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INTRODUCTION

2

With the development of modern high-performance computers the 'chaos theory'
in the form of fractal geometry has become a popular field. of research. Simple
iterative algorithms, Le. simple repetetive step-by-step calculations, permit the
composition of complicated shapes, which sometimes even appear to possess artistic
value. One feature of the design underlying all these methods is self-similarity:
manifestations, which when enlarged are visible to the naked eye, are repeated
again and again in miniature and, given a corresponding enlargement, each step,
no matter how small, will be similar to the next object as a whole. This explains
how simple equations or geometrical forms can lead to complex and multilayered
structures.

In recent years, the conceptual approach inherent in this theory has been ex
tended to every realm of knowledge. Chaos theory has been applied in the attempt
to explain complicated processes which cannot always be predicted, or at least
not with precision. The best-known of these are the so-called Lorenz equations
in physics, which describe the vertical flow of a gas. In medicine, scientists have
conducted experiments aimed at modelling the generation of creativity in the brain
through chaos. Electrical discharges or the creation of polymer compounds dis
play clearly fractal structures. A further example is the modulation of population
dynamics in biology, where the size of the population is subject to irregular fluctua
tions. The list is endless. This whole field of research has developed from problems
met with when solving equations using the so-called Newton method. When em
ploying this algorithm, initial numbers cannot just be selected at random if the
aim is to achieve a useful solution to an equation. Experiments are now in train to
use this system for solving equations with multiple variables. Julia sets in higher"
dimensions were investigated using geometric, analytic and probabilistic methods.
These are structures which occur under simplest dynamics of four (and higher)
dimensional space, and which comprise just these points upon which the greatest
chaos reigns.

For analytic endomorphisms of the Riemann sphere S2 it is well known that the
Julia sets of mappings of the form

with leI small are Jordan curves (see Beardon, 1.6, 9.9 and Brolin, Theorem 8.1)
and show similar dynamical behaviour as 0"1 : z 1-+ z2. It is easy to see that this
holds if lei:::; 1/4 - c for some c 2: o. This is one example how - by means of
geometric function theory - dynamical properties enforce certain geometric struc
tures. The main point of our discussion here is concerned with a similar question in
nature. Dynamics and probability created powerful methods to investigate the long
time behaviour of stationary sequences. In case the time series have a geometric
interpretation, these probabilistic and dynamical results sometimes force geometric
constraints. For example, Makarov's result on the Hausdorff dimension of the har
monic measure on boundaries of Jordan domains uses the law of iterated logarithm
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for certain random processes. The dynamic analogon of this - using stationary
processes - is also known.

Recall that an analytic endomorphism (or a rational function) T : 8 2
"'-jo 8 2 on

the Riemann sphere 8 2 has always a nonempty, fully invariant Julia set, defined as
the set of non-normal points for the family of functions Tn : 8 2 ---+ 8 2 (n ~ 1).

The following theorem is a consequence of many people's efforts to develop the
theory of rational functions, in particular of polynomials in C:

Theorem:
For a polynomial map P : C -+ C of degree at least 2, the Julia set J(P) equals
each of the following sets:

(1) {z E C : {pk : k ~ O} is not normal at z}.
(2) The boundary 8(K(P)) where K(P) = {z E C: SUPk Ipk(z)1 < oo}.
(3) The closure 'R of the set of repelling periodic points.
(4) The limit of the pull backs by P- k of the boundary 8 ({z E C : IzI :5 r}) for
sufficiently large r > O.
(5) The support sUPP(Jlp) of the measure of maximal entropy for P.

Before continuing, let us discuss the meaning of the 5 statements in the theorem
briefly. Clearly, (1) is the description arising from geometric function theory and
allows to introduce methods from complex function theory to study J(P). In
particular, bounded distortion properties playa fundamental role here. (2) tells
us that the complement of J(P) splits into connected components and hence the
analysis on J(P) can be studied using the theory of holomorphic functions on
domains, in particular using harmonic analysis (Green's function). Certainly, this
complements the description in (1). However, as is known, this boundary is equal to
the Shilov boundary 8SH(K(P)), which is defined to be the minimal set Q with the
property that holomorphic functions in some neighbourhood of K(P) attain their
maximum over K(P) in Q. Certainly, 8SH(K(P)) is contained in 8K(P). Hence
it is possible to introduce some abstract boundary theory to study the Julia set.
(3) is a dynamic description. It tells that the dynamics is essentially determined by
some hyperbolic behaviour. The tracing property by repelling period points, and
the value of the topological entropy are an almost immediate consequence of it. (4)
tells us that we may use the well known boundary theory for large centered balls
and get the Julia sets as pull backs. Finally, we obtain the existence of a probability
measure maximizing entropy. Intuitively it means that in addition to (3) we obtain
a probabilistic structure which contains the maximum of randomness. Since the
map P is not a homeomorphism, there is also a natural filtration given by the pull
backs of the Borel O'-algebra. It is clear that this filtration can be used to introduce
geometrically relevant martingale- and mLxing structures.

What is described below is largely motivated by this example of rational func
tions. Indeed, the probabilistic results formulated below for various general types
of dynamics find applications within this class.

In order to extend our motivating examples we discuss briefly methods to obtain
a similar result for certain polynomials f : en -+ en. We are interested in 'large'
classes of polynomial maps satisfying Heinemann's program: The Julia set J(P)
can be characterized in the following ways:
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(1) J(P) := {z E en :{pk : k ~ O} is not weakly normal at z}.
(2) J(P) is the Shilov boundary 8sH(K(P)) where K(P) = {z E en :
SUPk IIpk (z) II < oo}. .
(3) J(P) is the closure n of the set of repelling periodic points.
(4) J(P) is the limit of the pullbacks by p- k of the Shilov boundary 8sH ({z E
en : liz II ~ r}) for sufficiently large r > O.
(5) J(P) is the support supp(J.Lp) of the measure of maximal entropy for P.

Note that our program is using the te:r:m of weak normality instead of normality.
This notion is as follows: A family of functions {fk} is called weakly normal in a
point z E U if there are

- an open neighbourhood V of z;
- a family Cx of at least one-dimensional (complex) analytic sets indexed by the
points x E V,

such that
- each x lies in the corresponding analytic set Cx;
- for each x E V the family {!k} restricted to Cx n V is normal (including
convergence to infinity).
It is clear that this definition selects a set of maximal randomness. It is known

from Heinemann's work that torus like maps of the form

P(x,y) = (x2+ k(y),y2 + lex)) (x,y) E e2

satisfy this characterization as long as the norms of the polynomials key) and lex)
are small enough in some neighbourhood of O. Also certain polynomial skew prod
ucts of the form

P(x, y) = (p(x), qx(Y))

fall into this category. These are subclasses of polynomial maps C H- C satisfying
the regularity condition

:3R> 0, sEN, t E Q, k1 , k2 E lR. such that

k1llzll t
~ lIP(z)11 ~ k2 11zll s Vllzil > R.

