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Abstract. Streams are infinite sequences over a given data type. A
stream specification is a set of equations intended to define a stream.
We propose a transformation from such a stream specification to a TRS
in such a way that termination of the resulting TRS implies that the
stream specification admits a unique solution. As a consequence, prov-
ing such well-definedness of several interesting stream specifications can
be done fully automatically using present powerful tools for proving TRS
termination.

1 Introduction

Streams are among the simplest data types in which the objects are infinite. We
consider streams to be maps from the natural numbers to some data type D. The
basic constructor for streams is the operator ‘:’ mapping a data element d and a
stream s to a new stream d : s by putting d in front of s. Using this operator we
can define streams by equations. For instance, the stream zeros only consisting
of 0’s can be defined by the single equation zeros = 0 : zeros. More complicated
streams are defined using stream functions. For instance, the boolean Fibonacci
stream Fib is defined1 to be the fixpoint of the function f defined by

f(0 : σ) = 0 : 1 : f(σ), f(1 : σ) = 0 : f(σ).

It turns out that Fib = 0 : c for the stream c defined by c = 1 : f(c). Although
these stream definitions are extremely simple, the resulting streams are typi-
cally non-periodic and have remarkable properties. For instance, one can make
a turtle visualization (see also http://www.win.tue.nl/~hzantema/str.html)
as follows. Choose an initial drawing direction and traverse the elements of the
stream Fib as follows: if the symbol 0 is read then the drawing direction is
moved 30 degrees to the right; if the symbol 1 is read then the drawing direction
is moved 150 degrees to the left. In both cases after doing so a line of unit length
is drawn. Then after 200.000 steps the following picture is obtained.
1 In [1] it is called infinite Fibonacci word. It can also be defined as the limit of the

strings φi where φ1 = 1, φ2 = 0, φi+2 = φi+1φi for i ≥ 1, showing the relationship
with Fibonacci numbers.
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Streams have been studied extensively, e.g. in [1]. In this paper we consider
stream specifications consisting of a set of equations like above we did for the
Fibonacci stream. We address the most fundamental question one can think of:
does such a set of equations admits a unique solution as constants and functions
on streams? This is not always the case. For instance, every f mapping x : σ to
x : c for any constant stream c satisfies the stream specification

f(x : σ) = x : g(f(σ)), g(x : σ) = σ,

where g is the tail function removing the first element of the stream.
Intuitively this notion of well-definedness is closely related to termination of

the process of unfolding definitions. The past ten years showed up a remarkable
progress in techniques and implementations for proving termination of rewrite
systems [2,5,9]. One of the objectives of this paper is to exploit this power for
proving well-definedness of stream specifications. In our approach we introduce
fresh operators head and tail intended to observe streams. We present a transfor-
mation of the specification to its observational variant. This is a TRS mimicking
the stream specification in such a way that head or tail applied on any stream
constant or stream function can always be rewritten. This transformation is
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straightforward and easy to implement; an implementation for boolean stream
specifications, both in Windows an Linux, together with several examples, is
found in http://www.win.tue.nl/~hzantema/str.zip.

The main result of this paper states that if the observational variant of a
specification is terminating, then the specification admits a unique solution.
It turns out that for several interesting cases termination of the observational
variant of a specification can be proved by termination tools like AProVE [4]
or TTT2 [7]. This provides a new technique to prove well-definedness of stream
specifications fully automatically, applying for cases where earlier approaches
fail. Our main result appears in two variants:

– a variant restricting to ground terms for general stream specifications (The-
orem 1), and

– a variant generalizing to all streams for stream specifications not depending
on particular data elements (Theorem 2).

By an example we show that the approach does not work for general stream
specifications and functions applied on all streams. Moreover, we show that our
technique is not complete: the fixpoint definition of the Fibonacci stream as
we just gave is a well-defined stream specification for which the observational
variant is non-terminating.

Proving well-definedness in stream specification is closely related to prov-
ing equality of streams. A standard approach for this is co-induction [11]: two
streams or stream functions are equal if a bisimulation can be found between
them. Finding such an arbitrary bisimulation is a hard problem in the general
setting, but restricting to circular co-induction [6] finding this automatically is
tractable. A strong tool doing so is Circ [8]. The tool Circ focuses on proving
equality, but proving well-definedness of a function f can also be proved by
equality as long as the equations for f are orthogonal: take a copy f ′ of f with
the same equations, and prove f = f ′. For many examples this works well, but
there are also small stream specifications for which our approach succeeds in
proving well-definedness and Circ fails. Conversely our approach can be used
to prove equality of two streams: if one stream satisfies the specification of the
other one, and this specification is well-defined, then the streams are equal. The
input format of Circ differs from what we call stream specifications: head and tail
are already building blocks and the Circ input is essentially the same as what
we call the observational variant.

