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Introduction

Two-dimensional turbulence?

The term “two-dimensional (2D) turbulence” seems to be in conflict with our daily
experience with turbulent flow phenomena, which obviously evolve in all three spa-
tial directions. Like for example the smoke plumes emerging from a chimney on
a windy day, the distribution of sugar in a cup of tea or the flow in the wake of
a truck on the highway. The evening news presents, on the other hand, satellite
images that show cloud formations and associated flow patterns that are extended
on a horizontal length scale of thousands of kilometers. The characteristic vertical
length scales of these flows are, however, orders of magnitude smaller typically
a few kilometers. This implies a strong geometrical confinement, as a matter of
fact, a single page of this thesis is already too thick to illustrate the aspect-ratio
of the atmospheric fluid layer. As a consequence vertical velocities are strongly
suppressed. Also the flows in the oceans exhibit strong geometrical confinement.
Additional mechanisms can further suppress vertical motion in large-scale geo-
physical flows. Both the atmosphere and ocean have on average a stable density
stratification where dense fluid is situated near the bottom with lighter fluid layers
on top of it. This means that if a heavy fluid parcel moves up into a layer with
smaller density it will experience a net downward force whereas a light fluid parcel
that moves downwards will be pushed upwards by the denser fluid. A third mech-
anism is related to the rotation of the earth. According to the Taylor-Proudman
theorem the velocity in a rotating system becomes independent of the axial coor-
dinate (parallel to the rotation vector). Due to the absence of vertical velocities at
the surface this results in a horizontal orientation of the velocity without variation
in the vertical direction i.e. a column-like organization of the flow.
Two-dimensional turbulence may be seen as a conceptual model to describe large-
scale geophysical flows. The net effect of essentially 3D flow phenomena is then
represented by a simplified approach. For example, the complicated interaction
with the surface of the earth or seabed is modelled by a simple friction term. Also
large-scale baroclinic instabilities or small-scale convective systems that could drive
large scale atmospheric flow may be incorporated by simple forcing protocols.
Obviously this approach has a lot of limitations, especially for forecasting purposes.
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On the other hand, the 2D approach with parametrization is useful to understand
certain flow phenomena in either a qualitative or a statistical sense. See for example
the analysis of Lindborg [64] who verified that it is possible to explain statistical
correlation between certain length scales in the atmosphere by a two-dimensional
turbulence approach. Another geophysical example is the study of Humi [42] on
the Antarctic boundary layer. It was observed that 2D flow develops in different in-
dependent layers due to an extremely stable density stratification. The zonal band
structure observed in the atmosphere of the planet Jupiter can also be explained
by a 2D approach with a linear variation in the background rotation known as the
β-plane approximation.
Also in the oceans there are convincing manifestations of two-dimensional flow. It
is well-known that many vortex-like structures emerge due to interaction of the
currents with the continental shelves. See for example the work of Goni et al. [34]
on the formation of Algulhas rings near Cape of Good Hope. Another manifesta-
tion of bounded two-dimensional turbulence in geophysical flows is the formation
of vortex arrays in the Gulf of Aden or the Adriatic Sea [29]. Similar vortex arrays
are found in laboratory experiments in stably stratified fluids confined in rectan-
gular tanks and in 2D decaying turbulence simulations in a rectangular domain
with no-slip walls, see Maassen et al. [67]. In the context of geophysical flows the
no-slip boundary condition can be seen as a simplified boundary condition for a
large-scale (2D) model.

The phenomenology between 2D and 3D turbulence is strikingly different. In 3D
flows eddies tend to break up into smaller eddies. At the smallest scales of mo-
tion the kinetic energy of the eddies will be dissipated by the action of viscous
forces. This process, first recognized by Richardson in 1922, has become known
as the “direct energy cascade” of 3D turbulence. Important theoretical effort on
the statistical characterization of the direct energy cascade is assembled in a series
of classical papers written by Kolmogorov in 1941. A complete deductive theory
of turbulent flow based on first principles is still missing. However, by adopting a
number of phenomenological assumptions about the isotropy, spatial homogeneity,
similarity of spatial scaling and the energy dissipation rate of the flow, Kolmogorov
succeeded to postulate a heuristic theory for 3D turbulence, that successfully pre-
dicts the values of several statistical objects in 3D turbulence.
Later Kraichnan, Batchelor and Leith (KBL) applied a similar phenomenological
approach to 2D turbulence. It was predicted that if kinetic energy is injected on the
small scales in two-dimensional flows it is transported towards the largest scales of
motion. This is called the “inverse energy cascade” to mark the difference with the
direct energy cascade of 3D turbulence. Furthermore, KBL-theory predicts that
a another cascade can co-exist with the inverse energy cascade. This cascade is
known as the “direct enstrophy cascade“ of 2D turbulence. It transfers the enstro-
phy, which is a measure of the total amount of vorticity of the flow, from the large
scales towards the smallest scales of motion where viscous dissipation dominates.
Many numerical and experimental techniques have been employed to test the sta-
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tistical scaling of the inverse energy cascade and direct enstrophy cascade proposed
by KBL. The first direct numerical simulation (DNS) of forced 2D turbulence was
performed by Lilly [63] in order to verify the simultaneous existence of both cas-
cades. His simulations are performed on a periodic square domain, which means
that all the values of the flow variables at the boundary of the domain should
be equal to the values at the opposite boundary. This specific setup is chosen
such that Fourier spectral methods could be applied, which allows a very accu-
rate representation of the flow variables. Furthermore, it was believed that flow
in a periodic box is a reliable representation of flow on an infinitely extended do-
main such that finite-size effects and additional complications due to the presence
of solid boundaries are avoided. His results confirmed the KBL-picture but the
numerical resolution in those days was relatively poor. Only very recently Bof-
fetta [11] conducted a high-resolution computation that convincingly showed that
both cascades can exist simultaneously. It is interesting to note that both Lilly [63]
and Boffetta [11] used the Fourier spectral technique. There has been an enormous
increase in available computer resources in the time span between both studies.
The number of Fourier modes employed by Lilly was 642 modes whereas Boffetta
used a luxurious number of 163842 Fourier modes.

The KBL-scaling arguments are often compared with data obtained from vari-
ous experiments, in soap films [12, 49, 90], thin fluid layers [84, 102, 103], homoge-
neously stratified fluids or two-layer fluids [65–67], and in rotating containers (see
the review by Hopfinger and van Heijst [41]). This comparison is, however, not
straightforward since in all these experiments the flow actually behaves quasi-2D,
although most reports hardly address this issue. Furthermore, all the experiments
involve solid (lateral) boundaries. In particular, the presence of lateral domain
boundaries can dramatically change the evolution of both forced and decaying 2D
flows [16, 20, 40, 67, 72].
It is interesting to mention that the ITER fusion chamber, which is being developed
in Cadarache, France, can also be seen as a quasi-2D turbulence “experiment”.
Inside the toroidal chamber of a fusion reactor the motion of the plasma perpen-
dicular to the magnetic field lines becomes quasi-2D as a result of the Lorentz
force. Akin the role of the Coriolis force in the suppression of the variation of the
velocity in the axial direction the Lorentz force tends to remove the variation of the
velocity along the magnetic field lines, which results in planer-like motion of the
plasma. An important drawback to make a fusion device operational is the heat
loss at the side-walls of the chamber, which results in a strong erosion of the wall
plates. This thesis does not concern magnetohydrodynamics (MHD), nevertheless
a thorough understanding of the effect of walls on fluid turbulence might be useful
to acquire understanding of wall-bounded MHD problems, as well.
In the geophysical context a study on the effect of lateral side-walls on 2D tur-
bulence is important to gain understanding of large-scale turbulent flows in the
oceans, which are bounded by the continental shelves.
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Outline

In this thesis the effects of no-slip boundaries on 2D turbulence are studied in
different geometries. In Chapter 1 the 2D turbulence concept will be specified in
further detail. The role of no-slip boundaries on the production of vorticity will
be examined by considering previously reported results on individual dipole-wall
collision problems. In Chapter 2 several numerical schemes are formulated to solve
the 2D Navier-Stokes equations with no-slip boundary conditions. We mainly focus
on the Fourier spectral schemes combined with an immersed boundary technique,
since this approach is used throughout the thesis. Chapter 3 and 4 concern the val-
idation of the numerical method by means of challenging benchmark problems. In
Chapter 5 the end-states of decaying 2D turbulence in a circular geometry are con-
sidered. Chapter 6 contains a study on the influence of the shape of the geometry
on the spontaneous production of angular momentum. In Chapter 7 it is analyzed
whether the spin-up phenomenon is confined to a particular range of Reynolds
number or is also of crucial importance for the development of significantly higher
Reynolds number flow. The small-scale vorticity statistics in the bulk of bounded
2D flow is studied in Chapter 8.



Chapter 1

The no-slip boundary: a
source of vorticity

1.1 Mathematical formulation

1.1.1 Equations of motion for 2D flows

Consider an incompressible fluid of density ρ, in a domain Ω ∈ R
2, which evolves

according to the Navier-Stokes equations

∂t u + (u · ∇)u +
1

ρ
∇p− ν∆u =

1

ρ
f in Ω × [0, T ] (1.1)

and the continuity condition

∇ · u = 0 in Ω × [0, T ], (1.2)

where u = (u(x, t), v(x, t)) is the Eulerian velocity, p = p(x, t) the scalar kinetic
pressure, ν the kinematic viscosity and f = f(x, t) denotes the amount of external
force per unit area. The complexity of the flow is controlled by the Reynolds
number Re = UW/ν, where U represents a typical velocity and W a typical length
scale. The Reynolds number is a measure of the relative strength of the convective
versus the viscous terms. The flow domain in this thesis is bounded by a steady
impermeable wall, which implies that the velocity component normal to the wall
equals zero. Furthermore, it is assumed that at the steady side walls the tangential
velocity component vanish due to frictional effects between the viscous fluid and
the wall. The combination of these boundary conditions on each component of the
velocity defines the no-slip boundary condition, which read for a steady geometry,

u(x, t) = 0 x ∈ ∂Ω, t ∈ [0, T ], (1.3)

which is essentially a Dirichlet boundary condition for u. Note that Eq. (1.1)
contains second-order derivatives, so two boundary conditions are required for the

9



10 The no-slip boundary: a source of vorticity

existence of a unique solution.
On a square bounded geometry

D =
{
x ∈ R

2| −W ≤ x ≤W,−W ≤ y ≤W
}
,

it is also possible to define periodic boundary conditions, which means that the
value of the solution at the boundary x = −W equals the value at the boundary
x = W . The same periodicity holds for the boundaries at y = W and y = −W .
The formulation is completed by appending the initial condition

u(x, 0) = 0 x ∈ Ω. (1.4)

For convenience the Navier-Stokes equations in velocity-pressure or primitive vari-
ables (1.1) can be rewritten in velocity-vorticity formulation by taking the curl of
Eq. (1.1) and applying some vector identities to arrive at

∂t ω + (u · ∇)ω − ν∆ω = q in Ω × [0, T ], (1.5)

where

ω = (∇× u) · ez = ∂xv − ∂yu (1.6)

is the scalar vorticity and

q =
1

ρ
(∇× f) · ez ,

is the z-component of the curl of the external forcing. Note that the velocity-
vorticity formulation is scalar-valued in two dimensions. The boundary conditions
on ∂Ω for the velocity-vorticity formulation are defined in terms of the velocity
since no physical boundary condition is a priori available in terms of the vortic-
ity. Note that it is of course possible to obtain the value of the vorticity at the
boundary for a given velocity field by considering the vorticity definition (1.6) at
the boundary.
In some cases it is also convenient, by virtue of the continuity condition (1.2), to
introduce a stream function ψ according to

u = ∂yψ, v = −∂xψ.

The vorticity and stream function are then related by a Poisson equation,

ω = −∇2ψ in Ω. (1.7)

The velocity-vorticity equation (1.5) can now be written as

∂t ω + J(ω, ψ) − ν∆ω = q in Ω × [0, T ], (1.8)
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where J(ω, ψ) denotes the Jacobian,

J(f, g) = ∂xf∂yg − ∂xg∂yf.

To solve (1.8) the boundary conditions have to be formulated in terms of the
stream function. Appropriate boundary conditions for the stream function are
also required to solve the Poisson problem (1.7), such that the vorticity and stream
function are uniquely related. An impermeable boundary can be modelled by tak-
ing a constant value for the stream function at the boundary, for convenience

ψ = 0 x ∈ ∂Ω, t ∈ [0, T ].

A no-slip boundary where also the velocity component tangential to the domain
boundary is zero yields a Neumann condition for the stream function,

∂nψ = 0 x ∈ ∂Ω, t ∈ [0, T ],

where ∂n denotes the derivative perpendicular to the boundary, ∂n = (n · ∇).
It is still an unsolved problem to determine an unique and regular solution to
Navier-Stokes initial-boundary value problem. The existence of the solutions in
both 2D and 3D has only be shown in a weak sense. This means that the Navier-
Stokes equations (1.1) and the continuity condition (1.2) only hold in terms of
the moment against an infinitely differentiable and solenoidal set of functions i.e.
the solution is not determined in a point-wise sense. For a precise definition of
the weak solutions belonging to the Navier-Stokes equations one can consult e.g.
Galdi [33]. In particular for the 2D Navier-Stokes problem it is shown that a weak
solution is uniquely defined within a certain functional class. Furthermore, it has
as much space-time regularity as allowed by the initial condition, see also Carbou
and Fabrie [14]. For 3D flow only partial space-time regularity results have been
obtained so far.

1.1.2 Integral quantities

Important aspects of two-dimensional turbulence in a confined domain with no-slip
boundaries can be recovered by studying integral quantities. The first quantity is
the total kinetic energy per unit density defined as

E =
1

2

∫

Ω

|u|2dA =
1

2
||u||22 (1.9)

where ||g||2 = (g, g)1/2 denotes the L2-norm. The evolution equation for E(t) can
straightforwardly be derived by considering the Navier-Stokes equations in either
velocity-pressure or velocity-vorticity form and reads,

dE

dt
= (f ,u) − 2νZ (1.10)
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where (f ,u) =
∫
Ω

f · u dA and Z denotes the total enstrophy of the flow,

Z =
1

2
||ω||22. (1.11)

By considering the Navier-Stokes equations in velocity-vorticity formulation it can
be derived that the enstrophy evolves according to,

dZ

dt
= ν

∮

∂Ω

ω(n · ∇)ωds− 2νP + (ω, q) = T1 + T2 + T3, (1.12)

where P denotes the total palinstrophy of the flow defined as

P =
1

2
||∇ω||22. (1.13)

The term T1 demonstrates that enstrophy can be produced at no-slip boundaries.
This is a crucial difference compared with flow in a square periodic box, where T1

is essentially zero. The other term T2 represents the dissipation of enstrophy and
is present in the case of periodic boundaries as well. The last term T3 describes the
production of enstrophy by the external forcing. For inviscid flow the energy and
enstrophy are conserved quantities. It is often conjectured that the simultaneous
conservation of energy and enstrophy for inviscid unforced 2D flows explains the
dramatic contrast between 2D and 3D flows. Note, however, that viscous flow in
the limit of ν → 0 not necessarily recovers inviscid dynamics with ν = 0.
It is seen in Eq. (1.12) that the palinstrophy can be related to the dissipation of
enstrophy. Therefore, it is necessary to derive the evolution equation for the palin-
strophy. Differentiation of the Navier-Stokes equations in the velocity-vorticity
formulation yields an equation for the rate of change of the spatial gradients of
the vorticity,

D

Dt

[
∂ω

∂xi

]
= −∂uj

∂xi

∂ω

∂xj
+ ν

∂2

∂x2
j

(
∂ω

∂xi

)
+

∂q

∂xi
(1.14)

where for convenience the index notation is applied for the vectors u = (u1, u2) and
x = (x1, x2). The evolution equation of the palinstrophy is then readily obtained,

dP

dt
= R1 +R2 +R3 +R4 (1.15)

where

R1 = −
(
∂uj

∂xi

∂ω

∂xj
,
∂ω

∂xi

)
,

R2 = ν

∮

∂Ω

∇ω · (n · ∇)∇ωds,

R3 = −ν
(

∂2ω

∂xi∂xj
,
∂2ω

∂xi∂xj

)
,

R4 =

(
∂q

∂xi
,
∂ω

∂xi

)
.
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The termR1 represents the rate of amplification of vorticity gradients. This process
is considered as the physical mechanism of the direct enstrophy cascade, which
transfers vorticity towards the smallest scales of motion. By reverting the indices
i, j it is straightforward to show that R1 can be expressed in terms of the rate of
strain tensor S = 1

2 (∇u + ∇ut) = 1
2 ( ∂ui

∂xj
+

∂uj

∂xi
), yielding,

R1 =

(
Sij ,

∂ω

∂xi

∂ω

∂xj

)
. (1.16)

This demonstrates that it is essentially alignment between the rate of strain tensor
and the vorticity gradients that can result in a non-linear production of palinstro-
phy. If the production of palinstrophy by non-linear dynamics is proportional to
the Reynolds number it can result in a non-vanishing dissipation term T2 in the
enstrophy balance (1.12). This observation is the key element of the fundamen-
tal scaling arguments of the enstrophy inertial range proposed by Batchelor [5].
The term R2 in Eq. (1.15), which is absent for periodic boundaries, describes the
production of palinstrophy at the domain boundaries. The term R3 represents
the dissipation of palinstrophy in the bulk of the flow due to viscous dissipation.
Palinstrophy production due to interaction with the external forcing is described
by the term R4.
An important quantity for fluids on a bounded domain is the angular momen-
tum with respect to the center of the Cartesian coordinate frame for convenience
denoted by r = (x, y).

L =

∫

Ω

(r × u) · ezdA =

∫

Ω

(xv − yu)dA. (1.17)

By inserting the Navier-Stokes equations in velocity-pressure form into the defini-
tion of the angular momentum it is obtained that,

dL

dt
=

1

ρ

∮

∂Ω

pr · ds + ν

∮

∂Ω

ω(r · n)ds. (1.18)

Since the angular momentum can be rewritten in terms of the vorticity,

L = −1

2

∫

Ω

r2ωdA,

it is also possible to derive the alternative expression by using the vorticity equa-
tion,

dL

dt
= −1

2
ν

∮

∂Ω

r2(n · ∇ω)ds+ ν

∮

∂Ω

ω(r · n)ds. (1.19)

It can be deduced that the first terms on the right-hand side of (1.18) and (1.19)
have to balance since the second term on the right-hand side of both expressions is
identical. A natural assumption is that the pressure at the boundary will reach a
finite value in the limit of infinite Reynolds numbers. This implies that the product
ν ∂ω

∂n should be finite as well for vanishing viscosity.
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1.2 KBL scaling

First the scaling for 3D turbulence proposed by Kolmogorov will be discussed very
briefly, followed by a more extended introduction of the scaling theory for 2D tur-
bulence which was formulated in the spirit of the pioneering work of Kolmogorov,
by Kraichnan, Batchelor and Leith (KBL) [5, 52, 58] around 1970.
In Kolmogorov theory it is conjectured that 3D flow contains a finite length scale
ld proportional to (ν3/E)1/4 where E is the kinetic energy dissipation. For large
length scales it is assumed that viscous dissipation is neglegible compared with
the non-linear transfer rates of energy towards smaller scales. It is convenient to
consider turbulence in terms of wave numbers instead of length scales. This is
achieved by performing a Fourier transform, which can be defined in a periodic
box in dimension d (with d = 2 or 3),

u(x, t) =
∑

k

ûk(t)exp(ik · x) , with k ∈ π

W
Z

d

where W denotes the half-width of a periodic box in R
d. The continuous Fourier

expansion coefficients ûk(t) are defined as,

ûk(t) =
1

(2W )d

∫
u(x, t)exp(−ik · x)dx . (1.20)

The amount of energy between wave numbers k and k+ dk equals E(k)dk, where
E(k) is the energy spectrum

E(k) =
W

π

∑

k<|k|<k+dk

|ûk|2. (1.21)

Note that the dimension of the energy spectrum is [E(k)] = m3/s2 whereas the
dimension of the energy transfer rate is [E ] = m2/s3, since it represents the transfer
of kinetic energy between the wave number bands.
Kolmogorov assumed that the energy spectrum in the inertial range is completely
determined by the transfer rate of kinetic energy and the wave number. It is
further assumed that all the kinetic energy is dissipated at high wave numbers
k > kd with kd = 2π/ld. On dimensional grounds it can then be derived that the
energy spectrum in the inertial range scales according to,

E(k) = C0E2/3k−5/3 for kf < k < kd (1.22)

where C0 represents the Kolmogorov constant.
Later Kraichnan, Batchelor and Leith [5,52,58] applied a similar phenomenological
approach to 2D turbulence. Based on the observation that the non-linear terms
conserve energy and enstrophy simultaneously, see Eqs. (1.10) and (1.12), it was
suggested to consider both the non-linear transfer rate of energy E and enstrophy
χ. On dimensional grounds the transfer rates can be related according to

χ = C1k
2E . (1.23)
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The concept of Kolmogorov is that the transfer of energy across a length scale in
the inertial range does not depend on the wave number. To fulfill that both the
enstrophy and energy transfers are wave number independent the constant C1 in
(1.23) should be zero. Kraichnan [52] conjectured that if it is assumed that the
energy and enstrophy are injected at a certain wave number kf an inverse energy
cascade develops that transfers energy towards large scales. In the inverse energy
cascade it is assumed that the transfer of enstrophy is negligible and the spec-
trum is determined by the energy transfer E and wave number k. On dimensional
grounds the spectrum becomes

E(k) = C2E2/3k−5/3 for k < kf , (1.24)

where C2 is the Kraichnan-Kolmogorov constant. Simultaneously, a direct cascade
of enstrophy develops where the energy transfer is negligible and the spectrum can
be scaled with the down-scale enstrophy transfer rate χ

E(k) = C3χ
2/3k−3 for kf < k < kd, (1.25)

where kd represents the wave number that corresponds with the smallest scales of
motion ld ∝ (ν3/χ)1/6. A schematic representation of the dual cascade picture is
given in Fig. 1.1. The energy transfers towards progressively larger scales or lower
wave numbers, whereas the enstrophy transfers down-scale or to higher wave num-
bers until viscous dissipation becomes dominant. Batchelor [5] proposed a similar
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Figure 1.1 – Schematic representation of an inverse energy cascade for k < kf and a
direct enstrophy cascade in the range kf < k < kd, k1 is the lowest wave number at time
t1 and k2 it the lowest wave number at time t2 with t2 > t1.
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scaling for the energy spectrum at high wave numbers for the case of freely evolv-
ing or decaying turbulence.

At this point we have to be more specific about the definition of the energy and
enstrophy transfer rates. For forced flow we have to consider ensemble averages
for example of the form,

〈g(u) 〉 =

∫
g(u)dµ(u) (1.26)

where µ(u) denotes the probability measure of u. Usually it is tactically assumed
that it is legitimate to adopt the dynamical system concept of ergodicity such that
ensemble averages can be replaced by time averages

lim
T→∞

1

T

∫ T

0

f(u)dt = 〈f(u) 〉 . (1.27)

To achieve a statistically steady state on a periodic domain it can be derived
from Eq. (1.10) that the energy input of the forcing has to balance the viscous
dissipation, thus 〈(f ,u)〉 = 2ν 〈Z〉. It is believed, however, that viscous forces
in the inverse energy cascade are not able to balance the energy input by the
forcing in general [9]. Therefore, the theoretical model of Kraichnan [52] can only
be applied on infinitely extended domains. It is then assumed that the part of the
spectrum between the forcing wave number and the lowest excited wave number is
statistically stationary e.g. the spectrum as shown in Fig 1.1 between k1 < k < kf

becomes steady for t > t1, whereas the range k2 < k < kf becomes steady for
t > t2 etc.
It was already conjectured by Kraichnan [52] that on a finite domain the energy
piles up in the lowest available mode. As a consequence, a completely different
equilibrium solution will emerge. To prevent this condensation state it is common
practice in the study of forced 2D turbulence in a periodic box to apply additional
friction terms on the largest scales. It is then assumed that the non-linear transfer
of energy up-scale is balanced by the dissipation of kinetic energy due to the
presence of friction.
Time-averaging of the enstrophy balance (1.12) yields that

lim
ν→0

1

A
〈(ω, q)〉 =

2ν

A
〈P 〉 = −χ, (1.28)

where A denotes the area of the flow domain. Recall that the boundary integral
terms in Eq. (1.12) are absent since the KBL theory is developed on an infinite
extended 2D plane. The interpretation of the latter limit is that the enstrophy
injected by the forcing is transferred with a rate χ towards the smallest scales of
motion where the enstrophy is dissipated by viscous forces.
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For the case of decaying turbulence Batchelor [5] considered the inviscid limit
for a fixed time tc,

lim
ν→0

1

A

〈
dZ

dt

〉
= −2ν

A
〈P 〉 = χ for 0 < tc <∞, (1.29)

where 〈.〉 denotes ensemble averages with a time dependent probability mea-
sure. Recently discussion about the existence of this limit is revived by Tran and
Dritschel [105] who suggest that in the limit of ν → 0 the enstrophy dissipation
will vanish. If their argument is valid it would imply that a direct cascade of en-
strophy in freely evolving 2D turbulence vanishes for infinite Reynolds numbers.
Note that in numerical studies always a finite value for the viscosity is employed.
Therefore, the observation of the enstrophy cascade in numerical studies on de-
caying turbulence are not in conflict with their argument. It is anticipated that
future high-resolution simulations may be necessary to examine this limit in fur-
ther detail.

The shape of the energy spectrum in the energy cascade range is confirmed by
many numerical and experimental studies on forced 2D turbulence. The conclu-
sion of various studies on the enstrophy cascade range strongly vary with the type
of large-scale friction that is applied to enforce a steady state. Furthermore, in
many studies on the direct enstrophy cascade the Laplacian is replaced by higher-
order harmonic operators or hyperviscosity to extend the range of wave numbers
of the cascade. Also the resolution is an important issue as early numerical simula-
tions indicated steeper spectra, whereas more recent studies with higher resolution
show a better agreement with the KBL picture. Nam et al. [77] have shown that
due to the presence of a drag force steeper spectra can be expected in the enstro-
phy cascade range. Recently, Boffetta [11] confirmed the dual cascade picture by
performing very high resolution computations. A steady state in the latter study is
achieved by applying linear bottom friction and the usual Laplacian is considered
such that artificial dissipation mechanisms are completely avoided. It was observed
that the spectrum in the enstrophy cascade range was steeper than k−3 as pre-
dicted by Nam et al. [77] for forced 2D flow with bottom friction. Boffetta [11]
concludes, however, that a k−3 spectrum in 2D turbulence could be achieved by
taking simultaneously the limits L/lf → ∞ and lf/ld → ∞, where L denotes the
largest scale, lf represents the forcing scale and ld the dissipation length scale.
In Chapter 8 forced turbulence in a square domain with no-slip boundaries will be
examined. Note that the difference with a periodic boundary is that vorticity can
be produced at the walls, which can result in enhanced dissipation of the energy.
It is anticipated that on a domain with no-slip boundaries it is possible to reach
a balance between the energy input of the forcing and viscous dissipation, thus
〈(f ,u)〉 = 2ν 〈Z〉. This implies that the use of additional friction terms is not
necessary to achieve a steady state. Therefore, it is challenging to measure the
small-scale vorticity statistics and test the KBL-scaling hypothesis in the bulk of
wall bounded 2D turbulence (see Chapter 8).
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1.3 Vorticity production at no-slip walls

No-slip boundaries can strongly affect 2D turbulence due to their role as sources
of vorticity, see van Heijst et al. [40] for an overview. As a result of vorticity pro-
duction the flow becomes to a certain degree inhomogeneous and anisotropic, such
that the key assumptions of the KBL scaling theory may be violated. Further-
more, it has been observed in decaying 2D turbulence that the vorticity injection
from the no-slip boundaries can result in a secondary forcing length scale that is
proportional to the boundary-layer thickness [22].
To reveal the mechanism of vorticity production at a no-slip wall Morton [76] has
studied the exact solutions of various Stokes problems. A similar approach is de-
veloped in this section. First the exact solutions of two viscous diffusion problems
are studied that may serve as analogies for more complicated flow-wall interaction
problems. Heuristic scaling arguments can be extracted from the viscous solu-
tions, which may be helpful to clarify some scaling issues on the energy, enstrophy,
palinstrophy and the corresponding derivatives in 2D turbulence confined by no-
slip sidewalls.
First we study the production of vorticity in the upper half plane above a horizon-
tal flat plate. From the x-component of the Navier-Stokes equations in velocity-
pressure form (1.1) an expression can be derived for the flux of vorticity into the
upper half-plane,

−ν ∂ω
∂y

=
1

ρ

∂p

∂x
+
dũ

dt
for y = 0, t ∈ [0,∞) (1.30)

where ũ denotes the velocity of the plate. Eq. (1.30) shows that the flux of enstro-
phy into the upper half-plane is generated by a pressure gradient along the plate
and the acceleration of the plate. Since the pressure gradient along the boundary
and the acceleration of the plate have the same effect on the vorticity production
a simple problem will be examined. Consider an oscillating plate that generates
a horizontal velocity profile u on the upper half-plane y ≥ 0. The amplitude of
the oscillating plate is denoted by V and the frequency by ωp = 2π/Tp with Tp

the period of the oscillation. Only the diffusive part of the x-component of the
Navier-Stokes equations in velocity-pressure form (1.1) will be considered. It is
assumed that there are is no pressure differences in the horizontal direction, thus
∂p
∂x = 0 . This yields a diffusion problem of the form,

∂u

∂t
= ν

∂2u

∂y2
for y ≥ 0, t ∈ [0,∞) (1.31)

with the boundary condition at y = 0

u = V cos(ωpt) for t ∈ [0,∞). (1.32)

It is further assumed that for y → ∞ the velocity tends to zero, u→ 0.
A time-periodic solution to this problem can be found by considering a solution
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of the form
u

V
= R [g(y)exp(iωpt)] , (1.33)

where R denotes the real part and g(y) a complex amplitude. By mere substitution
and implementation of the boundary condition at y = 0 one readily obtains,

u

V
= exp(−y/δp) cos(ωpt−

y

δp
) (1.34)

where δp =
√

2ν/ωp represents the Stokes boundary-layer thickness. Straightfor-
ward calculation yields the following expressions for the integral quantities and
the corresponding time derivatives,

ω|∂Ω ∝ V

δp
∝ V

T
1/2
p ν1/2

,

∂nω|∂Ω ∝ V

δ2p
∝ V

Tpν
,

Z ∝ DV 2

δp
∝ DV 2

T
1/2
p ν1/2

,

P ∝ DV 2

δ3p
∝ DV 2

T
3/2
p ν3/2

,

dE

dt
∝ DωpV

2δp ∝ DV 2ν1/2

T
1/2
p

,

Power ∝ DωpV
2δp ∝ DV 2ν1/2

T
1/2
p

,

dZ

dt
∝ DωpV

2

δp
∝ DV 2

T
3/2
p ν1/2

,

(1.35)

where the integrations are performed on a rectangular section with a horizontal
width D on the upper half-plane. Using these scaling relations it is found that the
terms T1 and T2 in the enstrophy balance (1.12) show equivalent scaling behaviour.
Note that there is a balance between the power delivered by the plate and the
dissipation of the total kinetic energy. Recall that the decay of energy is associated
with the total enstrophy of the flow, see Eq. (1.10).
The oscillating plate problem is defined on the upper half-plane. In order to verify if
a similar vorticity profile develops in a bounded geometry, with consequent scaling
behaviour of the integral quantities, the oscillating plate problem is translated to
the unit circle C. The diffusion equation on the unit circle becomes

∂uφ

∂t
= ν

[
∂2uφ

∂r2
+

1

r

∂uφ

∂r
− uφ

r2

]
for C × [0,∞), (1.36)
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with uφ the angular velocity. This equation is accompanied with the boundary
condition for r = 1,

uφ = Vφ cos(ωpt) for t ∈ [0,∞), (1.37)

where Vφ represents the amplitude of the angular velocity at the boundary. A
similar solution strategy as for the oscillating plate yields,

uφ

Vφ
= R

[
J1(δ

−1
p (1 + i)r))

J1(δ
−1
p (1 + i)))

exp

(
i
t

Tp

)]
(1.38)

where J1 denotes the first order Bessel function of the first kind. The solution is
displayed in Fig. 1.2. It shows that a very steep velocity profile appears that falls
of exponentially towards the center of the circle. This behaviour is very similar
to the solution of the flat oscillating plate. The thickness of the boundary layer
is also proportional to δp. The difference is that for r → 0 the velocity essentially
vanishes, whereas the instantaneous velocity profile of the oscillating plate solution
has an infinite number of oscillations around the line u = 0 when moving into the
upper half-plane. It is possible to derive the same scaling relations as assembled
in Eq. (1.35), which signifies that the boundedness of the flow does not affect the
validity of the proposed scaling argument.
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Figure 1.2 – Illustration of the angular velocity uφ versus the radial coordinate r in an
oscillating circle. The oscillation period Tp = 1, the amplitude Vφ = 1, the kinematic
viscosity ν = 0.1 and the radius of the circle r = 1. Different times are shown t = 0
(solid), t = 0.2 (dashed), t = 0.5 (dashed-dot) and t = 0.7 (dot).
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1.4 Vortex-wall interaction

A very characteristic process in both decaying and forced 2D turbulence is the
spontaneous development of coherent vortices. In case of a bounded domain with
lateral no-slip walls these vortices can collide with the solid boundaries. During
such violent events high-amplitude vorticity filaments are generated and subse-
quently injected into the bulk of the flow. Furthermore, the forces that are exerted
on the domain boundaries during individual vortex-wall collisions can result in a
net torque on the sidewalls of the container. This can result in a growth of the
angular momentum of the flow.
Considering the important role of vortices in bounded turbulence it is helpful to
address the interaction of vortices with solid boundaries in some detail. Further-
more, it is anticipated that scaling relations of the integral quantities that are
obtained for vortex-wall problems can be extended towards fully developed 2D
turbulence [23].

