temperature is only possible by a replacement
of the fluid. However, such strong interventions might
also have an influence on other parameters of the system.
In computer simulations it is possible to vary a single
parameter of the fluid, e.g., the viscosity or the density,
without changing other parameters. This is important
to improve our understanding of the effects occuring in
microfluidic systems and to further promote the design of
such devices.

In addition, computer simulations are able to study
the properties of multiphase flows in microchannels
with the individual fluid parameters and fluid-fluid
interactions being well defined. In particular, the influence
of surfactant is of interest here. Surfactant molecules
are often called amphiphiles and are comprised of a
hydrophilic (water-loving) head group and a hydrophobic
(oil-loving) tail. In a non-wetting microchannel filled with
water, the surfactant molecules arrange at the interface
betweenwater and surface, thus shielding the hydrophobic
repulsion of the wall. On the other hand, in a wetting
channel an arrangement of surfactant molecules at the
boundary causes the otherwise wetting wall to become
hydrophobic. As a result an apparent slip occurs.

2 Simulation method

The simulation method used to study microfluidic devices
has to be choosen carefully. While Navier-Stokes solvers
are able to cover most problems in fluid dynamics, they
lack the possibility to include the influence of molecular
interactions as needed to model boundary slip. Molecular
Dynamics (MD) simulations are the best choice to simulate
the fluid-wall interaction, but the computer power today is
not sufficient to simulate length and time scales necessary
to achieve orders of magnitude which are relevant for

experiments.However, boundary slipwith a slip lengthβ of
the order of many molecular diameters σ has been studied
with molecular dynamics simulations by Thompson and
Troian (1997), Thompson andRobbins (1990),Koplik and
Banavar (1998), Cieplak et al. (2001), Koplik et al. (1989),
Cottin-Bizone et al. (2004) and Baudry and Charlaix
(2001). They find increasing slip with decreasing liquid
density and liquid-solid interactions as well as a decrease
of slip with increasing pressure. However, the maximum
number of particles that can be simulated on today’s most
powerful supercomputers is about 20 billion (Kadau et al.,
2004). This corresponds to a volume of less then 1�m3,
but the typical length scale of amicrofluidic device is about
100�m.

A mesoscopic model is able to govern a volume large
enough to describe the flow properties and still holds
information about the molecular behaviour. The term
‘mesoscopic’means that the trajectories of singlemolecules
are not simulated in detail but a whole ensemble of ‘quasi
particles’ behaves as the corresponding real microscopic
system. Due to this coarse-graining, the numerical effort
is much smaller than for molecular dynamics simulations
because the collision and propagation rules of the used
‘quasi particles’ are much simpler than the ones of real
particles. Therefore, much larger particle counts can be
simulated for substantially longer times. An example for
a mesoscopic simulation method is Stochastic Rotation
Dynamics (SRD), which is sometimes calledMulti Particle
CollisionDynamics (MPCD). In a propagation step, every
representative fluid particle is moved according to its
velocity to its new position. In the collision step, the
simulation volume is split into boxes. In each box the
velocity vectors of every single particle are rotated around
the mean velocity in a randommanner, so that energy and
momentum are conserved in every box (Malevanets and
Kapral, 1999, 2000). The method is efficient and is used
whenBrownianmotion is required. Its disadvantage is that
thermal fluctuations cannot be switched off. Dissipative
Particle Dynamics (DPD) also utilises quasi particles
which represent a set ofmolecules.Thepropagationof such
a collective quasi particle is implemented as in molecular
dynamics but collisions are dissipative. Thismethod is easy
to implement in an existing MD simulation code but the
computational costs are still very high.

In this paper we use the lattice Boltzmann method,
where one discretises the Boltzmann kinetic equation[

∂

∂t
+ v∇x +

1
m

F∇v

]
η(x,v, t) = Ω (2)

on a lattice. η indicates the probability to find a single
particle with mass m, velocity v at the time t at position
x. The derivatives represent simple propagation of a single
particle in real and velocity space whereas the collision
operator Ω takes into account molecular collisions in
which a particle changes its momentum due to a collision
with another particle. External forces F can be employed
to implement the effect of gravity or external fields.
To represent the correct physics, the collision operator
should conservemass, momentum, and energy, and should
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be Gallilei invariant. By performing a Chapman Enskog
procedure, it can be shown that such a collision operator
Ω reproduces the Navier-Stokes equation (Succi, 2001).
In the lattice Boltzmann method the time t, the position x,
and the velocity v are discretised.

