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The finite volume-complete flux scheme for one-dimensional
advection-diffusion-reaction equations

J.H.M. ten Thije Boonkkamp and M.J.H. Anthonissen
Department of Mathematics and Computer Science, Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

We present a new integral representation for the flux of the advection-diffusion-reaction equation,
which is based on the solution of a local boundary value problem for the entire equation, including
the source term. The flux therefore consists of two parts, corresponding to the homogeneous and
particular solution of the boundary value problem. Applying suitable quadrature rules to the integral
representation gives the complete flux scheme, which is second order accurate, uniformly in the local
Peclet numbers. The flux approximation is combined with a finite volume method, and the resulting
finite volume-complete flux scheme is validated for several test problems.

Keywords. Advection-diffusion-reaction equation, flux, finite volume method, integral representation of
the flux, numerical flux, compressible Navier-Stokes equations.
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1 Introduction

Conservation laws are ubiquitous in continuum physics, they occur in disciplines like fluid mechanics,
combustion theory, plasma physics, semiconductor physics etc. These conservation laws are often of
advection-diffusion-reaction type, describing the interplay between different processes such as advection
or drift, diffusion or conduction and (chemical) reaction or recombination/generation. Examples are
the conservation equations for reacting flow [14, 24] or the drift-diffusion equations for semiconductor
devices [8, 10].

Their numerical solution requires at least an adequate (space) discretisation. There are many (classes
of) methods available, such as finite element, finite difference, finite volume or spectral methods. We
restrict ourselves to finite volume methods; for a detailed account see e.g. [5, 11, 23]. Finite volume
methods are based on the integral formulation, i.e., the conservation law is integrated over a disjunct set
of control volumes covering the domain. The resulting discrete conservation law involves fluxes at the
interfaces of the control volumes, which need to be approximated.

Our objective in this paper is to present new expressions for the flux, which will subsequently be used
to derive numerical flux approximations. We restrict ourselves to steady, one-dimensional conservation
equations. Moreover, we require that the numerical flux has the following properties. First, it should
be unconditionally second order accurate, in particular, the flux approximation should remain second
order accurate for highly dominant advection. This excludes the hybrid scheme of Spalding [18], which
reduces to the standard upwind scheme when diffusion is absent. Second, the numerical flux should not
produce spurious oscillations for dominant advection, as the standard central difference scheme does,
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2 FINITE VOLUME DISCRETISATION 2

and third, the flux may only depend on neighbouring values of the unknown, resulting in a three-point
scheme. The latter requirement rules out high resolution schemes based on flux/slope limiters [9, 23] or
(W)ENO reconstruction [17].

Our scheme is inspired by two papers by Thiart [19, 20]. In these papers a finite volume method is
combined with an exponential scheme for the flux. More specifically, the fluxes at the cell interfaces are
computed from a local boundary value problem, assuming piecewise constant coefficients. The source
term is included in the computation of the fluxes. Similar schemes have been published the in last few
decades. Without trying to be complete, we just mention a few. Allen and Southwell [1] and Il’in [7]
introduced an exponentially fitted scheme, which is a hybrid central difference-upwind scheme such that
the difference scheme locally has the same (exponential) solutions as the corresponding differential equa-
tion. An improvement of this scheme is proposed by El-Mistikawy and Werle [4]. These exponentially
fitted schemes are a special case of the so-called locally exact schemes. The basic idea is to represent the
solution in two adjacent intervals in terms of an approximate Green’s function; see [11] and references
therein. Exponentially fitted schemes are nowadays widely used to simulate advection-diffusion-reaction
problems from continuum physics, especially to compute numerical solutions of the drift-diffusion model
for semiconductor devices. For this application these schemes are known as the Scharfetter-Gummel
scheme; see e.g. [3, 16]. An extension of the Scharfetter-Gummel scheme to describe avalanche genera-
tion is presented in [22]. In this extended scheme, the avalanche generation/recombination source terms
are included in the numerical fluxes.

Our scheme is an extension of the schemes by Thiart. We derive an integral representation for the
flux from the solution of a local boundary value problem for the entire equation, including the source
term, but we do not restrict ourselves to (locally) constant coefficients. As a consequence, the flux has a
homogeneous and an inhomogeneous component, corresponding to the homogeneous and the particular
solution of the boundary value problem, respectively. Suitable quadrature rules are applied to derive
the numerical flux. The inclusion of the inhomogeneous flux will be of importance when advection
dominates diffusion.

