

Extraction of state machines of legacy C code with Cpp2XMI

Citation for published version (APA):
Brand, van den, M. G. J., Serebrenik, A., & Zeeland, van, D. (2008). Extraction of state machines of legacy C
code with Cpp2XMI. In A. Serebrenik (Ed.), 7th Belgian-Netherlands Software Evolution Workshop (Benevol
2008, Eindhoven, The Netherlands, December 11-12, 2008, Informal pre-proceedings) (pp. 28-30). (Computer
Science Reports; Vol. 08-33). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/c7784af8-488b-475f-b068-b11552502435

Extraction of State Machines of Legacy C code with
Cpp2XMI

Mark van den Brand, Alexander Serebrenik, and Dennie van Zeeland

Technical University Eindhoven, Department of Mathematics and Computer Science,
Den Dolech 2, NL-5612 AZ Eindhoven, The Netherlands

m.g.j.v.d.brand@tue.nl, a.serebrenik@tue.nl,
d.h.a.v.zeeland@student.tue.nl

Introduction Analysis of legacy code is often focussed on extracting either metrics or
relations, e.g. call relations or structure relations. Forobject-oriented programs, e.g.
Java or C++ code, such relations are commonly represented asUML diagrams: e.g.,
such tools as Columbus [1] and Cpp2XMI [2] are capable of extracting from the C++
code UML class, and UML class, sequence and activity diagrams, respectively.

New challenges in UML diagram extraction arise when a) additional UML dia-
grams and b) non-object-oriented programs are considered.In this paper we present
an ongoing work on extracting state machines from the legacyC code, motivated by
the popularity of state machine models in embedded software[3]. To validate the ap-
proach we consider an approximately ten-years old embeddedsystem provided by the
industrial partner. The system lacks up-to-date documentation and is reportedly hard to
maintain.

Approach We start by observing that in their simplest form UML state machines con-
tain nothing but states and transitions connecting states,such that transitions are as-
sociated with events and guards. At each moment of time the system can be in one
and only one of the states. When an event occurs the system should check whether the
guard is satisfied, and, should this be the case, move to the subsequent state. Observe,
that implementing a state machine behaviour involves, therefore, a three-phase decision
making:

– What is the current state of the system?
– What is the most recent event to be handled?
– Is the guard satisfied?

Based on this simple observation, our approach consists in looking fornested-choice
patterns, such as “if within if” or “switch within switch”. As guards can be
omitted we require the nesting to be at least two. As we do not aim to discover all
possible state-machines present in the code, validation ofthe approach will consist in
applying in the case study and comparing the state-machinesdetected with the results
expected by the domain experts.

ImplementationWe have chosen to implement the approach based on the Cpp2XMI
tool set [2]. Since Cpp2XMI was designed for reverse engineering C++, we first had
to adapt the tool for C. Second, we added a number of new filtersto detect the nested-
choice patterns in the abstract syntax trees. Finally, we had to extend the visualisation
component to provide for state machine visualisation.

29

Fig. 1. A state machine discovered.

Case studyAs the case study we consider an approximately ten-year old system, de-
veloped for controlling material handling components, such as conveyer belts, sensors,
sorters, etc. Up-to-date documentation is missing and the code is reportedly hard to
maintain. While a re-implementation of the system is considered by the company, un-
derstanding the current functionality is still a necessity.

It turned out that the original software engineers have quite consistently usedswitch
statements withinswitch statements to model the state machines. Therefore, already
the first version of the implementation based solely on the “switch within switch”
pattern produced a number of relevant state machines.

At the moment more than forty state machines have been extracted from the code.
The size of the extracted state machines varied from 4 statesup to 25 states. One of the
extracted state machines is shown on Figure 1, the transitions are decorated with condi-
tional events. All the machines extracted were presented tothe (software) engineers of
the company and their correctness as well as importance wereconfirmed by them.

Conclusions and future work.In this abstract we presented an ongoing effort on extract-
ing UML state machines from legacy non-object-oriented code. We have observed that
UML state machines are useful for the developers and maintainers, and that they can
be derived automatically even from a non-object-oriented code. The approach proved
to be very successful in the case study and, is in general, promising. As the future work
we consider:

– including the “switch within if” and “if within switch” patterns;
– analysing the extracted state machines for overlap;
– combining the extracted state machines to nested state machines.

30

References

1. Rudolf Ferenc,́Arpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Columbus - reverse
engineering tool and schema for c++. InICSM, pages 172–181. IEEE Computer Society,
2002.

2. E. Korshunova, M. Petkovic, M. G. J. van den Brand, and M. R.Mousavi. Cpp2XMI: Reverse
Engineering of UML Class, Sequence, and Activity Diagrams from C++ Source Code. In
WCRE, pages 297–298. IEEE Computer Society, 2006.

3. Jürgen Mottok, Frank Schiller, Thomas Völkl, and Thomas Zeitler. A concept for a safe
realization of a state machine in embedded automotive applications. In Francesca Saglietti
and Norbert Oster, editors,SAFECOMP, volume 4680 ofLecture Notes in Computer Science,
pages 283–288. Springer, 2007.

