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List of symbols and acronyms

Symbol Meaning

d̄ direction of d normalized to unity
do, di disturbance at the output, input of the plant respectively
D space D
diag{(·)} square matrix with diagonal terms taken from (·)
diag{(·)i} square matrix with (·)i on each ith diagonal term
f frequency in Hz.
Fl,Fu lower, upper fractional transformation
G plant
Gp plant from physical inputs to physical outputs
Gd disturbance model, diagonal terms of G
Gn sensor noise model
Gs mixing matrix
Gŝ estimate of mixing matrix Gs within indeterminacies
Gnd non-diagonal terms of G
In identity matrix with size n× n
ICA Independent Component Analysis
K feedback controller
κ(·) condition number of (·)
L open loop function evaluated at the output of the plant
Li open loop function evaluated at the input of the plant
λi(·) eigenvalue of (·)
ΛRGA relative gain array
M weighted closed loop
MIMO multiple input multiple output
N number of clock-wise encirclements
ω frequency in radians
P generalized plant
PCA Principle Component Analysis
P̄ generalized plant without weighting filters
s disturbances source s(t), Laplace variable when used as, e.g., H(s).

Continued on next page



iv List of symbols and acronyms

Symbol Description
SISO single input single output
SOBI Second Order Blind Identification
So, Si output, input sensitivity function respectively
ρ(·) spectral radius of (·)
σ(·), σ(·) the maximum, minimum singular value of (·)
σi(·) ith singular value of (·)
µT (·) structured singular value of (·) with respect to the structure of T
To, Ti output, input complementary sensitivity function respectively
τ shift operator
u plant input
y plant output
z performance variable
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Chapter 1

Introduction

1.1 Motion systems

Advanced motion systems are widely used in the high tech systems industry. Ex-
amples are active vibration platforms, wafersteppers, robotic manipulators, and
atomic force microscopes, Fig. 1.1a, Fig. 1.1b. The behavior of high performance
motion systems is typically dominated by mechanical dynamics. Therefore, me-
chanical systems are constructed to be light and stiff, with the objective to move
bandwidth limiting phenomena to high frequencies. A common trend is to equip
systems with more actuators and sensors in order to improve dynamical behav-
ior, [62, 115]. In other applications, it is required to actuate motion systems in
multiple degrees of freedom, [143]. The mechanics of such systems are typically
constructed with the objective to allow each degree of freedom to be controlled in-
dependently. These systems naturally have multiple inputs and multiple outputs
(MIMO). In order to meet high performance requirements, multivariable control
is a necessity.

Motion systems are often controlled by a combination of feedback and feedforward
control. If disturbances (such as the reference trajectory) can be directly mea-
sured, feedforward control can be applied, [13]. Disturbances that are not known
beforehand are often dealt with by means of feedback control. This thesis focusses
on the design of feedback controllers to reject such disturbances in multivariable
motion systems.
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(a) (b)

Figure 1.1: Two motion systems. Left: Multi-degree of freedom positioning stage
developed by Philips Applied Technologies, [15]. Right: Active vibration isolation
system developed by Integrated Dynamics Engineering.

1.2 Disturbance rejection

The rejection of disturbances in multivariable motion systems can be studied
considering the unity feedback control problem, with performance variable z =
y− r, depicted in Fig. 1.2. The MIMO plant G is subjected to exogenous signals

G d

s

K G yr e u

G n
p-

Figure 1.2: Unity feedback control architecture.

w = [s, p, r]T containing the source of disturbances, s, source of noise, p, and
reference signals, r. We focus on linear time invariant (LTI) plants, so that we
may perform analysis in the Laplace domain, [125]. This model, expressed in the
generalized plant framework, becomes,

[
z
e

]
=

[
Gd 0 −I G
−Gd −Gn I −G

]
s
p
r
u

 . (1.1)

With, u = Ke, we find,

z = SoGds− ToGnp− Sor, (1.2)
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where, So = (I + GK)−1, To = GK(I + GK)−1, are the output sensitivity and
output complementary sensitivity respectively. If the reference signals can be
measured or are known beforehand, either model based, [13], or iterative learn-
ing, [21, 144], feedforward can be applied. If the reference signal can not be
measured or is not known beforehand, it can be treated as a disturbance on the
outputs of the plant without loss of generality. We study the disturbance rejection
problem without reference trajectory, r = 0. Then, the objective is to minimize
the influence of disturbances and noise on the performance variable. Therefore, by
suitable design of controller K, both So and To are to be minimized with respect
to the characteristics of the disturbances and sensor noise. As known from the
internal model principle, [41], disturbances can be asymptotically rejected when
a model of the disturbance is contained in the controller. Approaches that build
on this concept are disturbance observers, [116, 121], disturbance accommodating
controllers, [69, 70], and H2 -or H∞ controllers, [39, 125]. Although each design
approach has its own favorable delicacies, results are similar when considered in
the frequency domain, [72]. Models of both plant and disturbances are essential
for high performance motion control.

In most motion systems, the dynamics of the plant can be considered to be linear
time invariant. Then, a common technique is to measure the frequency response
under closed loop conditions, [108]. The frequency response is a non-parametric
model of the plant. This frequency response function can be used to acquire para-
metric (e.g., state space, transfer functions) models using (polynomial) fitting
procedures, [96, 108]. A disturbance model can be obtained as a by-product of
plant identification, [127], or by filtering closed loop measurements with a model
of the relevant closed loop functions, [3, 133]. If the plant is linear, disturbances
can be considered as additive signals at either the input or the output of the
plant. Accurate models of plant and disturbances are usually difficult to develop.
Therefore, in order to compensate for the lack of total knowledge of the system,
intuition and insight play a significant role in designing feedback controllers.

In SISO control, the power spectra of disturbances assist the control engineer
to determine the ideal closed loop functions. With the known power spectrum
of the disturbances, the shape of the ideal open loop function can be determined
straightforwardly from the closed loop functions. The open loop frequency re-
sponse function can be shaped intuitively as the open loop function is linear in
the controller. Control design methods for motion systems therefore are mostly
developed in the frequency domain. In control of high performance SISO motion
systems, inherent limitations imply tradeoffs between disturbance rejection and
other design objectives, [89]. In the frequency domain, these tradeoffs can be
addressed directly during the design process, [3].

Things are not quite that simple for MIMO systems. First, for general cases,
it is not straightforward to relate closed loop functions with specific elements of
the controller transfer function matrix. Manual (re)tuning of the controller, as is
common in industrial SISO control, is therefore complicated. Second, aside from
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the power spectrum, the directions of disturbances determine the amplification
of disturbances by a closed loop function. Third, interaction between inputs and
outputs complicates control design significantly. For MIMO systems, these inher-
ent performance limitations are rather incomprehensible, and therefore it is not
intuitive to make either tradeoffs in control design or to predict achievable perfor-
mance, [26]. Therefore, interpretation and development of multivariable control
strategies, for a given design problem, poses challenges for academia and practis-
ing engineers, even though considerable effort has been made over recent decades,
[82, 103]. It is well known that developing a general intuitive design approach for
multivariable control problems is inherently problematic, [103].

In order to cope with the inherent complexity of multivariable control design
issues, pragmatic simplifications are a necessity. In many practical applications,
physical structure of the plant dynamics is exploited to simplify the multivari-
able control design problem. This leads to successful applications of multivariable
control to, for instance, nuclear plants, [98], paper machines, [59, 146], and au-
tomotive test rigs, [140, 141]. In, [48, 49], it is discussed how MIMO control
problems can be reduced to SIMO or MISO control problems in certain frequency
regions due to the presence of certain performance limitations. In, [43], it is
demonstrated how an optimal LQG controller can be reconstructed on the basis
of this physical insight.

The design methods discussed above, show that satisfactory approaches for SISO
problems can not always be extended to MIMO systems, while preserving phys-
ical insights. In this thesis, we investigate how these issues can be handled for
disturbance rejection control design for motion systems. Two frequency domain
design methods, that are commonly used in motion control, are discussed next.

1.2.1 Manual loopshaping

For SISO systems, the powerful concepts such as Bode gain-phase relation and the
Nyquist stability criterion, [10], allow quantitative and intuitive design of feed-
back controllers. This gave rise to development of manual loopshaping techniques
in the frequency domain, [129], and Quantitative Feedback Theory, [150]. Due
to straightforward relations between open loop and closed loop transfer functions
in SISO systems, closed loop specifications can be translated to an “ideal shape”
of the open loop function. As there exists a linear relation between the open
loop function and the controller, controller parameters can be designed rather
intuitively. With this, physical insight can be preserved throughout the control
design process. Therefore, SISO control has found application in a wide area in
industry.

Motivated by the succes of SISO control theory, there has been a strong de-
sire to extend these concepts for control design of MIMO systems. At least since
the 1960’s, the so-called “British School” techniques where developed, [113], [63],
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[82], [103]. These techniques extended SISO frequency domain concepts to find
stabilizing controllers for MIMO plants, [82], [84], [22]. Alternative approaches
exploit the structure of plant dynamics to decouple controlled variables, [102],
[56], [59], [140]. Most of these decoupling techniques are ad-hoc or at least very
application specific. These methods aim to factorize criteria for closed loop sta-
bility by decomposing a MIMO plant into (simpler) SISO subsystems. If each
subsystem is stabilized, the total MIMO system is closed loop stable. These “di-
vide and conquer” strategies, may work for stability, but do not necessary imply
that the performance of a MIMO system can be considered independently. Prac-
tical solutions to reject disturbances are therefore high gain feedback control to
enforce minimization of the sensitivity function. With this decoupling approach,
it is not straightforward to exploit the directional information in a multivariable
control problem.

1.2.2 Norm based loopshaping

The generalized plant framework, Fig. 1.3, provides a way to formulate practical
control design issues, [154]. The input signals of the transfer function matrix P

zw

K

P vu

Figure 1.3: Generalized plant configuration

are partitioned in two groups, the exogenous signals, w, and the control inputs, u.
Likewise, the output signals are divided in measurable signals, v, and performance
variables, z. The transfer function matrix P is arranged according to the signals,

P =
[

Pzw Pzu

Pvw Pvu

]
(1.3)

Herein, Pvu is the plant to be controlled. We find, using the lower fractional
transformation,

Fl(P,K) = Pzw + PzuK(I −GK)−1Pvw, (1.4)

the transfer function from w to z,

z = Mw, M = Fl(P,K). (1.5)

So that by careful modeling of P , the interplay of plant, disturbances and perfor-
mance variables can be analyzed. Furthermore, model uncertainty can easily be
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taken into account using this formalism, [125]. Modeling is non-trivial, especially
because many elements of P can often not be measured directly. The general-
ized plant can be augmented with weighting functions in order to characterize
exogenous signals and performance variables, so that,

z = WM̃V w, M = WM̃V. (1.6)

thereby specifying closed loop specifications. The control synthesis problem is to
find a controller K that internally stabilizes M and minimizes the transfer func-
tion from w to z in some operator norm. Typical operator norms on M are the
H∞ norm and the H2 norm. For these cases, powerful control synthesis methods
exists, [37].

The norm based control methods rely on the sensible choice of weighting fil-
ters and accurate models of the generalized plant. For SISO plants, models are
often straightforward to acquire from least square fits on frequency response data,
[108]. Weighting filters, that express closed loop performance objectives, are of-
ten designed in the frequency domain. Herein, the same insights as in manual
loopshaping can be used, [143]. Typically, design leads to iterative choices of
the weighting filters while evaluating the resulting closed loop functions. As the
controller from norm based techniques has the same order as the order of the gen-
eralized plant, plant model and controller reduction techniques are essential for
practical application, [148, 149]. The ad-hoc adjustments and design iterations in
plant modeling, weighting filter design and model reduction requires engineering
interventions and therefore relies on physical insight. For SISO systems, this is
relatively straightforward so that results of norm based control synthesis can be
related to results of manual loopshaping design techniques. Therefore, norm based
controllers have been successfully applied in industrial applications, [39, 79, 129].

For MIMO systems, norm based control is much more delicate. First, identi-
fication of MIMO plants is laborious, especially if low order models are to be
acquired, [96]. Second, since there is no linear relation between closed loop func-
tions and the controller transfer function, the effects of weighting filter choices
are not easily related to changes of the controller. Third, one has little insight
into the loss of performance associated with model and controller order reduction.
Therefore, the iterative tuning of weighting filters, that is natural in norm based
design, is much more involved and physical interpretation is difficult to maintain
throughout the design process.

If the plant is almost decoupled and all design objectives are stated as independent
objectives at each decoupled part of the plant, it is natural to choose weighting
filters diagonal. As an example of this, we mention the successful MIMO design
with H∞ reported in [143]. Many applications require more general design objec-
tives or more general disturbance models. However, even in those cases, weighting
filters are often chosen diagonal in an attempt to reduce control design complexity,
[125]. With this, multivariable aspects of the control problem are neglected in the
design, compromising achievable performance and failing in preserving physical
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insight and intuition. These are serious obstacles for norm based control design
to be adopted in industry.

1.3 Problem formulation

Conventional frequency domain design methods lack the ability to take into ac-
count multivariable aspects of disturbances. It is not expected that a general
solution to this design problem can be obtained. Therefore, we investigate how
properties of motion systems may be exploited to develop insightful multivari-
able control design methods for disturbance rejection. This leads to the following
problem statement:

Investigate how directions of disturbances can be identified and ac-
commodated in multivariable frequency domain loopshaping control
design techniques for motion systems, given the inherent limitations
of feedback control design.

This gives rise to the following research issues. First, it must be investigated how
properties of motion systems can be exploited in MIMO control design. Herein,
concepts of frequency domain MIMO control design and physical insights into
the dynamics of motion systems are merged. Second, a physically motivated
model of disturbances is to be acquired to further simplify MIMO control design.
Therefore, a technique is to be developed to characterize multivariable aspects of
disturbances in MIMO motion systems. Third, the inherent limitations in MIMO
control design are to be investigated to understand tradeoffs of performance in
MIMO control design. This may also motivate the choice of specific control design
strategies. Fourth, combining all insights of disturbance characteristics, plant
dynamics and the inherent limitations of feedback control, a design method is to
be developed for MIMO motion control. With this, we aim to develop intuitive
frequency domain manual and H∞ loopshaping design techniques for the rejection
of disturbances in MIMO motion systems.

1.4 Applications used in this thesis

The proposed design control methods are demonstrated on different application
examples. We apply conventional MIMO control design techniques to a six input,
six output active vibration isolation system (AVIS). This system has significant
plant interaction and demonstrates the complexity issues of industrial MIMO
motion control problems. This system is also used to demonstrate how synthet-
ically applied disturbances can be characterized using the techniques proposed
in this thesis. In Chapter 4, different MIMO feedback controllers are designed
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for a metrological atomic force microscope (AFM). This system has three inputs
and three outputs and little plant interaction. With this, it is illustrated how
disturbance directionality accommodating centralized control design techniques,
developed in this thesis, can be applied. Further examples are several simula-
tion models, a laboratory MIMO system and a simulation model of an industrial
waferstage.

1.5 Outline of the thesis

The outline of this thesis is as follows. In chapter 2, a general introduction of
the concepts of multivariable control for motion systems is presented. Specific
attention is paid to inherent design limitations induced by extensions of Bode’s
integral relations for MIMO systems. Decentralized design methods are discussed
and open loop decoupling strategies are shown. The theory is applied on an ac-
tive vibration isolation system. Chapter 3 proposes a method to identify the root
causes (sources) of disturbances with a fixed direction. It is shown how these
sources can be allocated in the active vibration isolation setup. Also, it is dis-
cussed how one may formulate a multivariable disturbance model that can assist
decentralized control (re)design. In chapter 4 control design methods are proposed
that specifically exploit the directions of disturbances and sensor noise in shaping
closed loop functions in the frequency domain. Manual and H∞ techniques are
adapted to take into account the properties of fixed direction disturbances and
noise for a specific class of motion systems. Chapter 5 closes with conclusions and
suggestions for future research.
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Chapter 2

Multivariable control

This chapter introduces definitions and concepts in feedback control of linear
time invariant (LTI) multiple input multiple output (MIMO) systems that are
used in this thesis. A general introduction to multivariable control can be found
in [55, 84, 92]. Classical frequency domain loopshaping techniques for multivari-
able systems can be found in [22, 83, 84, 102, 113]. In [114, 125, 154], an overview
of robust and optimal control methods for multivariable systems is presented.
Modal control techniques are discussed in [52, 66, 91]. This chapter merges some
of these concepts that are relevant for multivariable motion control.

After the introduction of some general concepts, we investigate the inherent lim-
itations of MIMO feedback control. Next, design techniques for decentralized
control are developed. Different design approaches are applied to an active vi-
bration isolation system in Section 2.5. The chapter closes with a discussion on
disturbance rejection in MIMO systems.

2.1 Control design

We limit ourselves to feedback control design for LTI plants with n inputs and
n outputs, denoted by the transfer function matrix G(s). This transfer function
matrix relates the n×1 vector valued input u(s) to the n×1 vector valued output
y(s) as y(s) = G(s)u(s). A common phenomenon in a multivariable system is the
presence of interaction.

Definition 2.1.1. A system H(s), with z(s) = H(s)d(s), has interaction when
input di(s) changes output zj(s) for i 6= j. If input di(s) only changes output
zi(s), the system is said to be non-interacting or decoupled.
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Figure 2.1: Single degree of freedom unit feedback configuration.

Note that by this definition, a system described by a skew-diagonal transfer func-
tion matrix has interaction. In that particular case, one may choose alternative
input output pairings in order to reduce interaction, [142]. A system that is de-
scribed by a transfer function matrix where all off-diagonal terms of that matrix
are zero, is decoupled. If a controller, K, is described by a transfer function matrix
where all off-diagonal terms are zero, we call this controller a decentralized con-
troller. A controller where the structure is not constrained, is called a centralized
controller. As both the plant and the controller are matrices, the commutative
property does not hold in general, hence GK 6= KG. This makes it difficult to
extend SISO concepts to MIMO control design.

A single degree of freedom feedback system is depicted in Fig. 2.1. Typical
control objectives are to 1) stabilize the closed loop system, and 2) achieve a
satisfactory level of performance. Performance typically implies that the transfer
from vector valued signals di, do, n to the vector valued variable z has to be min-
imized, with minimal control effort u. The challenge is to satisfy these control
objectives in presence of uncertain dynamics in the plant model. If stability and
performance are achieved for a set of described uncertain plants, we say that we
have achieved robust stability and robust performance.

2.1.1 Stability

The first requirement of feedback control, is to achieve closed loop stability. Most
design approaches in this work are formulated in the frequency domain. Therefore,
a condition for closed loop stability in the frequency domain will be presented. Let
pL be the number of open loop unstable poles in the open loop transfer function
matrix L(s) = G(s)K(s). Then, the negative feedback closed loop system, with
open loop L(s), is stable when,

det(I + L(s)), (2.1)

makes pL anti-clockwise encirclements of the origin and does not pass through the
origin as s traverses the usual Nyquist contour, [84, p.59]. We use the property,

det(I + L(s)) =
∏

i

(1 + λi(L(s)). (2.2)
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Herein, λi(L(s)), as s goes once round the Nyquist contour, is the ith characteristic
locus of L(s). This gives rise to the frequency domain criterion for closed loop
stability, known as the Generalized Nyquist criterion, [110].

Definition 2.1.2. A feedback system, depicted in Fig. 2.1, is closed loop stable
when there are no pole zero cancelations between G(s) and K(s), the open loop
L(s) = G(s)K(s) has pL unstable poles and the characteristic loci, λi(L(s)), i =
{1, ..., n}, taken together, encircle the point (−1, 0) in the Nyquist plane, pL times.

For SISO systems, the characteristic locus, λ(L(s)), evaluated at frequency s = jω
is equal to the frequency response of the open loop. As the open loop is lin-
ear in K, the shape of the controller frequency response function directly deter-
mines the shape of the open loop frequency response function, and thereby the
characteristic locus. In MIMO systems, the characteristic loci are the eigenval-
ues of the frequency response function of the open loop transfer function ma-
trix. In general, it is not straightforward to relate a single element of the con-
troller transfer function matrix to the shape of a particular characteristic locus.
Methods that aim at directly shaping the characteristic loci are developed in
[84, 113]. Herein, a certain degree of open loop decoupling is required. With
this, the structure of the controller is constrained. If the plant is decoupled,
G(s) = diag{gi(s)}, and the controller is chosen diagonal K(s) = diag{ki(s)}, it
follows that det(I + L(s)) =

∏n
i=1 det(1 + gi(s)ki(s)). If each single input, single

output loop is stable, the MIMO system is stable. Alternative approaches to fac-
torize (2.1) are discussed in Section 2.3.

As in classical SISO control design, one may define gain and phase margins on
the characteristic loci in the Nyquist plane. However, these margins can only be
used to express robustness for simultaneous parameter change in all the loops,
[47]. More general methods to describe robust stability construct uncertainty
templates about the characteristic locus of a nominal system, [74]. Although con-
struction of these templates is not straightforward, it can be shown that these
conditions for robust stability are both necessary and sufficient, [77]. A common
approach to derive necessary and sufficient, conditions for robust stability, is by
using the structured singular value, [35].

2.1.2 Performance

The performance objectives in the example shown in Fig. 2.1, imply that the
transfer function from exogenous signals, di, do and n, to the vector valued vari-
able z is minimized with minimal control effort. In classical control, this is ac-
complished by minimizing the gain of the corresponding transfer functions. In
multivariable systems, the gain of a transfer function is not unique and depends
on the direction of the input signal. For a vector valued signal d ∈ D, where
D = Span{e1, ..., en}, eie

T
i = 1, eie

T
j = 0, i 6= j, the direction is defined as

follows.
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Definition 2.1.3. The direction d̄ of a vector valued signal d ∈ D is defined as,

d̄ =
1

‖d‖2
d. (2.3)

The direction d̄ of disturbance d can be interpreted as the normalized ratio in
which d enters at a point in a feedback system. A signal that has a canonical
direction, namely if d̄ = ei, acts only at a single channel of the feedback system.

In the special case that the open loop transfer function L = GK is decoupled,
all closed loop transfer functions in Fig. 2.1 are decoupled. If then all distur-
bances and sensor noise have canonical directions and the performance variables
are defined in each decoupled loop independently, performance analysis is similar
to that of SISO systems. For more general cases, performance analysis is not
that straightforward. This is due to the fact that MIMO systems do not have a
unique gain as this depends on the direction of the input. Therefore, the gain of
a transfer function matrix H(s), with z(s) = H(s)d(s), is often studied using the
ratio,

‖H(s)d(s)‖2
‖d(s)‖2

, (2.4)

where ‖ · ‖2 is the Euclidian vector norm. We can take s = jω to study this ratio
at a single frequency ω. It then follows that, as z(jω) = H(jω)d(jω),

σ(H(jω)) ≤ ‖H(jω)d(jω)‖2
‖d(jω)‖2

≤ σ(H(jω)). (2.5)

The largest and smallest gain of the system H, at frequency ω, are defined as the
maximum and minimum singular value of H(jω), namely σ(H(jω)), σ(H(jω))
respectively. If σ(H(jω)) ≈ σ(H(jω)), the gain of H, at frequency ω, does not
change with different directions of d. The condition number of a system H,
evaluated at frequency ω, is defined as,

κ(H(jω)) =
σ(H(jω))
σ(H(jω))

. (2.6)

A transfer function, evaluated at frequency ω, is called ill-conditioned, skew, or
not-normal if κ(H(jω)) � 1, [63]. The gain of an ill-conditioned system depends
strongly on the direction of the input signals. For the control objectives of the
feedback system shown in Fig. 2.1, one must minimize σ(So), σ(To), σ(SoG) and
σ(KSo). As will be shown in Section 2.2, these objectives are conflicting so that
tradeoffs in achievable performance are to be made. In classical control design
methods, closed loop objectives are translated to specifications on the shape of
the open loop transfer function. The next section shows how a similar approach
can be followed using the singular values of transfer functions.
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2.1.3 Loopshaping

Classical control design methods aim at shaping the frequency response function
of the open loop transfer function to achieve closed loop performance objectives.
For SISO systems, the relation between open loop and closed loop functions is
straightforward. Hence, closed loop specification can be used to construct a pre-
ferred shape of the open loop function. This may lead to insights in the achievable
performance and facilitates transparent control (re)design, [58, 129]. For MIMO
systems, a similar approach can be followed using the concepts of the singular
value decomposition of a transfer function matrix per frequency, [63].

Definition 2.1.4. The ith principal gain of a system H is the ith singular value
of H(jω) at each frequency ω.

The input or output principal vector, is the input (right) or output (left) singular
vector that belongs to each principal gain. The direction of a principal vector is
called the principal direction. We have that, [125, p.522],

σ(L(jω)) ≤ |λi(L(jω))| ≤ σ(L(jω)), (2.7)

where λi(·) is the ith characteristic locus. This provides a relation between sta-
bility and the principal gains of a multivariable system. When, κ(L(jω)) → 1, it
follows that σ(L(jω)) ≈ |λi(L(jω))| ≈ σ(L(jω)), [63].

The principal gains can be studied to relate closed loop transfer functions to
the open loop transfer function at single frequency ω, [38]. For the sake of nota-
tional brevity, the system H evaluated at s = jω is written as H instead of H(jω).
Considering the output sensitivity function, So = (I +GK)−1, for example, basic
linear algebra results in,

σ(L)− 1 ≤ 1
σ(So)

≤ σ(L) + 1 (2.8)

|σ(L)− 1| ≤ 1
σ(So)

≤ σ(L) + 1. (2.9)

At frequencies where σ(L) � 1, σ(So) ≈ 1
σ(L) . At frequencies where σ(L) � 1,

σ(So) ≈ 1. So that only in these extreme cases, relations between closed loop and
open loop are straightforward. The consistency condition, [125, p.532], implies
that,

σ(So)σ(L) ≤ σ(To) ≤ σ(So)σ(L). (2.10)

If σ(L) ≈ σ(L), relations between different transfer functions can be made. Using
the property that Si = G−1SoG, Si = KSoK

−1 and the minimax property of the
singular values, [53], we find,

κ(G)−1σi(So) ≤ σi(Si) ≤ κ(G)σi(So)

κ(K)−1σi(So) ≤ σi(Si) ≤ κ(K)σi(So), (2.11)
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which shows that the sensitivity at the plant input and the sensitivity at the plant
output can only be related straightforwardly if either κ(K) = 1 or κ(G) = 1. Re-
stricting a controller so that κ(K) = 1 is unrealistic, especially if κ(G) � 1 or the
specifications, e.g. induced by uncertainty, are strongly direction dependent.

These relations show that stability and worst case performance at different loop
breaking points can only be simplified when transfer function matrices are not
skew. Also, these relations only consider worst case directions and provide little
information about the performance of inputs with other directions. Furthermore,
the relation between the principal gains and the elements of the controller transfer
function matrix is not straightforward.

2.1.4 Discussion

In multivariable systems, redesign of a single element of a controller transfer
function matrix may change performance and closed loop stability of the whole
multivariable system. There exist no simplified relations between open loop and
closed loop transfer functions for the general case. Also, it is difficult to relate
transfer functions at different loop breaking points. Therefore, one can not make
use of simplifications that are typically exploited in singe input single output con-
trol design. Worst case measures, that can be derived using properties of the
singular value decomposition, provide less insight if the plant is skew or when the
plant has many inputs and outputs.

A common approach is to modify the multivariable system so that the perfor-
mance objectives and stability conditions can be factorized in simpler sub prob-
lems. These approaches typically require a deep physical understanding of the
multivariable control problem. Also, the structure of the controller can be re-
stricted to reduce the degrees of freedom of the control design problem. This
is discussed in Section 2.3. As many performance objectives may be conflicting,
feedback control design involves tradeoffs. These tradeoffs are discussed in the
next section.

2.2 Limitations in performance

Disturbance rejection by feedback design involves minimizing relevant closed loop
transfer functions. As is widely recognized in practise, minimization of sensitivity
functions is limited due to inherent constraints. Due to these constraints, feedback
control design has to face tradeoffs in achievable performance, [89]. Understanding
these tradeoffs facilitates formulating realistic specifications in control design. We
follow the convention from [45] where limitations are divided in limitations that
are either algebraic or analytical in nature. The implication of these for MIMO
control design will be discussed in this section.
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2.2.1 Algebraic limitations

Algebraic limitations relate properties of closed loop transfer functions at different
loop breaking points. The following holds at a single frequency ω,

So + To = I, Si + Ti = I. (2.12)

This results straightforwardly from the definition of the sensitivity and comple-
mentary sensitivity function. Hence, at a single frequency, perfect disturbance
rejection implies amplification of sensor noise. In multivariable systems, direc-
tions of disturbances and noise play an important role in (2.12). From (2.12)
it follows that if an output disturbance with direction d̄, at one frequency, is
perfectly rejected,

Sod̄ = 0, (2.13)

then, at that same frequency, sensor noise with direction n̄ = d̄, is amplified
with a factor 1, as Tod̄ = d̄. Likewise, when in the output space spanned by z̄,
disturbances are not visible,

z̄So = 0, (2.14)

sensor noise is passed through with a factor 1 in the output space of To spanned
by z̄, as z̄To = z̄. In cases where the direction of sensor noise and the direction
of disturbances are orthogonal, these algebraic relations do not necessary imply
that performance is compromised.