We have organized our paper as follows. The finite volume method is briefly summarized in Section
2. In Section 3 we derive an integral representation for the flux, in terms of a Green’s function, which will
be used in Section 4 to derive the numerical flux approximation, referred to as the complete flux scheme.
The combined complete flux-finite volume scheme is presented in Section 5. To test the scheme, we
apply it in Section 6 to several model problems. Finally, we end with a summary and conclusions in
Section 7.

2 Finite volume discretisation

In this section we outline the finite volume method (FVM) for a generic conservation law of advection-
diffusion-reaction type. So, consider the following conservation law defined on the interval (a, b),(

mϕ − εϕ′)′ = s, (2.1)

where m is the mass flux, ε ≥ εmin > 0 a diffusion/conduction coefficient and s a (chemical) source
term. The unknown ϕ can be, e.g., the temperature or the concentration of a species in a reacting flow.
The parameters ε and s are usually (complicated) functions of the unknown ϕ, however, for the sake
of discretisation we will consider these as given functions of the spatial coordinate x. The mass flux
m generally has to be computed from the flow equations corresponding to (2.1), but in this paper it is
assumed to be a given function of x as well. Equations of this type arise, e.g., in combustion theory [14].
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Figure 1: The finite volume grid on the interval [a, b].

Associated with equation (2.1) we introduce the flux f , defined by

f := mϕ − εϕ′. (2.2)

Equation (2.1) then reduces to f′ = s. Integrating this equation over an arbitrary interval [α, β] ⊂ [a, b]
we obtain the integral form of the conservation law, i.e.,

f(β) − f(α) =
∫ β

α
s(x) dx. (2.3)

This equation is in fact the basic conservation law, which reduces to (2.1) provided ϕ is smooth enough.
In the FVM we cover [a, b] with a finite number of disjunct intervals (control volumes) Ij of size

Δx as shown in Figure 1. Moreover, we have to define a spatial grid {xj} where the variable ϕ has to
be approximated. In this paper we choose the cell-centred approach [23], i.e., we choose the grid point
xj in the centre of the jth interval Ij . Consequently we have Ij := [xj−1/2, xj+1/2] with xj+1/2 :=
1
2(xj + xj+1). Imposing the integral form (2.3) on each of the intervals Ij , we obtain the discrete
conservation law

Fj+1/2 − Fj−1/2 = Qj(s), (2.4)

where Fj+1/2 is the numerical flux approximating f at x = xj+1/2 and where Qj(s) is a quadrature rule
for the integral of s over Ij . In this paper, we will adopt the midpoint rule, resulting in

Fj+1/2 − Fj−1/2 = sj Δx, (2.5)

with sj := s(xj). The FVM has to be completed with expressions for the numerical flux. We require
that the numerical flux Fj+1/2 linearly depends on ϕ and s in the neighbouring grid points xj and xj+1,
i.e., we are looking for an expression of the form

Fj+1/2 = αj+1/2 ϕj − βj+1/2 ϕj+1 + γj+1/2 sj + δj+1/2 sj+1, (2.6)

where the coefficients αj+1/2 etc. only depend on m and ε. Substitution of this expression in the discrete
conservation law (2.5) leads to a tridiagonal linear system for the vector of unknowns ϕ = (ϕj). The
procedure to compute Fj+1/2 is detailed in the next two sections.

3 Integral representation for the flux

Our objective in this section is to derive an integral representation for the flux. The derivation is a
modification of the theory in [6].

We adopt the following notation: variables defined in the grid points xj and xj+1 are indicated with
the subscripts C (centre) and E (east), respectively, and variables at the cell edge xj+1/2 by the subscript
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e (east). The derivation of the expression for the flux fe at the eastern cell edge xe located between the
grid points xC and xE is based on the following model boundary value problem (BVP) for the unknown
ϕ: (

mϕ − εϕ′)′ = s, xC < x < xE, (3.1a)

ϕ(xC) = ϕC, ϕ(xE) = ϕE. (3.1b)

We like to emphasize that fe corresponds to the solution of the inhomogeneous BVP (3.1), implying that
fe not only depends on m and ε but on s as well.