We do not know whether these new classes of maps give rise to some new results
concerning their probabilistic structures. Certainly, the thermodynamic formalism
as part of the dynamic behavior is different, at least for the skew products. Thus we
can expect some more refined probabilistic theorems respecting canonical filtrations
given by the system.
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Julia sets for two-dimensional polynomials: .

Spaghetti-type skew product @S.-ivf. Heinemann
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Julia sets for two-dimensional polynomials:

Canneloni-type skew product @S.-l\tf. Heinemann
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Julia sets for two-dimensional polynomials:

Mandelbrot set of the family

(x) ~ (.r2 + :/10 + A
2

)
y . y~ + F

@S.-lvI. Heinemann
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Julia sets for two-dimensional polynomials: 

Regular hyperbolic skew product and its Markov partition @S.-Atf. Heinemann 
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BASIC DEFINITIONS AND NOTATIONS

(n, A, JL) u-finite measure space T : n -+ n measurable

T invertible on BE A¢} Tis I-Ion B & TB E A & T- I : TB -+ B is measurable

T nonsingular on B E A if 'fC E T B n A

T meas"-ure preserving if JL(T-IC) = JL(C) 'fC E A

Lemma: Let T be measure preserving and T-I{x} countable 'fx E n. Then
there exists a countable partition Q of n such that T : a -+ Ta is nonsingular and
invertible on a, 'fa E Q.

Let T be nonsingular. T is called ergodic if A C T- I A a.s. implies that JL(A) = 0
or JL(AC

) = o.

Let T be locally invertible. A probability measure JL is called f -conformal if

on each measurable set A on .which T is invertible.

MEAN ERGODIC THEOREM (v. Neumann)

Let U: H -+ H be a linear contraction on the Hilbertspace H and let f E H,

Then Anf converges in norm to the orthogonal projection of f onto the subspace
of U-invariant vectors.
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A.S. ERGODIC THEOREM (Birkhoff)

·Let T : n -+ n be an endomorphism of the probability space (n, A, /-l) and J be the
a-algebra ofT-invariant sets. Let UI = loT. Then Ani converges a.s. to E(/IJ)
for every I E L l (/-l).

SUBADDITIVE ERGODIC THEOREM (Kingman)

Let T : n -+ n be an endomorphism of the probability space (n, A, /-l) and F =
{Fik : i, k E Z, 0 E i < k} be a subadditive process. If

,(F) = inf !:. JFond/-l > -00
n n

then
1
-Fonn

converges a.s. to a function I satisfying

JId/l ='Y(F).

MULTIPLICATIVE ERGODIC THEOREM (Oseledets)

Let T : n -+ n be an endomorphism of the probability space (n, A, /-l) and A: n-+
L(lRd,lRd

) = NJ(d,lR) measurable so that log+ IIAII E Ll(/l). Then the following
holds for almost all wEn:
The limit

lim [(A(Tn-l(w»(A(Tn-l(w» ...A(w»]!i = Ll(w)
n-.oo

exists.
~ - 00:::; Al(W) < .. < >'r(w)(w)

. d
~ subspaces Er(w) (w), ... , El(w) C lR
with the foHowing properties:

[i.] eAj(w) (j = 1, .. , r(w» are the different eigenvalues of ~(w).·
[ii.] lRd = El(w) + ... + Er(w)(w)
[iii.] Ej (w) is the eigenspace belonging to eAj (w) .

[iv.] limn_oo ~ log IIA(Tn-l(w» ..A(w)xll = Aj(W) 'tx E Uj\Uj - l and
Ue = (El(w), ... , Ee(w»)

w -+ dimEj(w),w -+ r(w),w -+ >'j(w) are T-invariant
If T is ergodic, det A(w) = 1 and lim~ inflog IIA(Tn-l (w) )..A(w) Ild/l > 0 ~ Al :::;
O&Ar(w) ~ 0
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RATIO ERGODIC THEOREM (Chacon Ornstein)

. Let (n, A, /-L) be a cr-finite measure space and

a positive contraction:
Then, for f, g E Lt(/-L),

Snf

Sng

converges a.s. to a finite limit on the set {x: 2: Ukgx> O}.
k2::0

UNIFORM ERGODIC THEOREM

[1.] (Yosida-Kakutani)

Let U : E ~ E be a power bounded and quasicompact operator. Then there are
Ai E JR, IAil = 1, Pi : E ~ E such that

[1.] un = 2:7=1 Ai Pi + sn 'Vn
[2.] pl = Pi PiPj = 0 'Vi f. j PiS = SPi = 0 Vi
[3.] dimPi(E) < 00

[4.] 3 Ail> 0 3 0 < q < 1 such that Ilsnll ~ l\1qn.

[II.] (Jonescu-Tulcea and Marinescu)

Let BeE be Banach spaces with norms II II and I I respectively. Let U : B ~ B
a continuous, linear operator.
Assume that

[1.] X n E B, IIxnll ~ K, IXn - xl ~ 0 =} x E B, Ilxll ~ K
[2.] sup IUnl < 00

n

[3.] Vx E.B : IIUxll ~ rllxll + Rlxl for some 0 < r < 1 and R> O.
[4.] A c B is II II-bounded =} U A is relatively compact in I ·1

Then U is II II power bounded and quasicompact.

[3.] is called the ITM inequality.
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FURTHER ERGODIC THEOREMS
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(Hopf, Dunford-Schwarz)
U : L1 (J-t) ~ L1 (J-t),J.L(D.) < 00, IIUIILi,IIUI/Loo < 1 =} Anf ~ a.e for every
fELl (J-t)

(Riesz, Eberlein, Yosida, Kakutani, Lorch...)
U : E ~ E power bounded, E reflexive =}

Anx ~ y(x), Uy(x) = y(x) "Ix E E

(Furstenberg multiple recurrence theorem)
T: f2 ~ f2 weakly mixing, J-t(f2) <00 =} VAl> ...Ak E A

(Second order ergodic theorem) (Aaronson, Denker, Fisher)
T pointwise dual ergodic, J-t(f2) = 00, a(n) return sequence, a(n) = nO L(n), Q >
0, L slowly varying. Then

1 N 1 J
lim -1N L ()Snf = fdJ.L

N-oo og na n
n=l

a.s.

From J. Aaronson's book:
The story is told about a disappointed angler who caught a large dolphin which
escaped. The angler comforted himself with the thought that history repeats itself
and hence at some time in the future, he would catch the same dolphin again. The
dolphin had the same impression and lived in fear.
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but after pondering the matter, realized that if history repeats itself, he would
escape again.