2.2.2 Analytical limitations

Analytical limitations are induced by integral relations, such as the Bode sensi-
tivity integral, [10]. These limitations lead to delicate tradeoffs when the (com-
plementary) sensitivity function is to be minimized across frequencies. In SISO
motion control, analytical limitations are eminent, leading to considerable perfor-
mance degradation in practical applications, [3], [89]. In this section, we express
the analytical limitations in terms of the sensitivity functions. In [90] these limita-
tions are also expressed for the complementary sensitivity function. Performance
limitations within a single input and single output generalized plant framework
are discussed in [44]. For our analysis, the following lemma is required.

Lemma 2.2.1. A single input single output, stable, closed loop sensitivity func-
tion S = (I + L)−1, with L the open loop function, and where L has Np RHP
zeros and has Nz RPH poles can be factorized as,

S(s) = S̃(s)Bp(s)Bz(s) (2.15)

where S̃(s) is minimum phase and has no RHP poles and Bp(s), Bz(s) are (all-
pass) Blaschke products defined as,

Bp(s) =
Np∏
i=1

pi − s

p̄i + s
, Bz(s) =

Nz∏
i=1

zi − s

z̄i + s
(2.16)
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for the set of poles {pi : i = 1, ..., Np} and zeros {zi : i = 1, ..., Nz} of S(s) that
lie in the open right half plane. Then,

∫ ∞

0

log(|S(jω)|)− log(|S(j∞)|)dω =
π

2
kHF +π

Np∑
i=1

Re pi +π

Nz∑
i=1

Re zi, (2.17)

where,

kHF = lim
s→∞

s(S(s)− S(∞))
S(∞)

. (2.18)

Proof. see [119, p. 54].

This leads to the Bode sensitivity integral for SISO systems, [10, 45].

Theorem 2.2.1. A stable single input single output closed loop sensitivity func-
tion S(s), with open loop L(s) with relative degree two or more, must satisfy the
following integral relation,

∫ ∞

0

log |S(jω)|dω = π

Np∑
i=1

Re pi + π

Nz∑
i=1

Re zi. (2.19)

Proof. If the relative degree of the open loop is more than one, it follows that
log(|S(∞)| = 0 and kHF = 0, in (2.17), [119, p. 318]. The Np RHP zeros of the
open loop are RHP poles of the sensitivity function. the Nz RHP poles of the
open loop are the RHP zeros of the sensitivity function. So that (2.17) reduces
to Thm. 2.2.1.

This shows that reducing the sensitivity function in one frequency range, implies
that the sensitivity function must increase at other frequencies. Most literature
discusses the influence of unstable poles and zeros onto the performance tradeoffs,
[45, 119]. In motion control systems, a common issue are bandwidth constraints
imposed by plant uncertainty or sensor noise. At frequencies where plant uncer-
tainty or sensor noise are large, the complementary sensitivity function must be
small. By means of the algebraic relation, this implies that the sensitivity func-
tion is close to unity at those frequencies. Hence, the range where the sensitivity
can be increased is limited. This leads to a frequency range where |S| > 1 if
disturbances are to be rejected at other frequency ranges. Hence, the desirable
property of the sensitivity function in one frequency range, must be traded off
against an undesirable property of that sensitivity function at another frequency
range.

In MIMO systems, poles, zeros, uncertainty and noise have directions associ-
ated with them. The influence of directions associated with unstable poles and



2.2: Limitations in performance 17

zeros on the performance limitations is discussed extensively in [26, 54]. Here, we
are particularly interested in the influence of directions of noise and disturbances.
An integral relation for MIMO systems was presented in [19, 47] and is repeated
below.

Theorem 2.2.2. Assume that the open loop function L(s) is stable and all entries
are rational functions with at least two more poles than zeros. Then, if the closed
loop system is stable, the determinant of the output sensitivity function, So =
(I + L)−1,must satisfy,∫ ∞

0

log |det(So(jω))|dω = 0 (2.20)

Proof. See [19, 47].

Corollary 2.2.1. With σi(So) the ith principal gain (singular value per fre-
quency) of the output sensitivity matrix and the fact that |det(A)| =

∏n
i=1 σi(A),

Thm. 2.2.2 implies that,∫ ∞

0

log σi(So(jω)dω = Fi, and
n∑

i=1

Fi = 0. (2.21)

So that,∫ ∞

0

log σ(So(jω))dω ≥ 0,

∫ ∞

0

log σ(So(jω))dω ≤ 0. (2.22)

From Cor.2.2.1 it follows that there exists a tradeoff for the sum of the log magni-
tudes of the principal gains. The terms Fi can be non-zero, hence, it is possible to
exchange frequency wise tradeoffs between principal gains. Each principal gain is
related to a principal input and output direction. In [26, 47] it is shown that the
terms Fi become non-zero when the principal directions of the sensitivity function
change rapidly in a small frequency region. If the principal directions change per
frequency, it is difficult to relate a specific input and output of the sensitivity
function to a particular principal gain of the sensitivity function. Therefore, it is
difficult to exchange frequency wise tradeoffs between principal gains in practical
control design.

Using Lem. 2.2.1, an alternative integral relation, originally proposed in [45]
and studied elaborately in [132], can be useful to study performance tradeoffs in
MIMO systems.

Theorem 2.2.3. Consider a stable, minimum phase1, n×n multivariable output
sensitivity function, So(s), with a stable open loop function with relative degree two

1For MIMO systems holds that ζ is a zero of system H(s) if the rank of H(ζ) is less than the
normal rank of H(s). A system H(s) is minimum phase if its transfer function matrix has only
zeros in the open left half plane. A system H(s) is non-minimum phase if its transfer function
matrix contains zeros in the closed right half plane.
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or more. Then, by pre and post multiplication with vectors v, u ∈ Cn, vHu 6= 0 the
scalar transfer function Svu(s) = vHSo(s)u, which has zi, i = {1, . . . , Nz} closed
right half plane zeros, must satisfy,∫ ∞

0

log |Svu(jω)| dω = log |vHu|+ π

Nz∑
i=1

Re zi (2.23)

Proof. As So is stable, the scalar transfer function Svu is stable, and has at
most the relative degree of So(s). With Lem. 2.2.1, we have that kHF = 0
and log |Svu(∞)| = log |vHu|. Even if So is minimum phase, Svu can become
non-minimum phase. These zeros are contained in the set {zi : i = 1, ..., Nz}.

This implies that at an area where |Svu(jω)| is small, must be balanced by an
equal area where |Svu(jω)| is large. As, due to uncertainty, the frequency inter-
val where |Svu(jω)| is small is constrained, there must exists a frequency range
where |Svu(jω)| is significantly larger than |vHu|. If Svu has non-minimum phase
zeros, this tradeoff is even harder. The determination of those non-minimum
phase zeros is not straightforward as there exist no simple relations between the
MIMO open loop function L(s) = G(s)K(s) and the non-minimum phase zeros
of Svu(s). Typical choices of v, u illustrate how these frequency wise tradeoffs
dictate multivariable control design.

Corollary 2.2.2. When v, u are chosen to be elementary vectors ei, Svu(s) =
So,ii(s) equals the ithdiagonal element of the sensitivity transfer function matrix.
As eT

i ei = 1, Theorem 2.2.3 reduces to the Bode integral relation for scalar sys-
tems, Theorem 2.2.1.

Corollary 2.2.3. To study non-diagonal terms of the sensitivity transfer function
matrix, v, u can be chosen to approach orthogonal elementary vectors, eH

i ej = ε,
0 < ε � 1 , Svu(s) = eT

i So(s)ej. Then,

lim
ε→0

log(|eH
i ej |) = −∞. (2.24)

Then, considering (2.23), there is no limitation in minimizing |Svu|.

Corollary 2.2.4. By choosing M = Span{v1, v2, . . . , vn} with ui = vj ∈ Rn and
vT

i vj = 0, an orthogonal transformation So,M (s) = MT So(s)M can be made. As
this is a non-singular input output transformation, So,M is minimum phase if So

is minimum phase. Then on each new base Thm. 2.2.3 applies with Nz = 0.

From Cor. 2.2.2 it follows that performance in each feedback loop from the ith

input of the plant to the ith output of the plant, is bounded by the classical SISO
integral relation. Hence, even if a system is multivariable and a multivariable
centralized controller may be designed, the same performance limitations as in
SISO systems apply for each loop. Considering, Cor. 2.2.3, it follows that there is
no limitation to minimize a single non-diagonal term of the sensitivity function.
Corollary 2.2.4, shows that if a system is decoupled with orthogonal transforma-
tions, the classical SISO integral relation apply in each decoupled direction.
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Corollary 2.2.5. The response to a disturbance entering the n×n closed loop sta-
ble system in a direction spanned by d̄ is given by So(s)d̄. Then, Sz̄d̄(s) = z̄HSo(s)d̄
is the component of that disturbance that appears in the output direction spanned
by z̄. The transfer function from a single disturbance in direction d̄ to a single
constant linear combination of outputs with direction z̄ must satisfy,

∫ ∞

0

log |Sz̄d̄(jω)| dω = log |z̄H d̄|+ π

Nz∑
i=1

Re zi (2.25)

where zi, i = {1, . . . , Nz} are the closed right half plane zeros of Sz̄d̄(s).

Hence, it follows that if the direction of a disturbance is constant for all frequen-
cies, and the performance is defined as a constant linear combination z, rejection
of that disturbance at one frequency implies that the sensitivity function has to
be increased at other frequencies in that same direction. Therefore, if specifica-
tions become tighter, it is crucial to reject disturbances only at frequencies and in
directions that are relevant. If the structure of the controller is constrained, e.g.
in the case of decentralized control, it may be impossible to reduce the sensitivity
functions in only those directions that are relevant for disturbance rejection. In
those cases, centralized control may be beneficial. This is illustrated with several
examples in Chapter 4.

2.3 Decentralized control

Decentralized control involves the design of a diagonal controller, K, for a MIMO
plant. Restricting the controller to a diagonal structure limits the class of con-
trollers and thereby reduces the class of achievable closed loop functions. Re-
quiring the controller to have a decentralized structure, may therefore lead to
unnecessary limitations in achievable performance. Advantages of decentralized
control are of practical nature. First, the number of elements of the transfer func-
tion matrix of the controller that are to be designed is reduced with n2 − n for
square controllers. Second, in some applications, interaction of the plant is small,
then, design of each element of the transfer function matrix of the controller can
be carried out using SISO techniques. Hence, online re-tuning can be straightfor-
ward, as redesign has only localized effect.

The elements of the transfer function matrix of the decentralized controller can be
designed either sequentially or independently. Both approaches will be discussed
next. For notational clarity, the discussion is limited to diagonal decentralized
controllers. With little work, the present framework can be extended to study
block diagonal controllers (partially diagonal, partially centralized). Most of the
theory of this chapter is a natural extension of concepts from robust control and
was developed in [56, 109] and discussed in great detail in [92, 125].
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2.3.1 Independent design

With independent decentralized control design, each element of the transfer func-
tion matrix of a decentralized controller is designed independently. This implies
that in each design, the effects of other elements of the transfer function matrix of
the decentralized controller are not taken into account. With the design of each
element of the controller, a single output of the plant is fed back to a single input
of the plant. Clearly, if plant interaction increases, the coupling between each
control design increases. Therefore, one can expect that it is more difficult to de-
sign a decentralized controller independently if plant interaction is large. In this
section, sufficient conditions for the independent designs are derived to account
for stability and performance objectives of the total MIMO system. With this, it
is illustrated how much plant interaction can be tolerated using an independent
decentralized control design approach.

Stability by independent design

The goal is to derive sufficient conditions for each independent design that, if satis-
fied, guarantee closed loop stability of the total MIMO closed loop system. Plant
interaction can be described as additive perturbations on the diagonal terms,
Gd = diag{G}, of the plant,

G = Gd + Gnd (2.26)

see also, Fig. 2.2a. In the following, it is assumed that Gd is invertible, a more
general approach is discussed in [22]. The following closed loop functions are
defined,

Sd = (I + GdK)−1, Td = I − Sd. (2.27)

Herein, K, is the decentralized controller and has a diagonal transfer function ma-
trix. Therefore, both Sd and Td have diagonal transfer function matrices. Each
diagonal element of Sd and Td is determined by the design of a single element
of the decentralized controller. It is investigated how interaction constraints the
shape of Sd, Td if each element of the decentralized controller is to be designed
independently. An alternative way to study interaction due to non-diagonal terms
of the plant, is to describe interaction as either a multiplicative output perturba-
tion, ET , Fig. 2.2b, or inverse multiplicative output perturbation, ES , Fig. 2.2c,
[109]. So that,

ET = (G−Gd)G−1
d , ES = (G−Gd)G−1. (2.28)

First, the influence of ET is discussed, we will return to ES later. The return
difference matrix of the MIMO system can be factorized as,

(I + GK) = (I + ET Td)(I + GdK). (2.29)
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Figure 2.2: Different ways to describe interaction. a) Interaction as additive
perturbation. b) Interaction as multiplicative output perturbation. c) Interaction
as inverse multiplicative output perturbation.

To study nominal stability, the generalized Nyquist criterion can be factorized in
a similar fashion, [56]. It is assumed that Td is stable and the number of open
loop unstable poles of GdK and GK equals pd, p respectively. Then, using the
Generalized Nyquist criterion, a necessary and sufficient condition for the closed
loop stability of a system with open loop L(s) = G(s)K(s) is that,

N (det(I + ET (s)Td(s))) = pd − p (2.30)

where N (·) is the number or clockwise encirclement of the origin as s travels the
Nyquist D-contour in a clockwise direction, see also [125, Lemma A.5, p.543],
[56]. If Td(s) is stable and G(s) is stable, a sufficient condition for stability of the
overall MIMO system is, for s = jω,

ρ(ET (jω)Td(jω)) < 1,∀ω. (2.31)

Herein, ρ(·), is the spectral radius, ρ(·) = maxi |λi(·)|, [125]. The objective is
to determine an interaction induced bound on Td. Therefore, we will have to
split up (2.31). The least conservative way to split up ρ(ET Td) is by using the
structured singular value2 ρ(ET Td) ≤ µ(ET Td) and the property that µ(ET Td) ≤
µTd

(ET )σ(Td). Herein, µTd
(·) means, that µ is calculated with respect to the

block diagonal structure of Td. Then, the following sufficient condition for closed
loop stability becomes evident.

Theorem 2.3.1. The MIMO system (I + G(s)K(s)) is stable if G(s) is stable,
(I + Gd(s)K(s)) is stable, and if, for s = jω

σ(Td(jω)) < µ−1
Td

(ET (jω)) (2.32)

is satisfied for all frequencies ω.

Proof. See [92, p.371].

As Td(s) is a diagonal transfer function matrix, we find,

σ(Td(s)) = max
i
|Td,i(s)|, i = {1, ..., n} (2.33)

2The structured singular value with respect to the structure of ∆, namely µ∆(M(s)), is
defined as µ∆(M(s)) = 1

min∆{σ(∆)| det(I−M(s)∆)=0, for structured ∆} , see [154, p.277].
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where Td,i is the complementary sensitivity function of the ith individual loop.
Hence, it is clear that Thm. 2.3.1 provides a single bound for all n loops of a
control system. Herein, only a non-parametric model, e.g., frequency response
data, of the plant is required. Considering the inverse multiplicative output per-
turbation, Es, (2.28), the same line of reasoning as in Thm. 2.3.1 can then be
followed to derive the following theorem.

Theorem 2.3.2. The MIMO system (I + G(s)K(s)) is stable if G(s) is stable,
(I + Gd(s)K(s)) is stable, and if, for s = jω

σ(Sd(jω)) < µ−1
Sd

(ES(jω)) (2.34)

is satisfied for all frequencies ω.

Proof. See [92, p. 372].

Either the criterion of Thm. 2.3.1 or Thm. 2.3.2 must be achieved at all frequen-
cies. Depending on the specific characteristics of Td and Sd and the nature of ET ,
ES , one may prefer to use either Thm. 2.3.1 or Thm. 2.3.2. The theorems can
not be combined over different frequency ranges, [124].

From Thm. 2.3.1, it follows that µTd
(ET ) must be small at frequencies where

σ(Td) ≈ 1, so at frequencies within the closed loop bandwidth. In case of integral
control, or rigid body plant dynamics, Td ≈ I at low frequencies. Hence, Thm.
2.3.1 shows that µ−1

Td
(ET ) < 1 at those frequencies. These observations give rise

to controller independent measures of plant interaction that will be discussed later
in this chapter.

Using, either Thm. 2.3.1 or Thm. 2.3.2, a single criterion is derived for all loops
of the decentralized control design, see (2.33). As interaction can be highly struc-
tured, this single criterion may not provide enough information for the individual
designs. Inspired by Gershgorin’s theorem, [113], one can find an alternative way
to split up Equation 2.31 which leads to the following sufficient condition for
stability.

Theorem 2.3.3. The MIMO system (I+G(s)K(s)) is stable if G(s) is stable, (I+
Gd(s)K(s)) is stable, and if for each ith individual loop with scalar complementary
sensitivity function Td,i(s) holds that, for s = jω,

|Td,i(jω)| < |Gii(jω)|∑n
i,i 6=j |Gij(jω)|

or |Td,i(jω)| < |Gii(jω)|∑n
i,i 6=j |Gji(jω)|

i = {1, ..., n}

(2.35)

for all frequencies ω.

Proof. See [125, p.439]
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With this, we have obtained a bound for every loop of a decentralized control
design. A bound for a single design may be smaller than the bound obtained
from Thm. 2.3.1. The smallest bound in Thm. 2.3.3 is always smaller or equal
than the bound obtained from Thm. 2.3.1, hence Thm. 2.3.3 is more restrictive.

The terms at the right hand side of (2.35), are the inverse of the Gershgorin
bands and are related to the concepts of row and column dominance3 as used
in classical Inverse Nyquist Array (INA) design method and Perron-Frobenius
theory, see [113], [84, p.182]. Row and column dominance are dependent on the
scaling of the inputs and outputs of the plant. A scaling independent measure is
defined in the following.

Definition 2.3.1. A system G, factorized using (2.28), is generalized diagonal
dominant at frequencies ωd when holds that either

µTd
(ET (jωd)) < 1 or µSd

(ES(jωd)) < 1. (2.36)

If a system is generalized diagonal dominant at frequency ωd, there exists a sim-
ilarity transformation, e.g., regular scaling matrix, D, so that DG(jωd)D−1, is
diagonally dominant at frequency ωd. This scaling matrix can be determined by
calculating the upper bound of µTd

(ET (jωd)),

µTd
(ET (jωd)) ≤ min

D∈D
σ(D(jωd)ET (jωd)D(jωd)−1), DTd = TdD. (2.37)

A system G(s) that is not diagonal dominant, but is generalized diagonal domi-
nant, may be scaled with matrix D,

Gs(jωd) = D−1G(jωd)D (2.38)

so that Gs is diagonal dominant at frequency ωd, if,

min
D∈D

σ(D(jωd)ET (jωd)D(jωd)−1) < 1, (2.39)

[84, p.119]. The generalized dominance measure defined here, is less strict than
the classical generalized dominance measure used in Perron-Frobenius theory, [84,
p.182].

The generalized dominance concept is strongly related to so called interaction
measures, [56]. The Rijnsdorp interaction measure, [112], per frequency ω, is
defined for 2× 2 systems as,

κR(G(jω)) =
G12(jω)G21(jω)
G11(jω)G22(jω)

. (2.40)

3Let us define a square system G with ET = (G−diag{G})diag{G}−1 as in (2.28). Then, G is
called row dominant if maxi

P
j |eij | < 1. The system G is column dominant if maxj

P
i |eij | <

1. A system is diagonal dominant if it is either row or column dominant, [84, p.65].
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If κR(G) ≈ 0, there is no interaction. As µTd
(ET ) =

√
κR(|G|), it is clear that

Rijnsdorp interaction measure is related to generalized dominance. The relative
gain array, [20], per frequency ω is defined as,

ΛRGA(ω) = G(jω)× (G(jω)−1)T (2.41)

where × denotes element-wise multiplication. At frequencies where the relative
gain array approaches the identity matrix, two sided interaction is small. For 2×2
systems holds that,

ΛRGA(ω) =
[

λRGA 1− λRGA

1− λRGA λRGA

]
, λRGA =

1
1− κR(G)

. (2.42)

Which again shows the relation between the relative gain array and the generalized
dominance measure. In some applications, interaction measures may provide
more insight than the generalized dominance measure. Some control relevant
interpretations are presented in [125, p.89]. While most of these interpretations
have proven to be useful in proces industry, control relevant interpretation of the
relative gain array is still challenging for motion system applications, [145]. The
relative gain array is commonly used as a scaling independent measure to visualize
plant interaction.

Performance by independent design

The objective is to relate performance specifications of the overall MIMO system,
to the specifications of the independent individual loop designs. Sufficient con-
ditions can be derived for each independent design, that, if satisfied, guarantee
performance of the total MIMO system. Considering (2.29), it follows that,

So = Sd(I + ET Td)−1, (2.43)

so that when ET is large, disturbance rejection properties of So are not explicitly
related to the properties of Sd. In [92], [124], theory is developed to translate
overall robust performance objectives into bounds on individual designs. Herein,
theory from [123] and [56] is combined for analysis within the generalized plant
framework.

A standard condition for robust performance of the MIMO system is achieved
when the system is nominally stable and

µ∆p(M) < 1, ∀ω, ‖∆p‖∞ ≤ 1, (2.44)

where ∆p is full, M = Fl(P,K) with the generalized plant P , [125]. Considering
∆ = diag{∆p,∆s}, where ∆s can be used to take into account uncertainty, Fig.
2.3a, a sufficient condition for robust performance is stated with the following
theorem, [124].



2.3: Decentralized control 25

M

D

(a)

N

D

H

M

(b)

Figure 2.3: Using the LFT to derive sufficient conditions for robust performance.
a) General M∆ robust performance problem. b) Robust performance expressed
as a bound on H.

Theorem 2.3.4. The lower fractional transformation of N and H, is defined as
M = N11 + N12H(I − N22H)−1N21, Fig. 2.3b. Assume that µ∆(N11) < k and
det(I −N22H) 6= 0. Then, for a given constant k, holds that,

µ∆(M) ≤ k, (2.45)

if

σ(H) ≤ cH , (2.46)

where cH solves,

µ∆̃

[
N11 N12

kcHN21 kcHN22

]
= k, ∆̃ = diag{∆,H}. (2.47)

Proof. See [124].

This shows that (robust) performance specifications of the overall, M∆, MIMO
system can be translated into sufficient conditions on a specific closed loop func-
tion H. The frequency dependent variable cH , that appears in this sufficient
condition, can be determined at each frequency, by solving (2.47) implicitly. For
this, one may use a bisection method or skewed-µ, [125, p. 312].

The transfer function H can be any closed loop function of interest, for example,
M can be written as the LFT of Sd or Td. This can be done in two steps. The
first step is to write M as an LFT of So, To,

M = Fl(NTo , To)

= NTo
11 + NTo

12 ToN
To
21 , (2.48)

and

M = Fl(NSo , So)

= NSo
11 + NSo

12 SoN
So
21 . (2.49)
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Then, the second step is to use the observation that, [92],

To = GG−1
d Td(I + ET Td)−1

So = Sd(I − ESSd)−1GdG
−1, (2.50)

which are LFT’s in Td and Sd respectively. Hence, M can be written as the LFT
of Sd, Td,

M = Fl(NTd , Td)

= Fl(NSd , Sd), (2.51)

with,

NTd =
[

NTo
11 NTo

12 GG−1
d

NTo
21 −ET

]
, NSd =

[
NSo

11 NSo
12

GdG
−1NSo

21 ES

]
. (2.52)

Now, Theorem 2.3.4 implies that, at the frequency ωp, the performance of the
overall closed loop system is guaranteed if either,

σ(Td) ≤ cTd
, or σ(Sd) ≤ cSd

, (2.53)

is satisfied at that particular frequency, where cTd
, cSd

solve,

µ∆̃

[
NTo

11 NTo
12 GG−1

d

cTd
NTo

21 −cTd
ET

]
= 1, and µ∆̃

[
NSo

11 NSo
12

cSd
GdG

−1NSo
21 cSd

ES

]
= 1, (2.54)

with ∆̃ = diag{∆p,K} where ∆p has full and K a diagonal structure. In contrast
to the nominal stability conditions from Thm. 2.3.1, Thm. 2.3.2, the condi-
tions (2.53) may be combined over different frequencies. The robust performance
conditions are only sufficient, but tight, [123]. This implies that there can exist
controllers that do not satisfy the bounds, but still achieve robust performance.
In that case, there also exist controllers that result in the same values of σ(Sd)
and σ(Td) that do not achieve robust performance.

Only in the case that these conditions are satisfied over all frequencies, robust
stability is achieved as a by-product of robust performance. Alternatively, one can
use the test for robust performance to derive relations for nominal performance.
This will be illustrated in Example 2.3.1. From (2.54), it follows that robust per-
formance of the overall system may be quite different from robust performance of
the sub-parts of the system as ET and ES increase. Interaction can be beneficial,
high ES , ET do not necessarily imply degradation of robust performance. Illus-
trative examples of this can be found in [92]. An example for the disturbance and
noise rejection control problem is shown next.

Example 2.3.1. For the disturbance and noise rejection control problem studied
later in Chapter 4.3, we have,

M =
[

Wz1SoVd −Wz1ToVn

−Wz2KSoVd −Wz2KSoVn

]
. (2.55)
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The objective is to derive sufficient conditions for decentralized control design to
achieve nominal performance of the overall MIMO system. It follows straightfor-
wardly that,

NTo =

 Wz1Vd 0 −Wz1

0 0 −Wz2G
−1

Vd Vn 0

 (2.56)

and

NSo =

 0 −Wz1Vn Wz1

−Wz2G
−1Vd −Wz2G

−1Vn Wz2G
−1

Vd Vn 0

 . (2.57)

Using (2.52) and Thm. 2.3.4, it follows that at a given frequency ωp, performance
of the overall MIMO system is guaranteed if either

σ(Td(jωp)) ≤ cTd
(ωp), or σ(Sd(jωp)) ≤ cSd

(ωp) (2.58)

is satisfied. Where cTd
, cSd

solve, e.g., by means of skewed-µ or a bisection
method,

µ∆̃

 Wz1Vd 0 −Wz1GG−1
d

0 0 −Wz2G
−1
d

cTd
Vd cTd

Vn −cTd
ET

 = 1 (2.59)

and

µ∆̃

 0 −Wz1Vn Wz1

−Wz2G
−1Vd −Wz2G

−1Vn Wz2G
−1

cSd
GdG

−1Vd cSd
GdG

−1Vn cSd
ES

 = 1 (2.60)

respectively, with ∆̃ = diag{∆p,K}.

In this section, stability and performance requirements are translated to criteria
on independent designed loops of a decentralized control system. These criteria
are controller independent. Hence, one can take no advantage from knowledge of
earlier designed loops. A consequence of this, is that closed loop stability can only
be proven if plant interaction is sufficiently small. This requirement may be rather
demanding for some applications. In the next section, it is briefly discussed how
decentralized controllers can be designed while specifically taking into account
the effect of earlier designed control loops.

2.3.2 Sequential design

As was shown in the previous section, the independent design requires interaction
to be small. If plant interaction is large, closed loop stability can not be proven,
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rendering the independent design method infeasible. Also, from a practical per-
spective, the requirement to design a decentralized controller independently may
be unnecessary restrictive. In many design procedures, controllers are designed
one loop at a time. Between each design step, calculations may be performed
where one utilizes information about the controllers specified in earlier design
steps.

This sequential design procedure is central in this section. There are some draw-
backs that are not straightforward to resolve. First, the ordering of the design
steps may have great impact on the achievable performance. There is no general
approach to determine the best sequence for design. This may lead to many design
iterations, especially for large MIMO systems. Second, there are no guarantees
that robustness margins in earlier designed loops are preserved. The robustness
margins at each design step do not indicate robustness of the final closed loop
system. Third, as each design step usually considers only a single output, the re-
sponses in earlier designed loops may degrade, making iterative design necessary.

In spite of these issues, sequential design is a technique that has found appli-
cation in many practical control problems. Various sequential design methods are
developed in the framework of Quantitative Feedback Analysis, [50, 58, 150]. In,
[22, 85], relations between sequential design and Gauss elimination of the return
difference are investigated. Also, cascade control design, is often quite similar to
sequential design, [125, p. 422].

Stability by sequential design

The underlying idea of achieving closed loop stability by means of sequential con-
trol design is yet another way to factorize the return difference, (2.1). In sequen-
tial design, each single input single output controller ki, from K = diag{ki}, i =
{1, ..., n}, is designed using the fact that, [86],

det(I + GK) =
n∏

i=1

det(1 + giki), (2.61)

where for each ith design step, the equivalent plant gi is defined as,

gi = Fl(G,−Ki) (2.62)

where Ki = diag{kj}, j = {1, ..., n}, j 6= i, see Figure 2.4. The multivariable
system is nominally closed loop stable if in each design step the system is closed
loop stable. The system remains closed loop stable if the loops are opened in the
reverse order as in they were designed. If an arbitrary loop is opened there is no
guarantee for closed loop stability. The robustness margins in each design step
do not guarantee robust stability of the final multivariable system, [47]. However,
sufficient conditions for robust stability can be derived as a by-product of robust
performance using the framework presented below.