In the following, we need the variables λ, P , Λ and S, defined by

λ :=
m

ε
, P := λΔx, Λ(x) :=

∫ x

xe

λ(ξ) dξ, S(x) :=
∫ x

xe

s(ξ) dξ, (3.2)

with Δx := xE−xC. We refer to the variables P and Λ as the (numerical) Peclet function and Peclet inte-
gral, respectively, generalizing the well-known (numerical/grid) Peclet number [23]. Integrating equation
(3.1a) we get the following integral balance

f(x) − fe = S(x). (3.3)

Using the definition of Λ in (3.2), it is clear that expression (2.2) for the flux can be rewritten as

f = −ε
(
ϕ e−Λ

)′eΛ. (3.4)

Substituting (3.4) in (3.3) and once more integrating we obtain the following expression for the flux fe:

fe = f (h)
e + f (i)

e , (3.5a)

f (h)
e = −(

e−ΛEϕE − e−ΛCϕC

) /∫ xE

xC

ε−1e−Λ dx, (3.5b)

f (i)
e = −

∫ xE

xC

ε−1e−ΛS dx
/∫ xE

xC

ε−1e−Λ dx, (3.5c)

where f
(h)
e and f

(i)
e are the homogeneous and inhomogeneous part, corresponding to the homogeneous

and particular solution of (3.1), respectively.
Assume first that m, ε and s are constant on the interval [xC, xE]. In this case we can determine all

integrals in (3.2). The Peclet function reduces to the Peclet number, i.e., P = mΔx/ε. Furthermore,
Λ(x) = λ(x − xe) and S(x) = s(x − xe). Substituting these expressions in (3.5b) and (3.5c) and
evaluating all integrals involved, we find

f (h)
e = − ε

Δx

(
B(P )ϕE − B(−P )ϕC

)
, (3.6a)

f (i)
e =

(
1
2 − W (P )

)
s Δx. (3.6b)

Here we have used the Bernoulli function B and the function W , defined by

B(z) :=
z

ez − 1
, W (z) :=

ez − 1 − z

z
(
ez − 1

) ; (3.7)
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Figure 2: The Bernoulli function B(z) (left) and the function W (z) (right).

see Figure 2. Note that W satisfies 0 ≤ W (z) ≤ 1 and W (−z)+W (z) = 1. Clearly, the inhomogeneous
flux is of importance when |P | � 1, i.e., for advection dominated flow. For the constant coefficient
homogeneous flux we introduce the function

f (h)
e = Fh

(
ε/Δx, P ;ϕC, ϕE

)
= αe

(
ε/Δx, P

)
ϕC − βe

(
ε/Δx, P

)
ϕE, (3.8)

to denote the dependence of f
(h)
e on the parameters ε/Δx and P and on the function values ϕC and ϕE.

The constant coefficient homogeneous flux is often used as approximation of the flux (2.2); see e.g. [13].
We will now generalize the constant coefficient fluxes (3.6a) and (3.6b) for the case of nonconstant

m, ε and s. Let 〈a, b〉 denote the usual inner product of two functions a = a(x) and b = b(x) defined on
(xC, xE), i.e.,

〈a, b〉 :=
∫ xE

xC

a(x)b(x) dx. (3.9)

For arbitrary m, ε and s the homogeneous flux can be written as a modification of the constant coefficient
flux and the inhomogeneous flux as a weighted average of the integrated source term S as follows:

f (h)
e = Fh

(〈λ, e−Λ〉/〈λ, 1〉
〈ε−1, e−Λ〉 , 〈λ, 1〉;ϕC, ϕE

)
, (3.10a)

f (i)
e = −〈ε−1S, e−Λ〉

〈ε−1, e−Λ〉 . (3.10b)

Our numerical approximation of the homogeneous flux will be based on (3.10a). For the inhomogeneous
flux we derive an alternative expression. Substituting the expression for S in (3.5c) and changing the
order of integration we find the following representation for the inhomogeneous flux

f (i)
e = Δx

∫ 1

0
G(σ)s(x(σ)) dσ, σ(x) :=

x − xC

Δx
, (3.11)

where σ = σ(x) is the normalised coordinate on [xC, xE] and x = x(σ) its inverse, and where G(σ) is
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Figure 3: Green’s function for the flux for P > 0 (left) and P < 0 (right).

the Green’s function for the flux, given by

G(σ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δx

∫ σ

0
ε−1(x(η)) e−Λ(x(η)) dη/〈ε−1, e−Λ〉 for 0 ≤ σ ≤ 1

2 ,

−Δx

∫ 1

σ
ε−1(x(η)) e−Λ(x(η)) dη/〈ε−1, e−Λ〉 for 1

2 < σ ≤ 1,

(3.12)

with x(η) := xC + ηΔx. Note that G relates the flux to the source term and is different from the usual
Green’s function, which relates the solution to the source term [11]. For the special case of constant m
and ε the Green’s function reduces to

G(σ;P ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − e−Pσ

1 − e−P
for 0 ≤ σ ≤ 1

2 ,

−1 − eP (1−σ)

1 − eP
for 1

2 < σ ≤ 1;

(3.13)

see Figure 3. Note that we use the notation G = G(σ;P ) to denote the dependence on the numerical
Peclet number P . For constant s we can evalute the integral in (3.11) and recover the constant coefficient
flux (3.6b).

