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Summary

Precursors and nuclei, the early stages of flow-induced crystallization

Flow-induced crystallization (FIC) is the main factor determining the properties of melt-

processed semicrystalline polymer products. Therefore it has received much attention in

scientific research, both experimental and theoretical. Although the essential phenomena in

FIC are slowly being unraveled, a comprehensive theoretical framework, able to explain all

these phenomena, is still lacking.

Crystallization of polymers can be divided into three regimes:

1. quiescent crystallization, in which spherical structures (spherulites) are formed,

2. flow-enhanced nucleation, leading to a higher number density of spherulites,

3. formation of oriented fibrillar nuclei, which are a template of anisotropic crystalline

structures.

Upon increasing the rate or duration of flow, transitions from regime 1 to regime 2 and

regime 3 can be observed. The objective of this thesis is to investigate how flow-enhanced

nucleation (regime 2) can be modeled from a rheological point of view, including the coupling

between the structure formed and the viscoelastic behavior of the melt.

The results of this thesis are twofold. First, the rheology of polymer melts in the late

stages of crystallization, characterized, in regime 2, by growth of spherulites, is captured

by a viscoelastic suspension model. Secondly, flow-enhanced nucleation in the early stages,

which determines the subsequent spherulitic structure development, is modeled. A local

and a global formulation of this phenomenon are compared. The local formulation offers

a consistent theoretical concept for the processes of creation and nucleation of flow-

induced precursors (subcritical nuclei). However, it is not yet able to explain experimental

observations. The more empirical global formulation, on the other hand, agrees very well

with experimental data. Conclusions are drawn from these results and recommendations for

future research are given.

xi





Chapter one

Introduction

Flow-induced crystallization, which is unavoidable in processing of semicrystalline polymers,

is a wonderful example of the ‘butterfly effect’ [92]. After only a few seconds of flow in

the amorphous state, the time scale of subsequent crystallization is typically reduced by an

order of magnitude for moderate deformation rates [50,97,191] and even by a few orders of

magnitude for high deformation rates, as encountered in processing [14,118]. This is related

to the drastic morphological changes that occur, from increases on the order of several

decades in the number density of isotropic spherulites [97,191] to rapid growth of anisotropic

crystallites, which are almost always perfectly oriented in the flow direction [118, 173].

Many properties of polymer products strongly depend on the morphology. Examples are

mechanical properties, such as (anisotropic) stiffness, toughness, and wear resistance,

but also dimensional stability and surface roughness. Hence flow-induced crystallization

is a crucial phenomenon in processing of semicrystalline polymers for high-performance

products. In typical industrial applications, which involve complex time-dependent flow

and temperature fields, predicting morphology development is a challenging problem [44].

Flow-induced crystallization is closely related to the chain-like molecular structure of

polymers and their consequently time-dependent (viscoelastic) deformation behavior.

Experimental studies show that chains of high molecular weight govern the kinetics of

flow-enhanced nucleation and the transition to oriented growth, and based on these

observations, theoretical concepts have been developed [146,195]. This growing fundamental

understanding should be exploited to design new experiments, which can give more detailed

information about the origins of flow-induced crystallization. Unfortunately, not always the

most insightful choices are made.

As an example, Elmoumni et al. [60] subjected two isotactic polypropylene melts, labeled

iPP171 and iPP300 based on their weight-averaged molecular weights, to short-term shear

1



2 1 Introduction

flow. They did this at comparable Weissenberg numbers (products of strain rate and

relaxation time), which means that the flow strength, as experienced by the molecules, was

similar. The authors reported no significant differences in structure development between

these materials. Hence, they concluded that relaxation of chains after flow, which takes

more time in iPP300 due to its higher molecular weight, does not play a role in flow-induced

crystallization. However, since they applied the same strain in all experiments, the shear

times at comparable Weissenberg numbers were longer for iPP300 than for iPP171 (by a

factor of four to five). Thus, while the molecules experienced a similar flow, more time was

available for structure formation during flow of iPP300, in addition to its slower relaxation

afterwards. The conclusion of Elmoumni et al. can therefore not be drawn from their own

experiments. The similar structure development in the two materials then becomes more

intriguing. (Note that this similarity was deduced from small-angle light scattering and

wide-angle X-ray diffraction. They also showed optical micrographs, in which the transition

to oriented crystallization occurs at a lower Weissenberg number for the higher molecular

weight [60].)

The tendency to keep the strain constant, thereby varying both the strain rate and the

duration of flow, is widespread among experimentalists since the early work of Vleeshouwers

and Meijer [203]. It originates from the notion that the same strain gives the same

deformation history, which is not true for the molecular deformation history. A purely

macroscopic quantity like strain is unable to characterize the complex nonlinear viscoelastic

behavior of polymer melts, especially if a process far from equilibrium, e.g. flow-induced

crystallization, takes place. If the influence of macroscopic flow parameters, such as strain

rate and flow time, is to be investigated unambiguously, they should be varied one at a time.

This thesis presents a theoretical framework for flow-enhanced nucleation and spherulitic

structure formation, which can be extended straightforwardly to include the transition to

oriented growth [44]. Ideally, however, it will not only be read by theorists, but also by

experimentalists, who may find many points of departure for the design of new experiments.

The outline of this thesis is as follows. In Chapter 2, a method is developed to calculate the

evolution of rheological properties in the late stages of crystallization, which are dominated

by filling of the material volume with crystalline structures. Chapters 3 to 5 focus on the

early stages of flow-induced crystallization, where the precursors of crystalline nuclei are

formed, which determine subsequent structure development. Two different formulations of

a flow-enhanced nucleation model are discussed in Chapter 3 versus Chapters 4 and 5. Based

on the main conclusions, some challenges and opportunities for future research are discussed

in Chapter 6.



Chapter two

Suspension-based rheological modeling

of crystallizing polymer melts1

Abstract

The applicability of suspension models to polymer crystallization is discussed. Although

direct numerical simulations of flowing particle-filled melts are useful for gaining

understanding about the rheological phenomena involved, they are computationally

expensive. A more coarse-grained suspension model, which can relate the parameters in

a constitutive equation for the two-phase material to morphological features, such as the

volume fractions of differently shaped crystallites and the rheological properties of both

phases, will be more practical in numerical polymer processing simulations. General issues,

concerning the modeling of linear and nonlinear viscoelastic phenomena induced by rigid

and deformable particles, are discussed. A phenomenological extension of linear viscoelastic

suspension models into the nonlinear regime is proposed. A number of linear viscoelastic

models for deformable particles are discussed, focusing on their possibilities in the context of

polymer crystallization. The predictions of the most suitable model are compared to direct

numerical simulation results and experimental data.

1This chapter has been reproduced, slightly adapted, from R.J.A. Steenbakkers and G.W.M. Peters,
Rheologica Acta 47:643–665, 2008. DOI 10.1007/s00397-008-0273-4

3



4 2 Suspension-based rheological modeling of crystallizing polymer melts

2.1 Introduction

The significant effects of flow on the crystallization kinetics of polymers, specifically the

increase of the nucleation density and the transition from spherical to anisotropic growth,

have incited a great deal of scientific effort, both experimental and theoretical. Experimental

studies usually involve subjecting an undercooled melt to a short, well defined flow in the early

stage of crystallization, where nearly all of the material is still in the amorphous phase, and

monitoring the subsequent structure development by any one of a variety of measurement

techniques, including dilatometry, rheometry, microscopy, and scattering and diffraction

methods, or a combination of these methods. Since our understanding of the phenomena

occurring in the early stage, which determine to a great extent the final semicrystalline

morphology, is still incomplete, it is not surprising that far less attention has been devoted

to the influence of structure development on the rheology of a crystallizing melt. However,

once the mechanisms of flow-induced crystallization are known, this will be the first step in

going from short-term flow to continuous flow experiments, where the local process of phase

transformation is affected by the development of semicrystalline structures on an orders of

magnitude larger length scale and vice versa. These experiments will be useful as validation

for polymer processing simulations.

During the last decade, a number of concepts have been proposed that deal with the

rheology of crystallizing polymer melts. Winter and coworkers [95,96,160–163,208] observed

an apparent similarity to the rheology of chemical gels, in which polymer molecules are

connected by permanent crosslinks into a sample spanning network. They considered

crystallizing melts as physical gels, in which crystallites were connected by amorphous ‘tie

chains’.

Janeschitz-Kriegl et al. [107] estimated the fraction of chains involved in nuclei in their

experiments and found it to be so small that, during the major part of the crystallization

process, no interaction among the nuclei or the resulting spherulites was to be expected.

To explain the observed nonlinear increase of the nucleation density as a function of the

mechanical work supplied to the melt, they introduced the concept of flow-induced activation

of dormant nuclei [108, 109].

Another explanation of the strong self-enhancing effect of nucleation was proposed by

Zuidema et al. [212, 213]. They assumed that nuclei locally act as physical crosslinks,

increasing the probability that chain segments remain in an ordered state long enough to

serve as new nuclei. In other words, gel-like behavior is not caused by the formation of a

percolating network of semicrystalline domains, but by effective branching of the amorphous

phase. Low-frequency rheological measurements, recently published by Coppola et al. [43],

seem to support this idea (but see the discussion in Section 2.3.4).

A few attempts have been made to capture the kinetics of flow-induced crystallization in

a continuum description, embedded in a formal theoretical framework of nonequilibrium
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thermodynamics. For example, the Poisson bracket formalism [23] was used by Doufas

et al. [52]. In their model, which was applied to flow-induced crystallization during fiber

spinning [53, 54, 56, 57] and film blowing [55], details of the microstructure, e.g. size and

shape of the crystallites, are not taken into account. The crystalline phase is simply modeled

as a collection of bead-rod chains. A Giesekus model is used for the amorphous phase, with

the relaxation time depending on the degree of crystallinity χ as

λam = λam,0 (1 − χ)2 (2.1)

to account for the loss of chain segments due to crystallization.

Hütter [99] developed a flow-induced spherulitic crystallization model based on the ‘general

equation for the nonequilibrium reversible-irreversible coupling’ or generic [76, 152]. The

microstructure enters his model through the evolution of the interfacial area, obtained from

the Schneider rate equations [168]. This gives rise to a pressure term in the momentum

balance, related to the surface tension, as well as to an interfacial heat flux in the energy

balance. However, the extra stress tensor is written as the sum of the viscous stress

contributions from the matrix and the spherulites,

τ = τam + τsc , (2.2)

as if the material were a homogenous mixture. Here ‘am’ stands for the amorphous matrix

and ‘sc’ for the partially crystalline, partially amorphous material inside the spherulites, which

we call the semicrystalline phase. When both phases are incompressible, the partial stresses

are given by

τam = 2 (1 − φ) ηamD (2.3)

and

τsc = 2φηscD , (2.4)

where φ is the volume fraction of spherulites, or degree of space filling, and D is the

deformation rate tensor. Eqs. (2.2), (2.3), and (2.4) yield the effective viscosity

η = (1 − φ) ηam + φηsc . (2.5)

Thus, no connection is made between rheological properties and microstructural features.

Van Meerveld et al. [193,196] extended Hütter’s model with a description of the viscoelastic

behavior of the melt and used it to simulate fiber spinning. In contrast to Hütter et al. [100],

who developed a single set of rate equations, allowing for changes in crystallite shapes

and growth directions, they used two sets of rate equations to describe the evolution of

spherulites and oriented crystallites. Although morphology development is incorporated
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in these models, at the continuum level the stress is determined by the additive ‘rule of

mixtures’, Eq. (2.2). The question remains whether this is a realistic choice for describing

the rheology of crystallizing polymer melts.

The morphology that develops as nuclei grow into crystallites with distinct shapes agrees

with the basic concept of a suspension: isolated particles (the crystallites) are scattered

throughout a continuous matrix (the amorphous phase). It is well known that the rule

of mixtures fails to describe the volume fraction dependence of the rheological properties

of suspensions. The same may hence be expected for crystallizing melts. Boutahar et

al. [28,29], Tanner [183,184], and Van Ruth et al. [197] therefore used ideas from suspension

rheology to describe the evolution of linear viscoelastic properties during crystallization, as

a function of the degree of space filling and the properties of the individual phases.

Crystallizing polymer melts differ from ordinary suspensions in a number of ways. The

crystallites grow, they can have different shapes depending on the flow history, and their

properties evolve in time. The latter can be shown by combined optical microscopy

and rheological measurements during crystallization. The dynamic modulus continues to

increase after the completion of space filling [197]. This is the result of perfection of

the semicrystalline phase, also referred to as secondary crystallization. In this chapter,

crystallites are therefore treated as particles whose properties depend on their internal degree

of crystallinity,

χ1 =
χ

φ
, (2.6)

thus providing the possibility to incorporate perfection in the model. The surrounding

amorphous phase acts as a matrix, whose properties change as well. Small-amplitude

oscillatory shear measurements by Vega et al. [198] show strongly increased storage and loss

moduli, measured at a constant frequency, directly after short steady shear flows. The same

effect, but less severe, can be recognized in the work of Housmans et al. [97]. At the same

time scale, no significant degree of space filling was observed by means of optical microscopy

[D.G. Hristova, personal communication]. Therefore these results cannot be explained by

particle-like effects of the crystallites on the overall rheology. Coppola et al. [43] drew the

same conclusion from a comparison of dynamic measurements on partially crystallized melts

and on an amorphous melt filled with solid spheres. However, for the partially crystallized

samples, the degree of space filling was probably underestimated (see Section 2.3.4).

To explain these observations, the amorphous matrix will be described as a crosslinking

melt, with flow-induced nucleation precursors acting as physical crosslinks [212,213]. In the

later stages of crystallization, the flow is severely disturbed by the presence of crystallites.

Both phenomena have a nonlinear effect on the kinetics of flow-induced crystallization;

furthermore, they are mutually coupled. The influence of flow on the early-stage kinetics,

related to structure development within the amorphous matrix, will be discussed in Chapters

3, 4, and 5. Two-dimensional simulations of flow-induced crystallization in a particle-filled
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polymer melt have already been performed without taking the physical crosslinking effect

into account [104]. Here we focus on the later stages of crystallization, which are dominated

by space filling and perfection of the internal structure of the crystallites.

A suspension model for crystallization under real processing conditions has to meet at least

the following requirements:

1. The model has to be applicable in the entire range of volume fractions, i.e. from the

purely amorphous state (φ = 0) to complete filling of the material by the crystallites

(φ = 1). This rules out dilute suspension theories, although an interpolation between

analytical results for φ → 0 and φ → 1 has been applied with some success [184].

2. The possibility to incorporate differently shaped particles is essential for describing

different semicrystalline morphologies. Here, spherulites and oriented crystallites are

represented by spheres and cylinders, respectively, and we need a suspension model

that can deal with both.

3. To describe the evolution of linear viscoelastic properties, as measured during

crystallization, the model must provide a relationship between these properties and

morphological features.

4. Quantitative description of most manufacturing processes requires that the effect of

crystallization on the nonlinear viscoelastic behavior is captured as well.

In Section 2.2.1, we briefly review how the effective dynamic mechanical properties of a

linear viscoelastic suspension can be obtained from an elastic suspension model by means

of the correspondence principle [37, 83–85]. The consequences of modeling crystallites as

either rigid or deformable particles are discussed. No specific suspension model is used; the

discussion is of a general nature. A complementary phenomenological modeling approach

to nonlinear viscoelastic suspension rheology is introduced in Section 2.2.2. Its ability to

qualitatively reproduce results from experiments [140,149] and numerical simulations [102] is

investigated. The properties of a specific linear viscoelastic suspension model are discussed in

Sections 2.3.1 and 2.3.2. In Section 2.3.3, its predictions are compared to numerical [102]

and experimental [140] results for rigid particle suspensions. In Section 2.3.4, they are

compared to experimental data on quiescent and short-term shear-induced crystallization of

different polymer melts [J.F. Vega and D.G. Hristova, private communications] and [28,29,

43]. The conclusions of this chapter are summarized in Section 2.4.

2.2 Modeling

Various constitutive models are available to describe the nonlinear viscoelastic behavior of

the matrix of the suspension, i.e. the amorphous phase of the crystallizing melt. Differential
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models are most suited for numerical simulations of complex flows. Some of the most

advanced are the Rolie-Poly model [130] for linear melts and the Pom-Pom [142] and

eXtended Pom-Pom (XPP [202]) models for branched melts. These and other differential

models can be written in a general form, involving a slip tensor, which represents the

nonaffine motion of polymer chains with respect to the macroscopic flow [156].

The linear viscoelastic behavior of the matrix is characterized by the complex dynamic

modulus, which is a function of the frequency ω,

G∗
0(ω) = G′

0(ω) + jG′′
0(ω) (2.7)

and which is fitted by an M-mode discrete relaxation spectrum, giving the storage modulus

G′
0(ω) =

M
∑

i

G0,i

λ2
0,iω

2

1 + λ2
0,iω

2
(2.8)

and the loss modulus

G′′
0(ω) =

M
∑

i

G0,i
λ0,iω

1 + λ2
0,iω

2
(2.9)

in terms of the moduli G0,i and relaxation times λ0,i. The influence of particles on the linear

viscoelastic properties of a suspension is discussed next.

2.2.1 Linear viscoelastic suspension rheology

Our point of departure is the general expression for the effective shear modulus G of a

suspension of elastic particles dispersed throughout an elastic matrix [190],

G(φ) = fG(φ,
∼
s, ν0, ν1, µ, . . .)G0 , (2.10)

where φ is the volume fraction of the dispersed phase,
∼
s is an array of shape factors that

define the particle geometry, ν0 and ν1 are the Poisson ratios of the continuous phase and

the dispersed phase, respectively, and µ is the ratio of the shear moduli of the phases,

µ =
G1

G0

. (2.11)

In general, G0 and G1 only occur in suspension models via this ratio. The dimensionless

quantity fG = G/G0 is known as the relative shear modulus. Expressions analogous to Eq.

(2.10) can be written down for the effective bulk modulus K, Young’s modulus E, and

Poisson ratio ν [190]. Any two of these properties determine the mechanical behavior of an

elastic material. In viscous systems, the relative viscosity fη = η/η0 is used.
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To describe suspensions where both the matrix and the particles are linear viscoelastic, the

effective dynamic shear modulus is written in the same form as in the elastic case,

G∗(ω, φ) = f ∗
G(φ,

∼
s, ν0, ν1, µ

∗(ω), . . .)G∗
0(ω) (2.12)

with µ∗ = G∗
1/G

∗
0. This implies that G∗

0 and G∗
1 are known in the same range of frequencies.

The relative dynamic shear modulus will later on be denoted by f ∗
G(ω, φ) or simply by

f ∗
G. But one should keep in mind that, besides the frequency and the volume fraction, it

also depends on the geometry of the particles and the material properties of the phases.

The dynamic modulus ratio µ∗ governs the frequency dependence of f ∗
G, which makes it a

complex quantity,

f ∗
G(ω, φ) = f ′

G(ω, φ) + jf ′′
G(ω, φ) . (2.13)

The Poisson ratios may, in principle, also be complex. However, experiments on different

thermoplastic polymers have shown that the imaginary part of the complex Poisson ratio

ν∗ = ν ′ − jν ′′ has a maximum at the glass transition temperature Tg, where it is about an

order of magnitude smaller than the real part, i.e. ν ′′ ∼ 10−2, and that it decreases strongly

upon departure from Tg [4,206]. We therefore assume that, in the present case, all Poisson

ratios are real.

For a constant volume fraction, the correspondence principle [37,83–85] relates the relative

dynamic shear modulus f ∗
G to the relative shear modulus of an elastic suspension with the

same microstructure. In the case of a steady-state oscillatory deformation with frequency ω,

f ∗
G is simply obtained by replacing the moduli G0 and G1 in the elastic model by their dynamic

counterparts G∗
0 and G∗

1. Of course the volume fraction of crystallites in a crystallizing

polymer melt is not constant. However, according to Tanner [184], if φ changes slowly

compared to the characteristic time scale of stress relaxation, the correspondence principle

will still be a good approximation.

At this point, it should be noted that the density difference between the amorphous phase

and the semicrystalline phase of a polymer has an influence on the volume fraction, which

is given by

φ =
φ̃ρam

φ̃ρam +
(

1 − φ̃
)

ρsc

. (2.14)

Here ρam and ρsc are the densities of the amorphous and the semicrystalline phase,

respectively. The volume fraction φ̃, uncorrected for the density difference, is calculated

as the volume of transformed amorphous phase per initial unit volume of material. Eq.

(2.14) can easily be included in the rate equations for the growth of the semicrystalline

phase [129, 168]. In Section 2.3.4, where the actual volume fraction is determined directly

from microscopic images, no correction is necessary.
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Crystallites as rigid particles

Since, in general, the dynamic modulus of a polymer increases by several orders of magnitude

during crystallization, one may argue that the crystallites can be considered rigid. Any

suspension model should make sure that, with this assumption, all occurrences of µ∗ cancel

each other out. This is trivial; if the infinite modulus ratio remained, the effective modulus of

the suspension would already go to infinity when adding an infinitesimal amount of particles

to the pure matrix, which is unrealistic. If the Poisson ratios are real, as we assume here,

for rigid particles the relative dynamic modulus thus becomes real as well,

fG(φ) ≡ lim
|µ∗|→∞

f ∗
G(φ, µ∗(ω)) . (2.15)

The effective storage modulus is then given by

G′(ω, φ) = fG(φ)

M
∑

i

G0,i

λ2
0,iω

2

1 + λ2
0,iω

2
(2.16)

and the effective loss modulus by

G′′(ω, φ) = fG(φ)
M
∑

i

G0,i
λ0,iω

1 + λ2
0,iω

2
. (2.17)

Hence, upon adding particles, all moduli increase by the same amount, which moreover is

independent on the frequency, whereas the relaxation times remain equal to those of the

matrix.