Vortex-induced flow near a no-slip boundary

Several studies have been performed on the boundary layer at a no-slip wall af-
fected by single vortices. Peridier et al. [85, 86] studied the the boundary-layer
processes for a vortex above a no-slip wall in a stagnant fluid. The vortex in their
investigation moves along the boundary due to self-induced velocity. This setup
was modeled by considering point vortices. Recently, Obabko and Cassel [78] con-
sidered a thick-core vortex, which is essentially one half of a Lamb dipole. It was
assumed that the self-induced velocity balances the free stream velocity such that
the vortex remains at a fixed location with respect to the wall. The presence of
the vortex induces an adverse pressure gradient along the boundary. Recall that
the pressure gradient along the boundary can be related to a flux of vorticity into
the upper plane, see Eq. (1.30). The flux of vorticity into the upper plane results
in the formation of a secondary recirculation zone. This process is followed by a
detachment of the boundary layer. Fig. 1.3 displays the development of shear layer
instabilities and the subsequent vorticity injection into the flow at Re= 104, based
on the self-induced velocity (in balance with the mean stream velocity) and the
vortex radius . First the vorticity layers role up and form an array of small-scale
vortices in the zone between the primary vortex and the wall. At subsequent times
the vortices grow in size and detach from the wall. By this process high-amplitude
vorticity is transported into the bulk of the flow.
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Figure 1.3 – The development of shear layer instabilities in the case of an isolated
vortex near a no-slip wall. Instantaneous streamlines and vorticity contours for Re = 104

(dashed line represents ω = 0) t = 2.5, t = 3.5 and t = 4.5. Figure is adopted from
Obabko and Cassel [78]
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1.4.1 Dipole-wall collision

In decaying 2D turbulence a vortex is in general not fixed at a certain position in
the domain. Due to the induced velocity from the other vortices a vortex has a
net velocity and can consequently collide with the domain boundaries. The first
numerical and experimental test of a dipolar vortex colliding with a no-slip wall
has been performed by Orlandi [80]. A decade later Clercx and van Heijst [23] per-
formed a dipole-wall collision study at extremely high Reynolds numbers in order
to quantify the Reynolds number dependence of the enstrophy and palinstrophy
production at the instant of collision. Also recently Kramer et al. [54] report about
a detailed analysis of the dipole-wall collision problem. In the latter study many
of the small-scale vorticity features observed by Obabko and Cassel [78] have been
observed as well. Clercx and Bruneau [18] studied the numerical convergence is-
sues of dipole-wall collision computations and provided detailed information for
benchmark purposes.
Fig. 1.4 gives an illustration of the normal dipole-wall collision obtained by a
Chebyshev pseudospectral computation [17, 53]. The Reynolds number is Re =
UW/ν = 1000 is based on the half-width W of the container, the rms velocity
U and the kinematic viscosity ν. More details about the computational method
and the initial flow field will be considered in Chapters 2, 3 and 4. As the dipole
impinges the wall at t ≈ 0.3 relatively thin boundary layers are formed containing
oppositely-signed vorticity compared to the approaching (primary) monopoles. In
addition high-amplitude vorticity filaments are stripped from the boundary layers
yielding two new (secondary) vortex cores, as can be seen in the vorticity contour
plot at t = 0.4. The trajectories of the new vortices are strongly curved, resulting
in a second collision at t ≈ 0.6. For t & 0.8 there is no appreciable production of
vorticity at the no-slip wall anymore while the vorticity already present is slowly
dissipated. In Fig. 1.5 the evolution of the total kinetic energy and enstrophy are
presented for different values of the initial Reynolds number.
Clercx and van Heijst [23] recognized two different scaling regimes of the peak

enstrophy and palinstrophy during the first collision of the dipole with the no-slip
boundaries,

Z ∝ Re0.8, P ∝ Re2.25 for 5 × 102 . Re . 2 × 104, (1.39)

and for higher Reynolds numbers it was found that

Z ∝ Re0.5, P ∝ Re1.5 for Re & 2 × 104. (1.40)

For convenience the scaling relation of the enstrophy and palinstrophy at the first
collision are expressed as a function of the Reynolds number as defined above,
although it is actually the dependence on the kinematic viscosity ν that is mea-
sured. The results (1.39) and (1.40) imply that the decay of energy is proportional
to Re−0.2 for the lower Reynolds numbers and becomes proportional to Re−0.5 in
the large Reynolds number limit. This is markedly different compared with the
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Figure 1.4 – Contour plots of the vorticity field of a normal dipole-wall collision with
Re = 1000. In this simulation 1024 Chebyshev modes are used perpendicular to the wall
and 2048 Fourier modes for the periodic channel direction. The time step is given by
δt = 10−5. Contour levels are drawn for -270.., -50, -30, -10, 10, 30, 50, ..270.
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periodic case where the energy decay is proportional to Re−1. Note that on a pe-
riodic domain the enstrophy is bounded by the initial condition, see (1.12) and
thus results in an energy decay rate proportional to Re−1, as can be deduced from
(1.10).
Using steady boundary-layer theory Clercx and van Heijst [23] proposed the fol-
lowing scaling:

Z ∝ Γ2
b

Dδb
,

P ∝ Γ2
b

Dδ3b
,

ω|∂Ω ∝ Γb

Dδb
,

∂nω|∂Ω ∝ Γb

Dδ2b
,

(1.41)

where δb denotes the boundary-layer thickness and Γb represents the circulation
contained by the boundary layer. Usually it is assumed that inside the bound-
ary layer the convective terms balance the viscous terms in the Navier-Stokes
equations, which yields a standard estimate for the boundary-layer thickness pro-
portional to Re−1/2. If it is assumed that the circulation inside the boundary layer
does not depend on the Reynolds number, the scaling (1.41) is consistent with the
assumption of a finite pressure distribution along the boundary. Note that at the
boundary it holds that ∂p

∂x = −ν ∂ω
∂y , where x is the wall-tangential direction and y

represents the wall-normal direction. This implies that the pressure at the domain
boundary is also proportional to Γb.
If it is assumed that the circulation in the boundary layer is virtually indepen-

dent of the Reynolds number and that the proposed scaling of the boundary-layer
thickness holds, it correctly explains the observed high Reynolds number scaling
behaviour (1.40). It was verified by Clercx and van Heijst that the circulation of
the boundary layer is virtually independent of the Reynolds number for Re & 104.
Furthermore, for the lower Reynolds numbers some dependence of the circulation
on the Reynolds number was found, which could explain some increase of the the-
oretical scaling exponents. Detailed measurements of the circulation of both the
primary and secondary boundary layer at the instant of collision are provided by
Kramer et al. [54]. The corresponding values of the primary boundary layer cir-
culation are Γb = 1.67 for Re = 625, Γb = 2.00 for Re = 1250 and Γb = 2.92 for
Re = 20000. Indeed there is some dependence of the circulation on the Reynolds
number that could justify a small increase of the scaling exponents of the enstro-
phy and palinstrophy of approximately 0.2. This might explain the increase of the
exponent that corresponds with the total enstrophy from the theoretical value of
0.5 to 0.7. However, it strongly underestimates the observed scaling exponent for
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Figure 1.5 – Total kinetic energy E(t), enstrophy Z(t) and palinstrophy P (t) for a nor-
mal dipole-wall collision, Reynolds number Re = 500, 625, 1000, 1250, 2500 and 5000.
These high-resolution computational data are provided by W. Kramer (private communi-
cation).

the palinstrophy with a theoretical value of 1.5 to 1.7, whereas the measured ex-
ponent is 2.25.

Besides the normal dipole wall collision Clercx and van Heijst [23] considered the
case of oblique dipole-wall collision. In this case the dipole traverses the square
bounded domain under a certain angle with respect to the sidewalls. The same
scaling results have been obtained as for the normal-dipole wall collision (1.40,
1.39). A very interesting aspect for the oblique case is the production of angular
momentum. As can be deduced from Eq. (1.19) a net torque can develop dur-
ing an oblique dipole-wall collision with the no-slip boundaries. A very detailed
report about the normal and oblique dipole-wall collision is provided by Clercx
and Bruneau [18]. From their results it can be deduced that the vorticity gradi-
ent perpendicular to the wall increases by a factor 10 if the Reynolds number is
increased from 625 to 2500, which increases significantly faster than the expected
linear Reynolds number dependence derived from steady boundary-layer theory,
see Eq. (1.41). Consequently the integrand of the first term on the right-hand side
of the angular momentum balance expressed as in Eq. (1.19) increases faster than
the Reynolds number. It was observed, however, that the angular momentum pro-
duction during the first collision is virtually insensitive for the Reynolds number,
provided that Re & 500. Apparently the integral over the domain boundary vir-



1.5 Alternative scaling relations for boundary-layer vorticity 27

tually cancels out the extremely high positive and negative values of the vorticity
gradient at the domain boundaries. This results in a finite value for the contribu-
tion of the vorticity gradients or pressure contribution in the angular momentum
balance expressed as (1.19) or in the form (1.18), respectively. This is an important
observation for angular momentum generation in fully developed turbulence in a
geometry with no-slip boundaries, which will be considered in Chapters 6 and 7.

1.5 Alternative scaling relations for boundary-layer

vorticity

In this Section we proceed with a study of the enstrophy production during a
dipole-wall collision. Recall that in section 1.4.1 some details of the study of Clercx
and van Heijst [23] on this particular problem have been addressed. They proposed
a steady boundary-layer model to obtain scaling relations for the enstrophy and
palinstrophy with respect to the initial Reynolds number. This model showed excel-
lent agreement for extremely high Reynolds numbers typically larger than 20000.
For moderate Reynolds numbers the steady boundary-layer model is, however,
inconsistent with the numerical data. Instead of applying steady boundary-layer
theory an alternative scaling method is proposed in this section. The time depen-
dence of the vortex-wall problem is explicitly taken into account.

1.5.1 Alternative scaling model

Two typical time-scales can be associated with the dipole-wall collision problem.
The first time scale Ta can be related to the vortex-wall approach. It is a measure
of the time-span between the instant a boundary layer starts to form and the
instant of collision. For sufficiently high Reynolds number it can be assumed that
the amount of dissipation of the total kinetic energy of the vortex in the interior
of the domain can be neglected. Therefore the time scale Ta can be estimated by
means of the translation speed V and the diameter D of the vortex core,

Ta ∝ D

V
. (1.42)

The second time scale Tp is a measure for the duration of the collision or the
contact time with the viscous boundary layer. Note that as the dipolar vortex
approaches the wall a boundary layer is formed due to the induction of velocity in
the near-wall region. As the primary vortex cores move back into the interior of
the flow domain the magnitude of the velocity in the boundary layer will decrease
again. A typical shape of the vortex trajectory during the collision with the wall is
given in Fig. 1.6. It does not require much imagination to realize that the vortex
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rebound can be compared with half a period of the oscillating plate problem con-
sidered in section 1.3: now it is the fluid that exhibits oscillatory motion, whereas
the boundary is fixed. Note that the vorticity is produced due to the presence of
a pressure gradient along the wall, which is equivalent to an acceleration of the
wall, as can be seen in the vorticity flux equation (1.30).
If we adopt the oscillating plate as an analogous boundary-layer problem the scal-
ing relations assembled in Eq. (1.35) can be used to predict the scaling of the
enstrophy and palinstrophy in the viscous boundary layer of the dipole-wall prob-
lem.
We want to express the scaling relations in terms of the Reynolds number. There-
fore, it is essential to express Tp in terms of D,V and ν. For low Reynolds numbers
Re < Rec the duration of the collision can be related to the ratio of the boundary-
layer thickness δ ∝ √

νTa and the magnitude of the normal-wall component of
the velocity v⊥ of the vortex core at the instant of collision with the top of the
boundary layer,

Tp ∝ δ

v⊥
∝

√
νTa

v⊥
∝

√
νD

V 3/2
for Re < Rec. (1.43)

Note that v⊥ is smaller than the translation speed of the vortex V , because the
trajectory strongly bends during the vortex-wall approach, see Fig. 1.6. We con-
sider now a sufficiently high Reynolds number, typically Re & 1000. During the
first part of the collision the vortex cores follow the same trajectory as in the
stress-free case, which is virtually Reynolds number independent for Re > 1000.
Therefore, it can be assumed that the velocity component v⊥ does not depend sig-
nificantly on the Reynolds number. On the other hand, the viscous boundary layer
is thicker for lower Reynolds numbers or larger values of the kinematic viscosity.
This will result in a longer duration time of the collision, as the boundary layer
will resist the motion of the incoming vortex over a larger distance. Realize that
the pressure inside the boundary layer is uniform within first order, which can
readily be derived from the wall-normal component of the momentum equation
(1.1) at the no-slip boundary.
For sufficiently high Reynolds numbers the process described in the previous para-
graph can be neglected. It can then be assumed that the collision time becomes
independent of the kinematic viscosity and thus a function of V and D only,

Tp ∝ D

V
for Re > Rec. (1.44)

Inserting the expression (1.43) for Tp in the range Re < Rec into the scaling
expression of the oscillating plate problem Eq. (1.35) yields that,

Z ∝ Re3/4

P ∝ Re9/4. (1.45)
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For the high Reynolds number regime Re > Rec it is found, on the other hand, by
inserting (1.44) into Eq. (1.35) that,

Z ∝ Re1/2

P ∝ Re3/2. (1.46)
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Figure 1.6 – Trajectory of a dipole approaching a stress-free or a no-slip wall for
Re=1250. The path of the dipole colliding with a no-slip wall (black) compared with the
path in case a stress-free boundary condition is applied (gray). The position of the maxi-
mum core vorticity at specific times (+0), where time is denoted by the labels. Figure is
adopted from Kramer et al. [54].

1.5.2 Validation

The scaling relations (1.45) agree reasonably well with the scaling relation (1.39)
found in the numerical study on dipole-wall collisions conducted by Clercx and
van Heijst [23] with Rec = 20000. Also the data obtained in the high Reynolds
number regime Re & 20000 found by the same authors (1.39) is consistent with
the scaling relations (1.46).

Although the scaling result shows satisfactory correspondence with the numeri-
cal data for enstrophy and palinstrophy it is important to verify if it is indeed
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conjecture (1.43) that explains the anomalous scaling behaviour for Re < 20000.
It is however difficult to precisely obtain the value of time-scale Tp. It can be based
for instance, on the width of the enstrophy or the palinstrophy peaks in Fig. 1.5.
The curves obtain a more spiky appearance for high Reynolds numbers, which
could indicate a decreasing duration time of the dipole-wall collision. A more con-
venient method to verify the validity of the scaling (1.43) is to consider the time
derivative of the palinstrophy P (t). Following the same oscillating plate analogy an
expression can be derived for the time derivative of the palinstrophy proportional
to

dP

dt
=

DV 2

T
5/2
p ν3/2

. (1.47)

The conjecture for the scaling of the collision time (1.43) yields then an estimate
for the time derivative of the palinstrophy according to,

dP

dt
∝ Re11/4. (1.48)

Fig. 1.7 assembles the data of the enstrophy, palinstrophy and the derivative of the
palinstrophy for different Reynolds numbers in a double logarithmic plot. It can
be seen that all the estimates are in excellent agreement for 1000 < Re < 20000
with the alternative scaling proposal. Small deviations can be observed for the
data obtained with Re . 1250.
Note that it is assumed that the typical velocity V is constant for 500 < Re <
2 × 104. The rms velocity at the instant of the collision changes significantly be-
tween Reynolds numbers of 625 and 2500, namely from 0.79 to 0.93, respectively.
For higher Reynolds numbers the difference is, however, negligible since the rms
velocity is 0.96 for Re = 20000, thus within a few procent error margin of the
corresponding value for the Re = 2500 case. Recall that in Kramer et al. [54] it
was observed that the shape of the vortex for Re . 1250 depends on the Reynolds
number. Furthermore, the approach of the dipole has a different appearance due
to interaction with the detached vorticity layers for the lower Reynolds number
cases. These effects might explain the minor deviations observed for Re . 1250 in
Fig. 1.7.

1.5.3 Finite pressure assumption

It is also possible to obtain an estimate for the pressure at the boundary by the
vorticity flux equation (1.30) and the estimate in the oscillating plate problem for
the velocity gradients perpendicular to the wall yielding,

p|∂Ω ∝ ρDV

Tp
. (1.49)

Note that for an incompressible flow only the pressure difference is relevant. Here
we set the domain averaged pressure equal to zero. Eq. (1.49) reveals an intimate
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Figure 1.7 – Maxima of the enstrophy Z and the Palinstrophy P (open circles) and the
maximum of the time derivative of the palinstrophy (plus signs). Reference line Re0.75

for Z in left-hand panel and in the right-hand panel Re2.25 and Re2.75 for P and the time
derivative of P , respectively. The high-resolution data is provided by W. Kramer (private
communication), setup of simulations and more details are reported in Kramer et al. [54].

relationship between the collision time Tp and the pressure in the boundary layer.
Therefore, the usual assumption that the pressure becomes finite in the limit of
vanishing viscosity is consistent with the conjecture (1.44) of a finite value of the
collision time Tp. The impulse exerted by the boundary layers on the colliding
vortex can be estimated by using the estimate (1.49) for the pressure and the
collision time Tp:

I ∝ ρD2V . (1.50)

The right-hand side of (1.50) is proportional to the change of momentum as the
dipole collides with the boundary layer. Note that for increasing Reynolds number
in the range Re < Rec the collision time Tp decreases according to (1.44), and the
pressure increases with 1/Tp such that the net change of momentum is essentially
constant.

Concluding remarks

The study of Kramer et al. [54] reports on the formation of a secondary boundary
layer and consequent development of shear layer instabilities as soon as the dipole
vortex collides with the wall for Reynolds numbers larger than 5000. Therefore,
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it is quite remarkable that a simplified unsteady boundary-layer model can still
explain the anomalous scaling of the enstrophy and palinstrophy at the instant of
collision with satisfactory agreement between the scaling model and the numerical
data.



Chapter 2

Numerical methodi

2.1 Introduction

In Chapters 2, 3 and 4 we examine the convergence and accuracy of a fast Fourier
spectral method combined with an immersed boundary technique called “volume
penalization” [1] to mimic the no-slip boundary condition. Fourier spectral meth-
ods are potentially accurate for sufficiently smooth functions on double-periodic
domains. Moreover, these methods are fast, relatively easy to implement even for
performing parallel computations (see Ref. [107]). Incorporation of no-slip bound-
aries is, however, not straightforward.

In the volume-penalization approach of Arquis & Caltagirone [3] a Darcy drag
term is added to the Navier-Stokes equations such that the velocity is penalized
towards zero inside an obstacle. It is analytically shown that by increasing the
penalization strength the penalized Navier-Stokes equations converge towards the
Navier-Stokes equations with no-slip boundary conditions (see Ref. [1], [14]). Angot
and co-workers [1] also present numerical results for 2D flow around a square ob-
stacle, which confirms that the method is indeed converging. The maximum value
of the Reynolds number in their simulations, based on the main stream velocity U0,
the size of the square L, and the kinematic viscosity ν, is Re = U0L

ν = 80, which is
relatively low. Paccou et al., [83] also found clear convergence results of a volume-
penalization approach for a fully hyperbolic problem, i.e. the linear wave equation.

Kevlahan & Ghidaglia [51] tested the suitability of a Fourier spectral scheme with
volume-penalization for the problem of flow around a cylinder at a substantially
higher Reynolds number, Re = U0D

ν = 1000, based on the main stream velocity
and the diameter D of the cylinder. A drawback of the penalization technique is
the formation of steep velocity-gradients inside the porous object, that can deteri-

iThe contents of this chapter is an adapted version of Keetels et al. [48]

33
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orate the spectral convergence rate to first order. This effect is generally referred to
as the Gibbs phenomenon, visibly present by wiggles in both the Fourier-Galerkin
and collocation projection of any piecewise continuous function. Nevertheless, the
Gibbs oscillations present in the simulations of Kevlahan & Ghidaglia [51] and
Schneider [96] seem to be stable during the flow evolution. This demonstrates that
it is possible to perform stable and reasonably accurate Fourier spectral compu-
tations of incompressible viscous flow past an arbitrary shaped object. We believe
that it is interesting to extend this analysis using the very challenging dipole-wall
collision experiment at high Reynolds numbers as a test problem. An important
issue is to fully quantify the role of the Gibbs effect on the flow dynamics: is it
possible to recover higher-order accuracy of the Fourier spectral scheme? Here, we
follow some recent developments in the theory and application of Fourier spectral
methods on discontinuous phenomena, see for an overview the work of Gottlieb
& Gottlieb [35]. These advances indicate that high-order information can be re-
covered from stable Fourier spectral computations. We use a high-order recovery
technique proposed by Tadmor & Tanner [104]. They propose a mollification pro-
cedure, which involves a subtle process of cancelling nearby Gibbs oscillations to
obtain an accurate reconstruction of any piecewise continuous function in the phys-
ical domain. A strong advantage is that tuning of the parameters is completely
avoided. Furthermore, the implementation is quite straightforward and thus rela-
tively easy to optimize from a computational point of view.

Besides the Fourier spectral technique we will consider the Coherent Vortex Simu-
lation (CVS) method with volume-penalization using an adaptive wavelet method.
The main idea is to split the flow into two orthogonal parts, a coherent contri-
bution and an incoherent background flow, using a nonlinear wavelet filtering of
vorticity [31]. It is shown by Beta et al. [10] that the coherent part is mainly
responsible for the nonlinear dynamics, while the incoherent background can be
considered as decorrelated or structureless. Therefore, Farge & Schneider [30] pro-
pose to model its influence on the coherent flow statistically and only solve by
direct numerical simulation the few wavelet coefficients that describe the coher-
ent part of the flow. This makes the CVS method potentially fast in terms of
CPU time, while the memory requirements can strongly be reduced. Schneider
and Farge successfully applied the CVS method to different flow problems such
as flow around a cylinder [94], 3D turbulent mixing layers [93], [98] and present
some preliminary results (containing aliasing errors) for a dipole-wall collision [95].

In Chapters 3 and 4 we will continue with a more detailed comparison of the
CVS and Fourier spectral results with a high-resolution benchmark computa-
tion conducted with a Chebyshev-Fourier and Chebyshev spectral method for 2D
flow with no-slip boundary conditions in one or two directions, respectively (See
Refs. [53], [17] ). We start with a description of the volume-penalization technique
and formulate different approaches to treat the Darcy drag term in Fourier spectral
schemes and in CVS. Then the convergences of these schemes and the penalization
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error will be analyzed in terms of isovorticity lines, a global measure of the error
in the vorticity and the total kinetic energy and enstrophy of the flow.

2.2 Volume-penalization

2.2.1 The model equation

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

(a) obstacles (b) channel

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
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Figure 2.1 – Decomposition of a square computational domain Ω into porous objects
Ωs (dashed) and flow domain Ωf (white).

Consider an incompressible fluid of unit density, ρ = 1, in a domain Ωf ∈ R
2,

which evolves according to the Navier-Stokes equations

∂t u + (u · ∇)u + ∇p− ν∆u = 0 in Ωf × [0, T ] (2.1)

and the continuity condition

∇ · u = 0 in Ωf × [0, T ] (2.2)

where u = (u(x, t), v(x, t)) is the Eulerian velocity, p = p(x, t) the scalar kinetic
pressure and ν the kinematic viscosity. An impermeable, stationary geometry can
be defined by setting the velocity component normal to the wall to zero. The
tendency of a fluid to stick to the boundaries ∂Ωf is usually modelled by remov-
ing the tangential velocity component relative to the wall. The combination of
these boundary conditions on each component of the velocity defines the no-slip
boundary condition, which reads for a stationary geometry,

u(x, t) = 0 x ∈ ∂Ωf , t ∈ [0, T ], (2.3)

which is essentially a Dirichlet boundary condition for u. Note that Eq. (2.1) con-
tains second-order derivatives so two boundary conditions are required for the
existence of a unique solution.

In the volume-penalization approach fluid-wall interaction is no longer described
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by demanding the no-slip boundary condition (2.3). The basic idea originating
from Arquis & Caltagirone [3] is to embed the flow domain in a larger domain Ω,
such that Ωf = Ω \ Ωs, where Ωs represents the volume of porous objects. The
interaction with the porous objects is modelled by adding a Darcy drag term to
the Navier-Stokes equations locally inside Ωs, which yields the penalized Navier-
Stokes equations

∂t u + (u · ∇)u + ∇p− ν∆u +
1

ǫ
Hu = 0 in Ω × [0, T ] , (2.4)

where the mask function H is defined as

H =

{
1 if x ∈ Ωs

0 if x ∈ Ωf .

Figure 2.1 shows some examples of possible geometries. In this study we model a
channel with two no-slip boundaries and two periodic boundaries and the square
bounded geometry with four no-slip boundaries by choosing the mask function
shown in Fig. 2.1b and in Fig. 2.1c, respectively. The continuity condition ac-
companies the penalized Navier-Stokes equations in Ω. On the boundaries of the
computational domain ∂Ω one can consider different boundary conditions. Here we
have chosen for the periodic boundary condition on ∂Ω, such that Fourier spectral
methods can be applied. For convenience the penalized Navier-Stokes equations
(2.4) can be rewritten in velocity-vorticity formulation by taking the curl of Eq.
(2.4) and applying several vector identities to arrive at

∂t ω + (u · ∇)ω − ν∆ω +
1

ǫ
∇×Hu = 0 in Ω × [0, T ], (2.5)

where ω = (∇×u) ·ez is the vorticity. Note that the velocity-vorticity formulation
is scalar-valued in two dimensions. The volume of the obstacles can be interpreted
as a porous medium with permeability ǫ. As a consequence the flow inside Ωf

induces a small and time-dependent velocity inside the obstacles and thus on the
boundaries ∂Ωs. The flow inside the obstacle Ωs can be matched with the flow
inside Ωf by demanding continuity of both velocity and surface stress. Note that
Darcy drag can be considered as a volume force such that the surface stresses τ

in the penalized Navier-Stokes equations (2.4) can be expressed in the usual way,
i.e. τ = n · T where n is the outward unit normal on ∂Ωs and the stress tensor
T = ν(∇u+∇ut)−pI. This implies together with demanding continuity that the
velocity is at least C1 and the pressure C0 on ∂Ωs (see Ref. [14]).

2.2.2 Convergence and regularity

It has been shown rigorously by Angot et al. [1] that the solutions of the penal-
ized Navier-Stokes equations converge towards the Navier-Stokes solution in Ωf
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with an O(ǫ
1

4 ) error bound. Their numerical simulations, however, show a better
convergence, indicating that the analytical upper bound for the error is not sharp
enough. Later, Carbou & Fabrie [14] improved the analytical error estimate in-
side the flow domain by using a singular perturbation technique. They obtained
formal expansions for the velocity and pressure in terms of

√
ǫ inside Ω. In addi-

tion, they derived that the upper bound of the penalization error is O(ǫ
1

2 ) in the
L2 sense of the velocity and velocity gradients with respect to the Navier-Stokes
solution in Ωf with the no-slip boundary condition. Furthermore, they found C1

continuity in the larger domain Ω of the velocities determined by the penalized
Navier-Stokes equations. The C1 continuity of the

√
ǫ and higher-order expansion

terms is achieved by the introduction of an asymptotically thin boundary layer
proportional to

√
νǫ inside the obstacle.

A remarkable result is, however, that the boundary layer components are only
required to determine the order ǫ and higher-order terms in the asymptotic ex-
pansion of the velocity and pressure inside Ωf . Therefore, it might be expected that
if the spatial resolution is too low to resolve the details of the asymptotic boundary
layer, one is still able to compute the solution of the penalized Navier-Stokes equa-
tions in Ωf up to order

√
ǫ accurate. Inside the obstacles (dist (x, ∂Ωs) ≫ √

νǫ)
the leading order expansion term for the velocity is order ǫ and for the pressure
order zero. These terms can uniquely be determined, again without computing the
boundary layer solution. The zeroth-order part of the pressure follows a Laplace
equation that can be solved by applying a matching condition on ∂Ωs. The order
ǫ part of the velocity can then be determined by solving a Darcy relation involv-
ing the zeroth-order part of the pressure. An advantage of the small skin depth
is, on the other hand, that the obstacles can be relatively thin. This implies that
not many grid points are required to represent a wall on a Cartesian grid and
for adaptive methods, such as CVS, only the flow near the surface of the porous
objects needs to be calculated.

2.3 Numerical methods

In this section we present an overview of the different numerical schemes.

2.3.1 Fourier-Galerkin with an explicit treatment of Darcy
drag

For the sake of simplicity we write equation (2.5) as

∂t ω − ν∆ω = N (ω) (2.6)

where

N = − (u · ∇)ω − 1

ǫ
∇×Hu.
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For the exact treatment of the diffusion term we first consider the homogeneous
equation, i.e., N = 0. The exact solution can be expressed as,

ω(x, t) = ω(x, t0)exp(νt∆) (2.7)

where exp(νt∆) is the semi-group of the heat-kernel. By using variation of con-
stants the inhomogeneous equation, i.e., N 6= 0 can be written in the form

∂t{ω exp(−νt∆)} = N (ω)exp(−νt∆), (2.8)

see, e.g., Ref. [96] for details. The vorticity and velocity are expanded with a doubly
truncated Fourier series as a trial basis,

ωN(x, t) =

N/2−1∑

kx=−N/2

N/2−1∑

ky=−N/2

ω̂k(t)exp(ik · x) , (2.9)

where k = (kx, ky) and ω̂k(t) denotes the continuous Fourier expansion coefficients

of ω(x, t), which are defined for simplicity on x ∈ [0, 2π]2 as

ω̂k(t) =
1

4π2

∫
ω(x, t)exp(−ik · x)dx . (2.10)

Note that the trigonometric polynomials are complete for functions in L2(Ω).
Thus it is, in principle, possible to make an expansion of functions with Dirichlet
boundary conditions on ∂Ω as well. However, the convergence of the Fourier se-
ries expansion is only guaranteed in the L2-norm and not in the pointwise sense.
Note that setting a Dirichlet boundary condition actually requires convergence in
the pointwise sense. Therefore, it is not possible to directly take into account the
Dirichlet boundary condition on the domain boundaries. One thus has to apply
immersed boundary techniques like, for example, the volume-penalization method
in this study and consider periodic boundary conditions.