Another closely related topic is productivity of stream specifications, as studied
by [3]. Productive stream specifications are always well-defined. Conversely we
will give an example (Example 4) of a stream specification that is well-defined,
but not productive. Our format of stream specifications is strongly inspired by
[3]. In [3] a technique is developed for establishing productivity fully automat-
ically for a restricted class of stream specifications. In particular, only a very
mild type of nesting in the right hand sides of the rule is allowed. Our technique
typically applies where these restrictions do not hold.
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Both stream equality [10] and productivity [12] have been proved to be Π0
2 -

complete, hence undecidable. By similar Turing machine construction the same
is expected to hold for stream well-definedness.

This paper is structured as follows. In Section 2 we present the basics of
stream specifications and their models. In Section 3 we define the transformation
of a stream specification to its observational variant. In Section 4 we present
and prove the main theorem: if the observational variant is terminating then
restricted to ground terms the specification has a unique model. In Section 5 we
show that this restriction to ground terms may be removed in case the stream
specification is data independent: left hand sides of rules do not contain data
values. In Section 6 we discuss fixpoints and prove incompleteness. We conclude
in Section 7.

2 Streams: Specifications and Models

In stream specifications we have two sorts: s (stream) and d (data). We assume
the set D of data elements to consist of the unique normal forms of ground terms
over some signature Σd with respect to some terminating orthogonal rewrite
system Rd over Σd. Here all symbols of Σd are of type dn → d for some n ≥ 0.
We assume a particular symbol : having type d × s → s. For giving the actual
stream specification we need a set Σs of stream symbols, each being of type
dn×sm → s for n, m ≥ 0. Now terms of sort s are defined inductively as follows:

– a variable of sort s is a term of sort s,
– if f ∈ Σs is of type dn×sm → s, u1, . . . , un are terms over Σd and t1, . . . , tm

are terms of sort s, then f(u1, . . . , un, t1, . . . , tm) is a term of sort s,
– if u is a term over Σd and t is a term of sort s, then u : t is a term of sort s.

As a notational convention variables of sort d will be denoted by x, y, terms of
sort d by u, ui, variables of sort s by σ, τ , and terms of sort s by t, ti.

Definition 1. A stream specification (Σd, Σs, Rd, Rs) consists of Σd, Σs, Rd as
given before, and a set Rs of rewrite rules of the shape

f(u1, . . . , un, t1, . . . , tm) → t,

where

– f ∈ Σs is of type dn × sm → s,
– for every i = 1, . . . , n the term ui is either a variable of sort d or ui ∈ D,
– for every i = 1, . . . , m the term ti is either a variable of sort s, or ti = x : σ

where x is a variable of sort d and σ is a variable of sort s,
– t is any term of sort s,
– every ground term of sort s being in normal form with respect to Rd matches

with the left hand side of exactly one rule from Rs.
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Due to these requirements Rs ∪ Rd is orthogonal. Sometimes we call Rs a
stream specification: in that case Σd, Σs consist of the symbols of sort d, s,
respectively, occurring in Rs, and Rd = ∅. Rules � → r in Rs are often written
as � = r.

Example 1. For specifying the Thue Morse sequence the data elements are 0, 1,
and a data operation not is used. The data rewrite system Rd consists of the two
rules not(0) → 1 and not(1) → 0. The rewrite system Rs consists of the rules

morse → 0 : zip(inv(morse), tail(morse)) tail(x : σ) → σ
inv(x : σ) → not(x) : inv(σ) zip(x : σ, τ) → x : zip(τ, σ)

Definition 1 is closely related to the definition of stream specification in [3]. In
fact there are two differences:

– We want to specify streams for every ground term of sort s, while in [3] there
is a designated constant to be specified.

– The restriction on left hand sides is stronger than the exhaustiveness from
[3]. However, by introducing fresh symbols and rules for defining these fresh
symbols, every stream specification in the format of [3] can be unfolded to
a stream specification in our format.