For suspensions in which the particles are essentially rigid, the validity of Eqs. (2.15),

(2.16), and (2.17) has been confirmed by experiments as well as numerical simulations.

Schaink et al. [166] investigated the individual effects of Brownian motion and hydrodynamic

interactions on the viscosity of suspensions of rigid spheres by means of Stokesian dynamics

simulations. They used a viscous fluid as well as a linear viscoelastic fluid as the matrix

and found that the hydrodynamic contributions in both cases were similar. Expressions for

the components η′ = G′′/ω and η′′ = G′/ω of the dynamic viscosity, equivalent to Eqs.

(2.16) and (2.17), were obtained. Using the relative viscosity from the viscous simulation

results, Schaink et al. were able to reproduce some of the oscillatory shear data of Aral and

Kalyon [7] for suspensions of glass spheres in a viscoelastic fluid, namely those with φ = 0.1

and φ = 0.2. See et al. [169] subjected suspensions of spherical polyethylene particles in two

different viscoelastic matrix fluids to small-amplitude oscillatory squeezing flow. They found

that indeed, independent on the frequency, the relative quantities η′(φ)/η′
0 of one system

and G′(φ)/G′
0 and G′′(φ)/G′′

0 of the other system were all described by a single master curve

in the examined volume fraction range, 0 6 φ 6 0.4.

Since we want to be able, in a later stage, to extend our work with a model for perfection
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of the semicrystalline phase and study its effect on mechanical properties, we prefer to treat

crystallites as deformable particles. In this way also the possibility to model relatively weak

(low χ1) as well as stiff (high χ1) semicrystalline structures remains. Moreover, in numerical

polymer processing simulations, it is preferable to work with a dynamic modulus that remains

finite. This is not the case if crystallites are modeled as rigid particles up to large volume

fractions.

Tanner [184] proposed to use two separate models. The first gives fG for small volume

fractions, assuming the crystallites to be rigid, according to Eq. (2.15). From the second

model, which describes the crystallizing melt at large volume fractions, the additional relative

dynamic modulus

h∗
G =

G∗

G∗
1

(2.18)

is obtained. Depending on the microstructure of the system, we could for example use a

model for densely packed particles, i.e. the crystallites, with the amorphous phase filling

the interstices, or a suspension model with the amorphous phase as the particles and the

semicrystalline phase as the matrix. In any case, the relevant dynamic modulus ratio is now

µ∗−1. It is assumed that the amorphous phase essentially consists of voids, so that

hG(1 − φ) ≡ lim
|µ∗|−1→0

h∗
G(1 − φ, µ∗−1(ω)) . (2.19)

An interpolation between the solutions of the small and large volume fraction models is

necessary to insure a continuous transition at intermediate volume fractions. A linear

interpolation has the general form

G∗(ω, φ) = F(φ)G∗
0(ω) + H(φ)G∗

1(ω) (2.20)

with

F(φ) = [1 − w(φ)] fG(φ) (2.21)

and

H(φ) = w(φ)hG(φ) , (2.22)

where w ∈ [0, 1] is an empirical weighting function. Tanner [184] determined F and H
directly, by fitting them to the oscillatory shear data of Boutahar et al. [29] for a polypropylene

melt containing different volume fractions of spherulites. A qualitative agreement with the

shear-induced crystallization experiments of Wassner and Maier [205] was found using these

empirically determined interpolation functions. It should be noted that the experiments were

limited to very low shear rates (0.003 6 γ̇ 6 0.16 s−1).
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If G∗
1(ω) is known and is fitted by a discrete relaxation spectrum of N modes, Eqs. (2.16)

and (2.17) are now extended to

G′(ω, φ) = F(φ)

M
∑

i=1

G0,i

λ2
0,iω

2

1 + λ2
0,iω

2
+ H(φ)

N
∑

k=1

G1,k

λ2
1,kω

2

1 + λ2
1,kω

2
(2.23)

and

G′′(ω, φ) = F(φ)
M
∑

i=1

G0,i
λ0,iω

1 + λ2
0,iω

2
+ H(φ)

N
∑

k=1

G1,k
λ1,kω

1 + λ2
1,kω

2
. (2.24)

In both the small volume fraction model and the large volume fraction model, all moduli

change by the same amount while the relaxation times do not change. Due to the

interpolation, however, the overall relaxation behavior of the material varies with the volume

fraction, unless M = N and λ0,i = λ1,i.

Although it is possible to capture, in this rather simple way, the evolution of linear viscoelastic

properties during crystallization, we take a different approach. The linear viscoelastic

modeling presented here will be extended to the nonlinear viscoelastic regime for application

in polymer processing simulations. The interpolation method is not suited to this purpose

since the optimal fitting parameters, defining the weighting function w(φ), probably change

with the processing conditions.

Crystallites as deformable particles

In general, if G∗
1 is finite, f ∗

G is complex and Eq. (2.12) yields for the effective storage

modulus

G′ = (f ′
G − f ′′

G tan δ0) G′
0 (2.25)

and for the effective loss modulus

G′′ =

(

f ′
G +

f ′′
G

tan δ0

)

G′′
0 (2.26)

with tan δ0 = G′′
0/G

′
0 the loss angle of the matrix. The fact that the expressions between

parentheses in Eqs. (2.25) and (2.26) are different has an important consequence. Eq.

(2.25) can be written as

G′ =
M
∑

i=1

(

f ′
G − f ′′

G

λ0,iω

)

G0,i

λ2
0,iω

2

1 + λ2
0,iω

2
(2.27)
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and Eq. (2.26) as

G′′ =
M
∑

i=1

(f ′
G + f ′′

Gλ0,iω)G0,i
λ0,iω

1 + λ2
0,iω

2
. (2.28)

It is clear that, if the effective relaxation times λi are chosen equal to the relaxation times

λ0,i of the matrix, G′ and G′′ can only be described by the same spectrum if f ′′
G = 0. All

moduli then increase by the same amount f ′
G relative to those of the matrix, so that G′ and

G′′ are shifted independent on the frequency, corresponding qualitatively to the behavior of

a rigid particle suspension. But f ′′
G = 0 only if µ∗ is real, i.e. if G∗

1 is proportional to G∗
0

so that both have the same frequency dependence, which is not the case in suspensions

encountered in practice, nor in crystallizing polymer melts.

If f ′′
G 6= 0, f ∗

G must be determined in the whole range of frequencies of interest, given

the dynamic moduli G∗
0(ω) and G∗

1(ω) of the individual phases. In numerical simulations of

crystallization during flow, G∗ can at any time step be fitted by a new set of effective moduli

and effective relaxation times, using the set from the previous time step as a first estimate.

If the number of modes is the same for each phase, they can be expressed in terms of the

moduli and relaxation times of the matrix as

Gi(φ) = kG,i(φ)G0,i (2.29)

and

λi(φ) = kλ,i(φ)λ0,i (2.30)

with 1 6 kG,i 6 G1,i/G0,i and 1 6 kλ,i 6 λ1,i/λ0,i. In this way a smooth transition from

the matrix spectrum to the particle spectrum is obtained. If the latter consists of N < M

modes, while going from φ = 0 to φ = 1, M − N of the initial M modes should vanish. If

N > M , N − M new modes should appear. To ensure consistency, a single criterion must

be used to choose the number of modes in the phase spectra and in the effective spectrum.

Thus we use a single suspension model, in contrast to the interpolation method, where

different models are used at small and large volume fractions. Therefore we need a suspension

model that is valid in the entire range of volume fractions, as stated in the Introduction.

This severely limits the number of suitable models. We will come back to this in Section

2.3.

2.2.2 Nonlinear viscoelastic suspension rheology

The correspondence principle is only valid in the linear viscoelastic regime, since it relies

on the fact that the stress evolution is given by a Boltzmann integral [37, 84, 85]. In the
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context of modeling flow-induced crystallization during processing, nonlinear effects will be

important at least in the amorphous phase, where the largest deformations take place. In

general, nonlinear viscoelastic constitutive models contain the moduli Gi and the relaxation

times λi of the linear relaxation spectrum plus a number of additional parameters. We

assume that the correspondence principle still applies to the linear viscoelastic part of the

rheology. The effective moduli and relaxation times are then related to those of the matrix

by Eqs. (2.29) and (2.30), respectively.

Experiments on suspensions of rigid particles in a viscoelastic matrix have shown that the

maximum strain amplitude, below which linear viscoelastic behavior is observed, decreases

strongly with increasing particle volume fraction [7]. Thus, even though the matrix is linear

viscoelastic, at a certain volume fraction the behavior of the suspension will become nonlinear

viscoelastic. This phenomenon may also be expected to occur if the particles are not rigid,

although to our knowledge no supporting data are available.

The experimental results of Ohl and Gleissle [149] and Mall-Gleissle et al. [140], in which

suspensions of essentially rigid spheres in viscoelastic matrix fluids were subjected to simple

shear flow, show a pronounced influence of the volume fraction on the normal stress

differences. It was found that, for constant φ, the steady-state first normal stress difference

N1 = τ11 − τ22 correlated with the shear stress as N1 ∼ τn
12, where 1.63 6 n 6 1.68. When

the volume fraction of particles was increased at a constant value of the shear stress, they

saw that the first normal stress difference decreased. This means that the dependence of

N1 on φ is weaker than that of τn
12 on φ.

Hwang et al. [102], who simulated two-dimensional suspensions of rigid discs in an Oldroyd-

B fluid, found a similar scaling of the time-averaged steady-state stress functions N1 and τ12

with an exponent n = 2. Furthermore, they showed that both the macroscopic shear viscosity

η = τ12/γ̇0, where γ̇0 is the externally applied shear rate, and the macroscopic first normal

stress coefficient Ψ1 = N1/γ̇
2
0 increase with γ̇0 as well as with φ. Mall-Gleissle et al. [140]

also observed that the magnitude of the second normal stress difference |N2| = |τ22 − τ33|
increased by the same amount as N1 upon increasing the volume fraction at constant shear

stress. This was not the case in the simulations of Hwang et al. [102] because the Oldroyd-B

model does not predict a second normal stress difference in planar shear.

The dependence of N1 and τ12 on the volume fraction of particles can be reproduced, at

least qualitatively, by assuming that the ‘effective’ velocity gradient tensor can be written as

L(φ, γ̇0) = kL(φ, γ̇0)L0 (2.31)

to take into account that the macroscopic velocity field L0 is locally disturbed by the presence

of particles. The undisturbed shear rate, defined as

γ̇0 =
√

2D0 : D0 (2.32)
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with D0 = 1
2

[

L0 + LT
0

]

the undisturbed deformation rate tensor, together with the volume

fraction of particles determines the strength of the disturbances kL according to Eq. (2.31).

To illustrate this phenomenological model of particle-induced nonlinear effects, we choose

a single-mode upper-convected Maxwell model. Using Eqs. (2.29), (2.30), and (2.31), the

constitutive relation for the extra stress tensor becomes

▽

τ +
1

kλλ0
τ = 2kGkLG0D0 . (2.33)

In a steady-state simple shear flow, Eq. (2.33) yields the shear stress

τ12 = kGkλkLG0λ0γ̇0 (2.34)

and the first normal stress difference

N1 = 2kGk2
λk

2
LG0λ

2
0γ̇

2
0 =

2τ 2
12

kGG0
. (2.35)

In accordance with the numerical simulations of Hwang et al. [102], the first normal stress

difference, at a given volume fraction, is proportional to the square of the shear stress.

They used an Oldroyd-B model for the matrix, which leads to equivalent results if used

in combination with the phenomenological nonlinear viscoelastic model discussed here.

Furthermore, also in accordance with these simulations and with the experiments of Mall-

Gleissle et al. [140], the ratio of the first normal stress difference and the nth power (here

n = 2) of the shear stress, both normalized by their values at φ = 0, is independent on the

shear stress and shear rate:

β(φ) =
N1(φ, γ̇0)/N1(φ = 0, γ̇0)

[τ12(φ, γ̇0)/τ12(φ = 0, γ̇0)]
2 =

1

kG(φ)
. (2.36)

Figure 2.1 shows how τ12 and N1 change if the volume fraction is increased from φ1 to φ2

while the macroscopic shear rate is kept constant. For rigid particles (kλ = 1) not disturbing

the macroscopic velocity field (kL = 1), N1 increases linearly with τ12. However, Hwang et

al.’s results indicate that the dependence of N1 on τ12, upon increasing the volume fraction

at a constant shear rate, becomes stronger than linear. Here this deviation is taken into

account by the parameter kL, which is a function of the volume fraction as well as the shear

rate. Thus, with this parameter a shear thickening is introduced, which is also in accordance

with the simulations of Hwang et al. Moreover, it qualitatively agrees with the experiments

of Ohl and Gleissle [149] involving rigid particle suspensions with shear thinning matrix fluids,

where the shear thinning effect was observed to decrease with increasing volume fraction at

high shear rates.

In order to describe the dependence of N2 on φ, a constitutive model should be chosen which

predicts a negative second normal stress difference in simple shear flow. One option is to use
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Figure 2.1: Schematic drawing of the volume fraction dependence of the first normal
stress difference and the shear stress at a macroscopic shear rate γ̇0.

a model with a Gordon–Schowalter derivative [124] and a nonzero slip parameter ζ , like the

Phan-Thien–Tanner (PTT) model. However, it can be shown that β then depends on the

macroscopic Weissenberg number, Wi0 = λ0γ̇0, which contradicts the experimental results.

Via a different approach, Tanner and Qi [185] developed a phenomenological nonlinear

viscoelastic suspension model, showing reasonable agreement with experimental data for N1

as well as N2. The stress tensor in their model consists of two modes. One is described

by a PTT model, with ζ = 0 and including a volume fraction dependence of the relaxation

time, and the other by a Reiner–Rivlin model with a volume fraction-dependent viscosity.

The latter causes the second normal stress difference. A definitive validation of the method

proposed here may be possible by starting with more advanced constitutive models, like for

example the Rolie-Poly [130], Pom-Pom [142], or XPP [202] models.

As shown in Figure 2.1, shifting the shear stress and the first normal stress difference by

kG(φ), we should end up on the line with slope n corresponding to the volume fraction φ.

Hence, experimental data such as those of Mall-Gleissle et al. can be used to validate any

combination of a constitutive model for the matrix and a suspension model for the influence

of the particles on the effective linear viscoelastic properties. Moreover, numerical results

like those of Hwang et al. allow for the independent validation of linear viscoelastic models

for suspensions of rigid particles, since the same constitutive model for the matrix can be

chosen as in the simulations. Unfortunately, we are not aware of similar experimental or

numerical results for deformable particles.

The parameter kL, which describes the nonlinear viscoelasticity induced by the presence of

particles, can be found by fitting it to experimental or numerical data. This procedure is not

independent on the constitutive model used for the matrix, because different constitutive

models may yield different values for the exponent n. For the upper-convected Maxwell and
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Oldroyd-B models, where n = 2, we find

kL(φ, γ̇0) =
N1(φ, γ̇0)/N1(φ = 0, γ̇0)

τ12(φ, γ̇0)/τ12(φ = 0, γ̇0)
. (2.37)

Figure 2.1 shows that this parameter determines the deviation from the curve N1 ∼ τ12,

when the volume fraction is increased at a constant macroscopic shear rate γ̇0. Hwang et

al. showed the dependence of kL on the volume fraction and the macroscopic shear rate in

their two-dimensional simulations (figure 8 in [102]).

In the following an elastic suspension model, taken from the literature, is transformed to

a linear viscoelastic model by means of the correspondence principle. Its predictions are

compared qualitatively to the numerical simulations of Hwang et al. in Section 2.3.3 and

quantitatively to crystallization experiments in Section 2.3.4. A quantitative evaluation of

the phenomenological model of nonlinear viscoelastic suspension rheology, discussed above,

is beyond the scope of this chapter.

2.3 Evaluation of a linear viscoelastic model

Analytical descriptions of the effects of particles on the rheology of a suspension are

generally restricted to isolated particles or to interactions between pairs of particles and

are therefore valid only in dilute or semi-dilute conditions, respectively. In the case of a

crystallizing polymer melt, however, we need a suspension model that is applicable in the

entire range of volume fractions. An appropriate choice might be one of the so-called self-

consistent estimates, which have been used for quite some time in the mechanical modeling

of elastic composites. Essentially, the effective properties are found as follows. A stress

or strain is prescribed at the boundary of a unit cell, which gives a simplified picture of

the microstructure. The mechanical response of the unit cell is calculated and when this

response becomes homogeneous, the effective mechanical properties are found.

The generalized self-consistent method of Christensen and Lo [38] was claimed by these

authors to be valid in the entire range of volume fractions. Furthermore, it gives solutions

for suspensions of spherical particles and suspensions of long parallel cylindrical fibers,

corresponding to the different microstructures found locally in a crystallizing polymer melt.

The generalized self-consistent method thus meets the first two requirements stated in the

Introduction. The third and fourth have already been dealt with in Section 2.2. We therefore

discuss this model in detail here.
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2.3.1 History and relation to other models

The generalized self-consistent method was originally called three-phase model but renamed

by Christensen [40] in reference to the self-consistent method [33, 93, 94]. This model,

which has an analogy in the theory of heterogenous conducting materials [32], considers a

single particle embedded in a homogeneous matrix with the effective properties sought. The

generalized self-consistent method, on the other hand, uses a unit cell made up of a particle

surrounded by a concentric shell of the matrix material. This coated particle is embedded

in the effective homogeneous medium. The difference between the two models can be

interpreted as follows: ‘While the self-consistent method seeks to predict the interaction of

an inclusion and its neighboring microstructure (the combined effect of the matrix and other

inclusions), this model includes (in a certain approximate sense) the interaction between the

inclusion and the surrounding matrix, as well as the neighboring microstructure’ [148]. A

coated particle unit cell was used earlier by Fröhlich and Sack [65] for elastic spheres in a

viscous matrix, by Oldroyd [150] for viscous drops or elastic spheres in a viscous matrix, by

Kerner [114] for elastic spheres in an elastic matrix, and by Hermans [89] for unidirectional

elastic fibers in an elastic matrix. Two versions of the generalized self-consistent method

exist: a three-dimensional (3D) one in which the particle and matrix domains of the unit

cell are concentric spheres and a two-dimensional (2D) one in which they are concentric

circles. These give the solutions for spherical particles and long parallel cylindrical fibers,

respectively.

Table 2.1 summarizes the main properties of the generalized self-consistent method and

some other suspension models. Palierne [153] developed a model for incompressible linear

viscoelastic emulsions, in which the drops are at least approximately spherical. For dilute

emulsions, he considered a single drop suspended in the effective medium. Not surprisingly,

neglecting the effect of surface tension, the result is the same as the analytical solution of

the self-consistent method in the dilute limit, taking the matrix as incompressible [93]. In

contrast to both the self-consistent and the generalized self-consistent method, the derivation

of the non-dilute Palierne model is based on a unit cell in which one particle is at the center

of a sphere filled with the matrix and other particles, which in turn is surrounded by the

effective medium. If the effect of surface tension is again neglected, it turns out that

the result is exactly the viscoelastic analogue of the model of Kerner [114] for all volume

fractions [71,153]. Through a similar derivation for an elastic suspension of spheres, Uemura

and Takayanagi [192] also arrived at the same effective shear modulus as Kerner, although

a different expression for the effective Poisson ratio was obtained.

Christensen and Lo [38] demonstrated that the elastic shear modulus predicted by the 3D

generalized self-consistent method lies between the classical upper [80] and lower bounds

[81, 204] for all volume fractions, whereas Kerner’s result coincides with the lower bound.

Contrary to Palierne’s model, the 3D generalized self-consistent method is only equivalent to

Kerner’s model for vanishing volume fraction of spheres. Whereas Palierne did not consider
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Table 2.1: Attributes of some suspension models (SCM: self-consistent method, GSCM:
generalized self-consistent method, TOA: third-order assumption). Elastic (E) models can
be converted to linear viscoelastic (LVE) models by means of the correspondence principle.

Model Phases Particles Volume fraction Ref.

SCM

E

spheres
small or large

[93]

cylinders [94]

GSCM
spheres arbitrary, size distribution

[38–40]
cylinders should admit φ → 1

Torquato, exact
arbitrary

arbitrary [188]

Torquato, TOA small to moderate [189]

Palierne
LVE spheres small to moderate

[153]

Bousmina [27]

drops close to contact with each other, Christensen [40] derived, by physical reasoning similar

to that of Frankel and Acrivos [64], the functional form of fG(φ) and of the relative transverse

shear modulus fG23
(φ) for rigid spheres and unidirectional rigid cylinders, respectively, when

φ → 1. They were found to agree with the corresponding asymptotic forms of the generalized

self-consistent method, for a compressible matrix as well as for an incompressible matrix.

Of course the volume fraction can only go to one if the distribution of particle diameters is

sufficiently broad, so that small particles can fill the spaces between larger particles.

Bousmina [27] proposed an emulsion model based on the 3D generalized self-consistent

method, extending the particle modulus with a term due to surface tension. In the

coefficients of the quadratic function, one of whose roots is f ∗
G (see Eq. (2.41) later on) only

terms of order φ were retained. It is therefore not surprising that only small differences with

Palierne’s model were observed. The expressions for the coefficients given in Bousmina’s

paper contain a few errors, apparently mostly because he was unaware of an erratum [39]

to the original paper on the generalized self-consistent method; the correct expressions are

included in Appendix 2A.