2.3: Decentralized control 29

-

G

K i

y iu i

Figure 2.4: Equivalent plant for the ith design step in sequential design

Performance by sequential design

Using Thm. 2.3.4, sufficient conditions for robust performance can be derived for
sequential design, [28]. In each ith design step, bounds on closed loop functions
must be calculated. Herein, the effect of all earlier designed controllers is taken
into account. The relations in Section 2.3.1 can be used to derive new sufficient
conditions for sequential design.

For example, considering the diagonal sensitivity function Sd, we find,

Sd = Fl(N̄sd,i , sd,i), sd,i = (1 + giiki)−1 (2.63)

with

N̄sd,i =
[
Si

d ei

eT
i 0

]
(2.64)

where ei are elementary vectors and Si
d is n×n and holds all the diagonal elements

of Sd except the ith one, Si
d = diag{(1 − δij)sd,j}, j = {1, ..., n} where δij is the

Kronecker delta. So that using (2.51),

M = Fl(NSd ,Fl(N̄sd,i , sd,i))
= Fl(Nsd,i , sd,i) (2.65)

From Thm. 2.3.4, it follows that a sufficient condition for robust performance of
the final design is obtained when in each ith design step, the following is achieved,

|sdi
| ≤ csd,i

(2.66)

where csd,i
solves,

µ∆̃

[
NSo

11 −NSo
12 Si

d(I + ESSi
d)
−1GdG

−1NSo
21 NSo

12 (I − Si
dES)−1ei

csd,i
eT
i (I − ESSi

d)
−1GdG

−1NSo
21 csd,i

eT
i ES(I − Si

dES)−1ei

]
= 1,

with ∆̃ = diag{∆p, ki}. Sufficient conditions on different closed loop transfer
functions may be combined. Compared to the sufficient conditions for the inde-
pendent designs, (2.53), the sequential design conditions may be less restrictive
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as the effect of all earlier designed controllers is taken into account. This is ben-
eficial in particular when bandwidths are different in each loop. One must take
care however, that the ordering of the sequential design steps may have significant
effect on the sufficient conditions. Furthermore, as Nsd,i is a function of ki, it is
not straightforward to achieve (2.66). This is particularly difficult at frequencies
where the plant interaction is large.

If the sufficient condition for robust performance are satisfied for each, sdi at
all frequencies, one achieves robust stability of the MIMO system. For robust
stability, multiple sufficient conditions can not be combined over different fre-
quency regions. Alternatively, one may derive bounds on the sensitivity function
of the equivalent plant,

si = (1 + giki)−1, gi = Fl(G,−Ki) (2.67)

in the spirit of the factorization used in (2.61). Again, Thm. 2.3.4 can be used
in combination with a lower fractional transformation, M = Fl(Nsi

, si). These
relations are rather elaborate and are beyond the scope of this work. The reader
is referred to [28, 60] for more information.

2.4 Open loop decoupling

Most complexity issues in multivariable control design arise from interaction be-
tween inputs and outputs of the plant. A method to reduce this complexity is
to redefine the inputs and outputs of the plant so that the open loop has less
interaction at a certain loop breaking point. Ideally, a MIMO plant can then
be decoupled in SISO subsystems, and each SISO subsystem can be controlled
independently. Decoupling the plant in physical variables, namely Gp(s), boils
down to finding input, Tu(s), and output, Ty(s), transformation transfer function
matrices such that

G(s) = Ty(s)Gp(s)Tu(s), (2.68)

has no interaction, so the transfer function matrix G(s) is diagonal, Fig. 2.5.
In that case, when choosing a diagonal controller K, the open loop, evaluated
at loop breaking point X is decoupled. At other loop breaking points however,
interaction may still be present and may even increase because of the decoupling
transformations. Furthermore, a disturbance that acts on a single physical output
of the plant, do, may now be observed in multiple newly defined outputs of the
plant. Hence, to reject this disturbance, it can be required that more elements of
the controller are to be used. In spite of these issues, the ability to decouple,

L = GK (2.69)

implies that closed loop functions So = (I + L)−1, To = LSo are decoupled as
well and Si = So, Ti = To. Then, stability of the MIMO system is achieved by
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Figure 2.5: Decoupling control architecture, unity feedback.

stabilizing each decoupled loop. As each decoupled loop can be designed inde-
pendently, the complexity of n× n MIMO control design is reduced to that of n
independent SISO designs.

Finding dynamic decoupling transformations Tu(s) and Ty(s) normally boils down
to a non-convex problem, [29, 140]. Therefore, in most methods, either Ty(s) or
Tu(s) is fixed at the expense of design freedom, [29, 84]. Design of dynamic
decoupling methods is often ad-hoc and therefore requires specific physical in-
sights, [84]. Dynamic decoupling of mechanical systems often suffers from ro-
bustness issues, [73, 140]. A common strategy is to try to decouple Gp(s) with
frequency-independent input-output transformations, Tu, Ty ∈ R and study if
the residual interaction is small enough to allow decentralized control design. If
residual interaction is not sufficiently small, centralized control must be applied.
Fortunately, there exists a large class of systems that can be decoupled using
frequency-independent input and output transformations. Several classes of these
systems are discussed next.

2.4.1 Dyadic systems

A general class of systems that can be decoupled with frequency independent
input and output transformations are the so called dyadic systems. This system
property was first introduced in [98, 99] and has been used in motion control in
[4, 141].

Definition 2.4.1. An n × n multivariable system Gp(s) is called dyadic when
there exist Tu, Ty ∈ Rn×n, so that the transfer function matrix,

G(s) = TyGp(s)Tu (2.70)

is diagonal.

A dyadic system can be considered as a system that has n natural modes, where
each mode shape is aligned with a single column and row of Ty, Tu respectively,
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Figure 2.6: The laboratory MIMO system.

[100]. Practical systems often have an infinite number of modes, but can be
considered as approximately dyadic when n dominant modes can be decoupled
using constant input and output transformations. Then, these systems can be
decoupled up to a certain degree, or in a limited frequency range, [101]. We
therefore may use the following definition.

Definition 2.4.2. An n×n multivariable system Gp(s) is ε-approximately dyadic
in a frequency interval [ω1, ω2] if it holds that ∃Tu, Ty ∈ Rn×n so that,

σ(ET (jωp)) < ε, G(jω) = TyGp(jω)Tu, ∀ω ∈ [ω1, ω2] (2.71)

for a sufficiently small value of ε ∈ R. Herein, ET (jω) = Gnd(jω)Gd(jω)−1,
where Gd(jω) holds the diagonal elements of G(jω) and Gnd(jω) = G(jω) −
Gd(jω).

The term ET can be considered as multiplicative output perturbation due to
residual interaction of non-dyadic dynamics of the plant. A framework to take
this into account in control design is presented in Section 2.3.1.

Input and output transformations Ty, Tu can be determined from a frequency
response measurement, [15, 102]. For implementation, Ty, Tu must be realizable.
Hence, Ty, Tu are to be approximated with real valued matrices. The ALIGN al-
gorithm, [84], can be used to find real approximate inverses of complex matrices.
Furthermore, decoupling transformation can be derived from a kinematic model of
the system, [12]. Also, measures on the size of ET can be used in a cost function
to find decoupling transformations Ty, Tu by means of numerical optimization,
[140] and [84, p.148]. The following example illustrates how the property of a
dyadic system can be used to find decoupling transformations.

Example 2.4.1. This example shows how the concept of dyadic systems can be
used to decouple a multivariable system. A laboratory MIMO motion system,
consists of two DC motors with position measurements (encoders) connected with
an elastic belt, Fig. 2.6, [32]. As the system is reflective symmetric, [102],

Gp(s) =
[

G1(s) G2(s)
G2(s) G1(s)

]
(2.72)



2.4: Open loop decoupling 33

10
0

10
1

10
2

−40

−20

0

20

Freq.[hz]

dB

10
0

10
1

10
2

−40

−20

0

20

Freq.[hz]

dB

10
0

10
1

10
2

−40

−20

0

20

Freq.[hz]

dB

10
0

10
1

10
2

−40

−20

0

20

Freq.[hz]

dB

 

 

G
p

G

Figure 2.7: Bode magnitude of laboratory MIMO system before, Gp(s), and after
decoupling, G(s)

there exist eigen vectors,

u1 =
[
1
1

]
, u2 =

[
−1

1

]
, U =

[
u1 u2

]
, (2.73)

with Gp(s) = UG(s)U−1, where U is constant for all frequencies. Hence, the
system is dyadic. The eigenvector u1 is the rigid body mode shape, u2 is the
mode shape due to the elastic band. The decoupling transformations are Tu = U ,
Ty = T−1

u . A Bode magnitude plot of the system before, Gp(s), and after de-
coupling, G(s), is depicted in Fig. 2.7. At frequencies below 4Hz, the plant
can not be considered to behave linear anymore, [32]. In Fig. 2.8, the value
µ−1

Td
(ET ) is plotted per frequency for the plant in physical coordinates Gp(s),

where ET = (Gp − diag{Gp})diag{Gp}−1, see Thm. 2.3.1. It is visible that,
when the plant is controlled in physical coordinates, interaction limits the achiev-
able bandwidth significantly. After applying decoupling transformations, the resid-
ual interaction is studied plotting µ−1

Td
(ET,d), where ET,d models the residual in-

teraction as multiplicative output perturbations. Realistic robustness considera-
tions imply that σ(Td) < 10dB. Hence, as for closed loop stability we desire
σ(Td) < µ−1

Td
(ET,d),∀ω, it is visible that the elements of the decentralized con-

troller can be designed independently if the bandwidth of each design is below
100Hz.

2.4.2 Pseudo SVD systems

It was shown that systems that are dyadic, allow frequency independent input out-
put transformations so that the closed loop functions are decoupled at a particular
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Figure 2.8: The value of µTd
(ET ) per frequency for the laboratory MIMO setup,

Gp(s), and after decoupling, G(s)

loop breaking point. This property is useful to achieve stability of multivariable
systems. Even though the open loop is decoupled, it is still difficult to relate the
directions of the open loop to the directions of closed loop functions. A specific
class of systems that provides more insight in this, are systems that are dyadic
and where additionally Tu, Ty are both orthogonal, they are called pseudo singular
value decomposition (SVD) systems.

Definition 2.4.3. A square system Gp(s) is called a pseudo singular value de-
composition (SVD) system if there exist U, V ∈ Rn×n, UT = U−1, V T = V −1, so
that the transfer function matrix,

G(s) = UT Gp(s)V (2.74)

is diagonal.

The class of pseudo singular value decomposition (SVD) systems arise naturally
from design methods that rely on the singular value decomposition, see [63, 104].
This is because pseudo SVD systems have input (right) and output (left) prin-
cipal directions that are constant for all frequencies. In [59, 146], the structural
properties of pseudo SVD systems are exploited in robust control design. Further-
more, pseudo SVD systems are closely related to dyadic systems and mechanical
systems, [4]. A dyadic system is a pseudo SVD system if the matrices Tu, Ty in
Def. 2.4.1 are unitary matrices. If the plant Gp(s) is a pseudo SVD system, de-
coupling is equivalent to defining a controller as Kp(s) = V K(s)UT where K(s)
is diagonal. The open loop at loop breaking point X, Fig. 2.5 is decoupled. So
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that follows,

GpKp = UG(s)K(s)UT , KpGp = V K(s)G(s)V T , UT U = I, V T V = I (2.75)

The output sensitivity function, input sensitivity function, output complementary
sensitivity function and input complementary sensitivity function evaluated at X
equal,

So = (I + GK)−1, Si = (I + KG)−1 (2.76)

To = GK(I + GK)−1, Ti = KG(I + KG)−1, (2.77)

which are all diagonal. However, the sensitivity functions in physical variables,

Sp
o = (I + GpKp)−1 = USoU

T , T p
o = UToU

T (2.78)

Sp
i = (I + KpGp)−1 = V SiV

T , T p
i = V TiV

T , (2.79)

are not diagonal. This shows that when the direction of an output disturbance
do in physical variables is aligned with the first column of U , a single feedback
loop can be tuned to reject this disturbance. The effect of that disturbance will
be distributed onto the performance variables z with the gain of the elements of
the first row of U , Fig. 2.5. Furthermore, it is visible that the input directions of
Kp(s) determine the input and output directions of Sp

o , T p
o . The output directions

of Kp(s) are the input and output directions of Sp
i , T p

i . For the control sensitivity
and process sensitivity holds that,

KpS
p
o = V KSoU

T , Sp
oGp = USoGV T . (2.80)

Here it is visible that the input and output directions of these sensitivity functions
can be different. Another useful property of pseudo SVD systems is that the
decoupling transformations are norm invariant. Hence it follows that,

σ(Sp
o ) = σ(So) (2.81)

This shows that at a single frequency, the worst case disturbance rejection of
the coupled closed loop system equals the disturbance rejection properties of one
of the decoupled loops. Instead of only the worst case disturbance rejection,
rejection in other directions can be designed as well. As all decoupled loops can be
designed independently, disturbance rejection can be designed for each orthogonal
direction at a time. This property will be exploited in Section 4.2. Pseudo SVD
systems provide much insight into the directional aspects of multivariable control
design. Because of the requirement of open loop decoupling, the input and output
directions of the sensitivity functions can not be chosen freely. The consequences
of this issue are discussed in detail in Section 4.3.

2.4.3 Mechanical systems

Some mechanical systems can be decoupled with frequency independent decou-
pling transformations. The dynamic behavior of motion systems is most often
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dominated by mechanics. Therefore, physical interpretation of the mechanical
systems can facilitate transparent multivariable control design and decoupling.
From either finite element modeling, linearized first principle modeling, or re-
duced order continuous system descriptions, the following finite-dimensional, lin-
ear, multiple degree of freedom equations of motion can be derived, [31],

Mq̈ + Dq̇ + Kq = Bou

y = Coqq. (2.82)

Herein, M,D,K are the mass matrix, viscous damping matrix and stiffness matrix
respectively. In this model, only position measurements are considered. Exten-
sions to include velocity and acceleration measurements can be found in [52].
We assume that the mass matrix is positive definite and the stiffness matrix is
semi-positive definite. Several assumptions on the properties of D will be dis-
cussed shortly. The vector q ∈ Rns represents the displacement of the nodes of
the lumped parameter system. From the undamped vibration problem, without
input, the real mode shapes φ and eigen or natural frequency ω can be determined
solving the following generalized eigenvalue problem,

Kφ = ω2Mφ, φ 6= 0. (2.83)

The zero valued eigen frequencies correspond to rigid body modes of the system.
With p times multiplicity of eigen frequencies, there exists a set of p linearly
independent eigen modes shapes. Then, these eigen mode shapes are not unique.
Let the modal matrix Φ contain columns that span the directions of the mode
shapes φi, i = 1, .., ns. Then, the equations of motion (2.82), can be expressed in
modal coordinates,

Mmη̈ + Dmη̇ + Kmη = ΦT Bou

y = CoqΦη, (2.84)

where Mm = ΦT MΦ and Km = ΦT KΦ are diagonal. The matrix Dm = ΦT DΦ
is only diagonal in special cases. For example, in case of Rayleigh or proportional
damping, where it is assumed that, D = αM +βK with α, β nonnegative scalars,
[31, p.303]. Also with modal or classic damping, Dm is diagonal, [31]. These
damping models are often justified for structural analysis of lightly damped sys-
tems, [31, 52]. When Dm is diagonal and (2.84) is multiplied from the left with
M−1

m , one obtains,

η̈ + 2ZΩη̇ + Ω2η = M−1
m ΦT Bou

y = CoqΦη, (2.85)

where Ω2 = M−1
m Km, Z = diag{ζi}, i = 1, ..., ns are diagonal. We define,

y(s) = Gp(s)u(s), (2.86)

where, Gp(s) follows from (2.85). With the assumption that Dm is diagonal and
defining Cm = CoqΦ, Bm = M−1

m ΦT Bo, with Φ real valued, we write,

Gp(s) = CmGm(s)Bm, (2.87)
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with

Gm(s) = diag{gm,i(s)}, gm,i(s) =
1

s2 + 2ζiωis + ω2
i

, i = {1, ..., ns}. (2.88)

Then the following observation is evident,

Proposition 2.4.1. A mechanical system is dyadic if Dm, in (2.84), is diagonal
and both Cm, Bm are non-singular.

Hence, the ability to decouple a mechanical system (with modal or proportional
damping) depends on the actuator and sensor locations, the number of (dom-
inant) modes and the alignment of mode shapes with the sensor and actuator
matrices; dominant modes must be both in Ker(Cm)⊥ and in Im(Bm). Detailed
procedures to design actuator and sensor locations for decoupling and control can
be found in [52, 91].

If the system has rigid body modes in all six cartesian degrees of freedom, twelve
eigenfrequencies will be equal to zero. Then, there exist a set of six linear inde-
pendent eigenvectors. One may choose any orthogonal base to decouple the rigid
body behavior of the system, [12]. Each axis of this base may be aligned with
specific performance objectives or a particular disturbance direction, see Section
4.2. When the number of sensors and actuators exceed the number of rigid body
modes, and Cm, Bm are invertible, in addition to rigid body decoupling, flexible
modes may be decoupled, hence controlled independently, [12, 15, 115].

A mechanical system can be ε-approximately dyadic. Note that (2.87) can be
written as a sum of rank one systems, each with a frequency independent input
and output direction,

Gp(s) =
ns∑
i=1

cm,ibm,i

s2 + 2ζiωis + ω2
i

, (2.89)

where cm,i and bm,i are real valued. Also, cm,i and bm,i are the ith row of Bm

and the ith column of Cm respectively. Let us assume that the eigen frequencies
are ordered as ω1 ≤ ω2 ≤ ... ≤ ωns . Then, a few modes with eigen frequencies
ωnl

, ..., ωnh
that are well separated from the others, so that ωnl−1 � ωnl

, ωnh
�

ωnh+1 can be isolated as,

Gp(s) =
nl−1∑
i=1

cm,ibm,i

s2 + 2ζiωis + ω2
i

+
nh∑

i=nl

cm,ibm,i

s2 + 2ζiωis + ω2
i

+
ns∑

i=nh+1

cm,ibm,i

s2 + 2ζiωis + ω2
i

.

For the frequency region ωnl−1 � ω � ωnh+1 the plant can be approximated as,

Gp(s) ≈
nl−1∑
i=1

cm,ibm,i

s2
+

nh∑
i=nl

cm,ibm,i

s2 + 2ζiωis + ω2
i

+
ns∑

i=nh+1

cm,ibm,i

ω2
i

(2.90)

=
1
s2

Gl +
nh∑

i=nl

cm,ibm,i

s2 + 2ζiωis + ω2
i

+ Gh. (2.91)
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In the case that,

Gnl,nh
(s) =

nh∑
i=nl

cm,ibm,i

s2 + 2ζiωis + ω2
i

, (2.92)

is dyadic, input output transformations that decouple Gnl,nh
(s) may not necessar-

ily result in decoupling of Gl and Gh. With the input and output transformations
Ty, Tu that make TyGnl,nh

(s)Tu diagonal, we write,

G(s) = TyGp(s)Tu (2.93)

≈ TyGnl,nh
(s)Tu + Ty(

1
s2

Gl + Gh)Tu, , (2.94)

and define,

ET (s) = Ty(
1
s2

Gl + Gh)Tu(TyGnl,nh
(s)Tu)−1. (2.95)

This shows, by Def. 2.4.2, that a mechanical system is ε-approximately dyadic in
frequency region [ωnl

, ωnh
] only if σ(ET (s)) < ε for a sufficiently small value of ε.

In this frequency interval, Gnl,nh
dominates the dynamic behavior of the system

over 1
s2 Gl and Gh. This can be used to construct additional sufficient conditions

for stability and performance for the control design based on the dynamics of
Gnl,nh

, based on the framework in Section 2.3.1, [14].

Example 2.4.2. Here, we focus on the control of linear time invariant electrome-
chanical motion systems that have the same number of actuators and sensors as
rigid body modes. Typical applications are high performance positioning stages
used in semiconductor manufacturing, electron microscopy or component place-
ment machines. The dynamics of such systems are often dominated by the me-
chanics, which are therefore constructed to be light and stiff, so that resonance
modes due to flexible dynamics appear only at high frequencies.

Gp(s) =
Nrb∑
i=1

cib
T
i

s2
+

N∑
i=Nrb+1

cib
T
i

s2 + 2ζiωis + ω2
i

. (2.96)

Herein, Nrb denotes the number of rigid body modes. The parameters ζi, ωi are the
relative damping and resonance frequency of the flexible modes. The vectors ci, bi

span the directions of the ith mode shapes and are constant for all frequencies. The
resonance frequencies ωi are high, hence the plant can be approximately decoupled
using static input (and/or output) transformations, Tu, Ty respectively so that,

Gyu(s) = TyGp(s)Tu

= G(s) + Gflex(s), G(s) =
1

ms2
I, (2.97)

where m ∈ R1 and Gflex(s) contains the flexible dynamics of the plant and is often
non-diagonal. In many applications, the frequencies and damping of the resonance
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Figure 2.9: Multiplicative perturbation at the output of the plant to model influ-
ence of flexible dynamics.

modes changes in the life cycle of the plant and is sensitive to changes in position.
Hence, inversion of these dynamics leads to robustness problems. The objective
is to control the rigid body behavior of the plant with high fidelity. The influence
of the flexible dynamics can then modeled as a multiplicative perturbation at the
output of the plant G(s),

Gyu(s) = (I + E(s))G(s), (2.98)

with E(s) = Gflex(s)G−1(s), see also Fig. 2.9.

With a multivariable controller K(s), the plant G(s) = 1
ms2 I, and stable sensitivity

function So = (I + GK)−1, the closed loop system is stable when ρ(E(jω)To(jω)) <
1,∀ω, [56]. A sufficient condition for this is,

σ(To(jω)) < σ(E(jω))−1,∀ω. (2.99)

As E(jω) is large at high frequencies, this shows that the flexible dynamics limit
the bandwidth of the closed loop system. Hence, one is forced to make frequency
wise tradeoffs if disturbances are to be rejected in motion systems.

The scaling of the plant can be interpreted as multiplication of the controller with a
diagonal matrix. With this example, uncertain flexible dynamics can be translated
into sufficient conditions on closed loop functions. These closed loop functions
are designed considering a plant model with remarkable simple structure.

Example 2.4.3. In some high performance applications, see e.g., [143], systems
are constructed to be light and stiff. Also, all contact to the world (friction, para-
sitic stiffness) is compensated for. In low frequencies, the rigid body dynamics are
then dominant, and the contribution of the flexible dynamics at these frequencies
can be modeled as,

Gflex(s)|s→0 =
ns∑

i=1+nrb

cm,ibm,i

s2 + 2ζiωis + ω2
i

|s→0 = Kflex, (2.100)

so that a model of the mid and low frequency behavior equals,

GLF (s) =
1
s2

Krb + Kflex. (2.101)

The rigid body dynamics are dyadic, so that constant input output transformations
can be used to decouple this part of the dynamics. Due to the multiplicity of the
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(a) (b)

Figure 2.10: The active vibration isolation system (AVIS). a) Top view of the
AVIS b) One passive isolator module of the AVIS.

rigid body modes, decoupling transformations are non-unique. This can be used
to align decoupled loops with disturbances, performance objectives or Kflex. A
design method for this is presented in Section 4.2. In tracking control problems,
the contribution of the flexible dynamics at low frequencies can be compensated
for using jerk derivative (snap) feedforward, as reported in [11] and published in
[13, 16, 17, 18, 75, 76].

2.5 Decentralized control design for the AVIS

In this section, we illustrate some MIMO control design concepts by application
to the industrial active vibration isolation system (AVIS), depicted in Fig. 2.10a.
This system is used in industry to isolate delicate equipement from disturbances in
the environment. Typical application areas are semi conductor industry, electron
microscopy and biomedical engineering, [40]. The rejection of disturbances in
such a system is a typical multivariable control problem. We show that, even after
kinematic decoupling, the plant has significant interaction. The implications of
interaction on the ability to apply independent decentralized control design will
be discussed in this section.

2.5.1 The AVIS

The goal of the AVIS is to isolate the table from disturbances from the envi-
ronment (floor) and to reject disturbances from acting directly on the table. In
order to achieve this, a passive and an active suspension system are used in par-
allel. The passive vibration isolation system has four isolator modules containing
pneumatic air-mounts and a mechanical leveling system, Fig. 2.10b. The passive
isolator modules result in lightly damped suspension modes at low frequencies.
The system is open loop stable. The active vibration isolation system can be
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Figure 2.11: Relative gain array number of the AVIS after kinematic decoupling.

employed driving two linear motors in each of the four isolator modules while
measuring the absolute velocity of the table by means of geophones. Three of
the four isolator modules contain two geophones each. Therefore, the AVIS has
eight inputs and six outputs. Using a kinematic model, the force of each actuator
can be expressed as a contribution to forces and torques at the center of gravity.
A similar relation can be derived for the sensors. These kinematic relations are
used to approximately decouple the plant dynamics in the frequency region where
the plant behaves as a rigid body, [111, 133]. The inputs and the outputs of the
plant are then expressed at the center of gravity of the table in a six cartesian
coordinates.

A frequency response of the kinematic decoupled plant is obtained by exciting
each cartesian input at a time with multi-sines from 0.02− 200Hz while measur-
ing all cartesian outputs of the plant. The frequency response is shown in Fig.
A.1. The suspension modes due to the passive isolator modules show up around
1.5− 5Hz. As a result of limited mechanical stiffness of the connections between
the isolator modules and the table, resonance dynamics appear above 70Hz. These
modes may change slowly in time and are therefore treated as uncertainty. At
frequencies below 0.1Hz, the system can not be considered to behave linear any-
more due to friction dynamics. The plant interaction is significant, to get a first
impression of the plant interaction, one may plot the relative gain array number
per frequency, defined as, [125, p. 82],

RGAnum(ω) = ‖ΛRGA(ω)− I‖sum. (2.102)

Herein, ΛRGA(·) is the relative gain array, see (2.41) and ‖·‖sum is the sum matrix
norm, ‖A‖sum =

∑
i,j |aij |. At frequencies where interaction is small, the relative

gain array approaches the identity matrix, hence the relative gain array number
approaches zero. The relative gain array number of the plant after kinematic
decoupling is shown in Fig. 2.11. The relative gain array itself is shown in Fig.
A.2. It is visible that the interaction is small at frequencies between 5 − 70Hz,
where the plant behaves as a rigid body, but is large elsewhere. The implications
of interaction for the feedback control design of the active vibration isolation
system are discussed in the following section.
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Figure 2.12: Characteristic loci of the open loop with a decentralized feedback
controller. Left: characteristic loci of L = GK, Middle: characteristic loci of Ld =
GdK, Right: characteristic loci of each ith single input single output equivalent
open loop L∗i .

2.5.2 Feedback control design

A decentralized feedback controller for the active suspension system is to be de-
signed. The objective is to increase the damping of the passive suspension modes
and minimize the influence of disturbances to the output of the plant. The distur-
bances are not specified, a more detailed discussion on this is presented in Chapter
3. As the plant dynamics above 70Hz are uncertain, the open loop should have
sufficient roll-off at high frequencies. A common strategy to achieve those goals
is to apply so called sky-hook damping, [61]. A similar strategy is followed in this
control design.

For each cartesian axis, we design a controller with proportional gain and sec-
ond order low-pass filter,

ki(s) = kp
(2πflp)2

s2 + 2ζlp2πflps + (2πflp)2
, i = {x, y, z, Rx, Ry, Rz}, (2.103)

so that the open loop will have at least two cross-over frequencies. Where nec-
essary, a notch filter is designed to suppress narrow band resonance phenomena.
Considering the Nyquist plot of the open loop function Ld = GdK, where Gd

holds the diagonal elements of G, it is visible that Sd = (I + GdK)−1 is stable,
Fig. 2.12. Using the generalized Nyquist criterion, Def. 2.1.2, the characteristic
loci of L = GK are also shown in Fig. 2.12. As the characteristic loci of L = GK
do not encircle the point (−1, 0), the feedback controller results in closed loop
stability of the AVIS. This is a necessary and sufficient condition for closed loop
stability. As the plant interaction is significant, redesign of a controller in a single
axes may change any characteristic locus. More detailed analysis is required to
make redesign of this given controller possible.

The role of individual feedback loops and the influence of interaction can be
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Figure 2.13: Graphical representation of the sufficient condition for closed loop
stability. Left: independent decentralized control of all cartesian axis. Right:
independent decentralized control in the y, z and Ry axis, while other loops are
closed.

investigated using Thm. 2.3.1. Unfortunately, this is only a sufficient condition
and may therefore lead to conservative designs. Theorem 2.3.1 states that the
MIMO system is closed loop stable if G is stable, (I + GdK) is stable, and

σ(Td) < µ−1
Td

(ET ), ∀ω. (2.104)

Herein, ET = (G−Gd)G−1
d and Td = (I +GdK)−1GdK. As σ(Td) = maxi |Td,ii|,

the contribution of each ith independent closed loop function can be related to
the bound µ−1

Td
(ET ). In Fig. 2.13, it is shown that each closed loop function Td,ii

crosses µ−1
Td

(ET ) and therefore, the sufficient condition for closed loop stability is
not achieved. Hence, the decentralized feedback controller cannot be designed in
each cartesian axis independently. The effect of redesign of a single controller on
the closed loop stability is not sufficiently transparent in this way.