For instance, the function f in the introduction to define the Fibonacci stream
does not meet our requirements since the argument 0 : σ in the left hand side
f(0 : σ) is not of the right shape. Introducing a fresh symbol g and unfolding
yields

f(x : σ) = g(x, σ) g(0, σ) = 0 : 1 : f(σ)
g(1, σ) = 0 : f(σ)

satisfying our format.
Stream specifications are intended to specify streams for the constants in Σs,

and stream functions for the other elements of Σs. The combination of these
streams and stream functions is what we will call a stream model.

More precisely, a stream over D is a map from the natural numbers to D.
Write Dω for the set of all streams over D. In case of D = ∅ we have Dω = ∅; in
case of #D = 1 we have #Dω = 1. So in non-degenerate cases we have #D ≥ 2.

It seems natural to require that stream functions in a stream model are defined
on all streams. However, it turns out that several desired properties do not hold
when requiring this. Therefore we allow stream functions to be defined on some
set S ⊆ Dω for which every ground term can be interpreted in S.

Definition 2. A stream model is defined to consist of a set S ⊆ Dω and a set
of functions [f ] for every f ∈ Σs, where [f ] : Dn × Sm → S if the type of f is
dn × sm → s.

For a ground term u over Σd write NF(u) for its Rd-normal form. For f ∈ Σd

and u1, . . . , un ∈ D we define [f(u1, . . . , un)] = NF(f(u1, . . . , un)). We write Ts
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for the set of ground terms of sort s. For t ∈ Ts the stream interpretation [t] in
the stream model (S, ([f ])f∈Σs) is defined inductively by:

[f(u1, . . . , un, t1, . . . , tm)] = [f ]([u1], . . . , [un], [t1], . . . , [tm]) for f ∈ Σs

[u : t](0) = [u]
[u : t](i) = [t](i − 1) for i > 0

for all ground terms u, ui of sort d and all ground terms t, ti of sort s.
So in a stream model:

– every data operator is interpreted by its corresponding term constructor,
after which the result is reduced to normal form,

– every stream operator f is interpreted by the given function [f ], and
– the operator : applied on a data element d and a stream s is interpreted by

putting d on the first position and shifting every stream element of s to its
next position.

Definition 3. A stream model (S, ([f ])f∈Σs) is said to satisfy a stream specifi-
cation (Σd, Σs, Rd, Rs) if [�ρ] = [rρ] for every rule � → r in Rs and every ground
substitution ρ. We also say that the specification admits the model.

Now we can express the desired well-definedness of a stream specification more
precisely: there is exactly one stream model (S, ([f ])f∈Σs) satisfying the stream
specification for which S = {[t] | t ∈ Ts}. This is not always the case: if #D > 1
and Rs consists of the rule c → c there is not a unique [c] since every stream
satisfies the specification. Less trivial is the boolean stream specification

c = 0 : f(c), f(x : σ) = σ,

in which [f ] can be chosen to be the tail function and [c] be any stream starting
with 0, showing non-uniqueness of stream models.

3 The Observational Variant

In this paper we define a transformation Obs transforming the original TRS
Rs to its observational variant Obs(Rs). The basic idea is that the streams are
observed by two auxiliary operator head and tail, of which head picks the first
element of the stream and tail removes the first element from the stream, and
that for every t ∈ Ts of type stream both head(t) and tail(t) can be rewritten by
Obs(Rs).

The main result of this paper is that if Obs(Rs) ∪ Rd is terminating for a
given specification (Σd, Σs, Rd, Rs), then it admits a unique model (S, ([f ])f∈Σs)
satisfying S = {[t] | t ∈ Ts}. As a consequence, the specification uniquely defines
a corresponding stream [t] for every t ∈ Ts.

We define Obs(Rs) in two steps. First we define P(Rs) obtained from Rs by
modifying the rules as follows. By definition every rule of Rs is of the shape

f(u1, . . . , un, t1, . . . , tm) → t
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where for every i = 1, . . . , m the term ti is either a variable of sort s, or ti = x : σ
where x is a variable of sort d and σ is a variable of sort s. In case ti = x : σ
then in the left hand side of the rule the subterm ti is replaced by σ, while in
the right hand side of the rule every occurrence of x is replaced by head(σ) and
every occurrence of σ is replaced by tail(σ).

