

Specialized depth extraction for live soccer

Citation for published version (APA): Vosters, L. P. J., Haan, de, G., & Peset, R. (2010). Specialized depth extraction for live soccer. In *Proceedings of 21st ProRISC Workshop of the STW.ICT Conference, 18-19 November 2010, Veldhoven, The Netherlands* (pp. 1-31). STW Technology Foundation.

Document status and date: Published: 01/01/2010

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

 The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Outline	Introduction	Related Work	Proposed Approach	Results	Conclusion	Questions
	0000 000 0		0 0000 0000000			

Specialized Depth Extraction for Live Soccer Video

Luc Vosters

Axon Digital Design

Eindhoven, University of Technology

November 18, 2010

Outline	Introduction	Related Work	Proposed Approach	Results	Conclusion	Questions
	0000 000 0		0 0000 0000000			

Introduction

Related Work

Proposed Approach

Results

Conclusion

Questions

Luc Vosters

Axon Digital Design, TU/e

Outline	Introduction ●○○○ ○○	Related Work	Proposed Approach o ocoo ocoocoo	Results ○ ○	Conclusion	Questions
2D-To-3D (Conversion					
3D						

► 3D Cinema.

► 3D TV sets.

3D broadcast.

3D Live Events.

Luc Vosters

Outline	Introduction ○●○○ ○○○	Related Work	Proposed Approach o ocoo ocoocoo	Results ○ ○	Conclusion	Questions
2D-To-3D (Conversion					

3D Productions

3D cameras.

- 2D-to-3D conversion.
 - Offline (semi-) automatic.
 - Real-time.

Outline	Introduction ○○●○ ○○○ ○	Related Work	Proposed Approach o ocoo ocoocooo	Results ○ ○	Conclusion	Questions
2D-To-3D (Conversion					

3D Productions

3D cameras.

- 2D-to-3D conversion.
 - Offline (semi-) automatic.
 - Real-time.

Outline	Introduction ○○○● ○○○	Related Work	Proposed Approach o oooo oooooooo	Results ○ ○	Conclusion	Questions

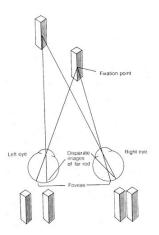
2D-To-3D Conversion

Why 2D-To-3D conversion?

2D-to-3D Conversion

- ▶ 10,000\$
- Widely available.
- No camera rig.
- No stereographer.

3D Recording

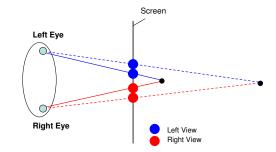

- ► 80,000\$
- Investment.

Luc Vosters

Outline	Introduction	Related Work	Proposed Approach o oooo oooooooo	Results ○ ○	Conclusion	Questions

Stereoscopic 3D

Binocular Disparity

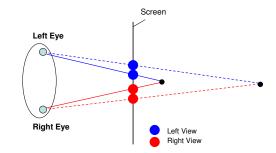


Outline	Introduction	Related Work	Proposed Approach	Results	Conclusion	Questions
	0000 000 0		0 0000 0000000			

Stereoscopic 3D

From Depth to Stereo 3D

- Depth \leftrightarrow disparity.
- ▶ 2D-To-3D:
 - 1. Extract depth.
 - 2. Calculate disparity.
 - Render Left/Right image.
- Occlusion handling.



Outline	Introduction	Related Work	Proposed Approach	Results	Conclusion	Questions
	0000 000 0		0 0000 0000000			

Stereoscopic 3D

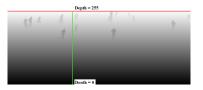
From Depth to Stereo 3D

- Depth \leftrightarrow disparity.
- ▶ 2D-To-3D:
 - 1. Extract depth.
 - 2. Calculate disparity.
 - Render Left/Right image.
- Occlusion handling.

Outline	Introduction ○○○○ ●	Related Work	Proposed Approach o oooo oooooooo	Results ○ ○	Conclusion	Questions

2D-To-3D Conversion of Live Soccer Video

Long Shot Images in Live Soccer.


Outline	Introduction 0000 000 0	Related Work ●○	Proposed Approach o ocoo ocoocoo	Results ○ ○	Conclusion	Questions
Jung et al.						