During the last years a number of attempts to simulate
slip within the lattice Boltzmann method have been
developed. The most simple idea is to use a partial bounce
back boundary condition (Succi, 2001). While full bounce
back leads to no slip, full reflection leads to full slip.
Partial slip implies that a particle is reflected by the
wall with the probability q, while it bounces back with
probability (1 − q). As a result, a finite boundary slip
can be observed. Nie et al. (2002) use a Knudsen-number
dependent relaxation time in the vicinity of the wall to
generate slippage in an ideal gas lattice Boltzmann model.

Our attempt to generate slip involves a repulsive
potential at the wall (Harting et al., 2006). This leads to
a depletion zone near the wall with a reduced density
resulting in an apparent slip at hydrophobic (non wetting)
walls. Benzi et al. (2006a) introduced a similar approach
but the repulsion there decays exponentially while the
potential we are using only takes into account next
neighbour lattice sites as described below. Our method is
based on Shan and Chen’s multiphase lattice Boltzmann
method, i.e., the interaction between the surface and the
fluid is simulated similar to the interactions between two
fluid phases. This allows us to recycle our well tested
parallel 3D multiphase lattice Boltzmann code, as it
is presented in Harting et al. (2005) with only minor
modifications. It is very advantaguous of our model that
its parameters can be linked to experimentally available
properties, namely the contact angle (Benzi et al., 2006b).

The simulation method and our implementation
of boundary conditions are described as follows.
Amultiphase lattice Boltzmann system can be represented
by a set of equations (Benzi et al., 1992)

ηα
i (x + ci, t + 1) − ηα

i (x, t) = Ωα
i , i = 0, 1, . . . , b, (3)

where ηα
i (x, t) is the single-particle distribution function,

indicating the amount of species α with velocity ci,
at site x on a D-dimensional lattice of coordination
number b (D3Q19 in our implementation), at time-step
t. This is a discretised version of Equation (2) without
external forces F for a number of species α. For the
collision operator Ωα

i we choose the Bhatnagar-Gross-
Krook (BGK) form (Bhatnagar et al., 1954)

Ωα
i = − 1

τα

(
ηα

i (x, t) − ηα eq
i

(
uα(x, t), ηα(x, t)

))
, (4)

where τα is the mean collision time for component α and
determines the kinematic viscosity

να =
2τα − 1

6
(5)

of the fluid. The system relaxes to an equilibrium
distribution ηα eq

i which can be derived imposing
restrictions on the microscopic processes, such as explicit
mass and momentum conservation for each species (Chen

et al., 1991, 1992; Qian et al., 1992). In our implementation
we choose for the equilibrium distribution function

ηeq
i = ζiη

α

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− u2

2c2
s

+
(ci · u)3

6c6
s

− u2(ci · u)
2c4

s

]
, (6)

which is a polynomial expansion of the Maxwell
distribution. ci are the velocity vectors pointing to
neighbouring lattice sites. cs = 1/

√
3 is the speed of

sound for the D3Q19 lattice. The macroscopic values can
be derived from the single-particle distribution function
ηα

i (	x, t), i.e., the density ηα(	x) of the species α at lattice
site 	x is the sum over the distribution functions ηα

i (	x) for
all lattice velocities 	ci

ηα(x, t) ≡
∑

i

ηα
i (x, t). (7)

uα(x, t) is the macroscopic velocity of the fluid, defined as

ηα(x, t)uα(x, t) ≡
∑

i

ηα
i (x, t)ci. (8)

Interactions between different fluid species are introduced
following Shan and Chen as a mean field body force
between nearest neighbours (Shan, 1993; Shan and Chen,
1994),