For example, the zip rule in Example 1 will be replaced by

zip(σ, τ) → head(σ) : zip(τ, tail(σ)).

Now we are ready to define Obs.

Definition 4. Let (Σd, Σs, Rd, Rs) be a stream specification. Let P(Rs) be de-
fined as above. Then Obs(Rs) is the TRS over Σd ∪Σs ∪{:, head, tail} consisting
of

– the two rules
head(x : σ) → x, tail(x : σ) → σ,

– for every rule in P(Rs) of the shape � → u : t the two rules

head(�) → u, tail(�) → t,

– for every rule in P(Rs) of the shape � → r with root(r) �= : the two rules

head(�) → head(r), tail(�) → tail(r).

Example 2. For the TRS Rs given in Example 1 we rename the symbol tail by
tail0 in order to keep the symbol tail for the fresh symbol introduced in the Obs
construction. Then the TRS Obs(Rs) consists of the following rules:

head(x : σ) → x head(tail0(σ)) → head(tail(σ))
tail(x : σ) → σ tail(tail0(σ)) → tail(tail(σ))

head(morse) → 0 head(zip(σ, τ)) → head(σ)
tail(morse) → zip(inv(morse), tail(morse)) tail(zip(σ, τ)) → zip(τ, tail(σ))

head(inv(σ)) → not(head(σ))
tail(inv(σ)) → inv(tail(σ))

Together with the rules not(0) → 1 and not(1) → 0 from Rd this TRS is termi-
nating as can easily be proved fully automatically by AProVE [4] or TTT2 [7].
As a consequence, the result of this paper states that the specification uniquely
defines a stream for every ground term of type s, in particular for morse.

4 The Main Theorem

We start this section by presenting our main theorem.

Theorem 1. Let (Σd, Σs, Rd, Rs) be a stream specification for which the TRS
Obs(Rs)∪Rd is terminating. Then the stream specification admits a unique model
(S, ([f ])f∈Σs) satisfying S = {[t] | t ∈ Ts}.
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Before proving the theorem we show by an example why it is essential to restrict
to S = {[t] | t ∈ Ts} rather than choosing S = Dω. A degenerate example is
obtained if there are no constants of sort s, and hence Ts = ∅. More interesting
is the following.

Example 3. Let the boolean stream specification consist of Rd = ∅ and Rs con-
sisting of the following rules:

c → 1 : c g(0, σ) → f(σ)
f(x : σ) → g(x, σ) g(1, σ) → 1 : f(σ)

So f tries to remove all 0’s from its argument. For streams containing infinitely
many 0’s this may be problematic. Note that by the symbols c, :, 0 and 1 only the
streams with finitely many 0’s can be constructed, for ground terms this problem
does not arise. Indeed the TRS Obs(Rs) ∪ Rd is terminating, and by Theorem
1 the specification admits a unique model (S, ([f ])f∈Σs) satisfying S = {[t] | t ∈
Ts}. However, when extending to all streams the function [f ] : Dω → Dω is
not uniquely defined, even if we strengthen the requirement of [�ρ] = [rρ] for all
rules � → r and all ground substitutions ρ to an open variant in which the σ’s in
the rules are replaced by arbitrary streams. Write ones and zeros for the streams
only consisting of ones, resp. zeros. Two distinct models [·]1 and [·]2 satisfying
the stream specification are defined by:

[c]1 = [f ]1(s) = [g]1(u, s) = ones for all s ∈ Dω, u ∈ D,

and [c]2 = [f ]2(s) = [g]2(u, s) = ones for u ∈ D and streams s containing
infinitely many ones, and [f ]2(s) = 1n : zeros, [g]2(u, s) = [f ]2(u : s) for u ∈ D
and streams s containing n < ∞ ones.

Now we arrive at the proof of Theorem 1. The plan of the proof is as follows.

– First we construct a function [·]1 : Ts → Dω, and choose S1 = {[t]1 | t ∈ Ts}.
– Next we show that if [ti]1 = [t′i]1 for i = 1, . . . , m, then

[f(u1, . . . , un, t1, . . . , tm)]1 = [f(u1, . . . , un, t′1, . . . , t
′
m)]1,

by which [f ]1 is well-defined and we have a model (S1, ([f ]1)f∈Σs).
– We show this model satisfies the specification.
– We show no other model (S, ([f ])f∈Σs) satisfies the specification and S =

{[t] | t ∈ Ts}.