By virtue of the continuity condition (2.2) the velocity ûk(t) can be computed
from ω̂k(t),

ûk(t) =
i(kyex − kxey)

k2
ω̂k(t). (2.11)

where k2 = k ·k. By substitution of the expansions into Eq. (2.8) and taking inner
products with the Fourier system as test functions as well, we follow a Fourier-
Galerkin approach yielding an evolution equation for each k

dt{ω̂k exp(νk2t)} = K(ω̂k)exp(νk2t), (2.12)

where

K = [(uN · ∇)ωN ]
k

+
ikx

ǫ
[HvN ]

k
− iky

ǫ
[HuN ]

k
. (2.13)
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This K term is evaluated by collocation in the physical domain where aliasing is
avoided by applying the zero-padding technique introduced by Orszag [81], gener-
ally referred to as the 2/3-rule (see, for details, Ref. [13]). Furthermore, it is impor-
tant to realize that in the Fourier-Galerkin approach the precise form of the contin-
uous equation in this case the velocity-pressure (2.4) and velocity-vorticity (2.5)
formulations yield identical algorithms. The computation of K involves Fourier
projections of the discontinuous restricted velocities Hu and Hv, which might af-
fect the convergence of the scheme.
A third-order extrapolated backward differentiation (BDF3) formula [39] is applied
for the time discretization of Eq. (2.12)

3∑

h=0

αhω̂
n+1−h
k

exp(−νk2hδt) = −δt
3∑

h=1

βhK(ω̂n+1−h
k

)exp(−νk2hδt). (2.14)

The values of the coefficients αh and βh, which can be found in Table 2.1, are given
by the backward differentiation scheme and extrapolation, respectively. We chose
this time scheme for the good stability results obtained by Kress & Löstedt [56].
They considered backward difference time schemes with fourth-order finite differ-
ences for the spatial discretization of the incompressible Navier-Stokes equations
with no-slip boundaries in a straight channel. Note that the treatment of viscous
diffusion in Eq. (2.14) is exact. The accuracy and stability restrictions of the time
scheme solely arise from the nonlinear K term.

2.3.2 Fourier collocation with an implicit treatment of Darcy
drag

A drawback of the explicit treatment of the Darcy drag is that for stability the
time step has to be of the same order as ǫ, because the problem is stiff. Recall that
the accuracy of the penalized Navier-Stokes equations with respect to the no-slip
boundary condition converges relatively slow with

√
ǫ. Therefore, it might be nec-

essary to decouple the time step from ǫ, such that the time step is only limited
by the CFL number. Kevlahan & Ghidaglia [51] used a GMRES Krylov subspace
technique in an explicit time scheme for this purpose. To achieve a stiffly stable
third-order time scheme, without additional memory or computational require-
ments we consider an alternative method. It is based on a collocation approach
of the penalized Navier-Stokes equations in primitive variables (2.4) at the grid
points x = (2πnx/N, 2πny/N) where nx and ny range from 0, ..., N − 1. The grid
values of uN and pN are now related to the discrete Fourier coefficients defined as

p̃k =
1

N2

N−1∑

nx=0

N−1∑

ny=0

pN (x)exp(−ik · x) (2.15)



40 Numerical method

such that

pN(x) =

N/2−1∑

kx=−N/2

N/2−1∑

ky=−N/2

p̃kexp(ik · x) (2.16)

due to the orthogonality of the Fourier basis. A third-order extrapolated BDF
scheme with exact differentiation of the diffusion term can be expressed as

α0u
n+1
N + δtLN(un+1

N ) = −
3∑

h=1

(δtβhGN (un+1−h
N )+αhun+1−h

N ) ehδtν∆ (2.17)

∇̃ · uN = 0 (2.18)

where GN = (uN ·∇̃)uN +∇̃pN , LN = 1
ǫHuN and a tilde stresses that collocation

derivatives are used. The same values of the coefficients αj and βj are applied as
for the explicit time scheme, see Table 2.1. Thus the Darcy drag is now evaluated
with backward differentiation instead of extrapolation. The error ∇̃u−(∇u)N is of
the same order as the truncation error of the Fourier-Galerkin derivative of u (see
Ref. [13]). In the following we will neglect this error and suppose that interpolation
and differentiation commute, i.e., ∇̃u = (∇u)N for simplicity. To keep the velocity
field solenoidal with respect to the collocation derivatives we demand,

∇̃ · GN = 0, (2.19)

such that the Helmholtz decomposition of GN only contains a rotational part,

GN = ∇̃ × A. (2.20)

Taking the curl on both sides of equation (2.20) yields,

∇̃ ×
[(

uN · ∇̃
)

uN

]
= ∇̃ × (∇̃ × A) = ∇̃(∇̃ · A) − ∇̃2A. (2.21)

The convolution sum on the left-hand side is evaluated by using the 2/3 rule to
avoid aliasing errors. In transform space it is then straightforward to obtain the
Fourier expansion coefficients of A. In addition, it is possible to obtain GN via
the Helmholtz decomposition (2.20). This procedure finally yields the following
algorithm

GN(uN )ehδtν∆ =
∑

k∈Z2

i(kyex − kxey)

k2

[
(uN · ∇̃)ωN

]

k

e−νk2hδt+ik·x. (2.22)

The penalization parameter ǫ can be chosen independent from the time step with-
out additional FFTs (3 forward and 4 backward). Furthermore, it is not necessary
to perform a Fourier expansion of the discontinuous restricted velocities Hu and
Hv. Therefore, the only convergence limitations appear from the regularity of the
penalized Navier-Stokes equations considered in section 2.2.2.
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Table 2.1 – Coefficients for third-order extrapolated backward differentiation (BDF3)

α0 α1 α2 α3 β1 β2 β3

11/6 -3 3/2 -1/3 3 -3 1

2.3.3 Coherent vortex simulation

Coherent Vortex Simulation (CVS) introduced by Farge and co-workers [31], [30]
is a new method to compute turbulent flows. It is based on the wavelet filtered
Navier–Stokes equations, whose solutions are computed in an adaptive wavelet
basis. The wavelets are dynamically selected to track the flow evolution with a
reduced number of modes (cf. [93], [30], [94] [98]). The success of this methodol-
ogy hinges on the ability of the wavelets to achieve a significant reduction in the
number of modes needed to describe the flow evolution. In the following we briefly
summarize the adaptive wavelet method to solve the two–dimensional Navier–
Stokes equations in velocity-vorticity formulation (2.5).

In the CVS computations we employ a semi-implicit time scheme of second or-
der [32], i.e., an Euler–backwards scheme for the diffusion term and an Adams–
Bashforth scheme for the advection and penalization term. The explicit treatment
of the advection and penalization terms implies a limitation of the time step size
to guarantee stability, i.e. the time step has to satisfy the CFL condition and also
has to be smaller than the penalization parameter. Discretizing (2.6) therewith we
obtain

(γ − ν∆)ωn+1 =
4

3
γ ωn − 1

3
γ ωn−1 + N (2ωn − ωn−1) (2.23)

∆Ψn+1 = ωn+1 and un+1 = ∇⊥Ψn+1 (2.24)

where γ = 2/(3δt), ∇⊥ = (−∂y, ∂x) and Ψ denotes the stream function. Hence in
each time step two elliptic problems have to be solved and a differential operator
has to be applied. Formally, the above equations can be written in the abstract
form Lu = f , where L is an elliptic operator with constant coefficients, corre-
sponding to a Helmholtz type equation for ω with L = (γ − ν∆) and a Poisson
equation for Ψ with L = ∆.

For the spatial discretization we use a Petrov–Galerkin scheme. The trial functions
are orthogonal wavelets and the test functions are operator-adapted wavelets. To
solve the elliptic equations Lu = f at time step tn+1 we develop un+1 into an
orthogonal wavelet series, i.e., un+1 =

∑
λ ũ

n+1
λ ψλ, where λ = (j, ix, iy, d) denotes

the multi–index containing scale j, space ix, iy and direction information d. Re-
quiring that the residuum vanishes with respect to all test functions θλ′ , we obtain
a linear system for the unknown wavelet coefficients ũn+1

λ of the solution u:
∑

λ

ũn+1
λ 〈Lψλ , θλ′〉 = 〈f , θλ′〉. (2.25)
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The test functions θ are defined such that the stiffness matrix turns out to be
the identity. Therefore the solution of Lu = f reduces to a change of the basis,
i.e., un+1 =

∑
λ〈f , θλ〉ψλ. The right-hand side f can then be developed into a

biorthogonal operator adapted wavelet basis f =
∑

λ 〈f , θλ〉µλ, with θλ = L⋆−1ψλ

and µλ = Lψλ (⋆ denotes the adjoint operator). By construction θ and µ are
biorthogonal, 〈θλ , µλ′〉 = δλ,λ′ . It can be shown that both have similar localiza-
tion properties in physical and Fourier space as has ψ and that they form a Riesz
basis [32].

To get an adaptive space discretization for the problem Lu = f we consider only
the significant wavelet coefficients of the solution. Hence we only retain coefficients
ũn

λ which have an absolute value larger than a given threshold ε̃, i.e., |ũn
λ| > ε̃.

The corresponding coefficients are shown in Fig. 2.2 (white area under the solid
line curve). The threshold ε̃ is not constant in time. It depends on the enstrophy
Z of the flow in the following way

ε̃(t) = ε̃0
√
Z(t)/Z(t0). (2.26)

with a constant ε̃0. This choice is motivated for decaying flows to maintain the
relative error in the enstrophy. To be able to integrate the equation in time we have
to account for the evolution of the solution in wavelet-coefficient space (indicated
by the arrow in Fig. 2.2). Therefore we add at time step tn the local neighbours to
the retained coefficients, which constitute a security zone (grey domain in Fig. 2.2).
The equation is then solved in this enlarged coefficient set (white and grey region
in Fig. 2.2) to obtain ũn+1

λ . Subsequently, we threshold the coefficients and retain
only those with |ũn+1

λ | > ε̃ (coefficients under the dashed curve in Fig.2.2 ). This
strategy is applied in each time step and allows hence to track automatically the
evolution of the solution in scale and space.

The nonlinear term f(un), where the wavelet coefficients of un are given is eval-
uated in physical space on a locally refined grid. This approach is similar to the
pseudo-spectral evaluation of nonlinear terms used in spectral methods, and there-
fore this method is called pseudo–wavelet technique. The prerequisites, however,
are that fast adaptive wavelet decomposition and reconstruction algorithms are
available. This means that functions can be reconstructed on a locally refined grid
from a sparse set of their significant wavelet coefficients and vice versa, which are
given in [32]. The method can be summarized as follows: starting from the signifi-
cant wavelet coefficients of u, i.e., |ũλ| > ε̃, one reconstructs u on a locally refined
grid, u(xλ). Then one can evaluate f(u(xλ)) pointwise and the wavelet coefficients

of f can be calculated using the adaptive decomposition to get f̃λ.
Finally, we have to calculate those scalar products of the r.h.s f with the test
functions θ, to advance the solution in time. We compute ũλ = 〈f, θλ〉 belonging
to the enlarged coefficient set (white and gray region in Fig. 2.2). In summary the
above algorithm is of O(N2) complexity, where N denotes the number of wavelet
coefficients used in the computation per spatial direction.
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Figure 2.2 – Illustration of the dynamic adaption strategy in wavelet coefficient space.
The vertical axis represents scale and the horizontal axis represents 1D space information
denoted by j and i, respectively, in the multi-index λ. The white area under the solid
curve represents the wavelet coefficients at tn, the gray region is the security zone and the
dashed region represents the distribution of the wavelet coefficients at the new time-level
tn+1.

2.3.4 Chebyshev spectral methods

Pseudospectral simulations were performed with numerical codes developed by
Clercx [17] and Kramer [53] for the square bounded and a periodic channel geom-
etry, respectively. For the square bounded domain the flow variables are expanded
by Chebyshev polynomials in both directions. The solver of Kramer [53] is very
similar to the solver of Clercx [17]. The main difference is that a Fourier expansion
of the flow variables in the periodic direction has been applied. In the non-periodic
direction the flow variables are represented by Chebyshev expansions as well. An
advantage of the latter approach is that it is easier to achieve high-resolution com-
putations both in the direction normal and tangential to the wall.

On the domain Ωf , the vorticity problem can be written in the dimensionless
form as put forward by Daube [26]





∂ω
∂t + (u · ∇)ω = 1

Re∆ω in Ωf × [0, T ]
ω(·, 0) = ω0 in Ωf

ω = (∇× u) · ez on ∂Ωf × [0, T ]
(2.27)

where ω0 is initial condition. The integral-scale Reynolds number is defined as
Re = UW/ν (where U is a characteristic velocity of the flow, W the half-width
of the domain and ν the kinematic viscosity of the fluid). The vorticity problem
(2.27) has to be solved in combination with the Poisson problem

{
∆u = ez ×∇ω in Ωf × [0, T ]

u = 0 on ∂Ωf × [0, T ] ,
(2.28)

with ez the unit vector perpendicular to the plane of the flow. Note that for the
periodic channel geometry the no-slip boundary condition is only applied in the
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non-periodic direction. The time discretization in the square bounded geometry of
the vorticity equation (2.27) consists of the second-order explicit Adams-Bashforth
scheme for the advection term and the implicit Crank- Nicolson procedure for the
diffusion term. For the periodic channel geometry a third-order backward difference
scheme is applied for diffusion and extrapolation for the advection term.

2.4 Recovery of higher-order accuracy of Fourier
schemes

Recall that the C1(Ω) and C0(Ω) continuity of respectively the velocity and pres-
sure of the penalized Navier-Stokes equations are enforced by an asymptotically
thin boundary layer. On the other hand, continuity of the higher derivatives is
guaranteed in Ωf and Ωs (see Ref. [14]). Thus in the limit ǫ → 0 the penalized
solution converges to a piecewise continuous function. This might be a problem for
Fourier spectral methods since the Lp convergence of both the continuous (2.9) and
discrete Fourier expansions (2.16) depends on the global smoothness of a function.
As a consequence the uniform convergence is exponential for analytic functions,
but a localized discontinuity, on the other hand, makes the Fourier projection
suffer from oscillatory behaviour known as the Gibbs phenomenon. The uniform
convergence is lost in the neighbourhood of a discontinuity and the Lp convergence
rate drops to first order. Fortunately, the convergence rate for piecewise contin-
uous functions in terms of moments against any analytic function φ(x) (or more
rigorously stated in terms of Sobolev norm of negative order) is still excellent,

|
∫ 2π

0

{fN(x) − f(x)}φ(x)dx |≤ KrN (2.29)

for some constant K and a constant r between zero and one. The only requirement
is that f belongs to the space L2 (see Ref. [13] for details). This demonstrates that
nearby Gibbs oscillations cancel very rapidly in the weighted mean φ(x) being any
smooth function.

Inspired by estimate (2.29) several techniques have been proposed to recover the
pointwise convergence for the Fourier projections of piecewise continuous data. In
this paper we follow the so-called “mollification” approach introduced by Gottlieb
& Tadmor [38] and later improved by Tadmor & Tanner [104]. It exploits the
fast cancellation of the Gibbs oscillations and offers a robust, efficient and general
purpose procedure for accurate reconstruction of piecewise continuous data, where
tuning of the parameters and roundoff errors are completely avoided.
The basic idea is to equip the analytic weight function φ(x) in equation (2.29)
with two parameters p and θ, such that it is charged to find a balance between
localization of the function f and cancellation of neighbouring Gibbs oscillations.
To simplify notation we discuss the mollification process of the continuous Fourier
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expansion in 1D. It is however straightforward to apply the algorithm in 2D. The
procedure can be expressed as a convolution integral of the form,

R[fN ](x) = φp,θ ⋆ fN (x) =

∫ 2π

0

fN(x̄)φp,θ(x− x̄)dx̄, (2.30)

where the mollifier is defined as φp,θ(z) = (1/θ)ρ(z/θ)Dp(z/θ), with the Dirichlet
kernel

Dp(ζ) =

{
1
2π

sin((p+1/2)ζ)
sin(ζ/2) if ζ 6= 0, 2π, ..

2p+1
2π if ζ = 0, 2π, ..

(2.31)

and a piecewise C∞ weight function

ρ(ζ) =

{
e−10 ζ2/(π2−ζ2) if |ζ| < π ,

0 if |ζ| ≥ π .
(2.32)

The number of near-vanishing moments of the mollifier and thus the number of
cancellations is controlled with p. The parameter θ handles the support ]− θπ, θπ[
and should be as large as possible to allow a necessary amount of cancellation in
the convolution integral (2.30). Due to the requirement of localized regularity of
the function f it is not allowed to incorporate a discontinuity. For optimal conver-
gence the support of the mollifier should be θ = max (d(x)/π, 2π/N), where d(x)
represents the distance to the nearest jump discontinuity. Note that due to the
symmetry of the mollifier it is not possible to use the mollification procedure on
the discontinuity itself. An optimal choice for p depends in addition on the support
of the mollifier, p(x) = κ θ(x)N/2 , where κ is an arbitrarily chosen parameter be-
tween 0 and 1. The same value κ = 0.5 is chosen as in the numerical validation
of the method presented in Ref. [104]. In order to obtain finite-order convergence
in a small region of O(1/N) around a discontinuity Tadmor & Tanner [104] have
introduced normalization procedures that remove the higher-order moments of the
mollifier. As a result, exponential convergence in the pointwise sense is recovered
from the Fourier projection sufficiently far from a discontinuity. At a distance of
O(1/N) fourth-order convergence is achieved and at least second-order conver-
gence appears up to the discontinuity. In Ref. [104] an equivalent procedure is
developed for the discrete Fourier expansion, with similar convergence results.

In this study the mollification procedure is only applied as a postprocessing tool. A
similar approach, although with a Gegenbauer postprocessing tool (see Ref. [36]),
is successfully performed by Shu & Wong [99] on development of shocks in the
solution of the Burgers equation and also in the 2D Euler equations by Don [28].
It should be emphasized that these are a posteriori results due to the lack of full
theoretical justification. Gottlieb & Gottlieb [35] explain these results, however,
by going back to the argument of Lax [57] on the suitability of Fourier spectral
schemes on shock development in nonlinear hyperbolic systems. Nevertheless, it is
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not a priori known whether postprocessing can successfully recover the solution
of the penalized Navier-Stokes equations as well.



Chapter 3

Convergence study of a
normal dipole-wall collisioni

A simple two-dimensional vortex-wall collision poses a serious challenge for CFD
methods, see, for example, the simulation of the dipole-wall collision with a no-slip
wall conducted with both finite differences and Chebyshev spectral methods [18]. In
particular, the formation and detachment of very thin boundary layers, containing
high-amplitude vorticity, during the collision process and the subsequent formation
of small-scale vorticity patches in the near-wall region can possibly deteriorate the
accuracy of the flow computation. This dramatically affects the dynamics of the
flow after the impact. The initial flow field fulfills the boundary condition (within
machine precision no normal and tangential velocities at the no-slip boundaries)
such that initialization errors are avoided. The boundary layers are produced dur-
ing the approach of the dipole to the wall. The production of small-scale vorticity
during the vortex-wall interaction makes this process a very good benchmark for
many CFD methods aimed at simulation of wall-bounded flows or flows around
solid obstacles.

The first numerical investigation of the dipole-wall problem was conducted by
Orlandi [80] already a decade ago. Later other studies used the dipole-wall colli-
sion experiment to investigate the reliability of several CFD methods. For exam-
ple, Ould-Salihi [82] et al. used this test case to validate particle methods against
finite-differences methods. Cottet et al. [24, 25] used the dipole-wall collision as
a benchmark to validate mesh adaption techniques that allow the use of refined
vortex methods in both directions near the wall. Another example, considering a
B-spline numerical method, can be found in Kravchenko et al. [55]. They analyzed
the effect of zonal embedded grids on the evolution of the dipole-wall collision.
Clercx & Bruneau [18] provide, on the other hand, a more detailed comparison of

iThe contents of this chapter is an adapted part of Keetels et al. [48]

47



48 Convergence study of a normal dipole-wall collision

finite differences and a pseudospectral Chebyshev method. It was observed that
the dipole-wall problem is an extremely though test case, i.e. the resolution to
achieve grid or mode convergence should be substantially larger than considered
previously.

3.1 Dipole-wall collision benchmark computation

The numerical simulations of Clercx & Bruneau [18] indicate that it is extremely
difficult to obtain mode or grid-convergence for a dipole that collides with a no-slip
boundary using a Chebyshev pseudospectral method or finite differences. Here we
focus on the convergence properties of a normal dipole-wall collision, i.e. the trans-
lation of the dipole being perpendicular to the wall, at an integral-scale Reynolds
number Re = UW

ν = 1000, based on the total kinetic energy of the flow (deter-
mining the average velocity U) and the half width W of the domain. Note that
this value of Re is similar as in the 2D decaying turbulence simulations in square
bounded domains by Clercx and Nielsen [21]. They used (initial) integral-scale
Reynolds numbers varying between 5000 and 20000, but the Reynolds number
based on the vortex size in these runs was always in the range 700-2500. Therefore
the dipole-wall experiment at Re = 1000 can be seen as a novel test case to explore
the possibility of pursuing DNS of wall bounded turbulence.

3.1.1 Setup and initial condition

The flow domain Ωf is defined as,

Ωf =
{
x ∈ R

2| − 1 ≤ x ≤ 1,−1 ≤ y ≤ 1
}
.

The initial (scalar) vorticity field ω0 and velocity field u0 should vanish at the
boundary, which guarantees absence of artificial boundary layers due to enforcing
the no-slip condition at t = 0. In order to satisfy these constraints, two equally
strong, oppositely signed, isolated monopoles are put close to each other near the
centre of the container. The vorticity distribution of the isolated monopoles is
chosen as:

ω0 = ωe(1 − (r/r0)
2)exp(−(r/r0)

2) , (3.1)

with r = (x2 + y2)1/2 the distance from the centre of the monopole, r0 its di-
mensionless ’radius’ (at which the vorticity changes sign) and ωe its dimensionless
extremum vorticity value (in r = 0). In the present simulations the exact numeri-
cal value for the radius of the monopoles is r0 = 0.1, and ωe = 299.528385375226.
With this value of r0 the vorticity at the boundary (at r ≈ 1) is virtually zero,
as can be concluded by substituting the numerical value of the ratio r/r0 in Eq.
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(3.1).
This value of ωe is determined by the condition that the total kinetic energy of
the dipolar flow field,

E(t) =
1

2

∫ 1

−1

∫ 1

−1

u2(x, t)dxdy , (3.2)

is normalized to E(0) = 2 for all runs. As a consequence, both U and the half-width
of the domain W are fixed and the Reynolds number is defined as Re= UW/ν.
The total enstrophy of the dipolar flow field is defined by,

Z(t) =
1

2

∫ 1

−1

∫ 1

−1

ω2(x, t)dxdy , (3.3)

with Z(0) ≈ 800. The exact numerical values for the initial position of the two
isolated monopoles is {(x1, y1), (x2, y2)} = {(0, 0.1), (0,−0.1)}. The initial condi-
tion u0 = (u0, v0) for the integration of the Navier-Stokes equations in primitive
variables can be derived straightforwardly for a couple of isolated monopoles, sat-
isfying Eq. (3.1) and is then given by :

u0 = − 1
2 |ωe|(y − y1)exp(−(r1/r0)

2) + 1
2 |ωe|(y − y2)exp(−(r2/r0)

2)
v0 = 1

2 |ωe|(x− x1)exp(−(r1/r0)
2) − 1

2 |ωe|(x− x2)exp(−(r2/r0)
2) ,

(3.4)

with r21 = (x−x1)
2 +(y−y1)2 and r22 = (x−x2)

2 +(y−y2)2. This initial condition
also proves that the no-slip condition is sufficiently well guaranteed by our choice
r0 = 0.1 (note that e−(r/r0)

2 ≈ e−100 ≈ 10−44).

3.1.2 Chebyshev-Fourier and Chebyshev benchmark com-
putations

Figure 1.4 gives an overview of the normal dipole-wall collision obtained by a
Chebyshev-Fourier benchmark computation, using 1024 Chebyshev modes and
2048 active Fourier modes with a time step δt = 10−5. It is found by Clercx and
Bruneau [18] that an extremely fine discretization is required for accurate quanti-
tative results. Especially for simulations with long integration times compared with
the time t1 of the primary collision. In particular underresolved high-amplitude
vorticity patches near the no-slip wall (visible in Fig. 1.4) can possibly deteriorate
the accuracy in course of time.
To analyze the quality of the Chebyshev and Chebyshev-Fourier computations we
analyze the relative error in the vorticity

δN =
‖ ω(N) − ω(Nmax) ‖L2

‖ ω(Nmax) ‖L∞

, (3.5)

where ω(N) is the approximation of the vorticity with resolution N and Nmax is
the maximum N that is available. The highest-resolution computations that are
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performed for the square bounded domain have 640 Chebyshev modes in both di-
rections. For the periodic channel domain a maximum of 1024 Chebyshev modes for
the non-periodic direction and 2048 active Fourier modes is used for the periodic
direction. To estimate the error of the computations lower resolution computa-
tions are performed as well. For the square bounded case a second computation is
conducted with 512 Chebyshev modes in both directions and the periodic channel
with 512 Chebyshev modes versus 1024 active Fourier modes. The time step is
fixed for all computations, i.e., δt = 10−5. It is found that the truncation error
δN is less than 1.2 × 10−4 for the square bounded case. Clercx & Bruneau [18]
have shown that the truncation error of the Chebyshev scheme decays exponen-
tially with N . They considered the dipole-wall experiment for Re = 1250 and
Nmax = 512 in both directions. The order of magnitude of the truncation error
observed here for Re = 1000 and Nmax = 640 is consistent with the results of
Clercx & Bruneau [18]. The error δN for the periodic channel geometry is less
than 8.2 × 10−5 for t ≤ 2.0. Therefore, the high-resolution computations in both
geometries can be considered as sufficiently accurate benchmark computations.

3.2 Convergence analysis of Fourier schemes

To simulate the dipole-wall collision with volume-penalization the flow domain Ωf

defined in Section 2.2.1 is embedded in the channel geometry of Fig. 2.1b. The
computational domain Ω is defined as

Ω =
{
x ∈ R

2| − 1 ≤ x ≤ 1,−(1 + δw) ≤ y ≤ (1 + δw)
}
, (3.6)

where the wall thickness δw is chosen such that there is a set of grid points on
the interface between the fluid and the solid (porous) material. It is found that
decreasing δw from ten procent down to one procent of the channel width does not
change the computational result significantly. To reduce the number of gridpoints
inside Ωs as much as possible the wall thickness δw is fixed to about one procent
of the domain size for the Fourier spectral simulations presented here.

Due to the continuity restrictions of the solution of the penalized Navier-Stokes
equations (see section 2.2.2) on ∂Ωf it can be expected that the Fourier projec-
tions of the different flow variables will suffer from the Gibbs phenomenon. The key
question is, however, whether the low convergence rate of the Fourier projection
will in addition prevent proper convergence of the Fourier spectral scheme or that
higher-order accuracy can be recovered by the mollification technique proposed
by Tadmor & Tanner [104] (or alternative techniques such as high-wavenumber
filtering [68] and Gegenbauer postprocessing [37]).
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3.2.1 Gibbs oscillations

Fig. 3.1 presents the isolines of the vorticity obtained by the Fourier spectral
solver with 1364 active Fourier modes in both directions using ǫ = 2.5 × 10−5

and implicit treatment of the Darcy drag with a time step of δt = 10−5. As the

0 0.25 0.5
−1

−0.75

−0.5

(a) t=0.30 (b) t=0.35

(c) t=0.40

0 0.25 0.5
−1

−0.75

−0.5

(d) t=0.50

Figure 3.1 – Contour plots of the vorticity field of a normal dipole-wall collision with
Re = 1000 using 1364 × 1364 active Fourier modes, δt = 10−5 and ǫ = 2.5 × 10−5 with
an implicit scheme. Contour levels are drawn for -270.., -50, -30, -10, 10, 30, 50,..270.

dipole impinges the wall strong oscillations in the vorticity isolines become indeed
apparent, as is evident from Fig. 3.1. Note that only one half of the domain is
shown because of the symmetry of a normal dipole-wall collision. The oscillations
are more pronounced near the wall than in the interior of the flow domain. An
important observation is that the wiggles automatically disappear as the vortex
moves into the interior of the flow domain, t = 0.5 in Fig. 3.1d. In addition Fig.
3.2 shows the mollified results obtained by the recovery method of Tadmor &
Tanner [104] applied to the computational output presented in Fig. 3.1. It reveals
strong correspondence with the Chebyshev-Fourier benchmark computations. This
indicates that the observed oscillations do not have a serious dynamical effect on
the evolution of the dipole-wall collision.
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Figure 3.2 – Contour plots of the vorticity of a normal dipole-wall collision with
Re = 1000. Panels (a,c,e,g) show mollified Fourier projection using 1364 × 1364 ac-
tive Fourier modes, δt = 10−5 and ǫ = 2.5 × 10−5 with an implicit treatment of Darcy
drag. Panels (b,d,f,h) show the Chebyshev-Fourier benchmark computation with 1024
Chebyshev modes and 2048 Fourier modes. Contour levels are drawn for -270.., -50, -30,
-10, 10, 30, 50,..270.

3.2.2 Truncation error

In order to investigate the scaling behaviour of the truncation error the simulations
are compared with the highest available resolution of 2730 × 2730 active number
of Fourier modes (computed with 4096 × 4096 Fourier modes to prevent aliasing
errors), while the penalization parameter is fixed for all computations at a value of
ǫ = 2.5×10−5. This value is chosen such that it is feasible to test both the implicit
and explicit implementation of the Darcy drag efficiently. Note that for the explicit
implementation the time step has to be in the same order as the penalization pa-
rameter. As a consequence, a smaller value for ǫ would result in a blow-up of the
amount of wall-clock time. On the other hand, ǫ = 2.5 × 10−5 is small enough to
have an acceptable correspondence with the Chebyshev-Fourier benchmark com-
putation, which satisfy the no-slip condition within machine-precision accuracy.
The mollification procedure of Tadmor and Tanner [104] involves a symmetric mol-
lifier that gives second order accuracy in the immediate vicinity of a discontinuity
(the wall in this case) and higher-order accuracy when moving away from the dis-
continuity. Therefore, we decompose the domain in an interior part Ωint ranging
from x = [−0.99, 0.99] and y = [−0.99, 0.99] and a boundary zone. Only in the
interior part high-order recovery of the Fourier projection can be expected for all
the resolutions considered here. Fig. 3.3 demonstrates the convergence behaviour
in the boundary zone. A cross-section of the viscous boundary is presented at the
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Figure 3.3 – Cross-section of the vorticity along the line x = 0.083 at t = 0.35,
Chebyshev-Fourier benchmark result (dashed) and implicit scheme (solid). δt = 10−5,
ǫ = 2.5 × 10−5, with different number of active Fourier modes: 5122 (open circles), 6822

(stars), 13642 (plus signs) and 27302 (closed circles).

point where the vorticity on the wall has a maximum. Fig. 3.3a shows that the am-
plitude of the oscillations in the Fourier projection decreases slowly by increasing
the resolution. The vorticity value on the wall reflects a well-known convergence
property of Fourier series

lim
N→∞

ωN(x) =
ω (x−) + ω(x+)

2
(3.7)

where x− and x+ denote the limits from below and above x, respectively. Since
the vorticity inside the obstacle is negligible (see section 2.2.2) the projection ωN

underpredicts the vorticity on the wall by a factor two. Recall that C0 continuity
of the vorticity is enforced by an asymptotically thin boundary layer inside the
obstacle proportional to

√
νǫ. The resolution of the computations is, however, too

low to resolve this boundary layer.
The recovered Fourier projection in Fig. 3.3b converges smoothly towards the
benchmark computation. Note that this reflects that both the quality of the com-
putation and the accuracy of the postprocessing improve with N .
The convergence in the interior is analyzed by considering the error

δN =
‖ ωN − ω2730 ‖L2(Ωint)

‖ ω2730 ‖L∞(Ωf )
(3.8)
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Figure 3.4 – Truncation error δN versus number of active Fourier modes N . Explicit
(solid) and implicit (dashed) implementation of Darcy drag. The error of the Fourier
projection (stars) and the mollified result (plus signs).

where N represents the simulations conducted with less than 2730 active Fourier
modes in both directions. The time step is fixed for all computations, i.e., δt =
10−5 consistent with the CFL condition of the high-resolution computation with
2730× 2730 active Fourier modes. The convergence rate of the Fourier projection
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presented in Fig. 3.4 depends on the time considered. During the collision process,
in particular at t = 0.3, t = 0.35 and t = 0.4, the error of the Fourier projec-
tion only shows first order decay, while at some later time, for example, t = 0.5
the error decays faster. The error of the mollified vorticity fields shows, however,
fast decay at least proportional to N−2.5 for all times. From these observations it
is difficult to determine the exact value for the order of the scheme. Especially,
because it is not sure how the mollified error is behaving with either a specific
power law or exponentially. Note that the slope increases when moving towards
the higher end of the spectral range considered here. This might indicate that
the error of the postprocessed results behaves exponentially or that higher-order
convergence appears after reaching a specific resolution related to the thickness
of the viscous boundary layer. At t = 0.5 the mollification procedure does not
improve the scaling of the truncation error, which can be related to absence of
strong oscillations in the vorticity isolines in Fig. 3.1d. The schemes of section
2.3.1 and 2.3.2 with an explicit and implicit treatment of the Darcy drag respec-
tively, show a similar decay of the truncation error as can be deduced from Fig. 3.4.