Fα(x, t) ≡ −ψα(x, t)
∑
ᾱ

gαᾱ

∑
x′

ψᾱ(x′, t)(x′ − x), (9)

where ψα(x, t) = (1 − e−ηα(x,t)/η0) is the so-called
effective mass with η0 being a reference density that is
set to 1 in our case (Shan, 1993). gαᾱ is a force coupling
constant, whose magnitude controls the strength of the
interaction between component α and ᾱ. The dynamical
effect of the force is realised in the BGK collision operator
(4) by adding an increment δuα = ταFα/ηα to the velocity
u in the equilibrium distribution function (6). For the
potential of the wall we attach the imaginary fluid ‘density’
ηwall to the first lattice site inside the wall. The only
difference between ηwall and any other fluid packages on
the lattice ηᾱ is that the fluid corresponding to ηwall is only
taken into account for in the collision step, but not in the
propagation step. Therefore, we can adopt ηwall and the
coupling constant gα,wall in order to tune the fluid-wall
interaction. gα,wall is kept at 0.08 throughout this paper
if not mentioned otherwise and all values are reported in
lattice units. Additionally, we apply second order correct
mid-grid bounce back boundary conditions between the
fluid and the surface (Succi, 2001). Extending our model
to a multi-relaxation time scheme would result in a more
correct treatment of the boundaries, but the difference
in the observed slip lengths is expected to be neglectable
since interaction induced by the repulsive force between
fluid and wall causes a substantially larger effect.

From molecular dynamics simulations it is known
that the fluid-wall interactions causing a slip phenomenon
usually take place within a few molecular layers of
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the liquid along the boundary surface (Thompson and
Troian, 1997; Thompson and Robbins, 1990; Koplik
and Banavar, 1998; Cieplak et al., 2001; Koplik et al.,
1989; Cottin-Bizone et al., 2004; Baudry and Charlaix,
2001). Our coarse-grained fluid wall interaction acts on
the length scale of one lattice constant and does not
take the molecular details into account. Therefore, our
implementation is only able to reproduce an averaged
effect of the interaction and we cannot fully resolve the
correct flow profile very close to the wall and below the
resolution of a single lattice spacing. However, in order
to understand the influence of the hydrophobicity on
experimentally observed apparent slip, it is fully sufficient
to investigate the flow behaviour on more macroscopic
scales as they are accessible for experimental investigation.
Ourmethod couldbe improvedbyadirectmappingof data
obtained from MD simulations to our coupling constant
gα,wall allowing a direct comparison of the influence of
liquid-wall interactions on the detected slip. This is a
currently ongoing project and our results will be published
elsewhere.

Amphiphiles are introduced within the model as
described in Chen et al. (2000) and Nekovee et al. (2000).
An amphiphile usually possesses two different fragments,
one being hydrophobic and one being hydrophilic.
The orientation of any amphiphile present at a lattice
site x is represented by an average dipole vector d(x, t).
Its direction is allowed tovary continuously and tokeep the
model as simple as possible no information is specified for
velocities ci. The surfactant density at a given site is given
byanadditional fluid specieswithdensity ηsur,that behaves
as every other species α. The direction d(x, t) propagates
with the fluid field according to

ηsur(x, t + 1)d(x, t + 1)

=
∑

i

ηsur
i (x − ci, t)d′(x − ci, t) (10)

and during the collision step the direction d evolves to the
equilibrium direction deq similar to the BGK operator

d′(x, t) = d(x, t) − d(x, t) − deq(x, t)
τd

(11)

(d′ indicates the direction after the collision step).
The equilibrium distribution deq � d0

3 h is proportional
to the so called colour field or order parameter h which
represents the distribution of the other species. It is defined
as the weighted sum of the densities of all species

h(x, t) =
∑
α

εαηα(x, t). (12)

In our case (α = 2) we set the weights to εα = ±1,
i.e., h corresponds to the density difference between the
two species.

The model has been used successfully to study
spinodal decomposition (Chin et al., 2002; González-
Segredo et al., 2003), binary and ternary amphiphilic
fluids under shear (Harting et al., 2004a), the formation
of mesophases (Nekovee and Coveney, 2001a, 2001b;

González-Segredo and Coveney, 2004; Harting et al.,
2004b; Giupponi et al., 2006; González-Segredo et al.,
2006), and flow in porous media (Harting et al., 2004c).
Of particular relevance for the present paper is our first
article on simulations of apparent slip in hydrophobic
microchannels (Harting et al., 2006).