Christensen [40] validated the 3D generalized self-consistent method with respect to

experimental data on suspensions of rigid spheres. The results proved superior to those of two

homogenization schemes widely used at that time, i.e. the Mori–Tanaka method [22] and the

differential scheme [159], especially for volume fractions φ > 0.4. However, Nemat-Nasser

and Yu [147] pointed out uncertainties in some of the experimental data used for comparison,

which were compiled by Thomas [187]. Segurado and Llorca [170] performed 3D numerical

simulations of suspensions of spheres in an elastic matrix, where 0 6 φ 6 0.5. They

compared their results to the predictions of the Mori–Tanaka method, the generalized self-

consistent method, and the third-order approximation [189] of an exact series expansion for

the effective stiffness tensor of elastic two-phase media [188]. The generalized self-consistent
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method performed just as well as this third-order approximation when the particles were

deformable, except that the effective bulk modulus was predicted slightly more accurately

by the third-order approximation. For rigid spheres, the latter also yielded somewhat better

results.

Because the generalized self-consistent method is much easier to implement than Torquato’s

third-order approximation, we will use it to determine the linear viscoelastic properties of a

suspension with the aid of the correspondence principle. As explained above, the suspension

is represented by a unit cell consisting of a particle and a surrounding matrix shell. Their

radii are a and b, respectively. The volume fraction of particles is given by

φ =
(a

b

)3

(2.38)

for the 3D coated sphere unit cell and

φ =
(a

b

)2

(2.39)

for the 2D coated cylinder unit cell. The unit cell is suspended in an infinitely extending

effective medium, which has the effective properties of the suspension. These properties

are found when the response of the unit cell to a given load equals the response of the

homogeneous effective medium. In the 3D generalized self-consistent method, the relative

shear modulus (see Eq. 2.10) is obtained from the quadratic equation

Af 2
G + BfG + C = 0 , (2.40)

where the coefficients A, B, and C depend on φ, µ, ν0, and ν1. These coefficients are given

in Appendix 2A. The relative bulk modulus was found to be the same as in the composite

spheres model of Hashin [80].

For elastic suspensions of long parallel cylindrical fibers, Hashin and Rosen [82] derived the

components of the fourth-order stiffness tensor, except the shear modulus in the transverse

plane. The 2D generalized self-consistent method gives the relative transverse shear modulus

as the solution of a quadratic expression similar to Eq. (2.40), but with different coefficients.

These are included in Appendix 2B.

In accordance with the correspondence principle, the relative dynamic modulus is obtained

from

A∗f ∗
G

2 + B∗f ∗
G + C∗ = 0 , (2.41)

where the complex coefficients A∗, B∗, and C∗ follow from A, B, and C when µ is replaced

by µ∗. For a crystallizing polymer melt, we propose to calculate the effect of the presence of

spherulites by means of the 3D generalized self-consistent method, and to use the resulting
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Figure 2.2: Influence of the Poisson ratio of the matrix on the relative modulus of an
elastic suspension of spheres (µ = 103, ν1 = 0.5).

effective medium as the matrix in the 2D generalized self-consistent method, which accounts

for the influence of oriented crystallites.

2.3.2 Influence of phase properties

First of all, let us take a look at the original 3D generalized self-consistent method for elastic

suspensions of spheres, according to which the relative shear modulus fG is obtained from

Eq. (2.40) with real coefficients A, B, and C. The curve of log(fG) versus φ for µ = 103

and ν0 = ν1 = 0.5, plotted in Figures 2.2 and 2.3, has two inflection points: one at φ ≈ 0.70

and the other at φ ≈ 0.95. In between these points the second derivative is negative,

∂2 log(fG)

∂φ2
< 0 , (2.42)

and consequently a ‘shoulder’ appears in the curve. Beyond φ ≈ 0.95, fG swiftly approaches

its final value fG(φ = 1) = µ; note that fG at φ = 0.95 is still smaller than µ/2.

The shape of the relative modulus curve depends most strongly on the Poisson ratio of the

matrix and on the modulus ratio. Figure 2.2 shows that, upon lowering ν0 while keeping

ν1 = 0.5, fG decreases and the shoulder vanishes quickly: at ν0 = 0.49 it is not recognizable

anymore. Decreasing ν1 while ν0 = 0.5 has a much weaker influence on fG, as seen in Figure

2.3, and the shoulder remains. Thus, even at large volume fractions, compressibility of the

matrix has a more profound influence on the results of the 3D generalized self-consistent

method than compressibility of the particles. Furthermore, the shoulder diminishes at lower

values of the modulus ratio, as shown in Figure 2.4. It should be noted that the logarithmic

scale used on the vertical axes of these figures exaggerates the effects mentioned. For the
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Figure 2.3: Influence of the Poisson ratio of the particles on the relative modulus of an
elastic suspension of spheres (µ = 103, ν0 = 0.5).

second derivative of fG with respect to φ one finds

∂2fG

∂φ2
<

1

fG

(

∂fG

∂φ

)2

(2.43)

if Eq. (2.42) is satisfied. Since the right-hand side of Eq. (2.43) is always positive, when

fG is plotted on a linear scale, a smaller decrease of ν0 or µ suffices to make the shoulder

vanish: it is already gone at a matrix Poisson ratio ν0 = 0.498 for ν1 = 0.5 and µ = 103,

and at a modulus ratio µ = 50 for ν0 = ν1 = 0.5.

To our knowledge, this peculiar feature of the generalized self-consistent method has never

been reported before. Looking at the material parameters in previous publications, it is easy

to see why. Christensen and Lo [38] simulated suspensions with modulus ratios µ = 23.46

and µ = 135.14. According to Figure 2.4, the latter is high enough to cause an observable

shoulder in a suspension with an incompressible matrix, but Christensen and Lo used a

matrix with ν0 = 0.35, which is too low even when µ = 103 (Figure 2.2). In the later work

of Christensen [40], the compressibility effect was obscured because only rigid particles were

considered (µ → ∞). The high end of the curve is then stretched to infinity, so that the

shoulder is smoothed out. Segurado and Llorca [170] used the 3D generalized self-consistent

method to simulate both suspensions of rigid spheres and suspensions of deformable spheres.

In the latter case, the matrix was again too compressible (ν0 = 0.38) and the modulus ratio

too low (µ = 26.83). But apart from that, the maximum volume fraction used in their

calculations was φ = 0.5, which is below the range where the shoulder develops.

When the 2D generalized self-consistent method is used to calculate the relative transverse

shear modulus of an elastic fiber-reinforced material, the results show the same dependence

on the Poisson ratios and the modulus ratio. Applying the generalized self-consistent method

to a suspension of linear viscoelastic materials, the same effects are observed in the storage
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Figure 2.4: Influence of the modulus ratio on the relative modulus of an elastic suspension
of spheres (ν0 = ν1 = 0.5).

modulus and the loss modulus.

2.3.3 Comparison to numerical and experimental data

As explained in Section 2.2.2, models for the effects of particles on the linear viscoelastic

properties of a suspension, governed by the multipliers kG,i for the modulus and kλ,i

for the relaxation time, can be validated by numerical simulations. Hwang et al. [102]

presented results for a sheared 2D system, consisting of rigid discs suspended in an Oldroyd-

B fluid. Their simulation method, based on sliding rectangular domains with periodic

boundary conditions, was extended to three dimensions to describe suspensions of spherical

particles [101]. It was also modified for 2D extensional flow, based on stretching rectangular

domains with periodic boundary conditions [103]. An alternative method for 2D extensional

flow, using a fixed grid, was developed recently by D’Avino et al. [47, 48]. The 2D shear

results are considered here. Figure 2.5 shows the time-averaged steady-state first normal

stress difference 〈N1〉 versus the steady-state shear stress 〈σ12〉 (σ12 is the sum of the

viscous mode and the viscoelastic mode in the Oldroyd-B model). Each line corresponds to

the simulation results at a constant area fraction of disks, which is equivalent to a volume

fraction of infinitely long parallel cylinders, and different shear rates.

Because of the rigidity of the particles, kλ,i = 1 and kG,i = fG is a real number, which

is obtained from the 2D generalized self-consistent method. Irrespective of the shear rate,

shifting τ12(φ = 0) to the right and N1(φ = 0) upwards by the same factor fG(φ), we should

end up on the line corresponding to the area fraction φ (see Figure 2.1). The symbols in

Figure 2.5 indicate the results of the 2D generalized self-consistent method at an arbitrary

constant shear rate. It turns out that these agree with the simulations up to φ ≈ 0.10. At

larger area fractions, the 2D generalized self-consistent method predicts a much stronger



24 2 Suspension-based rheological modeling of crystallizing polymer melts

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

0 0.2 0.4 0.6
10

0

10
1

〈σ12〉 [Pa]

〈N
1
〉[

P
a
]

φ [−]

k
G

[−
]

Figure 2.5: Steady-state first normal stress difference and shear stress from simulations
(lines, [102]) and from the 2D generalized self-consistent method at an arbitrary shear
rate (circles). Inset: kG(φ) from simulations (dots) and from the generalized self-
consistent method (circles). The angle brackets indicate that the steady-state properties
were obtained from the simulations by averaging over time.

increase of fG than the simulations. This is not entirely surprising, since Hwang et al. [102]

determined the steady-state suspension properties from simulations with a single particle in

a periodic domain. The authors already noted that this method does not give realistic results

for highly concentrated systems. Nevertheless, an area fraction of ten percent is quite small.

We also compared the predictions of a single-mode upper convected Maxwell model,

combined with the 3D generalized self-consistent method, to the experimental data of Mall-

Gleissle et al. [140]. As seen in Figure 2.6, the data are underpredicted already for φ = 0.05.

Better results would probably have been obtained with a more advanced constitutive model.

But even for relatively simple ones, like the Giesekus model or the PTT model, no analytical

solutions can be derived for τ12 and N1. The relaxation behavior of the matrix has to be

known in order to calculate them numerically. Unfortunately, we do not have this information.

2.3.4 Application to crystallization experiments

We looked at two types of rheological measurements on crystallizing polymer melts, in order

to investigate whether suspension models can indeed capture the phenomena observed in

these experiments. In the first type of experiments, after different short periods of shear, the

evolution of the linear viscoelastic properties was followed in time at a constant frequency

[J.F. Vega, personal communication, similar to [198] for a different material]. In the second

type, the linear viscoelastic properties were measured over a range of frequencies for different

constant volume fractions of crystallites [28, 29, 43].

The results from these experiments were used to validate the generalized self-consistent
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Figure 2.6: Steady-state first normal stress difference and shear stress from experiments
(symbols, [140]) and from the 3D generalized self-consistent method (lines).

method as well as the interpolation method, which was described in Section 2.2.1. While

the latter treats the highly filled polymer melt as a suspension of amorphous particles

in a semicrystalline matrix, the former always takes the crystallites as particles. It has

been mentioned in Section 2.3.1 that, in order to allow φ → 1, the generalized self-

consistent method assumes a broad distribution of particle diameters. This is generally

not the case in a crystallizing polymer melt, but there complete space filling is achieved in a

different way. After impingement of the crystallites, further growth will be restricted to the

directions in which amorphous material is still present, until all of it has been incorporated

in the semicrystalline phase. Formally, since the crystallites become irregularly shaped, the

generalized self-consistent method does not apply anymore. However, we do not expect the

rheological properties of a highly concentrated suspension to be very sensitive to variations

in particle shape.

Evolution of linear viscoelastic properties after short-term shear

Flow-induced crystallization experiments, carried out in our own group [J.F. Vega, personal

communication] are considered first. An isotactic polypropylene melt (HD 120 MO, supplied

by Borealis) was subjected to different short periods of shear. Subsequently, its linear

viscoelastic properties were monitored in time by means of oscillatory shear measurements.

The results are shown in Figure 2.7. It is clear that, immediately after the flow, the dynamic

modulus of the material, which was then still largely amorphous, was already increased

significantly. The first values of G′ and G′′ measured after the flow were used as G′
0 and

G′′
0 in the model calculations. The plateaus of G′ and δ, reached in the late stage of



26 2 Suspension-based rheological modeling of crystallizing polymer melts

10
0

10
1

10
2

10
3

10
4

10
3

10
4

10
5

10
6

10
7

10
8

0

10

20

30

40

50

60

70

80

90

t [s]

G
′
[P

a
]

δ
[◦

]
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symbols) during crystallization, measured under quiescent conditions (◦,•) and after
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Figure 2.8: Close-up of the storage moduli from Figure 2.7. Part of the data points were
omitted and the curves corresponding to ts = 3 s and ts = 6 s were shifted vertically by
factors 1.2 and 1.5, respectively, for the sake of clarity. Solid lines: fits of the data in the
plateau region and in the region of strong increase of G′. Dashed lines: t1 and G′

1(t1).

crystallization, were extrapolated to the earlier stages by the functions

G′
1(t) =

{

G′
1(t1) for t 6 t1

G′
1(t1)

[

t
t1

]m

for t > t1
(2.44)

and

δ1(t) =

{

δ1(t1) for t 6 t1

δ1(t1) + cδ ln
(

t
t1

)

for t > t1
(2.45)
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Table 2.2: Parameters for calculating the rheological properties and degree of crystallinity
of the semicrystalline phase by means of Eqs. (2.44), (2.45), and (2.6).

ts t1 G′
1(t1) δ1(t1) χ1(t1)

[s] [s] [Pa] [◦] [−]

0 2.89 × 103 4.83 × 107 3.48 −
3 4.25 × 102 4.80 × 107 4.83 4.98 × 10−1

6 3.22 × 102 4.68 × 107 4.97 5.40 × 10−1

ts m cδ cχ

[s] [−] [◦] [s−1]

0 9.00 × 10−2 −1.29 × 10−1 −
3 7.02 × 10−2 −3.40 × 10−1 6.67 × 10−5

6 7.11 × 10−2 −3.40 × 10−1 0

and these extrapolations were used as the linear viscoelastic properties of the semicrystalline

phase. The values of the parameters in Eqs. (2.44) and (2.45) are given in Table 2.2. The

characteristic time t1, indicating the transition from the space filling stage to the perfection

stage, was defined as the intersection of the extrapolated linear fits of the log(G′)–log(t)

data in these stages, as shown in Figure 2.8.

In the experiments with 3 and 6 seconds of shear, oriented crystallites were observed. There

the effect of the spherulites was calculated by the 3D generalized self-consistent method

and the resulting effective rheological properties were used as matrix properties in the 2D

generalized self-consistent method. The evolution of the volume fraction of spherulites was

determined from optical micrographs taken during the flow and the subsequent crystallization

[D.G. Hristova, personal communication]. The result for the quiescent melt is shown in

Figure 2.9. The volume fraction of oriented crystallites could not be determined accurately

in this way. Therefore, the degree of crystallinity χ, derived from in situ wide-angle X-ray

diffraction (WAXD) measurements [D.G. Hristova, personal communication], was used to

estimate the total semicrystalline volume fraction φ. By definition, φ and χ are related as

φ(t) =
χ(t)

χ1(t)
. (2.46)

The integrated intensities XWAXD of the diffraction peaks, which are normalized by the

total integrated intensities, are included in Figure 2.9 for the quiescent and flow-induced

crystallization experiments. Comparing the WAXD and optical microscopy results for the

quiescent experiment, it is seen that XWAXD is close to but slightly above φ up to φ = 0.3.

Since the degree of crystallinity is by definition always smaller than the degree of space

filling, we conclude that XWAXD > χ. On the other hand, the values of t1 derived from
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Figure 2.9: Space filling during quiescent crystallization, obtained from optical microscopy
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Figure 2.10: Space filling, estimated from WAXD for the flow-induced crystallization
experiments, as explained in the text.

the storage modulus measured during flow-induced crystallization (Table 2.2) correlate well

with the onset times of the plateaus in the WAXD data. So at least the time scale is

correct, provided that t1 corresponds to φ = 1 as observed in the quiescent crystallization

experiment. We assumed XWAXD to be an adequate measure of the internal degree of

crystallinity χ = χ1 in the plateau region, where the highest signal to noise ratio was

obtained. Unfortunately, however, the development of χ and χ1 during the space filling

process could not be reconstructed from these data.

The integrated WAXD intensity in the plateau region was fitted by a linear function of time

and extrapolated to obtain χ1(t > t1). We assumed that no secondary crystallization took
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Figure 2.11: Evolution of the storage modulus under quiescent conditions (◦) and after
shearing at γ̇ = 60 s−1 for ts = 3 s (△) and ts = 6 s (�). Dashed lines: interpolation
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Figure 2.12: Evolution of the loss angle, measured under different conditions and
calculated by the interpolation method and the generalized self-consistent method,
indicated by the symbols and lines as in Figure 2.11.

place up to t = t1 in any of the experiments considered here, so

χ1(t) =

{

χ1(t1) for t 6 t1
χ1(t1) + cχ [t − t1] for t > t1

. (2.47)

Furthermore, for lack of better experimental data, XWAXD was taken as χ and the

experimental data were scaled according to Eqs. (2.46) and (2.47) to obtain the total

volume fraction. The results are shown in Figure 2.10.

The volume fraction of spherulites φsph was determined from optical microscopy, in the same

way as for the quiescent experiment. The volume fraction of spherulites in the amorphous
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Figure 2.13: Evolution of the storage modulus, measured under different conditions,
indicated by the symbols as in Figure 2.11. Dashed lines: linear scaling law, Eq. (2.50).
Solid lines: logarithmic scaling law, Eq. (2.51).

phase,

xsph =
φsph

1 − φ + φsph
, (2.48)

was used in the 3D generalized self-consistent method to calculate the linear viscoelastic

properties of the effective matrix in the 2D generalized self-consistent method. There the

volume fraction of oriented crystallites,

φori = φ − φsph , (2.49)

was used to calculate the linear viscoelastic properties of the crystallizing melt.

The results of the generalized self-consistent method are compared to those of the

interpolation method in Figure 2.11. The main difference is that G′(t) according to the

generalized self-consistent method goes through two inflection points before reaching the

plateau G′ = G′
1. This is due to the shoulder in f ∗

G(φ), as discussed in Section 2.3.2. The

shoulder is followed by a decreasing G′ for the experiment with 6s of shear. This is caused by

our estimate of the volume fraction of oriented crystallites, which goes through a maximum

and then drops back to zero. The effect of the shoulder is enhanced when plotting the

loss angle, which is more sensitive to changes in the volume fraction (Figure 2.12). For

the interpolation method as well as the generalized self-consistent method, the data for the

highest shear time are not captured. This can be explained by the lack of information about

the shape and orientation of particles in the interpolation method, and by incertainties in

the estimate of the oriented volume fraction used in the generalized self-consistent method.

The degree of space filling is often estimated by a linear scaling of the storage modulus
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Figure 2.14: Storage modulus measured by Coppola et al. [43] for crystallizing melts (open
symbols) and an amorphous melt containing glass beads (crosses). Lines: 3D generalized
self-consistent method.

[67, 115]. This can be rewritten as

G′(t) = G′
0(t) + [G′

1(t) − G′
0(t)] φ(t) . (2.50)

Figure 2.13 shows that the rheological data are not reproduced from the microscopic images

by Eq. (2.50). Also plotted is the logarithmic scaling law,

G′(t) = G′
0(t)

[

G′
1(t)

G′
0(t)

]φ(t)

, (2.51)

which was used by Pogodina et al. [162]. It performs much better than the linear scaling law,

though not as well as the generalized self-consistent method and the interpolation method.

Frequency sweeps at different volume fractions

We first consider the experiments of Coppola et al. [43]. They cooled down a poly(1-

butene) melt to a temperature Tc below the nominal melting temperature Tm and let it

crystallize at Tc for a controlled amount of time. Then they applied an inverse quench [2]

to a temperature Tiq close to, but still below Tm and measured the rheological properties

by means of a multiwave technique, which extended the experimentally accessible range of

frequencies down to the order of 10−3 Hz. This revealed that the plateau in the storage

modulus, observed at low frequencies, did not continue all the way down to zero, as in a

chemical or physical gel, but fell off at a certain frequency. This seems to support the idea

that crystallization precursors and/or crystalline nuclei act as physical crosslinks, but are too

far apart to form a percolating network [212, 213]. However, if the quiescent crystallization
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Table 2.3: Volume fraction of spherulites, as obtained from the linear scaling of G′(t),
Eq. (2.50), from differential scanning calorimetry (DSC), and from the 3D generalized
self-consistent method (φGSCM ) for the two sets of experiments.

Coppola et al. [43] Boutahar et al. [28, 29]

φG′(t) φGSCM φDSC φGSCM

0.0058 0.25 0.1 0.06
0.0129 0.30 0.2 0.11
0.0280 0.40 0.3 0.16

1 1 0.4 0.23

φbeads 0.5 0.32
0.12 0.12 0.6 0.41

0.7 0.55
0.8 0.73

process was as usual heterogeneous [59], no new precursors were created. Only existing

(dormant) precursors were nucleated, so the plateau in G′(ω) should already be observed in

the amorphous melt, according to this explanation.

The results of Coppola et al. are reproduced in Figure 2.14. Different volume fractions of

spherulites were obtained by varying the duration of crystallization at Tc. The rheological

properties of the partially crystallized melts were compared to those of an amorphous

melt containing, according to the authors, a much larger volume fraction of solid spheres.