First we define [t]1 ∈ Dω for any t ∈ Ts. Since elements of Dω are functions
from N to D, a function [t]1 ∈ Dω is defined by defining [t]1(n) for every n ∈ N.
Due to the assumption of the theorem the TRS Obs(Rs) ∪ Rd is terminating.
According to the definition of stream specification the TRS Rs∪Rd is orthogonal,
and by the construction Obs the TRS Obs(Rs) ∪Rd is orthogonal too. So every
ground term of sort d has a unique normal form with respect to Obs(Rs) ∪ Rd.

Assume such a normal form contains a symbol from Σs ∪ {:}. Choose such
a symbol with minimal position, that is, closest to the root. Since the term is
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of sort d, this symbol is not the root. Hence it has a parent. Due to minimality
of position, this parent is either head or tail. Due to the shape of the rules of
Obs(Rs), a rule of Obs(Rs) is applicable on this parent position, contradicting
the normal form assumption. So the normal form only contains symbols from
Σd. Since it is also a normal form with respect to Rd, such a normal form is an
element of D. Now for t ∈ Ts and n ∈ N we define

[t]1(n) = the normal form of head(tailn(t)) with respect to Obs(Rs)∪Rd,

in this way defining [t]1 ∈ Dω .

Lemma 1. Let Obs(Rs) ∪ Rd be terminating. Let f ∈ Σs of type dn × sm → s.
Let u1, . . . , un ∈ D and t1, . . . , tm, t′1, . . . , t

′
m ∈ Ts satisfying [ti]1 = [t′i]1 for

i = 1, . . . , m. Then

[f(u1, . . . , un, t1, . . . , tm)]1 = [f(u1, . . . , un, t′1, . . . , t
′
m)]1.

Proof. First we extend the definition of [·]1 to all ground terms over Σs ∪Σd ∪{:
, head, tail}. For ground terms t of sort s we define it by [t]1(n) = the normal
form of head(tailn(t)) with respect to Obs(Rs) ∪ Rd, and for ground terms u of
sort d we define [u]1 to be the normal form of u with respect to Obs(Rs) ∪ Rd.
We prove the following claim.

Claim 1: Let [t]1 = [t′]1 for t, t′ ∈ Ts. Let T be a ground term over
Σs ∪ Σd ∪ {:, head, tail} of sort s containing t as a subterm. Let T ′ be
obtained from T by replacing zero or more occurrences of the subterm t
by t′. Then

[head(T )]1 = [head(T ′)]1.

Let > be the well-founded order on ground terms being the strict part of ≥
defined by

v ≥ v′ ⇐⇒ v′ is a subterm v′′ such that v →∗
Obs(Rs)∪Rd

v′′.

We prove the claim for every such term head(T ) by noetherian induction on >.
Claim 1 is trivial if t = T , so we may assume that T = f(u1, . . . , un, t1, . . . , tm)

such that t occurs in u1, . . . , un, t1, . . . , tm, and either f ∈ Σs ∪ {:, tail}, and
T ′ = f(u′

1, . . . , u
′
n, t′1, . . . , t

′
m). For every subterm of ui of the shape head(· · ·) we

may apply the induction hypothesis, yielding [ui]1 = [u′
i]1 = di for all i, defining

di ∈ D.
In case the root of T is not tail we rewrite

head(T ) →∗
Obs(Rs)∪Rd

head(f(d1, . . . , dn, t1, . . . , tm)

by the rule head(f(· · ·)) → · · · in Obs(Rs), yielding a term U of sort d. The only
way such a term can contain t as a subterm is by U = C[head(V1), . . . , head(Vk)]
where t is a subterm of some of the Vi and C is composed from Σd. By the induc-
tion hypothesis we obtain [head(Vi)]1 = [head(V ′

i )]1 for V ′
i obtained from Vi by
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replacing zero ore more occurrences of t by t′. Hence [head(T )]1 =
C[head(V1), . . . , head(Vk)]]1 = C[head(V ′

1), . . . , head(V ′
k)]]1 = [head(T ′)]1.