3.2.3 Long-time integrations and global quantities

Some additional convergence results are presented in Fig. 3.5, concerning the total
kinetic energy and total enstrophy of the flow. The computation with penalization
parameter ǫ = 10−3 and N = 682 active Fourier modes shows a stronger decay
of the total kinetic energy, while the total enstrophy is strongly underestimated.
Setting ǫ = 10−8 and N = 2730 yields a curve E(t) that is on top of the benchmark
computation. The curve Z(t) of the total enstrophy coincides with the benchmark
almost everywhere, but slightly underpredicts the maximum value of the enstro-
phy at t = 0.35. About 90% of the enstrophy is contained in the boundary layer,
as shown in the cross-sectional plots in Fig. 3.3, especially the values on the wall
itself strongly contribute to the total enstrophy. Unfortunately, we are not able
to reconstruct the vorticity in the immediate vicinity of the wall and on the wall
itself (see Fig. 3.3). This explains why the maximum enstrophy is slightly under-
estimated (a deviation of approximately 1%). If, however, the vorticity value on
the wall is corrected with a factor two related to the convergence property (3.7)
the error becomes less than 3.0 × 10−3.

As reported by Clercx and Bruneau [18] especially long-time integrations be-
yond the first dipole-wall collision are difficult to resolve properly. In Fig. 3.6 the
vorticity isolines are shown for a long-time integration using N = 1364 active
Fourier modes, a penalization parameter ǫ = 10−8 and a time step δt = 10−5. It
clearly shows that convergence can be achieved as well for long-time integrations
by setting the resolution and penalization parameter appropriately. Furthermore,
the larger time integrations support the observation that Gibbs oscillations do not
trigger any significant dynamical effects.
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Figure 3.5 – Total kinetic energy E(t) and enstrophy Z(t) of a computation with setting
ǫ = 10−3,N = 682, δt = 10−5 (dashed-dot) and ǫ = 10−8,N = 2730, δt = 10−5 compared
with Chebyshev-Fourier benchmark computation (solid).

3.3 Convergence analysis of Coherent Vortex Sim-

ulation (CVS)

In the following we present results of coherent vortex simulations using the adap-
tive wavelet method ( [95], [94], [93], [98]) presented in subsection 2.3.3. The CVS
simulations are conducted in the square bounded geometry, see Fig. 2.1c, the wall
thickness δw = 0.1 for all four side walls (note that Ωf = [−1, 1]× [−1, 1]).

First we inspect the vorticity isolines computed with CVS versus a high-
resolution Chebyshev computation. Then we consider the compression rate of the
degrees of freedom by the Coherent Vortex Simulation method. In addition we
analyze the scaling behaviour of the discretization error using different resolutions
(1282, 2562, 5122 and 10242) for the CVS computations. Finally it is checked if
it is possible to further reduce the number of wavelet coefficients by varying the
threshold ε̃0 while keeping the number of grid points fixed.

3.3.1 Visualization

Fig. 3.7 visualizes the isolines of vorticity at t = 0.4 for a CVS computation us-
ing 10242 gridpoints and a time step δt = 5 × 10−5 compared to a Chebyshev
benchmark result with 640 Chebyshev modes in both directions using a time step
δt = 1.25× 10−5. Although both simulations yield isolines which are very close to
each other, the symmetry around the y−axis is slightly broken in the CVS com-
putation: a magnification of the left dipole half yields almost coinciding isolines,
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Figure 3.6 – Contour plots (dashed) of the vorticity for ǫ = 10−8 with 1364×1364
active Fourier modes and Chebyshev-Fourier benchmark computation (solid). Contour
levels are drawn for ..,-50,-30,-10,10,30,50,..

while a magnification of the other half in Fig. 3.7b visualizes some small deviations
of the isolines compared to the Chebyshev benchmark computation.
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Figure 3.7 – Isolines (dashed) of ω drawn for −270..,−50,−30,−10, 10, 30, 50, ..270,
comparison of CVS simulation on 10242 grid and δt = 5 × 10−5, with the Chebyshev
run with 6402 modes and δt = 1.25 × 10−5 (solid) at t = 0.4. Left: total domain. Right:
Zoom in.

Although the wavelet discretization is symmetric on a regular grid, the applied
thresholding introduces some slight asymmetry on the locally refined grid, which
is not perfectly symmetric (cf. Fig. 3.8). Focussing on the vorticity isolines of the
secondary vortex pair moving to the top of the domain it is seen in Fig. 3.7a that
they differ slightly from the benchmark computation. This can be explained by



58 Convergence study of a normal dipole-wall collision

the filtering effect of CVS. In each time step weak wavelet coefficients are filtered
out, which correspond to weak vorticity contributions. As the secondary vortex
pair contains much less enstrophy than the primary one it is more affected by the
CVS filtering. We find that the CVS-1024 result exhibits no Gibbs oscillations like
the Fourier computations. Therefore we decided not to apply any postprocessing
to the CVS results.

3.3.2 Grid adaptation

To illustrate the dynamical adaption strategy of the CVS computations we plot
in Fig. 3.8 the locally refined grids at different instants, t = 0.1, 0.2, 0.3 and 0.4.
The computation has been performed with a maximum of J = 10 available scales,

(a) t = 0.1 (b) t = 0.2

(c) t = 0.3 (d) t = 0.4

Figure 3.8 – Adaptive grid at t = 0.1, 0.2, 0.3 and 0.4 for CVS computation with 1024
grid points in both directions. The number of wavelets are 93 674, 104 711, 112 065 and
124 364 for t = 0.1, 0.2, 0.3 and 0.4, respectively.
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corresponding to a maximum number of 10242 unknowns, a fixed time step of
δt = 5×10−5 and a threshold value of ε̃0 = 10−5. The penalization parameter was
chosen as ǫ = 10−4. Note that without penalization the time step is only limited by
the CFL-condition, which would allow a larger time step of δt = 5 × 10−4 for the
CVS computations up to 10242 grid points. Unfortunately, the explicit treatment
of Darcy drag constitutes a restriction on the time step required for stable second-
order time integration. In Fig. 3.8 we observe that the grid automatically tracks the
time evolution of the dipole. In regions of strong gradients we find fine grid spacing

N
w

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

t→

Figure 3.9 – Time evolution of the number of wavelet coefficients Nw with (dots) and
without (solid) security zone for CVS compution on 10242 grid with δt = 5 × 10−5.

while in quiescent regions the grid is coarsened. At the boundary of the domain,
i.e. at the interface between the penalized region and the fluid domain, the grid is
also refined to be able to resolve the strong gradients of vorticity. The finest scale
J = 10 present in the CVS-1024 computation corresponds to the total number of
wavelet modes N of 22J = 10242 = 1, 048, 576. The time evolution of the number
of active wavelet modes Nw for the CVS-1024 run, with and without the security
zone (cf. subsection 2.3.3), is depicted in Fig. 3.9. Both numbers are increasing also
after the first collision. This can be explained by the choice (2.26) for the threshold
ε̃. The threshold decreases with the total enstrophy retaining more modes in the
computation. At t = 0.1, 0.2, 0.3 and 0.4 the computation (without security zone)
uses 93, 674, 104, 711, 112, 065 and 124, 364 wavelet modes, respectively, i.e. less
than 12% of the total number of modes. A comparison of the total kinetic energy
and enstrophy evolution of the CVS-1024 run with the Chebyshev benchmark
with 640 Chebyshev modes in both directions is given in Fig. 3.10. It shows that
the CVS computation closely follows the reference Chebyshev computation. Both
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Figure 3.10 – Comparison of E(t) (a) and Z(t) (b) between the CVS run on 10242-grid,
δt = 5 × 10−5 , and penalization parameter ǫ = 10−4 (solid) and the Chebyshev run
with 6402 modes (dots) and δt = 1.25 × 10−5.

total kinetic energy and enstrophy of the CVS computation are slightly below the
reference run. To quantify the errors between the two methods we compute the
relative maximum error for the energy, max|(E(t) −Ecvs(t))/(E(t))|, and for the
enstrophy max|(Z(t) − Zcvs(t))/Z(t)|. For the former we find a value below 0.8%
while the latter is below 2.8%. Note that the computed error is the sum of the
discretization and penalization error (Gibbs oscillations are not present in the CVS
runs).
The time evolution of the wavelet modes for CVS computations with N = 2562,
N = 5122 and N = 10242 grid points with a fixed time step δt = 5 × 10−5 is
shown in Fig. 3.11. The compression rate improves with increasing resolution. For
2562 almost all the coefficients (including security zone) are used at t = 0.5 (about
90%), while for 10242 less than 30% are used.

3.3.3 Error analysis

To quantify the error of the CVS computations Fig. 3.12a shows a double-logarithmic
graph of the normalized error in the vorticity (3.8) of (i) the CVS computations
with respect to the Chebyshev-640 reference computation and (ii) with respect
to the CVS computation on the finest grid with 10242 grid points. Both curves
show a power law behaviour with a slope of 1.47. In Fig. 3.12b a cross-section
of the viscous boundary layer is shown at t = 0.35 along a line x = 0.083. From



3.3 Convergence analysis of Coherent Vortex Simulation (CVS) 61

N
w

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

N
w
/N

2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

t→ t→
(a) (b)

Figure 3.11 – Time evolution of the (a) number of wavelet coefficients Nw with security
zone and (b) number of wavelet coefficients normalized with total number of grid pointsN
for the CVS 2562 grid points (solid) and δt = 10−4, 5122 grid points and δt = 10−4(dots)
and 10242 grid with δt = 5 × 10−5 (dashed) runs.

this figure it can be deduced that the CVS result with 10242-grid is capable of
capturing the vorticity profile of the viscous boundary layer reasonably well. The
behaviour on the wall itself is not a result of the Gibbs effect. It is a result of the
implementation of the mask function in the CVS computations, which does not
guarantee that there is a set of grid points on the wall at y = −1. The vorticity
at the grid points inside the obstacle y < −1 is approximately zero. Recall that
the solution of the penalized Navier-Stokes equation inside the obstacle can be
described by Darcy flow, which has no rotation. As a consequence, there is no vor-
ticity inside the obstacle. Interpolation between the grid point inside the obstacle
and in the flow gives a wiggle near the wall at y = −1 in Fig. 3.12b. From the
fit in Fig. 3.12a we could deduce that the CVS method is of order 1.5 (in terms
of vorticity), which is similar to the order of the Fourier spectral schemes without
postprocessing. However, we should be careful with this conclusion, because the
measurements are obtained in the regime where the number of grid points inside
the viscous boundary layer is less than four. Here, the boundary-layer thickness
δ based on the ratio of vorticity and vorticity gradients on the wall is defined as
δ ≈ 1

4
√

Re
, see Ref. [18]. Hence, it cannot be ruled out that finer grid computations

would yield different scaling behaviour of the error, especially beyond a critical grid
size that is proportional to the boundary-layer thickness. Unfortunately, higher-
resolution computations are not yet feasible, because the current code does not
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Figure 3.12 – Panel (a) shows the normalized L2-error in the vorticity δ versus Cheby-
shev benchmark with 6402 modes and δt = 1.25 × 10−5 (+) and the error with respect
to the CVS computation on 10242 grid with time-step δt = 5 × 10−5 and ǫ = 10−4(x)
and the power law 47.05N−1.47 (dashed) obtained fitting the (+). Panel (b) shows the
cross section of the vorticity similar along the line x=0.083 at t = 0.35 (see Fig. 6)
using different grids 2562 (stars), 5122 (plus signs) and 10242 (open circles) and bench-
mark computation using 640 Chebyshev modes in both directions and δt = 1.25 × 10−5

(dashed).

run in parallel. On the other hand, Clercx & Bruneau [18] found that about five
grid points inside the boundary layer are necessary to achieve grid-convergence
for the normal dipole-wall collision experiment with a second-order (in velocity)
finite-difference scheme. Considering the decay rate of the error in the vorticity we
expect that grid-convergence is achieved for the CVS-1024 computation.

3.3.4 Penalization parameter and reduction of wavelet co-
efficients

Different CVS computations have been performed to check the influence of the
penalization parameter ǫ and of the threshold ε̃0 of the wavelet coefficients. In
Fig. 3.13a we plot the time evolution of the enstrophy for CVS-512 using three
different values of the penalization parameter ǫ. The amount of enstrophy pro-
duction on the wall increases significantly with the penalization parameter in the
range ǫ = 10−2 to ǫ = 10−4. For the penalization parameter ǫ = 10−2, the accuracy
becomes extremely poor, as can be seen in Fig. 3.13a. A second set of simulations
is conducted to analyze the effect of ǫ̃0 on the enstrophy production. It is found
that in the range ǫ̃0 = 10−4 to ǫ̃0 = 10−6 the maximal difference in Z(t) lies
within machine precision. However, the number of wavelet coefficients used in the
ǫ̃0 = 10−4 run is two times smaller than in the ǫ̃0 = 10−6 computation, which
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Figure 3.13 – Enstrophy versus time for three different values of the penalization pa-
rameter ǫ = 10−2 (dashed), ǫ = 10−3 (dots) and ǫ = 10−4 (solid), threshold eε0 = 10−5

is fixed (a). Number of wavelet coefficients Nw with security zone for three different val-
ues of the threshold eε0 = 10−4, eε0 = 10−5 and eε0 = 10−6 with penalization parameter
ǫ = 10−4 fixed (b).

can be deduced from Fig. 3.13b. As the computing time is linear with the number
of wavelet modes used, for the same accuracy, a speed-up by a factor two can be
obtained.

3.4 Penalization error

In this section we focus on the penalization error δǫ corresponding to the differ-
ences between the solution of the Navier-Stokes equations with no-slip boundary
condition and the solution of the penalized Navier-Stokes equations. The chal-
lenge is to find a balance between the truncation and the penalization error by
an optimal choice for ǫ for every N . Fig. 3.14 shows the vorticity isolines of runs
where both the penalization parameter ranges from ǫ = 10−3 to ǫ = 10−8 and the
number of active Fourier modes from N = 682 to N = 2730. The combination of
penalization parameter and number of active Fourier modes is chosen such that
an optimal setting is achieved, i.e., increasing N does not improve the accuracy
significantly. The largest value of the penalization parameter, ǫ = 10−3, yields a
slightly different vortex path compared with the benchmark computation. Espe-
cially after the second collision at t = 0.8 it is seen that the secondary vortex core is
not strong enough to bend the vortex system sufficiently outward (see Fig. 3.14a).
This might be related to the amount of vorticity that is produced on the wall
and in addition advected into the interior. As the penalization parameter is de-
creased, more vorticity is produced on the wall such that the resulting secondary
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Figure 3.14 – Contour plots (dashed) of the vorticity after the second collision at
t = 0.8 for different values of the penalization parameter ǫ with respect to the benchmark
simulation (solid). Contour levels are drawn for -270, -250, ..,-50, -30, -10, 10, 30, 50, ..,
250, 270. Number of active Fourier modes 6822 (a), 13642 (b) and 27302 (c), time-step
is fixed to δt = 10−5.

vortex becomes stronger, finally resulting in acceptable converged vorticity iso-
lines. Fig. 3.15a shows the total error δtot, which is the sum of the truncation error
δN and the the penalization error δǫ. It is calculated by using the high-resolution
Chebyshev-Fourier benchmark computation with 1024 Chebyshev modes in the
wall direction and 2048 Fourier modes in the periodic channel direction. As can be
deduced from Fig. 3.15a it is possible to improve the decay rate of the total error
versus N by taking sufficiently small values for the penalization parameter. For
every ǫ a saturation level emerges at a specific N , e.g. for ǫ = 10−4 at N ≈ 1000.
From the saturation levels in the total error it is possible to obtain an estimate
for the penalization error. Note that at the saturation level it can be assumed
that the truncation error is no longer leading in the total error. The corresponding
estimates for the penalization error are presented in Fig. 3.15b. The decay rate of
the penalization error is consistent with the theoretical bound proportional to

√
ǫ

from Carbou & Fabrie [14]. Actually the error scales slightly better, proportional
to ǫ0.7. Note that in the simulations the asymptotic boundary layer inside the wall
is not resolved properly since

√
νǫ <2/N . This confirms our expectation in sec-

tion (2.2.2) that without resolving the penalization boundary layer a
√
ǫ accuracy

bound is still achievable.
Now it is possible to derive an optimal choice for the penalization parameter ǫ ver-
sus N . Recall that the minimal decay rate of the truncation error of the Fourier
methods is δN = αN−2.5, with constant α ≈ 1.0 × 104. The penalization error
scales as δǫ = βǫ0.7 with β ≈ 1 optimum is thus achieved when δN = δǫ and one
readily obtains

ǫ = (
α

β
)10/7N−3.6 ≈ γN−3.6,
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Figure 3.15 – Total error δtot versus number of Fourier modes N at t = 0.8, ǫ = 10−3

(dots), ǫ = 10−4 (dashed-dot), ǫ = 2.5×10−5 (dashed) and ǫ = 10−8 (solid) (a). Modelling
error versus ǫ computed at t = 0.4 (dots), t = 0.5 (dashed) and t = 0.8 (solid) and
theoretical upper bound (b).

where γ is an O(105) constant. The same approach for the CVS method with
δN = αN−1.5 with α ≈ 50 yields an optimum

ǫ = (
α

β
)10/7N−2.1 ≈ γN−2.1,

with γ in the order of 102.

3.5 Conclusions and discussion

Based on a difficult test case of a dipole-wall collision we conclude that the penal-
ized Navier-Stokes equations at high-Reynolds numbers can be solved accurately
by Fourier spectral methods and coherent vortex simulation. Gibbs oscillations are
present in the Fourier spectral schemes due to continuity restrictions, which results
in a slow decay of the truncation error. This does, however, not affect the stability
such that it is not necessary to introduce any artificial viscosity terms to enhance
the stability of the scheme (Ref. [35]). Furthermore, higher-order recovery of the
solution can be achieved by the mollification technique proposed by Tadmor and
Tanner [104]. It is very likely that similar results can be achieved by other recov-
ery procedures like, for example, Gegenbauer postprocessing (Ref. [44], [35], [36]).
The Petrov-Galerkin discretization used in CVS with quintic splines as a trial basis
avoids the Gibbs effect such that mollification is not necessary. We found that the
degrees of freedom using a grid-adaptive strategy can seriously be reduced for this
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particular problem, at least by a factor 1/8, without a significant loss of accuracy.

The penalization error corresponding to the difference between the solution of
the penalized Navier-Stokes equations and the solution of the Navier-Stokes equa-
tions with no-slip boundary condition can be controlled by choosing appropriate
values of the penalization parameter. Furthermore, the theoretical error bound
of

√
ǫ obtained by Carbou & Fabrie [14] is confirmed. We found that it is not

necessary to resolve the asymptotic boundary layer with a thickness proportional
to

√
νǫ, such that an extreme refinement of the grid inside the obstacle can be

avoided. This can be expected because only the order ǫ and higher order asymp-
totic expansions of Carbou & Fabrie [14] rely on the boundary layer solutions. For
an optimal convergence scenario one has to find a balance between the truncation
and penalization error. Therefore the penalization parameter must be reduced for
increasing resolutions ǫ ∝ N−3.6. As a consequence it makes sense to decouple
the time step proportional to N−1 from the penalization parameter. Kevlahan
& Ghidaglia [51] used a GMRES Krylov subspace technique in an explicit time-
scheme for this purpose. As an alternative we propose an implicit treatment of the
Darcy drag in a Fourier collocation scheme yielding good convergence results with
respect to the truncation and penalization error.

Clercx & Bruneau [18] consider different important quantities of the dipole-wall
collision problem, like for example the location and magnitude of the primary vor-
tex cores, the collision time of the first and second collision, vortex-trajectories,
vorticity on the wall, one-dimensional Chebyshev spectra and the pressure inside
the cores of the vortices. Here we studied the convergence in terms of the global
L2-error. It is, however, verified that convergence is achieved in terms of several
of the quantities mentioned above, like the magnitude and location of both the
primary and secondary vortex cores and the collision time. The computations of
Clercx & Bruneau are conducted in the square bounded geometry. It is observed
here that there is no significant difference between the simulations of the normal-
dipole wall collision in the channel geometry or the square geometry. Clercx &
Bruneau increase the initial Reynolds number Re= 625, 1250, 2500 and 5000. Here
the Reynolds number is fixed to a moderate value of Re = 1000, this allows a
better inspection of the asymptotic decay rate of the truncation or discretization
error within a feasible range of resolutions.

In this study we focused on the convergence of the schemes and did not address
the computational aspects like, for example, the amount of CPU, memory require-
ments and parallelization issues. Nevertheless, some additional remarks should be
made about the computational aspects of the different methods. In Table 3.1 the
computational costs per time step are given for the Chebyshev-Fourier computa-
tion (CF), Fourier spectral scheme (FF) and the coherent vortex method (CVS).
Both the Chebyshev-Fourier and Fourier spectral solver use the same FFT library
and are compiled with the same compiler and optimization options. De-aliasing
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of the spectral methods is performed using the zero padding technique or the 2/3
rule, see Ref. [81], thus requiring larger arrays than the number of active modes.
An estimate of the CPU costs presented in Table 3.1 is obtained by comparing
the array size in the normal direction to the no-slip wall and the well-known scal-
ing proportional to N logN of the number of operations required for the FFT, see
for example Ref. [13]. Note that more FFTs are necessary in the Fourier spectral
codes to incorporate volume-penalization, i.e. seven instead of five required for
the Chebyshev-Fourier computations. From Table 3.1 it can be deduced that the
actual costs per time step for the Fourier spectral method are two to three times
larger due to the need for an increased array size in the wall-normal direction and
extra FFTs related with the volume-penalization. The CPU-time of the CVS sim-
ulation is markedly larger. The most expensive routines are the operator adapted
wavelet decompositions to solve the Helmholtz and Poisson equations. It is antic-
ipated that a better optimized version of the CVS code will show a significantly
improved performance.

For a given resolution Table 3.1 indicates that the costs per time step are minimal
for the Chebyshev-Fourier benchmark. However, the time step for the Cheby-
shev methods is restricted by a local CFL-condition. The strong refinement of
the Gauss-Lobatto grid in the near wall region results in a stability condition
δt ≤ 9/M2 [17]. In Ref. [18] and Ref. [53] it is shown, on the other hand, that for
higher resolutions it is possible to relax this condition somewhat. The time step
for the Fourier spectral method with implicit time integration of the Darcy drag
scales only linearly with the number of Fourier modes. In this study the time step
was fixed to a relatively small value of δt = 10−5 for this comparative study. This
corresponds with a CFL-number less than 0.1 for the Fourier spectral scheme,
which keeps the error induced by the time scheme small with respect to the trun-
cation error. It may be expected that substantial speed up can be gained in this
respect for many practical applications while keeping the accuracy of the com-
putation. It is anticipated that the Fourier volume-penalization algorithm will be
more efficient than the Chebyshev-Fourier spectral code. We will analyze this issue
in further detail in the near future. Recall that it is straightforward to compute a
different geometry without additional computational requirements using volume-
penalization. This is not the case for Chebyshev spectral methods. For example
the costs per time step of the Chebyshev-Chebyshev spectral method (CC) for the
square geometry are substantially larger than the Chebyshev-Fourier method for
the periodic channel geometry. For N . 384 the costs of Chebyshev-Chebyshev
are proportional to N2log2N , but they become proportional to N3 for N & 384

The dipole-wall collision problem can be seen as a particular problem of fully devel-
oped 2D turbulence. Accurate simulation of the collision process can reveal some
important aspects e.g. the enstrophy production on the domain boundaries [23].
It is, however, important to perform simulations of fully developed bounded tur-
bulence, as well. For these simulations it is essential to have a high resolution in
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both the near-wall region and in the interior of the domain, where intensive vortex-
vortex interactions require high spatial and temporal resolution. The Fourier spec-
tral and CVS solver can benefit in this respect from the regular grids, while the
number of Chebyshev modes needs to be increased substantially due to the non-
regular Gauss-Lobatto grid.

In a future study we will conduct a more detailed analysis of the computational
aspects involving a wider range of CFD methods like lattice-Boltzmann, finite
differences and spectral elements. In addition, the potential of the Fourier and
adaptive wavelet scheme will be exploited for pursuing DNS of fully developed
high-Reynolds number two and three dimensional flows in complex geometries.
With respect to this purpose a promising development for CVS (see Ref. [27])
is to make the time-step adaptive in combination with adaptive multiresolution
discretizations in space.

Table 3.1 – Computational costs per time step of the Chebyshev-Fourier benchmark
(CF) computation, Fourier spectral scheme (FF) and coherent vortex simulation (CVS).
CF and FF are performed on Itanium 1.3 GHz and CVS on Itanium 1.5 GHz processor.
N represents the resolution in the wall normal-direction and M is resolution parallel to
the wall. Ntot and Mtot denote the total array size per direction required for the compu-
tation. The FFT costs are estimated with respect to the Chebyshev-Fourier benchmark.
Memory estimates are based on array size.

precision < 10−4 < 10−3

method CF FF CF FF CVS
N 1024 2730 384 682 1024
M 1364 1364 682 682 1024
Ntot 1536 4096 576 1024 1024
Mtot 2048 2048 1024 1024 1024
# FFT 5 7 5 7 -
FFT cost 1 4.2 1 2.7 -
CPU meas. 2.6 s 6.0 s 0.4 s 0.7 s 40 s
Memory est. 1 3 1 2 2
Memory meas. 231 MB 750 MB 66 MB 105 MB 630 MB



Chapter 4

Convergence study of an
oblique dipole-wall collisioni

In the second benchmark study an important extension is provided considering
an oblique dipole-wall collision at a significantly higher Reynolds number. In this
way it can be analyzed whether breaking of several symmetries of the square
will make Gibbs oscillations dynamically active. Furthermore, another crucially
important quantity for bounded 2D turbulence i.e. the total angular momentum
with respect to the centre of the square, is measured. The (artificial) angular
momentum production is also measured for a normal dipole-wall collision in a
square geometry that is rotated with respect to the underlying Cartesian mesh. The
results of these computations provide important information about the usability
of the volume-penalization approach for solving Navier-Stokes flow in complex
geometries.

4.1 Geometry error

In Chapter 3 and Keetels et al. [48] the truncation error and the penalization error
have been quantified by considering the convergence of a very challenging normal
dipole-wall collision. To verify if the volume-penalization approach is also capable
to solve more complicated geometries it is important to measure a third type of
error, i.e the geometry error. This error appears in case a non-trivial geometry
is approximated on a regular grid, see, for example the geometries displayed in
Fig 2.1a and Fig. 4.1. Recall that in the volume-penalization approach an obstacle
(here the rigid wall) is approximated on a regular grid with collocation points co-
inciding with the boundaries. To quantify the effect of the approximation error of
the geometry we study the angular momentum production of a normal dipole-wall

iThe contents of this chapter is an adapted version of Keetels et al. [45]
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(a) (b)

Figure 4.1 – Embedding of a square flow domain under an angle of 30 degrees with respect
to a square computational domain with a Cartesian grid. Mask function in complete
domain using 512× 512 grid points (a), magnification of a small section in the upper left
corner (b). Square box in upper left corner of panel (a) represent magnified area presented
in panel (b).

collision using the mask function of Fig. 4.1. Note that considering the symmetry
of a normal dipole-wall collision angular momentum should, ideally, be absent for
all times. Fig. 4.2 shows the angular momentum production versus time for dif-
ferent resolutions. It can be observed that a small amount of angular momentum
is produced due to the approximation of the rotated square with respect to the
Cartesian grid. Furthermore, the behaviour of the angular momentum depends
on the resolution. Table 4.1 displays some statistical quantities of the artificial
spin-up of the flow. Note that the data in table 4.1 can be seen as a alternative
measure of the numerical convergence of the Fourier spectral method with volume-
penalization. It confirms that the approximation of the rotated square geometry
on the Cartesian grid yields at best first-order convergence only. The magnitude

Table 4.1 – Statistics of angular momentum production of a normal dipole-wall collision
at Re = 1000 in rotated square geometry (see Fig. 4.1). Amplitude A = (Lmax−Lmin)/2,
maximum of dL/dt, and standard deviation of < dL/dt >.

N A max dL/dt < dL/dt >
340 1.5 × 10−3 2.0 × 10−2 1.5 × 10−2

682 9.0 × 10−4 9.6 × 10−3 6.0 × 10−3

1364 5.0 × 10−4 8.2 × 10−3 2.7 × 10−3

of the angular momentum production (here indicated by dL/dt) is, however, neg-
ligible compared with the amount of angular momentum production observed for
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an oblique dipole-wall collision (two or three magnitudes, see next section). This
indicates that the approximation error of the geometry is not a serious drawback
for the volume-penalization technique to model different geometries like circular
and elliptical domains, for turbulence simulations.
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Figure 4.2 – Angular momentum production during a normal collision at Re = 1000
using a rotated square domain as shown in Fig. 4.1. Different resolutions are used: the
number of active Fourier modes N = 340 (solid), N = 682 (dashed) and N = 1364
(dashed-dot).
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4.2 Oblique dipole-wall collisions

To increase the complexity of the flow problem, including the generation of multiple
scales, we consider an oblique collision in the square bounded geometry, as shown
in Fig. 2.1c, implying breaking of certain symmetries, and at a higher Reynolds
number Re = 2500. The benchmark computation for this problem is obtained by
the Chebyshev solver developed by Clercx [17]. In the square bounded geometry,
Chebyshev expansions are applied in both directions. Fig. 4.3a,b show the contour
lines of the vorticity of an oblique collision obtained by the Fourier spectral and the
Chebyshev benchmark computation, respectively. Note that Fig. 4.3a shows the
mollified Fourier projection of the vorticity. A comparison with the benchmark
computation shown in Fig. 4.3b demonstrates that the Fourier spectral scheme
with post-processing is able to compute the isolines of the small-scale structures
sufficiently accurately for this challenging problem. Fig. 4.4 shows a magnification

0.5 1
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0.5

1

(a) Fourier

0.5 1
0

1

(b) Benchmark

Figure 4.3 – Vorticity isolines of an oblique dipole-wall collision at t = 0.6 obtained with
a Fourier spectral method with volume-penalization with 2730 active Fourier modes and
the time step δt = 2×10−5. Fourier projection after mollification (a), and the benchmark
computation conducted with 640 Chebyshev modes in both directions and δt = 1.25×10−5

(b). Contour levels are drawn for -390, -370, .., -50, -30, -10, 10, 30, 50,.., 370, 390.
The dashed line represents the magnified area of Fig. 4.4.

of a small section of the oblique dipole-wall collision shown in Fig. 4.3. In Fig.
4.4a it can be observed that some Gibbs oscillations are present in the Fourier



4.2 Oblique dipole-wall collisions 73

projection of the vorticity. The mollification procedure of Tadmor & Tanner [104]
results, however, in smooth vorticity isolines, see Fig. 4.4b, that can reasonably
well be compared with the Chebyshev benchmark computation in Fig. 4.4c. Recall
that a more detailed analysis of the Gibbs oscillations including convergence in
the L2-sense is performed in [48]. In Fig. 4.3 and Fig. 4.4 it is confirmed that the
Gibbs oscillations do not trigger spurious effects during a very intensive oblique
dipole-wall collision. Note that reflection symmetry is absent for an oblique col-
lision. Therefore, it is crucial to apply the post-processing procedure of Tadmor
and Tanner [104] in both the wall-normal and wall-tangential direction. Important
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Figure 4.4 – Magnification of the vorticity isolines of the same simulations as presented
in Fig. 4.3. The Fourier projection of the vorticity (a), Fourier projection after mollifi-
cation (b), the benchmark (c).

global measures, i.e. the total enstrophy and angular momentum, are presented
in Fig. 4.5. The total enstrophy Z(t) is the L2-norm of the vorticity in the flow
domain Ωf . The angular momentum of the flow is computed with respect to the
centre of the container. It is found that the maximum error in the total enstrophy
is smaller than 1%. Recall that the quality of the post-processing procedure of
Tadmor & Tanner [104] is only second order in the vicinity of the wall and can-
not be applied on the wall itself. Therefore the accuracy in the total enstrophy is
slightly limited.