3 Simulation setup

The simulations in this work use a setup of two infinite
planes separated by the distance 2d. We call the direction
between the two planes x and if not stated otherwise 2d
is set to 64 lattice sites. In y direction we apply periodic
boundary conditions. Here, eight lattice sites are sufficient
to avoid finite size effects, since there is no propagation
in this direction. z is the direction of the flow with our
channels being 512 lattice sites long. At the beginning of
the simulation (t = 0) the fluid is at rest. We then apply a
pressure gradient∇p in the z-direction to generate a planar
Poiseuille flow. Assuming Navier’s boundary condition
(1), the slip length β is measured by fitting the theoretical
velocity profile,

vz(x) =
1
2µ

∂P

∂z

[
d2 − x2 − 2dβ

]
, (13)

in flowdirection (vz) at positionx, to the simulated data via
the slip length β. We validate this approach by comparing
the measured mass flow rate

∫
ηv(x)dx to the theoretical

mass flow without boundary slip and find a very good
agreement. The pressure gradient ∂P

∂z is realised by a
fixed inflow pressure (P (z = 0) = c2

sη(z = 0) = 0.3 if not
stated otherwise). At the outflow (z = zmax) we linearly
extrapolate the density gradient by setting η(zmax) =
2η(zmax − 1) − η(zmax − 2) in order to simulate infinite
plates. Therefore, the body force regulates the velocity.
The dynamic viscosity µ as well as the pressure gradient
∂P
∂z needed to fit Equation (13) are obtained from our
simulation data.

In a previous work (Harting et al., 2006), we have
shown that this model creates a larger slip β with
stronger interaction, namely larger gα,wall and larger ηwall.
The relaxation time τα was kept constant at 1.0 in this
study and the maximum available slip length measured
was 5.0 in lattice units. For stronger repulsive potentials,
the density gradient at the fluid-wall interface becomes too
large, causing the simulation to become unstable. At lower
interactions the method is very stable and the slip length
β is independent of the distance d between the two plates
and therefore independent of the resolution. We have also
shown that the slip decreases with increasing pressure since
the relative strength of the repulsive potential compared to
the bulk pressure is weaker at high pressure. Therefore, the
pressure reduction near the wall is less in the high pressure
case than in the low pressure one. Furthermore, we have
demonstrated that β can be fitted with a semi analytical
model based on a two viscosity model.
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4 Results

We have studied the dependence of the slip length β on
the flow velocity for a wide range of velocities of more
than three decades as it can be seen in Figure 1(a) and
in Harting et al. (2006). In the figure, we show data for
different fluid-wall interactions 0 < ηwall < 2.0 and flow
velocities from 10−4 < v < 10−1. Within this region we
confirm the findings of many steady state experiments
(Cheng and Giordano, 2002; Cheikh and Koper, 2003),
i.e., that the slip length is independent of the flow velocity
and only depends on the wettability of the channel walls.
Experimentalists often present measurements for different
shear rates S, which for Poiseuille flow are given by

S =
∂u

∂x
|x=d = −∇px

µ
|x=d = −∇pd

µ
. (14)

Some dynamic experiments, however, find a shear rate
dependent slip (Neto et al., 2003; Zhu and Granick,
2001, 2002). These experiments often utilise a modified
atomic force microscope as described in the introduction
to detect boundary slippage. Since the slip length is found
to be constant in our simulations after sufficiently long
simulation times, we investigate the behaviour of the slip
during the transient, i.e., for simulation times t � tc with
tc = Lz/v being the self convection time. The flow that
is initially at rest has not converged to its final steady
state. The timedevelopment of the slip length could explain
an apparent shear dependence as shown in Figure 1(b),
where β is plotted over the flow velocity for different
fluid-wall interactions at t = 15, 000. Here, the detected
β depends very strongly on the flow velocity. The figure
shows a qualitative similarity to the data presented by Zhu
and Granick (2001), namely there seems to be a critical
shear rate at which the slip starts to increase very fast.
However, this only holds during the transient as shown in
Figure 1 – in the steady state the slip is independent of the
velocity.

Figure 2 depicts the time dependence of the measured
slip length at constant ηwall = 1.0 and for final flow
velocities v = 0.7 × 10−3, 1.3 × 10−3, and 4.0 × 10−3.
Since for t < 10, 000 the expected parabolic velocity profile
is not developed, we only plot our data for 10, 000 < t <
50, 000. It can be observed that the slip length develops to
its final value for all three bulk velocities. However, the
number of timesteps needed to achieve the steady state
of β is dependent on v. The slip has reached its steady
state after the convection time tc = Lz/v, which is the time
it takes for an individual fluid element to be transported
through thewhole system.The slip convergeswithdifferent
rates depending on the flow velocity, but after 50, 000
timesteps the difference between the actual slip length and
the converged one is neglectible already. This explains the
fluctuations for very low velocities in Figure 1(a). The
determination of the correct slip length therefore can only
be expected after sufficiently long simulation times. As can
be seen from Figure 3, it is not sufficient to just check if the
velocity profile seems to have reached its final shape. Here,
velocity profiles after 15, 000 and 50, 000 timesteps are