The Green’s function (3.13) for the flux has the following properties. First, it is discontinuous at
σ = 1

2 , corresponding to x = xe, with jump G(1
2−;P ) − G(1

2+;P ) = 1. Second, the function has
a clear bias towards the upwind side of the interval when |P | � 1, which means that for dominant
advection the upwind value of the source term is the relevant one. On the other hand, for dominant
diffusion, i.e., |P | is small, the average value 1

2 − W (P ) is close to 0, implying that the inhomogeneous
flux is not important. Finally, it satisfies the symmetry property G(σ;P ) = −G(1 − σ;−P ).

When only m(x) = Const �= 0 on [xC, xE], the expression for the inhomogeneous flux can be
written as

f (i)
e = Δx

∫ 1

0
G

(
σ; 〈λ, 1〉)s(x(σ)) dσ, (3.14)



4 DERIVATION OF THE NUMERICAL FLUX 7

with G(σ;P ) defined in (3.13) and where σ is a weighted normalised coordinate defined by

σ(x) :=
∫ x

xC

λ(ξ) dξ/〈λ, 1〉. (3.15)

Note that σ′(x) > 0 implying that σ(x) is monotonically increasing from 0 to 1 indeed.

To summarize, the flux fe is the superposition (3.5a) of the homogeneous flux f
(h)
e given in (3.10a)

and the inhomogeneous flux f
(i)
e given in (3.11). Our numerical approximation of the homogeneous

flux will be based on (3.10a). To approximate the inhomogeneous flux, we will not use (3.11), however,
instead we assume m(x) = Const on [xC, xE] and employ the representation (3.14), with G(σ;P ) the
constant coefficient Green’s function given in (3.13).

4 Derivation of the numerical flux

In this section we give quadrature rules for the inner products 〈λ, 1〉 and 〈a, e−Λ〉, (a = λ, ε−1). This
readily gives an approximation of (3.10a). Moreover, we propose an approximation for the integral in
(3.14). Our objective is to obtain a numerical flux approximation that is second order accurate, uniformly
in the local Peclet numbers.

First, we introduce the average āe, the weighted average ãe and the upwind value au,e of a variable
a = a(x) defined on [xC, xE] as follows

āe := 1
2(aC + aE), (4.1a)

ãe := W (−P̄e)aC + W (P̄e)aE, (4.1b)

au,e :=

{
aC if P̄e ≥ 0,
aE if P̄e < 0.

(4.1c)

The weights in the expression for ãe are determined by the average Peclet number P̄e. Note that the
weighted average ãe reduces to the ordinary average āe for P̄e → 0 and to au,e for |P̄e| → ∞. This is
also apparent from the following relation

ãe = 2W (|P̄e|)āe +
(
1 − 2W (|P̄e|)

)
au,e, (4.2)

which can be readily verified from (4.1). In the derivation of the numerical flux that follows, we need the
‘product rule’

ãeb̃e = (̃ab)e − W (P̄e)W (−P̄e)(aE − aC)(bE − bC). (4.3)

A similar rule for āe can be easily derived substituting P̄e = 0 in (4.3).
For the inner product 〈λ, 1〉 we use the standard trapezoidal rule, which can be written as

〈λ, 1〉 = P̄e − 1
12λ′′(ξ)Δx3, ξ ∈ (xC, xE). (4.4)

In the derivation of the trapezoidal rule (4.4) we have replaced λ by its linear interpolant on [xC, xE],
however, this is not a suitable approach for the inner products 〈a, e−Λ〉. Instead, we approximate both a
and Λ by their linear interpolants, resulting in the following generalized trapezoidal rule

〈a, e−Λ〉
〈1, e−Λ〉 = ãe + Ee(a), |Ee(a)| < CΔx2, (4.5)
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for some C > 0, which holds provided a is twice and P once continuously differentiable on (xC, xE).
For a proof of this rule see [6].