Jung et al. [1]

Audience

Luc Vosters

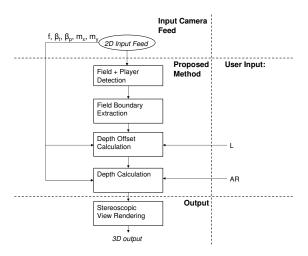
Outline	Introduction 0000 000 0	Related Work ○●	Proposed Approach o oooo oooooooo	Results ○ ○	Conclusion	Questions
Jung et al.						

Jung et al. cont.

Advantages

- No occlusions.
- Few computations.

Disadvantages


- Pan, tilt, zoom not modeled.
- Audience depth constant.
- No depth offset.

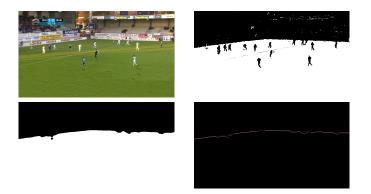
0000 00			
0000 00	0 0000 00000000		

Proposed Approach

- Field and audience depth model.
- Exploit Camera + Scene information.
 - Focal length
 - Tilt/Pan angle
 - Image sensor size
 - Average player length

Outline	Introduction 0000 000 0	Related Work	Proposed Approach ● ○○○○ ○○○○○○○○	Results ○ ○	Conclusion	Questions
Image Mod	lel					

Outline	Introduction 0000 000 0	Related Work	Proposed Approach o ●ooo oooooooo	Results ○ ○	Conclusion	Questions
Field and	Player Detection					
Field	Detecto	or (Seo et	al. [2])			


- Train Hue, Sat, Val histograms.
- Extract PeakValueIndex, SaturationMean.

$$Field, \quad \text{if} \begin{cases} G > 0.95 \cdot R \\ R > 0.95 \cdot B \\ V < 1.25 \cdot PeakValueIndex \\ S > 0.8 \cdot SaturationMean \end{cases}$$
(1)

Outline	Introduction 0000 000	Related Work	Proposed Approach ○ ○●○○ ○●○○	Results ○ ○	Conclusion	Questions

Field and Player Detection

Field Boundary Extraction

Piecewise linear curve fit. (Cantoni [3]).

Specify start, end and line intersection.

Outline	Introduction	Related Work	Proposed Approach	Results	Conclusion	Questions
	0000 000 0		0 0000 0000000			

Field and Player Detection

Player Detection

Input image

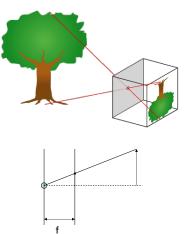
Connected Components

Outline	Introduction 0000 000 0	Related Work	Proposed Approach ○ ○○○● ○○○○○○○○	Results ○ ○	Conclusion	Questions
Field and I	Player Detection					
Play	er Detec	tion Cont				

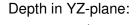

Field Boundary Extraction aides Player Segmentation.

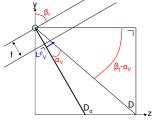
Input

Proposed

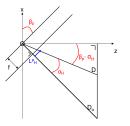


Outline	Introduction 0000 000	Related Work	Proposed Approach ○ ○○○○ ●○○○○○○○○	Results o o	Conclusion	Questions


Camera Depth Model

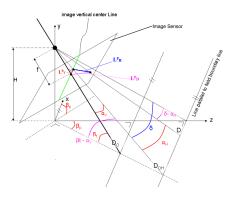

Camera depth model

- Long shot camera
 - Small lens aperture.
 - High depth of field.
- Pin-hole camera.


Outline	Introduction 0000 000 0	Related Work	Proposed Approach ○ ○○○○ ○●○○○○○○	Results ○ ○	Conclusion	Questions
Camera De	epth Model					
Field	l Depth					

$$D = D_o \frac{\sin |\beta_t|}{\sin(|\beta_t| - \alpha_V)}$$

Depth in XZ-plane:

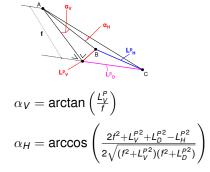

$$D = D_o rac{\cos|eta_{
ho}|}{\cos(|eta_{
ho}| - lpha_H)}$$

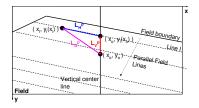
1

Outline	Introduction 0000 000 0	Related Work	Proposed Approach ○ ○○○○ ○○●○○○○○	Results ○ ○	Conclusion	Questions
Camora Do	onth Model					

Field Depth cont.

Depth in XYZ-Plane.