RECURRENCE

T : 0 -- 0 nonsingular. W E A is called wandering if {T-nw : n = 0,1, 2...} is
pairwise disjoint.

Theorem: (Halmos)
Let T be nonsingular, A E A, J.t(A) > O. Then J.t(A n W) = 0 V wandering W
implies that

00

LIB oTn = 00 a.s. on B VB E AnA,J.t(B) > O.
n=l

The dissipative part of Q (relative to the transformation T): is the measurable union
of the dissipative sets of 0, denoted by D(T).

The conservative part is defined to be C(T) = Q\D(T).

T is called conservative if C(T)- n mod J.t.

T is called dissipative if T is not conservative.

T is called completely dissipative if 0 = D(T) mod f-L.

n = D(T) U C(T) is called the Hopf-decomposition.

Poincare Recurrence Theorem:
T conservative, nonsingular. Let (Z, d) separable, metric, f : n -- Z measurable.
Then

liminf d(f(x), f(Tnx)) = 0 a.s. on n.
n--oo
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In particular: f = 1A ::} Tnx E A oo-often.

Characterisation of conservativity.
Let T measure preserving, J.L o--finite.

(1) f E Li(J.L)::} {Ln2;:ofTn = oo} C C(T).

(2) f E Li(J.L), f > 0 ::} {Ln2;:o fTn = oo} = C(T) a.s.

(3) J.L(il) < 00 implies that C(T) = il.

14

(4) J,t(A) < oo,il = U~=O T-nA::} T conservative. (Maharams recurrence theo
rem)

(5) T invertible, ergodic, J.L nonatomic::} C(T) = il

(6) T conservative, ergodic ¢:} L~=llA 0 Tn = 00 a.s. \fA. E A+.

(7) Tl measure preserving, J.Ll (ill) < 00, T2 conservative::} TI x T2 conservative.
Tl ,T2 conservative ergodic::} Tl x T2 conservative or completely dissipative.

INDUCED TRANSFORMATION

T conservative, nonsingular, J.L(A) > O.

<;?A(X) = min{n 2: 1 : Tnx E A}

is called the return time to A (and is a stopping time).

TA : A ~ A, TA(x) = T'PA(X)(X) is called the induced transformation.

(B) = J.L(A n B)
J.LA J.L(A)

is called the induced measure on A.

Properties:

(1) J.LA oTAI « J.LA-

(2) T~(x) = T'Pd x
) (x) where <Pk(X) = L~:~ <;?A 0 T.{.
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(3) TA is conservative and nonsingular.

.(4) T ergodic =} TA ergodic. TA ergodic and Un~OT-n A = n:=} T ergodic.

(5) J-L is T-invariarit:=} J-LA is TA-invariant.

(6) (Kac formula) fA cpAdj.t = J-L(D) ifT ergodic, measure preserving and 0 < j.t(A) <
00.

(7) Let T conservative, nonsingular, and q « j.tA be TA-invariant. Then m(B) =
fA Lr~;-llB .Tkdq is T-invariant.

THE DUAL OPERATOR

T: n -t D nonsingular. Uf = f oT is an isometry U: Loo(J-L) -t Loo(J-L)
The 'dual operator'

defined by

is called Frobenius-Perron operator.

Properties:
If T is invertible then Tf = dJl:~~-l . f 0 T- 1 •

If T is cons~rvative ergodic, then L~=lTn f = 00 a.s. Vf ELi(J-L), f fdj.t > 0

If T exact (i.e. A E n:=l T-n A =} j.t(A)j.t(AC) = 0), then IITnfill -t 0 \:If E
L l (J-L), f fdJ-L = O.

Aaronson's Theorem: Let T be conservative ergodic, a(n) i 00, a~n) 1O. Then
If there is .4 E A, 0< J-L(A) < 00 mit fA a(<pA)dJ-L < 00 then
a(~) Sn (I) -t 00 'V fELl (J-L).

In the other case, liminf :(~) = 0 Vf E L 1(j.t).

Let T be conservative, ergodic, measure preserving.
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T is called rational ergodic if there exists A E A, 0 < p(A) < 00 such that
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Theorem: Let T be rational ergodic and let A satisfy (*). Then there exists a
sequence an i 00 such that:

n-l

'v'B, C E A n A::::} lim !-~ J1(B n T-kC) = J1(B)J1(C)n--= an
k=O

The sequence an = an(T), (n ~ 1), with the property in the preceding theorem is
called the return sequence (of T). It is uniquely determined up to a proportionality

. ,
factor. A(T) = {(a~)n : lim a:CT) E JR} is called the asymptotic type.

T is called pointwise dual ergodic if there exists a sequence (an)n>l' such that

A set A E A is called Darling-Kac set (DK set) if
- 0 < J1(A) < 00 .

- 3(an)n~1 : a: L~:~ yk lA - p(A) uniformly on A.

Theorem: 3A DK set for T ::::} T is pointwise dual ergodic::::} T is rational ergodic.
The corresponding sequences an agree (asymptotically up to a factor).

SHIFTSPACES AND MARKOV FIBRED SYSTEMS

Let A(= {I, 2, 3, ... }) be a finite or countable alphabet, ~ = AN (or AZ ) is called
a shiftspace.

is called the shift.
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A closed, S-invariant n c :E is called a subshift. If A is finite, NI = (mij kiEA a
o- I-matrix, then the subshift

is called a subshift of finite type or a topological Markov chain.

Let A be finite, MaO - I-matrix and p an invariant probability measure. p is
called a Gibbs measure if there exist a measurable function f : nM - R, constants
C > 0 and PER, such that

c-I < p([ao, ... , an-I]) < C
- exp[-nP + Snf(x)] -

for all x E lao, ...an-I], n E N, aj E A j = 0, .. , n - 1.

T is called a Markov-map if there exists a generating partition a such that

Ta E u(Q) Va E Q.

and a Bernoulli map if
Ta = n Va E Q.

Q as above is a Markov partition if it is finite.

A nonsingular (T, p) (J-L a probability) is called a Markov fibred system, if Tla is'
nonsingular and invertible and T is a Markov map.

A measure preserving system (T, J-L) (p a probability) is called
Gibbs-Markov, if it is Markov and

- :JNI > 0 I~~~:~ -11 :::; Md(x·,y) Vn ~ 1 Va E (a)~-I Vx,y E Tn a

Here Va : Tn a - a denotes the local inverse and

p has' bounded metric distortion, if :J.LvI > 0

dJl:;n (x)
~( ) :::; l'vI Vn 2: 1 Va E (Q)~-l Vx,y E a

dp. y
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FROBENIUS-PERRON THEORY

T: n -+ n countable to one. (ja:. T : a -+ Ta invertible Va Ea.)