For the homogeneous flux (3.10a) we need to evalute the first argument of Fh. Applying the quadra-
ture rules (4.4), (4.5) and the product rule (4.3), with a = ε and b = ε−1, we can derive the following
approximation

〈λ, e−Λ〉/〈λ, 1〉
〈ε−1, e−Λ〉

.=
1
P̄e

λ̃e(̃
ε−1

)
e

.=
1
P̄e

ε̃eλ̃e =
P̃e

P̄e

ε̃e

Δx
. (4.6)

Substituting this expression in (3.10a) we obtain the homogeneous numerical flux

F (h)
e = Fh

( P̃e

P̄e

ε̃e

Δx
, P̄e;ϕC, ϕE

)
, (4.7)

which is in fact the constant coefficient flux defined in (3.6a) and (3.8), with ε and P replaced byP̃eε̃e/P̄e

and P̄e, respectively.
For the inhomogeneous flux we note that the Green’s function G(σ;P ) has a clear bias towards the

upwind side of the interval when |P | � 1. For that reason we replace s(x(σ)) in (3.14) by its upwind
value and evaluate the resulting integral exactly. This way we obtain for the inhomogeneous numerical
flux

F (i)
e =

(
1
2 − W (P̄e)

)
su,e Δx, (4.8)

which is the constant coefficient flux (3.6b) with P and s replaced byP̄e and su,e, respectively.

The final numerical flux Fe is the superposition of the homogeneous part F
(h)
e and the inhomoge-

neous part F
(i)
e , i.e.,

Fe = F (h)
e + F (i)

e , (4.9)

with F
(h)
e and F

(i)
e given in (4.7) and (4.8), respectively; see also [6]. We refer to the flux approximation

in (4.7)-(4.9) as the complete flux (CF) scheme. This scheme has to be combined with the discrete
conservation law (2.5) to obtain the final scheme. This is detailed in the next section.

5 The finite volume-complete flux scheme

In this section we adopt the index notation as in Section 2. The numerical flux at the eastern cell interface
xj+1/2 of the control volume Ij can be written as in (2.6), i.e.,

Fj+1/2 = αj+1/2 ϕj − βj+1/2 ϕj+1 + γj+1/2 sj + δj+1/2 sj+1, (5.1a)

where the coefficients αj+1/2, βj+1/2 etc. are defined by

αj+1/2 :=
Ej+1/2

Δx
B−

j+1/2, βj+1/2 :=
Ej+1/2

Δx
B+

j+1/2,

γj+1/2 = max
(

1
2 − W+

j+1/2, 0
)
Δx, δj+1/2 = min

(
1
2 − W+

j+1/2, 0
)
Δx,

Ej+1/2 :=
P̃j+1/2

P̄j+1/2
ε̃j+1/2, B±

j+1/2 := B
( ± P̄j+1/2

)
, W+

j+1/2 := W
(
P̄j+1/2

)
. (5.1b)
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(Weighted) average/upwind values like P̃j+1/2 are defined analogous to (4.1). A similar expression
holds for the numerical flux Fj−1/2 at the western cell interface xj−1/2. Substituting these in the discrete
conservation law (2.5) we obtain

−aW,jϕj−1 + aC,jϕj − aE,jϕj+1 = bW,jsj−1 + bC,jsj + bE,jsj+1, (5.2)

referred to as the finite volume-complete flux (FV-CF) scheme, with the coefficients aW,j , bW,j etc.
defined by

aW,j := αj−1/2, aE,j := βj+1/2, aC,j := αj+1/2 + βj−1/2,

bW,j := γj−1/2, bE,j := −δj+1/2 bC,j = Δx − γj+1/2 + δj−1/2. (5.3)

Note that bW,j, bE,j , bC,j ≥ 0 and bW,j + bC,j + bE,j = Δx
(
1+W+

j+1/2 −W+
j−1/2

)
. The FV-CF scheme

has a three-point coupling for both ϕ and s, resulting in the following linear system

Aϕ = Bs + b, (5.4)

where ϕ and s are the vector of unknowns and source terms, respectively, and where the vector b contains
the boundary data. Both matrices A and B are tridiagonal. For the special case of constant m and ε, we
can easily prove that aW,j, aE,j ≥ 0 and aC,j = aW,j + aE,j , and as a consequence the matrix A is an
M-matrix, provided not both boundary conditions are of Neumann type.

In our numerical examples in Section 6 we compare the CF scheme for the flux approximation
with the homogeneous flux (HF) scheme. The HF scheme is the numerical scheme that follows if we
approximate the flux by the homogeneous flux only. This means that γj+1/2 = δj+1/2 = 0 in (5.1a) and
hence bW,j = bE,j = 0 and bC,j = Δx in (5.2).