The effect observed in the low-frequency rheology was much smaller than in the partially

crystallized melts, from which the authors concluded that indeed the behavior of the latter

cannot be explained by gelation. However, they determined the volume fraction by means

of the linear scaling law, Eq. (2.50). Based on the results discussed in the previous section,

we believe that the actual volume fraction was much larger and we expect it to be more

accurately estimated by the generalized self-consistent method. The results of this model

are included in Figure 2.14. The low-frequency behavior is obviously not captured for the

partially crystallized melts, nor for the particle-filled melt. Therefore the model is fitted to

the data at high frequencies. The volume fractions obtained through both approaches are

listed in Table 2.3. According to the generalized self-consistent method, the samples were

highly filled with spherulites. Unfortunately, no optical data are available to validate this

result.

Experiments on two fundamentally different materials were published by Boutahar et al.

[28,29]. One material was a heavily nucleated polyethylene melt, whose morphology looked

like that of a colloid. The crystalline nuclei were very small, close together, and highly

imperfect. The other was an isotactic polypropylene melt, containing large, well separated

spherulites. We will consider the data for this suspension-like material here.
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Figure 2.15: Storage modulus measured by Boutahar et al. [28, 29] (dots) and obtained
from the 3D generalized self-consistent method (lines).

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

ω [s−1]

G
′′

[P
a
]

Figure 2.16: Loss modulus measured by Boutahar et al. [28,29] (dots) and obtained from
the 3D generalized self-consistent method (lines).

The evolution of the storage modulus and the loss modulus is depicted in Figures 2.15

and 2.16, respectively. From Boutahar et al. [28], we estimated G′
1 = 107 Pa and G′′

1 =

6 × 105 Pa. The results are not very sensitive to the values used. Although, at the largest

volume fraction, G′′ exceeds G′′
1 around ω = 1 s−1, the absolute value |G∗| is always smaller

than |G∗
1|, as it should be. The generalized self-consistent method was again fitted to

the data at high frequencies. Also for these experiments, the model fails to capture the

observed strong increase of the storage and loss moduli with increasing volume fraction at

low frequencies. However, the fitted volume fractions correspond very well to the values

obtained by Boutahar et al. from differential scanning calorimetry (DSC, Table 2.3).
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Modeling of low-frequency suspension rheology

A few models describe the development of a low-frequency plateau in G′ and G′′. In the

Palierne model, it is governed by the surface tension. However, since spherulites behave

like solid particles rather than liquid drops, the surface tension is probably negligible in a

crystallizing melt, at least for the relatively large volume fractions (corresponding to large

radii of spherulites) where the plateau is first observed. Van Ruth et al. [197] carried out

quiescent crystallization experiments, similar to those of Boutahar et al. [28,29]. They used

the Palierne model with an equilibrium modulus,

Geq = c (φ − φ0)
m , (2.52)

added to G′, which could be fitted to the experimental data with realistic values of the

parameters φ0 and m. However, the results of the Palierne model for G′′ were not shown. A

Cross model was used to fit the dynamic viscosity |η∗| for each volume fraction separately.

The self-consistent method predicts a percolation threshold, where the modulus rises or drops

steeply, approaching the threshold from below or above, respectively. It diverges to infinity,

respectively zero, when both phases are incompressible and the particles are much stiffer

than the matrix. This happens at φ = 0.4 for spheres [93] and at φ = 0.5 for cylindrical

fibers [94]. When applied to a linear viscoelastic suspension by means of the correspondence

principle, the effect is mainly observed at low frequencies as a plateau in G′. This was shown

by Wilbrink et al. [207]. However, the self-consistent method did not agree quantitatively

with their suspensions, for which the percolation threshold was around φ = 0.10.

Albérola and Mélé [5] incorporated the concept of percolation in the generalized self-con-

sistent method. In their modified unit cell, the part of the matrix trapped inside particle

clusters is represented by a sphere, which is surrounded by two concentric shells, representing

the particles and the non-trapped matrix. This double-coated sphere is surrounded by the

effective medium. Hervé and Zaoui [90,91] extended the generalized self-consistent method

to particles coated by an arbitrary number of layers. Their model was used by Albérola et al.

to calculate the rheological properties of a suspension with clustering deformable particles.

According to the simulation results of Hwang et al. [101, 102, 104], extensional stresses

between particles in a sheared viscoelastic matrix enhance their tendency to form clusters.

Therefore we applied the modified generalized self-consistent method to the experiments

described in the previous section. However, it turned out that the percolation threshold

shifts f ∗
G similarly for all frequencies. Hence the shoulder, observed experimentally at low

frequencies, is not reproduced by this model.
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2.4 Conclusions

The approach to suspension-based rheological modeling of crystallizing polymer melts,

presented in this chapter, has several advantages. Linear viscoelastic suspension models are

available to obtain the modulus and relaxation time multipliers kG,i and kλ,i. These account

for the influence of crystallites on the relaxation spectrum used in the constitutive model

for the melt. The fact that crystallites can be described as non-rigid particles prevents

problems at high degrees of space filling. The phenomenological nonlinear viscoelastic

suspension model qualitatively captures phenomena observed in numerical simulations,

but is much less expensive computationally and can therefore easily be used in industrial

processing simulations. Only standard rheological experiments are needed to quantify the

phenomenological parameter kL.

After considering several linear viscoelastic suspension models, we used the generalized self-

consistent method [38–40] because of its simplicity and because, in combination with the

nonlinear viscoelastic model, it satisfies all the requirements stated in the Introduction.

Combined rheometry and optical microscopy showed that a widely used linear scaling of

the storage modulus [67, 115] severely underpredicted the degree of space filling. The

generalized self-consistent method described the evolution of linear viscoelastic properties

during crystallization rather well, at least at moderate to high frequencies; the low-frequency

behavior [28, 29, 43] was not captured. An extension of the generalized self-consistent

method, including percolation [5], did not solve this problem; the relative dynamic modulus

was merely shifted in a similar manner for all frequencies.



36 2 Suspension-based rheological modeling of crystallizing polymer melts

Appendices

2A 3D generalized self-consistent method and Bousmina’s linear

viscoelastic model

For the 3D generalized self-consistent method, the coefficients are summarized in Table 2.4.

Some of the expressions given by Bousmina [27] as first-order approximations of A, B, and

C contain errors, most of which are due to misprints in Christensen and Lo [38]. Bousmina’s

equations 54-59 should read

A = K1 [24K2 − 150K3φ] , (2A1)

B =
1

2
K1 [9K2 + 375K3φ] , (2A2)

C =
1

4
K1 [−114K2 − 675K3φ] , (2A3)

K1 =

[

5

2

(

G∗
1 + α/R

G∗
0

− 8

)

(2A4)

+ 7

(

G∗
1 + α/R

G∗
0

)

+ 4

]

, (2A5)

K2 =

(

G∗
1 + α/R

G∗
0

+
3

2

)

, (2A6)

K3 =

(

G∗
1 + α/R

G∗
0

− 1

)

. (2A7)

2B 2D generalized self-consistent method

Under the assumption of transverse isotropy, Hooke’s law for an elastic fiber suspension can

be written in matrix form according to
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with the index 1 corresponding to the direction of the fiber axes and the indices 2 and 3

corresponding to perpendicular directions in the transverse plane.
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Table 2.4: Parameters used in the 3D generalized self-consistent method [38–40].

Shear modulus G, Eq. (2.40)

A
B
C
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− 1
)

η1φ
10/3 + c2

[

63
(
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]

φ7/3 + c3

(
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(
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− 1
)
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and C11. In the case of a random arrangement of the fibers across the 23-plane they found

K23

K0
=

(1 + 2ν0φ) K1

K0
+ 2ν0 (1 − φ)

(1 − φ) K1

K0
+ 2ν0 + φ

, (2B6)

G12

G0
=

(1 + φ) G1

G0
+ 1 − φ

(1 − φ) G1

G0
+ 1 + φ

, (2B7)

E11

E0
=

[(

E1

E0
− 1

)

φ + 1

]

(2B8)

×
[

D1 − D3F1 + (D2 − D4F2)
E1

E0

D1 − D3 + (D2 − D4)
E1

E0

]

, (2B9)

and

C11 = E11 + 4ν2
12K23 , (2B10)

where

ν12 = ν13 =
L1φ

E1

E0
+ L2ν0 (1 − φ)

L3φ
E1

E0
+ L2 (1 − φ)

(2B11)

is the Poisson ratio for uniaxial stress in the direction of the fiber axes. The parameters

D1, D2, D3, D4, F1, F2, L1, L2, and L3 depend on the properties of the individual phases

and on φ and are given in Table 2.5. The same effective properties follow from the 2D

generalized self-consistent method, which additionally gives the relative transverse shear

modulus G23/G0 from Eq. (2.40) with the parameters A, B, and C from Table 2.5.





Chapter three

Local formulation of flow-enhanced

nucleation coupled with rheology

Abstract

A new modeling framework for flow-enhanced nucleation of polymer melts is introduced.

The local influence of flow-induced precursors and nuclei on the rheology of the surrounding

melt and, consequently, on the creation of new flow-induced precursors is described as well

as convection of these species in flow. A preliminary test of this framework, with respect

to a small set of experimental data, shows that it should be improved. Nevertheless, the

experimental observation that the number density of spherulites is determined by the strength

and duration of flow, remaining essentially constant afterwards, follows naturally from the

local formulation including convection, in contrast to the more empirical model in Chapter

4, where this phenomenon is enforced in an artificial way.

41
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3.1 Introduction

A considerable amount of experimental work has been done, especially over the course of the

last decade, to unravel the origins of the phenomena observed in flow-induced crystallization

(FIC) of polymers; see for example the recent reviews by Kumaraswamy [122] and Somani

et al. [174]. From the point of view of predicting structure formation and the resulting

properties of semicrystalline polymers, there is a need for improved models. The results

of the experimental work mentioned are of direct importance in this respect, since the FIC

models proposed so far exhibit essential differences in their key assumptions. Crystallizing

melts have been described as molecular mixtures [34, 52–57, 193, 196], as suspensions [28,

29, 35, 183, 184], and as physically crosslinking networks [95, 96, 160–163, 208] or locally

physically crosslinking melts [157, 158,182,212,213].

In contrast to the molecular mixture concept, the picture of a suspension is in better

agreement with the commonly observed microstructure, which consists of large-scale

crystallites dispersed throughout an amorphous matrix. It has been shown in Chapter 2

that the linear viscoelastic behavior of crystallizing melts with a spherulitic morphology can

be described by a simple suspension model, except at low frequencies. Elevated storage

and loss moduli, observed immediately after strong short-term flow [97, 198], cannot be

explained based on space filling, as for example with a suspension model. The flow in such

experiments is generally applied above the nominal melting temperature or in the early stage

of crystallization, when the volume fraction of transformed material is negligible. The change

in the initial rheological properties occurs in conjunction with the transition to oriented

crystallization [97]. This transition, and the increase in number density of pointlike nuclei,

which already takes place under less severe flow conditions, must originate from structural

changes in the amorphous phase, although in a later stage typical suspension effects, such

as increased molecular stretch between particles, could play a role [104].

In an attempt to illustrate this, Coppola et al. [43] carried out rheological measurements on

isotactic poly-1-butene (iPB) samples with different constant volume fractions of spherulites

as well as on amorphous iPB filled with glass beads. The experimental procedure for the

semicrystalline melts consisted of cooling them to a constant temperature Tc < Tm, where

Tm is the nominal melting point, staying at that temperature for a certain waiting time, then

applying the inverse quenching technique [2] to ‘freeze in’ the semicrystalline morphology,

and performing oscillatory rheometry at Tc < Tiq < Tm. This was done for different waiting

times, i.e. different amounts of space filling. The storage modulus increased relative to that

of the purely amorphous melt, already by a greater amount for the most weakly crystalline

melt, containing 0.58 volume percent spherulites according to the authors, than for the

particle-filled melt, containing 12 volume percent glass beads. However, the fraction of

spherulites was estimated by a linear normalization of the storage modulus, measured at a

fixed frequency, between the values at zero and maximum crystallinity. Volume fractions

higher than that of the glass beads (and 14 to 43 times higher than the values obtained
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by linear normalization of G′(t), see Table 2.3) were predicted by the linear viscoelastic

suspension model used in Chapter 2. This model was validated by optical microscopy and

DSC measurements of Boutahar et al. [29]. Moreover, as Coppola et al. pointed out

themselves, the increase of the storage modulus as a function of time depends on the

frequency. Any scaling method is therefore ambiguous when measurements at different

frequencies are considered.

Network formation in the amorphous phase was proposed by Winter and coworkers [95, 96,

160–163,208]. In their experiments, the rheology of different polymers, prior to impingement

of crystallites, looked similar to that of a chemical gel: a plateau in G′ developed at low

frequencies. In the rheological measurements of Coppola et al. [43], discussed above and

shown in Figure 2.14, the plateau fell off at a previously unaccessible low frequency. This

implies that the gel-like behavior is the result of an evolving slow relaxation process. It is

unclear whether this is related to the crystallites acting as particles or to structure formation

in the amorphous phase. It is worthwile to repeat the experimental protocol of Coppola et

al. with shorter times of crystallization at Tc, so that the melts after inverse quenching to

Ti are indeed in the early stage, where suspension effects are negligible. Nevertheless, since

the average distance between spherulites in the experiments of both groups [43,95,96,160–

163, 208] is huge compared to the size of a single molecule, the formation of a percolating

network is highly unlikely [107, 108].

Zuidema et al. [212, 213] developed a FIC model, in which both the creation and the

longitudinal growth of threadlike nuclei were driven by the recoverable strain of the high-end

tail of the molecular weight distribution. This was quantified by the second invariant of the

deviatoric elastic Finger strain tensor, or equivalently the conformation tensor, of the slowest

mode in a multi-mode rheological constitutive equation. The relaxation time of this mode

was taken proportional to the number density of flow-induced nuclei, based on the idea that

these act as physical crosslinks if different molecules are involved in each nucleus. The model

thus captures, in an averaged sense, the strong influence of high-molecular weight (HMW)

chains on the overall rate of crystallization [18,88,146,171,203,210] and the formation of an

oriented morphology [1, 195]. Reasonable agreement with pressure-driven flow experiments

of Jerschow [111] was obtained in terms of the transitions between morphological layers. A

recent modification of the model by Custódio et al. [44] was validated in more detail with

respect to injection molding prototype flows. The most striking result was that the onset of

an experimentally observable oriented skin layer could be correlated with a critical relative

volume fraction of oriented crystalline material, for which the same value was computed in

isothermal as well as in nonisothermal simulations.

The hypothesis that nuclei act as physical crosslinks, which was a key element of the

successes of the recoverable strain-based FIC model, remains unproven. Swartjes [181]

and Sentmanat [172] reported a slower relaxation of the stress after fast short-term flow

of undercooled melts. But it is not sure whether the amount of HMW chains involved in

nuclei (at least in those that actually become spherulites, which is a very small fraction of
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all molecules [107, 108]) can explain this phenomenon, which may also be caused by shish

formation. Coppola et al. [43] suggested that the evolution of a slow relaxation process

in their inverse-quenched melts might be interpreted as evidence in favor of Zuidema et

al.’s hypothesis. However, again referring to Chapter 2, the samples were more highly

filled than estimated by the authors, so the behavior observed may have been due to the

spherulites acting as fillers rather than physical crosslinks. Moreover, since the number

density of quiescent spherulites well below the nominal melting point only depends on the

temperature [59], it is believed that quiescent nuclei are intrinsically present in the melt.

From this point of view, no new nuclei were made in the experiments of Coppola et al.

unless sporadic nucleation became significant at the temperature Tiq where the rheological

measurements were performed, which was only slightly below the nominal melting point.

Several other FIC models with different levels of description exist. Examples are the

continuum thermodynamics-based approaches of Doufas et al. [34,52,53] and Van Meerveld

et al. [193, 196], the introduction of a flow-induced free energy change in the Doi–Edwards

model by Grizzuti and coworkers [3,42], and kinetic Monte Carlo simulations by Graham and

Olmsted [73,75]. All these models describe an effect of molecular orientation and/or stretch

on the kinetics of nucleation, but none of them contain an effect of nuclei on the (local)

relaxation dynamics. Doufas et al. and Van Meerveld et al. did incorporate changes in the

rheology as a function of the degree of crystallinity or space filling, respectively, but these

effects do not play a role in the early stage of crystallization. In general, agreement with

FIC experiments was obtained in terms of the change in time scale of crystallization. Only

the simulations of Graham and Olmsted were validated with respect to direct morphological

evidence, namely with microcopic observations of the number density of spherulites during

continuous shear flow [41]. The shear rates in these experiments were very low, up to

γ̇ = 0.3 s−1. Under much more severe flow conditions, the coupling between nucleation and

the relaxation dynamics of the HMW fraction of the melt, as offered by the recoverable strain-

based FIC model, was necessary to predict oriented structure development [44,212,213]. It

will be shown in Chapter 4 that this also holds for the spherulitic crystallization in moderate

to strong flows. Therefore we focus on the recoverable strain-based model and try to adapt

it to flow-enhanced pointlike nucleation.

3.2 Objective and outline

Physical crosslinking in the early stage of FIC was hypothesized by Zuidema et al. [212,213]

and in later work from the same group [44, 157, 158, 182] without providing a detailed

theoretical argumentation. It was mainly an empirical way to capture the highly nonlinear

effects of the rate and duration of flow on (in their case oriented) structure formation.

Following the basic hypothesis, the probability of nucleation in the immediate vicinity of

already existing nuclei is higher than in the bulk of the amorphous melt. Reasoning further
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Figure 3.1: Preferential creation of flow-induced precursors in each other’s vicinity. Left:
Structure requiring a local description. Right: Structure allowing a global description.

along this line, one has to conclude that nuclei appear in clusters, as depicted on the left side

of Figure 3.1. If the relaxation times of chains within these clusters are increased, since they

are connected by nuclei, then this increase should not depend on the global number density of

flow-induced nuclei, as Zuidema et al. proposed, but on the local number within each cluster.

Only if the entire space is covered by clusters, as depicted on the right side of Figure 3.1, the

local number density within one of these (indicated by the circle) equals the global number

density. Taking a typical value of Nn ∼ 1015 m−3 nuclei for isotactic polypropylene [59], we

obtain for the average distance between these nuclei davg = N
−1/3
n ∼ 10 µm. This is three

orders of magnitude higher than the radius of gyration [17], which is a reasonable measure

for the range of influence of a nucleus, hence for the size of a cluster. A more detailed

analysis is given in Section 3.5, but it is clear that the right side of Figure 3.1 does not

correspond to experimental nucleation densities.

The objective of this chapter is to test the hypothesis that flow-induced nuclei locally act

as physical crosslinks. We start with the necessary theoretical background on rheology and

spherulitic structure formation in Sections 3.3 and 3.4, respectively. In Section 3.5 a local

formulation of flow-enhanced nucleation is developed, where the relaxation times (reptation

time and stretch relaxation time) of the HMW fraction are related to the local number of

nuclei in a cluster. Results of this model are compared to a small set of experimental data.

The conclusions are summarized in Section 3.7.

3.3 Rheological modeling

The Cauchy stress tensor for a polymer melt is written in the form

σ = −pI +
M
∑

i=1

Gi (Be,i − I) , (3.1)
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Table 3.1: Slip tensors of the Giesekus [69,70], XPP [202], and Rolie-Poly [130] models.

Ai = c1,iBe,i + c2,iB
−1
e,i + c3,iI

c1,i c2,i c3,i

Giesekus αi

2λd,i
− (1−αi)

2λd,i

1−2αi

2λd,i

XPP αi

2λ0b,i
− (1−αi)

2λ0b,i

1−αi−3αiΛ4
i Si:Si

2λ0b,iΛ
2
i

+ 1
λs,i

(

1 − 1
Λ2

i

)

Rolie-Poly 0 − 1
2λd,i

− βiΛ
2δi
i

λR,i

(

1 − 1
Λi

)

1
2λd,i

+
1+βiΛ

2δi
i

λR,i

(

1 − 1
Λi

)

where i = M indicates the mode with the longest relaxation time. The elastic Finger tensor

Be,i of mode i follows from

▽

Be,i = −Ai · Be,i − Be,i · AT
i . (3.2)

The triangle denotes the upper convected derivative and Ai is the slip tensor of mode i, which

describes the non-affine deformation of the corresponding molecules. Several constitutive

models can be written in this form with different expressions for Ai [156]. Just a few,

referred to in this thesis, are listed in Table 3.1.

The elastic Finger tensor is taken equivalent to the conformation tensor, following Leonov

[126–128]. The orientation tensor

Si = 〈~ni~ni〉 =
Be,i

tr (Be,i)
(3.3)

gives the average molecular orientation; ~ni is a unit vector, tangent to the primitive path of

a chain, and the angle brackets indicate an average over the orientation distribution. If the

stretch of the primitive path is assumed homogeneous, it is described by the scalar stretch

parameter

Λi =

√

tr (Be,i)

3
, (3.4)

which follows from Be,i = 3Λ2
i Si [164].