18

Pf(x) = LTy=x f(y)ecp(y) is the Frobenius-Perron-Operator, where <p : n -+ lR(C)
is measurable.

P acts on measures by P*m defined by

JfdP*m = JPfdm

Properties:

m = P*m {:}m is e-CP conformal.

Equivalent to e-CP conformality:
Jgdm = Jgo Te-CPdm Vg : TA -+ lR
Jhdm = Jh 0 T:;l ecp

oT:;l Vh : A -+ JR, T*-l : T A -+ A
J fdm= JPfdm
dpoT __ CP

dp - e

[g. P flex) = P(f . go T)(x) i.e. P is "dual" to U f = f 0 Ton L oo -

Let 8 n = T-nA, £2(Bn ) = {f E £2 : f is Bn-measurable }. Then PI = I::} un pn.
is the orthogonal projection onto £2 (8n ).

PI = 1 {:} m 0 T- 1 = m
E(JIBn ) = unpn f = [pnf] 0 Tn
h E L 2 (A) e £2(81) => h 0 T k is a reversed martingale difference sequence.

EXISTENCE OF MARKOV PARTITIONS

n compact, metric, with metric d, T continuous.
T is called expansive if there exists fJ > 0 such that

T is called expand'ing if there exist E > 0, A > 1 and n E N such that

d(Tnx, Tny) 2: Ad(x, y) 'ix, yEn with d(x. y) < E.

T is called R-expanding if T is expanding and open.
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Theorem: If T is expansive, then there exists a metric p on n, such that T is
p-expanding.
Theorem: If T is expansive and open, then there exists a finite Markov partition.

.The sequence metric of the associated topological Markov chain is equivalent to d
only if T is R-expanding.

Let n be compact metric with metric' d, T : n --+ n expanding and open and
f : f2 --+ JR Holder. continuous with exponent 0:. Then

C
f

:= sup (f(x) - fey)) < 00

{x,YEn,x:;=y} d(x, y)o:

1i0: = {I: Cf < oo} is a Banach space with norm Ilfllo: = Cf + 11/1100.
Theorem: Let ep E 1i0: and PI(x) = L-Ty=x f(y)e<P(Y). Then

(a) P : C(n) --+ C(n) P : 1is --+ 1is Vs < 0:

(b) bounded sets in 1is are relatively compact in C(f2).·
(c) P is power bounded on C(n) and 1is (s :::; 0:)

(d) :3p < l:3C:3n such that .

(e) P = L Pi+Q, IIQllo: < 1, PiPj = 0, PiQ = QPi = 0, Pi : 1i0: --+ Ei projection,
E i finite dimensional.

Theorem: Let ¢ E 1i0:. Then there exists a Gibbs measure J-L with respect to ¢.

FROBENIUS-PERRON THEORY FOR MFS

Let (n, A, T, J-L) be a MFS with partition 0: = {as: sEA}. Define the partition /3
by u(To:) = u(/3).

p
n 1 . L L v:f 0 Va

bE/3b aE(o:)~-l ,Tna:>b

Lipq,-y C Lq(J-L)

is defined by f E Lipq,-y {:} IIfllLipq,7 = Ilfll q + D-yf < 00 where

Theorem: Let T be mixing,
infaEo: J1(Ta) > 0

:3J1;/ > 0 : I~i~:~ - 11 :::; J1;/d(x, y) Vn > OVa E (o:)~-lVx, y E Tn a
Then

P : Lipl,{3 --+ L = Lip=,/3
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IIpn filL = O(rnD{3f + Ilflh) (where d(x, y) =2:: rnlx#y)
IIpn fllL 1 = IIfllL1

P is an ITM operator and P = Po + Q
Let'lj; : 0 -+}Rd, Pt = P(ei<t,ljJ». Then

(charactaristic function operator)
t -+ Pt is continuous in norm in Hom(L, L).

MIXING CONDITIONS

20

Let (0, A, J.L) be a probability space Bt C A, B: = u(Bt : n ::; t < m) (0 < n <
m ::; (0).

IJ.L(A n B) - J.L(A)J.L(B) I _. ()
sup (A) (B) -. a rs n

AE13~ ,BE13k'+n ,k~O· J.L r J.L s

Bt (or J1. with respect to Bt or a process) (t ? 0) is called
a-mixing or strongly mixing if Qrs(n) -+ 0 as n -+ 00 for some r + s < l.
p-mixing if arl-r(n) -+ 0 as n -+ 00.

<p-mixing if QlO(n) -+ 0 as n -+ 00.

<p* -mixing if am (n) -+ 0 as n -+ 00.

'lj;-mixing if an(n) -+ 0 as n -+ 00.

Remark:
¢-mi.,"dng =? <p - (<p*- )mixing =? p-mixing (absolutely regular) =? a-mixing.
Bt is called absolutely regular if

Let Q be countable measurable partition of nand F = u(Q). Q is called continued
fraction miiing (c.f.m.) if there exists no E N a sequence En 1 0, such that VA E
n-1VB E A
- J1.(A n T- k -

n B) ::; (1 + En )J.L(A)J1.(B) Vn ? 1
- F;;: is 'lj;-mixing with 'lj;(n) = En for n > no.

Theorem: Let 0 < J.L(A) < 00, Q C A. n A a generating partition for TA and 'P.4
Q-measurable.
If Q is c.f.m. for T.4 : A -+ A, then A is a DK-set for T.
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PROBABILITY FOR (CLASSICAL) MARKOV PARTITIONS

Theorem: Let T : n -- n be exact (i.e. the Frobenius-Perron-operator satisfies
png __ const.) Let 0 be a Markov partition and J.L be a Gibbs measure. Then
Bn = aCT-no) is 'l/J-mixing with .

'l/J(n) = ol1(n) :::; M pn (for some 0 < p < 1, M > 0).

Theorem: (Central limit theorem) Let (n, B, T, J.L) have a Markov partition 0 so
that J.L is Gibbs. Then for every 1 E L2(J.L), satisfying E~=1 Ilpn1112 < 00 one has

a2
= J12dJ.L + 2f JI· 1 0 Tn dJ.L < 00

n=1

and if a 2 > 0

1 00. 1 la: 2

J.L({W En: c ~/(TJw)::; x}) -- fie e-u /2du
y na . 0 y 27r -00

J=

In particular, every centered Holder continuous function satisfies the CJ;.T.