shown for a representative simulation run and ηwall = 2.0.
Even though the parabolic velocity profile is already fully
developed after 15, 000 timesteps, the measured slip length
is β = 0.55 ± 7 · 10−3 only, while after 50, 000 timesteps
β = 1.088 ± 7 · 10−4 is obtained. The solid lines inFigure 3
correspond to a fit of the data with Equation (13).

Figure 1 Slip length β vs. bulk velocity v for different fluid-wall
interactions ηwall after (a) t = 50, 000 and (b)
t = 15, 000 time steps. β is independent of v after
50,000 timesteps and only depends on ηwall (a). After
15,000 timesteps, however, β appears to rise with v
(b). Even though the parabolic velocity profile is
developed, the system is still in a transient state at
t = 15, 000$ (see Fig. 3) resulting in an eventually
misleading measurement of β. All units are expressed
in lattice units throughout this paper

The kinematic viscosity ν is another important parameter
in fluid dynamics. However, in experiments it can only
be varied by changing the fluid itself and therefore it is
inevitable to change other parameters too. Within the
latticeBoltzmannmethodwithBGKcollisionoperator (4),
the kinematic viscosity of the fluid is given by Equation (5)
and depends on the relaxation time τα. Within the
Shan-Chen model, a change of τα also has an influence on
the effect of the body force that enters the BGK operator
to model the fluid-fluid interactions. One might argue
that this is not realistic since a change of viscosity does
not necessarily modify the fluid-fluid interactions between
different species. Additionally, it is known that mid grid
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bounce back boundary conditions are second order correct
while using the BGK collision operator, as it is used in
this paper (Succi, 2001; He et al., 1997). For relaxation
times τα ≈ 1 the error introduced due to the boundary
condition is neglectible. However, we are interested in
studying the dependence of boundary slippage on the
fluid’s viscosity. Therefore, we performed simulationswith
ηwall = 0, i.e., without any fluid-wall repulsion, to estimate
the effect of the error induced by the boundaries. For
ηwall = 0, β should be zero as well, but we find the error of
the slip length being proportional to (τα)2. This behaviour
is expected by the theory of He et al. (1997) and can only
be avoided by using a multi relaxation time approach.
For 1 < τα < 3 the numerical error is less than 5% of
the slip length while for larger relaxation times the error
increases strongly so that the slip seems to increase. In
order to reduce the influence of the error introduced by the
single relaxation timemethod and the particular boundary
conditions used, we subtract the slip length determined for
ηwall = 0 from the measured β at ηwall > 0. The results are
plotted in Figure 4, where we demonstrate a decreasing slip
length with increasing viscosity for ηwall = 0.5, 1.0, and
2.0. The data shown in Figure 4 can be fitted exponentially
as depicted by the solid lines and all three curves converge
to zero for high viscosities.

Figure 2 Measured slip length β vs. time t for different bulk
velocities at constant ηwall = 1.0. The difference
between the converged slip length and the slip length
during the transient is greater for slower velocities.
After the convection time tc = Lz/v the slip is
converged, but already for t > 50, 000 only small
deviations from the final value can be observed

Since surfactant molecules consist of a hydrophobic
and a hydrophilic part, they like to assemble at the
interface between a fluid and wetting or non-wetting walls.
As found by experimentalists, in a wetting microchannel,
this can cause no slip to switch to partial slip (Cheikh
and Koper, 2003; Zhu and Granick, 2002). In a non-
wetting environment, the surfactant molecules can shield
the hydrophobic repulsion of the surface (Henry et al.,
2004). We apply the amphiphilic lattice Boltzmann model
as described earlier in this paper to model a fluid within
a hydrophobic microchannel that contains a surfactant
concentrationof up to 33%.The interactionparameters are
choosen according to earlier works (Harting et al., 2004a;
Nekovee and Coveney, 2001a, 2001b; González-Segredo