As the desire to design a controller for each cartesian axis independently is not
realistic for this application, one may use a sequential design strategy. Each ith

loop can be studied when all other loops are closed, defining the ith equivalent
open loop function,

L∗i = Fl(Fu(L,−Ii−1),−In−i), (2.105)

see Fig. 2.14a, [118]. As each equivalent open loop does not encircle the point
(−1, 0) in the Nyquist plane, Fig. 2.12, it is shown that the closed loop MIMO
system with the given controller is stable. With sequential design, the redesign of
a single equivalent open loop may change all other equivalent open loops. Hence,
there is no guarantee that the margins of other equivalent open loops are pre-
served. Commonly, this implies that the sequential design has to be iterated. For
this application, this appears to be of minor concern. To illustrate this, both L
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Figure 2.14: a) Equivalent open loop L∗i . b) The equivalent plant G∗ with three
loops closed.
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Figure 2.15: Thick: the equivalent open loop when all loops except the Ry loop
are closed, L∗Ry

. Thin: the Ry, Ry element of the open loop L = GK.

and L∗Ry
are shown in Fig. 2.15. It is visible that the modes at 1.5, 3, 4, 5Hz are

damped. However, the general shape of L∗Ry
is almost similar to LRy,Ry . This

is also observed in other equivalent open loops. Therefore, sequential design for
this application is rather intuitive. It is found that it is possible to increase the
proportional gain for all controllers except the controller for the x-axis.

A third, alternative, design approach can be followed that combines the insights
from sequential and independent decentralized control design. Herein, one can
close certain loops, calculate the resulting equivalent plant and analyse if the in-
puts and outputs of this equivalent plant can be controlled independently. From
the relative gain array, Fig. A.2, it is clear that suspension modes result in inter-
action at frequencies from 1− 5Hz. Feedback control of a single loop may result
in an equivalent plant that has considerable more damping in these suspension
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modes. After many trial and error designs, it appears that the equivalent plant
G∗ with loops x,Rx and Rz closed, Fig. 2.14b, can be controlled independently.
We define ET3 = (G∗ −G∗

d)(G
∗
d)
−1 where G∗

d holds the diagonal elements of G∗.
The sufficient condition for closed loop stability then becomes,

σ(Td3) < µ−1
Td3

(ET3), ∀ω. (2.106)

This is shown graphically in Fig. 2.13 (right figure). As this condition is just
satisfied, it is possible to design the decentralized controller for the loops, y, z and
Ry independently while the loops x,Rx and Rz are closed.

2.5.3 Discussion

It is shown that the AVIS, with kinematic decoupling, has significant plant in-
teraction that lead to typical multivariable issues for feedback control design.
Frequency independent decoupling by means of a kinematic model resulted in
small interaction in the frequency region where the plant behaves as a rigid body.
At other frequency regions, interaction was large so that a feedback controller
cannot be designed for each cartesian axis independently. Sequential design of
the decentralized controller was shown to be a feasible approach. The drawbacks
that usually come with sequential design (many iterations, ordering of the design
sequence, etc.) turn out to be of minor concern for this particular application.

The AVIS is not a dyadic system as decoupling at one frequency range does not
imply decoupling at another frequency range. The decoupling transformations
used in this section are not unique. Alternatively, one may consider decoupling
based on the mode shapes of the suspension modes. As the suspension modes have
very low damping, the mode shapes are almost real. The inverse of the modal
matrix, Section 2.4.3, will directly lead to the frequency independent decoupling
transformations. Still, dynamics below 1Hz and above 70Hz may not be aligned
with the suspension mode shapes, hence result in interaction. This alternative
decoupling approach requires additional physical insight that may be obtained
using modal analysis or more general identification techniques.

The output sensitivity function and process sensitivity function are shown in
Fig. A.3, Fig. A.4 respectively. Compared to the AVIS with only the passive
vibration isolation system (open loop), the active vibration isolation (closed loop)
results in significantly less amplification of disturbances in the frequency range
1− 5Hz, due to damping of the suspension modes. The output of the plant with
and without feedback control is shown in Fig. 2.16. When we look more specif-
ically to, for example, the Rz-axes, Fig. 2.17, it is visible that disturbances just
outside the bandwidth are amplified. This is a typical implication of the Bode’s
integral formulae, Section 2.2. Hence, although vibrations due to the suspension
mode at 2Hz are rejected, disturbances at low and high frequencies are more am-
plified than when the AVIS is operating in open loop. Therefore, depending on
the disturbance characteristics, feedback control may or may not result in better
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Figure 2.16: Output of the AVIS in open loop (thin) and closed loop (thick).
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Figure 2.17: The Rz axis of the AVIS, plant G and process sensitivity SoG.

time domain performance. This is shown in Fig. 2.18 where the AVIS is excited
with a broad band disturbance at the input of the plant.
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2.5.4 Conclusion

In this section, it was shown that the AVIS, with kinematic decoupling, has in-
teraction that leads to some typical multivariable stability design issues. The
same, decentralized, feedback controller was used to illustrate different tests for
closed loop stability. The characteristic loci showed that the system is closed loop
stable. However, the sufficient conditions for closed loop stability with indepen-
dent decentralized control design where not achieved. The tests for sequential
decentralized control design showed that the system was closed loop stable. The
drawbacks of sequential design depend strongly on the application, but turned
out to have little consequences for control design of the AVIS. It was shown that
a combination of sequential and independent design can be used to isolate parts
of the AVIS that can be controlled independently.

2.6 Disturbance rejection

In the previous sections, some of the complexity issues of MIMO control design
are discussed. In some applications, one may use open loop decoupling transfor-
mations to isolate parts of the plant that can be stabilized independently. The
controller, expressed in new variables, can be (block) diagonal so that relatively
simple (SISO like) control techniques can be used to achieve closed loop stability.
Transformations that factorize criteria for closed loop stability, based on (2.2),
may not imply that the disturbance rejection control problem is simplified.

In multivariable systems, directions of exogenous signals play an important role.
Directions of disturbances are determined by the ratio in which exogenous signals
are dispersed over the controlled variables. From Section 2.4, we know that when
a disturbance acts on a single physical variable of the plant, open loop decoupling
transformations imply that this disturbance is distributed over many controlled
variables. Then, the disturbance direction is determined by the decoupling trans-
formations. In many applications, disturbances at each controlled variable, may
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Figure 2.19: Rejection of disturbance in fixed direction at a single frequency using
decentralized control (solid) and centralized control (dotted)

result from just a few physical causes (sources). Characterization of these sources
and the way they are dispersed over the controlled variables may facilitate phys-
ical interpretation of the direction of disturbances.

To understand the role of directions in the disturbance rejection control prob-
lem, we consider the following relation,

z = Sodo − Ton. (2.107)

Herein, do, n, denote the output disturbance and sensor noise respectively. The
objective is to keep the performance variable z as small as possible in presence of
do and n. We study the rejection of do, which has direction d̄o,

do(s) = d̄ovd(s). (2.108)

At a single frequency p, the singular value decomposition of So(p) is So(p) =
USoΣSoV

H
So. Then, z(p) is small if the last column of VSo is aligned with d̄o, so

that vd(p) is amplified with the smallest singular value of So. Hence, two issues
rise immediately. First, the control designer must be able to shape VSo in such a
way that a particular singular value related to a particular singular value of So is
aligned with the disturbance. Therefore, one must be able to relate the feedback
controller with the input space of closed loop functions. Second, the singular val-
ues of So that amplify the disturbance are to be designed sufficiently small. To
achieve this, one must derive relations between the singular values of So and the
feedback controller.

If high gain feedback is applied in all directions, the sensitivity function is small
at all frequencies and in all directions. This results in high disturbance rejection
performance. However, high gain feedback implies that other design objectives
may be more difficult to achieve. This is illustrated in Fig. 2.19. Herein, the input
space of the closed loop functions of a 2×2 system is depicted. An output distur-
bance, do, acts at two controlled variables z1, z2. If the disturbance is considered
to act independently on both variables z1, z2, it is natural to apply a decentralized
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controller to minimize the sensitivity function in the directions of the controller
variables. As a consequence of the algebraic limitations, noise is amplified in both
z1 and z2 directions, see right hand side of Fig. 2.19. Alternatively, if one has
determined that do acts in one direction, one may apply centralized control, to
minimize the sensitivity function in that direction and at the same time allow
the sensitivity function in orthogonal directions to increase. The input principal
direction of So, related to the minimum principal gain of So, is then aligned with
the direction of do. The costs, as implied by the algebraic limitations, are then
reduced as amplification of noise in the direction of do is increased but amplifica-
tion of noise in directions orthogonal to that is not. Additionally, the analytical
limitations discussed in Section 2.2, point out that minimization of the sensitiv-
ity function at one frequency range in one direction, implies that the sensitivity
function increases at other frequencies in the same direction.

Hence, as specifications become tighter, it is required to minimize sensitivity
functions only in the frequency ranges and the directions that are relevant for
disturbance rejection. Therefore, it may be desired to design closed loop transfer
functions with different gains in different directions (non-uniform gain). If the di-
rections of disturbances and sensor noise are not canonical, def. 2.1.3, centralized
controllers may be required and control design can be complicated. A technique
to characterize disturbance directionality in multivariable systems is discussed in
the next chapter. Herein, the AVIS is used as an illustrative example. In Chapter
4, method are developed to design multivariable controllers that accommodate
directions of disturbances.
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Chapter 3

Characterization of
disturbances in multivariable

systems

Rejection of disturbances in multivariable systems poses challenges in many ap-
plications, due to the number of controlled variables, and the interaction between
these controlled variables, [122]. Although in theory, solutions are readily avail-
able, [125], [84], it is widely recognized that practical application of this theory
is far from trivial, [143],[102]. Therefore, the structure of plant dynamics is often
exploited to either reduce the degrees of freedom, [48], or decouple controlled vari-
ables, [56], [59]. Even then, the multivariable nature of disturbances complicates
performance system analysis. In this chapter, a method is developed to interpret
the characteristics of multivariable disturbances. With this, the acquired physical
insights into the disturbance situation can be used to simplify control design for
multivariable systems.

Disturbances result from a combination of phenomena (sources, causes) that can
not be measured individually. Only a mixture of these phenomena is observed,
acting on many controlled variables at the same time. This problem typically
emerges in motion control, where multiple degrees of freedom deviate from their
intended position due to disturbances emanated from just a few sources, e.g.,
pump, floor, and machine vibrations. In these cases, performance of the multi-
variable system is determined by only a few dominant sources, often less than the
number of controlled variables. Conventional disturbance modeling approaches
result in white noise coloring filters to describe the spectral content of the ob-
served disturbances. Examples of such approaches can be found in [81, 127, 131].
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Although these approaches can straightforwardly be applied to model the mul-
tivariable aspects of disturbances, [133], most of these techniques are not aimed
at identifying the number of causes that generate the observed multivariate dis-
turbances. As the size of multivariable systems increases, it is more difficult to
rely on physical insight to interpret and characterize the nature of these sources.
Therefore, there is a strong desire to develop techniques to identify sources that
generate disturbances in multivariable systems.

As no direct measures of the sources are available, one faces a blind identifica-
tion problem. Blind identification problems can not be solved in general. Hence,
assumptions on the expected model structure are required to find solutions for
particular applications. In this work, it is assumed that the ratio in which a
source propagates over the controlled variables (the direction) is fixed. Typical
examples of this are disturbances that originate from sources that have a fixed
physical location. Also, the control system architecture can give rise to fixed
direction disturbances, see, e.g., [122]. This allows us to adopt techniques that
are used in the field of information theory, direction of arrival problems and ar-
ray processing. See [24], [30] for a survey. A common approach is the use of
independent component analysis (ICA) techniques to solve these blind identifi-
cation problems within some inherent indeterminacies, [137]. ICA was applied
in diagnostics of chemical processes [134], [80, 134], rotating machinery monitor-
ing [152], and fault detection [120, 135]. The ICA signal model, that is used to
model the disturbances, assumes no particular (e.g. consecutive) ordering of the
observations (disturbances). Consequently, one must assume that the sources are
mutually statistically independent. Then, higher order statistics (skewness, kur-
tosis, etc.) of the observations can be used in ICA solvers. Estimates of higher
order statistics have large variance, and are notorious to be sensitive to outliers,
[106]. Also, as higher order statistics of Gaussian signals are zero, ICA is not
able to identify sources that are Gaussian. In some applications, it is argued that
the assumption of statistical independence in the basic ICA signal model is not
justified, [5].

In our identification problem, the observed disturbances are collected as con-
secutive samples in the time domain. Also, it is justified to assume that sources
are either temporal non-white or non-stationary. Hence, the time structure of the
observed disturbances can be exploited to solve the blind identification problem
within indeterminacies. Instead of using general ICA, one can use methods that
rely on a set of second order statistics of the observations, like the Second Or-
der Blind Identification (SOBI) method of [7]. As no higher order statistics are
required, sources are allowed to be Gaussian and statistically dependent, [106].
A contribution of this work is to illustrate that the signal model assumptions of
SOBI are naturally justified in the disturbance identification problem. The con-
sequences of these assumptions differ from the original field of application and are
therefore discussed in greater detail.

A related problem is to determine how many dominant phenomena contribute
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to the observed disturbances. This is especially challenging in the presence of
small interfering, noisy, signals. In literature on basic ICA, this problem is often
attacked with a pre-processing step using principal component analysis (PCA),
[65], or Karhunen-Loéve analysis, [93]. These techniques assume a particular spa-
tial structure of the noise signals [8], [25], which is not always justified in our
identification problem. It is shown that PCA can be naturally integrated in the
SOBI method. But it is also shown that such approaches may fail dramatically,
especially when sources act almost in the same direction. It is illustrated that
post-processing of the results from SOBI leads to a much more reliable estimate
of the number of dominant sources.

The theory is applied to an identification problem of the 6 × 6 MIMO active
vibration isolation system discussed in Section 2.5. This system is controlled in
six cartesian axes. All controlled loops suffer from only a few synthetically added
sources. Only the error of the feedback system is used in identification. It is shown
how the SOBI method can be applied to blindly identify the sources, the num-
ber of dominant sources and obtain structural information of disturbances. It is
illustrated that results from SOBI facilitate physical interpretation of directions
of disturbances in this multivariable system. Furthermore, it is demonstrated
how the structural information of disturbances can be used to track down the
location of sources without performing additional measurements. This facilitates
procedures to eliminate dominant sources in multivariable system design. Also, a
design tool is proposed to assist multivariable control system design. With this,
the disturbance rejection problem can be condensed to analysis of only a few
dominant sources, so that complexity in multivariable control problems can be
reduced significantly. Control design methods that make specific use of insights
obtained in this chapter are proposed in Chapter 4.

This chapter is organized as follows. In Section 3.1, it is shown how to retrieve
multivariate disturbances from closed loop measurements and which assumptions
are made in the SOBI signal model. Next, the blind identification method used in
this work is introduced in Section 3.2. Section 3.3 illustrates how the identification
method can be used to identify physical sources in an active vibration isolation
platform. Furthermore, Section 3.4 illustrates how allocation of these physical
sources can be realized. Next, Section 3.5 shows the development of a design tool
that uses the results from identification to assist multivariable feedback control
system design. Finally, concluding remarks are made in Section 3.6.

3.1 Multivariate disturbance identification

A plant G with n inputs and n outputs is considered, that is controlled by a
feedback controller K in the architecture depicted in Fig. 3.1. The disturbances
are modeled as additive, vector valued signals d ∈ Rn that enter at the input of
the plant, comprising all disturbances acting on the system. We assume that the
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Figure 3.1: Feedback control structure. G is the plant, K the controller, Gd the
disturbance model.

plant is invertible and known within negligible uncertainties. Hence, disturbances
at the output of the plant can be considered at the input of the plant (and vice
versa). The error e equals

e = SoGd, (3.1)

where So = (I + GK)−1 is the output sensitivity function. It is assumed that the
transfer function SoG is known and is invertible. A batch of observations of the
servo error can then be obtained, e(t) ∈ Rn for t = 0, ..., TsN , where Ts denotes
the sample time and N + 1 is the number of samples. Hence, the disturbance
d(t) can be reconstructed using the (stable approximate) inverse of SoG. The dis-
turbance at each plant input, namely di(t), i = 1, ..., n, result from a mixture of
sources sj(t), j = 1, ...,m that are to be identified. We restrict ourselves to cases
where m ≤ n. We introduce a framework where the designer has the ability to
identify only a few sources. The rest of the signals that generate disturbances, but
are not identified, are called interfering signals or noise signals, wl(t), l = 1, ..., p
with p ≤ n. The consequences of the separation of d(t) into s(t) and w(t) are
discussed in detail in Section 3.2.3.

The following signal model is used,

d(t) =
[

Gs Gw

]︸ ︷︷ ︸
Gd

[
s(t)
w(t)

]
, (3.2)

where Gs ∈ Rn×m and Gw ∈ Rn×p. The τ -lagged covariance matrix at time t is
defined for a multivariate signal x(t),

Rx(t, τ) = E{x(t)x(t− τ)T } (3.3)

where E{·} is the statistical expectation. The components of x(t) are uncor-
related if Rx(t, τ) is diagonal. If the signal x(t) has non-stationary power, the
covariance Rx(t, τf ) at a fixed τf varies with the time t. For non-white signals
x(t), Rx(t, τ) varies for different values of τ 6= t. Without loss of generality, it is
assumed throughout this paper that all signals have zero mean.

For the blind identification method presented in this work, the following assump-
tions are made.
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A 1. The matrix Gd is constant and has full column rank.

A 2. The sources sj(t), j = 1, ...,m are mutually temporally uncorrelated.

A 3. The time lagged autocorrelation of each source sj(t) is different for, at least,
one lag τ > 0, or, the source has different (non-stationary) power for, at least,
one time instant t.

Assumption A1) implies that the mixture of the source and noise signals is in-
stantaneous (only direct feed-through) and does not vary with time. For narrow
band disturbances, this assumption holds when the mixture is constant in the
frequency region of the disturbances. This is natural in the case that the physical
location of the sources is fixed by means of the architecture of the plant (e.g.,
a pump that has a fixed location in a building). Assumptions A2) and A3) are
naturally justified if sources are due to different phenomena, e.g., pump vibra-
tions and acoustic disturbances. In our identification procedure, the sources are
arranged in descending order. This ordering may change if the scaling of the in-
puts or outputs of the plant G in Fig. 3.1 is changed. We therefore assume that
the inputs and outputs of the plant are scaled appropriately and the scaling does
not change, see e.g. [125, p.5]. For non-white sources, the blind identification
technique presented here uses the covariance function (3.3) for different time lags
τ ,

Rd(0, τ) = GsRs(0, τ)GT
s + GwRw(0, τ)GT

w. (3.4)

In the following, we work out the case where it is assumed that the sources are
non-white. As the second order statistics vary for different time lags τ we write
for ease of notation Rd(τ) = Rd(0, τ). The same line of reasoning can be followed
in case that it is assumed that sources have non-stationary power by just replac-
ing Rd(τ) with Rd(t) for fixed τ and varying t, [106]. In that case, one can use
Rd(t) = Rd(t, 0) for varying t.

The objective is now to identify the sources s(t) and the matrix Gd from the
observed disturbances d(t) only. As we do not know the mixing matrix Gd and
have no knowledge about the sources s(t), we face a blind identification problem.
This will be discussed in the next section.

3.2 Blind identification

As both the matrix Gd and the sources are to be identified, one faces a blind
identification problem. The blind identification problems can be solved up to a
few indeterminacies [136]: the scaling between the matrix Gd and the sources and
the ordering of the sources. These indeterminacies are expressed in a diagonal
scaling matrix Λ and permutation matrix P respectively.
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Definition 1. The pair (A, s(t)) and the pair (Â, ŝ(t)) are said to belong to the
same equivalence class S if there exists a diagonal matrix Λ > 0 and permutation
matrix P so that Â = APΛ, ŝ(t) = Λ−1PT s(t).

Signals that belong to the same equivalence class have similar statistical proper-
ties [136]. Also, all signals in the equivalence class have the same “waveform”,
that is, the same shape in the time domain. Furthermore, the ratio in which
sources contribute to the observed disturbances is the same for all signals in the
same equivalence class. The objective of blind identification is to identify the
matrix and the signals that represent the equivalence class that contains the true
matrix Gd and the true sources s(t).

As the disturbances are consecutive samples in the time domain, statistics of
neighboring time samples can be used to solve the blind identification problem.
The method presented here, is worked out for the case of non-white sources al-
though the same line of reasoning can be followed in case one assumes that sources
have non-stationary power. For clarity of presentation, the method is presented
for the case that m = n and noise is absent, w(t) = 0. The influence of noise will
be discussed later.

At τ = 0 the covariance matrix of the observed disturbances equals,

Rd(0) = GsRs(0)GT
s , (3.5)

whereas at τ > 0 the τ lagged covariance matrix equals,

Rd(τ) = GsRs(τ)GT
s . (3.6)

As the sources are uncorrelated A2), both Rs(0) and Rs(τ) are diagonal. As, for
now, we assumed that m = n, Gs is square and invertible. With (3.5) and the
inverse of (3.6), we find that,

Rd(τ)−1Rd(0) = GsRs(0)Rs(τ)−1G−1
s , (3.7)

so that,

Rd(τ)−1Rd(0)Gs = GsRs(0)Rs(τ)−1. (3.8)

Finding Gs is equivalent to solving a standard generalized eigenvalue problem
[106]. The eigenvalues are the terms of the diagonal matrix Rs(0)Rs(τ)−1 and
the corresponding columns of Gs are the eigenvectors. As in any eigenvalue prob-
lem, the ordering of the eigenvalues and the scaling between the eigenvalues and
the eigenvectors is arbitrary. In fact, these are exactly the inherent indetermi-
nacies of the blind identification problem. Therefore, we define the matrix with
eigenvectors, obtained with solving (3.8), as Ĝs. So that the estimated sources
are ŝ(t) = Ĝ−1

s d(t). Then, the pair (Ĝs, ŝ(t)) where ŝ(t) = Ĝ−1
s d(t), belongs to

the same equivalent class as the pair (Gs, s(t)), the mixing matrix and the sources
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respectively.
A regular solution to the generalized eigenvalue problem exists if the product
Rs(0)Rs(τ)−1 has non-zero, distinct diagonal terms [53]. As the sources are not
known beforehand, it is non trivial to guarantee that such a regular solution exists
for a particular choice of (τ) in Rd(τ). This will be discussed later in this section.

In literature, there is an extensive amount of work on solving generalized eigen-
value problems [53]. Often a two step solution is proposed. Here, we refer to these
two steps as the following,

Step 1) whitening

Step 2) unitary diagonalization

In the whitening (or principal component analysis) step the observations are ex-
pressed in the smallest orthogonal signal space. This serves as a preprocessing
step for unitary diagonalization. In the unitary diagonalization step, special at-
tention is paid to finding regular solutions for the generalized eigenvalue problem.
Herein, A3) plays an important role. A dedicated unitary diagonalization proce-
dure can be used to increase numerical robustness. The two steps are discussed
for the case that the noise signals are absent. In the last part of this section, the
implications of preprocessing the signal space in the presence of noise signals w(t)
is discussed.

3.2.1 Whitening

The objective of the whitening step is to find a minimal number of m uncorrelated
components z(t) ∈ Rm that represents the observed disturbances d(t). Hence, an
orthogonal whitening matrix W ∈ Rm×n is to be found so that

z(t) = Wd(t), (3.9)

with Rz(0) = I and m ≤ n. From (3.5), one can take the singular value decom-
position [53] of Rd(0), so that,

Rd(0) =
[

Uds Uns

] [
Σds 0
0 0

] [
UT

ds

UT
ns

]
. (3.10)

Here m, the number of non-zero singular values, Σds, represent the size of the
source signal subspace. Using (3.9) the whitening matrix W must equal

Rz(0) = WRd(0)WT (3.11)
= WGsRs(0)GT

s WT

= WUdsΣdsU
T
dsW

T = I.
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By A2), Rs(0) is diagonal. As the scaling between the estimate of Gd and the
estimate of the sources is an indeterminacy, one can choose Rs(0) = I without
loss of generality. It follows from (3.11) that,

W = Σ−
1
2

ds UT
ds, (3.12)

which columns are orthogonal. All signals in the subspace orthogonal to W ,
signals in the image of Uns, are not considered in the next step of the blind iden-
tification procedure. Substitution in (3.9) then gives the m principal components
z(t) that are present in the observed disturbances d(t). The directions of the
disturbances are contained in Uds. Note that Rz(0) does not change when z(t)
is transformed with any unitary matrix U . Hence, the matrix Ĝs, (3.8), is re-
covered up to an unknown matrix U . Due to this freedom, the signals z(t), also
called principal components, can still result from a mixture of the sources with an
unknown unitary matrix U ,

z(t) = Us(t). (3.13)

In general, the matrix U can not be written as the product of a permutation
matrix P and a diagonal scaling matrix Λ. Hence, the signals z(t) do not belong
to the same equivalence class as the sources s(t). The second step in the blind
identification procedure is to reduce this freedom by using a stronger condition,
namely by simultaneous diagonalization of a set of lagged covariance matrices.

3.2.2 Unitary diagonalization

In order to find signals that are in the same equivalence class as the sources,
the whitening step was shown to be insufficient. By not only diagonalizing a
single second order statistic, but using additional diagonalization requirements,
a stronger condition can be obtained that reduces the class of solutions. The
additional statistics that are used here, are based on the assumption that the
sources are non-white, A3) so that (3.4) can be exploited and not only Rd(0).
The same line of reasoning holds for the case where one assumes that the sources
have non-stationary power, [106], [107]. In order to solve the blind identification
problem, one still has to determine a unitary matrix U so that

Rs(τ) = UT Rz(τ)U (3.14)

is diagonal for τ > 0. By (3.13) and A2) Rz(0) = I and Rz(τ), τ > 0 are
diagonal. Recall that the generalized eigenvalue problem, (3.8), has a regular
solution if the diagonal terms of the lagged covariance matrix of the sources,
namely Rs,ii(τ), are mutually distinct. As Rs(τ) is not known a-priori, it is not
trivial to choose a lag τ to guarantee solvability of the blind identification prob-
lem. An approach to overcome this difficulty is to simultaneously diagonalize
a set of covariance matrices for τk ∈ {τj > 0|j = 1, ..., Nk}. Then, all vectors
κi = [Rs,ii(τ1), ..., Rs,ii(τNk

)], i = 1, ..., n must be distinct in order to find a reg-
ular solution [7]. The vectors κi are already distinct if for a single value of i, the
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diagonal terms Rs,ii(τi) are distinct.
In the case of sample statistics, and the presence of noise, exact simultaneous
unitary diagonalization is practically not feasible. Hence an approximate simul-
taneous unitary diagonalization must be formulated instead. Here, the approach
of [25] is followed, that makes use of the following measure. See [126] for an
alternative approach. For an n× n matrix M , with entries Mij , we define

off(M) =
n∑

i,j=1,i 6=j

|Mij |2. (3.15)

The set of matrices Rz(τk) = {Rz(τ1), ..., Rz(τNk
)} are approximately diagonal-

ized by an n × n unitary matrix Û , when the following criterion is minimized,

J (Rz(τk), Û) =
∑

j=1,...,Nk

off(ÛT Rz(τj)Û). (3.16)

which solution,

Û = arg minJ (Rz(τk), Û) (3.17)

can be obtained by means of a generalized iterative Jacobi technique [25]. An al-
ternative formulation of this criterion is a weighted nonlinear least squares prob-
lem [147]. Herein, one may include additional information about the expected
nature of the sources [151]. For large problems, methods based on recursive split-
ting of subspaces are proposed in [155].

Finally, the results of whitening, (3.12), and unitary diagonalization, (3.17), are
used to recover the signals that are in the same equivalence class as the true
sources as,

ŝ(t) = ΛPs(t) = ÛT Wd(t). (3.18)

The estimate of the matrix Gs is Ĝs = W †Û . In the whitening step, it was chosen
to define Rs(0) = I. This implies that all scalings of the sources are contained
in Ĝs. Alternatively, one may choose to scale the columns of Ĝs to unity, this
is just a matter of convention and does not play any role in further use of this
disturbance model.

3.2.3 Influence of noise signals

Often a few dominant sources are to be identified in the presence of many other
interfering phenomena. These phenomena, defined as noise signals w(t) in (3.2)
may deteriorate the performance of the blind identification procedure. This holds
for second order blind identification as well as the basic ICA approaches in lit-
erature, [65]. In the case that m + p ≤ n, the first m + p principal components
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of d(t) can be used in blind identification so that each noise signal is identified
as an additional source. Problems arise when m + p > n as the blind identi-
fication method can not identify more sources than observations. This can be
illustrated considering the signal model defined in (3.2). Herein the covariance of
the disturbances equals,

Rd(0) = GsRs(0)GT
s + GwRw(0)GT

w (3.19)

where Rs(0), Rw(0) are symmetric. The objective is to determine the structure
at the right hand side of this equation while only knowing Rd(0). The singular
value decomposition of the covariance of d(t) equals

Rd(0) = UdΣdU
T
d (3.20)

=
[

Uds Udw

] [
Σds 0
0 Σdw

] [
UT

ds

UT
dw

]
.

Each element in Σd belongs to a single principal component, the contribution of
each principal component to the variance of the observed disturbances can be
measured. Note that when the scaling of the inputs or outputs of the plant is
changed, the contribution of these principal components may change as well. In
contrast with (3.10), each principal component contains contributions from source
and noise signals. Hence the values of Σd cannot be used to determined the di-
mensions of the source and noise signal space. The Σds in the decomposition
of (3.20) is not equal to the Σds in the decomposition (3.10). Only in the case
that one knows beforehand that Gs and Gw are orthogonal, one may select the
appropriate columns of Ud to isolate the sources from the noise. In general Gs

and Gw are not orthogonal, hence additional assumptions on the nature of the
noise signals must be made.