Theorem: (Invariance principle) Let 1 E 7{s (Holder with exponent s) and f IdJ.L
= O. If a 2 > 0, then there exists w.l.o.g. a standard-Brownian motion Bt(t > 0).
such that

n-1

~ 1 0 T k - aBn « n1/2-, a.s.
n=O

for some I > O.

Corollary: Upper and lower-class results.

Let (nM ', T, J.L) be a subshift of finite type with Gibbs measure J.L and Holder
continuous potential ¢>. Let

n = {(w, s) : 0 :::; s :::; lew)}

where 1: nA'1 -- 114 is Holder continuous. The flow (Tt) on n (Tt(w, s) = (w, t + s)
and identification by T) serves as a model for C 2-Anosov flows and geodesic flows
on compact manifolds of negative curvature.

Theorem: Let f : n -- lR be measurable, centered and have finite 2 + fJ moment
where fJ > O. Assume that
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If 0-
2 > 0 then there exists a Brownian motion Bt on nM such that

sup fU f(Tt(w, s))dt - Bu(w) = O(U1/2- A ) a.s.
05;s$l(w,Jo .

for some A > o.
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Theorem: Let T be the suspension flow over the natural extension of the continued
fraction map. Let f be non-lattice and Holder continuous so that T and fare flow
independent. Then there exists a function H : lR -l- [0,00], such that H is real
analytic, surjective ~nd strictly convex on IF = {H < oo}. Moreover, for any
compact non-empty set K C lR and a ElF

l
u 1 JH"(a) e-uH(a)m(x: f(Tt(x)dt - ua E K) 'V C(a)( e-H'(a)tdt) -IU .

o K 27r U

Flow independence means: Let G(y) = to + t1f(y), and G t = J~ G(Tr)dr. If the
flow 8f : 8 1 x n -l- 8 1 x n,

is not topologically ergodic then to = t 1 = O.

Corollaries: Large deviation, local limit theorem and central limit theorem.

For ¢> E 'Jis its free energy function

c(t) = lim .!. IOgjexp(t8n ¢»dm
n-oo n

is well defined for Gibbs measures m with potential f.

The pressure of f is

(t E lR)

P(T, J) = sup{hm(T) + j fdm: m 0 T- 1 = m, m(n) = I},

where hm(T) denotes the entropy of m.

Proposition:
c(t) = P(T, f + t¢) - P(T, J) (t E lR).

c'(t) = j ¢ dmt (t E lR),

where mt denotes the Gibbs measure with potential f + t¢>, and
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Moreover, c"(t) = 0 if and only if ¢> is cohomologuous to a constant (everywhere).

Let T denote a hyperbolic or parabolic rational function, and let m denote the
Gibbs measure for the Holder continuous potential f. In case of a parabolic T
assume in addition that P(T, J) >' sUPzECC fez). Denote the point mass in z E C by
Oz and the space of probability measures on J(T) by M(J(T)) and its subspace of
T-invariant measures by MT(J(T)).

Theorem: (J (T), A, m, T) satisfies the large deviation principle at level 2 with
rate function

I(2)(v) = { :(T,1) - v(f) - hv(T) if v E MT(J(T))

if v ~ MT(J(T)),

n-l }).~ L 0Tk(z) E K ~ - inf{I(2)(v): v E K}
k=O

that is: For any closed (compact) set K C M(J(T)) and any open set G C
M(J(T)),

lim sup .!.logm({z E J(T) :
n-oo n

and

le~~ logm ( {z E J(T): ~I:OT'(,) E G}) 2': - inf{I(2) (v) : v E G}.
k=O

Theorem: The free energy function

n-l

c(¢»:= lim .!.log1 exp [L ¢> 0 TkJdm
n-oo n J(T) k=O

exists for any continuous function f and equals

c(¢» = peT, f + ¢» - P(T, 1).

c is continuous on C (J (T) )" Moreover, if T is hyperbolic, c is GatealL'X differentiable
at each Hol~er continuous function ¢> with derivative

d
dt {peT, f + t¢» - P(T, f)}lt=o = m(¢».

Theorem: Let T be hyperbolic and let m denote the measure of maximal entropy.
Then there exists p > 0 such that for each 0 < (X < P there are constants d.. and d"
satisfying

I" " 1 L1m mm
n-oo O<i<n-d* logn d.. log n

- - i:5k:5i-l+d* logn

1" 1 L1m max
n-oo O<i<n-d* logn d* log n

- - i:5k:5i-l+d* logn

log IT'(Tk(z))1 = Xm - (X

log IT'(Tk(z))1 = Xm + (X,
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where Xm = m(log IT'I) denotes the Lyapunov exponent of T with respect to m.

PROBABILITY THEORY FOR MFS

Let (n, A, T, J-t, 0) be a MFS with the Schweiger property with respect to

R(G, T) = {A E (0)0 has bounded metric distortion by G}

(i.e. generates A and subsets of A E R(G, T) inherit the distortion property). Let
R* denote the partition generated by R(G, T), Nc : n.-. N.

Nc(w) = inf{n ~ 1 : wE a E (0)~-1 n R(G, Tn
T* = TNc is called the jump transformation

Assumptions·:
o is aperiodic
T is parabolic (i.e. Nc ' T = Nc - 1 on {Nc ~ 2}, I(o)b n {Nc = 2}1 < 00,

T( {Nc = l}\T{Nc = 2}) = nand T : {Nc ~ 2} - T{Nc ~ 2} invertible)

Lemma: 3m '" p, m 0 T- 1 = m.
3q "-' J-t, q . T*-l = q. m is finite {:} A = JNcdm < 00

For f: n.-. JR define j* = f+foT+ .. +foTNc-l_Nc J fdm. Then J f*dq = o.
Theorem: Let (T*, R*) be absolutely regular such that 2:~=1 f3(n) 1/2+6 < 00 for
some fJ > O. Let f* E Loo(q), ~n = Ilf* - Eq (f*I(R*)o)ll2+lI ~ Gn-2

-
6 for some·

1} > O. Then c} = J j*dq +2 2::=1 J f*· j* 0 Tndq < 00
and if cf > 0

Let (n, A, T; j.L, 0) be a mixing Gibbs-Markov map.

¢ : n ---+ lR, Da<¢ = sup Gt/lla < 00
aEo

£(¢) E D A(p) (domain of attraction to stable)

I.e.
L(x)

p(¢ > x) = (e1 + 0(1»-- as x ---+ 00
x P

J-t(¢ < -x) = (C2 + 0(1» L(x) as x - 00
x P
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if p < 1

if p = 1

if p > 1.