The Rolie-Poly model [130] is used throughout this thesis. More advanced rheological

constitutive models, like the Graham–Likhtman and Milner–McLeish (GLaMM) model [72],

of which Rolie-Poly is a simplified version, and the slip-link model [167] offer more detail,

for example a stretch increasing from the ends of a molecule to the center, but are

computationally more expensive.
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3.4 Spherulitic structure formation

We focus on spherulitic crystallization. The evolution of the morphology then follows from

the rate equations derived by Schneider et al. [168],

Ψ̇3 = 8πṄn

Ψ̇2 = ṘΨ3

Ψ̇1 = ṘΨ2

Ψ̇0 = ṘΨ1

(Ψ3 = 8πNn) , (3.5)

(Ψ2 = 8πRtot) , (3.6)

(Ψ1 = Stot) , (3.7)

(Ψ0 = Vtot) . (3.8)

All quantities in these equations are expressed per unit volume in the hypothetical case of

unrestricted nucleation and growth, meaning that nuclei can appear in the space already

covered by the semicrystalline phase and that spherulites can grow through each other

unhindered; Nn is the number of nuclei, Rtot is the sum of the radii of the spherulites, Stot

is their total surface area, Vtot is their total volume, and Ṙ is the lamellar growth rate. The

degree of space filling φ, i.e. the real total volume of the semicrystalline phase per unit

volume of the material, is obtained from the Kolmogorov–Avrami model [8–10,117],

φ = 1 − e−Ψ0 . (3.9)

For a recollection of Kolmogorov’s derivation, see Ref. [59]. The real nucleation density

follows from

Nn,real (t) =

∫ t

−∞

Ṅn (s) [1 − φ (s)] ds . (3.10)

Eder and coworkers [58,129] developed a similar set of differential equations for the evolution

of the oriented shish-kebab morphology, in which the rates of creation and longitudinal

growth of threadlike nuclei were assumed proportional to the square of the shear rate.

Zuidema et al. [212, 213] adopted this model, but replaced the shear rate dependencies by

linear functions of the second invariant of the deviatoric elastic Finger tensor, associated

with the longest relaxation time,

J2

(

Bd
e,M

)

=
1

2
Bd

e,M : Bd
e,M , (3.11)

Bd
e,M = Be,M − 1

3
tr (Be,M) I , (3.12)

thus focusing on the molecules in the flow, rather than on the flow itself. This invariant,

which they obtained from a multi-mode Leonov model, is a measure of the conformation,

i.e. orientation and stretch, of the high molecular weight (HMW) chains in the melt.
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The modified Eder rate equations were used in parallel with the Schneider rate equations.

Specifically, spherulitic and oriented nucleation and growth were supposed to be additive in

terms of their unrestricted volume fractions: Ψ0 = Ψ0,sph +Ψ0,ori. The effect of flow on the

spherulitic crystallization process was thus not described. Peters et al. [157] and Swartjes

et al. [182] used the XPP model in the same FIC framework, called the SJ2 model (i.e.

Schneider-J2).

It has been known for a long time that the HMW fraction of a polydisperse melt most strongly

affects the acceleration of crystallization by flow [203] and the transition from spherulitic to

oriented morphology [1]. Studies on bimodal blends [18,20,88,146,171,210] have confirmed

the role of HMW chains in the formation of threadlike nuclei. Interestingly, the fact that the

shish structure consists of chains of all lengths [116] suggests that only the nucleation rate

(and/or the initiation of longitudinal growth from a pointlike nucleus) primarily depends on

the conformation of the HMW fraction. Therefore, in the recent extension of the SJ2 model

by Custódio et al. [44], the effect of flow on the longitudinal growth rate was formulated in

terms of the average conformation.

3.4.1 Precursors of crystalline nuclei

The physics of early-stage crystallization are still a matter of debate. For example, Olmsted et

al. [151] suggested that a bicontinuous structure of amorphous and mesomorphic domains

is formed by spinodal decomposition and that crystallization occurs in the more dense,

conformationally ordered mesophase. Strobl [177–179] developed a fundamentally different

theory, based on lateral growth and simultaneous thickening of isolated mesomorphic layers.

Crystallization occurs where the layer thickness exceeds a critical size, resulting in a granular

structure and eventually a fully crystalline lamella. Both views have been challenged by

Lotz [132,133]. Based on the helical handedness in thin crystalline films of chiral polymers,

he advocated the classical nucleation and growth theory [125]. According to Cheng and Lotz,

however, the purely enthalpic nucleation barrier in the classical theory should be modified

to include entropic effects [36].

Ryan and coworkers [86, 87, 165, 186] analyzed several polymers in terms of the Cahn–

Hilliard theory of spinodal decomposition. From small-angle X-ray scattering (SAXS)

patterns during quiescent and flow-induced crystallization, they determined the growth rate

of density fluctuations as a function of the magnitude of the scattering vector, k = |~k|.
Typical Cahn–Hilliard behavior was observed, except for small k, which was attributed

to interference from stray light [21]. However, Muthukumar and Welch [145] found the

same behavior with Langevin dynamics simulations, from which they concluded that the

underlying process was not spinodal decomposition. Based on structural observations in

these simulations, Muthukumar [144] derived an alternative expression for the growth rate

of density fluctuations. Although it may be seen as an improvement, the author’s claim that



3.4 Spherulitic structure formation 49

the new model is ‘fully consistent’ with the experiments and simulations mentioned, is not

supported. (Compare the theoretical growth rate of density fluctuations in Fig. 2 of [144]

to the numerical result in Fig. 4 of [145].)

It must be noted that Muthukumar and Welch used a single-chain description. Simulations

with multiple chains were discussed in an earlier paper by Liu and Muthukumar [131] but

were not analyzed in terms of density fluctuations. However, molecular dynamics simulations

by Gee et al. [68] qualitatively confirmed the single-chain Langevin dynamics results of

Muthukumar and Welch. Curiously, Gee et al. interpreted this as a confirmation of the

spinodal-assisted crystallization model.

Baert and Van Puyvelde [15] reviewed small-angle light scattering (SALS) studies of polymer

crystallization. These typically exhibit density fluctuations in the early stages, whereas

orientation fluctuations are observed significantly later. Combining SALS with polarized

optical microscopy during flow-induced crystallization of poly-1-butene, Baert and Van

Puyvelde showed that the onset of density fluctuations coincided with the appearance of

spherulites. From the absence of orientation fluctuations in these early stages, they concluded

that the spherulites initially had a low crystalline content. Their results are indicative of

nucleation, followed by growth and perfection of the internal structure of the spherulites,

rather than spinodal decomposition into a dense mesophase.

Panine et al. [154, 155] reported simultaneous SAXS and wide-angle X-ray diffraction

(WAXD) measurements during quiescent crystallization of isotactic polypropylene, using

a very sensitive wide-angle detector. Sharp WAXD peaks, corresponding to the crystalline

α phase, developed around the same time as SAXS. Previous studies had shown a time

lag between SAXS and WAXD and incited a discussion whether this was due to the lower

sensitivity of the latter or a fingerprint of spinodal decomposition [87]. The results of Panine

et al. do not agree with the spinodal decomposition model, but suggest that crystalline nuclei

are formed in the amorphous phase.

In the case of oriented crystallization, the combined SAXS and WAXD measurements of

Balzano et al. [19] show that, at high shear rates, crystalline fibrillar nuclei are already

formed during flow, whereas at lower shear rates, only metastable fibrillar precursors appear

during flow, which nucleate after cessation of flow.

We use the term precursor to refer to a subcritical nucleus. Details of the structure of

precursors, i.e. their degree of crystallinity, the number of chain segments involved, and the

number of molecules to which these segments belong, are not considered. It is assumed that

a precursor may nucleate due to a fluctuation in its size. As will become clear in Section

4.3.1, flow has a severe effect on this process. For detailed simulations of nucleation in flow,

we refer to Graham and Olmsted [73,75]. In our model, the number of precursors obeys the
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evolution equation

Ṅp = Ip + Ṫ
∂Np

∂T
− Np

τpn
− Np

τpd
, (3.13)

where the dot denotes the material time derivative and Ip corresponds to the mentioned

sporadic creation process, driven by thermal fluctuations. The second term on the right-hand

side represents athermal activation [63]. This is not due to fluctuations, but involves dormant

precursors, which only become active (i.e. able to nucleate) when the temperature is lowered

sufficiently. The third term is the nucleation rate and the fourth represents an additional

process through which precursors may disappear, namely dissolution into the disordered bulk

of the melt. The parameters τpn and τpd are characteristic time scales associated with these

processes.

The nucleation rate is thus related to the number of precursors according to the expression

Ṅn =
Np

τpn

, (3.14)

which was introduced by Avrami [8]. However, in his theory, Np only changes due to

nucleation; no new precursors are created and the existing ones do not dissolve.

3.4.2 Quiescent and flow-induced precursors

The total number of precursors consists of ‘quiescent’ precursors, i.e. those that would have

been obtained after the same temperature history but without any deformation history, and

flow-induced precursors:

Np = Npq + Npf . (3.15)

Nuclei are divided into quiescent and flow-induced nuclei accordingly and the corresponding

nucleation rates are

Ṅn = Ṅnq + Ṅnf =
Npq + Npf

τpn
. (3.16)

We assume that Ṅpf is independent on Ṅpq, so that both are described by uncoupled

expressions analogous to Eq. (3.13) and the corresponding nucleation rates in Eq. (3.16)

are also uncoupled. In this respect, our model differs from that of Coppola et al. [42].

They proposed an additive decomposition of the free energy difference between the phases

into a quiescent term and a flow-induced term, ∆G = ∆Gq + ∆Gf . This was inserted

in the classical nucleation theory, where Ṅn is an exponential function of ∆G. Thus the

quiescent and flow-induced nucleation rates are inseparable; Ṅnf depends on ∆Gq and hence
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on Ṅnq = Ṅn (∆Gf = 0).

In quiescent melts at high degrees of undercooling, Nnq is a unique function of the

temperature [59]. In the context of our model, this means that only athermal precursors

are formed (Ip = 0) and that these are immediately nucleated (τpn = 0). Eqs. (3.13)

and (3.14) can then be rewritten into the single expression Ṅn = Ṫ ∂Np/∂T ; see Appendix

3A. The minimum temperature for sporadic nucleation was estimated by Janeschitz-Kriegl

to lie approximately 50K below the equilibrium melting point for isotactic polypropylene,

which corresponds to the nominal melting point of this material (typically between 160 and

165◦C) [105,106,108].

In this chapter, the sporadic creation of quiescent precursors is not taken into account. This

is reasonable for most processing applications and common experimental protocols, where

the corresponding regime of low degrees of undercooling is passed by very rapidly. Eq. (3.13)

is then split into

Ṅpq = Ṫ
∂Npq

∂T
− Npq

τpn

− Npq

τpd

(3.17)

and

Ṅpf = Ipf + Ṫ
∂Npf

∂T
− Npf

τpn
− Npf

τpd
. (3.18)

In Section 4.3.1, it is shown that during flow τpn > 0. Therefore the distinction between

precursors and nuclei is retained. The second term on the right-hand side of Eq. (3.18)

accounts for the activation of dormant flow-induced precursors, which are initially too small

to nucleate. These add to the part of the number density distribution ∂Np/∂T that lies below

the actual temperature and are activated upon sufficient cooling. If the model is to be used

to simulate nonisothermal flow-induced crystallization, information about the distribution of

flow-induced precursors must be incorporated. A recommended first investigation is to apply

different short-term flows above the nominal melting temperature, cool down to different

temperatures for crystallization, and measure the nucleation density by means of optical

microscopy.

Following the SJ2 model, the flow-induced creation rate Ipf in Eq. (3.13) would be

Ipf = gpJ2

(

Bd
e

)

, (3.19)

where J2(B
d
e ) is the second invariant of the deviatoric elastic Finger tensor. The subscript

M (see Eq. (3.11)) will be omitted in the remainder of this chapter, but it is important to

keep in mind that we only use the mode with the longest relaxation time in the model of

FIC kinetics.
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3.5 Local formulation of flow-enhanced nucleation

In the SJ2 model, Zuidema et al. [212, 213] introduced the idea that flow-induced nuclei

act as physical crosslinks on the HMW chains, allowing them to be deformed more easily

in flow and to relax more slowly after the flow has stopped. This was accounted for by an

increase of the longest relaxation time of the linear viscoelastic spectrum, proportional to

the number density of flow-induced nuclei: λ/λ0 = 1 + aNnf with a scaling parameter a in

units of volume. They showed that the strong effect of flow on the crystallization half-time,

t1/2 = t(φ = 0.5), in the duct flow experiments of Jerschow and Janeschitz-Kriegl [112]

could only be reproduced with a > 0. Both the nucleation rate and the shish growth rate

became strongly self-enhancing due to this coupling, as opposed to the recent revision of

the SJ2 model by Custódio et al. [44]. They made the nucleation rate dependent on the

stretch Λ of the slowest mode, based on the work presented in Chapters 4 and 5, but

related the shish growth rate to J2(B
d
e,avg), given by an additional viscoelastic mode with

the viscosity-averaged relaxation time of the melt. The latter was inspired by the small-angle

neutron scattering experiments of Kimata et al. [116], who applied deuterium labeling to low,

medium, and high molecular weight fractions of a polydisperse isotactic polypropylene. They

showed that all fractions gave the same flow-induced equatorial scattering, representative of

shish formation, which suggests that HMW chains are not present in higher concentrations

in the shish than in the rest of the material. A distinction between precursors and nuclei

was made neither in the SJ2 model, nor in the model of Custódio et al.

The physical crosslinking concept is adopted here, but its formulation is modified in three

ways with respect to the works mentioned above. First, obviously, flow-induced precursors

as well as nuclei are included. Secondly, their influence on the slow relaxation dynamics is

expressed in terms of their average number per HMW chain involved. And finally, swallowing

of HMW chains by growing nuclei is taken into account.

Flow-induced precursors are divided into two populations: one with number density N0pf ,

being created in the (locally) undisturbed melt, and one with number density N1pf , being

created in the presence of other flow-induced precursors or nuclei. Eq. (3.18) is therefore

decomposed into

Ṅ0pf = I0pf + Ṫ
∂N0pf

∂T
− N0pf

τpn
− N0pf

τpd
(3.20)

and

Ṅ1pf = nvI1pf + Ṫ
∂N1pf

∂T
− N1pf

τpn
− N1pf

τpd
. (3.21)

Here n is the number density of domains where the creation rate is increased due to the

presence of both populations; v is the volume of such a domain, called an incubator, which

is expected to have a radius on the order of the mean squared radius of gyration 〈r2
g〉1/2
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of the HMW chains. The third term on the right-hand side of Eq. (3.20) or (3.21) is the

nucleation rate of the corresponding population:

Ṅ0nf =
N0pf

τpn
, (3.22)

Ṅ1nf =
N1pf

τpn
. (3.23)

The shorthand notation

N0f = N0pf + N0nf (3.24)

is used to denote the combined number density of flow-induced precursors of population 0,

created in the undisturbed melt, and nuclei formed out of them. Similarly, for population 1,

N1f = N1pf + N1nf . (3.25)

The total number density of flow-induced species is then

Nf = N0f + N1f = Npf + Nnf . (3.26)

The rate of change of the number density n of incubators is given by

ṅ = I0pf + Ṫ
∂N0pf

∂T
= Ṅ0f +

N0pf

τpd
(3.27)

under the assumption τpd ≫ 1/I1pf . Then each precursor of population 0 initiates a new

incubator, which remains when that precursor dissolves because population 1 has formed

around it in the meantime. Eqs. (3.20) and (3.21) add up to Eq. (3.18) with the overall

creation rate

Ipf = I0pf + nvI1pf = gpf(Be0) + nvgpf(Be) , (3.28)

where Be0 is the elastic Finger tensor of the original (undisturbed) slowest relaxation mode,

while Be is the elastic Finger tensor of the slowest relaxation mode, influenced by the

presence of flow-induced precursors and nuclei. The function f will be specified later.

The most straightforward modification of the SJ2 model is to calculate the evolution of Be

with the time dependent relaxation time multiplier

λk

λ0k
= 1 +

aNf

n
; k ∈ {d, R} , (3.29)

where λd and λR are the reptation (or disengagement) time and the stretch relaxation (or

Rouse) time of the HMW chains, respectively. The subscript 0 refers to their values in the



54 3 Local formulation of flow-enhanced nucleation coupled with rheology

(locally) undisturbed melt. Now the scaling parameter a is dimensionless. The relaxation

times increase proportional to the average number of flow-induced precursors and nuclei per

incubator, rather than their total number density. Thus the idea of a local effect on relaxation

dynamics, proposed by Zuidema et al. [212, 213], is now consistently formulated in a local

sense. However, the nuclei in one incubator will have merged into a single spherulite by the

time they are large enough to be seen through an optical microscope, R ≈ 1 µm ≫ 〈r2
g〉1/2.

Therefore the observable flow-enhanced nucleation rate is just Ṅ0nf . This is independent

on Be and consequently not influenced by the physical crosslinking effect, Eq.(3.29). It will

be shown in Section 4.3 that number densities of spherulites after moderate to strong flows

cannot be captured by a function of Be0 alone.

3.5.1 Influence of convection

If flow-induced precursors and nuclei are loosely connected to the initiating HMW chains and

to each other, some of them may be convected out of their incubators. This is illustrated in

Figure 3.2. Presuming that these convected species are slowly relaxing structures themselves,

it is even conceivable that they form new incubators. Some of the precursors within these

domains will then in turn be convected at a higher velocity ∆~v relative to the original HMW

chain, depending on their position ∆~x with respect to it and on the velocity gradient ~∇~v.

At a short distance (∆~x → 0) or in a homogeneous flow field, ∆~v = ∆~x · ~∇~v. In uniaxial

elongation, the velocity difference increases with the component of ∆~x parallel to the flow

direction, in planar shear with the component perpendicular to the flow direction. The result

of this combined creation and convection is an expanding oblong ‘nebula’ of incubators. The

space covered by such nebulae and the number density of separate spherulites obtained can

only be calculated if convection of precursors and nuclei is included in our FIC model.

A simple scaling analysis is possible if enhanced creation around convected species is

neglected. Then half the length of a nebula is at most equal to the maximum distance

traversed by a precursor or nucleus relative to its incubator (upstream or downstream). After

a strain γ, this is dmax ∼ γ〈r2
g〉1/2. Fetters et al. [62] reported the following relation between

the mean squared end-to-end distance and the molecular weight, 〈r2〉/M = 0.694 Å
2
mol/g,

for isotactic polypropylene (iPP). With a molecular weight M ∼ 105 g/mol, a common

weight average for polydisperse iPPs, we find 〈r2
g〉 = 1

6
〈r2〉 ∼ 104 Å

2
. With γ ∼ 102, a

typical strain applied in FIC experiments, dmax ∼ 1 µm. Precursors and nuclei, created

in the same incubator, will then still grow into a single spherulite. It could be that only

chains of much higher molecular weight, say M ∼ 107 g/mol, are responsible for creation

of precursors. In that case dmax ∼ 10 µm, which is just enough for nuclei to grow into (at

least initially) separate spherulites. However, after 100 strain units, this only holds for those

nuclei whose precursors were created at the very beginning of flow. Furthermore, this small

convection is not sufficient to eventually generate a homogeneous distribution of spherulites.

Enhanced creation of flow-induced precursors around convected species, as explained above,
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Figure 3.2: Flow-induced precursors, created in an incubator (dashed line) and convected
out of it. Connections, either direct by shared chains or indirect through entanglements,
are not depicted.

leads to a more explosive covering of the material volume. Before continuing the analysis to

include this effect, we first discuss some experimental results concerning the critical molecular

weight of chains, able to form precursors.

Since it is related to relaxation dynamics, the critical molecular weight for precursor creation

should decrease with increasing flow rate. The molecular weight distribution might also

play a role via constraint release. According to Struglinski and Graessley [180], for bimodal

linear-linear blends the effect of constraint release on long-chain relaxation is negligible if

ZHMW/Z3
LMW ≪ 0.1, where ZHMW and ZLMW are the molecular weights of the long

(HMW) and short (LMW)chains, respectively, in units of the average molecular weight

between entanglements. The polydispersity of the components of the blends, investigated by

Struglinski and Graessley, was very low. No similar criterion is available for melts with a broad

distribution. For an iPP with weight average Mw = 4.81 × 105 g/mol and polydispersity

index PDI = Mw/Mn = 6.4, Graham and Olmsted [74] found the critical molecular weight

to be at least M∗ = 4.20 × 106 g/mol, comparing kinetic Monte Carlo simulations of

flow-enhanced nucleation [73, 75] to measured nucleation rates during slow shearing (up to

γ̇ = 0.3 s−1 at T = 140◦ C [41]).

Seki et al. [171] studied the crystallization of iPP-iPP blends in a pressure-driven slit flow

at almost the same temperature, T = 137◦ C. They found that the addition of chains with

Mw = 9.23 × 105 g/mol and PDI = 1.3 to the base material (Mw = 1.86 × 105 g/mol,

PDI = 2.3) resulted in an oriented skin layer starting at a greater distance from the wall,

where the stress (or, equivalently, the average molecular conformation) was lower. The

molecular weight distributions of the two blend components were well separated and the

long chain concentrations were < 2 wt%, comparable to the work of Bashir and Keller [20].

The constant wall shear stresses ranged from 70 to 140 kPa. Estimating the viscosity to lie

between 1 and 10 kPa s, shear rates near the wall (before crystallization) on the order of 10

to 102 s−1 are found. Pointlike nucleation is enhanced by chains that are on average shorter

than those initiating shish growth [195]. Consequently, the critical molecular weight M∗ for

flow-enhanced nucleation must have been on the order of 105 g/mol or lower, which yields
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a concentration of chains above M∗ much higher than the few wt% of long ones added.

This explains why no influence of blend composition on the spherulitic structure below the

skin of their samples was observed.