It is instructive to consider some limiting cases of the FV-CF scheme. First, we take m = 0, i.e., we
consider the equation −(

εϕ′)′ = s. In this case P̄j±1/2 = 0 and consequently the inhomogeneous fluxes
vanish, resulting in the second order central difference scheme

− 1
Δx

(
ε̄j+1/2

(
ϕj+1 − ϕj

) − ε̄j−1/2

(
ϕj − ϕj−1

))
= sj Δx. (5.5)

Another limiting case is ε = 0, corresponding to the reduced equation
(
mϕ

)′ = s. For this equation
we have to distinguish between m > 0 and m < 0. In the former case, P̄j±1/2 → +∞ and the FV-CF
scheme reduces to

mjϕj − mj−1ϕj−1 = 1
2

(
sj−1 + sj

)
Δx. (5.6a)

In the latter case, P̄j±1/2 → −∞, giving the scheme

mj+1ϕj+1 − mjϕj = 1
2

(
sj + sj+1

)
Δx. (5.6b)

Both schemes (5.6) are second order approximations for the reduced equation. Here we see why it
is important that our flux representation is based on the entire equation. Standard methods like the HF
scheme omit the inhomogeneous flux, so that the schemes in (5.6) further reduce to mjϕj−mj−1ϕj−1 =
sjΔx for m > 0 and mj+1ϕj+1−mjϕj = sjΔx for m < 0, which is just the first order upwind scheme
for the reduced advection-reaction equation.

From these observations we conclude that the FV-CF scheme (5.2) can be interpreted as a combi-
nation of the central difference scheme (5.5) and the schemes (5.6), the combination determined by the
(average) Peclet numbers P̄j±1/2.
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6 Numerical examples

In this section we apply the CF and HF schemes to two model problems to assess their (order of) accu-
racy. We consider both diffusion-dominated and advection-dominated flow. Moreover, we demonstrate
the feasibility of the CF scheme to compute a shock layer solution of the compressible Navier-Stokes
equations.

Example 1. Advection-diffusion-reaction equation with boundary layer at outflow.
We solve the BVP [23](

mϕ − εϕ′)′ = s, 0 < x < 1, (6.1a)

ϕ(0) = 0, ϕ(1) = 1, (6.1b)

with mass flux m(x) = 1 − b sin πx and source term s chosen such that the exact solution is given by

ϕ(x) = a sin(πx) +
e(x−1)/ε − e−1/ε

1 − e−1/ε
. (6.2)

Note that for 0 < ε 
 1 the solution has a thin boundary layer of width ε near x = 1. We take the
following parameter values: a = 0.2, b = −0.95 and ε = 1 (dominant diffusion) or ε = 10−5 (dominant
advection). Let h = Δx = 1/(N − 1) be the grid size, with N the number of grid points. To determine
the accuracy of a numerical solution we compute the average error eh := ||ϕ − ϕ∗||1/N , where ϕ∗

denotes the exact solution restricted to the grid, as a function of the reciprocal grid size h−1. Table 1
shows eh and the reduction factors eh/eh/2 for ε = 1. Clearly, eh/eh/2 → 4 for h → 0 for both the
HF and CF scheme, and consequently, both schemes display second order convergence behaviour for
h → 0. The numerical errors are approximately the same for both schemes. However, the situation is
quite different for the case ε = 10−5 shown in Table 2. In this case eh/eh/2 → 2 for h → 0 for the HF
scheme, which means that the method is only first order convergent, in agreement with the observation
that the HF-scheme reduces to the first order upwind scheme for the advection-reaction equation; see
Section 5. The CF-scheme still displays second order convergence behaviour, which is consistent with
the reduction of the CF-scheme to the scheme (5.6) for the advection-reaction equation. Obviously, the
CF-solution is in this case much more accurate than the HF-solution.

CF HF
h−1 eh eh/eh/2 eh eh/eh/2

10 2.201 × 10−3 3.69 1.823 × 10−3 3.81
20 5.967 × 10−4 3.84 4.779 × 10−4 3.90
40 1.553 × 10−4 3.92 1.224 × 10−4 3.95
80 3.963 × 10−5 3.96 3.098 × 10−5 3.97
160 1.001 × 10−5 3.98 7.794 × 10−6 3.99
320 2.515 × 10−6 3.99 1.955 × 10−6 3.99
640 6.303 × 10−7 3.99 4.894 × 10−7 4.00
1280 1.578 × 10−7 1.224 × 10−7

Table 1: Example 1, errors for diffusion-dominated flow. Parameter values are: a = 0.2, b = −0.95 and
ε = 1.
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CF HF
h−1 eh eh/eh/2 eh eh/eh/2

10 2.146 × 10−3 3.82 1.977 × 10−2 1.86
20 5.613 × 10−4 3.91 1.061 × 10−2 1.93
40 1.436 × 10−4 3.95 5.504 × 10−3 1.97
80 3.632 × 10−5 3.98 2.801 × 10−3 1.99
160 9.121 × 10−6 4.00 1.411 × 10−3 2.00
320 2.280 × 10−6 4.02 7.070 × 10−4 2.01
640 5.669 × 10−7 4.05 3.525 × 10−4 2.02
1280 1.399 × 10−7 1.746 × 10−4

Table 2: Example 1, errors for advection-dominated flow. Parameter values are: a = 0.2, b = −0.95 and
ε = 10−5.