Let P denote the Frobenius-Perron operator for J;L and
Ptf = P(J . exp(itc!»)
).t = the maximal eigenvalue of Pt , gt the eigenvector

Theorem: Let p < 2. Then

. 1
Re log).t = -cltlPL(m )(1 + 0(1))

1m log).t

{
tJ + cl3ltIPsgn(t) tan T + O(ltiP L( I~I))

- -yt + 2~CCtL( I~I) + J(Hl ( I~I - H2 ( I~I)) + O(ltIL( I~I))

Hj ().) = fa>' X~~x~) dx + O(L()')) (j = 1,2)

C = J;(cosy - 1';y2)~

13 - CI-C2
- Cl+C2

c= {(C1+c2)r(l-p)COST ifpi= 1

Cl ~C2 7r if p = l.

-y = { ~.:, (,';., +sgn(x) J~'I (1;~:>' du)df.l(x)

J~oo xdp,(x)

Corollaries:

if p i= 1

ifp=1.

weakly, where X p is p-stable. Here:

::(Bn{) ~nBr:., ~ ~: ~ < 2

-yn + 2; (HI (Bn ) - H 2 (B2 ) ) if P = l.

. { t-yi -cltIP(1 - isgn(t)l3tan T)
log Ee1tXp =

hi - cltl(1 - isgn(t) 2: log I~I)

if p i= 1

if p = 1.

If ¢ is aperiodic and Z-valued, then IIBnPTn (I{Sn4>=kn }) - I X p (~)lloo --+ 0 as n --+ 00

and knjiA n -+ ~,Ix denotes the density of X pn p

¢ is called aperiodic if

eit 4> =~ =? t = 0 ). = 1 and 9 = 1
goT '
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Let Ie lR be an interval, kn E Z, knBnA n -+ I'i., ¢> lR-valued and aperiodic.

Local Limit Theorem.

In particular

26

Let (X, A, m, T, a) be a mixing, probability preserving Gibbs-Markov map, and let
G be a subgroup of lRd of form G = A(lRk X Z i) where k + f. = d and A E G L(d, lR).
Suppose that

is aperiodic, Lipschitz continuous on each a E a and DOt¢> := sUPaEOt C<t>la < 00.

The skew product is T<t> : X x G -+ X x G defined by

T<t>(x, g) = (Tx, 9 + ¢>(x».

Theorem:
1) Either T<t> is totally dissipative, or T<t> is pointwise dual ergodic.
2) If G is discrete and T<t> is conservative, then T<t> is exact.

Suppose that

¢>n -+ X in distributionB
n

p

where Bn > 0 and X p is nondegenerate p-stable.
Theorem: T<t> is conservative iff

00 1
I: Bd = 00,
n=l n

In this case, T<t> is pointwise dual ergodic with return sequence

CONVERGENCE IN l7-FINITE MEASURE SPACES

Let (n, A, T, J-l) be pointwise dual ergodic.
a(n) return sequence
m(N €) = sup { a(n) : 1 < n < N 1-€}
'f" a(nN<) - -
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1 N 1 J
lim -1N L ()Snf = fdJ.lN-oo og na n

n=1 '

in measure on every subset of finite measure.

(log -averages)

a.s.

Theorem: 3E'1 > 0 with ¢(N, (log N)-i) = O( (logIN)")

:JA E B, J.l(A) = 1 3a(n) = (1 + f3n)a(nj such thgt

1
f3n = O( (logn)i)

n

LTk 1A ~ a{n)
k=1

::;.

1 N 1 Jlim -- """' Sn f = f dJ.l
N-oo log N ~ na(n)

Remark: a(n) = n Q L(n)(a > 0) ::;. 't f E Li(J.l) the following is equivalent:

10: N 2::~=1 na(n) Sitf -+ Jf dJ.l a.s.

a(~) 2::~=1 ~(~~ -+ J fdJ.l a.s. (Chung Erdos averages)

Theorem: Let T have a Darling-Kac set with a-mixing return time process, a(n) =
n Q L(n), 0 < a < 1

Let ¢ i and ¢(n)/n 1. Then for K Q = Q2fl(~~)1) '"

(a) 2:::'=1 *e- f3 <!J(n) < 00'tf3 > 1 ::;.

(b) 2:::=1 *e-r<!J(n) = 00 \lr < 1 ::;.

(c)

Theorem: Under the same assumptions as before, but Q = 1, there exists a
constant K T such that
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and, moreover, if L(L2n) rv L(n)

limsup L~ )Snf = JfdJ-L Vf E Li(J-L)n-= n n

28

Let (Xk)~l be a stationary c.f.m. process on (A, A, m). W.l.o.g A = :E with the
m-preserving transformation S(Yk)k=1 = (Yk+l)k=l so that XI(y) = YI· It is well
known that S is ergodic .
Now we let

x = {x = (y, n) : 1 ~ n ~ XI(y), yEA}
00

B= VAn{XI ~ n} x {n}
n=l

J-L(B x {n}) = m(B)

T(y, n) = { (y, n + 1),
(Sy, 1),

(BEAn{XI~n})

if X I (y) ~ n + 1

if XI(y) = n.

By Kakutani's theorem T is a conservative, ergodic, measure preserving transfor
mation on (X, B, J-L).
By Kac's formula J-L(X) = EXI .

X I is the first return time function <p to A, and S is the induced transformation
TA. A is a D-K set for T.

Theorem: Suppose that m({Xl ~ t} = (f(l - a)f(l + a)a(t»)-\ where a(t) is
regularly varying with index a E (0,1). Let b be the inverse of a. Then for ¢(n) T
and ¢(n)/n 1 as n T00, we have:
(a) If L:~=l*exp[-,8¢(n)] < 00 for all ,8 > 1 then

(b) If L:~=l*exp [-r¢(n)] . 00 for all r < 1 then

1· . f 1 ~ v K- I / a
~~~ b(n/¢(n»¢(n) ~ '-'"k ~ Q

k=l

(c)

a.e.

Corollary: Suppose that

sup I h(s) - 1 1-- a
t~s~tL2(t) h(t)

as t -+ 00.
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If ¢(n) i and ¢(n)/n 1 as n i 00, then:
(a) If L~=l ~ exp[-,6¢(n)] < 00 for all,6 > 1 then

n

1· . f 1 ~X > K-1jo:
~~~ b(n)¢(n)l-ljo: ~ k _ 0: a.e.

. k-l

(b) If L~=l ~ exp [-r¢(n)] = 00 for all r < 1 then

n

1· . f 1· ~ X < K-1jo:
~~~ b(n)¢(n)l-ljo:~ k _ 0: a.e.

(c)
n

1· . f 1 ~ v - K-1jo:
~~~ b(n)L

2
(n)l-ljo: ~ .Ak - 0: a.e.

Theorem: Set

(i) {Hn}nEN is precompact in

DoT = {x: R.r --+ [0,00], x(O) = 0, x j} a.e.