In case the root of T is tail then write T = taili(f(· · ·)) →∗
Obs(Rs)∪Rd

taili(f(d1, . . . , dn, t1, . . . , tm) for f ∈ Σs ∪ {:}. This can be rewritten by the
rule tail(f(· · ·)) → · · · in Obs(Rs), yielding V . On the same position using the
same rule we can rewrite T ′ →Obs(Rs) V ′ for V ′ obtained from V by replacing
one ore more occurrences of t by t′. Applying the induction hypothesis gives
[head(V )]1 = [head(V ′)]1 yielding

[head(T )]1 = [head(V )]1 = [head(V ′)]1 = [head(T ′)]1,

concluding the proof of Claim 1.

Claim 2: Let [t]1 = [t′]1 for t, t′ ∈ Ts. Let T be a ground term over
Σs ∪ Σd ∪ {:, head, tail} of sort s containing t as a subterm. Let T ′ be
obtained from T by replacing one or more occurrences of the subterm t
by t′. Then [T ]1 = [T ′]1.

Claim 2 easily follows from Claim 1 and the observation

[T ]1 = [T ′]1 ⇐⇒ ∀i ∈ N : [head(taili(T )]1 = [head(taili(T ′)]1.

Now the lemma follows by applying Claim 2 and replacing ti by t′i successively
for i = 1, . . . , m. �

Define S1 = {[t]1 | t ∈ Ts}. For any f ∈ Σs of type dn×sm → s for u1, . . . , un ∈ D
and t1, . . . , tm, t′1, . . . , t′m ∈ Ts we now define [f ]1 : Dn × Sm → S by

[f ]1(u1, . . . , un, [t1], . . . , [tm]) = [f(u1, . . . , un, t1, . . . , tm)]1;

Lemma 1 implies that this is well-defined: the result is independent of the choice
of the representants in [ti]1. So (S1, ([f ]1)f∈Σs) is a model.

Next we will prove that it satisfies the specification, and essentially is the only
one doing so.

Lemma 2. Let � → r ∈ Rs and let ρ be a substitution. Then

– there is a term t such that head(�ρ) →∗
Obs(Rs)

t and head(rρ) →∗
Obs(Rs)

t,
and

– there is a term t such that tail(�ρ) →∗
Obs(Rs)

t and tail(rρ) →∗
Obs(Rs)

t.

Proof. Let f be the root of �. Define ρ′ by σρ′ = xρ : σρ for every argument
of the shape x : σ of f in �, and ρ′ coincides with ρ on all other variables.
Then head(�ρ) = �′ρ′ for some rule in �′ → r′ in Obs(Rs). Now a common
reduct t of r′ρ′ and head(rρ) is obtained by applying the rule head(x : σ) → x
zero or more times. This yields head(�ρ) = �′ρ′ →Obs(Rs) r′ρ′ →∗

Obs(Rs)
t and

head(rρ) →∗
Obs(Rs)

t. The argument for tail(�ρ) and tail(rρ) is similar. �
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Lemma 3. The model (S1, ([f ]1)f∈Σs) satisfies the specification (Σd, Σs, Rd, Rs).

Proof. We have to prove that [�ρ]1(i) = [rρ]1(i) for every rule � → r in Rs,
every ground substitution ρ and every i ∈ N. By definition [�ρ]1(i) is the unique
normal form with respect to Obs(Rs) ∪ Rd of head(taili(�ρ)), and [rρ]1(i) is the
similar normal form of head(taili(rρ)). Now the lemma follows from Lemma 2.

�

For concluding the proof of Theorem 1 we have to prove that (S1, ([f ]1)f∈Σs)
is the only model satisfying the specification (Σd, Σs, Rd, Rs) and S = {[t] | t ∈
Ts}. This follows from the following lemma.

Lemma 4. Let (S, ([f ])f∈Σs) be any model satisfying (Σd, Σs, Rd, Rs), and t ∈
Ts. Then [t] = [t]1.

Proof. By definition in the model for u ∈ D and s ∈ S we have

([:](u, s))(0) = u, ([:](u, s))(i) = s(i − 1) for i > 0.

In the original stream specification the symbols head, tail do not occur, for these
fresh symbols we now define functions [head] and [tail] on streams s by

[head](s) = s(0), ([tail](s))(i) = s(i + 1) for i ≥ 0.

If S �= Dω then it is not clear whether [tail](s) ∈ S for every s ∈ S. Therefore
we extend S to Dω and define [f ](· · ·) to be any arbitrary value if at least one
argument is in Dω \ S; note that for the model satisfying the specification we
only required [�ρ] = [rρ] for ground substitutions to Ts by which these junk
values do not play a role.