and Coveney, 2004; Harting et al., 2004b; Giupponi et al.,
2006; González-Segredo et al., 2006), in such a way that
they are not too strong to cause structuring effects in the
flow, but strong enough to have an effect at the fluid-solid
boundary. The total density inside our system ηα + ηsur is
kept fixedat0.3.As initial condition the system is filledwith
a binary mixture of surfactant and fluid. The orientation
d of the dipoles is choosen randomly. In Figure 5, we
plot the measured slip length for fluid-wall interactions
determinedbyηwall = 0.5, 1.0and2.0vs. the concentration
of surfactant. The symbols in Figure 5 are given by the
simulation data while the lines correspond to a fit with an
exponential function. We find a strong decrease of the slip
lengthwith a higher surfactant concentration. For all three
values of ηwall, the measured slip lengths converge to the
same value at high surfactant concentrations showing that
at high concentrations the amount of surfactant that can
assemble at the interface is saturating.

Figure 3 The velocity profile v(x) for ηwall = 2.0 after
t = 15, 000 and t = 50, 000 time steps. The lines are
the parabolic fit with Equation (13) with a slip length
of β = 0.55 ± 7 × 10−3 at t = 15, 000. After 50, 000
time steps the slip length is significantly larger at
β = 1.088 ± 7 × 10−4

Figure 4 Corrected slip length β(ηwall) − β(ηwall = 0.0) vs.
kinematic viscosity να for ηwall = 0.5, 1.0, and 2.0.
The slip length converges to 0 as shown by the solid
lines representing an exponential least squares fit of
the data

In Figure 6 we present a representative density profile
of the surfactant for ηwall = 1.0. The initial amphiphile
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concentraton is set to 33% here. It can be seen that the
concentration at the first lattice site next to the surface
increases to 44%, while the bulk concentration stays
constant at 32% – a value slightly lower than the initial
33%. This high concentration regime close to the boundary
causes the hydrophobic potential of the wall to be shielded
and results in a decreasing slip. Our findings are consistent
with experimental results (Cheikh andKoper, 2003; Henry
et al., 2004; Zhu and Granick, 2002).

Figure 5 Slip length β vs. the concentration of surfactant in %
for ηwall = 1.0. β is steadily decreasing with
increasing the surfactant concentration from 0.64
down to 0.19. The dashed line is given by a fit of the
data with an exponential function

Figure 6 A typical profile of the surfactant concentration in x
direction, i.e., between the channel walls. Near the
surface, the surfactant concentration is substantially
higher (44%) than in the bulk (32%) since it is
energetically more favourable for the surfactant
molecules to arrange at the fluid-surface interface,
thus shielding the repulsive potential of the
hydrophobic channel wall

Large amphiphilic molecules or polymer brushes show a
shear dependent slip (Fetzer et al., 2005) since they have to
align with the shear forces acting on them. The higher the
shear force, the more they are rotated causing the effect of
shielding the hydrophobicity to be reduced. Since in our
model the amphiphiles are point-like, we cannot expect to
observe any shear rate dependence of β.

5 Conclusion

In conclusion we have presented three-dimensional
multiphase lattice Boltzmann simulations which govern
a wide range of slip phenomena. After demonstrating
the validity of our model, we presented studies of the
dependenceof theboundary slipon theflowvelocity.While
the slip is independent of the velocity if the system is in
the steady state, we find an apparent velocity dependence
during early times of the simulation. For small numbers
of timesteps, the parabolic velocity profile is already well
developed, but due to the system being in a transient state,
the detected slip is not correct. This is an important finding
for experimental setups since to the best of our knowledge
only dynamic experiments find a velocity dependence,
while static experiments confirm the slip lengths being
independent of the flow velocity. Our findings are in good
agreement with most non dynamic experiments (Lauga
et al., 2005; Neto et al., 2005) and MD simulations
(Cottin-Bizone et al., 2004; Baudry and Charlaix, 2001).

For experimentalists it is a major effort to change
the viscosity of the fluid without changing any other
parameters of their setup. In computer simulations,
however, this can be done easily. In our simulations we
found a decrease of the detected slip with increasing
viscosity.

With a simple dipolemodel wewere able to simulate the
shielding of the repulsive potential between hydrophobic
walls and a fluid if surfactant is present in the solution,
i.e., the slip length decreases with increasing surfactant
concentration. However, we were not able to show a shear
dependence as it is seen in experiments with polymer
chains. In a future work, we plan to extend our simulations
to govern largermolecules which can be affected by a shear
flow. Then, we hope to be able to study the shear rate
dependence of boundary slippage.
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