A commonly used assumption, [65], is that the noise space orthogonal to the
source space can be approximated as Σdw ≈ ρ2In−m, and one can assume, e.g.,
on physical grounds, that Σds = Σs + ρ2Im, the variance of the spatially white
noise space equals ρ2 ≈ 1

n−m tr(Σdw). Hence, an unbiased estimate of the source
variances can be obtained using, GsRs(0)GT

s ≈ Uds(Σds − ρ2Im)UT
ds. This strat-

egy is justified in the special case that Gw = In and Rn(τ) = ρ2Inδt,τ . The
simultaneous diagonalization procedure can be performed on the lagged covari-
ance matrices with τ > 0 as Rw(τ) = 0, τ > 0. This special structure is often
justified in array processing applications, [24]. Here, all sensors in the array are
assumed to suffer from interference of sensor noise signals each having the same
covariance. In control applications, these assumptions may be reasonable when
all channels (e.g., all sensors) have the same noise variance. This is a crude as-
sumption in most applications.

In general however, one does not know m, p exactly and coping with interfer-
ing phenomena remains a weakness of the blind identification procedure. Even
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Shakers

Figure 3.2: Active vibration isolation platform. Shakers mounted at the table
surface generate disturbances.

if one assumes that the noise is small compared to the m < n source signals,
problems may still occur in estimating the number of sources. As the singular
values of Rd(0) are non-zero, one cannot determine the number of sources in the
whitening step. This is particularly true if the matrix Gs is ill conditioned, e.g.,
if sources act in almost the same direction. The best approach in that case, is to
carry out the unitary diagonalization for the whole signal space of the observa-
tions and the noise and source signal must be isolated a posteriori. This means
that no dimension reduction is applied during the whitening step, but is only
possible after the complete blind identification procedure has been carried out.
This means that the assumptions, A1), A2), and A3), must hold for all signals
that generate the disturbances.

3.3 Identification results

The second order blind identification method is used to identify sources of distur-
bances in the 6× 6 MIMO active controlled vibration isolation platform depicted
in Fig. 3.2. The platform consist of an actively mounted table driven with Lorentz
actuators. The velocity of the table is measured by means of geophones. The po-
sition of the table is to be isolated from disturbances from the environment and
disturbances that act on the table. The plant is decoupled in six cartesian degrees
of freedom, the origin coincides with the center of gravity (COG) of the table.
Each axis is independently controlled by a single input single output controller.
Two sources are added synthetically to the system, by means of two shakers placed
at the surface of the table. Both the location and the time behavior of the shakers
are considered to be unknown. For validation purposes, the acceleration of the
shakers is measured by means of piezo elements attached to the moving parts of
the shakers. The objective is to recover estimates of the sources that are in the
same equivalence class as the measured signals from the shakers.
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Figure 3.3: Reconstructed input disturbance of the active vibration isolation plat-
form.

The first step is to reconstruct the disturbances from measurements of the er-
ror of the feedback controlled system, Fig. 3.1. The transfer function between
the acceleration of the shakers, x, and the observed error equals,

e = G(I + KG)−1GdGxx (3.21)

Herein, Gx denotes the transfer function between forces acting on a certain lo-
cation of the table and the acceleration of the shakers x. The transfer func-
tion matrix Gx is constant and diagonal, diag(Gx) = [gx1, gx2]T . As the dis-
turbances are above the bandwidth of the feedback controlled loops in each
axes, (I + KG)−1 ≈ I. Also, the plant behaves rigid and is decoupled so
that the plant dynamics can be approximated at each ith diagonal term by,
Gii(s) = 1

sgii, gii ∈ R1. As scaling is an indeterminacy of the blind identifica-
tion method, the derivative of the identified sources (in terms of velocities) can
be compared to the acceleration of the shakers to validate the blind identification
method. From a batch of observed servo errors e(t), the disturbances d(t) ∈ R6,
for t = 0, ..., TsN can be reconstructed. Herein, Ts = 1×10−3 denotes the sample
time and N + 1 = 1× 103 the number of samples. The disturbances at each con-
trolled axis are depicted in Fig. 3.3. The following estimator for the covariance
at time t = 0 for lag τ is used,

R̂d(τ) =
1
N

N∑
ti=0

d(ti)d(ti − τ)T . (3.22)

It is assumed that the sources are non-white, A3), hence Nk estimates of the
τk ∈ {τj > 0|j = 1, ..., Nk} lagged covariance matrices are used in the blind
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identification method. The choice of Nk is rather arbitrary as no information
about the sources is available beforehand. From practical experience Nk = 20 is
a satisfactory tradeoff between statistical averaging and computation time.
After blind identification both ŝ(t) and Ĝs are determined, so that

d(t) = Ĝsŝ(t) + dw(t). (3.23)

Herein, dw(t) = Gww(t), see (3.2), is the part of the disturbance that results
from noise signals. The matrix Gw and the signals w(t) are not identified in
the blind identification procedure. As shown earlier, blind identification cannot
determine whether scaling is contained in the sources or in the mixing matrix. In
the whitening step it was therefore assumed that the sources have unit variance,
Rs(0) = I. All scaling is then contained in the estimated mixing matrix. One
may express this scaling in a diagonal matrix Γ. Then, the directions, normalized
to unity, equal the columns of the matrix Gs so that the following holds,

Ĝs = GsΓ. (3.24)

The ratio in which each jth source contributes to the observed disturbance in
each channel is then contained in each jth column of Gs. The diagonal terms
of the matrix Γ indicate the relative contribution of each source to the observed
disturbances.

Blind identification is performed for two cases; 1) identification with a PCA-like
(whitening) pre-processing step to identify only a few dominant sources m < n,
2) identification of as many sources as observed disturbances m = n.

3.3.1 Case 1, W ∈ R2×6

The first case illustrates how one can use the whitening step in SOBI to iden-
tify only a few dominant sources, m < n. The number of dominant sources is
estimated by studying the contribution of each principal component to the to-
tal variance of the observed disturbances, as measured by the singular values of
R̂d(0, 0),

diag(Σd) = 1× 10−3


0.5667
0.0126
0.0017
0.0013
0.0002
0.0001

 . (3.25)

Herein, diag(·) stacks the diagonal terms of (·) as a column vector. The relative
contribution of each principal component is depicted in Fig. 3.4. It is visible that
the first principal component is responsible for 97 percent of the variance of the
observed disturbances. Hence, solely on the basis of the principal components,
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Figure 3.4: Percentage of contribution to the variance of the observed distur-
bances. Left, per principal component, Case 1). Right, per identified source,
Case 2)

0 0.5 1 1.5 2
−5

0

5

1 [−
]

0 0.5 1 1.5 2
−5

0

5

2 [−
]

Time [s]

ŝ
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Figure 3.5: The two identified sources recovered from the observed disturbances,
Case 1).

one could conclude that there is one single dominant source responsible for the
observed disturbances. Here, we choose m = 2, so that the whitening matrix
becomes W ∈ R2×6. One may chose higher m if more sources are to be identified.
After unitary diagonalization, the estimated sources are obtained as depicted in
Fig. 3.5. The matrix Ĝs = GsΓ is estimated as,
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ŝ

ŝ

Figure 3.6: All six identified uncorrelated sources ŝ in Case 2).

Gs =


−0.0161 0.0052
−0.0164 −0.0025
−0.9933 0.9827
−0.0183 −0.0753
−0.1122 −0.1692
−0.0011 0.0013

 ,diag(Γ) =
[

0.0183
0.0155

]
. (3.26)

3.3.2 Case 2, W ∈ R6×6

In this approach, the signal space is not reduced in the whitening step, hence
m = n sources are identified. The number of dominant sources is estimated after
applying SOBI. The whitening matrix is a square transformation and the unitary
diagonalization problem, (3.17), is solved simultaneously for Nk lagged covariance
matrices, each with size (6 × 6). The estimated sources are shown in Fig. 3.6.
The matrices Ĝs = GsΓ equal,

Gs =


−0.0161 0.0059 −0.0277 0.0785 0.0469 0.7055
−0.0100 −0.0050 −0.0705 0.3416 0.0265 0.2330
−0.9955 0.9738 0.9942 0.9352 −0.9237 0.0226
−0.0126 −0.0664 −0.0581 −0.0370 0.3624 −0.6509
−0.0923 −0.2173 −0.0110 0.0138 0.1118 −0.1519
0.0015 −0.0018 0.0474 0.0321 −0.0042 0.0260

, (3.27)
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diag(Γ) =


0.0190
0.0132
0.0048
0.0035
0.0035
0.0007

. (3.28)

The values of Γ indicate the contribution of the identified sources to the distur-
bance. The contribution of each of the six estimated sources is depicted in Fig.
3.4. It is visible that the first two estimated sources are responsible for more than
70 percent of the observed disturbances. Comparing these results to the left side
of Fig. 3.4, it is clear that the first five estimated sources contribute mostly to the
first principal component. Hence, using blind identification, we are able to esti-
mate sources of disturbances even if those sources act almost in the same direction.

3.3.3 Validation and interpretation of results

The results from Case 1), show that the identified sources contain components
from different phenomena. Also, the number of dominant sources was estimated
incorrectly. This demonstrates that estimates from PCA can be misleading in
cases where sources act in almost the same directions (z-direction in this case).
Figure 3.5 shows that SOBI is not able to separate the first two sources. The
results from Case 2) are much more satisfying. From the post-analysis, it is
concluded that indeed two sources are responsible for most of the observed dis-
turbances. The ith row element of the jth column of Gs shows the dominance
of the jth source on the ith disturbance. It appears that the first two sources
act mostly in z direction. Also, both sources contribute to disturbances in Ry

and Rx-direction. This is supported by physical insight; the shakers are at some
distance from the center of gravity of the table. The third source that is identified
is recognized as the undamped suspension mode of the plant in z-direction. The
fourth source is likely to result from floor vibrations (z-direction). The fifth and
sixth source have no clear physical interpretation.

To validate the first two identified sources of Case 2), measurements from the
acceleration of the shakers are used. Figure 3.7 shows that measured acceleration
of moving parts of the shakers. The time derivative of the estimated sources for
Case 1) and Case 2) are shown in Fig. 3.8a and Fig. 3.8b. In Fig. 3.9, the spectra
of the shakers and the first two identified sources of Case 2) are shown. Again, it
is visible that the sources are identified up to arbitrary scaling and permutation.

Using the results from blind identification, the disturbance model (3.23) is con-
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Figure 3.7: Measured acceleration of the shakers.
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Figure 3.8: Left: time derivative of the estimated sources of Case 1). Right: time
derivative of the estimated sources of Case 2).

structed as,

d(t) = Ĝsŝ(t) + dw(t)

=
m∑

j=1

dsj(t) + dw(t) (3.29)

Herein, the contribution of each jth source, sj(t) can be studied. The closed loop
transfer function, (3.1), can be used to decompose the servo error in contributions
of each source. This indicates the priority of eliminating or rejecting a particular
source. Several approaches may then be followed to reduce the influence of the
sources on the performance of the multivariable system. In the following sections
it is shown how the results from blind identification can be used for 1) allocation
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Figure 3.9: Spectrum of the acceleration measurements of the shakers and the time
derivative of the first two blindly identified sources. Scaling and permutation are
indeterminacies of the identification procedure.

of the sources and 2) as a design tool in multivariable feedback control design.

3.4 Localization of sources

In order to eliminate a source, finding its location is a challenging issue. In this
section, it is illustrated that the results from blind identification in combination
with a kinematic model can be used to allocate dominant sources. The following
three additional assumptions are required,

A 4. The table behaves rigid in the frequency region of interest

A 5. The sources act as point forces

A 6. The sources act on the table surface.

The disturbance dsj due to the source sj is decomposed in cartesian coordinates.

dsj = [dj
x, dj

y, dj
z, dj

Rx, dj
Ry, dj

Rz]
T (3.30)

The active vibration isolation platform is controlled in cartesian coordinates with
the origin at the center of gravity of the table, hence each disturbance dsj , j =
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Figure 3.10: Multi body model to find the location of the jth independent com-
ponent from the disturbance forces acting on the center of gravity.

{1, ...,m} is expressed as a disturbances acting on the center of gravity of the
table. By assumption A5), allocation of the source boils down to finding the
vector from the center of gravity to the point where the source acts, see Fig.
3.10. As the table is assumed to be rigid, A4), one can use to following relation,
−→
MCOG = −→r ×

−→
F COG, see for example [64], to show that,

 dj
Rx

dj
Ry

dj
Rz

 =

 0 dj
z −dj

y

−dj
z 0 dj

x

dj
y −dj

x 0

 rj
x

rj
y

rj
z

 . (3.31)

The matrix at the right hand side of this equation has rank 2, hence it is only
possible to find the shortest distance rj to a line on which the jth source is located.
Using assumption A6), rj

z becomes zero see Fig. 3.10, and the vector −→r j
xy from

the center of gravity to the source location can be uniquely determined, as (3.31)
reduces to,

[
dj

Rx

dj
Ry

]
=

[
0 dj

z

−dj
z 0

] [
rj
x

rj
y

]
. (3.32)

Herein, the matrix at the right hand side is full rank. In (3.31), it shows that only
the ratio between the elements in dsj (3.30) matters. Hence, it suffices to take
in account only the direction of dsj , which equals the jth column of Gs, (3.28).
Therefore, the indeterminacies, that are inherent to the blind identification prob-
lem, have no influence on this procedure.

By using the first two identified sources in (3.28) the location of the actual sources
can be recovered. For ten subsequent experiments, the estimated locations are
depicted in Fig. 3.11. The actual location of the shakers is marked with the dia-
monds. It is clear that the location of the sources can be recovered with acceptable
accuracy. Once the source is tracked down, possibilities can be investigated to
eliminate the source or to eliminate the impact on the performance by redesign
of the plant.
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Figure 3.11: Top view of table surface. Estimated location of the sources for ten
experiments, ŝ1 (+), ŝ2 (∗) and actual location of the shakers �.

3.5 Disturbance driven multivariable feedback con-
trol

If the sources cannot be eliminated, or the plant cannot be redesigned, multivari-
able feedback control may be employed to reject the influence of the source on
the performance of the system. As (3.23) provides a multivariable disturbance
model, model based techniques can be applied for the synthesis of multivariable
controllers, see e.g. [125], [84]. Here, we focus on a specific property of multivari-
able systems, namely the role of the direction of the disturbances. Directions play
an important role in multivariable system design, [125],[94]. In Section 2.2, it was
shown how directions determine the achievable performance of control systems
as a result of inherent limitations. In practical cases, it is very difficult to give
a physical interpretation to multivariate disturbances, hence the directionality of
disturbances can not always be exploited. Here, it is shown how the results from
SOBI provide a physical interpretation of directions of disturbances in the active
vibration isolation platform. Also, the performance of two candidate feedback
controllers is evaluated using a measure of performance that makes use of the
identification results of SOBI.

From (3.29) and Fig. 3.1 follows,

e = GSi(Ĝsŝ + dw), (3.33)

where Si = (I + KG)−1 is the input sensitivity. Using SOBI, the directions of
the disturbances due to each jth source are obtained as the jth column of Ĝs,
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(3.29). In the spirit of error budgeting techniques, [68], one may use Equation
(3.33) to study the contribution of each estimated source ŝj to the servo error.
For example, we may study,

‖e(ω)j‖2 = ‖GSi(jω)dsj(ω)‖2, (3.34)

per frequency ω. Herein, dsj(ω) is the disturbance as a result of the jth source and
‖x(jω)‖2 is the Euclidean norm of x evaluated at each frequency ω. This measure
expresses the size of the servo error e(ω) resulting from a sinusoidal disturbance
dsj(ω) that is generated by the source sj(ω). The contribution of each source
to the final servo error can be studied in this way. Hence, disturbance rejection
performance of a multivariable control system can be decomposed in disturbance
rejection performance per physical disturbance cause (source).

Another measure can be derived that specifically takes into account the direc-
tional aspects of disturbances. If the direction of the disturbances are aligned
with input directions that correspond to small singular values of Si, attenuation
of disturbances is high. Hence, the alignment between each column of Ĝs and the
relevant closed loop transfer function is a measure of how well dsj , the disturbance
that originates from source sj , is rejected. We define,

αj(ω) =
‖G(jω)Si(jω)dsj(ω)‖2

‖dsj(ω)‖2
, (3.35)

which can be considered as a closed loop variation of the disturbance condition
number discussed in [122]. If αj(ω) is small, the closed loop function is said to
be well-aligned with the disturbance direction of disturbances that are due to the
source sj . This measure can be used to select controllers that result in better
disturbance alignment. As the disturbances can now be decomposed in contribu-
tions per source, alignment can be given a physical interpretation.

We illustrate these measures on the active vibration platform. The disturbance
rejection performance for two feedback control designs is studied. The first con-
troller, K1, was discussed extensively in Section 2.5. The second controller, K2,
equals K1, except in the z-axis. In this axis, the crossover points are changed from
0.6Hz, 10Hz to 0.5hz, 20Hz. In Fig. 3.12 the measure, (3.34), is depicted. The top
figure shows ‖e‖2 as a function of all the input disturbances. These disturbances
contain contributions of all sources. At frequencies below 20Hz, the controller
K2 results in better disturbance rejection than the design with controller K1. At
frequencies above 20Hz, disturbance rejection with K2 is worse than the lower
bandwidth design K1. As 20Hz is the maximum bandwidth frequency, it is clear
that this is caused by the waterbed effect, Section 2.2. The same tradeoff seems
to apply for the middle and bottom figure, that shown ‖e‖2 as a result of only
the first and second identified sources. As these sources act almost exactly in z-
direction, see the first two columns of Ḡs in (3.27), the high bandwidth controller
for the z-axes, K2, results in more high frequency amplification of the distur-
bances due to the shakers. Using the same measure, we can investigate how much
performance can be gained by eliminating the sources by system redesign. This
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Figure 3.12: Norm of the servo error with two control designs with K1,K2. Top:
as a result of all disturbances, Middle: as a result of disturbances due to ŝ1.
Bottom: as a result of disturbances due to ŝ2.
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Figure 3.13: Norm of the servo error in the original situation and the error without
the contributions of the first two estimated sources.

is shown in Fig. 3.13 where we depicted ‖e‖2 for the original case (same as top
figure in Fig. 3.12) and the predicted value of ‖e‖2 is the disturbances due to the
first two blindly identified sources are removed.

The closed loop disturbance alignment measure α(ω) is shown in Fig. 3.14. In
the top figure, α(ω) is shown as a function of all disturbances. Reducing the
sensitivity function in the z-axis implies that the process sensitivity function has
low gain for disturbances that act in z-direction. As most disturbances appear
to act in z-direction, see Ḡs in (3.27), the controller K2 results in better dis-
turbance alignment at frequencies within the bandwidth. At frequencies above
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Figure 3.14: Disturbance alignment condition number α(ω) with two control de-
signs with K1,K2. Top: for all disturbances, Middle: for disturbances due to ŝ1.
Bottom: for disturbances due to source ŝ1

the bandwidth, K1 has smaller sensitivity in z-direction and therefore results in
better disturbance alignment than K2. In the middle and bottom figure α(ω) is
shown for disturbances due to the first two blindly identified sources, ŝ1 and ŝ2.
As they act mostly in z-direction, it is clear that disturbance alignment is mostly
determined by the controller in the z-axis.

In conclusion, we find that the controller K2 outperforms K1 in rejecting the
low frequency disturbances that are generated by the shakers. If disturbance re-
jection at high frequencies is important, the low bandwidth design with K1 is to
be preferred. As the disturbances due to the shakers act mostly in z-direction,
the multivariable disturbance rejection problem can be simplified to redesign of
the controller of the z-axis. As we determined the contribution of each source to
the input disturbances of the AVIS, we are able to predict the performance of the
system for the case that the first two sources are eliminated.

3.6 Conclusion

In this chapter, a blind identification method is used to find root causes (sources)
of disturbances in multivariable control systems using closed loop measurements
of the error. The proposed identification method successfully identifies dominant
sources in an industrial active vibration isolation platform. Also, the location of
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sources can be determined, without any additional measurements. Furthermore,
a design indicator, that uses the results from identification, provides insight in the
disturbance rejection performance of multivariable controllers. It is shown that
the proposed identification method can be used to estimate the number of sources
in multivariable disturbances, even in cases where the sources act almost in the
same direction.

An example was presented where insights from blind identification can be used to
evaluate disturbance rejection performance of different multivariable controllers.
In this application, it is shown that the multivariable control (re)design of the
MIMO 6× 6 active vibration isolation system can be reduced to (re)design of the
controller in only a single direction. It was found that disturbance rejection in this
direction is mostly determined by control design in a single axis. Hence, control
design complexity is reduced significantly. In more general cases, disturbance di-
rections are not aligned with only a single controlled axis. The same identification
method can be applied, but control (re)design, to reject disturbances in exactly
those directions that are related to the sources, is generally more involved. This
is discussed in the following chapter.
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Chapter 4

Directionality in multivariable
control design

Once disturbances and noise are characterized, accommodating directions of dis-
turbances and noise in feedback control design is desirable. In this chapter, sev-
eral directionality driven feedback control design methods are proposed. From
the unit feedback configuration, Section 2.1, we found the following relates noise
n and output disturbances do with the performance variable z,

z = Sodo − Ton (4.1)

where So = (I + L)−1 is the output sensitivity function and To = LSo is the out-
put complementary sensitivity function. As the objective is to keep z as small as
possible in presence of do and n, the sensitivity function must have low gain in the
frequencies and directions where do is large. For noise rejection, the complemen-
tary sensitivity function must have low gain at frequencies and directions where
n is large. If closed loop functions are to be designed with different gains in dif-
ferent directions (non-uniform gain), the following design issues arise immediately.

First, non-uniform gain closed loop functions imply that the open loop function
has non-uniform gain. Then, relations between open and closed loop functions as
derived in Section 2.1.3, do not provide much insight for control design. Second,
the input and output directions of the open loop depend strongly on the align-
ment between plant and controller. Hence, it is not intuitive to shape the input
and output directions of the open loop by (re)tuning the controller parameters.
Third, recall from (2.11), that,

κ(G)−1σi(So) ≤ σi(Si) ≤ κ(G)σi(So)

κ(K)−1σi(So) ≤ σi(Si) ≤ κ(K)σi(So). (4.2)
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This implies that if either κ(K) � 1 or κ(G) � 1, the singular values at one
loop breaking point do not have to be equal to the singular values at another
loop breaking point. Therefore, robustness margins at one loop breaking point
may significantly differ from robustness margins at the other loop breaking point.
These issues shown that, compared to the decoupling approaches in Section 2.4,
design complexity of multivariable controllers is increased significantly.

In motion control applications, there are situations that the plant can be de-
coupled and scaled so that κ(G) = 1 at some frequencies. This typically occurs
in plants that have free rigid body modes or plants that have stiff connections
to the environment. Then, at least at low and intermediate frequencies, domi-
nant dynamics can be considered as G(s) = g(s)I. If a centralized (non-diagonal)
controller K is designed, the input and output directions of the open loop are
completely determined by the controller. Furthermore, as κ(G) = 1, (4.2) shows
that σi(So) = σi(Si), so that robustness margins are the same at different loop
breaking points. The only issue that is left to resolve, is to relate input directions
of the sensitivity and complementary sensitivity function to specific design choices
of the feedback controller. This is investigated in this chapter.

This chapter is organized as follows. In the next section, it is discussed how
the results from blind identification of fixed direction disturbances can be used
to choose weighting filters for norm based design. Section 4.2, proposes a loop
shaping method to reject disturbances in specific, non-canonical, directions. In
the third section, it is studied how directions of both disturbances and sensor
noise can be introduced in manual and norm based design. The class of plants
that is considered in this chapter does not include the AVIS discussed in Section
2.5 and Section 3.3. To illustrate the concepts developed in this chapter, direction
dependent control design is applied to an industrial atomic force microscope in
Section 4.4.

4.1 Norm based design

The generalized plant framework provides a way to formulate many practical
control design issues. In Section 2.3, this framework was used for analysis of mul-
tivariable control systems. Using operator norms on the generalized plant, control
design objectives can be expressed. If a parametric model of the generalized plant
is available, controllers can be synthesized with respect to these design objectives,
[36].

Common operator norms used in control synthesis methods are theH∞ orH2 norm.
We are particularly interested in the frequency domain loopshaping aspects of
norm based control design. Minimizing the H∞ norm corresponds to minimizing
the largest peak of the largest singular value of a system, [38, 128]. Therefore,
the transmission of signals with the worst direction at the worst frequency is pe-
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nalized. By careful design of weighing filters, certain directional aspects of the
closed loop function can be shaped. A great advantage of this, is that the system
H∞ norm satisfies the multiplicative property. Hence, the systemH∞ norm of the
generalized plant can be shaped by studying the system H∞ norm of particular
closed loop functions and the system H∞ norm of weighting filters.

Alternatively, H2 synthesis can be applied. Minimizing the system H2 norm
corresponds to minimizing the sum of squares of all singular values of the system
over all frequencies, [128]. The result is that the response in “average” directions
and “average” frequencies is shaped, [125, p.159]. The system H2 norm does not
satisfy the multiplicative property. Hence, (re)design of weighting filters is not
intuitive, [34], and it can be more difficult to minimize a closed loop function in
a small frequency interval and in a particular direction from a practical point of
view.

On the basis of these observations, we choose H∞ control synthesis for frequency
domain loopshaping control design. When time domain interpretations are pre-
ferred, one may reconsider our choice for H∞ control synthesis. Minimizing the
systems H2 norm minimizes the root mean square response of the system due
to unitary white noise inputs. Minimizing the systems H∞ norm minimizes the
worst case gain for sinusoidal inputs at any frequency. As MIMO stochastic dis-
turbance models can be obtained quite straightforwardly, [133], H2 synthesis can
be preferred. More signal interpretations of system norms can be found in [125,
p. 539] and references therein.

To shape the principal gains of closed loop transfer functions at different loop
breaking points, weighting filters are to be designed that translate the design
specifications. As was discussed in Section 1.2.2, the choice of sensible weighting
filters for such a design can be non-trivial, especially for multivariable systems.
With the insight and information obtained with procedures to characterize dis-
turbances, it is now investigated how weighting filters can be chosen for norm
based multivariable control design. To illustrate different choices of weighting
filters, an H∞ design example is studied where a decoupled plant is subjected to
disturbances that have fixed directions. As weighting filters are not necessarily di-
agonal, norm based synthesis typically results in centralized controllers. Different
disturbance model choices give rise to different weighting filters, the implications
of these are illustrated.

4.1.1 Disturbance rejection with H∞ control design

A generalized plant, including plant, controller, interconnections, and weighting
filters, relates exogenous signals w to performance variables z,

z = Mw, M = Fl(P,K). (4.3)
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G d
s

d- GK y

Figure 4.1: Block diagram of controller architecture. The disturbance d enters
the loop at the output of the plant G. A feedback controller K is to be designed.

The objective is to minimize the transfer from w to z, by design of a stabilizing
controller K, so that in,

‖M‖∞ = max
ω

σ(M(jω)) (4.4)

= max
‖w‖2 6=0,ω

‖M(jω)w(ω)‖2
‖w(ω)‖2

≤ γ (4.5)

γ is minimized. In the case that no model uncertainty is taken into account,
the controller resulting from H∞ synthesis approaches that of frequency weighted
H2 synthesis when γ approaches infinity, [23, p. 375]. The formulation of the
generalized plant, with interconnections and weighting filters, is a delicate issue.
Several examples are provided in [125]. We focus on the disturbance rejection
problem discussed in Section 1.2. Herein, the issue is to find a stabilizing con-
troller K so that, among other objectives, the transfer function from exogenous
disturbances d to performance variable z is minimized. For the rejection of dis-
turbances, the following weighted output sensitivity function,

‖SoV ‖∞ (4.6)

is to be minimized. Herein, V is a rational, stable, minimum phase, frequency
dependent weighting filter that represents the frequencies and directions of the
output disturbances. The choice of V if often non-trivial, especially in multivari-
able systems where aside from frequency dependence, directions are to be taken
into account. Here, we will focus on the disturbance rejection for which the fixed
direction disturbance model from Chapter 3 holds. We consider only sources, no
interfering noise signals, hence with Gd = Gs,

d(t) = Gds(t). (4.7)

The columns of the matrix Gd hold the directions of the disturbances and si(t) are
mutually statistical independent but unmeasurable sources. As s(t) can not be
measured directly, conventional control design approaches consider d(t) without
detailed knowledge of Gd and s(t). With the results from the blind identification
procedure outlined in Chapter 3, we study how estimates of the sources and the
matrix Gd can be used in control design and how they improve on the approach
using d(t) only.
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Firstly, principal component analysis (or whitening) can be used to recover un-
correlated components z(t) and the whitening matrix W . Then, the following
disturbance model can be formulated,

d(t) = W−1Us(t) = W−1z(t). (4.8)

This shows that the sources are recovered up to an unknown unitary matrix, U .
The directions of disturbances due to each uncorrelated component are contained
in the columns of W−1.