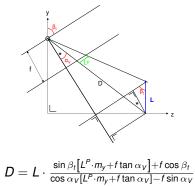

$$D_{field}(\alpha_V, \alpha_H) =$$


$$D_{o} \frac{\sin |\beta_{t}|}{\sin(|\beta_{t}| - \alpha_{V})} \frac{\cos |\beta_{p}|}{\cos(|\beta_{p}| - \alpha_{H})}$$

Outline	Introduction	Related Work	Proposed Approach	Results	Conclusion	Questions
	0000 000 0		0 0000 0000000			

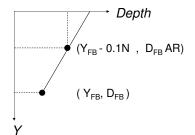
Camera Depth Model

Field Depth Calculation

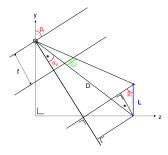


Depth offset unknown.

Outline	Introduction 0000 000 0	Related Work	Proposed Approach ○ ○○○○ ○○○○●○○○	Results ○ ○	Conclusion	Questions
Camera De	epth Model					
Dept	h Offset					


- Player length $\approx 1.80 m$
- ▶ $L^P \leftrightarrow \text{Tilt}, f, \text{Depth}, L.$
- $D_{o,i}$ depth offset player *i*.
- $D_o = median\{D_{o,i}|\forall i\}$

Outline	Introduction 0000 000 0	Related Work	Proposed Approach ○ ○○○○ ○○○○●○○	Results ○ ○	Conclusion	Questions
Camera De	epth Model					
	_					


Audience Depth

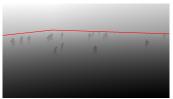
$$D_{aud}(y) = rac{D_{FB} \cdot AR}{0.1N}(y - y_{FB}) + D_{FB} \; ,$$

Outline	Introduction 0000 000	Related Work	Proposed Approach ○ ○○○○ ○○○○○●○	Results ○ ○	Conclusion	Questions
Camera De	epth Model					

Player approximately constant.

•
$$D_{player} = D_{field}(x_i, y_i).$$

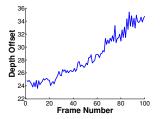
Outline	Introduction 0000 000 0	Related Work	Proposed Approach ○ ○○○○ ○○○○○○●	Results ○ ○	Conclusion	Questions
Camera De	epth Model					


Complete Camera Depth Model

Depth Map Quantization.

$$DEPTH(x, y) = 255 \cdot \left(\frac{D(x, y) - D_{min}}{D_{max} - D_{min}}\right)$$

Clip outside [D_{min}, D_{max}].


Outline	Introduction 0000 000 0	Related Work	Proposed Approach o oooo oooooooo	Results ● ○	Conclusion	Questions
Depth Offs	set Calculation					

Depth Offset Calculation

Zooming

Keep focal length constant in depth offset calculation.

Outline	Introduction	Related Work	Proposed Approach	Results	Conclusion	Questions
	0000 000 0		0 0000 0000000	•		

Qualitative Comparison

Qualitative Comparison

Input	Jung et al. [1]	Proposed
the second secon		9 - 99 9 - 1 1 - 9 ¹ 9
	a the second	5 1 <u>1</u> 1
	1 ¹ 't	1 ⁴ ⁵ 7

Axon Digital Design, TU/e

Luc Vosters

Outline Introduction	n Related Work	Proposed Approach	Results	Conclusion	Questions
0000 000 0		0 0000 0000000			

Conclusion

 Jung et al. [1] proposed specialized 2D-3D conversion of long shot images.

We propose more advanced model:

- 1. zooming, panning and tilting modeled.
- 2. Calculates depth offset from player length.
- 3. Improved player segmentation by field boundary extraction.
- Few computations.
- Hardware attractive.
- Future work: perceptual tests.

Outline	Introduction 0000 000 0	Related Work	Proposed Approach o oooo oooooooo	Results ○ ○	Conclusion	Questions

Thanks for your attention.

Outline Introduction	Related Work	Proposed Approach	Results	Conclusion	Questions
0000 000 0		0 0000 0000000			

- Y. J. Jung, C. Kim, D. Park, Y. Kim, and J. Ko, "Method, medium, and system for generating depth map of a video image," U.S. Patent US20 090 196 492, August 6, 2009.
- K. Seo, J. Ko, I. Ahn, and C. Kim, "An intelligent display scheme of soccer video on mobile devices," *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 17, no. 10, pp. 1395–1401, October 2007.
- A. Cantoni, "Optimal curve fitting with piecewise linear functions," *IEEE Transactions on Computers*, vol. C-20, no. 1, pp. 59–67, Januari 1971.