(ii)

{Hn }' = K(a:) = {x E DoT: rb

(x'(t))-l~a dt ::; K~~a} a.e.10 .
where b = inf{t : x(t) = oo}.

Theorem: a(n) = nO: L(n), a: E [0,1] => Vf E Li(J.L)

"weakly"

where Yo: is. a stable subordinator

Remark: "weak" convergence is

g : lR+ --+ R, q invariant q« J.L

Lg( :(~ )dq --+ E(g(Yo JfdJ.L))

Yo is determined by its Laplace transform

00 n f (1+a:)n
E exp(zYa:) = I: z f(1 + na:)

n=O
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DIMENSION THEORY

30

Let (n, d) be a metric space. For a subset F C n define the outer s-dimensional
Hausdorff measure mH (F) of F by

mH(F) = lim inf{ L (diam(U))s: U a cover; sup diam(U) < fJ}o
6~ U~

UEU

Definition: The Hausdorff dimension dimB (F) of F is defined by

dimH(F) = inf{s: mn(F) < oo} = sup{s: mn(F) = oo}.

Note: Instead of taking the diameter as a measurement for U one may take other
functions on U. For example

mi(F) = l~ inf{ L 'I/J(U)(¢(U))s: U a cover; sup diam(U) < fJ; U C?}.
U~ U~.

This leads to the Caratheodory-Pesin dimension (in particular Billingsley dimen
sion). If ¢ = 1 and 'I/J is a function of diam(U) denote the corresponding outer
measure by mt/J ° •

Definition: The lower (upper) pointwise dimension in wEn of a probability
measure j.L on n is defined as

d o () l' ° f log j.L( B (w, E) )
1mJ.l W = 1m In 1 ;

10-0 OgE

-d· () l' log j.L(B(w, E))1mJ.l W = 1m sup 1 .
e-O ogE

Frostman's Type Lemma: If n c lRn is compact, then there exists a constant
b(n) such that for any F c n and any finite measure j.L on F:

If limsuPr_o J.l(B~'t.r)) 2 C for all w E F, then m'k(F) $ b(n)C-1j.L(F).

If limsuPr_o J.l(B~'t,r)) ::; C < 00 for all w E F, then m'k(F) 2 b(n)-lCj.L(F).

Note that this is the same in spirit as Young's result: If dimJ.l 2 d, then

dimH(F) 2 d. If dimJ.l $ d, then dimH(F) $ d.
It also uses the same ideas as for Frostman's lemma: If d1 :s; dimJ.L ::; dz then

the Hausdorffdimensiondim(J.L):= inf{dimH(Y): J.L(Y) = I} of J.L satisfies d1 ::;

dim( j.L) :s; d1 .
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Calculation principle:
Let m be conformal w.r. to exp f. Then

m(Tn(B(x, r))) = f exp[-Snf]dm
, } B(x,r)

which is in some cases rv m(B(x, r)) exp[-Snf(x)].
Let T be conformal, then

Then
m(B(x,r))

r"''lj;(r) '" exp[-Snf(x) + ",Sn log IT'I(x) -log'lj;(r)}.

To apply the LIL, we need:

Jfdm - '" Jlog IT'ldm = O.

One can show (Young)

. .. ' J fdm
dlm(m) . mf{dlmH(Y): m(Y) = I} = '" = JlogIT'ldm'

For '" ~ 0 let

'lj;",(t) = t exp ( "'Jlog lit log log log lit) ..

Makarov's results: ::Ie > 0 (independent of B) such that, if B is a Jordan
domain, then the harmonic measure v on BB satisfies v « m-r/Jc and vJ..miI for
every a > 1.

In particular, the Hausdor~dimension of the harmonic measure equals 1. More
over, there exists a Jordan domain for which there is some", so that v J..m-r/J,..

Result of Pryztycki, Urbanski, Zdunik: Let B be an RB~domain, i.e. the
boundary BB is conformally self-similar and repelling (for example all simply con
nected basins of immediate attraction to an attractive periodic point of a rational
map are RB-domains).

Then there exists a number c(B) ~ 0 such that
(a) vJ..m-r/Jc for every 0 < c< c(B),
(b) v« m-r/Jc for'every c > c(B),
(c) If c(B) = 0 then v « mk and BB is a real-analytic Jordan curve.

Parabolic rational functions (cf. section Prob. Theory for MFS): (results also
hold for parabolic MFS??) Let m be the equilibrium measure for the Holder con
tinuous potential f with pressure peT, f) > supz fez). In this case, for a Holder
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continuous function ¢, the function ¢* satisfies an a.s. invariance principle with
respect to T* and m*. Hence we obtain the following results from the properties
?f the stopping time Nc and the fact that m and m* are equivalent.

Theorem: Let ¢ be Holder continuous. If c~ > 0, then

n-l

m({xEJ(T): 2:[¢(Ti(x))-m(¢)] > c</> '¢(n)ynforoo manyn EN})
j=O . Jm*(Nc) .

= {O if '¢ belongs to the lower class,

1 if '¢ belongs to the upper class.

Moreover,

m a.e.

Remark: Recall that 'l/J : [1,00) -4 Jl4 belongs to the lower (upper) class if it is
non-decreasing and if the integral

converges (diverges).

Grigull's result: A parabolic rational map is expansive and open, hence admits
a Markov partition. Denote this partition by P, and let

p n = p V ... V T-n+1p.

For z E J(T) denote pn(z) the atom of pn containig z. The invariance principle
for the jump transformation gives the law of iterated logarithm for the information
function.
Theorem: Let f be Lipschitz· continuous. Then for a.e. z

1
. logm(pn(z)) + nhm(T)
1m sup = 1,
n-+oo J2CJ(m* (Nc ))-In log log n

provided c} defined above is non-zero.

Makarov's result for equilibrium measures for parabolic rational maps:
Denote the (modified) Lyapunov exponent by X = m*(Nc )m(log IT'I) and the
Hausdorff dimension of m by T. For a function 'l/J : [1,00) ------lo 114 define for
sufficiently small t > 0
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Theorem:
(1) If'l/J belongs to the lower class, then

m« m.;;.

(2) If 'l/J belongs to the upper class, then

m 1.. m.;;.

Makarov's result for SBR measures for parabolic rational maps: No a.s.
results for parabolic maps and the potential f = -h log IT'I known (??) when the
invariant measure is finite, (except Birkhoff's theorem).

The jump transformation still satisfies an a.s. invariance principle, thus allowing
upper and lower class results.