The results of Graham and Olmsted [74] (using the experimental data of Coccorullo et

al. [41]) and Seki et al. [171] demonstrate that the critical molecular weight indeed decreases

with increasing flow rate. A difference in M∗ of one decade is found at nearly the same

temperature. If the shear rates in the experiments of Seki et al. were on the order of

10 s−1, the difference in γ̇ is two decades. This suggests that pointlike precursor creation

is enhanced by a HMW fraction for which the stretch-based Weissenberg number exceeds a

critical value, defined as

Wi∗R = γ̇λR(M∗) ∼ γ̇M∗2 . (3.30)

Alternatively, estimating shear rates on the order of 102 s−1 in the experiments of Seki et

al., a reptation-based criterion is found,

Wi∗d = γ̇λd(M
∗) ∼ γ̇M∗3 , (3.31)

which is in accordance with the analysis of a large number of FIC experiments by Van

Meerveld et al. [195].

Coming back to our scaling analysis of convection out of incubators, it turns out that

dmax ∼ 10 µm, based on M∗ ∼ 107 g/mol, is a rather generous estimate. Nevertheless,

it is still very small. Optical micrographs after flow, in the regime of pointlike nucleation,

often exhibit a (seemingly) homogeneous distribution of spherulites [13, 110, 163]. In order

to create such a morphology from nuclei, confined to domains of about 10 µm in radius,

either these domains would have to overlap, leading to number densities many orders of

magnitude higher than those observed, or the nuclei in each domain would have to merge into

a single spherulite. The latter again makes N0nf the number density of separate spherulites,

which does not agree with experimental data for moderate to fast flows; see Section 4.3.

Examples of inhomogeneous pointlike nucleation densities can be seen in optical micrographs

of Elmoumni et al. [60,61] and Azzurri and Alfonso [12], showing trains of spherulites aligned

in the flow direction, typically hundreds of micrometers long. This can certainly not be

explained by convection of flow-induced precursors and nuclei out of incubators, unless the

environments of these convected species act as new incubators. Rodlike structures of about

100µm were observed by Acierno et al. [1] and Baert and Van Puyvelde [13]. It is hard to tell

from their pictures whether these were also trains of spherulites, impinged because they were

closer together than the ones in the previously cited works, or short shish-kebabs. Trains

and rodlike structures were observed under flow conditions where no clearly recognizable

shish-kebabs were formed yet, but pointlike nucleation was already enhanced.

In summary, the scenario proposed so far cannot agree with observations in FIC experiments
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as long as accelerated creation of precursors in the vicinity of convected species is not taken

into account. Appendix 3B presents a formal description of precursors and nuclei being

convected out of (and forming new) incubators. The question whether this hypothetical

phenomenon is sufficient to explain a homogeneous spherulitic structure is left open for the

time being. It is incorporated in the model here, taking an empirical approach, but the result

is compatible with the framework presented in Appendix 3B.

The assumption is made that precursors and nuclei, convected out of an incubator, contain

the same HMW fraction as the chain on which the precursors were created. This implies

that M∗ is sufficiently low for the coils of HMW chains to overlap. The creation rate is thus

determined by the same function f(Be) in all incubators, which have the same volume v.

The model can easily be reformulated to describe precursors and nuclei as being composed of

faster relaxing chains besides the initial one from the HMW fraction, which gave rise to the

creation of the precursor of population 0. This will require an expression for the relaxation

dynamics, equivalent to Eq. (3.29) but with shorter initial relaxation times λ0k, for the

convected species. Mode M − 1 or an average over all modes might be used. The average

volume of the corresponding incubators will be smaller. The choice made here yields the

strongest enhancement of the final spherulitic number density and has a minimum number

of free parameters.

The history of individual incubators is neglected, by assigning the average number of flow-

induced species Nf/n to all of them. As explained in Appendix 3B, Eq. (3.27) should then

be replaced by

ṅ = I0pf + Ṫ
∂N0pf

∂T
+ cζ (Nf − n) , (3.32)

where c ∈ [0, 1] is a dimensionless connectivity parameter. The last term of Eq. (3.32)

represents the creation of new incubators due to convection of flow-induced precursors and

nuclei out of the existing ones. Hence ζ [s−1] depends on the surface area through which

outward convection occurs, and consequently on the type of flow. If the incubators are

assumed spherical, in a simple shear flow

ζ =
γ̇

π
. (3.33)

The derivation is given in Appendix 3B.

Suppose that flow-induced precursors and nuclei are very well connected to the initializing

HMW chain of an incubator, i.e. c → 0 in Eq. (3.32). A natural choice is then to

use a rheological model for branched polymers to calculate the deformation of the slowest

relaxation mode and to replace Eq. (3.29) by a similar expression for the number of arms

per HMW backbone. It is demonstrated in Appendix 3C that this approach does not yield

the desired behavior, namely an increase of the reptation and stretch relaxation times of the

backbone, because it is diluted by an increasing amount of arm material.
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Because every nucleated incubator grows into a single spherulite, Eq. (3.5) is replaced by

Ψ̇3

8π
= Ṅnq +

{

Ṅnf if Nnf 6 n

ṅ if Nnf > n
, (3.34)

considering the flow-induced nuclei to de distributed evenly among the incubators. If the

history of individual incubators were resolved by the model, each incubator would contain a

different number of nuclei, based on its lifetime.

With n appearing in Eq. (3.29) and its evolution given by Eq. (3.32) instead of Eq. (3.27),

FIC in the spherulitic regime is governed by a subtle interplay of phenomena. Creation of

new flow-induced precursors increases the relaxation times λd and λR of the HMW fraction,

which makes it a self-enhancing process via f(Be) in Eq. (3.28). Convection decreases

these relaxation times, which has a negative effect on I1pf and hence on Nf , the source of

the convection term in Eq. (3.32). On the other hand, the increased volume fraction nv,

where I1pf is active according to Eq. (3.28), has a positive effect on the creation rate.

Dormant flow-induced precursors, i.e. ones that are unable to nucleate at the temperature at

which the crystallization is taking place, are not included as physical crosslinks in Eq. (3.29).

In an extended model, some of these might be created in the incubators, initially formed by

active flow-induced precursors, while others might form their own incubators, in which also

active precursors could be created. Thus the numerator as well as the denominator in Eq.

(3.29) would change. Such an extended model is beyond the scope of this work, because

it cannot be validated with the experimental data currently available. As explained earlier,

short-term flow followed by crystallization at different temperatures, combined with in-situ

optical microscopy, should be a straightforward method to relate incremental changes in the

strength or duration of flow to changes in the distribution ∂Npf/∂T .

3.5.2 Swallowing of HMW chains by growing nuclei

Now the final modification of the SJ2 model’s coupling between structure and relaxation

dynamics is made. The underlying idea is that, as precursors nucleate and grow, the HMW

chains are gradually incorporated in the crystalline structure. Their amorphous ends become

shorter and less entangled with other amorphous chains. The reptation and stretch relaxation

times of these ends consequently decrease. It seems reasonable to assume that precursors

are predominantly created close to the center of the chain, since that is where the largest

stretch occurs. The resulting nuclei are therefore conveniently lumped into a single crystalline

particle at the center. Its radius is given by

Rc =
Ψ2f

8πn
, (3.35)
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where Ψ2f follows from Eq. (3.6) with Ψ3 replaced by Ψ3f = 8πNnf . The remaining

amorphous part is described as a random walk of Zam segments of length l between

entanglements. Neglecting flow-induced anisotropy, its mean squared radius of gyration

is

〈r2
g,am〉 =

Zaml2

6
(3.36)

with 〈. . .〉 indicating an average over all conformations. The mean squared radius of gyration

of the partly crystalline chain is

〈r2
g〉 = 〈(Rc + rg,am)2〉 = R2

c + 〈r2
g,am〉 (3.37)

since, by definition, 〈rg,am〉 = 0. Small-angle neutron scattering studies of isotactic

polypropylene [17] have shown that quiescent crystallization hardly affects 〈r2
g〉. This is

probably not true when highly oriented shish structures are formed, but may be a considered

a reasonable assumption in the pointlike nucleation regime. Therefore we take

〈r2
g〉 ≈

Zl2

6
, (3.38)

which, using Eqs. (3.36) and (3.37), leads to

R2
c ≈ Zcl

2

6
(3.39)

with Zc = Z − Zam the number of Kuhn segments incorporated in the crystalline phase.

The fraction of amorphous segments is then

Zam

Z
= 1 − Zc

Z
= 1 − R2

c

〈r2
g〉

. (3.40)

Considering that the reptation time of the amorphous part scales with Z3
am and the Rouse

time of the amorphous part with Z2
am, we get

λd

λ0d
=

[

1 − R2
c

〈r2
g〉

]3 [

1 +
aNf

n

]

H
(

〈r2
g〉 − R2

c

)

(3.41)

and

λR

λ0R

=

[

1 − R2
c

〈r2
g〉

]2 [

1 +
aNf

n

]

H
(

〈r2
g〉 − R2

c

)

, (3.42)

in which H is the Heaviside step function.

Swallowing of chain segments by the growing crystalline phase was also described by Doufas
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et al. [52, 53]. They used a single-chain formulation, taking the fraction of crystallized

segments equal to the overall degree of crystallinity χ, obtained from a modified Nakamura

equation. The relaxation time of the amorphous part of the chain was assumed to decrease

proportional to (1 − χ)2. They used a Giesekus model with finite extensibility, in which

the nonlinear force factor was also related to the degree of crystallinity. This is similar to

the model of Van Meerveld et al. [193] who, instead of the degree of crystallinity, used the

semicrystalline volume fraction φ, obtained from a modified set of Schneider equations. The

relaxation time was not modified in their model. Not only the nucleation rate, but also

the radial growth rate depends on the conformation of the amorphous part, according to

both Doufas et al. and Van Meerveld et al. This is a debatable feature of the single-chain

approach, since the growth process at the interface between the phases involves many chains

with crystallized fractions ranging from zero to one. Polydispersity is also neglected. This

may be justified for flow-enhanced nucleation, which favors the high-end tail of the molecular

weight distribution, but not for flow effects on the radial growth rate.

3.6 Results

The local flow-enhanced nucleation model is compared to a subset of the flow-enhanced

nucleation experiments, discussed in Chapter 4. Isotactic polypropylene was subjected to

short-term shear at a rate of 60 s−1 and shear times varying between 1 and 6 seconds [98].

Based on experimental observations that the distribution in sizes of spherulites is very narrow,

it is assumed that the characteristic time of nucleation in flow is much longer than the shear

time, whereas in the absence of flow it is very small. Therefore we take

τpn =

{

∞ for γ̇ 6= 0

0 for γ̇ = 0
(3.43)

with the consequence that precursors are created during flow and instantaneously nucleated

after flow. This is discussed in relation with other published experimental observations in

Chapter 4. Thus the effective number density of flow-induced nuclei, to be substituted in

Eq. (3.5), determining the number density of separately observable spherulites, equals 0

during flow and n afterwards. See also Eq. (3.34).

Due to Eq. (3.43), swallowing of HMW chains occurs only after flow. It is interesting to

speculate that, with a large but finite value of τpn during flow, Eqs. (3.41) and (3.42)

might be able to explain the experimentally observed saturation of flow-enhanced nucleation

[14, 97], discussed in Section 4.1.2. The generic analysis of phase transformation by

Hütter [99] is important in this respect. He found that, for conditions under which the

nucleation rate vanishes, the growth rate also vanishes. This suggests that a large but

finite value of τpn would be accompanied by a low growth rate, which might be sufficient

to swallow those incubators that are nucleated, without leading to observable spherulites
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Figure 3.3: Number densities of precursors (dashed lines) and nucleated incubators (solid
lines) for the model with constant gp. Measured spherulite densities, which were constant
and observed after shearing (γ̇ = 60 s−1), are plotted versus shear time (symbols).

during flow. We do not explore these ideas further here.

Simulation results are shown in Figure 3.3. The incubator volume v = 3.63×10−14 mm3 was

used, based on a radius 〈r2
g〉 = 1

6
〈r2〉 = 0.116M Å2 [62] with M = Mw = 365 × 103 g/mol

[97]. The creation rates I0pf and I1pf were expressed analogous to Eq. (3.19). The physical

crosslinking parameter a = 103 and the connectivity parameter c = 1 were kept fixed, while

gp was varied: gp = 1 mm−3 s−1 and gp = 102 mm−3s−1. Dashed lines in the figure represent

the number density of precursors Np = Npq +Npf , whereas solid lines represent the number

density of nucleated incubators n after flow, which is nearly the same for all shear times.

The relative amounts of flow-induced species (precursors and nuclei) of populations 0 and

1 can be checked by storing them separately or by running an additional simulation with

c = 0, while keeping the other parameters the same. In the latter case, due to the absence

of convection, the flow-induced number density N0f of population 0 is equivalent to that of

the incubators, n. We find that mainly population 0 is formed. Consequently, the number

of flow-induced species per incubator is close to one. When gp decreases, the upturn of

Npf shifts to longer times, but also a smaller Npf (and therefore a smaller n) is reached at

the end of flow. Changing a has no effect on these results. The reason is that the volume

fraction nv, in which population 1 is created, is too small to generate a significant amount

of this population.

According to Chapter 5, gp follows the temperature dependence of the relaxation dynamics,

gp ∼ aT . Therefore we introduce a difference in this kinetic parameter between the

undisturbed melt and the incubators,

g1p

g0p
=

λk

λ0k
; k ∈ {d, R} , (3.44)
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Figure 3.4: Number densities of precursors (dashed lines) and nucleated incubators (solid
lines) for the model with constant g0p and changing g1p. Measured spherulite densities,
which were constant and observed after shearing (γ̇ = 60 s−1), are plotted versus shear
time (symbols).

where λk is given by Eq. (3.29) and Eq. (3.28) is replaced by

Ipf = I0pf + nvI1pf = g0pf(Be0) + nvg1pf(Be) . (3.45)

The results of the model with this modification are shown in Figure 3.4, again using the

second invariant of the deviatoric part as the function f ; see Eq. (3.19). Now population

1 kicks in on top of population 0 and there is a significant effect of the shear time on

Npf , and consequently on n. The experimental data dictate that we should have a small

increase of population 0 and a large increase of population 1 on top of that. When g0p

is decreased, again the upturn of Npf shifts to longer times, but also the level decreases.

Therefore, keeping all other parameters the same as in the previous simulations, the physical

crosslinking parameter is modified, a = 2.4 × 104 for g0p = 1 mm−3s−1 and a = 102 for

g0p = 102 mm−3s−1, to fit the data for the longest shear time. For the shorter shear times,

the second upturn of Npf , due to population 1, is still only mildly affected. This is again

mainly due to the fact that the volume fraction nv appears as a factor in front of the creation

rate I1pf and, additionally, when we decrease g0p to get the time scale right, g1p decreases

as well.

3.7 Conclusions

Consequences of the hypothesis of physical crosslinking in FIC have been investigated, since

it lacks a clear theoretical foundation in previous publications [44,157,158,182,212,213]. A

flow-enhanced nucleation model, based on a local formulation, literally following along the
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lines of this hypothesis, does not capture experimental flow-enhanced nucleation data. The

reason is that the enhanced creation of flow-induced precursors in the spheres of influence

of other flow-induced species (i.e. in what we call incubators) still depends on the rate of

creation of incubators in the undisturbed melt. A low undisturbed creation rate and a very

high enhanced creation rate might fit experimental data, but then the volume of incubators

would have to be increased to (within the context of our model) unreasonably large values,

specifically v ≫ 4π〈r2
g〉3/2/3.

When flow stops, the creation process within the incubators is still enhanced, but because

new precursors and nuclei are no longer convected out of the incubators, the number density

of spherulites only increases further due to the creation process in the undisturbed melt. This

change is insignificant due to the relatively fast relaxation of the stretch of HMW chains

that are not crosslinked. Thus the local flow-enhanced nucleation model naturally explains

the experimental observation that the number density of spherulites is essentially constant

after flow [13, 60, 175]; see also Chapters 4 and 5. In the global formulation, developed in

the next chapter and used, slightly modified, by Custódio et al. [44], this phenomenon is

incorporated by assuming that flow-induced precursors immediately stop acting as physical

crosslinks when they are nucleated, which is unrealistic.
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Appendices

3A Instantaneous nucleation of precursors

An alternative formulation of the (unrestricted) nucleation rate, Eq. (3.16),

Ṅn =
Np

τpn
, (3A1)

is derived here for τpn ↓ 0, which means that all precursors are immediately transformed into

nuclei. It is obvious that Eq. (3A1) cannot be used in that case.

The rate of change of the number of precursors, Eq. (3.13), is conveniently rewritten as

Ṅp = Îp −
Np

τp

, (3A2)

where Îp comprises the thermal and athermal creation rates,

Îp = Ip + Ṫ
∂Np

∂T
, (3A3)

and τp is the characteristic time of disappearance (nucleation and dissolution) of precursors,

τp =
τpnτpd

τpn + τpd
. (3A4)

If τp is constant, Eq. (3A2) becomes an ordinary differential equation with general solution

Np(t > t0) = e
−

t−t0
τp

[

Np(t0) +

∫ t

t0

Îp(t
′)e

t′−t0
τp dt′

]

. (3A5)

The number of nuclei is obtained by integrating Eq. (3A1) after substitution of Eq. (3A5),

Nn (t > t0) = Nn(t0) +

∫ t

t0

[

Np(t0)

τp
e
−

t′′−t0
τp +

∫ t′′

t0

Îp(t
′)

τp
e
− t′′−t′

τp dt′

]

dt′′ . (3A6)

Now consider the case that τpn drops to zero at t = t0. Eq. (3A4) shows that the

disappearance of precursors then becomes dominated by nucleation,

lim
τpn↓0

τp = τpn , (3A7)
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so that dissolution can be neglected. Therefore taking τp ↓ 0 in Eq. (3A6) and using

lim
θ↓0

1

θ
e−

t−t0
θ = 2δ (t − t0) for t > t0 (3A8)

and
∫ ∞

t0

δ (t − t0) dt =
1

2
, (3A9)

where δ is the Dirac function, it follows that

Nn (t > t0) = Nn(t0) + 2

∫ t

t0

[

Np(t0)δ(t
′′ − t0) +

∫ t′′

t0

Îp(t
′)δ(t′′ − t′)dt′

]

dt′′

= Nn (t0) + Np (t0) +

∫ t

t0

Îp (t′′) dt′′ . (3A10)

Thus, if τpn ↓ 0, the nucleation rate is equal to Îp. If additionally Ip = 0, the nucleation

process is purely athermal: no new nuclei appear unless the temperature is lowered.

The result obtained here allows for a description of crystallization processes involving fast

nucleation, without using Eq. (3A1). In the example used above, where a transition from

slow to fast nucleation kinetics takes place at t0, we get:

t < t0

{

Ṅp (t) = Îp (t) − Np(t)

τp(t)

Ṅn (t) = Np(t)

τpn(t)

t > t0











Nn(t0) → Nn(t0) + Np(t0)

Np(t0) → 0

Ṅn (t) = Îp (t)

The implementation of the inverse transition is trivial.

3B Creation in and convection out of incubators

First the balance of species (precursors and nuclei) is formulated for a single incubator of

volume v. The local flow-induced number density is denoted by Ñf as opposed to the

continuum average Nf . Since v is not a material volume, the total number within the

incubator changes due to creation as well as convection across its surface s. We imagine

an environment free of incubators, except the one under consideration and those formed by

species convected out of it, and limit our attention to flows with a direction that does not

change in time. Consequently, there is an outflow of species where the velocity component
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normal to s is pointing outward, but no inflow where it is pointing inward. If the convection

of species is affine, according to the Reynolds transport theorem, the rate of change of the

total number within the incubator is given by

d

dt

∫∫∫

v

Ñfdv′ =

∫∫∫

v

∂Ñf

∂t
dv′ −

∫∫

s

~v · ~e
(

Ñf − 1
)

ds′ . (3B1)

Here ~v is the velocity relative to s and ~e is the unit vector normal to s, taken positive

in the outward direction. The integrand in the second term on the right-hand side, which

represents the convective flux through s, is proportional to Ñf −1 because the last remaining

flow-induced precursor or nucleus defines the movement of the incubator as a whole.

A scalar parameter c ∈ [0, 1] is introduced to account for connectivity, which is assumed to

be the same for flow-induced precursors and nuclei. Then Eq. (3B1) becomes

d

dt

∫∫∫

v

Ñfdv′ =

∫∫∫

v

∂Ñf

∂t
dv′ − c

∫∫

s

~v · ~e
(

Ñf − 1
)

ds′ . (3B2)

A difference in connectivity of the species can be incorporated straightforwardly, substituting

c =
cpÑpf

Ñpf + Ñnf

+
cnÑnf

Ñpf + Ñnf

(3B3)

in Eq. (3B2) with {cp, cn} ∈ [0, 1]. Small values (c → 0) correspond to chemical crosslink-

like behavior.

The model used in this chapter is obtained as the result of two simplifications. First, spatial

variations of Ñf , resulting from inhomogeneities in the creation rate I1pf = ∂Ñf∂t or

convective redistribution of species, are not resolved within an incubator. Thus

~∇Ñf(~x, t) = 0 ∀ ~x ∈ v . (3B4)

Secondly, the material is described as a melt containing n identical incubators per unit

volume, to each of which the average number of species

∫∫∫

v

Ñfdv′ =
Nf

n
(3B5)

is assigned. This has the advantage that the creation rate, the first term on the right-hand

side of Eq. (3B2), is the same in each incubator:

∫∫∫

v

∂Ñf

∂t
dv′ = vI1pf , (3B6)

where I1pf is a function of one Be representative of all incubators, whose evolution is

determined by reptation and Rouse times depending on Nf/n; see Eqs. (3.28) and (3.29).
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This averaging introduces a bias towards newly formed incubators, since they gain flow-

induced precursors and nuclei at the expense of the ones already present. The alternative is

to store, in each time step from tk to tk+1 = tk+∆tk, a new subgroup of incubators ∆nk and

to calculate the new number of species ∆Ñf,16j6k(tk+1) for each subgroup ∆n16j6k, using

separate rheological constitutive equations with relaxation times based on ∆Ñf,16j6k(tk).