Clercx & Bruneau [18] found that it is difficult to achieve convergence in the
total angular momentum, especially after the second collision, due to its criti-
cal dependence on the position of strong small-scale vortices near the boundary.
Fig. 4.5b shows a very good agreement between the high-resolution benchmark
computation with 640 active Chebyshev modes in both directions and the Fourier
spectral computation with N = 2730 active Fourier modes. Note that the Fourier
spectral method corresponds to an equidistant grid, while the Chebyshev method
uses a Gauss-Lobatto grid that is strongly refined in the corners of the domain [17].
Therefore, it is not suprising that the required number of active Fourier modes is
larger than the number of Chebyshev modes to achieve mode convergence for this
particular problem. As we shall see in the following chapters full turbulence simu-
lation demonstrate, however, that small-scale vorticity patches and filaments are
advected deep into the interior of the flow domain. To resolve these small-scale
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structures in the centre of the domain using a Gauss-Lobatto grid would result in
an unfeasible number of active Chebyshev modes.
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Figure 4.5 – Total enstrophy Z(t) and angular momentum L(t) with respect to the
centre of the domain versus time. The Chebyshev benchmark computation is conducted
with 640 active Chebyshev modes in both directions and time step δt = 1.25×10−5 (solid),
Fourier spectral computation with volume-penalization obtained with N = 1364 (dots) and
N = 2730 active Fourier modes (dashed). For both runs a time step of δt = 2 × 10−5

and penalization parameter ǫ = 10−8 is used. Note that the dashed curve for the Fourier
spectral computation with N = 2730 active Fourier modes completely coincides with the
solid curve of the Chebyshev benchmark computation.

4.3 Conclusion and discussion

The numerical results of the present study demonstrate that it is possible to con-
duct stable and accurate Fourier spectral computations using volume-penalization
for both normal and oblique dipole-wall collisions. The satisfactory convergence
results for a normal collision at Re = 1000 reported in Keetels et al. [48] are
confirmed for an oblique collision at a substantially higher Reynolds number
Re = 2500. Note that reflection symmetry (about x or y-axis) is not present for
an oblique collision. As a consequence, Gibbs oscillations may potentially become
more dynamically active for an oblique collision compared to a normal collision.
It is found, however, that it is possible to remove the Gibbs oscillations from the
vorticity isolines appropriately with the same procedure as in the normal-wall col-
lision case considered in Chapter 3. An important and particularly challenging
measure of the convergence of an oblique collision is the total angular momentum
with respect to the centre of the container. It is observed that the method demon-
strates satisfactory convergence compared to a high-resolution Chebyshev spectral
scheme. Another interesting observation is that it is apparently not essential to
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resolve the details of the penalization boundary layer inside the obstacle. The thick-
ness of the penalization boundary layer is proportional to

√
νǫ and is certainly not

resolved by the Cartesian mesh used in the present study. This observation can
be related to formal expansion of the penalized Navier-Stokes solution (see [14,48]
for details). Only the higher-order terms in the

√
ǫ expansion rely on the details

of the penalization boundary layer. As a consequence, a
√
ǫ accuracy of the penal-

ized Navier-Stokes equations is possible without fully resolving the penalization
boundary layer. In the present study it is confirmed that an appropriately small
value for the penalization parameter (ǫ = 10−8) results in well-converged intensive
dipole-wall interaction.
The simulations with a rotated mask function demonstrate that the error induced
by the approximation of the geometry does not result in a significant production
of angular momentum. Therefore, the geometry error seems to remain quite small.
This result is important for adopting the volume-penalization method for flows in
complex geometries. It is in particular shown that the multiscale structures and
their dynamical behaviour are correctly predicted by this method. Furthermore,
important dynamical quantities such as the total enstrophy and angular momen-
tum are well resolved. In our opinion the combination of Fourier spectral methods
and volume-penalization can be useful to pursue DNS of turbulence in complex
geometries.





Chapter 5

Quasi-stationary states in a
circular geometry

In several numerical and experimental studies [19–21, 66] on freely evolving or
decaying 2D turbulence on a square bounded domain it is observed that a flow,
initially containing no net angular momentum, spontaneously acquires angular mo-
mentum by flow-wall interaction. From earlier work, by Li and Montgomery [60,61],
it could be conjectured that on a circular domain with no-slip boundaries angular
momentum production is absent. This observation has recently been confirmed by
Schneider and Farge [96] for decaying 2D turbulence with substantially higher ini-
tial integral scale Reynolds numbers. In this chapter we revisit the circular case.
First we discuss several techniques aimed at describing the end-state of freely
evolving flow. Then we proceed with the simulation of decaying turbulence in a
circular geometry. The role of the initial condition on the characteristic structure
of the end-state is examined.

5.1 Statistical mechanics and the minimum-enstrophy
principle

Several techniques have been developed to characterize the quasi-stationary state
of decaying 2D turbulent. For Euler flow a steady state can, according to Eq. (1.5),
be described as

J(ω, ψ) = 0. (5.1)

This constraint demands a functional form ω = g(ψ), with g an arbitrary function.
Although condition (5.1) corresponds with a steady state in the case of Euler flow,
it is observed in several studies [62, 66] that a functional relationship between the
vorticity and stream function is also present in the late-time evolution of freely

77
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decaying viscous flow.
Various statistical mechanical approaches have been developed since the early work
of Onsager [79] on equilibrium solutions of systems of point vortices. Based on a
maximum-entropy principle Joyce and Montgomery [43] showed that this equilib-
rium solution can be characterized by the sinh-Poisson equation, ω = c sinh(βψ).
Numerical simulations performed by Montgomery et al. [74, 75] on decaying 2D
Navier-Stokes turbulence on a double periodic domain demonstrate that the vor-
ticity and the stream function of the quasi-stationary end-state can reasonably
well be described by the sinh-Poisson relationship. Note that viscous dissipation
is not absent in the latter studies, which apparently has no dramatic consequence
for the conjecture of a functional relationship between the vorticity and stream
function. A different statistical mechanics approach is developed independently by
Miller [71] and Robert and Sommeria [89]. The main difference is that the con-
tinuous vorticity field is not described by means of point vortices, but in terms
of local probability distributions ρ(r, σ) of different vorticity levels σ at position
r. A locally averaged field of the vorticity or coarse-grained vorticity can then be
defined as,

ω̄(r) =

∫
ρ(r, σ)σdσ. (5.2)

Based on the statistical mechanics framework [71,89] Chavanis and Sommeria [16]
provided a classification of stationary Euler solutions for various geometries with
a free slip boundary condition. The coarse-grained vorticity is related with an
associated stream function on the fluid domain Ωf

ω̄ = −∆ψ̄ with ψ̄ = 0 on ∂Ωf . (5.3)

The energy associated with the coarse-grained flow field can be expressed as,

Ē =
1

2

∫
ψ̄ω̄d2r. (5.4)

Note that the energy is a conserved quantity of Euler flow. Another conserved
quantity is the global probability of the vorticity γ(σ)

γ(σ) =

∫
ρ(r, σ)d2r (5.5)

which is essentially the total area of each vorticity level. Furthermore, all the
moments of the vorticity are conserved,

Γ̄n =

∫
γ(σ)σndσ =

∫
ωnd2r. (5.6)

The first moment is the circulation of the coarse-grained vorticity and the sec-
ond moment represents the enstrophy after taking local averages of the squared
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vorticity. On a circular domain an additional conserved quantity in the Euler dy-
namics was recognized by Chavanis and Sommeria [16], which is the total angular
momentum now expressed as,

L̄ =

∫
ω̄r2d2r. (5.7)

The most probable state is obtained by maximizing the entropy,

S̄e = −
∫
ρ(r, σ) ln ρ(r, σ)d2rdσ. (5.8)

A variational problem can then be formulated where the conserved quantities are
considered as constraints. Chavanis and Sommeria [16] have studied in particular
the limit of strong mixing for which the probabilities ρ(r, σ) are close to uni-
form. In that case it can be shown that a linear relation between the vorticity
and the stream function can be assumed. The solution of the variational problem
and the associated maxima of the entropy is governed by a single control param-
eter Λ(Ē, Γ̄1, L̄). In case the circulation is zero, the control parameter represents
the angular momentum normalized with the kinetic energy. Chavanis and Somme-
ria [16] observed that an asymmetric dipolar state has the maximum amount of
entropy for a wide range of the control parameters. Furthermore, it is shown that
the statistical mechanical prediction in the limit of strong mixing is consistent with
the principal of minimum enstrophy proposed by Matthaeus and Montgomery [69]
and further explored for the case of circular symmetric vortices by Leith [59].
The minimum-enstrophy principal is motivated by selective decay, see Appendix
5.A, in the presence of weak viscous dissipation. The non-linear transfer of en-
strophy from the large scales towards the dissipation ranges enhances the selective
decay of the enstrophy. On the other hand, it can be expected in 2D flow that the
kinetic energy is confined to the largest scales of motion. It is then anticipated that
the enstrophy contained in the large scales reaches a minimum value for a given
value of the energy or additional constraints such as the circulation or the angular
momentum. Chavanis and Sommeria [16] compared their statistical mechanics ap-
proach with the minimum-enstrophy principle by considering the enstrophy based
on the coarse-grained vorticity,

Γcg
2 =

∫
ω̄2d2r, (5.9)

which is smaller than the total enstrophy Γ̄2. It is shown that an equivalent vari-
ational problem is obtained by minimizing the coarse-grained enstrophy Γcg

2 and
considering the energy Ē, circulation Γ̄1, and the angular momentum L̄ as con-
straints. Chavanis and Sommeria [16] demonstrate that exactly the same solutions
are obtained by the minimum-enstrophy variational problem as the statistical me-
chanical prediction based on a maximum-entropy principle in the limit of strong
mixing. Moreover, the value of the entropy and enstrophy of these solutions are
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algebraically related i.e. a higher maximum of the entropy corresponds with a
lower value of the enstrophy minimum and vice versa.
The correspondence between the minimum-enstrophy principle and the statisti-
cal mechanical predictions of Chavanis and Sommeria [16] holds for Euler flow
with a free slip boundary condition. For viscous flow and the presence of no-slip
boundaries the energy, angular momentum and circulation are no longer conserved
quantities. Therefore, the statistical mechanical predictions of the quasi-stationary
end-state of Chavanis and Sommeria may not be applicable for viscous flow. On
the other hand, it can be anticipated that minimum-enstrophy solutions may be
selected by Navier-Stokes flow due to the presence of selective viscous decay and
the dual cascade phenomenon. Therefore, the minimum-enstrophy states have been
computed, see Appendix 5.B. These states may be useful to study the develop-
ment of large-scale structures in freely decaying Navier-Stokes flow with no-slip
boundaries. In this chapter we compare the minimum-enstrophy states with flow
structures that emerge in the late time evolution of the decaying turbulence on
a circular domain. Furthermore, the stability of the minimum-enstrophy states is
studied numerically.

5.2 Setup of the simulations

The simulations in this section are performed in a circular geometry with a ra-
dius equal to one. Details of the simulations are collected in table 5.1. The initial
condition basically consists of 100 nearly equal-sized Gaussian vortices with a di-
mensionless radius 0.05. The initial condition is normalized such that the rms
velocity U = 1. This corresponds with a vortex amplitude ωmax ≃ 100. Half of the
vortices have positive circulation and the other vortices have negative circulation.
The vortices are placed on a regular lattice, well away from the boundaries. The
symmetry is slightly broken by a slight displacement of the vortex centres, see for
more details [21]. In Fourier transform space certain coefficients are set equal to
zero such that the initial angular momentum is zero within machine precision. A
smoothing function is applied to ensure that the initial flow is consistent with the
no-slip boundary condition. Additionally, some initial fields are generated that con-
tain net angular momentum. This is achieved by adding the fundamental Stokes
mode with a certain amplitude (runs 2a and 2b). The initial condition is then
normalized such that U = 1. In runs 3a and 3b the angular momentum is added
via a minimum-enstrophy solution in the branch j11 < γ < j31, see Appendix 5.B
for definitions. All runs are repeated twice and also two resolutions N = 512 and
N = 1024 have been applied to check for possible convergence issues. No signifi-
cant differences have been found.
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Table 5.1 – Overview of the disk simulations. The angular momentum of the initial
condition L0 is normalized with the Lsb, the amount of angular momentum of a fluid in
solid body rotation with the same level of the kinetic energy. The Reynolds number Re is
based on the rms velocity and unit radius of the circle. N denotes the spatial resolution,
ǫ the penalization parameter and δt the time step. Simulation 1a and 1b do not contain
angular momentum. In the initial condition of simulation 2a and 2b angular momentum
is added via the fundamental Stokes mode. For the initial condition of run 3a and 3b the
presence of net angular momentum is achieved by choosing a minimum-enstrophy state
in the branch j11 < γ < j31 with γ = 6.025, see Appendix 5.B. All the simulations are
performed twice with a statistically similar initial condition.

Number L0/Lsb Re N ǫ δt
1a 0 5000 512 10−8 5 × 10−4

1b 0 5000 1024 10−8 2.5 × 10−4

2a 0.18 5000 512 10−8 5 × 10−4

2b 0.18 5000 1024 10−8 2.5 × 10−4

3a 0.22 5000 512 10−8 5 × 10−4

3b 0.22 5000 1024 10−8 2.5 × 10−4

5.3 Initialization without angular momentum

Fig. 5.1 shows the vorticity of a run that is initialized without the presence of
angular momentum. It can be observed that the number of vortices decreases dra-
matically during the decay process. The formation, detachment and role-up of
vorticity layers from the boundaries is clearly present in almost all the frames.
Fig. 5.2 shows the corresponding stream function. Three typical patterns can be
recognized: an asymmetric quadrupole, a symmetric dipole state, and very late in
the decay process one observes an asymmetric dipole. Several transitions can be
observed between the asymmetric quadrupole and the symmetric dipole patterns.
The transition from a dipole state towards a quadrupole can be associated with
the role-up of vorticity layers from the boundaries into two new vortices. Li et
al. [62] discovered the quadrupole-dipole transition in a numerical simulation at a
lower initial Reynolds number of approximately 700. Maassen et al. [66] observed
this phenomenon in an experiment in a two-layer stratified fluid with a maximal
Reynolds number of 1500 − 2000.
The normalized angular momentum, integral length scale and Reynolds number

are presented in Fig. 5.3. The angular momentum is normalized with the amount
of angular momentum Lsb(t) that corresponds with a solid body rotation of the
fluid with an equal amount of energy E(t). Normalization with Lsb = Lsb(t = 0)
(dashed-line) in Fig. 5.3 confirms the conjecture that significant production of an-
gular momentum is absent in a circular geometry [60,61]. On the other hand, the
angular momentum normalized with Lsb(t) increases due to selective decay, see
Appendix 5.A for a comprehensive description of the selective decay mechanism.
The integral length scale L =

√
E/Z, is gradually increasing. Note that the in-

tegral length scale is based on the total enstrophy and energy of the flow. As a
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(a) t = 10 (b) t = 17

(c) t = 50 (d) t = 100

(e) t = 200 (f) t = 800

Figure 5.1 – Vorticity distribution of a Re = 5000 simulation initiated with L = 0.
Twenty gray scales are applied in a vorticity range [−20, 20] (a,b), [−10, 10] (c), [−5, 5]
(d), [−1, 1] (e) and [−0.01, 0.01] (f).

consequence it is affected by both the vorticity in the boundary layers and the
large-scale vortices. The fast oscillations in the integral length scale, see Fig. 5.3b,
can be associated with the production of vorticity during violent flow-wall inter-
action events. Note that finally these oscillations are absent as the internal flow
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(a) t = 50 (b) t = 100

(c) t = 200 (d) t = 800

Figure 5.2 – Stream function plot corresponding with the vorticity distribution of Fig. 5.1
for t = 50, 100, 200 and 800. Increments for negative (solid contours) and positive (dashed
contours) values are different at t = 800 in panel (d).

relaxes towards the end-state and the production of vorticity at the wall ceases.
The Reynolds number Re(t) of the flow, during the quadrupole-dipole transition
is larger than 500, thus the internal flow can still be considered as advection-
dominated.
An explanation of the quadrupole-dipole transition may be found in the frame-
work obtained from the minimum-enstrophy principle as developed in Appendix
5.B. A symmetric dipole is the absolute minimum-enstrophy solution for L = 0.
This solution is shown in Fig. 5.15f for the branch (m,n) = (1, 1), where m denotes
the angular periodicity of the solution and n controls the structure of the solu-
tion in the radial direction, see Appendix 5.B. A symmetric quadrupole belongs
to the branch with (m,n) = (2, 1), see Fig. 5.17f. Both the symmetric dipole and
the quadrupole are also solutions of the Stokes equation with no-slip boundaries,
see Appendix 5.A. In Fig. 5.4 it is demonstrated that the asymmetric quadrupole
solution is actually the sum of a symmetric dipole and a symmetric quadrupole.
Therefore, the dipole-quadrupole transition can be seen as an excursion between
the state with an absolute enstrophy minimum and a local enstrophy-minimum
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a) Angular momentum b) Length scale c) Reynolds number
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Figure 5.3 – Angular momentum L normalized with Lsb(t = 0) (dashed line) and Lsb(t)
(solid line), integral length scale L and Reynolds number Re based on the instantaneous
energy and radius. Data correspond with the vorticity as shown in Fig. 5.1 with initial
Reynolds number Re = 5000 and angular momentum L = 0.

state. Vorticity injection from the boundaries results in a significant reduction of
the integral length scale. Minimizing the enstrophy results then in the formation
of a quadrupole, which will gradually evolve towards a symmetric dipolar state.
A new cycle is initiated as soon as the vorticity layers detach from the boundary
again.
Note that the branch of solutions with (m,n) = (2, 1) for L = 0 contains many
other solutions, see Fig. 5.17f. Apparently, it is the symmetric quadrupole solu-
tion on this branch that plays a crucial role in the decay process. Later in the
decay process the relative angular momentum normalized with Lsb(t) increases
significantly due to selective decay, see Fig. 5.3a (solid line); the corresponding
minimal-enstrophy state is an asymmetric dipole, see Fig. 5.15b,c,d.
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(a) m = 1, n = 1 (b) m = 2, n = 1 (c) combination of (a) and (b)

Figure 5.4 – Stream function distribution of a linear combination of the (m,n) = (1, 1)
and the (m,n) = (2, 1) minimum-enstrophy solutions. The flow patterns do not contain
angular momentum.

5.4 Initialization with angular momentum

Fig. 5.5 presents the evolution of the vorticity distribution in case the initial flow
field contains net angular momentum, see table 5.1. From the vorticity plots and
the stream function shown in Fig. 5.6 it can be observed that the flow relaxes di-
rectly towards the asymmetric dipole state. There is no sign of dipole-quadrupole
transitions like in the case without initial angular momentum, as shown in Fig. 5.1.
Fig. 5.7 gives the evolution of the angular momentum, integral length scale and
Reynolds number. It is seen that the angular momentum normalized with Lsb(t)
shows some decay early in the flow evolution, but decays very slowly after t ≈ 20.
The angular momentum normalized with Lsb(t) increases almost linearly with time
due to selective decay. The integral length scale in Fig. 5.7b shows some fast oscil-
lations for t < 50, which can be associated with the formation and detachment of
the boundary layers. After t > 50 the integral length scale increases substantially,
which can be associated with the relaxation of the internal flow towards an asym-
metric dipole. The Reynolds number in Fig. 5.7c is larger than 500 for t < 150,
which clearly indicates that the asymmetric dipole is formed in the non-linear
regime. The formation of an asymmetric dipole in the presence of significant nor-
malized angular momentum is consistent with the minimum-enstrophy principle.
The flow smoothly relaxes to the branch of solutions with (m,n) = (1, 1), as shown
in Fig. 5.15, while the normalized angular momentum takes progressively larger
values. Note that there is no sign of a transition between this branch of solutions
and the neighbouring axisymmetric branch with j11 < γ < j31. The formation of
an asymmetric dipole and the absence of a quadrupole state has also been observed
experimentally by Maassen et al. [66] for a lower Reynolds number Re ≈ 2000.
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(a) t = 10 (b) t = 20

(c) t = 50 (d) t = 140

Figure 5.5 – Vorticity distribution of a Re = 5000 simulation initiated with normalized
angular momentum L = 0.18. Initial angular momentum is added via the axisymmetric
Stokes mode (m,n) = (0, 0). Twenty gray scales are applied in a vorticity range [−20, 20]
(a,b), [−10, 10] (c), [−5, 5] (d), [−1, 1] (e).

(a) t = 50 (b) t = 140

Figure 5.6 – Stream function that corresponds with vorticity fields shown in Fig. 5.5
for t = 40, and t = 140. Increments for negative (solid contours) and positive (dashed
contours) values are different.
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Figure 5.7 – Angular momentum L normalized with Lsb(t = 0) (dashed line) and Lsb(t)
(solid line), integral length scale L and Reynolds number Re based on the instantaneous
energy and radius. Data correspond with the vorticity as shown in Fig. 5.5.

5.5 Metastable minimum-enstrophy branch

Fig. 5.8 shows the vorticity distribution of a simulation that is initiated near an
axisymmetric minimum-enstrophy solution in the branch j11 < γ < j31 in the
diagram shown in Fig. 5.16. On top of this solution a vorticity field is added that
consist of 100 Gaussian vortices. During the first decay stage the vortices merge,
which yields an almost axisymmetric solution around t = 1 in Fig. 5.8a. The
stream function at t = 1 is given in Fig. 5.9. It can be observed that the global
streamline pattern at t = 1 is indeed close to the minimum-enstrophy state in the
branch j11 < γ < j31. The axisymmetric flow pattern breaks, however, rapidly into
a two-fold rotational symmetric state denoted by Z2 , see Fig. 5.8b. Afterwards the
vorticity from the boundary layers moves into the interior while the Z2 symmetry
is maintained for many turn-over times, see Fig. 5.8c,d. Finally, the Z2 symmetry
is broken and the flow evolves towards an asymmetric dipolar structure towards
the end of the non-linear regime. In Fig. 5.10 the distribution of the stream func-
tion is given. The highly asymmetric dipole structure can clearly be recognized in
Fig. 5.10b. The angular momentum, integral length scale and Reynolds number
versus time are given in Fig. 5.11. The angular momentum normalized with Lsb

slowly decays monotonically with time, whereas the angular momentum normal-
ized with Lsb(t) increases almost linearly with time due to selective decay. The
integral length scale Fig. 5.11b drops rapidly after t ≈ 10. This can be associated
with the injection of vorticity layers from the boundary in Fig. 5.8b,c and subse-
quent disruption of the large-scale structure of the flow in the interior. After the
collapse the integral length scale increases gradually as the flow relaxes toward the
asymmetric dipolar end-state.
Transition from the symmetric branch j11 < γ < j31 with a local minimum in the
enstrophy, towards the (m,n) = (1, 1) branch of the diagram (shown in Fig. 5.16)
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(a) t = 1 (b) t = 10

(c) t = 15 (d) t = 17

(e) t = 20 (f) t = 200

Figure 5.8 – Vorticity distribution of a Re = 5000 simulation initialized with 100 Gaus-
sian vortices plus the minimum-enstrophy state with γ = 6.025(for definitions, see ap-
pendix 5.B). The normalized angular momentum of the initial flow L = 0.22. Twenty gray
scales are applied in a vorticity range [−20, 20] (a,b), [−10, 10] (c), [−5, 5] (d), [−1, 1]
(e).

with an absolute minimum in the enstrophy, would imply a breaking of the ro-
tational symmetry. Apparently the rotational symmetry breaks via Z2 symmetric
state first and is then followed by a smooth relaxation towards an end-state so-
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Figure 5.9 – Stream function at t = 1 plotted with increments of 0.1. In the panel on the
right-hand side a cross-section of the stream function is given along the line 0 < r < 1
and φ = 0 (solid line), minimum-enstrophy solution in the branch j11 < γ < j31 of the
diagram in Fig. 5.16 containing axisymmetric solutions (dashed line) and a comparison
with the fundamental Stokes modes (dashed-dot line). All solutions are normalized such
that the energy is equal to one. The normalized angular momentum of the minimum-
enstrophy solution and the flow at t = 1 are the same.

lution in the (1, 1)-branch. This transition corresponds with a zigzag excursion in
the diagram in Fig. 5.16. The breaking of rotational symmetry into a Z2 sym-

(a) t = 20 (b) t = 200

Figure 5.10 – Stream function that corresponds with the vorticity distributions shown
in Fig. 5.8 for t = 20 and t = 200. In panel (a) negative (solid) and positive (dashed)
values are drawn with the same increments. In panel (b) increments for positive stream
function values are smaller for visualization purposes.

metric state is also found by Sarid et al. [91] for 2D Euler flow simulations and
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2D electron plasma experiments. Furthermore, Sarid et al. observed a breaking of
Z2 symmetry later in the flow evolution. The end-state in their simulations and
experiments strongly depends on the angular momentum and circulation (free-slip
boundaries) of the initial flow, as well.
It can be concluded that the minimum-enstrophy solutions in the branch j11 <
γ < j31 are metastable in the sense that they are stable for a few turn-over times,
but they become unstable for longer times due to the presence of an absolute min-
imum solution branch with (m,n) = (1, 1) in the vicinity, see the diagram 5.16. It
is verified that axisymmetric solutions in the branch 0 < γ < j11, with an absolute
minimum in the enstrophy are stable.
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Figure 5.11 – Angular momentum L normalized with Lsb(t = 0) (dashed line) and Lsb(t)
(solid line), integral length scale L and Reynolds number Re based on the instantaneous
energy and radius. Data correspond with the vorticity shown in Fig. 5.8.
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5.A Appendix: Selective decay

An important mechanism in freely evolving flow is the selective decay due to
viscous diffusion [69, 70]. To acquire understanding of this mechanism we will
examine a viscous diffusion problem in a circular geometry with no-slip boundaries.
In cylindrical coordinates (r, φ) the problem is formulated in vorticity form,

∂ω

∂t
= ν∆ω for 0 ≤ r ≤ a , 0 ≤ φ < 2π. (5.10)

The no-slip boundary condition (1.3) is considered at r = a. In section (1.1.1) it is
shown that the no-slip boundary condition can conveniently be described in terms
of the stream function,

ψ = 0,

ψr = 0, (5.11)

where ψr denotes the derivative in the radial coordinate direction. In addition a
periodic boundary condition:

ψ(r, φ+ π) = ψ(r, φ− π),

ψφ(r, φ+ π) = ψφ(r, φ− π), (5.12)

is considered, where ψφ is the derivative in the angular coordinate direction. Be-
cause the vorticity is related to the stream function ψ by a Poisson equation
ω = −∆ψ, problem (5.10) should actually be regarded as a fourth-order problem
in the stream function. For convenience we consider it as a second-order prob-
lem in the first place and solve later the Poisson problem with the boundary
conditions (5.11) to obtain the stream function. The Laplacian in cylindrical coor-
dinates (r, φ) reads ∆ = ∂rr + 1

r∂r + 1
r2 ∂φφ. Application of separation of variables

ω(r, φ, t) = R(r)Φ(φ)T (t) gives

∆ [R(r)Φ(φ)]

R(r)Φ(φ)
=

T ′(t)

νT (t)
= −γ2 (5.13)

and

r2
R′′(r)

R(r)
+ r

R′(r)

R(r)
+ γ2r2 = −Φ′′(φ)

Φ(φ)
= m2, (5.14)

where γ and m are the constants of separation. The time dependent part can read-
ily be solved, giving T (t) = exp(−νγ2t). For the angular dependent part of the so-
lution it is found that Φ = αmcos(mφ)+βmsin(mφ). The periodic boundary condi-
tion (5.11) only allows discrete values for the separation constant m = 0, 1, 2, 3, ....
For the r-dependent part it holds that,

R′′(r) +
1

r
R′(r) + (γ2 − m2

r2
)R(r) = 0, (5.15)
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which is essentially the Bessel differential equation, see e.g. Arfken and Weber [2].
It has solutions in the form of Bessel functions of the first kind Jm(γr). We take
R(r) = χmγ

2Jm(γr) (γ2 in the prefactor is merely a choice for convenience later
in the development). Reassembling the total solution for the vorticity gives,

ω =
∞∑

m=0

γ2Jm(γr)(αmcos(mφ) + βmsin(mφ))exp(−νγ2t), (5.16)

where we absorb the coefficient χm of the r-dependent part of the solution into
αm and βm. Note that no boundary condition at r = a has been applied yet, since
the no-slip boundary condition (5.11) cannot be defined in terms of the vorticity.
Therefore, we have to render the stream function ψ, which is now governed by the
following Poisson equation,

∆ψ = −
∞∑

m=0

γ2Jm(γr)(αmcos(mφ) + βmsin(mφ))exp(−νγ2t) (5.17)

for 0 ≤ r ≤ a and 0 ≤ φ < 2π, with accompanying boundary conditions ψ = 0
and ψr = 0 at r = a. Inspiration for a particular solution ψ̃ can be found in the
Bessel differential equation (5.15) itself, yielding

ψ̃ =
∞∑

m=0

Jm(γr)(αmcos(mφ) + βmsin(mφ))exp(−νγ2t). (5.18)

Now the Poisson problem can be transformed in a Laplace problem for the homo-
geneous part of the solution

∆ψ = 0, 0 ≤ r ≤ a, (5.19)

with boundary conditions at r = a

ψ = −
∞∑

m=0

Jm(γa)(αmcos(mφ) + βmsin(mφ))exp(−νγ2t) (5.20)

and

ψr =

∞∑

m=0

(γJm+1(γa)−
m

a
Jm(γa))(αmcos(mφ)+βmsin(mφ))exp(−νγ2t) (5.21)

for 0 ≤ φ < 2π. The bounded solution of the Laplace problem (5.19) on a circle is
given by

ψ = a0 +

∞∑

m=1

amr
mcos(mφ) + bmr

msin(mφ), (5.22)
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which can readily be obtained by separation of variables and taking into ac-
count the angular periodicity (5.12). Using the orthogonality of the Fourier system
{1, cos(mφ), sin(mφ)} we obtain from the boundary condition (5.20) for ψ at r = a,

am = −αma
−mJm(γa)exp(−νγ2t),

bm = −βma
−mJm(γa)exp(−νγ2t) (5.23)

and from the boundary condition (5.21) for ψr at r = a we find

am = αm

[ γ

mam−1
Jm+1(γa) − a−mJm(γa)

]
exp(−νγ2t),

bm = βm

[ γ

mam−1
Jm+1(γa) − a−mJm(γa)

]
exp(−νγ2t). (5.24)

For consistency of (5.23) with (5.24) it is required that Jm+1(γa) ≡ 0, hence the
constant of separation γ has discrete values denoted by

γmn =
j(m+1)n

a
, (5.25)

where j(m+1)n represents zero number n = 1, 2, 3, .. of the (m + 1)-order Bessel
function of the first kind. The total solution of the Stokes problem (5.10) becomes

ψ =

∞∑

m=0

∞∑

n=1

ψmnexp(−νγ2
mnt), (5.26)

with

ψmn = αmn

[
Jm(γmnr) − rm

am Jm(γmna)
]
cos(mφ)+

βmn

[
Jm(γmnr) − rm

am Jm(γmna)
]
sin(mφ)

(5.27)

and for the vorticity

ω =

∞∑

m=0

∞∑

n=1

γ2
mnJm(γmnr) [αmncos(mφ) + βmnsin(mφ)] exp(−νγ2

mnt). (5.28)

The coefficients αmn and βmn can be determined by an appropriate initial con-
dition. Orthogonality conditions of the Fourier-Bessel series [2] are useful for this
purpose.