We restrict to the case of the boundary {)B of a petal of a rationally indifferent
fL-xed point of a parabolic rational map T (the result generalizes in fact to so-called
parabolic Jordan domains). Let

if> = log I(T*)' 0 RI- log I(F*),I,

where R: {izi < I} -t B denotes the Riemann map, F the extension of R-1 oToR
to an open set containing the closed unit disc, and where * denote the' respective
jump transformations. For a function 'l/J : [1,00) -t (0,00) define (for sufficiently
small t > 0)

;Pet) = texp ( ec/> 'l/J(-lOgt)V-lOgt)
-IX

(X denotes the Lyapunov exponent ofT* 0 R with repsect to Lebesgue measure).

Theorem: Suppose that c~ > O. Then:
a) If 'l/J belongs to the lower class, then v « m{J'

b) If 'l/J belongs to the upper class, then v 1.. m{J'

c) c~ = 0 if and only if {)B is real-analytic.

Infinite SBR measure for parabolic rational maps: Let n denote the set of
parabolic points w (Le. :3p 3 TP(w) = w, (TP)'(w) = 1) (which are always contained
in J). Let T:;P denote the analytic inverse branch of TP which fixes w. Then define
pew) by

T:;P(z) = Z - a(z - w)p(w)+l + ...

Next define

( )
_ pew) + 1

h
Q w - pew) ,

and
Q = mina(w).

wEn
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The SBR-measure of T is infinite iff 0: > 2 (dimH(J) < 1 implies a > 2).

Theorem: Let h = dimH(J) < 1, m be Sullivan's h-conformal measure and

( 1) "(I-h)

f(t) ~ th log t

34

Then
a) m ~ mf if I > (0: - 1)-1.
b) m J.. mf if I :S (0: -1)-1.
More generally, let <.p : 114 -+ 114 be a homeomorphism with <.p(O) = 0 such that

<.p(2x)/<.p(x) is bounded above and away from 1 for large x, and

Then m is absolutely continuous or orthogonal with respect mrp depending on
whether

/

00 cp-l(X)
. dx

x Q
1

converges or diverges.

MULTIFRACTAL FORMALISM

The theory of multifractals has its origin in Kolmogorov's work 1941 for com-.
pletely developed turbulence. His third hypothesis that the energy dissipation is
lognormal distributed was questioned by Mandelbrot in 1972/4. Based on these
ideas Frisch, Parisi and later Halsey et a1. developed a first simple formalism for
multifractals. The connection with thermodynamics was pointed out by Fujisaka
in 1987. Since then this connection is one of the basic object of research in fractal
geometry. More generally one may consider the connection between large deviation
theory and multifractal formalism.

Multifractal Principle: Let X be a set and h : X -+ R Let D be a real valued
function defined on all (or part of) subsets of X. Then we define the spectrum w.r.
to hand D by

f(O:)=D({XEX: h(X)=O:}).

Calculate f(o:), e.g. if D is the dimension function.

Thermodynamic Formalism: Let eE, S) be a subshift of finite type (e.g. ob
tained from a finite Markov partition). Let 1{ denote the class of Holder-continuous
functions on L:. Let <P, ·l/JE 1{ and define f : L -+ lR by

f (0:) = dimH ( {x E L:: lim exp [Sn (<p - 1,b) (x)] = Q}).
n-oo
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In case /-t is the Gibbs measure for </> and 'lj; = log2 (2 is the expanding constant),

X { "I' log /-t(B(x, 2-n) }
a= xE,:..,: 1m 1 =a,

n--oo og2-n

provided the pressure P( </> - 'lj;) = 0 (cf. the definition of a Gibbs measure).
Proposition: Let </>, 'lj; E 1l so that 7/J < 0 and P( </» = O. Then there exists a
unique function

satisfying
P(t</> + (3(t)'lj;) = O.

(3 is real-analytic with {3' < 0 and {3" ~ O. These derivatives vanish only in isolated
points or {3" = O. In the first case one obtains that a = {3' is invertible and the
domain of definition of its Legendre transform f := (3* is the intervall r := image
of a. Hence

(3*(a(t)) = ta(t) + (3(t).

Local Large Deviation Theorem.

z(R) f"V z means that sUPR/~RI Z(~/) - 11- 0 as R - 00.

Theorem: (Kessebohmer) Let 4> and 'lj; be Holder-continuous functions on a sub
shift of finite type such that 'I/J < 0 and P( 4» = 0, and let /-t denote the Gibbs
measure for the potential (3(0)'lj;. Assume that no non-trivial linear combination of
</> and 7/J is cohomologous to a 21rZ-periodic function. Let n(R) be defined by

Then for all compact sets K, K. E K and all a < b

The convergence is uniform in K. E K and C(K.) is bounded away from 0 and infinty.

Corollary: (Large deviation)

/-t({x: Sn(R)(x)</>(x) 2: -a(t)R}) f"V C(a(t)) R- l / 2 exp[(f(a(t))-(3(O))R] t> 0,
V21r(3"(t)

/-t({x: Sn(R)(x)</>(X) :::; -a(t)R}) f"V C(a(t)) R- l / 2 exp[(f(a(t))-(3(O))R] t < O.
V27r{3"(t)
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Corollary: Let m denote the Gibbs measure for ¢J and Cn(x) the cylinder oflength
n containing x. Then

J.L({x: logm(Cn(_logr)(x)(x)) 2: Q(t)logr})

~ ~~;~!lt/-logr exp[-(j(a(t)) - jJ(O)) logr] t> 0,

J.L({x: 1ogm(Cn (_logr)(x)(x)) ~ Q(t)logr})

rv C(Q(t)) J-logrexp[-(j(Q(t)) - ,B(O))logr] t < o.
J27r13"(t)

Corollary: (Local central limit theorem)

(b - a)e_u
2

/2/3" (0)
VRJ.L(Sn(R)¢J + Q(O)R - u../R E [a, b]) rv J .

27r,B"(0)

Corollary: (Central limit theorem)

({
Sn(R)¢J + Q(O)R })

J.L xE~: <u
J ,B"(O)R -

1 jU
---+ I<C. exp[-t2 /2]dt.

v 27r -00

Corollary:

({
log[m(Cn(_logr)(x)(x)] - Q(O)logr })

J.L XE~: <uJ -13"(0) logr -

1 jU
---+ I<C. exp[-t2 /2]dt

v 27r -00

as r ---+ O.

Corollary: For t 2: 0

lim - -1
1

logJ.L(1og[m(Cn (-logr)(x)(x))]2: -,B'(t)logr)
r--O ogr

= -t,B'(t) + ,B(t) - ,B(O) = f(Q(t») - ,B(O),

and for t S 0

lim - -11 log {I,(log[m(Cn(-Iog r)(x)(x»] S -13'(t) log r)
r-.O og r

= -t,B'(t) + ,B(t) - ,B(O) = f(Q(t) -13(0).
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