Due to the definitions of [:], [head] and [tail] this extended model satisfies the
equations

E =

⎧
⎨

⎩

head(x : σ) = x
tail(x : σ) = σ

σ = head(σ) : tail(σ)

that is, for ρ mapping x to any term of sort d and σ to any term of sort s we
have [�ρ] = [rρ] for every � → r ∈ E . From the definition of Obs(Rs) it is easily
checked that any innermost step t →Obs(Rs) t′ on a ground term t is either an
application of one of the first two rules of E , or it is of the shape

t →∗
E · →Rs · →∗

E t′

where due to the innermost requirement the redex of the →Rs step does not
contain the symbols head or tail so is in Ts. Since the model is assumed to satisfy
the specification (Σd, Σs, Rd, Rs), we conclude that [t] = [t′] for every innermost
ground step t →Obs(Rs) t′.

For the lemma we have to prove that [t](i) = [t]1(i) for every i ∈ N. By
definition [t]1(i) is the normal form with respect to Obs(Rs)∪Rd of head(taili(t)).
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Now consider an innermost Obs(Rs)∪Rd-reduction of head(taili(t)) to [t]1(i). By
the above observation and the definitions of [head] and [tail] we conclude that

[t](i) = [head(taili(t))] = [[t]1(i)] = [t]1(i),

the last step since [t]1(i) ∈ D. This concludes the proof, both of the lemma and
Theorem 1. �

We conclude this section by an example of a well-defined stream specification
that is not productive.

Example 4. Choose Σs = {c, f, g}, Σd = {0, 1}, Rd = ∅, and Rs consists of the
following rules:

c = 1 : c
f(x : σ) = g(f(σ))
g(x : σ) = c.

Then this is a valid stream specification for which Obs(Rs) is terminating, as can
be shown by AProVE [4] or TTT2 [7]. Hence by Theorem 1 there is a unique
model. So the ground term f(c) has a unique interpretation: the stream only
consisting of 1’s. However, f(c) is not productive.

So the TRS Rs is not suitable to compute the interpretation of f(c). Instead
one can use outermost reduction with respect to P(Rs), where P(Rs) is the TRS
introduced in the definition of Obs(Rs).

5 Data Independent Stream Functions

The reason that in Theorem 1 we have to restrict to models satisfying S =
{[t] | t ∈ Ts}, as we saw in Example 3, is in the fact that computations may be
guarded by data elements in left hand sides of rules. Next we show that we also
get well-definedness for stream functions defined on all streams in case the left
hand sides of the rule do not contain data elements.

Theorem 2. Let (Σd, Σs, Rd, Rs) be a stream specification for which the TRS
Obs(Rs) ∪ Rd is terminating and the only subterms of left hand sides of Rs

of sort d are variables. Then the stream specification admits a unique model
(S, ([f ])f∈Σs) satisfying S = Dω.

Proof. (sketch) We have to prove that for any f ∈ Σs of type dn × sm → s the
function [f ] : Dn × (Dω)m → Dω is uniquely defined. For doing so we introduce
m fresh constants c1, . . . , cm of sort s. Let k ∈ N and u1, . . . , un ∈ D. Due to
termination and orthogonality of Obs(Rs) ∪ Rd, the term

head(tailk(f(u1, . . . , un, c1, . . . , cm)))

has a unique normal for with respect to Obs(Rs)∪Rd. Since it is of sort d, due to
the shape of the rules it is a ground term of sort d over Σd∪{head, tail, c1, . . . , cm},
that is, a ground term T composed from Σd and terms of the shape head(taili(cj))
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for i ∈ N and j ∈ {1, . . . , m}. For this observation it is essential that left
hand sides do not contain non-variable terms of sort d: terms of the shape
f(head(· · ·), . . .) should be rewritten.