It can be observed in (5.26) and (5.28) that the dissipation rate of mode ψmn or
ωmn is determined by the separation constant or Stokes eigenvalue γmn of the prob-
lem (5.25). The hierarchy in the dimensionless eigenvalues j1n < j2n < j3n < ...,
implies that the axisymmetric modes corresponding with j1n decay slower com-
pared with the modes that have an angular periodicity m = 1, 2, 3, .... Note that
only the axisymmetric modes contain angular momentum. The second hierarchy
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jm1 < jm2 < jm3 < ... implies that the modes with the same angular periodicity,
but more variation in the radial direction dissipate faster. The Stokes dimension-
ful eigenvalue γ corresponds with a characteristic length scale of each mode, note
that the dimension of [γ] = m−1. Therefore, it can also be expected on dimen-
sional grounds and (5.10) that a higher value of the eigenvalue will result in a
faster viscous decay rate of the mode.
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5.B Appendix: Minimum-enstrophy principle on

a circular domain

In this section a minimum-enstrophy principle [58, 69, 70] is applied for flows in a
circular geometry with a no-slip wall. Based on this principle a variational problem
will be formulated and a derivation of the set of solutions will be given. Further-
more, the solutions will be organized in a diagram that may serve as a framework
to understand the complicated structure of the end-state of decaying flow in a
circular geometry. For an introduction to the variational technique applied here
one can consult for instance Arfken and Weber [2].
We are seeking stationary values of the integral

Z[ψ] =
1

2

∫

C
ω2dA =

∫

C
Υ(ψxx, ψyy)dA (5.29)

where Υ(ψxx, ψyy) = 1
2ω

2. In conjunction we consider constraints in the total
kinetic energy

E[ψ] =
1

2

∫

C
ωψdA =

∫

C
Ξ(ψ, ψxx, ψyy)dA ≡ 1 (5.30)

and in the total angular momentum

L[ψ] = 2

∫

C
ψdA =

∫

C
f(ψ)dA ≡ constant, (5.31)

where Ξ(ψxx, ψyy, ψ) = 1
2ωψ, f(ψ) = 2ψ, ω denotes the vorticity and ψ the stream

function, with ω = −∆ψ. By using the Lagrange multipliers λ1 and λ2 it is possible
to absorb the constraints (5.30) and (5.31) in the variation of Z[ψ], thus

δ

(∫

C
g(ψ, ψxx, ψyy)dA

)
= 0 (5.32)

where g(ψ, ψxx, ψyy) = Υ(ψxx, ψyy)+λ1f(ψ)+λ2Ξ(ψ, ψxx, ψyy). The correspond-
ing Euler-Lagrange equation for this problem reads,

∂g

∂ψ
+

∂2

∂x2

∂g

∂ψxx
+

∂2

∂y2

∂g

∂ψyy
= 0 on C, (5.33)

by mere substitution this yields,

∆2ψ − λ2∆ψ = −2λ1 on C. (5.34)

For convenience we define γ2 = −λ2 and Γ = 2λ1, hence

∆2ψ + γ2∆ψ = −Γ on C, (5.35)
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where we consider no-slip boundaries on ∂C to close the problem. In terms of the
vorticity (5.35) reads,

∆ω + γ2ω = Γ on C (5.36)

A particular solution ω̃ in the cylindrical coordinates (r, φ) is readily obtained,

ω̃ =
Γ

γ2
(5.37)

For the homogeneous ω̄ part holds a Helmholtz equation of the form,

∆ω̄ + γ2ω̄ = 0 on C, (5.38)

which can easily be solved with separation of variables and assuming a periodic
condition in the angular direction, see appendix 5.A. The total solution ω = ω̄+ ω̃
is now given by,

ω =

∞∑

m=0

γ2Jm(γr) [αmcos(mφ) + βmsin(mφ)] +
Γ

γ2
, (5.39)

where m = 0, 1, 2, 3, .... Since the boundary condition is defined in terms of ψ and
ψr we have to compute the stream function, which is now governed by a Poisson
equation of the form

∆ψ = −
∞∑

m=0

γ2Jm(γr) [αmcos(mφ) + βmsin(mφ)] − Γ

γ2
, (5.40)

with accompanying boundary conditions ψ = ψr = 0 at r = a. A particular
solution ψ̃ is given by

ψ̃ =

∞∑

m=0

Jm(γr) [αmcos(mφ) + βmsin(mφ)] − Γ

4γ2
r2 + c1, (5.41)

where c1 is a constant. The homogeneous part is then described by a Laplace
equation,

∆ψ̄ = 0 on C. (5.42)

By considering the particular solution (5.41) one can formulate a boundary con-
dition for the homogeneous part ψ̄ at r = a,

ψ̄ = −
∞∑

m=0

Jm(γa) [αmcos(mφ) + βmsin(mφ)] +
Γa2

4γ2
− c1 (5.43)

and a boundary condition in ψ̄r at r = a,

ψ̄r =

∞∑

m=0

[
γJm+1(γa) −

m

a
Jm(γa)

]
[αmcos(mφ) + βmsin(mφ)] +

Γa

2γ2
. (5.44)
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This problem can be solved by using the general (bounded) solution of the Laplace
equation on a circle

ψ̄ = a0 +

∞∑

m=1

amr
mcos(mφ) + bmr

msin(mφ). (5.45)

The coefficients am and bm can be determined by using the orthogonality of
the Fourier system {1, cos(mφ), sin(mφ)} and the boundary conditions (5.43) and
(5.44) at r = a.

For m = 0 the boundary condition for ψ̄ gives a0 = −J0(γa)α0 + Γa2

4γ2 − c1, while

the boundary condition for ψ̄r requires that α0 = − Γa

2γ3J1(γa)
. The stream function

for m = 0 is then given by,

ψ = − Γa

2γ3J1(γa)
[J0(γr) − J0(γa)] +

Γ

4γ2
(a2 − r2), (5.46)

and the vorticity by

ω = − Γa

2γJ1(γa)
J0(γr) +

Γ

γ2
. (5.47)

Recall that Γ and γ are the Lagrange multipliers in the variational problem, re-
lated to the constraints in the total kinetic energy and enstrophy.

For m > 0 it follows that am = −αmJm(γa)a−m, bm = −βmJm(γa)a−m and γ can
only be chosen from the discrete set γ = γmn, which is defined by Jm+1(γmna) = 0.
The solution for m > 0 is

ψ = − Γa

2γ3
mnJ1(γmna)

[J0(γmnr) − J0(γmna)] +
Γ

4γ2
mn

(a2 − r2)

+αmn

[
Jm(γmnr) − Jm(γmna)

rm

am )
]
cos(mφ)+

βmn

[
Jm(γmnr) − Jm(γmna)

rm

am

]
sin(mφ),

(5.48)

with vorticity,

ω = − Γa

2γmnJ1(γmna)
J0(γmnr) + Γ

γ2
mn

+αmnγ
2
mnJm(γmnr)cos(mφ) + βmnγ

2
mnJm(γmnr)sin(mφ).

(5.49)

Note that the parameter γ for m > 0 is determined by the boundary conditions,
whereas for the axisymmetric case m = 0 the parameter γ acts as a Lagrange
multiplier. For m > 0 two new parameters αmn and βmn appear and γ = γmn.
Note that these new parameters, which are not present in the original formulation
of the problem, are related to the phase of the solution in the angular direction.
In the computation of the total kinetic energy these parameters essentially act
as a single parameter of the form α2

mn + β2
mn. Therefore, there are in fact only
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Figure 5.12 – Cross-sectional distributions of the stream function and vorticity for the
axisymmetric case. The parameter γ is chosen between j11 < γ < j12 and Γ is chosen
such the total kinetic energy is normalized to unity. The thick line represents the case
γ = j11/20.
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Figure 5.13 – Cross-sectional distributions of the stream function and vorticity for the
axisymmetric case. The parameter γ is chosen between j12 < γ < j13 and Γ is chosen
such that the total kinetic energy is normalized to unity.

two undetermined parameters Γ and α2
mn +β2

mn concerning the constraints in the
total kinetic energy and angular momentum. It is also important to realize that
the angular dependent part of the solution does not carry net angular momentum.

We start with a description of the axisymmetric solutions. Without loss of gener-
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ality the unit circle a = 1 will be considered. The Lagrange multiplier Γ is chosen
such that the total kinetic energy is E = 1. Fig. 5.12 shows the stream function
and the vorticity for γ = j11/20 and for j11 < γ < j12, where j1n denotes the
n-th zero of the first-order Bessel function, i.e. J1(j1n) = 0. It is observed that for
γ = j11/20 a domain filling structure appears that has a maximum in the centre
and a minimum at the domain boundary. The other solutions for 0 < γ < j11 (not
shown) have a similar appearance.
The first mode in the branch j11 < γ < j12 shows resemblance with the previous
mode. However, increasing γ until j12 we observe that the minimum moves from
the domain boundary into the interior of the domain. Fig. 5.13 shows the branch

L̃
→
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0
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Figure 5.14 – Net angular momentum L̃ = |L|/Lsb normalized with Lsb versus the
integral length scale L for the axisymmetric solutions. Note that 0 < j11 < j31 < j12 <
j32 < j13 < j33 < j14 < j34 < j15 < j35. The curves corresponding with γ < j35 are not
shown.

of solutions with j12 < γ < j13. The stream function takes an entirely different
shape compared to the branch j11 < γ < j12 in Fig. 5.12. The bifurcation in the
solutions at γ = j1n can be associated with the presence of γ in the nominator
of the first term in the expression of the stream function (5.46) and vorticity (5.47).

Fig. 5.14 presents the axisymmetric solutions in a diagram with the normal-
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(a) L = 0.238 (b) L = 0.235

(c) L = 0.226 (d) L = 0.207

(e) L = 0.195 (f) L = 0.194

Figure 5.15 – Contour lines of ψ for the solution branch with (m,n) = (1, 1) and γ = j21.
Panel (a) corresponds with the axisymmetric case with α11 = β11 = 0 and Γ 6= 0. Panel
(f) shows the fully periodic case with α11 6= 0, β11 = 0 and Γ = 0. The other solutions
in the panels (b-e) are a linear combination of (a) and (f) with Γ 6= 0 and α11 6= 0 and
β11 = 0. The angular momentum L = 0.5763 (a), 0.5580 (b), 0.5099 (c), 0.3473 (d),
0.1068 (e), respectively, and L = 0 (f). In panels (a-e) the increment size for the negative
values of ψ differs from the increment size for the positive values of ψ. In panel (f) the
increments are the same for both negative and positive values of ψ.
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Figure 5.16 – Position of periodic solutions in the diagram with the normalized angu-
lar momentum versus the integral length scale. Axisymmetric solutions (solid), solutions
with (m,n) = (1, 2) (dashed, left) and (1, 1) (dashed, right) and (3, 1) (dashed-dot). The
solutions (3, 1) are situated at L ≈ 0.156 and L = 0. Periodic solutions branch from
axisymmetric m = 0 curves at γ = j(m+1)n.

ized angular momentum L versus the integral length scale L. Note the ordering in
the parameter γ along the different branches. The new branch of solutions starts
at γ = j1n. The axisymmeteric solutions for γ = j3n, do not contain angular mo-
mentum. Fig. 5.17a gives an example of the axisymmetric solution for γ = j31.
A sequence of solutions is generated with periodicity (m,n) = (1, 1) with γ = j21.
The stream function distributions belonging to this branch are given in Fig. 5.15.
Fig. 5.15a shows an axisymmetric solution that contains a significant amount of
angular momentum. The stream function in Fig. 5.15f corresponds with the other
limiting case on the branch with γ = j21, which is essentially a Stokes mode, see
Section (5.A). The other solutions are a linear combination of the symmetric dipole
and the axisymmetric component, where the relative contribution is controlled by
the parameters Γ and α2

11 + β2
11, see (5.48) and (5.49).

Fig. 5.16 shows the position (dashed line on right-hand side) of this branch of
solutions in the diagram. For comparison the purely axisymmetric solutions pre-
sented in Fig. 5.14 are also given (solid lines). Solutions with higher periodicity,
e.g. (m,n) = (1, 2), (2, 1) and (3, 1) emerge at much smaller integral length scales,
corresponding with γ = j22, γ = j31 and γ = j41, respectively. A very interesting
branch of solutions with (m,n) = (2, 1) can be found at γ = j31. All the solu-
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(a) L = 0.156 (b) L = 0.156

(c) L = 0.156 (d) L = 0.156

(e) L = 0.156 (f) L = 0.156

Figure 5.17 – Branch of solutions for (m,n) = (2, 1) and γ = j3n. All solutions have
the same integral length scale L = 0.156 and do not contain angular momentum.

tions on this branch correspond with a specific value of the integral length scale
L = 0.156 whereas the angular momentum L is zero. Fig. 5.17 gives the stream
function distributions of the (m,n) = (2, 1) branch. Note that even the axisym-
metric solution in Fig. 5.17a does not contain angular momentum. The angular
dependent part with periodicity m = 2 (a quadrupole) is essentially the Stokes
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mode that corresponds with an eigenvalue of γ = j31. Other examples of m = 3
periodic solutions are given in Fig. 5.18.

(a) L = 0.147 (b) L = 0.140

(c) L = 0.134 (d) L = 0.133

Figure 5.18 – Branch of solutions for (3, 1). Angular momentum L = 0.577 (a), 0.453
(b), 0.261 (c) and 0.0723 (d).





Chapter 6

Spin-up in an elliptic
geometry i

6.1 Introduction

Many characteristic phenomena of two-dimensional (2D) turbulence, such as the
formation of coherent structures, vorticity filamentation, the turbulent dual cas-
cades, are usually analyzed theoretically or studied numerically in the absence of
rigid boundaries. Moreover, in experimental studies it is often assumed that rigid
walls are located at a sufficient distance from the measurement area so that any
influence of the walls is assumed negligible. Interaction of 2D flows with a no-slip
boundary can, however, dramatically affect the evolution of both decaying and
forced 2D turbulence, see for a recent overview [40]. In the present chapter we fo-
cus on the spontaneous production of angular momentum L (the precise definition
will follow), and associated spontaneous symmetry breaking of the flow, due to
the interaction of decaying 2D turbulence with elliptical, no-slip sidewalls.
One of the first remarkable results in this field hinting at the special role of the
angular momentum were obtained numerically by Li et al. [60, 62]. These authors
reported that the decay scenario of 2D turbulence in a circular geometry with a
no-slip boundary strongly depends on the net angular momentum contained by the
initial flow field. Any angular momentum production due to flow-wall interactions
seems insignificant for this particular geometry. It was found that the late-time
state strongly depends on the amount of angular momentum introduced during
the initialization of the flow. In particular, an initial flow field without significant
angular momentum yields after a rapid self-organization process a quadrupolar
structure filling the circular container. This structure eventually evolves towards
a dipolar structure in the late-time flow evolution. On the other hand, an initial
turbulent velocity field containing some net angular momentum evolves into a

iThe contents of this chapter is an adapted version of Keetels et al. [47]
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large monopolar structure that eventually fills the entire container. The numerical
predictions of Li et al. [61, 62] have been confirmed experimentally by Maassen
et al. [65]. Typical initial integral-scale Reynolds numbers in the numerical and
experimental studies were Re = UW/ν ≈ 2× 103, with U the rms velocity, W the
size of the container, and ν the kinematic viscosity of the fluid.
Similar simulations and experiments have been conducted for decaying 2D turbu-
lence in square domains by Clercx et al. [19,21]. These studies gave an essentially
different picture. It was observed that the no-slip boundaries of the square con-
tainer exert a net torque on the fluid such that the flow, which has initially no
significant amount of angular momentum, acquires angular momentum during the
decay process. As a consequence, rapid production of angular momentum can re-
sult in a large monopolar or tripolar vortex completely filling the domain later on
in the flow evolution, a clear sign of spontaneous symmetry breaking of the flow. It
was reported that in an ensemble of simulations with an initial Reynolds number
of Re = 2 × 103 a part of the runs showed strong spin-up effects [19]. However,
for an ensemble of runs with initially Re = 104 revealed that all the simulations
show a flow evolution following the scenario with sudden and strong spin-up [21],
although the flow in the container after it has spun up consists basically of a sea of
smaller-scale vortices on top of a domain-filling swirling flow. Approximately one
half of the runs showed the emergence of a clockwise swirl, and the other half an
anti-clockwise motion, thus on average symmetry breaking is absent, as is to be
expected.

6.2 Angular momentum production

In a recent study of the circular case [96] it was shown that the production of
angular momentum on a circle is negligible for higher Reynolds numbers, up to
Re = 5 × 104, as well. Montgomery [73] suggests, that the elliptical geometry in
particular would be a good starting point to further investigate the behaviour of
bounded 2D fluids. A hint to explain the dramatic influence of the shape of the
no-slip boundary may be found in the angular momentum balance,

dL

dt
=

1

ρ

∮

∂D
p(r, t)r · ds +

1

Re

∮

∂D
ω(r, t)(r · n)ds (6.1)

where the angular momentum is defined as

L =

∫

D
r × udA =

∫

D
(xv − yu)dA. (6.2)

Here, we introduced a Cartesian coordinate system (x, y) with origin in the centre
of the container, and u = (u, v) with respect to this coordinate system. Further-
more, p represents the pressure, ρ is the fluid density and ω = ∂v

∂x − ∂u
∂y is the

vorticity associated with the 2D velocity field u. The first term on the right-hand
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side of (6.1) represents the pressure contribution and the second term the effect of
viscous shear and normal stresses. An important result can directly be conjectured
from (6.1): the pressure term is essentially zero on the boundary of the circular
domain, since r ·ds ≡ 0. This signifies that although the pressure distribution over
the domain boundary may be asymmetric it does not yield a net torque to the
interior fluid. For flows on the square domain it is, however, reported by Clercx et
al. [21] that it is essentially the pressure term that guides the spin-up process as it
is orders of magnitude larger than the viscous stress contribution represented by
the second term on the right-hand side in (6.1).
To investigate the generalization towards an elliptic geometry it is useful to rep-
resent (6.1) in the cylindrical elliptic coordinate system (η, ξ), where a constant
ξ and variable η in the range 0 < η < 2π describe an elliptic curve. For conve-
nience we keep the major-axis a ≡ 1 while the minor-axis b = 1− δ is in the range
0 < b ≤ 1 in the following. The angular momentum balance then reads,

dL

dt
=
δ(δ − 2)

2ρ

∮

∂D

p(η)sin(2η)dη +
(1 − δ)

Re

∮

∂D

ω(η)dη. (6.3)

The pressure term in (6.3) is of order δ and will grow linearly with the deviation
from the circle geometry. The contribution of the viscous stresses remains small.
Note that in an elliptic geometry a broken symmetry in the pressure distribution
over the domain boundary can, in principle, yield a global spin-up of the fluid
in the interior. Summarizing: by making a small change δ from a circular to an
elliptic geometry we can tune the relative contribution of the pressure term and
the viscous stresses in the angular momentum balance.
For normalization of the angular momentum it is important to know the maximum
amount of angular momentum that can be present on an elliptic domain for a given
amount of the total kinetic energy E = 1

2

∫
D

(u2 + v2)dA. For arbitrary geometries
(and irrespective of the boundary conditions) it is helpful to introduce a limit to
the angular momentum with a Schwarz inequality yielding,

L ≤ ||r||2||u||2 = ||r||2
√

2E (6.4)

where ||.||2 denotes the L2 norm. The right-hand side of inequality (6.4) equals the
amount of angular momentum if the fluid is in solid body rotation. Impermeability
of the elliptic boundary prevents that the fluid can obtain a full solid body state.
It is, however, possible to derive an upper bound for the angular momentum that
is consistent with the impermeability of the elliptic boundary. By virtue of the
incompressibility condition ∇·u = 0 we can introduce a stream function according
to u = ∂yψ and v = −∂xψ. An impermeable boundary can be modelled by setting
ψ = 0 at the boundary. Now it is convenient to reformulate the angular momentum
and total kinetic energy as L = 2

∫
D ψdA and E = 1

2

∫
D ωψdA. Using standard

variational techniques [2] it is straightforward to show that the variational problem
L[ψ] with constraint E[ψ] = 1 yields a Poisson equation, ∇2ψ = −2Ω with ψ = 0
on the boundary. The Lagrange multiplier Ω equals the angular velocity in the
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case of solid body rotation on the circle. The solution normalized with the amount
of angular momentum of the same fluid in solid body rotation reads,

L̃ =
2

b/a+ a/b
(6.5)

where a and b represent the major and minor half-axes of the ellipse, respectively.
Fig. 6.1 shows the solutions of the Poisson problem on the ellipse and the corre-
sponding upper bound for the angular momentum. The streamline pattern has the
appearance of a single cell filling the entire container.
Keeping in mind the tendency to axisymmetrization of a domain filling vortex, we
also consider an alternative streamline pattern (Fig. 6.1, bottom). It is computed
by a conformal map (modified Joukowski) of solid body rotation on a circle to an
elliptic geometry. A single concentric cell appears in the centre, while the stream-
lines become eccentric when moving radially outward.
Both patterns show that for small deviations of the minor-axis from the unit circle
(b > 0.7) the amount of angular momentum that can be reached is more than
90% of solid body rotation. For larger eccentricities, i.e. δ & 0.3, on the other
hand, the angular momentum vanishes much faster. Recall that the upper bound
is derived by only demanding impermeability of the boundary, allowing a free-slip
velocity at the boundary. Incorporation of a no-slip boundary condition in the
variational problem is not possible. Demanding an extra condition, i.e. zero cir-
culation, Γ =

∫
D ωdA = 0, yields the same Poisson equation though with Cauchy

boundary conditions, which are too restrictive on a closed surface [2].

6.3 Numerical method

The numerical results are obtained by a Fourier spectral solver combined with an
immersed boundary technique, known as “volume-penalization” or “Brinkman pe-
nalization” to incorporate the no-slip boundary condition. The concept proposed
by Arquis & Caltagirone [3] is to model a solid obstacle with no-slip boundaries
as a porous obstacle with an extremely small permeability. The flow domain Ωf is
embedded in a computational domain Ω, such that Ωf = Ω \ Ωs, where Ωs repre-
sents the volume of the porous objects. The interaction with the porous objects is
modelled by adding a Darcy drag term to the incompressible Navier-Stokes equa-
tions locally inside Ωs. This gives the penalized Navier-Stokes equation defined for
x ∈ Ω

∂t u + (u · ∇)u + ∇p− ν∆u +
1

ǫ
Hu = 0, (6.6)

which are accompanied by the continuity equation for x ∈ Ω

∇ · u = 0, (6.7)



6.3 Numerical method 109

L

0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1

b

Figure 6.1 – Upper bound (solid line) for the angular momentum in an elliptic geometry,
normalized with angular momentum of the fluid in solid body rotation, versus size of the
minor half-axis b while the major half-axis a = 1 is fixed. Inset shows the streamlines for
b = 0.5 for the Poisson solution (top) and the streamlines obtained by conformal mapping
of a uniform rotation on the circle to an ellipse (bottom). The dashed line denotes angular
momentum of the conformal mapping result.

where ǫ is the penalization parameter and H represents a mask function defined
as

H =

{
1 if x ∈ Ωs

0 if x ∈ Ωf .

Note that inside the obstacle Ωs Darcy drag is added and inside the flow domain
Ωf the usual Navier-Stokes equations is considered. The initial velocity is defined
inside the flow domain Ωf . Inside the obstacle the initial condition can be extended
to the porous obstacle by setting the initial velocity equal to zero inside the domain
Ωs. As a result, the initial condition is properly defined on the entire computational
domain Ω. In this study the mask function is chosen such that the elliptic flow
domain is sufficiently embedded inside the computational domain Ω. By simply
changing the shape of the mask function it is possible to solve another elliptic ge-
ometry with a different eccentricity. This is employed by fixing the major half-axis
a = 1 and varying the minor-axis b. In contrast to other immersed boundary tech-
niques the method is fully theoretically justified [14], [1]. The penalization error is
proportional to

√
ǫ. Various numerical benchmark studies are available [1, 51, 92]

and some 2D turbulence studies have already adopted the method [12, 96]. The
Fourier-spectral scheme with volume-penalization applied in the present study is
validated by a detailed convergence analysis on vortex-wall collisions [48]. It was
found that it is possible to make the penalization error smaller than the truncation
error. Note that the penalization parameter is actually an arbitrary parameter. If
an appropriate time-scheme is applied unusual restrictions on the time-step are
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avoided as well.
Important features of the method are the straightforward implementation of (curved)
no-slip boundaries and the efficient computation of 2D turbulence on arbitrary
closed domains with parallellized Fourier pseudospectral codes. The flow is initial-
ized by the same procedure as used in the study of Clercx et al. [21] on spontaneous
angular momentum production in a square geometry. The initial condition consists
of 100 nearly equal-sized Gaussian vortices with a radius 0.05 normalized with the
major half-axis a of the ellipses (a = 1) and vortex amplitude ωmax ≃ 100 nor-
malized with rms velocity U = 1 and the major half-axis. Half of the vortices have
positive circulation and the other vortices have negative circulation. The vortices
are placed on a regular lattice, well away from the boundaries. The symmetry is
slightly broken by slight displacement of the vortex centres. In Fourier transform
space certain coefficients are set equal to zero, such that the initial angular mo-
mentum is zero within machine precision. A smoothing function [21] is applied to
ensure that the initial flow is consistent with the no-slip boundary condition.
The ensemble simulations are conducted with a total number of 10242 Fourier
modes. The penalization parameter is ǫ = 10−8 and the time-step is δt = 10−4.
The folowing values for minor half-axis b have been considered: b = 1.0, 0.95, 0.9,
0.8 and 0.7. For each case 12 ensemble runs are performed. The flow is initialized
such that the rms velocity U = 1. The majority of the runs has an initial Reynolds
number of Re = aU/ν = 104. For one case, b = 0.9, the Reynolds number is in-
creased to Re = 2×104. These runs require a larger resolution up to 20482 Fourier
modes. To check if convergence is achieved lower spatial resolution computations
have been performed for the same initial condition for each value of the minor-axis
b. Furthermore, it is verified that the enstrophy dissipation length scale, defined

as 2π
(
ν3/χ

)1/6
, with χ denoting the enstrophy dissipation rate per unit area, is

well resolved. The required resolutions are consistent with the convergence study
of the numerical scheme based on vortex-wall interaction [46, 48].

6.4 Decaying 2D turbulence in elliptic geometries

Snapshots of the vorticity field from a decaying turbulence simulation in an elliptic
domain with minor-axis b = 0.8 are displayed in Fig. 6.2. The initial integral-scale
Reynolds number is Re = 104, which eventually decreased to Re ≈ 2 × 103 at
the end of the simulation. The first stage of the decay process is characterized by
intense vortex-wall interactions and vortex merger events in the interior of the flow
domain. Later the vortex density decreases, while a large-scale monopolar vortex
starts to fill the interior of the elliptic domain. In Fig. 6.3 the Reynolds number
Re = aU/ν = a

√
2E(t)/abπ/ν and integral length scale L(t) =

√
E(t)/Z(t)

(where Z(t) = 1
2

∫
D ω

2dA denotes the total enstrophy) are given. The Reynolds
number is larger than 2000 for τ < 500, implying that the large-scale vortex
develops in the non-linear regime. (Note for τ → ∞ the flow is finally governed
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τ = 6, Re = 8.5 × 103 τ = 70, Re = 5.5 × 103

τ = 200, Re = 3.3 × 103 τ = 500, Re = 2.1 × 103

Figure 6.2 – Vorticity plots of a run with an initial Reynolds number Re = 104 and
minor-axis b = 0.8. White indicates positive vorticity, black negative. For τ = 500 also
the contour lines of the stream function ψ are shown with an increment of 0.02. Time
is made dimensionless by the turnover time of the initial vortices. Spatial resolution is
10242.

by viscous dynamics, which selects the slowest dissipating mode or fundamental
Stokes mode.) The integral length scale grows very rapidly in the beginning of
the simulation due to merger events and dissipation of enstrophy in the interior.
The growth rate of the integral length scale is suppressed between 80 < τ < 300
due to production of enstrophy at the domain boundaries. Finally the integral
length scale increases rapidly, which can be associated with the relaxation to the
large-scale vortex in Fig. 6.2 at τ = 500.

Note that the emergence of a large monopolar vortex in the interior of the flow
domain, as shown in Fig. 6.2, inevitably implies a net angular momentum. The
angular momentum can be normalized by using Lsb = ||r||2||u||2 with ||r||2 =
1
2

√
b(1 + b2)π and ||u||2 =

√
2E either determined by the initial energy E0 or the

instantaneous energy E(t). The first normalization does not take into account vis-
cous dissipation, and although the normalized angular momentum will be virtually
constant after spin-up, it eventually decays to zero as the flow dissipates. On the
other hand, the second normalization procedure compensates for viscous decay,
and in the long-time limit (τ ≫ 103) the normalized angular momentum will al-
ways approach a certain finite value due to viscous relaxation. Fig. 6.4 shows the
normalized angular momentum versus time for two sizes of the minor-axis. Note
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that the left-hand panel in Fig. 6.4 shows the corresponding curves for the run
presented in Fig. 6.2. It can be observed in Fig. 6.4 that the angular momentum
normalized with Lsb = ||r||2

√
2E0 (solid line) is produced early in the evolution

and becomes more or less constant after τ & 300. Note that in this paper the
quasi-stationary end-state of the non-linear regime is considered. In the limit of
τ → ∞ the angular momentum will eventually vanish due to viscous decay. The
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Figure 6.3 – Reynolds number Re and the integral length scale L of the simulation shown
in Fig. 6.2.

corresponding curve for the angular momentum of the run shown in Fig. 6.2 nor-
malized with Lsb(t) = ||r||2

√
2E(t) (dashed line) reveals that at τ = 500 more

than 70% of uniform-like rotation has been reached. All runs for b = 0.8 show fairly
rapid spin-up followed by a slow spin-down due to long-term dissipation. While
the total kinetic energy is continuously dissipated the flow maintains normalized
angular momentum by assuming a more uniform-like rotation. The oscillations of
the angular momentum, as observed in several runs during the spin-up process in
an elliptic geometry with minor axis b = 0.8, are related to the formation of a
domain-sized tripole that interacts with the domain boundary. This phenomenon
has been observed and explained earlier in the square bounded geometry [21], and
we suspect that a similar mechanism is responsible for the oscillations in the an-
gular momentum signal for the flow in the elliptic geometry. The right-hand panel
in Fig. 6.4 shows two examples of the angular momentum versus time for b = 0.9,
so for an ellips with a smaller eccentricity. Not all the runs for this case show
strong spin-up events (six runs show spin-up with an amplitude of A ≈ 0.5 and
six runs show only weak spin-up, A ≈ 0.2) and the ensemble averaged amplitude
is smaller than for the b = 0.8 case. In Fig. 6.5 the vorticity and stream function is
given for a run showing strong spin-up and a run with weak spin-up. Note that the
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corresponding time series of the angular momentum is presented in the right-hand
panel of Fig. 6.4 for the case b = 0.9. It can be observed in Fig. 6.5 that a strong
spin-up can be associated with the development of a strongly asymmetric dipole.
On the other hand, in case of a weak spin-up an asymmetric quadrupole configu-
ration can be recognized inside the elliptic container. Recall, that this quadrupolar
structure is also found in the end-state of the non-linear regime (but far from the
Stokes regime) in a circular geometry (b = 1.0) where spin-up is virtually ab-
sent [62, 65, 66, 96]. This observation is confirmed by the present simulations for
b = 1.0: no runs in the ensemble of 12 runs show spin-up. Spin-up becomes rare for
the intermediate case b = 0.95 (two runs with amplitude A ≈ 0.3 in an ensemble
of twelve runs).

b = 0.8 b = 0.9
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Figure 6.4 – Angular momentum in an elliptic geometry versus time. Angular momen-
tum is normalized with uniform rotation using Lsb at τ = 0 (solid line) and Lsb(t) (dashed
line). Thick lines in left-hand panel correspond with the run shown in Fig.6.2.