This multi-mode approach (with an increasing number of modes, equal to the number of

time steps taken) is computationally more expensive, but still feasible since the relaxation

times are always longer than those of the undisturbed slowest mode of the melt, so no

exceedingly short time steps are necessary.

For the averaged description used here, the total number density of flow-induced precursors

and nuclei changes according to

Ṅf = I0pf + nvI1pf + Ṫ
∂Npf

∂T
− Npf

τpd
, (3B7)

where the populations 0 and 1 are distinguished, as explained in Section 3.5. If all species

convected out of an incubator act as new incubators, we find

ṅ = I0pf + Ṫ
∂N0pf

∂T
+ cζ (Nf − n) (3B8)

as in Eq. (3.32) with

ζ =
1

v

∫∫

s

~v · ~e ds′ . (3B9)

For a spherical incubator of radius rv at the center of a Cartesian coordinate system {x, y, z},

~e = [ex, ey, ez] = [cos θ sin φ, sin θ, cos θ cos φ] (3B10)

if {r, θ, φ} are spherical coordinates centered at the incubator, θ being the angle to the xz

plane and φ the angle to the z axis in the xz plane. In a planar shear flow,

~v = [vx, vy, vz] = [γ̇y, 0, 0] = [γ̇r sin θ, 0, 0] (3B11)

and outflow of species occurs where {2θ, φ} ∈ [0,±π]. This leads to Eq. (3.33):

ζ =
2

v

∫ π

0

∫ π/2

0

γ̇y cos θ sin φ r2
v cos θdθdφ

=
2γ̇r3

v

v

∫ π

0

∫ π/2

0

sin θ cos2 θdθ sin φdφ =
4γ̇r3

v

3v
=

γ̇

π
. (3B12)
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3C Evaluation of flow-induced precursors as branch points

This appendix explores the consequences of the idea that flow-induced precursors and nuclei

can be described as branch points on the HMW fraction of the molecular weight distribution.

This idea implies that chain ends, sticking out of a precursor, affect the motion of the

backbone, on which the precursor was formed, as though they were chemically bonded to

it. In a multi-mode rheological description of the melt, an expression similar to Eq. (3.29)

may be used for the number of arms of the slowest mode,

q = q0 + ∆q = q0 +
aNf

n
. (3C1)

Here Nf/n is the average number of flow-induced precursors and nuclei per HMW chain

serving as a backbone, as explained in Section 3.5 and Appendix 3B, and a should be

interpreted as the average number of arms connected to these branch points.

The molecular architecture of the HMW fraction is represented by a backbone of weight Z0b

(in units of Me) with q0 arms of equal weight Z0a. The fractions of material in each part

are given by

ϕ0b =
Z0b

2q0Z0a + Z0b

, (3C2)

ϕ0a =
2q0Z0a

2q0Z0a + Z0b
, (3C3)

respectively. According to the tube theory for branched polymers, developed by McLeish

and coworkers [45, 46, 143], the characteristic time of arm retraction is

λ0a ∼ exp

[

15Z0a

4

(

1

2
− ϕ0a

3

)]

(3C4)

for pom-pom or comb molecules (if the order-one ‘dynamic dilution’ exponent, α in the

references above, is chosen equal to one). The backbone reptation time is

λ0b ∼ Z2
0bϕ

2
0bq0λ0a (3C5)

and, for pom-poms, the backbone stretch relaxation time

λ0s ∼ Z0bϕ0bq0λ0ae
− 2

q0
(Λ−1)

, (3C6)

was derived by Blackwell et al. [24].

Now ∆q pseudo-arms of equal weight Za, attached to precursors, are added. The ensemble
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is modeled as a pom-pom, containing q arms of averaged weight

Za =
∆qZa + q0Z0a

q
, (3C7)

which gives the fractions

ϕb =
Zb

2qZa + Zb

, (3C8)

ϕa =
2qZa

2qZa + Zb

. (3C9)

With Eq. (3C4), the arm relaxation time is increased according to

λa

λ0a
= exp

[

15

8

(

Za − Z0a

)

− 15

12

(

Zaϕa − Z0aϕ0a

)

]

. (3C10)

For the backbone reptation time, using Eq. (3C5), we find

λb

λ0b
=

ϕ2
bqλa

ϕ2
0bq0λ0a

=

(

1 +
2∆qZa

2q0Z0a + Zb

)−2(

1 +
∆q

q0

)

λa

λ0a
(3C11)

and the increase of the backbone stretch relaxation time follows with Eq. (3C6) as

λs

λ0s

=
ϕbqλa

ϕ0bq0λ0a

=

(

1 +
2∆qZa

2q0Z0a + Zb

)−1(

1 +
∆q

q0

)

λa

λ0a

e

(

2

q0
− 2

q

)

(Λ−1)
. (3C12)

Because of the rather crude averaging of arm weights, Eq. (3C7), only the limiting behavior

for large ∆q should be considered, where q0Z0a is unimportant. Then λb scales with (∆q)−1,

whereas λs becomes independent on ∆q. Hence Eq. (3C1) yields a completely different

effect on the relaxation time than Eq. (3.29). The fact that the results in Chapters 4 and

5 are largely due to a coupling similar to Eq. (3.29) suggests that flow-induced precursors

and nuclei should not be seen as branch points, but rather as weak physical crosslinks.

The linear dependence of the reptation and Rouse times on their number Nf/n, as in Eq.

(3.29), is in line with the idea that these physical crosslinks generate a friction force on the

backbone.





Chapter four

Validation of a global formulation of

flow-enhanced nucleation

Abstract

A phenomenological model for flow-enhanced nucleation is developed and validated by short-

term shear experiments. The two main conclusions of this chapter are, first, that the creation

of flow-induced precursors is driven by stretch, not orientation, of the primitive path of chains

in the HMW tail of the molecular weight distribution, and secondly, that nucleation of these

precursors is impeded by flow.

71
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4.1 Introduction and outline of the model

The formulation of the flow-enhanced nucleation model, used in this chapter, is discussed

only briefly, since a detailed discussion has been given in Sections 3.3 and 3.4. For an

introduction on modeling of FIC kinetics, we also refer to Chapter 3. The results of the

local model, presented in Section 3.5, were unsatisfactory from a practical point of view,

since the experimentally observed effect of flow on the number density of spherulites could

not be reproduced. Therefore we take a step back to an earlier, more simplified approach,

and use a modified version of the SJ2 model [212, 213], in which a distinction is made

between subcritical nuclei (called precursors) and supercritical nuclei (simply called nuclei).

It is important to keep in mind, however, that their effect on the relaxation dynamics of the

high molecular weight (HMW) fraction of the material lacks a clear theoretical foundation,

as discussed in detail in Chapter 3.

4.1.1 Creation and nucleation of precursors

The nucleation rate is given by Eq. (3.16),

Ṅn = Ṅnq + Ṅnf =
Npq + Npf

τpn

, (4.1)

where the number density of quiescent precursors changes according to Eq. (3.17),

Ṅpq = Ṫ
∂Npq

∂T
− Npq

τpn
− Npq

τpd
(4.2)

if the quiescent creation process is athermal, while the number density of flow-induced

precursors changes independently according to Eq. (3.18),

Ṅpf = Ipf + Ṫ
∂Npf

∂T
− Npf

τpn
− Npf

τpd
. (4.3)

We again remark that, for example, in the models of Grizzuti and coworkers [3, 42]

and Graham and Olmsted [73, 75], the quiescent and flow-induced creation rates are not

decoupled.

The flow-induced creation rate depends on the elastic Finger tensor of the slowest relaxation

mode,

Ipf = gpf (Be) . (4.4)

The function f will be specified later. The Rolie-Poly model [130] is used to calculate Be.
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Its upper convected derivative is then given by

▽

Be = − 1

λd
(Be − I) − 2

λR

(

1 − 1

Λ

)

(

Be + βΛ2δ (Be − I)
)

(4.5)

with the stretch parameter

Λ =

√

tr (Be)

3
(4.6)

according to Eq. (3.4). The last term represents convective constraint release, which is

controlled by the parameters β ∈ [0, 1] and δ.

The reptation time λd and the Rouse time λR are linear functions of the number densities

of flow-induced precursors and nuclei,

λk

λ0k
= 1 + a (Npf + Nnf,R<R∗) ; k ∈ {d, R} , (4.7)

where R∗ is a critical radius, on the order of the radius of gyration of the HMW chains,

which determines whether a flow-induced nucleus acts as a physical crosslink (R < R∗) or as

a viscoelastic particle (R > R∗). This can be seen as a more empirical way to describe the

swallowing of chain ends by the growing nuclei, as compared to the more detailed description

in Section 3.5. There the swallowing phenomenon was incorporated in Eqs. (3.41) and (3.42)

via the coarse-grained radius of the crystalline structure within an incubator. We have no

concept of a structure that could cause the relaxation behavior described by Eq. (4.7),

which was the reason to develop a more detailed model in Chapter 3. In order for the

continuum-level Nf = Npf + Nnf to be a measure of the local Ñf (Appendix 3B) it would

have to be many orders of magnitude higher than experimentally observed number densities

of spherulites. See Section 3.2 and Figure 3.1. Conversely, Ñf being an average over v, this

volume would have to be much larger than the expected range of influence of a flow-induced

precursor or nucleus, v ≫ 〈r2
g〉3/2, in order to obtain Ñf ∼ Nf . Without a clear concept,

it is hard to build a well-founded model for the swallowing of chain ends. In the empirical

approach taken here, it turns out that experiments are fitted most accurately with R∗ = 0.

4.1.2 Saturation

Housmans et al. [97] recently studied three iPPs with different molecular weight distributions.

Oscillatory shear measurements after short periods of steady shearing showed the fingerprints

of different FIC regimes. Upon increasing the duration of flow, log(G′) versus log(t) curves

shifted to shorter times without changing shape, indicating that the number densities of

pointlike nuclei were increased but remained constant after the flow was stopped. A

saturation of this enhanced nucleation was clearly observed: identical results were obtained
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for longer shear times. A second acceleration occurred when the flow was maintained even

longer. Not only did the log(G′) versus log(t) curves shift to shorter times again, but

their shape also changed, indicating a transition from spherulitic to oriented crystallization.

These interpretations were confirmed by ex-situ micrographs of the final semicrystalline

morphologies. In the saturation regime, the number densities of spherulites were indeed

identical. This can be considered the first unambiguous evidence of a maximum pointlike

nucleation density. Baert et al. [14] also reported a plateau in the time scale of crystallization

as a function of shear rate, followed by a second acceleration at high shear rates. However,

they compared experiments where the same strain was applied. This means that both

the shear rate and the shear time varied, which confuses interpretation. The same strain

with a different combination of rate and duration of flow does not yield the same molecular

deformation (neither in the transient startup behavior nor in the steady state). Nevertheless,

the acceleration following the saturation plateau was concurrent with an upturn of the

birefringence during flow, related to the growth of threadlike precursors, in agreement with

the work of Kumaraswamy et al. [120]. These results are further supported by the fact that,

for one iPP subjected to two different shear rates, Housmans et al. [97] detected an upturn

in the first normal stress difference during flow exactly at the times marking the transition

from the saturated pointlike nucleation regime to the oriented crystallization regime.

Martins et al. [141] suggested that saturation of flow-enhanced nucleation is the result of the

melt reaching its steady state. However, the first normal stress difference data of Housmans

et al. [97] showed that, in all their FIC experiments, the steady state was reached about

ten times later than the onset of the saturation plateau. This was confirmed by viscosity

measurements [J.-W. Housmans, personal communication].

Saturation is implemented in the present model in a phenomenological way, writing gp in

Eq. (4.4) as

gp =

(

1 − Nf

Nf,max

)

g0p . (4.8)

The saturated number density Nf,max is expected to be related to a critical molecular weight

for pointlike precursor creation, but is determined directly from nucleation data in Section

4.3.

4.2 Experiments

4.2.1 Flow-enhanced nucleation

We compare simulation results to experimental data of Hristova et al. [98] for the

polydisperse linear iPP HD120MO from Borealis. Different aspects of the morphology,
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Table 4.1: Number densities of spherulites Nsph and presence of oriented crystallites in
iPP2 after different shear histories at 135 ◦C [98]. Measured growth rate Ṙ and expected
diameter D of largest spherulites at the end of flow.

γ̇ [s−1] ts [s] Ṙ [nm s−1] Nsph [mm−3]
Orient.

D = 2Ṙts [µm]
cryst.

0 0 42 6.8 × 102 − 0

2 30 41 6.8 × 102 − 2.5

15 51 2.4 × 103 − 1.5

4 60 39 2.5 × 105 + 4.7

90 40 3.5 × 105 + 7.2

3 42 1.3 × 103 − 0.25

10 6 43 1.7 × 103 − 0.52

36 49 7.1 × 105 + 3.5

20 3 43 8.6 × 102 − 0.26

2 47 8.6 × 102 − 0.19

30 3 46 1.6 × 103 − 0.28

6 52 3.6 × 104 + 0.62

40 3 38 6.8 × 104 + 0.23

1 70 8.6 × 102 − 0.14

2 48 7.4 × 103 + 0.19

60 3 50 8.8 × 104 + 0.30

4 37 1.8 × 105 + 0.30

6 37 3.0 × 105 + 0.44

developing during and after different short-term shear flows, which were applied directly after

cooling to a constant crystallization temperature, were investigated by means of different

techniques. The pointlike nucleation densities, of interest here, were obtained from in-

situ optical microscopy using a Linkam shear cell. The number density of spherulites was

estimated from the number of spherulites per unit area of observation, for which the relation

Nsph

[

mm−3
]

=
(

Nsph

[

mm−2
])3/2

(4.9)

was used [66]. This is based on the assumption that the square root of the number per unit

area is a characteristic one-dimensional number density along a line, which is then cubed to

obtain the three-dimensional volumetric number density. Spherulites out of focus were not

counted, in order to get as close as possible to a number per unit area.

Simulation results are also compared to experimental data of Housmans et al. [97], which

were obtained at a slightly different temperature for the same material and for two iPPs with

a different molecular weight distribution: HD234CF from Borealis and 13E10 from DSM.
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Table 4.2: Properties and longest reptation and Rouse time at 138◦C of iPPs [97].

iPP Tm [◦C] Mw [kg/mol] Mw/Mn Z = Mw/Me λ0d [s] λ0R [s]

1 159 310 3.4 60 11.8 0.066
2 163 365 5.4 70 56.3 0.27
3 162 636 6.9 122 690 1.9

The number densities of spherulites were determined from rheological measurements after

short-term shear, applying the Kolmogorov–Avrami equation, Eq. (3.9), in combination with

the linear viscoelastic suspension model presented in Chapter 2. Molecular characteristics

of the materials are given in Table 4.2. They are referred to as iPP1, iPP2, and iPP3 as

indicated in the first column.

In both sets of experiments, the common short-term shearing protocol was applied. Samples

were annealed above the equilibrium melting temperature to erase residual structures, cooled

to a temperature were crystallization occurs (135 ◦C [98] or 138 ◦C [97]). Directly after

reaching this temperature, a shear flow was applied for a duration ts at a constant rate γ̇.

Hristova et al. determined the lamellar growth rate, Ṙ in Eqs. (3.6-3.8), from successive

microscopic pictures of spherulites. While Ṙ turned out to be constant in each experiment,

it varied considerably between experiments, from 37 to 70 nm/s, as seen in Table 4.1. No

correlation with the shear rate or shear strain was found. The experimental conditions, γ̇

and ts, and the number density of spherulites Nsph are also given in Table 4.1. Furthermore,

the presence of oriented crystallites is indicated. Their numbers were orders of magnitude

smaller than those of the spherulites. The nucleation density is thus dominated by the

pointlike nuclei and can be used to validate our flow-enhanced nucleation model.

No noticeable space filling occurred during flow in any of the experiments of Hristova et

al., even for the longest shear time of 90 seconds. Furthermore, when the crystallites grew

large enough to be detected, their number had already become constant. These observations

confirm that the flow was always applied in the early stage of crystallization, characterized by

unbounded creation and nucleation of precursors, as it should be in order to avoid disturbance

of the flow, and hence of the crystallization kinetics, by growing crystallites.

4.2.2 Rheological characterization

The linear viscoelastic behavior of the three iPPs was measured and fitted with discrete

relaxation spectra by Housmans et al. [97]. They estimated the Rouse time of the slowest

mode using the Doi–Edwards result for monodisperse long linear chains [51],

λ0R =
λ0d

3Z
, (4.10)
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Table 4.3: Old relaxation spectrum of iPP2 at Tref = 135 ◦C.

T [◦C] aT bT i Gi [104 Pa s] λ0d,i [s]

135 1 1 1 7.96 0.01
145 0.72391 0.98122 2 3.998 0.06
155 0.51719 0.97277 3 1.533 0.36
165 0.38309 1.0216 4 0.344 2.16
175 0.26861 0.91455 5 0.0356 12.9
190 0.20227 0.93897 6 0.00368 77.8
205 0.15372 0.94554

WLF parameters
220 0.11812 0.97183

235 0.09547 0.89108 Tref [◦C] c1 c2 [K]

250 0.07241 0.91455 135 3.159 198.1

in which they took Z = Mw/Me as a characteristic number of entanglements for the high-

end tail of the molecular weight distribution; Me is the average molecular weight between

entanglements. The relaxation times of the three iPPs are reported in Table 4.2.

Eq. (4.10) is commonly applied in FIC studies, although it disregards the effect of shorter

chains on the relaxation dynamics of the HMW fraction through constraint release. For

bimodal blends, the Struglinski–Graessley criterion ZHMW/Z3
LMW ≪ 0.1 [180] can be used

to justify Eq. (4.10) [18]. Here ZHMW and ZLMW are the molecular weights of the high

and low molecular weight components, respectively, in units of Me. A similar criterion for

polydisperse melts is lacking. For a discussion of issues, related to the determination of

characteristic HMW relaxation times in polydisperse melts, we refer to Van Meerveld et

al. [195].

As an alternative to Eq. (4.10), the longest Rouse time is determined by fitting a multi-

mode Rolie-Poly model to uniaxial extensional viscosity data for iPP2. These were supplied

by Borealis. Inspection of the transient linear viscoelastic extensional viscosity, calculated

with the relaxation spectrum reported by Housmans et al. [97], reveals a systematic

underprediction of the data by approximately a factor of two. A previously determined

spectrum for iPP2 [J.F. Vega, personal communication] does give a linear viscoelastic

extensional viscosity curve in agreement with the data before strain hardening sets in. We

attribute this to a difference between batches of the same iPP grade. Both relaxation spectra

consist of six modes. The main differences are in the moduli, whereas the relaxation times

are nearly identical. Vega’s rheological measurements, summarized in Table 4.3, were done

around the same time as the FIC experiments on iPP2 at 135◦C [98], which are used here to

compare model results with the longest Rouse time determined by the two different methods.

Likhtman and Graham [130] found that, to compensate for the overprediction of the steady-

state shear stress and first normal stress difference in fast shear flows, they had to take β = 0.
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Figure 4.1: Symbols: uniaxial extensional viscosity data at T = 180◦C for different strain
rates. Lines: six-mode Rolie-Poly model with three stretching modes (λ0R,4 = 0.04 s,
λ0R,5 = 0.3 s, λ0R,6 = 2 s). Dashed line: linear viscoelastic response.

This was not the case in the full Graham–Likhtman and Milner–McLeish (GLaMM) model

[72] and therefore, according to the authors, it should not be concluded that convective

constraint release was insignificant. We also find that β = 0 gives the best results. The

remaining free parameters are then the Rouse times λ0R,i.

The extensional viscosities, measured at four different strain rates, show minor strain

hardening. The data for the lowest strain rate (ǫ̇ = 0.3 s−1) are excluded from the fitting

procedure, since the calculated extensional viscosity always falls within the rather high

scatter of these data. The other measurements are shown in Figure 4.1. The Rolie-Poly

model predicts a much too strong strain hardening at the two highest rates (ǫ̇ = 3 s−1 and

ǫ̇ = 10 s−1). The data for ǫ̇ = 1 s−1 can be fitted reasonably well when only the slowest

mode is described by Eq. (4.5) while for the other modes the non-stretching Rolie-Poly

model ( [130] and Appendix 4A) is used. Two additional stretching modes are sufficient to

improve the fits of the other data, in terms of the onset of strain hardening. The strong

strain hardening, predicted at longer times, cannot be prevented. It turns out that the result

for ǫ̇ = 1 s−1 is not affected much by these additional stretching modes, so we obtain a

unique longest Rouse time, λ0R,6 = 2 s.

The uniaxial extension experiments were done at T = 180 ◦C. A time-temperature shift to

T = 138 ◦C, with the Williams–Landel–Ferry (WLF) parameters given in Table 4.3, yields

λ0R,6 = 7 s. This is much longer than the 0.27 s obtained from Eq. (4.10) and reported

in Table 4.2. We have no physical explanation for this difference, but it is nevertheless

interesting to test the effect of a variation in the Rouse time on the results of our flow-

enhanced nucleation model.
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4.3 Results and Discussion

The outline of this part is as follows. In Sections 4.3.1 to 4.3.3, we look at a few typical

aspects of spherulitic structure development, as observed in the experiments described above

and reported by other authors. The model from Section 4.1 is adapted based on these

observations. It is validated by the experimental data for iPP2 from Table 4.1 and, in

Appendix 4B, by the data of Housmans et al. [97] for all three materials. In Section 4.3.4,

the sensitivity of the model parameters to the longest Rouse time estimate is investigated.