Let N be the greatest number i for which T has a subterm of the shape
head(taili(cj)). Let s1, . . . , sm ∈ Dω. Define tj = sj(0) : sj(1) : · · · : sj(N) : σ.
Since head(tailk(f(u1, . . . , un, c1, . . . , cm))) rewrites to T , the term
head(tailk(f(u1, . . . , un, t1, . . . , tm))) rewrites to T ′ obtained from T by replac-
ing every subterm of the shape head(taili(cj)) by head(taili(tj)). Observe that
head(taili(tj)) rewrites to sj(i) ∈ D. So ([f ](u1, . . . , un, s1, . . . , sm))(k) has to
be the Rd-normal form of the ground term over Σd obtained from T by re-
placing every subterm of the shape head(taili(cj)) by sj(i) ∈ D. Since this fixes
([f ](u1, . . . , un, s1, . . . , sm))(k) for every k, this uniquely defines [f ]. �

Example 5. It is easy to see that for the standard stream functions zip, even and
odd defined by

even(x : σ) = x : odd(σ), odd(x : σ) = even(σ), zip(x : σ, τ) = x : zip(τ, σ),

there exists f : Dω → Dω for every data set D satisfying

f(x : σ) = x : zip(f(even(σ)), f(odd(σ))),

namely the identity. By Theorem 2 we can conclude it is the only one, since for
Rd = ∅ and Rs consisting of the above four rules, the resulting TRS Obs(Rs) is
terminating as can be proved by AProVE [4] or TTT2 [7]. Both [3] and [11] fail
to prove that the identity is the only stream function satisfying the equation for
f . By essentially choosing Obs(Rs) as the input and adding information about
special contexts, the tool Circ [8] is able to prove that f is the identity.

6 Fixpoints

Several streams are defined as fixpoints of stream functions, like the Fibonacci
stream as given in the introduction. In our format it can be presented as the
stream specification Rs consisting of the rules

Fib = f(Fib) g(0, σ) = 0 : 1 : f(σ)
f(x : σ) = g(x, σ) g(1, σ) = 0 : f(σ).

The TRS Obs(Rs) is not terminating since it allows the reduction

head(Fib) → head(f(Fib)) → head(g(head(Fib), tail(Fib))).

However, now we will polish Rs to R′
s such that Obs(R′

s) is terminating, by which
well-definedness of both R′

s and Rs can be concluded. This shows incompleteness
of Theorem 1: the stream specification Rs admits a unique model but Obs(Rs)
is not terminating.
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Assume some model satisfies Rs; for simplicity we identify ground terms with
their interpretations in the model. Then Fib = f(Fib) = g(· · ·) = 0 : c for some
stream c. Using this equality Fib = 0 : c we obtain

0 : c = Fib = f(Fib) = f(0 : c) = 0 : 1 : f(c),

so c = 1 : f(c). So the model also satisfies R′
s which is obtained from Rs by

replacing the first rule Fib = f(Fib) by the two rules Fib = 0 : c and c = 1 : f(c).
However, R′

s again satisfies our format and Obs(R′
s) is terminating as can be

proved by AProVE [4] or TTT2 [7]. So by Theorem 1 R′
s admits a unique model,

which is by construction the only model for Rs too.
This technique of modifying the stream specification is generally applicable. If

our technique fails for proving well-definedness of a stream specification, we can
analyze the specified streams by applying the rules and deriving new equalities
from which a modified stream specification can be composed. If our technique
succeeds in proving well-definedness of the modified specification, conclusions
can be drawn about the original one.

In general, stream functions may have zero, one or several fixpoints. For in-
stance, the boolean stream function f defined by

f(0 : σ) = 0 : 1 : f(σ), f(1 : σ) = 1 : 0 : f(σ),

has two fixpoints: the Thue Morse stream morse from Example 1 and its inverse.
Proving that there are exactly two can be done as follows. Assume m is a fixpoint
starting with 0, so m = 0 : c. Then 0 : c = m = f(m) = f(0 : c) = 0 : 1 : f(c),
so c = 1 : f(c). By adding the rules m = 0 : c and c = 1 : f(c) we have a stream
specification Rs for which termination of Obs(Rs) can be proved. So there is
exactly one fixpoint of f starting with 0, and by symmetry there is exactly one
fixpoint of f starting with 1.

7 Conclusions

We presented a technique by which well-definedness of stream specifications like

f(0 : σ) = 1 : f(σ)
f(1 : σ) = 0 : f(f(σ)

c = 1 : c

can be proved fully automatically, where a tool like Circ [8] fails, and the pro-
ductivity tool [3] fails to prove productivity of f(c). The main idea is to prove
well-definedness by proving termination of a transformed system Obs(Rs), in
this way exploiting the power of present termination provers.

We observed that productivity of the stream specification can not be con-
cluded from termination of Obs(Rs); we leave as a challenge to find syntactic
criteria on the stream specification by which this can be concluded.
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