Fig. 6.6 shows the probability density function (pdf) of the derivative of the an-
gular momentum L̇(t), which is essentially equal to the net torque on the container.
It can be deduced from this figure that on average the net torque is Gaussian dis-
tributed (the histogram of the torque of a specific run can strongly deviate from
Gaussian behaviour, especially on the tails of the distribution). Table 6.1 reports
the ensemble averaged amplitude 〈A〉 and standard deviation σ of the derivative
of the angular momentum. The standard deviation σ of the Gaussian fit curves
corresponds to the second-order moment of the ensemble averaged distribution.
It appears that σ depends linearly on the deviation of b from the unit circle for
δ = 1− b . 0.2. Recall, that this scaling behaviour can be related to the prefactor
(proportional to δ) in the pressure contribution in (6.3). The standard deviation
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spin-up weak spin-up

Figure 6.5 – Vorticity and stream function of two runs with slightly different initial
conditions in an elliptic geometry with minor-axis b = 0.9 at τ = 500. The run in
the left-hand panel shows a strong spin-up event (corresponding with the thin lines in
Fig. 6.4 case b = 0.9), while the run shown in the right-hand panel shows only weak spin-
up (corresponding with the thick lines in Fig. 6.4 case b = 0.9). White indicates positive
vorticity and black negative vorticity. For both runs the vorticity ranges from ω = −5 to
ω = +5. Isolines represent the stream function with an increment of 0.01.
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Figure 6.6 – Semi-logarithmic plot of the pdf (solid lines) of L̇(t) for different sizes of
minor-axis b. The first pdf in the centre corresponds with b = 1.0, when moving outward b
equals 0.95, 0.9, 0.8, 0.7, respectively. The pdf is averaged over a time interval τ = [5, 100].
Error bars are based on runs in an ensemble of 12 runs for each value of b. Gaussian fit
(dashed) to the ensemble averages.

for the case b = 0.7 (δ = 0.3) seems (considering a 10 % error margin in σ) to
be larger than expected from the prefactor alone. Note that a spin-up of the flow
could enhance symmetry breaking on the domain boundary and thus increase, in
return, the magnitude of the pressure contribution in (6.3).
In order to investigate the Reynolds number dependence, a smaller number of
ensemble runs is performed for Re = 2 × 104 with the minor-axis b = 0.9. It is
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observed that the intensity of the spin-up process does not increase significantly.
The standard deviation of L̇ determined over the same time-interval as used in
Fig. 6.6 is σb=0.9 = 2.5 × 10−2, which lies within a ten procent error margin of
σ computed for Re = 104. Furthermore, the frequency of strong spin-up events
(four) within the ensemble (nine runs) is also similar to the Re = 104 case.

6.5 Conclusion

The results presented in this paper are helpful to understand the strikingly differ-
ent behaviour of the angular momentum in square versus circular geometries. By
using a novel volume-penalization technique it is possible, starting with a circu-
lar geometry, to gradually introduce some eccentricity. It is demonstrated that a
small transition from the circle results in a linear increase of the magnitude of the
torque (in terms of the standard deviation), which can be related to the relative
importance of the pressure contribution in the balance that guides the angular
momentum production. In this respect the observations reported on the absence
of significant spin-up in a circular geometry and the associated ambivalence in
the end-state [60, 62, 96] are robust, i.e. the eccentricity cannot be regarded as a
bifurcation parameter in this respect. Recall that it might be conjectured that in-
troduction of very small eccentricity may result in a symmetry breaking of the flow
and significantly enhance the magnitude of the integral over the domain boundaries
in (6.3). Apparently it is, however, the prefactor in front of the pressure contribu-
tion in (6.3) that tunes the magnitude of the torque and in addition the strength
of the spin-up. When moving from a circular towards a non-circular geometry this
gives a gradual transition from virtually no spin-up towards a regime where all the
runs in an ensemble with slightly different initial conditions show strong and rapid
spin-up events. Between those limiting cases there exists a critical sensitivity to
the initial conditions. Some runs in the ensemble show strong spin-up, whereas the
other runs in the ensemble demonstrate very weak or virtually no spin-up. Recall
that the initial flow of all the ensemble runs does not contain angular momen-
tum within machine precision accuracy. Small variation of the initial conditions
are introduced by a slight displacement of the core of the Gaussian vortices on a
regular lattice. It is surprising that these small differences in the initial conditions
can result in a markedly different end-state of the decay process. The number of
spin-up events increases significantly for increasing eccentricities.
In previous reports it is anticipated that the pressure contribution depends only
weakly on the Reynolds number, since the pressure will obviously reach finite val-
ues in the limit of infinite Reynolds numbers [21]. The analysis of the torque for the
ensemble study at a significantly higher Reynolds number (Re= 2× 104) supports
this conjecture. In addition, the probability that the flow will demonstrate strong
and rapid spin-up is not markedly affected by the Reynolds number of the flow.
It may be interesting to note that apparently the discontinuity of the domain
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Table 6.1 – Statistics of the spin-up for different values of the minor-half axes b. En-
semble averaged amplitude 〈A〉 defined as the maximum for τ < 500 of the normalized
angular momentum Lsb(t). Conditional average 〈A〉

c
over the runs in the ensemble that

show strong spin-up of the flow. Standard deviation σ of L̇ for different sizes of the minor-
axis b. The error in 〈A〉 is 20 % and in σ 10%. Number of runs # in an ensemble of
twelve runs showing relatively strong spin-up of the flow.

b 1.0 0.95 0.9 0.8 0.7
〈A〉 0.07 0.17 0.31 0.58 0.68
〈A〉c - 0.29 0.52 0.58 0.68
σ 0.002 0.011 0.022 0.045 0.073
# 0 2 6 12 12

boundaries (corners) is not essential for breaking the symmetry of the flow. By
changing the eccentricity it is possible to tune the relative importance of the pres-
sure and viscous stresses in the angular momentum balance. The present study
convincingly shows that angular momentum production is essentially due to the
pressure contribution at the boundaries. As a consequence, the results of statisti-
cal mechanical studies that usually consider inviscid flow with free-slip boundaries
may be more generally relevant for the quasi-stationary final states of viscous
flow in bounded domains with no-slip sidewalls, though in a qualitative sense.
A statistical mechanical prediction of the quasi-stationary end-state of inviscid
flow in an elliptic geometry with free-slip boundaries, in the spirit of Pointin and
Lundgren [87] and Chavanis and Sommeria [16], would therefore be an interesting
endeavor.

6.A Appendix: angular momentum in an elliptic

geometry

For appropriate normalization it is important to know the maximum amount of
angular momentum L =

∫
D r × udA =

∫
D(xv − yu)dA that can be present on an

elliptic domain for a given amount of the total kinetic energy E = 1
2

∫
D(u2+v2)dA.

Here, we use a Cartesian coordinate system (x, y) with origin in the centre of the
container, and u = (u, v) with respect to this coordinate system. For arbitrary
geometries (and irrespective of the boundary conditions) an absolute upper bound
for the angular momentum is obtained by applying a Schwarz inequality to the
definition of the angular momentum,

L ≤ ||r||2||u||2 = ||r||2
√

2E (6.8)

where ||.||2 denotes the L2 norm. The upper bound, on the right-hand side of
(6.8), represents the angular momentum of the fluid with an equal amount of
kinetic energy in solid-body rotation. From inequality (6.8) follows that the amount
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of angular momentum of a flow pattern which satisfies the the impermeability
condition at the boundary is equal to or less than the angular momentum of
an equi-energy solid-body state. Note that a circular domain is special in this
respect, since a solid-body rotation of the fluid satisfies already the impermeability
condition. In other geometries, the impermeability of the boundaries prevents that
the fluid can obtain a full solid-body state. Therefore, the maximum amount of
angular momentum that can be contained in the flow is reduced. In this section
the upper bound for the angular momentum is derived that is consistent with the
impermeability of the elliptic boundary.
By virtue of the incompressibility condition ∇ · u = 0 we can introduce a stream
function according to u = ∂yψ and v = −∂xψ. It is convenient to rewrite the
angular momentum as

L = 2

∫

D
ψdA, (6.9)

and the total kinetic energy as,

E =
1

2

∫

D
ωψdA, (6.10)

where the vorticity associated with the velocity field u is ω = ∂v
∂x − ∂u

∂y = −∆ψ.
The variational problem is to find a stationary value for the integral

L[ψ] =

∫

D
f(ψ)dA, (6.11)

with the constraint in the total kinetic energy,

E[ψ] =

∫

D
φ(ψ, ψxx, ψyy)dA ≡ 1. (6.12)

with f(ψ) = 2ψ and φ(ψ, ψxx, ψyy) = 1
2ωψ = − 1

2 ψ∆ψ. The notation ψx means
the derivative of ψ in the x-direction. Using a Lagrange multiplier λ it is possible
to absorb the constraint in the total variation of L[ψ], yielding

δ

(∫

D
[f(ψ) + λφ(ψ, ψxx, ψyy)] dA

)
= 0. (6.13)

Treating the integrand as a new function g(ψxx, ψyy, ψ) = f(ψ) + λφ(ψxx, ψyy, ψ)
gives the Euler-Lagrange equation [2] for this particular problem

∂g

∂ψ
+

∂2

∂x2

∂g

∂ψxx
+

∂2

∂y2

∂g

∂ψyy
= 0. (6.14)

Straightforward substitution of g gives a Poisson problem

∆ψ =
2

λ
= −2Ω on D, (6.15)
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where Ω = −1/λ equals the angular velocity in the case of solid-body rotation.
A unique, stable solution of the Poisson problem exists for either a Dirichlet or a
Neumann boundary condition. Impermeability of the domain boundaries requires
the Dirichlet condition ψ to be constant along the boundary. For convenience we
choose

ψ = 0 on ∂D. (6.16)

To solve the Poisson problem in an elliptic geometry it is helpful to use elliptical
coordinates.

x = c coshξcosη, y = c sinhξsinη (6.17)

for 0 ≤ ξ <∞ and 0 ≤ η < 2π. A constant value for ξ corresponds with an ellipse
with major half-axes a and minor half-axes b

a = c coshξ, b = c sinhξ. (6.18)

Increasing η monotonously from η = 0 towards η = 2π describes a counter-
clockwise cycle over the ellipse, see Fig. 6.7. The parameter c is the distance
between the foci of the confocal ellipses described by the elliptic coordinates.

Figure 6.7 – Illustration of the elliptical coordinates (6.17). Isolines for ξ is constant.
The contourlines are shown with an increment size of +0.2. The contour line in the centre
corresponds with ξ = 0.2. Larger values of ξ correspond with ellipses with larger axes and
smaller eccentricity.

In elliptical coordinates the Poisson problem on the ellipse can be written as,

1
h2

ξ

(ψξξ + ψηη) = −2Ω for 0 ≤ ξ ≤ ξb, 0 ≤ η < 2π (6.19)

where h2
ξ = c2(cosh2ξ−cos2η) is the scale factor between the Cartesian and ellipti-

cal coordinate systems and ξb describes the elliptic boundary. The impermeability
condition is applied at the boundary,

ψ = 0 for ξ = ξb, 0 ≤ η < 2π. (6.20)
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Periodic boundary conditions are considered in the η-direction

ψ(ξ, η − π) = ψ(ξ, η + π) for 0 ≤ ξ ≤ ξb, 0 ≤ η < 2π. (6.21)

In addition it is required that for ξ = 0

ψ(0, η) = ψ(0,−η) for 0 ≤ η < 2π
ψξ(0, η) = −ψξ(0,−η) for 0 ≤ η < 2π.

(6.22)

Note that as ξ → 0, the ellipse becomes more elongated until at ξ = 0 it converges
to the line segment between the foci. The conditions on ψ for ξ = 0 imply conti-
nuity of ψ and the derivative in the ξ-direction (note that the direction of the ξ
derivative above and under the line segment between the foci is defined in opposite

directions). By using the particular solution ψ̃ = −Ωc2

4 (cosh2ξ + cos2η) of (6.19)
(which does not fulfill the boundary condition at ξb) it is possible to transform the
Poisson problem to a Laplace problem:

ψξξ + ψηη = 0 for 0 ≤ ξ ≤ ξb, 0 ≤ η < 2π

ψ = Ωc2

4 (cosh2ξb + cos2η) for ξ = ξb, 0 ≤ η < 2π
(6.23)

which also needs to fulfill the matching conditions (6.21) and (6.22). By using
separation of variables it is straightforward to derive the general solution of the
Laplace equation in elliptical coordinates, yielding

ψ(ξ, η) = α0 +

∞∑

m=1

(
αmcos(mη)emξ+

βmsin(mη)emξb + δmcos(mη)e−mξ + γmsin(mη)e−mξ
)
. (6.24)

Note that the periodicity in the η-direction is already included in (6.24). The
matching conditions at ξ = 0 further require βm = −γm and αm = δm for all
m. Finally, by applying the orthogonality of the system {1, cos(mη), sin(mη)} and
the boundary condition at ξ = ξb all the coefficients can be determined. Summing
the solution of the homogeneous solution (Laplace) and the particular solution ψ̃
yields the solution of the Poisson problem (6.19):

ψ =
Ωc2

4
(cosh(2ξb) − cosh(2ξ) + cos(2η)[

cosh(2ξ)

cosh(2ξb)
− 1]). (6.25)

The angular momentum can be computed by integration of (6.25), yielding

L =
Ωπc4

16
(
sinh4ξb

2
− tanh2ξb). (6.26)

Recall that the absolute upper bound of the fluid irrespective of the boundary
conditions is given by the Schwarz inequality (6.8). Therefore it is convenient
to normalize the angular momentum with ||u||2||r||2, representing the amount
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of angular momentum carried by the fluid in solid-body rotation. By virtue of
(6.10) and (6.15) and the definition of the vorticity, the L2-norm of the velocity
||u||2 =

√
2E can be expressed as,

||u||2 =
√

2ΩL. (6.27)

For ||r||2 is straightforwardly obtained that,

||r||2 =

√
π

2

√
ab

√
a2 + b2 =

√
πc2

4

√
sinh4ξb, (6.28)

where a and b are the major and minor half-axes of the elliptic boundary with
constant ξ = ξb = arctanh(b/a). Now the normalized angular momentum becomes,

L̃ =
L

||u||2||r||2
= tanh2ξb =

2

b/a+ a/b
. (6.29)



Chapter 7

Spin-up at high Reynolds
numbers in a square
geometry

7.1 Introduction

Both the experiments and numerical simulations at moderate integral-scale Reynolds
numbers on a square bounded domain of Clercx et al. [19, 21] and Maassen et
al. [66] have shown that angular momentum produced during the early decay stage
results in the formation of a domain-sized monopolar or tripolar vortex structure
later in the decay process. The question addressed in this chapter is, whether the
spontaneous spin-up process is a feature of the particular range of Reynolds num-
bers considered in previous studies, viz. Re = 1000 − 2000 in Refs. [19, 66] and
Re = 5000 − 20000 in Ref. [21], or is it a process of fundamental importance for
significantly higher integral-scale Reynolds numbers as well? The main conjecture
might be that the injection of high-amplitude vorticity filaments emerging from
the no-slip boundaries can disrupt the formation of background circulation early
in the decay process or prevent the subsequent formation of large-scale vortex
structures.
Since vortex-wall interaction is an important process in fully developed 2D turbu-
lence in domains with lateral no-slip walls, the features of individual dipole-wall
collisions as considered in chapter one are relevant to consider. In particular the
observation that the amount of angular momentum production during an oblique
dipole-wall collision does not depend significantly on the initial Reynolds num-
ber [18] . This can be related to a finite value of the pressure contribution in the
angular momentum balance (1.18) whereas the role of viscous stresses becomes
minimal for high Reynolds numbers. Based on the alternative form of the angular
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momentum balance (1.19) and the scaling of the vorticity and vorticity gradients
at the wall during a dipole-wall collision in the limit of vanishing viscosity pro-
portional to Re−1/2 and Re−1 respectively, it can be expected that the pressure
contribution in the angular momentum balance becomes finite and the magnitude
of the viscous stress term falls with Re−1/2. Since the simulations in an elliptic
geometry clearly reveal that it is essentially the pressure term that drives the
spin-up it is strongly anticipated that the production of angular momentum is not
restricted to a particular range of Reynolds numbers.
In this chapter high-resolution simulations are conducted for fully developed 2D
decaying turbulence in order to verify if spin-up is actually present for signifi-
cantly higher Reynolds numbers than considered previously on a square bounded
domain. Several characteristics of the spin-up process are determined for high
Reynolds number flow, such as the magnitude of the torque and the resulting
spin-up. Furthermore, it is examined if a characteristic dimensionless time can be
related to the spin-up of the flow.

7.2 Setup of the simulations

The same type of initial conditions have been applied as considered in the previ-
ous chapters on decaying flow. It consists of 100 Gaussian vortices with an equal
strength positioned in a checkerboard-like configuration. The initial position of the
vortices is slightly distorted by a random displacement in order to break the sym-
metry, see for more details [21]. The angular momentum of the initial conditions
is removed within machine precision accuracy. A smoothing function is applied to
ensure that the initial flow is consistent with the no-slip boundary condition. The
parameters of the simulations are assembled in table 7.1.

Table 7.1 – Overview of the simulations on a square domain. The Reynolds number Re
is based on the rms velocity and half-width of the domain W = 1. N denotes the spatial
resolution, Nact is the number of active Fourier coefficients, ǫ the penalization parameter
and δt the time-step.

# Re N Nact ǫ δt
10 104 1024 682 10−8 1.0 × 10−4

5 5 × 104 2048 1364 10−8 5.0 × 10−5

5 105 4096 2730 10−8 2.5 × 10−5
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7.3 Confined 2D decaying turbulence

Fig. 7.1 shows several snapshots of the vorticity distribution of decaying flow with
an initial Reynolds number of Re = 105. The dimensionless time unit τ represents
the number of turnover times of the Gaussian vortices of the initial condition.
The vorticity snapshot taken from the vigorous early stage of the turbulent decay
process at τ = 7 shows several characteristic features such as merging of like-
sign vortices in the centre of the container and the formation of medium-sized
dipoles. During several collisions of vortex structures with the domain boundaries
high-amplitude vorticity filaments are injected into the interior of the flow domain
and roll up into new vortex cores. These new small-scale vortices contain high-
amplitude vorticity. The second stage of the decay process, for which a typical
example of the vorticity distribution is displayed in Fig. 7.1 at τ = 20, is char-
acterized by the formation of increasingly larger coherent structures. Injection of
small-scale vorticity from the no-slip domain boundaries and subsequent formation
of new vortex cores continues. Fig. 7.2 gives the stream function that corresponds
with the vorticity fields in Fig. 7.1. The streamlines reveal the development of a
large-scale flow pattern during the decay process. Since the angular momentum
can equivalently be expressed as L = 2

∫
ψdA it is obvious that the flow has ac-

quired net angular momentum. This is strikingly different compared to the final
state of decaying turbulence on a periodic domain, for which the angular momen-
tum is trivially zero. As a consequence, the final state of the decay process is a
large-scale dipolar vortex structure [70].
The overall picture of the decay process in a no-slip box considered here for
Re = 105 is similar to the Re = 104 case reported in Clercx et al. [21]. An impor-
tant difference is, however, the presence of a much larger number of (small-scale)
vortices in the high-Reynolds number case. The size of these small-scale vortices
is substantially less than the size of the Gaussian vortices constituting the initial
vorticity field. The diameter of these Gaussian vortices is approximately one-tenth
of the container size. To demonstrate that the small-scale vortex structures are
indeed a result of flow-wall interaction, a comparison with a numerical simulation
on a double periodic domain is shown in Fig. 7.3. The initial condition and the
Reynolds number for the periodic computation are the same as for the no-slip case.
Note the large number of small-scale vortices distributed over the entire no-slip
box. Such small-scale vortices are virtually absent in the periodic case. This obser-
vation signifies that these vortices are indeed formed due to flow-wall interaction
events.
Also in the late-time evolution several differences are discovered between the
present results with Re = 105 and those with Re = 104, presented in Clercx
et al. [21]. Around τ = 200 a monopolar or a tripolar structure emerges that com-
pletely fills the domain for Re = 104. For the high-Reynolds number decay process
considered here it is observed that the radius of the dominant vortex structure
appearing around the same time is significantly smaller. Also in the late-time evo-
lution the number of vortices in the high Reynolds number case is much larger.
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τ = 7 τ = 20

τ = 100 τ = 200

Figure 7.1 – Vorticity snapshots of a simulation with an initial Reynolds number Re =
105. The simulation is performed with 40962 Fourier modes. The time is given in terms
of τ , which is the turnover time of the initial vortices positioned in an array of 10 × 10
vortices (position slightly distorted for breaking symmetry). Thirty grey levels are applied
from ω = −80 to ω = +80. The normalized angular momentum is |L| = 0.01, 0.08, 0.28
and 0.25 for τ = 7, 20, 100 and 200, respectively.
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τ = 7 τ = 20

τ = 100 τ = 200

Figure 7.2 – Stream function plots corresponding with the vorticity fields shown in
Fig. 7.1. Increments size is 0.04. The normalized angular momentum is |L| = 0.01,
0.08, 0.28 and 0.25 for τ = 7, 20, 100 and 200, respectively.
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no-slip periodic

Figure 7.3 – Comparison of vorticity snapshots at τ = 15 from two simulations with (a)
no-slip and (b) periodic boundary conditions. The Reynolds number for both simulations
is Re = 105 and 40962 Fourier modes are used. The initial conditions are identical.
Red indicates positive vorticity, blue negative vorticity. The vorticity values range from
ω = −80 to ω = +80.

Note that although the radius of the dominant vortex is smaller, the associated
stream function displayed in Fig. 7.2 reveals the development of a global circula-
tion cell in the interior of the container, which contains net angular momentum.
Fig. 7.4 shows the total kinetic energy and enstrophy of the flow versus the di-
mensionless time τ . During the vigorous first stage of the decay process the energy
dissipates very rapidly due to the production of small-scale vorticity at the domain
boundaries and consequent increase of the enstrophy, see (1.10) and term T1 in
(1.12). The energy dissipation in the no-slip case is much larger compared with
the periodic case. For decaying turbulence on a periodic domain the enstrophy is
bounded by its initial value, since the terms T1 and T3 in the enstrophy balance

(1.12) are absent and T2 ≤ 0. This implies that |dE(t)
dt | ≤ 2Z(t=0)

Re thus the en-

ergy dissipation rate falls of proportional to Re−1 in the periodic case. Note that
the enstrophy of the flow on a periodic domain, represented by the dotted line in
Fig. 7.4b, decays very rapidly due to the vorticity gradient amplification process,
see term R1 in (1.15), and subsequent increase of the term T2 in (1.12). Due to
the production of enstrophy by flow-wall interaction the amount of enstrophy is
substantially larger for wall bounded flow. This results in a significantly faster
dissipation rate of the total kinetic energy, see Fig. 7.4a.
The enstrophy production of a dipole-wall collision scales proportional to Re0.75

and Re0.5, see (1.45) and (1.46), for moderate and high Reynolds numbers, respec-
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tively. This corresponds with an energy dissipation rate proportional to Re−0.25

and Re−0.5. It is important to realize that the Reynolds number of individual
vortex-wall collisions Red, based on the translation speed of the vortices and the
vortex radii, in the fully developed 2D turbulence case is an order of magnitude
smaller than the integral Reynolds number of fully developed turbulent flow. The
Reynolds number of the individual vortex-wall collisions is 101 . Red . 103 and
102 . Red . 104 for Re = 104 and Re = 105, respectively. The typical translation
speed of the vortices is based on the rms velocity of the flow U ≈ 1 and the range
of vortex radii, obtained from the vorticity snapshots like in Fig. 7.1.
The ratio of the enstrophy-levels observed for different initial Reynolds numbers
in the range 104 < Re < 105, shown in Fig. 7.4b, are consistent with the scal-
ing behaviour of the enstrophy as observed in the dipole-wall collision problem.
Also the amount of energy dissipation is consistent: e.g. the amount of energy
dissipation at τ = 400 is δE ≈ 1.6, 1.3 and 1.0 for Re = 104, 5 × 104 and 105,
respectively, which scales almost proportional to Re−0.25. This corresponds with
the scaling observed in the dipole-wall problem for the moderate Reynolds num-
bers regime. Note that only three values of the integral Reynolds number have
been considered for the practical reason that the high-Reynolds number computa-
tions are very CPU demanding, therefore a more quantitative conclusion cannot
be obtained from the present data. Nevertheless, it is clearly shown that 2D tur-
bulence bounded by no-slip sidewalls is strongly dissipative compared with 2D
turbulence on a double periodic domain. It may be anticipated, from the high
Reynolds number dipole-wall collision observations, that in the infinite Reynolds
number limit the energy dissipation may vanish faster, proportional to Re−0.5. To
observe this scaling regime the integral Reynolds number should be one or two
orders of magnitude larger such that the vortex based Reynolds number is in the
order of Red ≈ 20000 or higher.
Fig. 7.5 shows the angular momentum versus the dimensionless time τ . The

run with an initial Reynolds number Re = 104 is consistent with the findings of
Clercx et al. [21], who revealed a vary rapid increase of the angular momentum of
the flow and a subsequent relatively slow decay during the late-time evolution. In
some of the high-Reynolds number simulations considered here the angular mo-
mentum evolves in a similar way as for the Re = 104 case. In other runs it is
found that the angular momentum can show more disordered behaviour (see Fig.
7.5). During the intermediate decay stage the flow can suddenly spin-down and
subsequently spin-up again. In the latter case the circulation of the large-scale flow
can be in either the same or in the opposite direction, similar to the observations
in forced 2D turbulence simulations (with much smaller integral-scale Reynolds
number) [40, 72]. In the case of a spin-down event the angular momentum retains
small values only briefly before it revives again. After this regime with more or
less irregular behaviour the large-scale circulation of the flow is persistent (besides
a very slow overall decay on very long times).

Table 7.2 presents the ensemble averaged properties of the spin-up process for
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Figure 7.4 – Time evolution of the total kinetic energy (a) and enstrophy (b) versus
dimensionless time τ for different initial Reynolds numbers. Decaying turbulence on a
domain with no-slip boundaries with Re = 105 (solid lines), Re = 5 × 104 (dashed line)
and Re = 104 (dashed-dot line). Decaying flow on a double periodic domain with Re = 105

(dots). Thick solid line corresponds with the run shown in Fig. 7.1 and Fig. 7.2.

three different Reynolds numbers. The maximum of the angular momentum is
normalized with both Lsb(t = 0) and Lsb(t). The normalization with Lsb(t) com-
pensates for the fact that the energy decays significantly faster for the Re = 104

compared to the two higher Reynolds cases, see Fig. 7.4a. Table 7.2 also contains
the ensemble averaged values of the spin-up time. Three different dimensionless
times have been considered based on different properties of the flow. Recall that
the dimensionless time τ as used in Fig. 7.4 is based on the turnover time of the
initial vortices. A different dimensionless time has been applied by Chasnov [15] in
a study on the Reynolds number dependence of energy and enstrophy dissipation
in decaying 2D turbulence on a double periodic domain,

τ∗ =

∫ t1

0

〈
ω2

〉1/2
dt =

1

2W

∫ t1

0

||ω||2dt =
1√
2W

∫ t1

0

√
Zdt . (7.1)

Time τ∗ can be interpreted as an appropriate measure of the actual number of
turnovers of the vortices in the flow at time t1. It is possible to express the kinetic
energy in the form of an inequality, see Eq. (7.3) in the appendix, which clearly
identifies τ∗ as an important time unit in the decay process. Dissipation of vorticity
and the formation of high-amplitude vorticity cores in the presence of no-slip walls,
see Fig. 7.3a, results in a strong reduction of the average turnover time of the vortex
population.
A third non-dimensional time Tg is based on the global turn over rate of the flow,
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Figure 7.5 – Time evolution of the angular momentum normalized with Lsb(τ = 0)
versus dimensionless time τ for different initial Reynolds numbers. Decaying turbulence
on a domain with no-slip boundaries with Re = 105 (solid line), Re = 5 × 104 (dashed
line) and Re = 104 (dashed-dot line). Thick solid line corresponds with the run shown in
Fig. 7.1 and Fig. 7.2.

which is characterized by the rms velocity and the half-width of the domain W ,

Tg =
1

2W 2

∫ t1

0

||u||2dt. (7.2)

From table 7.2 it can be deduced that high-Reynolds number flows show an equally
strong spin-up compared with the moderate Reynolds number flows with Re = 104.
Also the spin-up time measured in terms of the initial turnover time of the vor-
tices τ or the global turnover time Tg does not show significant Reynolds number
dependence. Note that the variation of the spin-up time between the ensemble
runs is very large, see for example Fig. 7.5. The number of small-scale turnovers
τ∗ during the spin-up of the flow increases, on the other hand, with the Reynolds
number. Note that enhanced enstrophy production (see Fig. 7.4) and subsequent
formation of small-scale vortices results in a significant reduction of the overall
turnover rate of the vortex population. Apparently the latter effect does not result
in a faster spin-up of the flow for higher Reynolds numbers. This indicates that
it is mainly the turnover of the dominant vortices and the associated formation
of a large-scale flow pattern that determine the spin-up rate of the flow. Another
interesting issue is that the magnitude of the torque measured by the standard
deviation σ of the time-derivative of the angular momentum does not demonstrate
significant dependence on the Reynolds number, as can be seen in the last column
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Table 7.2 – Statistics of the spin-up variables for three different Reynolds numbers. En-
semble averaged maximum of the absolute value of the angular momentum 〈Lmax〉 defined
as the maximum for τ < 400. This value is normalized with the angular momentum cor-
responding with solid-body rotation of the initial flow field Lsb(τ = 0) and based on an
equivalent solid-body rotation computed with the rms velocity at the time the maximum
is observed. Spin-up time measured in terms of the turnover time of the initial vortices
τ , the actual turnover time of the vortices τ∗ and the global turnover time Tg. Standard
deviation σ of the net torque i.e. L̇ averaged over the period τ < τs where τs denotes the
time the maximum in the absolute value of the angular momentum is observed.

Re 〈Lmax〉
Lsb(τ=0)

〈Lmax〉
Lsb(τ) τ τ∗ Tg σ

104 0.19 ± 0.05 0.35 ± 0.07 180 ± 50 600 ± 200 45 ± 20 0.10 ± 0.01
5 × 104 0.24 ± 0.05 0.36 ± 0.07 150 ± 50 1000 ± 300 50 ± 15 0.13 ± 0.02

105 0.23 ± 0.05 0.32 ± 0.07 150 ± 50 1300 ± 500 50 ± 15 0.10 ± 0.02

in table 7.2. This confirms the conjecture that the pressure contribution in the an-
gular momentum balance (1.18) becomes finite in the high Reynolds number limit,
whereas the contribution of the viscous stresses will vanish in the same limit. It
has been verified that the pressure term is at least two orders of magnitude larger
than the contribution of the viscous stresses in the range 104 < Re < 105 and
τ < 400.
It is observed in the numerical study of Clercx and Bruneau [18] that the angular
momentum production during an oblique dipole-wall collision does not exhibit sig-
nificant Reynolds number dependence. The range of Reynolds numbers covered by
the study of Clercx and Bruneau is 625 < Re < 5000, where the Reynolds number
is based on the half-width of the domain and rms velocity of the flow. This corre-
sponds with a vortex-based Reynolds number in the range 500 < Red < 4000 [18].
The vortex-based Reynolds number of the 2D turbulence simulations considered
here is in the same order of magnitude. Therefore, it can be concluded that the ab-
sence of significant Reynolds number dependence on the magnitude of the torque
in the present simulations is consistent with the angular momentum production of
an oblique dipole-wall collision.