Example 2. Advection-diffusion-reaction equation with interior layer.
We solve the BVP [11](

mϕ − εϕ′)′ = s, 0 < x < 1, (6.3a)

ϕ(0) = ϕ′(1) = 0, (6.3b)

where the mass flux m and the source term s are given by

m(x) = (1 + x)3, s(x) =
smax

1 + smax(2x − 1)2
, (6.4)

respectively. The mass flux is a smoothly varying function of x whereas the source term has a sharp peak
at x = 1

2 , causing a steep interior layer, provided 0 < ε 
 1; see Figure 4.
For this BVP there is no exact solution available. In order to assess the order of accuracy of both

schemes, we compute numerical approximations of ϕ(12 ) with increasingly smaller grid sizes and apply
Richardson extrapolation to these results; see e.g. [15]. More precisely, let

ϕ(1
2 ) = ϕh + eh = ϕh/2 + eh/2 = ϕh/4 + eh/4, h = Δx, (6.5)

where ϕh denotes the numerical approximation of ϕ(12 ) computed with grid size h and eh the corre-
sponding (global) discretisation error, etc. Assuming the following error expansion

eh = Chp + O(
hq), q > p, (6.6)

we can derive the following relation for the order of accuracy p:

2p .=
ϕh/2 − ϕh

ϕh/4 − ϕh/2
=: rh. (6.7)

The rh-values are presented in Table 3. From this table it is evident that for dominant diffusion, i.e.,
ε = 10−1, both HF and CF scheme are second order convergent for h → 0. On the other hand, for
dominant advection, i.e., ε = 10−8, the HF scheme shows first order convergence for h → 0, whereas
the CF scheme is still second order convergent. The large entries for h−1 = 10, 20 in the last column of
the table indicate that the approximation (6.7) is not yet valid, or equivalently, the higher order terms in
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ε = 10−1 ε = 10−8

h−1 HF CF HF CF

10 4.41 6.76 2.39 2.36 × 101

20 4.54 6.00 1.97 −2.92 × 102

40 4.08 3.65 1.96 2.57
80 4.02 3.62 1.98 4.00
160 4.00 3.77 1.99 4.00
320 4.00 3.88 1.99 4.00
640 4.00 3.94 2.00 4.00
1280 4.00 3.97 2.00 4.00

Table 3: Example 2, the rh-values for the complete flux scheme and the homogeneous flux scheme as a
function of h−1, for maximum source term smax = 102.
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Figure 4: Example 2, the source term s (left) and the corresponding (numerical) solution (right) of (6.3).
Parameter values are ε = 10−8, smax = 102 and h−1 = 20.

(6.6) can not be neglected, and more importantly, that the CF-solution is already rather acurate even on
these coarse grids. This is confirmed in Figure 4 which shows the HF and CF solutions compared to the
reduced solution (RS) of the problem (mϕ)′ = s, ϕ(0) = 0.

Example 3. Shock layer solution for the compressible Navier-Stokes equations [12].
We apply the FV-CF scheme to the (dimensionless) compressible Navier-Stokes equations on the interval
(0, 1), i.e.,(

u − εu′)′ =
−1

γMa2 p′, (6.8a)(
T − αT ′)′ = (1 − γ)pu′ + εγ(γ − 1)Ma2

(
u′)2

, (6.8b)

T = pu, (6.8c)

u(0) = T (0) = p(0) = 1, u′(1) = T ′(1) = p′(1) = 0, (6.8d)

where u > 0 is the velocity, T the temperature and p the pressure, all scaled with their value at the inlet
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x = 0. Parameters in (6.8) are ε := 4/(3Re), with Re the Reynolds number, α := γ/(Pe), with Pe the
Peclet number and γ the specific heat ratio, and Ma the Mach number (at the inlet). The BVP (6.8) is
a model problem for one-dimensional steady compressible flow. Equation (6.8a) describes conservation
of momentum, equation (6.8b) conservation of energy and (6.8c) is the equation of state for a perfect
gas. Note that the continuity equation is missing since the (scaled) mass flux m(x) = 1. For supersonic
inflow, i.e., Ma > 1, system (6.8) has a shock layer connecting the constant states at inflow and outflow.