Secondly, the Second Order Blind Identification (SOBI) procedure, estimates in-
dependent components ŝ(t), so that the following disturbance model holds,

d(t) = W−1ÛPΛs(t) = Ĝdŝ(t). (4.9)

Herein, both ŝ(t) and s(t) are statistically independent. Furthermore, Λ is an
arbitrary diagonal matrix with Λ > 0 and P is a permutation matrix. Both Λ
and P can not be determined with the blind identification procedure. These inde-
terminacies have no influence on the spectra of the estimated sources, ŝ(t). Hence
the spectra of the estimated sources equal the spectra of the true sources. SOBI
determines the unitary matrix Û , so that Ĝd = W−1Û . In the whitening step,
it was assumed that Rs(0) = I, which implies that all scalings of the sources are
contained in Ĝd. Alternatively, one may choose to scale the columns of Ĝd to
unity. This is just a matter of convention.

This shows, that quite some detail of the disturbance model is gathered using
blind identification techniques. With this in mind, three approaches to choose
V are studied. Namely, designs with 1) disturbance direction fixed, sources un-
known, Vd, 2) disturbance direction not fixed, hence worst case design, Vwc, 3)
disturbance direction fixed and sources blindly identified, Vŝ.

Disturbance direction fixed, sources unknown

In this design approach, no information from blind identification is used. In the
case that the plant is decoupled, a common practical approach is to consider
the disturbance d(t) as an exogenous signal acting on each controlled variable
independently. The relations between disturbances at each controlled variable are
neglected. Hence, the disturbance at each controller variable is, rather naively,
modeled without taking into account any mutual information. This approach
is incorrect in general and does not provide any guarantee for the achievable
performance. However, we would like to demonstrate its implications. Therefore,
a diagonal weighting filter in (4.6), is chosen so that V = Vd,

Vd(jω) = diag{Vd,i(jω)} (4.10)

where Vd,i(jω) is designed to satisfy

|Vd,i(jω)| ≥ |
√

Φdi(jω)|. (4.11)
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Herein, Φdi(jω) is the (univariate) power spectrum of the output disturbance on
each ith output of the plant (the controller variable). As the disturbances d(t)
are a mixture of source signals s(t), it is expected that an upper bound, (4.11),
may introduce conservatism and may fail to model the multivariable disturbance
at all.

Disturbance direction not fixed, hence worst case

Another approach is to model the largest disturbance that may result from a
linear combination of the sources. We refer to this disturbance as the worst
case disturbance. The alignment between output sensitivity function and the
direction of this largest disturbance determine if this disturbance leads to a worst
case disturbance rejection performance. In this approach, the objective is to
design a controller that rejects this worst case disturbance in any direction. The
results from whitening (principal component analysis) can be used to construct
a weighting filter V for (4.6). As the first principal component equals the worst
case disturbance, dwc(t), it follows from d(t) = W−1z(t) that,

dwc(t) = w̃1z1(t), (4.12)

where w̃1 is the first column of W−1. Without loss of generality, we choose to
normalize the columns of w̃1 to unity and move all scaling to the signal zwc(t) =
‖w̃1‖2z1(t), w̃wc = w̃1‖w̃1‖−1

2 , so that,

dwc(t) = w̃wczwc(t). (4.13)

In order to weight for the worst case disturbance in all directions, the following
weighting filter V = Vwc is chosen as,

Vwc(jω) = Vz,wc(jω) I, (4.14)

where Vz,wc(jω) is a scalar weighting filter so that

|Vz,wc(jω)| ≥ |
√

Φzwc
(jω)| (4.15)

is satisfied. Herein, Φzwc
(jω) is the power spectrum of zwc(t). The first principal

component is generally a mixture of the sources, hence the spectra of zwc(t)
contains components from the sources. In practical control design, weighting
filters have limited order. Therefore, with design of an upper bound, conservatism
may be introduced. Furthermore, using the same weight in all directions, (4.14),
can be unnecessarily pessimistic.

Disturbance direction fixed, blindly identified

When SOBI is used, the independent components ŝ(t) and the constant matrix
Ĝd are recovered. With this information, it is demonstrated how a weighting filter
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V can be constructed for norm based control design. Without loss of generality,
one may normalize the columns of Ĝd to unity. A diagonal scaling matrix Λ =
diag{λi}, with λi = ‖ĝd,i‖−1

2 the inverse of the norm of the ith column of Ĝd is
defined. Now, Ĝd = G̃dΛ and,

d(t) = G̃ds̃(t) (4.16)

where s̃(t) = Λŝ(t). Herein, G̃d contains the directions of each independent
component whereas all magnitude information is held by s̃(t). We define the
total weighting filter V = Vŝ as the transfer function matrix,

Vŝ(jω) = G̃dVs̃(jω). (4.17)

Herein, Vs̃(jω) is diagonal (Vŝ(jω) is non diagonal if G̃d is non-diagonal) with
on each ith diagonal element a weighting filter for the power spectrum of the ith

(scaled) independent component, namely,

|Vs̃i
(jω)| ≥ |

√
Φs̃i

(jω)|, i = 1, ..., n (4.18)

The indeterminacies of the blind identification solution only imply the exchange of
gain, sign and permutation between ŝ(t) and the columns of Ĝd. Therefore, each
weighting filter in (4.18) bounds the spectrum of each independent source. This
may result in less conservative upper bounds, especially when the order of the
weighting filter is restricted. Also, from an engineering perspective, more insight
can be obtained as weighting filters have a physical meaning. As the directions of
the actual sources are taken into account, one is able to design weighting filters
in only those directions that are relevant.

4.1.2 Simulation Example

The design of weighting filters for disturbances is illustrated on a model of a two
degrees of freedom manipulator. The plant is diagonal, so that the plant can
be controlled independently in each direction. We choose a diagonal plant for
illustration purposes, the norm based control design framework is able to handle
more general plants. The plant is defined as,

G(s) =
[

k1
s2 0
0 k2

s2

]
. (4.19)

Here, k1 = k2 = 4 × 103, which results in a magnitude of 0dB at 10Hz for each
controlled axis. The plant dynamics are uncertain at frequencies above 100Hz.
The output disturbances are shown in Fig.4.3. As the plant has uncertain dynam-
ics above 100Hz, roll-off is desired. This requirement is expressed by weighting
the control sensitivity KSo with Wks. Also, we have a low frequency objective,
expressed by a weight Ws on the output sensitivity. These two objectives are
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Figure 4.2: Frequency response (magnitude only) of the elements of the weighting
filters (diagonal) for the sensitivity function Ws (dashed) and the control sensi-
tivity function Wks (solid).

formulated in a standard H∞ mixed sensitivity problem, see, e.g., [125]. Now a
stabilizing controller K is to be found that minimizes,∥∥∥∥ WsSoV

WksKSoV

∥∥∥∥
∞

. (4.20)

The weighting filters Ws,Wks are chosen diagonal, with the same gain in all
directions. The frequency response of the elements of Ws,Wks is shown in Fig.
4.2. These weighting filters are the same for all examples. The weighting filter
V expresses the characteristics of the output disturbances. Choosing a particular
V , the relevant frequencies and directions of the disturbances can be taken into
account. The initial design is V = I. Alternative choices of V are studied, each
using a different disturbance model. All designs are targeted to achieve the same
closed loop bandwidth with the same robustness margins.

Blind identification

The Second Order Blind Identification method from Chapter 3 is used to char-
acterize the observed output disturbances, d1, d2, shown in the left hand side of
Fig. 4.3. From the whitening procedure the uncorrelated components z(t), d(t) =
W−1z(t), are determined. The whitening matrix equals,

W−1 =
[
−4.21 −0.35
−3.57 0.41

]
. (4.21)

The uncorrelated components are shown in the middle plot of Fig. 4.3. It is
clear that these uncorrelated components do not allow straightforward physical
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interpretation. Using joint diagonalization, the independent components ŝ(t) are
recovered

ŝ(t) = Ĝ−1
d d(t) = ÛT Wd(t) (4.22)

where Ĝd is determined as

Ĝd =
[
−3.01 −2.97
−3.01 −1.97

]
. (4.23)

For this example, the true (but unknown) matrix was

Gd =
[

3 3
3 2

]
(4.24)

so that the indeterminacy of the blind identification method implies that the sign
of the recovered mixing matrix (and the same change of sign in the recovered
sources) can not be identified. The independent components are shown in the
right plot of Fig. 4.3. Clearly, a step sequence and a combination of harmonics
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Figure 4.3: Left: output disturbances d(t), Middle: uncorrelated components z(t),
Right: independent components ŝ(t)

can be distinguished. In a practical situation, one may interpret this as sources
from physical phenomena (other machines in a factory, pumps, etc.). With these
results, control design with several different choices of the weighting filter V are
considered.

Weighting filter design

We choose to have the same bandwidths (first 0dB crossing of principal gains of
the output sensitivity function) and the same margins in all designs. This is no
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limitation in the theory presented here, but allows more transparent comparison
of the sensitivity functions. In order to obtain the same bandwidths in all de-
signs, the weighting filter V is designed to equal the identity matrix at frequencies
close to the bandwidth. We restrict ourselves to fourth order weighting filters V ,
hence in all three designs, each power spectrum is bounded with a second order
weighting filter.

The first control design considers a weighting filter, V = Vd, that bounds the
square root of the power spectra of d(t) at each controlled variable. Each of these
power spectra contain contributions of both sources. A second order weighting
filter is designed to bound each spectrum from above, Fig. 4.4. In the second
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Figure 4.4: Weighting filter design based on the power spectrum of the output
disturbances.

design, a weighting filter, V = Vwc, is constructed that bounds the power spec-
trum of the worst case disturbance (the first principal component). The worst
case disturbance contains contributions of both sources. A second order weighting
filter is used to bound the power spectrum from above, Fig. 4.5. This weighting
is applied in all directions, see (4.14). The third design uses the information from
blind identification to construct a weighting filter V = Vŝ. The power spectra of
s̃(t), that is ŝ(t) scaled with Λ, are calculated. The estimated sources are inde-
pendent, hence their spectra are separated. Second order low pass weighting filter
bounds the power spectrum of each estimated source, ŝ(t), from above, Fig. 4.6.
As the total weighting filter must be equal to the identity matrix at frequencies
around the bandwidth we choose,

Vŝ(jω) = G̃dVs̃(jω)− I. (4.25)

Herein, Vs̃ is diagonal and Vŝ is non-diagonal. The designs are discussed in detail
in the following section.
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Discussion

Each design approach resulted in a different weighting filter and therefore a differ-
ent sensitivity function. Here, the differences between those sensitivity functions
are discussed. We have the initial design with V = I and the three designs with
specific models of the disturbances, Vwc, Vd and Vŝ respectively. Ideally, weighting
filters describe the spectrum of the disturbances perfectly. In practical situations
however, the order of the transfer functions of the weighting filters is restricted.
Then, weighting filters are tuned to upper bound the square root of the power
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spectrum. If the order of the transfer functions of the weighting filters is small,
conservatism is introduced in upper bounding the power spectra. This conser-
vatism may be significant when the power spectra contain contributions of more
sources, as in the case of Vd, Vwc. In the design with Vŝ, the spectra of each
source is distinct and weighting filters can be chosen to describe the contribution
of each source independently. Then, conservatism due to the restricted order of
the weighting filters may be reduced. As each estimated source can be related to
a physical cause of the disturbance, transparent design of (non-diagonal) weight-
ing filters is facilitated. The bode magnitude plot of all three weighting filters
is depicted in Fig. 4.7. Herein, it is shown that both Vwc and Vd are diagonal
and Vŝ is non-diagonal. The principal gains of each weighting filter are depicted
in Fig. 4.8. Both Vd and Vwc have high gains in all principal directions. As
the disturbances only act in a few directions, Vd and Vwc weight the sensitivity
function in directions that are not relevant from a disturbance perspective. In
contrast, the weighting filter Vŝ weights only in the relevant directions and at the
same time, reduces weight in orthogonal directions. Furthermore, as the spectra
of ŝ(t) describes each source independently, design of weighting filters may be
more intuitive and less conservatism may be introduced in cases where the order
of the weighting filter is restricted.

The weighting filter choices result in different output sensitivity functions. The
bode magnitude of the output sensitivity functions is shown in Fig. 4.9. Only
the design with weighting filter Vŝ results in a sensitivity function with large
off-diagonal terms. These off-diagonal terms are required to reject disturbances
in only a particular direction. In this case, this also implies that the diagonal
terms of the sensitivity function are significantly larger compared to the designs
with Vwc and Vd. The principal gains of the sensitivity functions are shown in
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Figure 4.9: Bode magnitude plot of the output sensitivity functions resulting from
design with Vwc,Vd and Vŝ respectively.

Fig. 4.10. The designs with Vd and Vwc result in sensitivity functions that are
smaller in all directions compared to the initial design V = I. The sensitivity
function with the design with Vŝ, has small sensitivity function in the directions
of the disturbances, but is allowed to increase in orthogonal directions. In this
case, the costs of disturbance rejection in the design with weight Vŝ turns out to
be equal to the initial design with weight V = I. From Cor. 2.2.1, we know that
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Figure 4.10: Principal gains of output sensitivities with four choices of V . Left:
design with weight filter based on the output disturbances (dashed) and design
for worst case disturbance in all directions (dotted). Right: initial design with
V = I (dash dot) and design based on the independent components (solid).

Table 4.1: Cumulative sum of the area, in dB×Hz ,below lnσi(So)

Oσ1<0dB Oσ2<0dB Oσ1>0dB Oσ2>0dB Osumσi>0dB
V = I -212 -212 210 210 421
V = Vd -232 -251 243 236 479
V = Vwc -271 -271 268 268 536
V = Vŝ -181 -246 214 210 425

the following integral relation holds,

n∑
i=1

∫ ∞

0

log σi(So(jω)dω =
n∑

i=1

Fi = 0. (4.26)

For all four designs, the singular values of the output sensitivities are calculated
over a linear frequency grid f = [0.01 1e3][Hz] with 1 × 104 points. Then, the
area is calculated between each principal gain and 0dB for the intervals where the
principal gains are below and above 0dB respectively. The results are listed in
Table 4.1. Here, Oσi<0dB denotes the area between σi(So), and 0dB when σi(So)
is below 0dB, Oσi>0dB denotes above. The total area between σi(So) and 0dB

when σi(So) is above 0dB, is denoted as Osumσi
.

For the design with V = I and Vwc, the terms Fi in (4.26) appear to be zero. As
in the designs Vd and Vŝ, the terms Fi are non-zero, one is able to tradeoff the
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Figure 4.11: Determinant of the output sensitivity functions per frequency of all
four designs.

disturbance rejection properties between principal gains. For these designs, the
principal directions that belong to those principal gains change per frequency. It
is therefore difficult to relate a specific input/output of the sensitivity to those
principal gains. The design with Vŝ has the same amplification at high frequen-
cies as the design with V = I, the term Osumσi>0dB is almost the same in the
two designs. Another useful relation to show this, is the integral relation of the
determinant of the sensitivity function,∫ ∞

0

log |det(So(jω))|dω = 0. (4.27)

The determinant of the sensitivity functions per frequency is plotted in Fig. 4.11.
The designs with Vd and Vwc result in much smaller values at low frequencies
than the design with V = I. As a result of (4.27), the area of the sensitivity
function above 0dB increases. The design with V = Vŝ results in values that are
smaller or larger than the initial design at low frequencies. The total area below
0dB is the same as in the design with V = I, hence the area above 0dB does not
increase. As this measure relies on the determinant of the sensitivity function,
it does not provide information for frequency wise tradeoffs of individual input
output relations.

Using the integral relation from Theorem 2.2.3, it can be studied how a frequency
wise tradeoff from a single (linear combination of the) input to a single (linear
combination of the) output of the sensitivity function works out. For the design
with Vŝ, the transfer function from the first estimated source to the output of the
first controlled axes equals, Suv = eT

1 Sog̃d1, with g̃d1 the first column of G̃d, and
e1 = [1, 0]T . To reject the influence of the first source on the first controlled axes,
the single input single output transfer function Suv must be minimized. In Fig.
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Figure 4.12: Bode magnitude plot of Suv and |uT v| and the area below and above
|uT v|.

4.12, both Suv and |uT v| are shown. As a result of Theorem 2.2.3, the area A
must be equal to the area B when Suv is plotted against linear scale (not shown
here), hence a frequency wise tradeoff similar to that of scalar systems exists for
this input/output combination.

These integral relations show that the design with Vŝ takes into account only
those disturbance directions that are relevant. In directions orthogonal to those
of the disturbances, the sensitivity function is allowed to increase. The alterna-
tive designs, Vd and Vwc, result in sensitivity functions that are reduced in more
directions than required. As a result, unnecessary costs appear as increase of the
sensitivity function at other frequencies. As So + To = I, the complementary
sensitivity function increases, see Fig. 4.13. It is visible that the singular val-
ues of To,wc, To,d are almost 2dB larger in this region than the singular values
of To,init, To,shat. The singular values of To,init, To,shat are almost the same in
this frequency region. This is also illustrated in the time domain. In Fig. 4.14,
the response of z = Sod is shown for the four designs. It visible that the design
with Vd, Vwc have better disturbance rejection performance than the design with
V = I, Vŝ. The design with Vŝ has better disturbance rejection performance than
the initial design. To illustrate the costs of disturbance rejection in the time do-
main, we study the response to sensor noise, z = Ton. Herein, we choose n(t) as
a sum of sinusoids in the frequency range 20− 40Hz. The response of the design
with Vŝ is equal to the design with V = I, Fig. 4.15. The amplification of sensor
noise for the designs with Vwc,Vd is a factor 1.25 ≈ 2dB higher than with the
design Vŝ.

In order to reject disturbances only in relevant directions, the sensitivity func-
tion can have non-zero non-diagonal terms. If the plant is diagonal, a centralized
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Figure 4.13: Singular values of the complementary sensitivity function for all four
designs.
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controller is required. The H∞ synthesis method naturally generated these cen-
tralized controllers. It is interesting to investigate how similar results can be
obtained using manual loop shaping design.

4.1.3 Conclusion

In this section, it was shown how the insight and information from the blind iden-
tification method can be exploited in the choice of weighting filters for H∞ control
design. A non-diagonal weighting filter was used to shape the sensitivity function
in such a way that only relevant disturbance directions are taken into account.
In orthogonal directions, the sensitivity function was allowed to increase, leading
to less severe frequency wise performance tradeoffs. The blind identification tech-
niques unmix the spectra of the sources. If the order of the transfer functions of the
weighting filters is small, it may be preferable to design the weighting filters on the
unmixed spectra. As the estimated sources have the same spectra as the physical
sources, a transparent and physically motivated choice of non-diagonal weighting
filters is facilitated. In the next sections, loop shaping techniques, that only re-
quire non-parametric models, are developed to design centralized controllers for
the rejection of fixed direction disturbances.

4.2 Disturbance decoupling design

In this section, a method will be proposed to design a feedback controller to
reject disturbances with strong directional dependence. The inherent tradeoffs
in feedback control, see Section 2.2, can then be made for each disturbance di-
rection independently. The resulting controller will have a centralized structure.
The method is restricted to a specific class of plants. We only discuss rejection
of disturbances with orthogonal directions. To illustrate the design method, a
parametric model of an industrial high performance positioning system, called a
waferstage, is used. A competing controller is designed using H∞ synthesis. It is
shown that the proposed design method can be used to reverse engineer, hence
interpret, a (centralized) MIMO H∞ controller.

We focus on the rejection of output disturbances that can be represented by
the following transfer function matrix,

Vdo
(s) = UVd(s). (4.28)

Herein, Vd(s) is a square diagonal transfer function matrix and U is a non-singular
matrix with constant elements for all frequencies. In the following, we restrict
ourselves to the case where U is an orthogonal matrix. A few remarks on more
general choices of U will be given at the end of this section.
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The class of plants to which this method is restricted are plants where the di-
rections do not change under orthogonal pre- and post multiplication. Then,
κ(G) = 1, see (4.2), and GK = KG, so that control design is simplified. We can
describe those plants as,

G(s) = g(s)I, (4.29)

where g(s) is scalar. By using the framework presented in Section 2.3, unmodeled
dynamics can be taken into account and the class of plants can be extended to
systems that are of the form,

Gp(s) = (I + E(s))G(s), G(s) = g(s)I (4.30)

where E is stable. An example of systems that can be described this way are
motion systems with rigid body behavior, Section 2.4.3 and Example 2.4.2. An
industrial motion control application without rigid body modes that can also be
represented in this way is discussed in Section 4.4. From Section 2.3, a sufficient
condition for closed loop stability can be deduced that states that when So =
(I + GK)−1 is stable and,

σ(To(jω)) <
1

σ(E(jω))
, ∀ω, (4.31)

where To = I −So, the closed loop MIMO system is stable. In systems with rigid
body modes, the term σ(E(jω)) is large at high frequencies, hence the bandwidth
of the feedback system is constrained. The challenge is to develop a control
design method to reject disturbances exploiting their directionality. Then, one
has the freedom to make the frequency wise tradeoffs discussed in Section 2.2 per
orthogonal disturbance direction.

4.2.1 Control design in disturbance directions

Originally, the plant is defined in the control coordinates. A coordinate transfor-
mation yd = UT y so that, UT do(s) = Vd(s), can be used to express the variables
in disturbance coordinates. This is equivalent to choosing a controller K(s) =
UKd(s)UT , with U ∈ Rn×n, UT U = I and Kd(s) a diagonal matrix with
scalar transfer functions. For the class of plants considered here holds that,
G(s) = g(s)I. Hence, the transfer functions at the right hand side of (2.107),
become,

So = USd
o (s)UT

To = Ug(s)Kd(s)Sd
o (s)UT

SoG = USd
o (s)g(s)UT (4.32)

where Sd
o (s) = (I + g(s)Kd(s))−1, is the (diagonal) sensitivity function in dis-

turbance coordinates. Therefore, all relevant closed loop transfer functions are
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decoupled in the disturbance coordinates. This means that a disturbance with
direction aligned to a column of UT , is only affected by a single controller on the
diagonal of Kd(s). Also, by Corollary 2.2.4, the frequency domain tradeoff, im-
plied by rejecting such a disturbance, only manifests itself in the diagonal element
of Sd

o (s) corresponding to the diagonal element of Kd(s). At the same time, a
single element of Kd(s) can change more elements of So(s), which is in control
coordinates.

Considering the influence of the flexible dynamics, modeled as a multiplicative
perturbation E(s), Fig. 2.9, the transformation implies that the multiplicative
perturbation in disturbance coordinates equals Ed(s) = UT E(s)U . As U is or-
thogonal, σ(Ed) = σ(E) and the same upper bound as shown in (4.31) has to
be satisfied for all elements of the diagonal complementary sensitivity function in
disturbance coordinates, T d

o (s).

The same coordinate transformation can be performed with any invertible matrix
U , so that K(s) = UKd(s)U−1. However, the consequence is that the bound on
T d

o (s) induced by E, can be conservative if the condition number of U increases
as σ(UEU−1) ≤ σ(E)κ(U), where κ(U) = σ(U)/σ(U) is the condition number.
Likewise, specifications as the peak value of the sensitivity functions are difficult
to carry over to disturbance coordinates if κ(U) is large.

As the rejection of fixed direction disturbances is studied in coordinates where
the disturbances are decoupled, frequency domain tradeoffs are more transpar-
ent. Because the controller and all closed loop transfer functions in disturbance
coordinates are diagonal, scalar design techniques, such as manual loopshaping
see e.g. [129], can be facilitated. The resulting controller in control coordinates,
K(s), will in general be non-diagonal as the input directions of the sensitivity
function in control coordinates So(s) will be aligned to the disturbance directions
(that can be non-canonical). The following example will show how the proposed
method can be used in a practical design problem.

4.2.2 Application example

As a demonstration of the theory, a model of a waferstage is studied. This is a
high precision positioning stage. A detailed description of the plant can be found
in [97, 143]. The objective is to regulate the position of this stage in the pres-
ence of environmental disturbances, e.g., floor vibrations, machine oscillations,
pumps, etc. We consider the case where the reference position of the stage is
fixed and the location of the origin of disturbance is fixed. Then, the directions
of the disturbances are fixed. Identification of the direction and the origin of such
disturbances is discussed in Chapter 3. The stage has six degrees of freedom, here
only the outputs yx, yy, yz (and interaction in between) are studied. These out-
puts are in cartesian coordinates. It is a requirement that the plant is expressed in
these cartesian coordinates. The Bode magnitude diagram of Gyu(s) is shown in
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Fig. 4.16. Frequencies that are discussed in this work are indicated by numbers.
Following the approach of Example 2.4.2, the plant model that is used for control
design equals,

G(s) =
1

ms2
I (4.33)

where m ∈ R1, Fig. 4.17. Flexible dynamics Gflex(s), Fig. 4.17, limit the achiev-
able bandwidth as the inverse of the maximum singular value of E(s) = (Gyu(s)−
G(s))G(s)−1 upperbounds the allowable complementary sensitivity, see Fig. 4.21.
For robustness purposes it is required that σ(So) < 6dB. We study the rejection
of three artificial sinusoids in orthogonal directions. Each harmonic is described
by a scalar model Vdi(s), i = {1, 2, 3}, representing the harmonic at frequency
1, 2, 3[−] respectively. The disturbance at the output of the plant is modeled by
the transfer function matrix,

Vdo(s) = UVd(s) (4.34)

where Vd(s) = diag{Vd1(s), Vd2(s), Vd3(s)} and U is a constant orthogonal matrix,

U =
1
3

 2 −2 1
1 2 2
2 1 −2

 (4.35)

which columns span the directions of the disturbances. Here, we chose U artifi-
cially. However, U may be constructed using the results of the identification pro-
cedure discussed in Chapter 3. In the next subsections, three design approaches
are considered that are designed to have the same level of rejection of these dis-
turbances.

Multiloop SISO design in control coordinates

If the plant is sufficiently decoupled, a common approach is to design a decentral-
ized feedback controller by choosing SISO controllers for each cartesian axis. This
is often called a multiloop SISO control design, [125]. Manual design typically uses
a combination of lead lag, second order lowpass elements, see, e.g., (2.103). In
order to achieve disturbance rejection at specific frequencies, the SISO controllers
are augmented with a collection of inverted notches (bandpass filters) tuned at
the components of the disturbances at the output of the plant, Fig. 4.18. As
in this approach, the directions of the disturbances are not taken into account
explicitly, the disturbances at each jth output of the plant are then modeled as,

do,j(s) =
3∑

i=1

Uj,iVdi(s) (4.36)

where Uj,i denotes the j, ith element of U . With this approach, for this particular
application example, it turns out to be very difficult to reject these disturbances
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Figure 4.16: Bode magnitude diagram of the high precision positioning stage.
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Figure 4.17: Bode magnitude diagram of G and Gflex.

while at the same time satisfying the other design requirements, σ(So) < 6[dB],
σ(To) < σ(E)−1. Rejection of the disturbances is only possible if either the sensi-
tivity peak increases, or the complementary sensitivity function crosses the bound
induced by the flexible dynamics, Fig. 4.21. This typical limitation can be ex-
plained as in Fig. 4.22 it is visible that the sensitivity function is reduced in
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Figure 4.18: Bode magnitude diagram of the diagonal terms of the multiloop
SISO controller (in control coordinates).
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Figure 4.19: Bode magnitude diagram of the controller in control coordinates,
Khinf and K.

directions that are not relevant for this design case. Hence the sensitivity func-
tion is increased more than necessary. This design approach does not result in a
satisfactory solution for this problem.
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Figure 4.20: Bode magnitude diagram of the controller in disturbance coordinates,
Khinf,d and Kd.
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design (left) and design in disturbance coordinates (right).
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Figure 4.23: Weighting filters used in H∞ design.

Design in disturbance coordinates

A 3 × 3 MIMO controller is designed in disturbance coordinates, following the
approach in Section 4.2.1. Each element of the (diagonal) controller in disturbance
coordinates affects a single (diagonal) term of Sd

o (s), that has to be small at
frequencies where Vdi(s) is large. A lead lag controller with second order low pass
filter is designed for each loop. The harmonic disturbance is rejected using a single
inverted notch (band pass) filter, tuned to a single frequency, 1, 2, 3 [−], for each
loop respectively. The bandwidth is limited by σ(E), Fig. 4.21, which was shown
to be invariant under orthogonal coordinate transformation. The bode magnitude
diagram of the controller, Kd(s), is depicted in Fig. 4.20. The controller in control
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coordinates equals K(s) = UKd(s)UT and is shown in Fig. 4.19. In Fig. 4.22 it is
visible that each principal gain is small at only one frequency of the disturbance.
Hence, the sensitivity function is small only in the directions that are relevant for
this disturbance model.

H∞ design in control coordinates

The objective is to design a 3 × 3 MIMO controller using H∞ -synthesis, that
takes into account the directions of the disturbances. The design is formulated
in control coordinates. Synthesis of the H∞ controller is based on the following
mixed sensitivity formulation,

min
stab.Khinf

∥∥∥∥ WsSoV
WksKSoV

∥∥∥∥
∞

. (4.37)

Herein, Ws(s) and Wks(s) are chosen diagonal, see Fig. 4.23. The weighting
filters are parameterized as a function of bandwidth, see [143]. The weight V (s)
models the disturbances at the output of the plant and equals,

V (s) = UVd(s) (4.38)

where Vd(s) is the diagonal transfer function matrix from (4.34). Note that as
V (s) is non-diagonal, the generalized plant becomes coupled, and there is no rea-
son why the resulting H∞ controller should be diagonal. In fact, we expect that
the resulting H∞ controller is non-diagonal to accommodate the directionality
of the disturbances. The resulting H∞ controller indeed turns out to have large
non-diagonal terms, see Fig. 4.19. However, if the same H∞ controller is trans-
formed to disturbance coordinates using, Khinf,d = UT Khinf (s)U , it is visible,
Fig. 4.20, that H∞ synthesis comes up with the same solution as our manual
loopshaping design in disturbance coordinates, at least in the frequency region of
the disturbances. The H∞ controller has a different roll off at higher frequencies.
This leads to better roll off of the singular values of To, but seems to result in
larger cross-terms of the complementary sensitivity function at these frequencies.