Concluding remarks

The high-Reynolds number simulations presented in this chapter and the previous
chapter clearly reveal that spontaneous production of angular momentum is a
generic feature of 2D flows in non-circular domains. Therefore, it is not a low
Reynolds number artifact. The angular momentum development can be associated
with the formation of a large-scale (background) flow pattern in the container. It
is found that the spin-up rate of the flow does not show significant dependence
on the Reynolds number. This observation can be related to a Reynolds number
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independent value of the rms of the torque during the spin-up of the flow. A
similar result is obtained from oblique dipole-wall collision simulations, where it
is seen that the amount of angular momentum productions reaches a finite value
for sufficiently high Reynolds numbers.

7.4 Appendix: a note on the characteristic time-
scale

An important time-scale in decaying turbulence is the time-scale τ∗ as defined in
(7.1). The physical interpretation of Chasnov [15] is already given in the previous
section. Here we obtain an inequality that clearly demonstrates that τ∗ is closely
related to the decay process.

Theorem 1. The total kinetic energy E(t) of viscous flow on a bounded domain
Ω ⊂ R

2 with the smallest Stokes eigenvalue λ verifies for t1 ∈ (0,∞) the following
property

E(t) ≤ E0 exp

[
−2ν

√
λ/E0

∫ t1

0

√
Zdt

]
. (7.3)

Proof: By using the Poincare inequality ||u||22 ≤ λ−1||∇u||22 = λ−1||ω||22 and
time-integration of (1.10) yields,

E(t) ≤ E0 exp(−2νλt). (7.4)

Rewriting (1.10) and applying the Poincare inequality once gives,

d

dt

||u||22
||u0||22

= −2ν
||ω||22
||u0||22

≤ −2νλ1/2 ||u||2
||u0||2

||ω||2
||u0||2

.

From inequality (7.4) it is realized that ||u||/||u0|| ≤ 1 such that it follows that

d

dt

||u||22
||u0||22

+ 2λ1/2ν
||ω||2
||u0||2

||u||22
||u0||22

≤ 0.

Then Gronwall’s inequality in the following form finishes the proof.

Lemma 1. (Gronwall’s inequality) If α(t) is real-valued and non-negative on
(0,∞), and if the function y(t) satisfies the following differential inequality:

dy

dt
+ α(t) y ≤ 0, (7.5)

then y(t) is bounded on (0,∞) by

y(t) ≤ y(0)exp

(
−

∫ t1

0

α(t)dt

)
. (7.6)





Chapter 8

Forced 2D turbulence on a
bounded domain

In this chapter we consider the statistical properties of forced 2D turbulence in a
square domain with no-slip boundaries. In numerical studies on forced 2D turbu-
lence in a periodic box, it is common practice to use additional friction mechanisms
in order to achieve a statistically steady state, see Chapter 1. As observed in the
high-resolution simulations of Boffetta [11] the presence of friction has dramatic
consequences for the statistical properties of the smallest scales of motion. In the
present simulations the no-slip boundary provides a natural sink for the kinetic
energy that can balance the injection of energy by the external forcing such that
a steady state is achieved. In this way the use of a volumetric drag force can
completely be avoided. Therefore, it is challenging to determine the statistical
properties of the small-scales in the interior of a domain with no-slip boundaries.
Furthermore, it is anticipated that the no-slip boundaries are able to prevent en-
ergy accumulation on the largest scales of motion and the subsequent formation
of a condensate. Smith and Yakhot [100,101] found that in a condensation regime
the self-similarity of the small-scale statistics is lost. It is examined in this chapter
whether the no-slip boundaries sufficiently prevent the accumulation of energy in
domain-size coherent vortices and subsequently sustain the self-similarity at the
small scales.
A difficulty that may keep the small-scale structure from obtaining KBL scaling
is the injection of high-amplitude vorticity filaments from the boundaries into the
bulk of the flow. Note that this process may affect the isotropy and local homo-
geneity of the flow. Furthermore, Clercx and van Heijst [22] provide evidence that
in decaying turbulence boundary layer detachment can result in an inverse energy
cascade in the wall region. Wells et al. [106] used a forcing mechanism by oscillating
the container with a certain frequency. This process can result in the production
of vorticity at the domain boundaries that detach and move subsequently into the

133
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interior of the flow domain. The energy spectra of Wells et al. suggest that these
vorticity layers feed both an inverse energy cascade and a direct enstrophy cascade.
In the present study the container remains fixed and we apply an external forcing
mechanism. An important question is, whether the detachment of boundary layer
vorticity has an important effect on the enstrophy transfer rate of the internal
fluid.

8.1 Setup of the simulations

The forcing is defined in terms of q in the vorticity equation (1.5). Note that this
corresponds with a solenoidal forcing function f in Eq. (1.1). The forcing is given
by a Markov chain process

q(tn,x) = crq(tn−1,x) + |Ap|(1 − c2r)
1/2w(x) (8.1)

where

cr =
1 − δt/τc
1 + δt/τc

(8.2)

is the correlation factor with correlation time τc and |Ap| the amplitude, which is
static in time. The function w(x) takes completely random values at each time step
δt. The spatial structure of w(x) is generated by considering the Fourier transform

w(x) =
∑

k1≤|k|≤k2

exp(iθk)exp(ik · x). (8.3)

The phase θk ∈ [0, 2π] is drawn at each time step δt from a uniform distribution
that is independent for each wave vector in the shell k1 < |k| < k2. This forcing
protocol, originally introduced by Lilly [63], is commonly used in numerical simu-
lation of 2D turbulence. In the present study also the amplitude of wave vectors
with kx = 0 or ky = 0 is set equal to zero such that the forcing does not exert a
net torque on the fluid. Table 8.1 presents the parameters for the simulations.

Table 8.1 – The parameters of the forced simulation: Number of Fourier coefficients N
and active number Nact, time-step δt, kinematic viscosity ν, penalization parameter ǫ,
forcing wavenumbers k1 and k2, amplitude |Ap|, correlation time crand half-width of the
square domain W .

N Nact δt ν ǫ k1 k2 |Ap| τc W
2048 1364 4 × 10−5 10−4 10−8 7 9 6 10−2 1
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8.2 Statistically steady state

In Fig. 8.1 the evolution of the total kinetic energy and enstrophy are given. It
can be deduced that the flow slowly converges towards a statistically steady state.
The maximum of the Reynolds number Re(t) is approximately 25000. Note that
in the case of periodic boundary conditions the applied forcing mechanism would
result in an unbounded growth of the total kinetic energy. In section 1.2 it has
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Figure 8.1 – Total kinetic energy (a) and enstrophy (b) versus time of a forced turbulence
simulation. The parameters of the simulation are given in table 8.1.

been shown that a statistically steady state in the absence of bottom friction
implies that the energy input by the forcing is balanced by viscous dissipation
〈(f ,u)〉 = 2ν 〈Z〉. The production of vorticity at the domain boundaries results
in a sufficiently high dissipation rate of kinetic energy that is able to balance the
energy injection of the external forcing. The peaks in enstrophy in Fig. 8.1b are
mainly a result of intensive flow-wall interactions. It is verified that the terms T1

and T2 in the enstrophy balance (1.12) are two orders of magnitude larger than the
term T3 which quantifies the vorticity injection of the external forcing. This means
that the steady state in the total kinetic energy is indeed achieved by production
of vorticity at the domain boundaries. Fig. 8.2 shows the angular momentum of
the flow versus time. It can be seen that the flow acquires net angular momentum
that strongly fluctuates in time. The external forcing is constructed such that it
does not exert a net torque on the fluid. Therefore, the production of angular
momentum is a spontaneous result of flow-wall interaction.

In Fig. 8.3 snapshots of the vorticity field and the corresponding stream func-
tion are given for two different times. Several vortices can be recognized with
different sizes and strengths. The larger vortices are a result of the forcing whereas
the smallest vortices are a result of the high-amplitude vorticity filaments from the
boundaries that roll up into new small-scale vortices. In the present simulations the
large-scale flow patterns can be associated with the strongest vortices in Fig. 8.3.



136 Forced 2D turbulence on a bounded domain
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Figure 8.2 – Angular momentum L normalized with Lsb(t = 0) with respect to time of
a forced turbulence simulation. The external forcing does not exert torque on the flow.
More details of the simulation can be found in in table 8.1.

Since the angular momentum can be written as L = 2
∫
ψdA, it is obvious that

the angular momentum changes sign between t = 90 and t = 110. The energy does
not pile up in the dominant vortices due a strong dissipation of energy during the
interaction with the no-slip sidewalls. The formation of a condensate as observed
in the simulations of Smith and Yakhot [100,101] is absent. In their simulations of
forced 2D turbulence on a periodic domain without bottom friction almost all the
vorticity is eventually contained in a single dipolar vortex. The no-slip boundary
clearly prevents the accumulation of energy in domain-sized coherent structures
and hence the formation of a condensate.
In Molenaar et al. [72] it was found, for forced 2D flow on square domain with
no-slip boundaries, that a different forcing protocol results in a continuous cycle
of condensate formation and subsequent disruption of the large-scale organization
of the flow. The disruption of the internal flow is a result of the detachment of
vorticity layers from the domain boundaries. It was found that during the spin-up
cycle the total kinetic energy and the normalized angular momentum are strongly
correlated in time. Although, there is a sign-reversal of the normalized angular mo-
mentum at the end of the present simulation around t = 110 this is not reflected in
the total kinetic energy. Similar behaviour is observed in the high Reynolds num-
ber decaying turbulence simulations considered in Chapter 7, compare for instance
Fig. 7.5 and Fig. 7.4. The absence of significant correlation between the normal-
ized angular momentum and the total kinetic energy in the flow considered here
can be related to several difference in the setup of the present simulation and the
simulations considered by Molenaar et al. [72]: i) the forcing is completely isolated
to a wavenumber band in Fourier transform space i.e. there is no excitation of the
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flow at large scales, ii) the external forcing does not exert any torque and, iii) the
Reynolds number is an order of magnitude larger.

(a) t = 90 (b) t = 90

(c) t = 110 (d) t = 110

Figure 8.3 – Two snapshots of the vorticity distribution and the stream function of a
forced turbulence simulation. The vorticity ranges from ω = −120 to ω = +120 with
30 grey levels. The stream function is shown with an interval of 0.1. The solid isolines
correspond with positive values of ψ and the dashed isolines represent negative values of
ψ.
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8.3 Structure functions and self-similarity

The spatial structure of the flow can be analyzed by considering velocity increments
over a separation vector r,

δui(x, r) = ui(x + r) − ui(x). (8.4)

Note that one can consider both longitudinal and transverse velocity components
along the separation vector r. If it is assumed that the flow is locally homogeneous,
isotropic and exhibiting self-similarity, the velocity increments scale like a power
law

δui(r) ∼ rh (8.5)

with h a constant exponent and r = |r|. The ensemble averages over the velocity
increments of the form

Sp(x, r) = 〈(δui)
p〉 (8.6)

are called structure functions of order p. In the case of self-similarity the structure
functions in a locally homogeneous isotropic flow scale according to

Sp(r) ∼ rζp (8.7)

with ζp = hp the scaling exponent. For small separations in 2D Euler flow it can
be shown analytically that ζp = p or h = 1 [8]. This result can also be obtained
on the same dimensional grounds as discussed in section 1.2 for the derivation
of the shape of energy spectrum in the enstrophy cascade range. Thus assuming
that the scaling of the structure functions is determined by an enstrophy transfer
rate χ and the separation length r. Note that the vorticity increments that scale
on dimensional grounds like δω ∼ δui/r ∼ rh/r, become independent of r in the
enstrophy inertial range, since h = 1.
For the inverse energy cascade range dimensional reasoning based on a constant
energy transfer rate yields that ζp = p/3 or h = 1/3. Deviation from the self-
similar scaling of the structure functions (8.7) in the inertial ranges is known as
intermittency.
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8.4 Second-order moments

If one assumes that the flow is both locally homogeneous and isotropic it is possible
to express the transverse second-order structure function S⊥

2 (r) in terms of the

longitudinal second-order structure function S
||
2 (r),

S⊥
2 (r) = (1 +

r

2

d

dr
)S

||
2 (r) (8.8)

where r = |r|, see e.g. Pope [88]. By using Eq. (8.8) it is possible to verify whether
the small-scale statistics is consistent with the crucial KBL assumption that the
flow is locally homogeneous and isotropic. The procedure is straightforward: first
one computes both structure functions and then one computes an estimate for

S⊥
2 (r) by using S

||
2 (r) and relationship (8.8). Strong deviations between the es-

timate for S⊥
2 (r) and the direct determination of S⊥

2 (r) indicate the presence of
anisotropy or local inhomogeneity in the flow.
Fig. 8.4 shows the second-order structure functions for both the velocity and vor-
ticity. The structure functions are computed in a square box in the centre of the
domain. Various box sizes with a half-width ranging from 0.3 to 0.6 have been con-
sidered, as well. No significant differences have been observed for the statistical
quantities in the present study. Fig. 8.4 also shows a comparison of the transverse
second-order structure function, the computed estimate obtained with Eq. (8.8),
and the longitudinal second-order structure function. The result is in good agree-
ment for the scales smaller than the forcing scale, which supports the assumption
that the flow can be considered as statistically isotropic and locally homogeneous.
The structure function S⊥

2 (r) is proportional with r2 for the smallest separations
and flattens when moving to the forcing length scale.
It can be shown that the scaling exponent ζp of the structure functions is bounded
by the corresponding order

ζp ≤ p, (8.9)

see e.g. [88] and [97]. Therefore the comparison with the power-law exponent of
the energy spectrum has some limitions. Table 8.2 provides an overview of the
relationship between the energy spectrum and the structure function. Since the
slope of the second-order velocity structure function, shown in Fig. 8.4a is close
to the upper bound (8.9) a straightforward interpretation of the velocity structure
function is not possible.
It is observed in Fig. 8.4b that the second order structure function of the vorticity
is proportional with r1.5 for the smallest scales and flattens for separations near
the forcing scale lf . It provides more information about the scaling exponents of
the energy spectrum, since the slope of the second-order structure function of the
vorticity is well separated from the upper bound (8.9). It can then be deduced
from Fig. 8.4b and table (8.2) that the corresponding energy spectrum has a
slope of k−3 near the forcing and becomes steeper for higher wavenumber, k−4.5,
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which is significantly steeper than the inertial range prediction in the enstrophy
cascade range by KBL. A possible explanation is the presence of a non negligible
amount of viscous dissipation. This can be examined by computing the dissipation
scale ld = (ν3/χloc)

1/6, where the local enstrophy dissipation rate is defined as
χloc = −νA−1

∫
B |∇ω|2dA and B denotes the measurement section in the interior

of the domain. The ensemble averaged value for ld is approximately 5 × 10−3,
which is consistent with the position of the steep section of the vorticity structure
function in Fig. 8.4b. From these numbers it can be deduced that the enstrophy
cascade extends over less than two decades between the forcing scale and the
dissipation scale. Therefore, the role of viscous dissipation in the range between
ld and lf cannot be excluded. This may explain the behaviour of the second-order
structure function of the vorticity in Fig. 8.4b. On the other hand, in several
studies it is anticipated that energy spectra steeper than k−3 or second-order
vorticity structure functions steeper than r0 result from the presence coherent
structures in the flow see e.g. Benzi et al. [8]. The high-resolution simulation of
Kevlahan and Farge [50] of isolated vortex-merger events, in which many intensive
spiraling vorticity filaments are created, also show typically steeper energy spectra.
Fig. 8.3 clearly reveals the presence of coherent vortices and spiraling filamentary
structures in the vorticity field. Therefore, the observed deviation from the KBL-
theory not necessarily has be explained by viscous dissipation in the enstrophy
cascade range in the present simulation, it might reflect the dominant role of
coherent structures on the small-scale statistics.

Table 8.2 – Relationship between the scaling of energy spectrum of the form E(k) ∝ k−α

and the second-order structure function S2(r) ∝ rp. If 0 < α < 3 then α = 1 + p and if
α > 3 then p = 2.

α 1 5/3 2 2.5 3 5
p 0 2/3 1 1.5 2 2
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Figure 8.4 – Transverse second-order structure function of the velocity and the vorticity.
The arrow denotes the position of the length-scale of the forcing. The dashed line in panel
(a) corresponds with the isotropic estimate for the transverse second-order structure func-
tion based on the longitudinal structure function. The structure functions are computed
in a square box with a half-width 0.5 in the centre of the flow domain.

8.5 Intermittency and extended self-similarity

The self-similar scaling of the form (8.7) is motivated by the scale invariance of the
Euler equations. It is assumed that viscous flow in the limit of ν → 0 will obtain
self-similar scaling. In the previous section it is found that the forcing scale and
the dissipation scale are only weakly separated. Therefore, the presence of viscous
dissipation can be expected to be relevant for all separations smaller than the
forcing scale. Since the Stokes equation is not scale invariant it can be expected
that self-similarity will no longer hold.
A straightforward method to analyze scale dependence is based on the probability
density function (pdf) of the vorticity increments at different separations. Note
that the second-order structure function at a given separation length is essentially
the second-order moment of the probability density function of the corresponding
increments.
Fig. 8.5 presents the pdf of the vorticity increments for seven separations in the
range r < lf . It is observed that the pdf has a similar shape for all separations.
A Gaussian core can be recognized with exponential tails. The similarity in the
shape of the pdf suggests scale invariant statistics. Note that the pdfs have been
normalized with the second-order moment, which is essentially the second-order
structure function that is shown in Fig. 8.4b. The convergence of the pdf on the
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tails of the distribution is, however, to poor to draw any firm conclusions about
the scale invariance.
A more accurate method for the detection of intermittency effects is proposed
by Benzi et al. [7]. These authors showed that locally homogeneous, isotropic
turbulence obeys a more general scaling relation of the form

Sp(r) ∼ S
ζ̃p

3 . (8.10)

The scaling (8.10) extends the inertial range property (8.7) which is strictly valid
for rd < r < lf deep into the dissipation range. The relative scaling exponent ζ̃p
allows a more accurate determination and hence a more reliable detection of the
presence of either extended self-similarity or intermittency. The relative scaling

P
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)
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δω/ 〈δω2〉1/2

Figure 8.5 – Probability density function of the vorticity increments for separations
r < lf . A Gaussian distribution is given for comparison.

exponent can now be expressed as ζ̃p = p/3 + γp, where γp is a measure of the
degree of intermittency. Babiano et al. [4] determined the relative scaling exponent
ζ̃p for both the inverse energy cascade and direct enstrophy cascade range. It was
observed that in the enstrophy cascade range the intermittency correction γp was

negligible, so that ζ̃p = p/3. In the inverse energy cascade range strong intermit-
tency correction was found to be necessary. The magnitude of the intermittency
correction in the inverse energy cascade is close to the corresponding value of the
intermittency correction observed in 3D turbulence. Babiano et al. [4] developed
an intermittency model for γp based on the scaling behaviour of local averages
of the non-linear transfer rate of the enstrophy. It correctly explains the observed
absence of intermittency in the enstrophy cascade range and the presence of strong
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intermittency in the inverse energy cascade range.

Fig. 8.6a shows the structure functions with respect to the separation length r
and in Fig. 8.6b the structure functions are plotted versus the third-order struc-
ture function. It can be seen that the extended self-similarity holds up to order
p = 8. For p = 10 strong deviations can be observed. This may be explained by
the lack of convergence for such high-order structure functions. In Belin et al. [6]
some estimates can be found for the number of data points that are required to
compute the structure functions within sufficient accuracy. According to these es-
timates it is possible to determine the structure functions up to order six for the
present data. For the higher-order structure functions it is anticipated that the
convergence is to poor to draw firm conclusions.
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Figure 8.6 – Transverse structure functions Sp of the velocity versus the separation r (a)
and versus the third-order structure function of the absolute value of the transverse veloc-
ity increments. The arrow denotes the forcing scale. Dashed lines in panel (b) correspond
with a slope of p/3.
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8.6 Enstrophy transfer

Bernard [9] derived an analytical expression for a mixed velocity-vorticity structure
function in the limit of ν → 0,

〈
(δu||)(δω)2

〉

r
= −2χ (8.11)

with χ the denoting the ensemble averaged enstrophy dissipation rate. It can be
seen as the equivalent of the well-known 4/5 law of 3D turbulence. The mixed
third-order structure function in (8.11) can be interpreted as a measure of the
non-linear transfer rate of enstrophy. The role of the longitudinal velocity incre-
ments can be related to the alignment between the rate of strain tensor and the
vorticity gradient vector observed in Eq. (1.16), which describes the non-linear
amplification of the vorticity gradients.
In the derivation of relation (8.11) it is assumed that the flow is locally homoge-
neous and isotropic. In Fig. 8.4a it has been verified that these conditions can be
assumed in the interior of the flow domain. Therefore, relation (8.11) can safely be
applied to obtain an estimate for the enstrophy transfer rate. In Fig. 8.7 the mixed
third-order structure function is shown with respect to the separation length and
with respect to the third-order structure function of the vorticity. In the forcing
range a sign-change of the mixed third-orders structure function can be observed
in Fig. 8.7a. This can be related to the injection of vorticity by the external forc-
ing. No other sign changes are observed in Fig. 8.7a, which indicates that a direct
enstrophy cascade is developed from the forcing range to the dissipation ranges.
The effect of vorticity injection from the domain boundaries is not recognized in
the form of a secondary forcing scale. The mixed third-order structure function
does not clearly show the inviscid scaling (8.11) proportional with r1. Since the
dissipation scales ld and lf are not well separated, so that viscous dissipation may
affect the scaling. To overcome the dissipation effect the mixed third-order struc-
ture function is plotted versus the third-order structure function of the vorticity
in Fig. 8.7b. In the KBL framework for the enstrophy inertial range the vorticity
structure functions are independent of the separation length. It can be deduced
from Fig. 8.7b that the enstrophy flux demonstrates scaling that is consistent with
(8.11) in the limit of ν → 0. This signifies that the scaling for separations r < lf
is consistent with the KBL picture of the direct cascade of enstrophy towards the
smallest scale of motion. There is no sign that the vorticity injection from the
sidewalls acts as a separate forcing lenght-scale for the internal flow.
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Figure 8.7 – Mixed third-order structure function versus separations r (a) and versus
third order structure function computed with the absolute value of the vorticity increments
(b). The dashed line in panel (b) corresponds with a slope of +1.

Concluding remarks

A statistically steady state is achieved in forced 2D flow in a square box with
no-slip sidewalls. High-amplitude vorticity filaments are injected into the flow do-
main, which could possibly affect the homogeneity and isotropy of the flow. It is
observed, however that in the interior of the flow domain the flow recovers local
homogeneity and isotropy at small-scales. The extended self-similarity of the flow
at small-scales is maintained. This can be related to the absence of the formation
of a condensate due to interaction with the no-slip walls. A similar observation is
reported by Kramer [53] for flows in a channel with a periodic and a non-periodic
direction with no-slip walls In the present flow simulations it is observed that a
direct enstrophy cascade range develops in the interior of the domain. This is an in-
teresting observation since usually the direct cascade of enstrophy is studied in the
presence of bottom friction, which is completely absent in the present simulations.
The second-order structure function of the vorticity shows significant deviation
from the KBL theory. This might be explained by the presence of coherent struc-
tures and spiralling vortex filaments in the internal flow. On the other hand, the
separation between the forcing length-scale and the dissipation length scale is to
limited to draw a firm conclusion.





Chapter 9

Conclusions and prospects

It is found that the Fourier spectral approach with volume-penalization is very
useful for pursuing direct numerical simulation (DNS) of high Reynolds number
2D flows in complex geometries. Normal and oblique dipole wall collisions served
as challenging benchmark problems to analyze the convergence properties of the
scheme.
The DNS computations in a circular geometry at moderate Reynolds number show
similar behaviour as the numerical simulations of Li and Montgomery [60] and the
experiments of Maassen et al. [65] in stratified flows. It is found that significant
production of angular momentum is absent on the circle. Therefore, the angular
momentum of the initial condition has important consequences for the late-time
evolution of the flow. Based on a minimum enstrophy principle a diagram is con-
structed that systematically explains the development of very typical flow patterns.
In an elliptic geometry it is observed that the magnitude of the torque can be scaled
with the eccentricity of the ellipse. The circle and the square can be seen as the
two limiting cases. It is indeed observed that in an elliptic geometry in the limit
of vanishing eccentricity the magnitude of the torque becomes minimal. This can
be explained by the scaling behaviour of the pressure contribution in the angular
momentum balance with respect to the eccentricity. For sufficiently high values
of the eccentricity the spin-up process can be compared with the square case i.e.
all runs in an ensemble show strong spin-up of the flow, which is associated with
the formation of monopolar (strongly asymmetric dipole) or tripolar vortices. In
the intermediate range of eccentricities it is remarkably observed that a slight dis-
placement of the initial vortices results in either a quadrupolar end-state like in the
circular case or in a strong spin-up of the flow like in the square case. This implies
a striking dependence of the end-state on the details of the initial condition.
High-Reynolds number simulations on a square domain reveal that spontaneous
production of angular momentum is not a low-Reynolds number artifact. The mag-
nitude of the torque, the spin-up strength and spin-up time do not show significant
dependence on the Reynolds number for 104 < Re < 105. This observation is con-
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sistent with the observation of angular momentum production during an oblique
dipole-wall collision. It can also be related to the role of the pressure contribution
in the angular momentum balance, which becomes finite in the limit of vanishing
viscosity. The characteristic spin-up time of the flow is related to the turnover of
the dominant vortices formed in the first decay stage and the associated formation
of the large-scale circulation cell. It is also shown that the energy dissipation rate is
relatively high compared with decaying 2D turbulence on a periodic domain. This
can be related with the production of high-amplitude vorticity at the no-slip walls.
The scaling relations of the enstrophy production and the energy dissipation rate
obtained from isolated dipole-wall collisions can explain the rapid energy decay of
fully developed 2D flow at high Reynolds numbers.
Additional simulations are conducted where the flow is maintained by an exter-

(a) Early (b) Steady state

Figure 9.1 – Two snapshots of the vorticity field in an oscillating spin-up. The time-
averaged Reynolds number is approximately 40000. The simulation is performed with
13642 active Fourier modes, time-step δt = 2 × 10−4 and penalization parameters ǫ =
10−8.

nal stochastic forcing mechanism. It is observed that a statistically steady state
develops due to flow-wall interaction and energy injection in the bulk of the flow.
The use of volumetric drag forces can be avoided completely. Therefore, 2D tur-
bulence on domain bounded with no-slip sidewalls is an interesting test case of
the classical KBL-theory. It is found that a direct cascade of enstrophy is indeed
present in the interior of the flow domain. Furthermore, it is found that extended
self-similarity (ESS) holds in the bulk of the flow. In the condensate regime on a
double periodic domain strong departures from (ESS) at small-scales have been
reported, see Smith and Yakhot [101]. In a confined geometry with no-slip walls
energy accumulation at the large scales is prevented. This might explain why ESS
is not violated at the small scales of the flow.
An interesting prospect is the use of oscillating spin-up to maintain the flow, see
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Wells et al. [106]. In their experiments and simulations an extra oscillation is added
to the background rotation of a square container. This results in the formation of
boundary layers that subsequently detach from the sidewalls. In Fig. 9.1 an ex-
ample of oscillating spin-up is given. The data of Wells et al. [106] indicates that
the vorticity layers that detach from the wall result in the formation of a dual cas-
cade. In future investigation it would be interesting to perform these simulation
at higher Reynolds numbers. Furthermore, it is important actually to measure the
spectral fluxes in both the near-wall region and the bulk of the flow.
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Summary

Fourier spectral computation of geometrically confined two-dimensional
flows

Large-scale flow phenomena in the atmosphere and the oceans are predominantly
two-dimensional (2D) due to the large aspect ratio of the typical horizontal and
vertical length scales in the flow. The 2D nature of large-scale geophysical flows
motivates the use of a conceptual approach known as ”2D turbulence”. It usually
involves the (forced/damped) Navier-Stokes equations on a square domain with
periodic boundaries or on a spherical surface. This setup may be useful for numer-
ical studies of atmospheric flow. For the oceans, on the other hand, geometrical
confinement due to the continental shelves is of crucial importance. The physically
most relevant boundary condition for oceanographic flow is probably the no-slip
condition. Previous numerical and experimental studies have shown that confine-
ment by no-slip boundaries dramatically affects the dynamics of (quasi−)2D tur-
bulence due to its role as vorticity source. An important process is the detachment
of high-amplitude vorticity filaments from the no-slip sidewalls that subsequently
affect the internal flow.

The first part of the thesis concerns the development and extensive testing of a
Fourier spectral scheme for 2D Navier-Stokes flow in domains bounded by rigid no-
slip walls. An advantage of Fourier methods is that higher-order accuracy can, in
principle, be achieved. Moreover, these methods are fast, relatively easy to imple-
ment even for performing parallel computations. The no-slip boundary condition is
enforced by using an immersed boundary technique called ”volume-penalization”.
In this method an obstacle with no-slip boundaries is modelled as a porous medium
with a small permeability. It has recently been shown that in the limit of infinitely
small permeability the solution of the penalized Navier-Stokes equations converges
towards the solution of the Navier-Stokes equations with no-slip boundaries. There-
fore the penalization error can be controlled with an arbitrary parameter. A possi-
ble drawback is that the sharp transition between the fluid and the porous medium
can trigger Gibbs oscillations that might deteriorate the stability and accuracy of
the scheme. Using a very challenging dipole-wall collision as a benchmark prob-
lem, it is, however, shown that higher-order accuracy is retrieved by using a novel
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post-processing procedure to remove the Gibbs effect.

The second topic of the thesis is the dynamics of geometrically confined 2D tur-
bulent flows. The role of the geometry on the flow development has been studied
extensively. For this purpose high resolution Fourier spectral simulations have
been conducted where different geometries are implemented by using the volume-
penalization method. A quantity that is of particular importance on a bounded
domain is the angular momentum. On a circular domain production of angular
momentum is virtually absent. Therefore the amount of angular momentum car-
ried by the initial flow has important consequences for the evolution of the flow.
The results of the simulations are consistent with previous numerical and exper-
imental work on this topic performed in a lower Reynolds number regime. The
typical vortex structures of the late time evolution of the flow are explained by
means of a minimum enstrophy principle and the presence of weak viscous dis-
sipation. For an elliptic geometry it is shown that strong spin-up events of the
flow occur even for small eccentricities. The spin-up phenomenon can be related
to the role of the pressure along the boundary of the domain. It is found that the
magnitude of the torque exerted on the internal fluid can be scaled with the eccen-
tricity. Furthermore, it is observed that angular momentum production in a non
circular geometry is not restricted to moderate Reynolds numbers. Significantly
higher Reynolds number flow computations in a square geometry clearly reveal
strong and rapid spin-up of the flow.

Finally the scale-dependence of the vorticity and velocity statistics in forced 2D
turbulence on a bounded domain has been studied. A challenging aspect is that
a statistically steady state can be achieved by a balance between the injection of
kinetic energy by the external forcing and energy dissipation at the no-slip side-
walls. It is important to note that on a double periodic domain a steady state is
usually achieved by introducing volumetric drag forces. Several studies reported
that this strongly affects the spatial scaling behaviour of the flow. Therefore it is
very interesting to quantify the small-scale statistics in the bulk of statistically
steady flow on a domain with no-slip boundaries in the absence of bottom drag.
It is observed that the internal flow shows extended self-similar, locally homoge-
neous and isotropic scaling behaviour at small scales. It is further demonstrated
that a direct enstrophy cascade develops in the interior of the flow domain. Some
deviations from the classical scaling theory of 2D turbulence developed indepen-
dently by Kraichnan, Batchelor and Leith may be associated to the presence of
coherent structures in the flow. It is, however, anticipated that higher-resolution
simulations are required in order to draw more decisive conclusions. The paral-
lel Fourier spectral scheme with volume-penalization is very suitable for pursuing
such simulations on high performance machines in the near future.

In summary the thesis contributes to both the development of numerical tech-
niques and understanding of wall-bounded two-dimensional flows. The Fourier
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spectral scheme with volume-penalization is found very suitable for pursuing di-
rect numerical simulations in complex geometries. The high-resolution simulations
considered in the thesis clearly reveal that spontaneous production of angular mo-
mentum due to interaction with non-circular domain boundaries is present for
significantly higher Reynolds numbers than considered previously.
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