Both conservation laws (6.8a) and (6.8b) can be written in the standard form (2.1) with source terms
su and sT , respectively, given by

su :=
−1

γMa2 p′, sT := (1 − γ)pu′ + εγ(γ − 1)Ma2
(
u′)2

. (6.9)

The source term su is proportional to the pressure gradient, which drives the flow. The first term in sT
describes compression of the gas and the second viscous dissipation. When applying the FV-CF scheme
to (6.8), we need to address a few issues that are not standard. First, we can integrate equation (6.8a)
exactly over a control volume Ij , to find

fu

(
xj+1/2

) − fu

(
xj−1/2

)
+

1
γMa2

(
p
(
xj+1/2

) − p
(
xj−1/2

))
= 0, (6.10)

where fu := u− εu′ is the flux corresponding to equation (6.8a). Second, we can evaluate the integral of
su exactly, compare (3.2), and can derive from (3.10b) the following expression for the inhomogeneous
flux

f
(i)
u,j+1/2 =

1
γMa2

(
p̃j+1/2 − p

(
xj+1/2

))
. (6.11)

Substituting (6.11) in (6.10) we obtain the following discrete conservation law

F
(h)
u,j+1/2 − F

(h)
u,j−1/2 +

1
γMa2

(
p̃j+1/2 − p̃j−1/2

)
= 0, (6.12)

where F
(h)
u,j+1/2 is the homogeneous numerical flux for equation (6.8a). This equation replaces the dis-

crete conservation law corresponding to (2.5) and we only need to compute the homogeneous flux from
(4.7). Finally, the source term sT contains the derivative u′. In order to approximate u′(xj) we com-
pute u on the adjacent intervals [xj−1, xj ] and [xj , xj+1] from the homogeneous momentum equation(
u− εu′)′ = 0, compute its values at xj±1/2 and apply the standard central difference approximation as

follows:

u′(xj)
.=

1
Δx

(
u
(
xj+1/2

) − u
(
xj−1/2

))
=

1
Δx

(
A(−Pu/2)(uj − uj−1) + A(Pu/2)(uj+1 − uj)

)
,

(6.13)

where Pu := ε/Δx is the (numerical) Peclet number for the momentum equation (6.8a) and where the
function A(z) is defined by

A(z) :=
1

ez + 1
. (6.14)

It is easy to verify that A satisfies 0 ≤ A(z) ≤ 1 and A(−z) + A(z) = 1, so that we can interpret
the difference approximation in (6.13) as a weighted average of the forward and backward difference
approximations.
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Re = 2 × 102,Ma = 1.2 Re = 5 × 102,Ma = 1.2
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Figure 5: Solutions of boundary value problem (6.8) for Re = 2 × 102, 5 × 102 and Ma = 1.2, 2.0.
Other parameter values are Pr = Pe/Re = 0.72, γ = 1.4 and Δx = 5 × 10−3.

The final FV-CF scheme gives a nonlinear, (block) tridiagonal system for the unknowns u = (uj)
and T = (Tj), which we solve using Newton iteration in combination with continuation in Re; see e.g.
[2]. The first initial guess is computed from a scalar ODE valid for Pe/Re = 0.75. As an example, we
present four solutions in Figure 5. Clearly, the jump across the shock layer increases with increasing Ma
whereas its width decreases with increasing Re and/or increasing Ma, confirming the analysis in [12].

7 Summary and conclusions

We have derived an integral representation for the flux of the advection-diffusion-reaction equation from
a local BVP for the entire equation, including the source term. As a consequence, the flux consists of two
parts, i.e., a homogeneous and an inhomogeneous part, corresponding to the homogeneous and particular
solution of the BVP, respectively. A new representation of the inhomogeneous flux in terms of a Green’s
function is given. Combining this integral representation with suitable quadrature rules, we could derive
expressions for the numerical flux. Obviously, also the numerical flux consists of a homogeneous and
an inhomogeneous part. The inhomogeneous numerical flux turns out to be very important for dominant
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advection, since it ensures that the flux approximation remains second order accurate. Combining the
complete flux scheme with a standard finite volume discretisation, we obtain the finite volume-complete
flux scheme. This scheme turns out to be second order accurate, uniformly in the local Peclet numbers,
does not generate spurious oscillations, and moreover, has only a three-point coupling.

This paper is meant to be the framework for further research on this topic. Currently, we are extending
our research in the following directions. First, we combine the integral representation of the flux with
more accurate quadrature rules to derive higher order schemes. Second, we work on a complete flux
scheme for two-dimensional problems, and finally, we will extend the complete flux scheme to time-
dependent problems. Preliminary results are very promising and will be reported elsewhere. Finally, a
version of the complete flux scheme for spherically symmetric conservation laws is already presented in
[21].
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