4.2.3 Discussion

Only the H∞ control and the manual loopshaping control design in disturbance
coordinates are shown to provide feasible solutions to this disturbance rejection
problem. This is explained as in both approaches the sensitivity function is
reduced only in directions that are relevant. A conventional multiloop design
approach was shown to be overly conservative and hence dictates frequency do-
main tradeoffs that made it impossible to satisfy the design requirements. For
comparison, each SISO controller in the multiloop approach was designed us-
ing H∞ -synthesis (results not shown here). As these designs still have to face
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the same frequency domain tradeoffs, no feasible control design could be obtained.

The design in disturbances coordinates, has spectral radius ρ(E(jω)To(ω)) = 0.70,
which is achieved at frequency 4[−], see also Fig. 4.21. And ρ(E(jω)To(ω)) = 0.19,
ρ(E(jω)To(ω)) = 3.13 for the H∞ controller and multiloop respectively. This
again shows that the multiloop design is not able to satisfy the design require-
ments. The order of the H∞ controller is 42. The SISO design must duplicate
notches in each loop and has order 27. The controller designed in disturbance
coordinates has order 15. Aside from this advantage, the design in disturbance
coordinates is more transparent as a controller can be designed for each harmonic
independently. Also, this approach resulted in approximately the same controller
as theH∞ design, at least at the frequency region where disturbances are rejected.

Although the manual design in disturbance coordinates is only applicable for
a limited class of plants, it does illustrate how rejection of fixed direction distur-
bances can be achieved in a transparant way. As this example shows that the
results from H∞ synthesis can be interpreted, design using non-diagonal weight-
ing filters is illustrated. In this example, the bandwidths of the controllers in
disturbance coordinates where chosen equal. If there are directions where dis-
turbances are small, bandwidth may be reduced. In those directions, robustness
margins can be increased and amplification of high frequency sensor noise is de-
creased. Hence, both disturbances and sensor noise can be rejected when they act
in orthogonal subspaces. This will be discussed in more detail in the next section.

4.2.4 Conclusions

It is discussed and illustrated that rejection of disturbances in only the relevant
directions is important in design problems with tight specifications. Exploiting
the structure of a class of electromechanical systems, a coordinate transformation
can be applied that allows transparent, even manual, design of multivariable con-
trollers to reject disturbances only in the relevant directions. If the same issue
is approached with H∞ design, and the resulting MIMO H∞ controller is trans-
formed to the same coordinates, the H∞ controller is shown to do exactly the
same.

4.3 Non uniform noise and disturbance rejection

In this section, it is studied how one can design multivariable controllers if in
addition to the frequency wise separation of noise and disturbances, directions of
noise and disturbances are taken into account. This is an extension of the control
design in disturbance coordinates proposed in Section 4.2. We show that if the
gain related to specific input directions of both So and To is to be designed, one
requires that the open loop L has different input and output directions. Even
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for the specific class of plants considered in Section 4.2, it can be complicated to
design controllers with manual loopshaping techniques.

A similar problem arises in the control design for ill-conditioned plants, studied
in [42]. Herein, approximate algebraic relations are derived between non-uniform
gain open loop and closed loop transfer function matrices. With this in mind, one
can deduce insights to facilitate manual loopshaping of centralized non-uniform
gain controllers. By means of comparison, controllers are designed using model
based H∞ -synthesis. Herein, non-diagonal weighting filters take into account the
directional aspects of disturbances and sensor noise.

4.3.1 Analysis of non-uniform gain controllers

In Section 2.1.3, it was shown that when the gain of the open loop transfer func-
tion is the same in all directions (uniform gain), straightforward relations can be
derived between different closed loop transfer functions. This can be considerably
more complicated when the open loop has high gain in only some directions and
low gain in others. For this case, we can study the singular value decomposition
of the open loop function evaluated at a single frequency,

L(jω) = UΣV H

= U1Σ1V
H
1 + U2Σ2V

H
2 , (4.39)

with U1, V1 ∈ Cn×k, U2, V2 ∈ Cn×(n−k). Herein, U1Σ1V
H
1 denotes the part with

high gain, and U2Σ2V
H
2 denotes the part with low gain, σ(Σ1) � σ(Σ2). The

objective is to study how the high and low gain subsystems effect the closed loop
gain and directions at that particular frequency ω.

A useful concept in the study of directions using the singular value decomposition
is that of principal angles, [63]. This provides a measure of alignment between
subspaces and can be used later to study system properties. The principal angles
θj are defined in the following, [53],[46].

Definition 4.3.1. The principal angles θj ∈
[
0, π

2

]
between subspaces Vi and Ui

are defined recursively as,

cos θj = max
v∈Vi

max
u∈Ui

|vHu| = ṽH
j ũj , j = 1, ..., k (4.40)

with ‖u‖ = ‖v‖ = 1 and uH ũi = 0, vH ṽi = 0 for i = 1, ..., j − 1 and θ = θk ≥
θk−1 ≥ ... ≥ θ1 = θ.

The subspaces Vi and Ui are said to be aligned, when θj = 0,∀j. They are
misaligned, orthogonal, when θj = π

2 ,∀j. Given an orthogonal basis in Vi re-
spectively Ui, the principal angles can be calculated straightforwardly using the
singular value decomposition. Considering the decomposition in Equation 4.39,
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Table 4.2: Approximate algebraic relations between open loop and closed loop
functions in case of ill-conditioned open loop, [42].

Case condition So,app To,app

a σ(Σ2) � 1 V1Σ−1
1 UH

1 + V2Σ−1
2 UH

2 I − L−1

b σ(Σ1) � 1 V2(UH
2 V2 + Σ2)−1UH

2 I − So,app

c σ(Σ1) � 1 � σ(Σ2) V2(UH
2 V2)−1UH

2 U1(V H
1 U1)−1V H

1

d σ(Σ2) � 1 I − To,app U1Σ1(Ik + V H
1 U1Σ1)−1V H

1

e σ(Σ1) � 1 I − L L

the orthogonal bases of the input and output subspaces are determined. In the
case of 2k ≤ n, if follows that,

cos θj = σj(V H
1 U1), j = 1, ..., k, V1 ∈ V1, U1 ∈ U1. (4.41)

So that θ = arccos σ(V H
1 U1) and θ = arccos σ(V H

1 U1). For 2k ≤ n, the matrix
V H

2 U2 has k singular values which are identical to those of V H
1 U1 plus an addi-

tional n−2k singular values which are equal to one. If 2k > n, the roles of V H
2 U2

and V H
1 U1 are interchanged. The first k singular values of V H

2 U2 equal unity, the
arc cosines of the remaining singular values equal the principal angles between
the subspaces V1 and U1. With the relations shown in Appendix B, we find that
the principal angles can also be calculated as,

sin θj = σj(V H
1 U2)

= σj(V H
2 U1), j = 1, ..., k. (4.42)

This shows that only k principal angles are required to describe the alignment of
all the relevant subspaces in (4.39). When the principal angles are not all zero,
there is interaction between the subsystems in (4.39). As will be shown next, this
interaction in the open loop can have considerable effect on closed loop perfor-
mance.

Five different frequency regions can be distinguished, for which different asymp-
totic relations can be derived between the decomposition of Equation 4.39 and
closed loop functions, So(jω) ≈ So,app, To(jω) ≈ To,app. The approximations
are listed in Table 4.2, a proof is presented in [46] and [42]. An example for a
frequency region where each of these cases apply, is shown in Figure, 4.24. The
Case (a) refers to the high gain in all directions. Then, the approximation is
straightforwardly, S ≈ L−1 = V1Σ−1

1 UH
1 + V2Σ−1

2 UH
2 . Case (e) applies to a fre-

quency range where the gain is small in all directions, the approximation is again
straightforward in this case. Case (b) and Case (d) are both valid for a frequency
range where the singular values of low, respectively high, gain subsystem cross
0dB. The Case (c), describes the intermediate frequency region, where the align-
ment of the subspaces determine a great deal of the closed loop performance. In
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Figure 4.24: Example of frequency ranges where approximate cases apply.

this region, it follows that,

σ(So) ≈
1

σ(UH
2 V2)

=
1

cos θ
. (4.43)

This shows, that the sensitivity peak in the intermediate frequency region is di-
rectly related to the misalignment of the subspaces of V2, U2, as measured by θ.
Or equivalently, the misalignment of V2, U1, see (4.41) and (4.42). Although a
small misalignment is tolerable as cos(θ) is nonlinear in θ. For example, θ ≤ 60◦,
implies that σ(So) < 6dB. This shows that a controller with non-uniform gain
can be designed even in cases where input and output subspaces are not perfectly
aligned.
However, one must be careful when θ is large and all subsystems have approxi-
mately the same gain. This is demonstrated in Figure 4.25, where the maximum
singular value of the sensitivity function is depicted together with the maximum
singular value of the asymptotic relations from Table 4.2. As the difference in
crossover regions becomes smaller, the approximations fail to predict the maxi-
mum singular value of the sensitivity function in the intermediate frequency re-
gion.

In low and high frequency region however, the approximate relations reveal how
directions of sensitivity and complementary sensitivity function are related to the
input and output directions of the open loop. In the case that the noise and dis-
turbances are strongly direction dependent, it can be investigated how this can be
exploited with the design of a non-uniform gain controller. This will be discussed
in the next section.
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Figure 4.25: Maximum singular value of So and approximations for β = π
3 . Left:

fbb,lg � fbb,hg. Right: fbb,lg < fbb,hg.

4.3.2 Disturbance rejection

Here, the issue is investigated where disturbances and noise are not only dominant
in different frequencies, but also in different directions. In that case, the output
disturbances can be decomposed in large disturbances that act in the subspace
D1 and small disturbances that act in the subspace D2 ⊥ D1. Likewise, sensor
noise can be decomposed in large signals that act in the subspace N1 and small
noise signals that act in the subspace N2, N2 ⊥ N1.

As the objective is to reject both noise and disturbances, the complementary
sensitivity function should be small in the directions of the dominant noise and
the sensitivity function should be smal in the directions of the dominant distur-
bances. In the case that D1 ⊥ N1 and dim(D1) + dim(N1) ≤ n, the disturbance
decoupling method discussed in Section 4.2 can be followed. In the more general
situation that D1 is not orthogonal to N1, rejection of disturbances and noise is
more involved.

From the approximations of Table 4.2, it is visible that the right singular sub-
spaces of L determine the direction of the rejected noise and the left singular
subspaces determine the direction of the rejected disturbances. Likewise, the left
singular subspace of L determines the subspace of the outputs of So,app that are
affected by disturbances. The right singular subspaces of L determine the sub-
space of the outputs of To,app that are affected by noise. Thus, the objective is to
choose the gain and the directions of the open loop so that,

D1 ⊆ U1, N1 ⊆ V2. (4.44)

In that case, the large noise signals act on low gain subsystem, and the dis-
turbances act on the high gain subsystem. This shows that, by choosing the
directions for noise and disturbance rejection, the output directions of So and To
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are determined, because, U1 ⊥ U2, V1 ⊥ V2. The closed loop functions are then
aligned with the dominant disturbance and noise directions. In general, this will
lead to centralized controllers. The ability to choose the space U1 different from
V2 is greatly determined by the role of the misalignment at intermediate frequen-
cies, Case (c). Next, it is shown how the asymptotic approximations from Table
4.2 can be used to support manual loopshaping design or norm based design like
H∞ -design.

Manual loopshaping design

In this manual loop shaping design method, the goal is to combine the insights
of SISO manual loop shaping with the asymptotic algebraic relations for non-
uniform gain controllers presented earlier. In this way, non-uniform gain closed
loop functions can be designed that exploit the non-uniform gain of noise and
disturbances. In general, centralized controllers will result. As will be shown,
achieving performance and stability is not trivial. In order to reduce complex-
ity, the input and output directions of the controller are chosen constant for all
frequencies. The open loop transfer function matrix can then be decomposed as,

L(s) = UHGLHG(s)V T
HG + ULGLLG(s)V T

LG, (4.45)

with Un×k
HG and σ(LHG(s)) � σ(LLG(s)). Note the strong analogy with (4.39),

as, in the case that LHG(s) is decoupled, at a frequency ωo we have Σ1 =
diag{σi(LHG(jωo))}. For a uniform gain plant, e.g., G(s) = g(s)In, the directions
of the open loop are determined by the controller. Hence, the controller to be
designed has the structure,

K(s) = UHGKHG(s)V T
HG + ULGKLG(s)V T

LG, (4.46)

with σ(KHG(s)) � σ(KLG(s)). For the orthogonal bases UHG, VLG holds that
UHG ∈ UHG and VLG ∈ VLG with D1 ⊆ UHG, N1 ⊆ VLG. The maximum
principal angle equals θ = arccos σ(V T

HGUHG). For achieving stability, the open
loop can be evaluated at different loop breaking points. Hence, for G(s) = g(s)In,
alternatively to shaping (4.45), one can study,

L′(s) = G′(s)K ′(s), (4.47)

with,

G′(s) = g(s)
[

V T
HGUHG V T

HGULG

V T
LGUHG V T

LGULG

]
,K ′(s) =

[
KHG(s) 0

0 KLG(s)

]
. (4.48)

Both KHG and KLG must have uniform gain in order to preserve the directions
of the open loop. One may design KHG and KLG independently, when G′(s) is
block diagonal dominant. Using Def. 2.3.1, G′(s) is generalized (block) diagonal
dominant if,

µT ′(E′)−1 < 1, (4.49)
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Figure 4.26: Augmented plant used for the H∞ -design

with T ′ = G′
dK

′(I + G′
dK

′)−1, G′
d the block diagonal of G′, and,

E′ = (G′(s)−G′
d(s))G′−1

d (s) (4.50)

=
[

O V T
HGULG(V T

LGULG)−1

V T
LGUHG(V T

HGUHG)−1 O

]
, (4.51)

so that,

µT ′(E′) = σ(V T
LGUHG(V T

HGUHG)−1)
= tan(θ), (4.52)

which is constant for all frequencies. Hence, G′(s) is not block diagonal dominant
when θ > π

4 . Then, KHG, KLG cannot be designed independently. Alternatively,
KHG and KLG can be designed by means of sequential loop closing. Again,
typical multivariable issues arise if θ increases. This will be illustrated later in
the example.

H∞ design

A generalized plant is formulated to take into account the directions and frequency
content of both noise and disturbances. If either noise or disturbances are to be
modeled, one may use the signal based H∞ -design framework discussed in [125].
With the augmented plant, M ,[

z1

z2

]
= M

[
s
p

]
, M =

[
Wz1SoVd −Wz1ToVn

−Wz2KSoVd −Wz2KSoVn

]
, (4.53)

the input spaces of both So and To can be shaped independently. With this inter-
connection structure we do not model exogenous signals between the controller
and the plant. Therefore, there is no guarantee for internal stability with this
design approach. However, we may check for internal stability after control syn-
thesis. This appears to be of no concern in our examples. The variable z2, is
added for numerical reasons. A block diagram of the augmented plant is shown
in Figure 4.26. The weights on z1, z2 are Wz1 = I, Wz2 = ρI with 0 < ρ � 1,
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respectively. Then, it holds that,

max{σ(SoVd), σ(ToVn)} ≤ σ(M) ≤
√

2 max{σ(SoVd), σ(ToVn)}, (4.54)

[125, p.522]. As the case is studied where disturbances act mostly at low frequen-
cies and noise dominates at high frequencies, this relation can be used to relate
‖M‖∞ with the weighted closed loop functions. Furthermore, the weighting fil-
ters Vd, Vn contain the directional characteristics of the noise and disturbances.
Following the partition of the disturbance and noise spaces from Section 4.3.2,

Vd(s) =
[

Vd1 Vd2

]
diag{vd1(s)Ik, vd2(s)In−k}

Vn(s) =
[

Vn1 Vn2

]
diag{vn1(s)In−k, vn2(s)Ik}, (4.55)

where Vd1 ∈ D1 and Vn1 ∈ N1 and V T
d2Vd1 = 0 and V T

n2Vn1 = 0. The scalar fre-
quency dependent weights are chosen to characterize the disturbances and noise.
As the gain of noise and disturbances is direction dependent,

|vd1(jω)| � |vd2(jω)|, ω � ωbb1

|vn1(jω)| � |vn2(jω)|, ω � ωbb2 .

Where ωbb1 , ωbb2 is the cross over frequency of the desired low and high gain
subsystem respectively. In the frequency region ωbb1 < ω < ωbb2 , the weighting
filters are tuned to enforce robustness margins.

4.3.3 Example

In this example, the issue is studied when noise is dominant at high frequencies,
and disturbances are dominant at low frequencies. In addition to this conventional
frequency wise characteristic, the direction of dominant noise and disturbances
is taken into account. The objective is to design a feedback controller, by either
manual or H∞ loopshaping, that minimizes the effect of disturbances and noise
on the performance variables, z.

The plant, G(s) = g(s)I2, is subjected to disturbances at the outputs with direc-
tion, d̃. The sensor noise has direction, ñ.

d̃ = [cos α, sinα]T , ñ = [cos(α + β), sin(α + β)]T , α =
π

3
. (4.56)

Two different alignments between the noise and disturbance directions are stud-
ied. The directions are parameterized by β = {π

3 , π
6 }. The output disturbance

direction is non-canonical, and the noise direction is non-canonical. The difference
of the two cases is the (mis)alignment between dominant noise and disturbances.
The directions of the noise and disturbance are plotted in the space of the con-
trolled variables in Figure 4.27. Both manual and H∞ loopshaping are considered
for the two cases.
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Figure 4.27: Directions of the sensor noise and disturbances in the space of the
controlled variables y.
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Figure 4.28: Bode magnitude plot of scalar frequency dependent weighting filters
to characterize non-uniform disturbances and noise in the H∞ design example.

The H∞ design is performed for both alignments, β = {π
3 , π

6 }. The principal
gains of the weighting filters Vd, Vn are shown in Figure 4.28. Furthermore,
Wz1 = I2, Wz2 = ρI2, ρ = 1 × 10−5. The directions of the weighting filters are
chosen following Equation 4.55. The resulting closed loop system is internally
stable. More details are discussed in Section 4.3.4.

The manual loopshaping design is more involved. Because the plant is 2 × 2,
scalar high and low gain loops can be designed. The input and output direc-
tions of the controller are chosen following Equation 4.46. Two PD feedback
controllers with second order lowpass filter, resulting in a cross-over frequency of
10Hz and 50Hz, are designed sequentially. In each design step, the margins on
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Figure 4.29: Principal gains of scalar sensitivity functions (sequential design) and
the final 2× 2 sensitivity function So of the manual design.

the equivalent open loop, the open loop with the other controller closed,

LHG(s)′ = G′
HG(s)KHG(s)

LLG(s)′ = G′
LG(s)KLG(s),

with,

G′
HG(s) = g(s){V T

HGUHG

−V T
HGULGKLG(In−k + g(s)V T

LGULGKLG(s))−1V T
LGUHG}

G′
LG(s) = g(s){V T

LGULG

−V T
LGUHGKHG(Ik + g(s)V T

HGUHGKHG(s))−1V T
HGULG},

following Equation 4.48, are inspected. Closed loop stability can be achieved in
this way, although robustness margins of the final closed loop may become arbi-
trarily small. For each design step, the principal gains of the sensitivity functions,
SLG = 1

1+L′
LG

, SHG = 1
1+L′

HG
, are shown in Figure 4.29, together with the princi-

pal gains of the total sensitivity function So = (I +GK) for β = π
6 . Although the

sensitivity functions SLG, SHG result in acceptable margins, the final resulting
sensitivity function So is unacceptably large in the intermediate frequency range.
This appears to be independent on the sequence in which SLG, SHG are designed.
It is not straightforward to reduce the sensitivity function in this frequency re-
gion. This supports the expectations as the misalignment between the noise and
disturbance directions is smaller than π

4 . For β = π
3 the manual loopshaping

method results in satisfactory performance, see Figure 4.30, Figure 4.31, Figure
4.32.



4.3: Non uniform noise and disturbance rejection 111

10
0

10
1

10
2

10
3

−100

−80

−60

−40

−20

0

20

Freq.[hz]

σ 
 d

B

H∞ synthesis

 

 

β = π /3
β =π /6

10
0

10
1

10
2

10
3

−100

−80

−60

−40

−20

0

20

Freq.[hz]

σ 
 d

B

Manual loopshaping

 

 

β = π /3
β =π /6

Figure 4.30: Principal gains of complementary sensitivity function for two differ-
ent directions of the sensor noise
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Figure 4.31: Principal gains of sensitivity function for two different directions of
the sensor noise

4.3.4 Discussion

The approximate relations between closed loop and open loop transfer functions
facilitate the design of centralized controllers with both manual loopshaping and
norm based control design. The application of the manual loopshaping method
proposed here, is limited to cases where noise and disturbances are strongly mis-
aligned and the difference between the high and low gain subsystem is sufficiently
large. It was demonstrated that for a 2× 2 uniform plant, high and low gain sub-
systems can be designed either sequentially or independently if the noise and dis-
turbances are sufficiently misaligned. If noise and disturbances are more aligned,
the manual loopshaping method does not guarantee to achieve satisfactory ro-
bustness margins.
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Figure 4.32: Bode plot of elements of sensitivity function for H∞ and manual
loopshaping design for noise direction induced by β = π

3 .

A more general design approach was presented using H∞ -synthesis. The ap-
proximate relations can be used to choose realistic weighting filters that enforce
non-uniform closed loop functions. The H∞ design method is able to handle
larger systems than 2×2, small misalignment angles and small gain differences of
the subsystems. Above all, the H∞ design method enforces robustness margins in
the intermediate frequencies and guarantees that the system is closed loop stable.

It is shown that the output directions of the sensitivity function are determined
by the space of the dominant noise signals. In a control problem where noise is
not performance limiting, the output directions of the sensitivity function may be
shaped to confine the response to dominant disturbances to a subspace that is of
less interest for performance. Again, misalignment between the input and output
space of the sensitivity function can give rise to robustness problems, especially
with the manual loopshaping method.

In the example, the directions of the open loop where completely determined
by the controller. For more general plant structures, those directions will be in-
fluenced by the directions of the plant as well. Furthermore, in general, the open
loop function is not commutative, so that robustness margins can be different at
different loopbreaking points. In all these cases, the proposed manual loopshaping
method may fail. We hope that the insights obtained with this rather simple case
inspires H∞ -design for more complicated applications.

The manual loopshaping method presented here results in constant input and
output directions of the controller for all frequencies. This is especially limiting
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at the intermediate frequency regions. It is interesting to investigate manual loop-
shaping methods that allow the input and output directions of the controller to
vary per frequency. In most cases, this will imply that a centralized controller is
to be designed. Hence, it is expected that complexity will increase significantly,
even for relative simple 2 × 2 systems. Direct optimization may be applied to
find controller parameters, [63], but it is expected that application of norm based
techniques such as H∞ -design may be more transparent in use.

Still, as already considered in Section 2.2, fundamental performance limitations
do apply. In Figure 4.33, the scalar sensitivity function is depicted to show the
frequency wise tradeoff in the directions of noise and disturbances, v2, u1 respec-
tively. Apart from the offset due to |vT

2 u1|, the same waterbed effect as in SISO
systems applies. However, as we use centralized control, we are able to manage
disturbance and noise rejection performance tradeoffs at different frequencies and
in different directions more directly, avoiding unnecessary conservatism.

4.3.5 Conclusions

It is shown that relations from [42], that are used to describe ill-conditioned plant
dynamics, can be used to derive guidelines for rejection of disturbances and noise
that have different gain in different directions (non-uniform gain). As the closed
loop functions are non-uniform, centralized controllers are to be designed. A man-
ual loopshaping method is proposed that can be applied when disturbances and
noise are sufficiently misaligned and separated per frequency. Also, asymptotic
relations between closed loop and open loop transfer functions are used to design
non-diagonal weighting filters for H∞ design. An example is provided where it is
shown that H∞ design is able to handle more general situations than the manual
design procedure. Where the manual loopshaping design procedure is satisfactory,
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the H∞ design is shown to result in the same closed loop functions.

4.4 MIMO control design of a metrological AFM

In this section, an alternative control design for a MIMO metrological atomic
force microscope (AFM) is proposed using the concepts developed in this thesis.
It is demonstrated how the plant model structure assumed in Section 4.2, may be
applied to another type of systems than the rigid body system of Section 4.2.2.
Also, the implication of such a structural assumption is illustrated by comparing
the design with that of the decentralized control design method of Section 2.3.
This metrological AFM is extensively discussed in [87, 88]. Metrological AFM’s
are used to characterize transfer standards. These transfer standards can then be
used to calibrate commercial AFM’s. In most earlier work reported in literature,
similar systems are controlled following SISO design approaches, [2, 117], even
though concerns have been raised about neglecting the MIMO aspects of such
systems, [88, 105]. In [87] plant interaction was analyzed and a decentralized
feedback control design was proposed. It was also concluded that interaction lim-
ited the ability to reduce tracking errors by means of high bandwidth feedback
control. In this section, it is illustrated how more detailed design methods can
lead to simple yet high fidelity feedback controllers. It is illustrated how plant
interaction limits the achievable bandwidth of decentralized control design. Three
different design approaches are discussed.

The first design approach uses a plant model with the structural restrictions
following from the assumptions of Section 4.2. It is illustrated that the control
design can be very transparent at the costs of introducing conservatism. The
second design approach makes explicit use of the MIMO freedom by using the di-
rectionality of the disturbances in the manual loop shaping design of a centralized
feedback controller. Herein, it is illustrated how the manual centralized control
design method of Section 4.2 can be used for this application. The third design
approach uses the concepts from Section 2.3 for independent decentralized control
design. With this, the structural assumptions of the first and second design are
not required. It is shown that this may result in a higher bandwidth controller.
In each design, all multivariable aspects of the metrological AFM are taken into
account. For all design strategies presented here, only non-parametric models of
the plant are required. The designs are discussed in Section 4.4.5.

4.4.1 The metrological AFM

The metrological AFM, as depicted in Fig. 4.34a, is used to characterize the
surface of a sample (the transfer standard) by measuring the displacements of
the stage in z-direction while moving the sample in the xy plane, Fig. 4.34b.
The stage, that carries the sample, has to perform a scanning trajectory in the
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Figure 4.34: The metrological AFM. a) Photograph of the metrological AFM.
b) Schematic model of the metrological AFM, Kp is the controller in physical
coordinates, [87].

xy-plane with high fidelity. The distance between the transfer standard and the
cantilever beam in z-direction is regulated to be constant. For control in this
direction, the deflection of the cantilever beam is measured with a photo-detector.
The displacement of the stage in xy-direction is measured with an interferometer.
A separate laser, not used for control design, measures the displacement of the
stage in z-direction. This measurement is used to characterize the sample, see Fig.
4.34b. The stage is driven by piezo-stack actuators in three cartesian degrees of
freedom, x, y, z. The MIMO plant with physical inputs u = [ux, uy, uz]

T and
physical outputs y = [yx, yy, yz]

T , is defined as,

y = Gpu. (4.57)

The frequency response functions of all elements of Gp are depicted in Fig. 4.35.
Due to the limited stiffness of the connections of the piezo actuators, a resonance
mode appears in the x-axis at 121Hz. The same phenomenon occurs in the y-axis
at 122Hz. These mode shapes appear to behave in each axis independently. The
resonance at 44Hz in the y-axis is due to flexibility of the stage in y-direction.
Resonances above 200Hz are due to position dependent actuator dynamics, [87].
As a result of sophisticated mechanical construction, the cross-talk due to plant
interaction is small. Below 100Hz, the non-diagonal terms of the plant are ap-
proximately 40dB smaller than the diagonal terms, hence the contribution of the
non-diagonal terms is approximately 1%.

Unlike common commercial AFM’s, the positioning accuracy is much more im-
portant than the scanning speed of this metrological AFM. As discussed in [87],
compensation of hysteresis and position feedforward control in x, y-axes suffices
to achieve acceptable tracking accuracy. A major concern however, is the in-
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Figure 4.35: Bode magnitude diagram of the metrological AFM in physical coor-
dinates, Gp.

fluence of low frequency disturbances, high frequency sensor noise and model
uncertainty. Also, in contrast to [87], a controller is designed that is capable of
tracking constant velocity (scanning) trajectories. Furthermore, it is investigated
how cross-talk between different controlled axes can be reduced even further.

Feedback control design can be more transparent if the plant model is simplified.
A first simplification is made by scaling the diagonal terms of the plant Gp to 0dB
at the intended cross-over frequencies by means of a diagonal pre-multiplication
matrix Tus. This matrix can be interpreted as a proportional action of the con-
troller. Furthermore, it is immediately noticed that the flexible mode at 44Hz in
the y-axis may cause performance limitations. A skew notch, Ny(s), is tuned to
compensate for the associated local phase loss. The plant to be controlled is then
defined as,

G(s) = Gp(s)TusN(s), (4.58)

with

N(s) = diag{1, Ny(s), 1}, Tus = (diag{|gp,jj(jωbw)|})−1
. (4.59)

We only study the disturbance rejection case when the stage is regulated at a
fixed position. From a standstill experiment, the output disturbance do(t) can
be reconstructed. The spectra of each output disturbance is shown in Fig. 4.36.
With the principal component analysis discussed in Chapter 3, we find the matrix
W , so that,

do(t) = W−1z(t) (4.60)
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Figure 4.36: Spectra of the output disturbances do in each axis of the AFM
(thin). Spectra of the output disturbances if the first principal component of do

is perfectly rejected.

where z(t) are the three principal components of do(t). The directions of dis-
turbances due to each principal component are the directions of the columns of,

W−1 =

−2.75 0.55 0.01
−0.95 −1.60 0.02

0.03 0.04 0.87

 . (4.61)

The disturbances due to the first principal component have direction d̄z1 =
[−0.95, − 0.33, 0.01]T , which is the first column of W−1 scaled to unity, see
Def. 2.1.3. The spectra of the output disturbances due to only the second and
third principal component are shown in Fig. 4.36. It is visible that the distur-
bances in the x and y axis act mostly in the direction d̄z1 . This strong directional
dependence of the disturbance may be used in control design.

The objective is to reject output disturbances. This is achieved when,

So = Sd(I + ET Td)−1 (4.62)

is small. Herein, So = (I +GK)−1, Sd = (I +GdK)−1 and Td = Sd−I, where Gd

contains only the diagonal terms of G and interaction is modeled as multiplicative
output uncertainty,

ET = (G−Gd)G−1
d . (4.63)
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see also Section 2.3.1. A second objective is to reduce cross-talk closed loop.
Therefore, we define yd = Tdr, (4.62), and use the property To−Td = Sd−So, so
that,

y − yd = (To − Td)r
= SoET Tdr, (4.64)

see [153]. The cross-talk as a result of plant interaction is reduced by feedback
control when (4.64) is small. This happens at frequencies where So is small. Cross-
talk increases at frequencies where So is large. A third requirement is imposed by
the uncertain plant dynamics above 200Hz. As the frequencies of the resonance
modes vary, it is not possible to use plant inversion at those frequencies. Hence,
roll-off of the open loop function is required at high frequencies. Three approaches
to design a feedback controller are considered in the next sections.

4.4.2 Uniform controller design

In this design approach, it is illustrated how a simplified plant model can be used
for control design. We refer to this design as the uniform control design. The
simplified plant model is chosen to satisfy the assumptions of Section 4.2, namely
the plant model, Gd(s), should have the form Gd(s) = g(s)I. For the metrological
AFM, scaled with Tus and pre-compensated with notch N , (4.58), one may choose
g(s) = 1. Hence, the simplified plant model equals,

G(s) = Gp(s)TusN(s) (4.65)
= Gd + E(s), Gd = I. (4.66)

Herein, E(s) contains both diagonal and non-diagonal terms, Fig. 4.37. A decen-
tralized controller is designed for each axis. In order to track constant velocity
reference profiles, a double integrator in the open loop is required according to
the internal model principle, [84, p.24]. We design for each axis a proportional
gain, double integrator and a lead-lag with a second order low-pass filter,

ki(s) =
kp

s2
· s + 2πfz

s + 2πfp
· (2πflp)2

s2 + 2ζlp2πflps + (2πflp)2
, i = {x, y, z}. (4.67)

Herein, the parameters are manually tuned so that the cross-over frequency of
the open loop is 10Hz in each axis. A sufficient condition for closed loop stability
follows from Thm. 2.3.1, using E = (G(s)− I), Sd = (I + K)−1 and Td = I −Sd.
The system is closed loop stable if for each frequency the following holds,

σ(Td) ≤ µ−1
Td

(E) (4.68)

where σ(Td) = maxi |Td,ii|. In Fig. 4.38, it is shown graphically that this condi-
tion is achieved. This is also confirmed by Fig. 4.39. Herein, it is shown that the
characteristic loci of Lunif = GK do not encircle the point (−1, 0), hence the sys-
tem is closed loop stable. The output sensitivity function So and the sensitivity
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Figure 4.37: The simplified model of the AFM Gd = I and the model uncertainty
E.

10
0

10
1

10
2

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50

Freq. [hz]

σ 
[d

B
]

 

 

µ
T

d

−1(E)

σ
i
(T

d
)

10
0

10
1

10
2

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50

Freq. [hz]

σ 
[d

B
]

 

 

µ
T

d

−1(E)

σ
i
(T

d
)

Figure 4.38: Sufficient condition for stability the uniform (left) and the distur-
bance decoupling (right) controller.

function with the simplified model Sd are shown in Fig. 4.40. It is visible that
output disturbances at low frequencies can successfully be rejected. At frequen-
cies above 10Hz, the sensitivity function is large and the disturbance rejection
performance is worse or equal to that of the system operating without feedback
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Figure 4.39: Nyquist diagram of the characteristic loci of L for the uniform feed-
back design (left), disturbance decoupling design (middle) and the high bandwidth
decentralized design (right).
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Figure 4.40: Bode magnitude of the output sensitivity function with the decen-
tralized uniform gain design (using the simplified model), So and Sd.

control.

4.4.3 Disturbance decoupling design

With the disturbance decoupling design, disturbances are rejected in a specific
direction, where in orthogonal directions the gain of the sensitivity function is
allowed to increase. This may lead to a lower bandwidth design in directions that
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are less relevant for disturbance rejection. Hence, the costs of feedback control
can be reduced to some extend. The disturbance decoupling design uses the same
simplified plant as the uniform control design, (4.65). The disturbances at the
output of the plant, in direction, d̄z1 , are to be rejected. We define the matrix U
with UT U = I, where the first column of U has the direction d̄z1 . The other two
columns of U are chosen orthogonal to d̄z1 . The controller is defined as,

K(s) = UKd(s)UT . (4.69)

where Kd is diagonal. The first diagonal element of Kd is the controller in the
disturbance direction d̄. In this direction, a controller is designed with a structure
similar to (4.67) so that the open loop cross-over frequency is 15Hz. In the orthog-
onal directions, bandwidth may be reduced and therefore controllers are designed
so that the open loop has a cross-over frequency of 8Hz. The sufficient condition
for closed loop stability, (4.68), is shown graphically in Fig. 4.38. The loop re-
lated to the direction d̄ limits the achievable disturbance rejection. In directions
orthogonal to d̄, the complementary sensitivity functions are smaller at high fre-
quencies. In those directions, a higher level of sensor noise or plant uncertainty
can be tolerated. From Fig. 4.38 and the characteristic loci of Ldist.dec = GK
in Fig. 4.39 it is visible that the system is closed loop stable. As a result of the
lower bandwidths in orthogonal disturbance directions, high frequency dynamics
are less amplified. Therefore, the characteristic loci at high frequencies are smaller
than with the design of Section 4.4.2.

As the open loop function in physical coordinates has large non-diagonal terms
at low frequencies, the output sensitivity function has large non-diagonal terms,
Fig. 4.41. Therefore, closed loop cross-talk between the xyz-axis is larger than
with the design of Section 4.4.2. At low frequencies, the non-diagonal terms of the
sensitivity function based on the model (4.65), namely Sd, are close to the non-
diagonal terms of So. Hence, for this application, one can successfully shape the
low frequency disturbance rejection properties of So on the basis of the simplified
plant model.

4.4.4 High bandwidth decentralized independent control

In this part, a decentralized controller is designed using the concepts of Section
2.3.1. We refer to this design as the high bandwidth decentralized design. The
plant model used for this design is based on the diagonal terms of G(s), namely
Gd(s). The plant interaction is modeled as multiplicative output perturbations
ET (s), so that,

G(s) = Gp(s)TusN(s)
= Gnd(s) + Gd(s)
= (I + ET (s))Gd(s). (4.70)

Herein, ET (s) has only non-diagonal terms, see Fig. 4.42. Note that ET does not
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Figure 4.41: Bode magnitude of the output sensitivity function with disturbance
decoupling design approach (using the simplified model), So and Sd.
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Figure 4.42: Bode magnitude diagram of the diagonal terms of G, Gd, and the
interaction as multiplicative output perturbation ET .

equal E from (4.65). With ET = (G−Gd)G−1
d the sufficient condition for closed
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loop stability can be derived using Thm. 2.3.1. The closed loop system is stable
if for all frequencies holds that,

σ(Td) ≤ µ−1
Td

(ET ) (4.71)

In this design, dynamics on the diagonal terms of the plant are taken into account
that was considered as uncertainty in Section 4.4.2, Section 4.4.3. Therefore,
compared to the designs proposed earlier, the bandwidth in x and y axes can
be increased to 20Hz. In z direction, it is expected that the bandwidth can be
increased even further. The sufficient condition for stability, (4.71), is a single
bound on the control design of all axes. When the bandwidth in each axes is
different, this can be rather conservative. A design with a cross-over frequency
of the z-axis at 45Hz is stable according to the characteristic loci of Lhg = GK,
see Fig. 4.39. However, the sufficient condition for closed loop stability is not
achieved, Fig. 4.43. A way to reduce this conservatism is to design a diagonal
weighting filter W that has no effect on the spectral radius condition,

ρ
(
ET (jω)W (jω)W−1(jω)Td(jω)

)
< 1, ∀ω, (4.72)

but provides more freedom in the sufficient condition for closed loop stability, [92].
The closed loop is stable if for each frequency holds that,

σ(W−1Td) ≤ µ−1
Td

(ET W ). (4.73)

The weighting filter is only used for analysis. If W is chosen diagonal, one can
emphasize the contribution of each loop to the maximum singular value of Td. The
complementary sensitivity function in the z-direction rolls off at higher frequencies
(approximately 50Hz) than the complementary sensitivity functions of the xy-
axis. Therefore, the contribution of the x,y axis designs to σi(Td) may be increased
at high frequencies. At the same time, the weighting filter W may result in a
smaller value of µTd

(ET W ). Therefore, for this application, we choose,

W (s) = diag{w(s), w(s), 1}, w(s) =
ω2

w

s2 + 2ζwωws + ω2
w

(4.74)

with ωw = 2π50, ζw = 0.8. As shown in the right-hand side of Fig. 4.43, the
bound due to µTd

(ET W ) is reduced at higher frequencies so that the weighted
sufficient condition for closed loop stability is satisfied.

The output sensitivity function is shown in Fig. 4.44. It is visible that at low
frequencies, the non-diagonal terms are considerably smaller than with the low
bandwidth uniform design, Fig. 4.40. At frequencies above 100Hz, non-diagonal
terms are much larger compared to the design in Fig. 4.40. Therefore, closed loop
cross-talk between the axes is reduced at low frequencies, but increased at higher
frequencies. A more detailed comparison with the other designs is made in the
next section.
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Figure 4.43: Sufficient condition for stability with the high bandwidth decen-
tralized controller. Left: sufficient condition is not achieved. Right: sufficient
condition, with scaling matrix W , is achieved.
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Figure 4.44: Bode magnitude of the output sensitivity function using the decen-
tralized high bandwidth design, So and Sd. The diagonal terms of So are almost
identical to Sd.

4.4.5 Discussion

With the decentralized control design, the non-diagonal terms of the plant were
treated as uncertainty. It was shown that the bandwidth in x,y directions can be
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Figure 4.45: Determinant per frequency of the output sensitivity functions with
three design approached. Left: logarithmic frequency scale, Right: linear fre-
quency scale.

increased slightly compared to an approach that uses (4.65) as the plant model.
In the z-direction, bandwidth of the decentralized control design is much higher
(50Hz). Stability could be proven by introducing a weighting factor in the suffi-
cient condition for closed loop stability. The same weighted sufficient condition
can be applied for the uniform design, Section 4.4.2. The cross-over frequency of
the z-axis can then be increased from 10Hz to 40Hz. In spite of this, the assump-
tion of a plant structure G(s) = g(s)I, still leads to conservatism which results in
a lower maximum achievable bandwidth.

As an indication of the disturbance rejection quality, one can study the determi-
nant of the output sensitivity function per frequency, Fig. 4.45. The disturbance
decoupling design results in less nett disturbance rejection at low frequencies than
the uniform design. As a consequence of the waterbed effect, the nett amplifi-
cation of disturbances at high frequencies is smaller. The decentralized control
design seems to have the best disturbance rejection at low frequencies, at the cost
of amplifying disturbances and sensor noise at high frequencies. The determinant
of the sensitivity function is plotted against a linear frequency scale in the right
side of Fig. 4.45. Herein, it is clearly visible that disturbances at frequencies
above the bandwidth are significantly amplified.

To study the rejection of disturbances with the direction d̄ at the output of the
plant to the z-axis, we can plot Svu = vT Sod̄, for v = [0, 0, 1]T , shown at the left
side of Fig. 4.46. The disturbance decoupling design has the same disturbance
rejection performance as the uniform design. The high bandwidth decentralized
control design has a better low frequency disturbance rejection performance, at
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Figure 4.46: The output sensitivity Suv, Left: from the disturbance in direction
d̄ to the z axis. Right: from disturbances in a direction orthogonal to d̄ to the z
axis.

the cost of amplifying significantly more disturbance at frequencies above the
bandwidth. Disturbance rejection for disturbances with a direction orthogonal to
d̄ is worse with the disturbance decoupling design compared to the uniform design,
right side of Fig. 4.46. This is explained as the gain of the controller associated
with those directions, is smaller. From both figures, it is visible that the high
bandwidth decentralized control design has the best low frequency disturbance
rejection for any disturbance direction.

The complementary sensitivity function for all three designs is shown in Fig.
4.47. At frequencies below 20Hz, the closed loop interaction is smallest with the
high bandwidth decentralized control design. Above, 100Hz however, the non-
diagonal terms are significantly larger than with the other designs. The design
with disturbance decoupling, introduces non-diagonal terms in the output sensi-
tivity function. As holds that, To = I − So, the magnitude of the non-diagonal
terms of the output sensitivity function are equal to the magnitude of the non-
diagonal terms of the complementary sensitivity function. Therefore cross-talk
from the reference trajectory to the output of the plant increases. If the refer-
ence trajectory is in a direction orthogonal to d̄, the tracking performance of the
disturbance decoupling design may be worse than the uniform or high bandwidth
decentralized design, see again Fig. 4.46. This is because the disturbance de-
coupling design only rejects disturbances in a particular chosen direction, while
in orthogonal directions bandwidth was reduced to minimize cross-talk at high
frequencies.
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Figure 4.47: Bode magnitude of the complementary sensitivity function for the low
bandwidth uniform design To,unif., the disturbance decoupling design To,dist.dec

and the high bandwidth decentralized control design To,hg.

4.4.6 Conclusions

The three design approaches used in this section show that the feedback controller
design for the metrological AFM can be performed using the design techniques
discussed in this thesis. The model structure assumptions from Section 4.2, are
shown to introduce conservatism. Nevertheless, a simplified model for control de-
sign delivers a transparent, physically interpretable control design approach. All
design methods discussed in this application use non-parametric plant models.
The simplified plant model approach can be used straightforwardly to simplify
norm based control design. If low bandwidth controllers are required, the plant
can be described as a constant frequency independent matrix.

In each design approach, the achievable bandwidth is limited. Therefore, in-
creasing disturbance rejection at low frequencies implies increasing closed loop
cross-talk and increasing the amplification of disturbances and sensor noise at
higher frequencies. The disturbance decoupling design approach facilitates good
disturbance rejection in relevant directions and less gain in orthogonal directions.
Therefore, the costs of feedback control can be reduced with this design approach.
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4.5 Concluding remarks

In this chapter, it was investigated and illustrated how directions of disturbances
and sensor noise can be accommodated in feedback control design. In Section
4.1, results of the blind identification procedure of Chapter 3 are used to design
non-diagonal weighting filters for H∞ loopshaping design. It was shown how mul-
tivariable extensions of the Bode integral relations imply tradeoffs in disturbance
rejection with different weighting filters for H∞ loopshaping design. It was shown
that accommodating sources of disturbances, and directions of disturbances, may
lead to less severe frequency wise sensitivity function tradeoffs.

In Section 4.2, a method is developed to design centralized controllers with man-
ual loopshaping techniques. With this, it is shown how, for a specific class of
plants, the sensitivity function can be designed to reject disturbances in each or-
thogonal direction independently. The results of manual loopshaping are almost
similar to those obtained with H∞ loopshaping. The design method was success-
fully applied to a model of a waferstage. A multiloop SISO design approach, that
does not take into account directions of disturbances explicitly, was shown to be
infeasible for this application.

All earlier sections focussed on the accommodating directions of disturbances.
In Section 4.3, manual and H∞ loopshaping design guidelines are derived to ac-
commodate directions of disturbances and sensor noise. It is shown that manual
loopshaping can be applied if directions of sensor noise and directions of dis-
turbances are sufficiently misaligned. The H∞ loopshaping method can also be
applied for cases where directions of sensor noise and disturbances are not mis-
aligned.

Several feedback design approaches are applied to a metrological atomic force
microscope in Section 4.4. Herein, it is demonstrated that accommodating dis-
turbances may lead to lower bandwidth feedback control designs. It is shown that
the structural assumptions on the plant dynamics, that are required for manual
centralized control design, are restrictive compared to the independent decentral-
ized control design approach discussed in Chapter 2.

Therefore, we conclude that manual loopshaping methods are extended to accom-
modate directions of disturbances and sensor noise for a specific class of plants
and disturbances. Also, at least for these cases, (non-diagonal) weighting filter
design for H∞ loopshaping is elucidated.
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Chapter 5

Conclusions and
Recommendations

5.1 Conclusions

In this thesis, the rejection of disturbances in multivariable motion systems is in-
vestigated. Herein, the multivariable aspects of disturbances are characterized and
accommodated in feedback control. Using the properties of motion systems and
disturbances with frequency independent directions, a design method for manual
andH∞ loopshaping is developed. This leads to the following concluding remarks.

It is shown how dominant dynamics of motion systems can be described as modal,
dyadic or Pseudo SVD systems. Dynamics, e.g., due to plant interaction, that
are not described with this, can be treated as uncertainty in the generalized plant
framework. It is shown how the implications of this uncertainty can be translated
to bounds on allowable (simplified) closed loop functions. With this, manual and
H∞ loopshaping design for SISO and MIMO motion systems can be simplified
significantly. This is illustrated with application to an active vibration isolation
system, Section 2.5, model of a waferstage, Section 4.2, and a metrological atomic
force microscope, Section 4.4.

A method is developed to acquire a physically motivated model for fixed direction
disturbances in multivariable systems. Herein, the directions of disturbances and
the root causes (sources) of disturbance are characterized. By application to an
active vibration isolation system, it is shown how the location of sources can be
recovered. It is shown how directions of disturbances can be physically interpreted
and used to simplify multivariable control design.
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Inherent limitations imply tradeoffs in achievable performance for MIMO sys-
tems. For frequency independent input and output directions of the sensitivity
function, these limitations are analogous to those in SISO systems. To reduce the
costs of disturbance rejection feedback control, sensitivity functions are only to
be minimized in directions and at frequencies that are relevant for disturbance
rejection. To account for the directional aspects of disturbances, centralized con-
trollers may therefore be applied, even in cases where the plant dynamics are
decoupled.

A design method to accommodate directions of disturbances and sensor noise
in feedback control is developed. It is shown how models of fixed direction dis-
turbances naturally result in non-diagonal weighting filters for H∞ loopshaping.
Also, a manual loopshaping method for centralized controllers is developed for
a specific class of plants. With this, the sensitivity functions can be designed
to account for directional characteristics of disturbances. Furthermore, it was
studied how directions of disturbances and directions of sensor noise can be ac-
commodated in feedback control. A manual loopshaping method is developed that
can be used when directions of disturbance and sensor noise are sufficiently mis-
aligned. For more general alignment cases, it is shown how H∞ loopshaping can
be applied. A metrological atomic force microscope is used to illustrate different
feedback control design approaches.

5.2 Recommendations

In this thesis, it is shown how manual and H∞ loopshaping can be used to ac-
commodate directions of disturbances for a specific class of control problems. It
is expected that the application area can be extended by further research on the
following issues.

The model assumptions required for the blind identification limit application of
this method to a wider class of problems. To extend the application field, meth-
ods must be investigated that enable identification of more sources than observed
disturbances, see [33]. Furthermore, dynamic (frequency dependent direction)
disturbance models can be identified with the concepts discussed in [27, 139].
These advanced disturbance identification techniques motivate the application of
more advanced (not necessarily LTI) controllers as reported in [1, 57, 78, 138].
For these, not LTI, controllers, the inherent limitations discussed in this thesis do
not apply, [119].

Manual loopshaping techniques may be extended by combining the insights of
this thesis with concepts of Quantitative Feedback Control Theory (QFT) as de-
veloped in, [58, 150]. Methods to design centralized controllers with QFT are
discussed in [50, 51]. Future research may focus on the accommodation of direc-
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tionality of disturbances within the QFT framework. Also, the sufficient condi-
tions for closed loop stability and performance developed in this thesis can be
formulated in a loopshaping QFT framework.

It is shown in Chapter 3 that the contribution of each identified source to the
total servo error can be studied independently. This can be considered as a nat-
ural extension of dynamic error budgeting techniques as discussed in [68]. Aside
from this analysis, one may consider control synthesis techniques that allow trans-
parent tradeoffs in rejecting disturbances due to different sources. In work not
reported here, we investigated multichannel multicriteria H2 synthesis techniques.
In [34], multichannel multicriteria H2 synthesis was studied using the concepts of
[71]. Also, it was investigated how multichannel H2 problems can be formulated
as LMI’s using the techniques of [6]. Both approaches provided reasonable re-
sults on simple systems, but showed to be very sensitive to numerical errors when
used for realistic motion systems. More promising results were achieved using the
multiobjective design approach proposed in [67]. This approach is restricted to
specially structured generalized plants. In all studied techniques, the order of the
controller transfer function increases significantly. To obtain controllers that can
be implemented on a practical setup, controller order reduction techniques are to
be used. This often gives rise to numerical issues when applied to realistic mo-
tion systems. However, it is expected that with alternative problem formulations
and ongoing developments in numerical techniques, some of these issues can be
resolved in the near future.

For a specific class of problems, the choice of weighting filters for H∞ loopshaping
is elucidated. In order to enable H∞ design for industry, accurate parametric
models of the plant are required. Therefore, it is recommended to develop practi-
cally feasible techniques for plant identification and model (and controller) order
reduction techniques, see e.g. [96]. Also, disturbance models may be acquired as
a by-product of plant identification techniques, [95, 127]. Hence, it is interesting
to study relationships between the blind identification method proposed in this
work and identification techniques developed in [127, 131].
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Figures AVIS control design
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Figure A.1: Bode magnitude of plant (AVIS).
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Figure A.2: Relative gain array of the AVIS.
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Figure A.3: Bode magnitude of the output sensitivity function using decentralized
feedback control (AVIS)
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Figure A.4: Bode magnitude of the plant and the process sensitivity function
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Principal angles

Here we show that the principal angles between subspace U1 and V1 can be
calculated from the alignment between U1 and V2 provided that V1 ⊥ V2. The
reasoning is based on Theorem 2.3 of [130] and the appendix of [46]. Let the
columns of Ũ span U with U ∈ U. Let the columns of Ṽ span V with V ∈ V.
Then, there exist unitary matrices P1 ∈ Ck×k, P2 ∈ C(n−k)×(n−k), Q1 ∈ Ck×k,
Q2 ∈ C(n−k)×(n−k), so that P = diag{P1, P2}, Q = diag{Q1, Q2} and,

V HU = PṼ H ŨQH (B.1)

where for 2k ≤ n,

Ṽ H Ũ =

 C̄ S̄ 0
−S̄ C̄ 0
0 0 In−2k

 (B.2)

with C̄ = diag{cos θi}, S̄ = diag{sin θi}. The proof of this can be found in Section
3 of [9]. If 2k > n, the identity block appears in the upper left-hand corner. Using
(B.2), we can write,

V HU =
[

V H
1 U1 V H

1 U2

V H
2 U1 V H

2 U2

]

=

 P1C̄QH
1 P1

[
S̄ 0

]
QH

2

P2

[
S̄
0

]
QH

1 P2

[
C̄ 0
0 I

]
QH

2

 (B.3)

This illustrates that the first k singular values of V H
1 U2 are the sinusoids of the

principal angles between subspace U1 and V1. Therefore we can calculate the
principal angles θi as, θi = arcsinσi(V H

1 U2) or θi = arccos σi(V H
1 U1) for i =

1, ..., k.
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Summary

Due to ever increasing demands in industry, the number of applications of mul-
tiple input multiple output (MIMO) control systems has increased drastically in
the last decades. Although considerable progress has been made in the develop-
ment of theoretical tools, feedback control design for MIMO systems still poses
complexity issues for both academia and the practising engineer. In an effort
to reduce design complexity, many aspects of MIMO systems are disregarded in
most practical applications, at the cost of potential achievable performance.

One of the important tasks of feedback control is the ability to reject distur-
bances. In MIMO systems, gain, phase, and directions play an important role in
the systems ability to reject disturbances. The directional, multivariable, aspects
of disturbances necessitate approaching the MIMO control problem in its full
complexity. The goal of this work is to make directional aspects an integral part
of MIMO control design. Herein, the focus is on applications of motion control
systems. The contribution of this work is two-fold.

The first contribution of this work is the development of techniques to characterize
multivariable disturbances. A non-parametric component analysis method is de-
veloped to identify both the directional aspects of disturbances and the root cause
(source) of disturbances in multivariable closed loop controlled systems. Indices
are developed to quantify directionality of disturbances and, possibly, simplify
multivariable control design. These techniques are applied to an active vibra-
tion isolation platform. It is shown how the location of sources can be recovered
using only closed loop measurements. Furthermore, it is demonstrated how mul-
tivariable control design can be simplified. With this, it is demonstrated how
multivariable aspects of disturbances can be interpreted physically and exploited
in control design.

The second contribution of the work involves the development of control design
methods that take advantage from the multivariable aspects of disturbances. The
focus is on systems where the plant dynamics are decoupled while disturbances
may act on may decoupled parts of the plant at the same time. Methods are
developed to design non-diagonal weighting filters for H∞ control synthesis. Fur-
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thermore, manual frequency domain loopshaping techniques are developed for
the design of centralized MIMO controllers that accommodate directions of dis-
turbances and sensor noise. It is illustrated with several examples that, using
these developed techniques, directions of disturbances and noise can be success-
fully integrated in control design for multivariable motion systems.
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Samenvatting

Vanwege de strengere prestatie-eisen gesteld binnen de industrie, is het aantal
toepassingen van regelaars met meerdere in- en uitgangen (MIMO) in de laatste
decennia drastisch toegenomen. Vele ontwikkelingen in systeemtheorie ten spijt,
blijft het ontwerpen van MIMO regelaars een uitdaging voor zowel de academicus
als de ingenieur. In een poging de complexiteit van het ontwerpproces te ver-
minderen, worden veel aspecten van het MIMO systemen verwaarloosd. Dit gaat
vaak ten koste van de mogelijk haalbare prestatie.

Een belangrijke taak van regelaars door middel van terugkoppeling is het ver-
mogen om exogene verstoringen te onderdrukken. In MIMO systemen zijn de
versterking, fase en richting belangrijke systeem eigenschappen die de mate van
verstoringsonderdrukking bepalen. De richtingsafhankelijkheid van MIMO sys-
temen vereist dat het ontwerpprobleem van MIMO regelaars in zijn volle com-
plexiteit wordt beschouwd. Het doel van dit werk is om het aspect van richt-
ingsafhankelijkheid op te nemen in het ontwerpproces van MIMO regelaars voor
bewegingssystemen. De bijdrage van dit werk is tweeledig.

De eerste bijdrage van dit werk is een methode om multivariabele verstoringen
te karakteriseren. Een niet-parametrische componenten analyse is ontwikkeld om
zowel de richting als de bronnen van verstoringen in een gesloten lus regelsysteem
te identificeren. Indices zijn ontwikkeld om de richtingsafhankelijkheid van ver-
storingen te kwantificeren en het ontwerp van MIMO regelaars mogelijkerwijs te
vereenvoudigen. Deze technieken zijn toegepast op een actief trillingsisolatiesys-
teem. Hiermee kunnen de locaties van de verstoringsbronnen worden bepaald.
Tevens is aangetoond dat het ontwerp van de MIMO regelaar voor deze opstelling,
dankzij de verkregen inzichten in de multivariabele verstoringssituatie, sterk kan
worden vereenvoudigd.

De tweede bijdrage van dit werk bestaat uit een aantal regelaar ontwerpmethoden
om multivariabele aspecten van verstoringen en meetruis te benutten. De nadruk
ligt hierbij op situaties waarbij de systeemdynamica wel, maar de verstorings-
dynamica niet ontkoppeld is. Methoden zijn ontwikkeld om niet-diagonale weeg-
filters voor H∞ regelaar synthese te ontwerpen. Bovendien worden handmatige,
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frequentie gebaseerde technieken ontwikkeld om richtingsafhankelijke, gecentraliseerde
regelaars te ontwerpen. Deze technieken worden gëıllustreerd met enkele voor-
beelden van bewegingssystemen. Dit laat zien dat, voor een bepaalde klasse van
systemen, richtingen van verstoringen en meetruis op een succesvolle wijze in het
ontwerp van MIMO regelaars kunnen worden opgenomen.
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