4.3.1 Interference of flow with nucleation

Microscopic pictures show that all spherulites became visible at approximately the same time

(i.e. within a few seconds) shortly after the cessation of flow, and that their diameters were

nearly equal. The same result was reported by Stadlbauer et al. [175] for short-term uniaxial

extension of two different iPP melts. The data from our group, summarized in Table 4.1,

prove that these observations are not simply a consequence of the shear time being too short

to see any spherulites appear during flow and to end up with an observable distribution of

diameters. The resolution of the optical microscope was 2 µm. Four experiments can be

identified in which the diameter of the earliest spherulites, grown from precursors nucleated

directly after reaching the crystallization temperature at t = 0, would have exceeded this

limit before the end of the shear period at t = ts. The diameter of these spherulites at

t = ts is given in the last column of Table 4.1. If indeed, as the model discussed in Section

4.1 states, the creation of precursors were a sporadic process and if τpn = 0, as in the

quiescent melt, these spherulites would have become visible during the flow. Moreover,

at least in these four experiments and possibly in some others as well, depending on the

amount of precursors created during relaxation of the stress after the cessation of flow, a

clear distribution of diameters should have been observed.

On the basis of these results, we assume that nucleation is impeded by flow. A possible

explanation is that the flow makes it more difficult for folded-chain lamellae to form, since

the deformed ends of the long chains, attached to a precursor, have to relax before they

can fold. Consequently, during the flow, the creation of precursors is enhanced but the

precursors are less easily nucleated. This assumption is supported by the work of Blundell,

Mahendrasingam, and others on film drawing of poly(ethylene terephthalate) [25, 26, 134–

137], poly(lactic acid) [138], and poly(ethylene terephthalate-co-isophthalate) copolymers

[139]. They observed that, for high strain rates, no crystallinity developed until the moment

when the draw ratio became constant, i.e. when the strain rate became zero. For lower

strain rates, crystallization did start during flow. The onset of the fast drawing regime

was correlated with the dynamics of chain stretch in the melt: when the strain rate was

higher than the inverse of the stretch relaxation time, crystallization did not start until after

cessation of flow.
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The shear rates in the experiments of Housmans et al. [97] were chosen such that the

Weissenberg number WiR, based on the Rouse time for each material in Table 4.2 as

determined by Eq. (4.10), was always greater than one. In the experiments of Hristova et

al. [98] on iPP2, using the same Rouse time, WiR > 1 for all shear rates except γ̇ = 2 s−1.

Based on the Rouse time fitted to the extensional viscosity data, all experiments fall in the

stretching regime, WiR > 1. We therefore implement a step function,

τpn =

{

∞ for γ̇ 6= 0

0 for γ̇ = 0
(4.11)

to model the effect of flow on the nucleation process. According to Eq. (4.11), during

the flow, precursors are created but not nucleated. When the flow is switched off, these

precursors, and all precursors created afterwards, immediately become nuclei and the model

has to be reformulated as explained in Appendix 3A. Of course, if the flow is applied

for a sufficiently long time, sporadic nucleation will eventually be observed. Otherwise

no crystallinity would develop in a continuous strong flow, which contradicts experimental

evidence. A more realistic model for the dependence of τpn on the shear rate (and on the

temperature) should be used in that case. However, it will be shown that Eq. (4.11) is a

suitable approximation for the experiments considered here.

4.3.2 Dissolution of precursors

After cessation of flow, according to Eq. (4.11) the instantaneous nucleation of precursors

prevents them from dissolving. During flow, we take τpd → ∞ since the time scale of

dissolution of iPP precursors is much longer, already above the nominal melting temperature,

than the shear times used here [6, 58]. The same is true for other polymers, like isotactic

poly-1-butene [11] and isotactic polystyrene [12].

4.3.3 Role of orientation and stretch

It has been suggested that, whereas molecules have to be stretched to form threadlike

precursors, increased orientation already enhances the creation of pointlike precursors under

moderate flow conditions. Here the terms stretch and orientation are defined on the level

of the primitive path of a chain, described by Kuhn segments. The stretch corresponds to

orientation on the level of chain segments.

Coppola et al. [42] extended the free energy in the classical nucleation theory with a term

due to orientation, which they derived from the constitutive model of Doi and Edwards [51].

Changes in the time scale of crystallization were captured quite well by the model. Van

Meerveld et al. [195] presented a classification scheme for FIC experiments, in which different

regimes were defined, based on the Weissenberg numbers associated with orientation and
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Figure 4.2: Number densities of precursors (dashed lines) and nuclei (solid lines) versus
time and experimental number density of spherulites versus shear time (symbols) in iPP2
for γ̇ = 60 s−1 at T = 135 ◦C, according to the orientation-based creation model.
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Figure 4.3: Evolution of orientation for the simulations in Figure 4.2.

stretch of the HMW tail of the melt (Wid and WiR, respectively). They discussed different

methods to obtain the relevant relaxation times. Applying the classification scheme to a large

number of experiments, they found that the number of spherulites was already increased for

Wid > 1−10 while still WiR < 1−10. This seems to indicate that flow-induced orientation

is indeed sufficient to create pointlike precursors. However, according to our model, the

actual Weissenberg number related to the HMW chains, involved in the creation process,

can increase tremendously during flow. Classification based on initial Weissenberg numbers

should therefore be done with care, especially when long flow times are considered.

Based on the idea that orientation is sufficient to create flow-induced precursors, in Eq.

(3.19) the second invariant of the deviatoric part of the elastic Finger tensor is replaced by

the second invariant of the deviatoric part of the orientation tensor, see Eq. (3.3), which is
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Figure 4.4: Number densities of precursors (dashed lines) and nuclei (solid lines) versus
time and experimental number density of spherulites versus shear time (symbols) in iPP2
for γ̇ = 2 s−1 and γ̇ = 4 s−1 at T = 135 ◦C, according to the stretch-based creation model
with the Rouse time estimated by Eq. (4.10).
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Figure 4.5: Number densities of precursors (dashed lines) and nuclei (solid lines) versus
time and experimental number density of spherulites versus shear time (symbols) in iPP2
for γ̇ = 10 s−1 and γ̇ = 20 s−1 at T = 135 ◦C, according to the stretch-based creation
model with the Rouse time estimated by Eq. (4.10).

given by

J2

(

Sd
)

=
1

2
Sd : Sd . (4.12)

The results in Figure 4.2 show that the increase of the nucleation density as a function

of shear time cannot be described in this way. As it turns out, even replacing the linear

dependence of Ipf on J2

(

Sd
)

by a power law does not make a noticeable difference. The

reason can be deduced from Figure 4.3, showing the evolution of the orientation invariant.
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Figure 4.6: Number densities of precursors (dashed lines) and nuclei (solid lines) versus
time and experimental number density of spherulites versus shear time (symbols) in iPP2
for γ̇ = 30 s−1 and γ̇ = 40 s−1 at T = 135 ◦C, according to the stretch-based creation
model with the Rouse time estimated by Eq. (4.10).
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Figure 4.7: Number densities of precursors (dashed lines) and nuclei (solid lines) versus
time and experimental number density of spherulites versus shear time (symbols) in iPP2
for γ̇ = 60 s−1 at T = 135 ◦C, according to the stretch-based creation model with the
Rouse time estimated by Eq. (4.10).

The area under the curve, i.e. the flow-induced number density, is only mildly affected by

an increase of the shear time. In Figures 4.2 and 4.3, g0p = 103 mm−3s−1 and a = 102 mm3

were used. Similar results are obtained irrespective of the crosslinking parameter a. Hence,

according to our model, orientation of the primitive path of the HMW chains is insufficient

for the creation of flow-induced precursors.

In view of this result, Eq. (3.19) is replaced by

Ipf = gp (Λm − 1) , (4.13)
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Figure 4.8: Number densities of precursors (dashed lines) and nuclei (solid lines) versus
time and experimental number density of spherulites versus shear time (symbols) in iPP2
for γ̇ = 2 s−1 and γ̇ = 4 s−1 at T = 135 ◦C, according to the stretch-based creation model
with the Rouse time fitted to extensional viscosity data.
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Figure 4.9: Number densities of precursors (dashed lines) and nuclei (solid lines) versus
time and experimental number density of spherulites versus shear time (symbols) in iPP2
for γ̇ = 10 s−1 and γ̇ = 20 s−1 at T = 135 ◦C, according to the stretch-based creation
model with the Rouse time fitted to extensional viscosity data.

with the stretch parameter Λ according to Eq. (3.4). Simulations with m = 4 give the

best results (higher values do not lead to an improvement) and are shown in Figures 4.4

to 4.7. This stretch dependence agrees very well, up to Λ ≈ 3.5, with the exponential

relation found by Graham and Olmsted [73,75]. The parameters g0p = 1.4×10−3 mm−3s−1

and a = 1.0 × 103 mm3 were obtained by fitting all experiments simultaneously. Nf,max =

3.1 × 105 mm−3 was estimated from the experimental data for γ̇ = 60 s−1 and used as a

fixed input parameter.

For m = 4, the fit of the model to the experimental data is essentially the same as with Eq.
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Figure 4.10: Number densities of precursors (dashed lines) and nuclei (solid lines) versus
time and experimental number density of spherulites versus shear time (symbols) in iPP2
for γ̇ = 30 s−1 and γ̇ = 40 s−1 at T = 135 ◦C, according to the stretch-based creation
model with the Rouse time fitted to extensional viscosity data.
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Figure 4.11: Number densities of precursors (dashed lines) and nuclei (solid lines) versus
time and experimental number density of spherulites versus shear time (symbols) in iPP2
for γ̇ = 60 s−1 at T = 135 ◦C, according to the stretch-based creation model with the
Rouse time fitted to extensional viscosity data.

(3.19). This is because

J2

(

Bd
e

)

= 9Λ4J2

(

Sd
)

(4.14)

and, as shown in Figure 4.3, J2

(

Sd
)

hardly changes as a function of the shear time.

In Appendix 4B, the model with the stretch-based creation rate, Eq. (4.13) with m = 4, is

applied to the experiments of Housmans et al. [97]. There also the relaxation times from

Table 4.2 are used. For the experiments of Hristova et al. [98], we now investigate the
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influence of a difference in the characteristic Rouse time, estimated for the HMW fraction,

on the simulation results.

4.3.4 Sensitivity to the longest Rouse time estimate

Figures 4.8 to 4.11 show the results of simulations with the longest reptation time from

Table 4.3, which is approximately the same as the one obtained from the spectrum of

Housmans et al. [97], and the longest Rouse time λ0R = 2 s as determined from the uniaxial

extensional viscosity data. The parameters g0p = 2.5×10−4 mm−3s−1 and a = 4.9 mm3 are

obtained, again by fitting the number densities of spherulites for all shear rates. Especially

the crosslinking parameter is very sensitive to a change in λ0R. The results, in terms of the

final number densities, are similar to those shown in Figures 4.4 to 4.7, obtained with the

longest Rouse time determined by Eq. (4.10); see Table 4.2. The model parameters from

both approaches are included in Table 4.5 in Appendix 4B for comparison.

The main difference occurs in the evolution of the number of flow-induced nuclei after

flow. Due to Eq. (4.11) and the choice of the critical radius R∗ = 0 in Eq. (4.7), the

crosslinking effect vanishes at t = ts. However, for a longer Rouse time, the stretch needs

more time to relax (Figure 4.12) and consequently more flow-induced nuclei are formed

after the flow has stopped. If R∗ > 0, the flow-induced nuclei formed at times t > ts
also act as physical crosslinks. The simulation results exhibit progressively worse agreement

with the experimental data upon increasing R∗, in terms of the number densities as well as

the distribution of sizes of spherulites, which becomes very broad, contrary to microscopic

observations.

The local flow-enhanced nucleation model, presented in Chapter 3, predicts a negligible

effect of the relaxing deformation after flow on the number density of spherulites, similar to

the global model used here with R∗ = 0. In the local description, flow-induced precursors

as well as nuclei are allowed to act as physical crosslinks. However, after the cessation of

flow, the enhanced creation is restricted to the spheres of influence of these flow-induced

species (on the order of the coil volume of a HMW chain) and consequently does not lead

to growth of separate spherulites.

4.4 Conclusions

A model for creation and nucleation of flow-enhanced precursors has been developed, based

on a coupling of the characteristic reptation and Rouse times of the HMW chains with the

number density of flow-induced precursors, similar to the recoverable strain-based model for

oriented FIC [44,157,158,182,212,213]. The creation rate of flow-induced precursors is found

to depend on the average stretch of the primitive path of the HMW chains. Thus the coupling
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Figure 4.12: Evolution of stretch without flow-induced precursors (solid lines) and in
the simulations of Figure 4.7 (dashed lines) and Figure 4.11 (dash-dotted lines) for iPP2,
γ̇ = 60 s−1 at T = 135 ◦C.

of the relaxation time with early-stage structure development makes the creation of flow-

induced precursors a self-enhancing process. This coupling is necessary to explain the effect

of flow on the nucleation density. However, it leads to unrealistically high stretch values; the

worst case is shown in Figure 4.12. A rheological model with finite extensibility [113, 176]

might improve our results.

The global formulation of the flow-enhanced nucleation model (global in the sense that the

HMW relaxation times are expressed as a function of the continuum average number density

of flow-induced precursors) is not consistent with the original explanation that flow-induced

species act as local physical crosslinks.

Experimental number densities of spherulites after short-term flow have been reproduced by

the model with only two adjustable parameters. Thus it succeeds where the flow-enhanced

nucleation model of Chapter 3, which is consistent with the concept of a local influence of

flow-induced precursors and nuclei, fails. A possible explanation is that the number density

of flow-induced precursors is much higher than that of the spherulites or, in other words,

that most flow-induced precursors are dormant, i.e. unable to nucleate at the experimental

temperature, but still affect the rheology of the melt. This is an interesting direction for

future investigations.

In order to explain the absence of spherulites during flow as well as their narrow size

distribution when they appear after cessation of flow, it must be concluded that the

nucleation of precursors is impeded during flow. The fact that this is the case in the

experiments considered here, with stretch-based Weissenberg numbers greater than one,

is in accordance with experimental observations during film drawing of different polymers

[25, 26, 134–139].
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Appendices

4A Rolie-Poly and XPP constitutive equations

Eq. (4.5) gives the evolution equation for the elastic Finger tensor according to the Rolie-

Poly model. Besides the reptation time λd and the Rouse time λR, it contains the parameters

β ∈ [0, 1] and δ, controlling convective constraint release (CCR).

The eXtended Pom-Pom (XPP) model [199–202] is not used in this thesis, although

Appendix 3C refers to pom-pom theories in general. Nevertheless, the derivation of a

non-stretching version of the XPP model uncovers a few interesting analogies with other

rheological models. The equations for the orientation tensor and the stretch parameter are

given in Table 4.4a. These can be combined into one equation for the stress tensor (Table

4.4b). The version with modified stretching dynamics, as proposed by Van Meerveld [194],

which has a higher numerical stability [199, 202], is presented here. The parameter α

describes anisotropic relaxation similar to Giesekus [70].

Non-stretching Rolie-Poly model

For λR → 0, the Rolie-Poly model reduces to [130]

▽

Be +
1

λd
(Be − I) +

2

3
D : Be (Be + β (Be − I)) = O , (4A1)

which is equivalent to the Doi−Edwards limit of Larson’s partially extending convection

model [123] if β = 0, i.e. if CCR is neglected.

Non-stretching XPP model

The limits

lim
λs→0

Λ̇ = 0 and lim
λs→0

Λ = 1 (4A2)

are substituted in the orientation equation (Table 4.4) which then becomes

▽

S + 2 (D : S) S +
1

λ0b

[

3αS · S + (1 − α − 3αS : S) S − 1 − α

3
I

]

= O (4A3)

or, in terms of the extra stress tensor,

▽

τ +
2

3G
(D : τ ) (τ + GI)+

α

λ0bG

[

τ · τ − τ : τ

3
I
]

+
τ

λ0b

[

1 − ατ : τ

3G2

]

= 2GD . (4A4)
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Table 4.4: The XPP model with modified stretch relaxation [199,202].

a) Double-equation formulation

τ = G
(

3Λ2S − I
)

▽

S + 2 (D : S) S + 1
λ0bΛ2

[

3αΛ4S · S +
(

1 − α − 3αΛ4S : S
)

S − 1−α
3 I

]

= O

Λ̇ = (D : S)Λ − 1
λs

(

Λ − 1
Λ

)

, λs = λ0se
− 2

q
(Λ−1)

b) Single-equation formulation

▽

τ + λ−1 · τ = 2GD

λ−1 = 1
λ0bΛ2

[

α
Gτ + f−1I + G

(

f−1 − 1
)

τ−1
]

1
λ0bf = 2

λs

(

1 − 1
Λ2

)

+ 1
λ0bΛ2

[

1 − ατ:τ
3G2

]

Λ =

√

1 + tr(τ)
3G , λs = λ0se

− 2

q
(Λ−1)

For α = 0, the non-stretching XPP model also reduces to the Doi−Edwards limit of

Larson’s partially extending convection model [123]. The second term on the left-hand

side of Eq. (4A4) is not immediately recognized in the single-equation XPP model (Table

4.4b). However, substitution of Eq. (4A2) in the stretch equation (Table 4.4a) yields

lim
λs→0

1

λs

(

1 − 1

Λ2

)

= D : S . (4A5)

Using this result, Eq. (4A4) is easily derived from the single-equation XPP model.

On the other hand, when Λ → 1 because the deformation remains small, but λs does not

vanish, the stretch term in the relaxation function of the single-equation XPP model goes to

zero. Then, if α = 0, the upper convected Maxwell model is obtained [200]. In the double-

equation XPP model, D : S → 1
3
tr(D) = 0 because S → 1

3
I for small deformations.

4B Simulations of FIC experiments of Housmans et al.

For the three materials listed in Table 4.2, only those experiments are considered in which

the transition to oriented structure formation did not yet occur. Attempts to fit the number
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Figure 4.13: Number densities of precursors (dashed lines) and nuclei (solid lines) versus
time and experimental number density of spherulites versus shear time (symbols) in iPP1.
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Figure 4.14: Number densities of precursors (dashed lines) and nuclei (solid lines) versus
time and experimental number density of spherulites versus shear time (symbols) in iPP2.

densities of spherulites for all shear rates with the same parameters g0p and a, as in Section

4.3 for the optical microscopy data of Hristova et al. [98], were not successful. Therefore

individual results for each shear rate are presented in Figures 4.14 and 4.15. For iPP1 (Figure

4.13) only one shear rate is considered because, for the other one, the saturation regime was

obscured by the transition to the oriented FIC regime and only one shear time was applied

before this transition [97]. The model parameters are summarized in Table 4.5. The most

conspicuous is g0p for iPP1. This is much higher compared to the other materials due to the

lower quiescent number density, determined by means of the suspension model of Chapter

2, for this material. Consequently, the flow-induced number densities in the experiments on

iPP1 need a stronger increase relatively to the quiescent number density (governed by g0p)

than with respect to each other (governed by a).
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Figure 4.15: Number densities of precursors (dashed lines) and nuclei (solid lines) versus
time and experimental number density of spherulites versus shear time (symbols) in iPP3.

Table 4.5: Model parameters for the three iPPs. Those at T = 135 ◦C were fitted for all
shear rates (Table 4.1) at once with λ0R = 0.29 s (top line) or λ0R = 7.7 s (bottom line)
depending on the method to estimate the Rouse time, as explained in Section 4.2.2.

T = 138 ◦C T = 135 ◦C

iPP γ̇ [s−1] g0p [mm−3s] a [mm3] g0p [mm−3s] a [mm3]

1 20 2.0 × 103 4.0 × 10−4

5 39 7.3 × 10−3

1.4 × 10−3 1.0 × 103

2 15 23 2.8 × 10−3

2.5 × 10−4 4.9
30 28 7.9 × 10−4

3
0.7 6.8 6.0 × 10−3

5 28 6.0 × 10−5





Chapter five

Temperature effects on flow-enhanced

nucleation and its saturation

Abstract

The flow-enhanced nucleation model from Chapter 4 is applied to short-term shear

experiments on a poly-1-butene melt. Number densities for different combinations of shear

rate, shear time, and temperature are reproduced quite well by the model with only two

adjustable parameters. The influence of temperature on the creation and saturation of flow-

induced precursors is investigated. In accordance with Chapter 4, the importance of stretch,

rather than orientation, of the high-molecular weight (HMW) tail of the melt is evident.

93
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Table 5.1: Properties of iP1B and experimental conditions [14,16].

Tm1 [◦C] Mw [kg/mol] Mw/Mn T [◦C]
γ̇ [s−1]

λ0d [s] λ0R [s]
△ � ▽

112.8 176 5.7 93 0.1 1 5 4.92 0.17

Tm2 [◦C] Z = Mw/Me Mz/Mw
98 0.1 1 10 3.99 0.14

100.5 1 5 10 3.61 0.12
110.7 9.78 2.1 103 1 5 10 3.26 0.11

5.1 Introduction and outline

Isotactic poly-1-butene (iP1B) has been used in several flow-induced crystallization studies

[1,3,11,13,14,30,31,77–79,209]. Recent experiments by Baert [16] demonstrate that in iP1B

the same kind of saturation of pointlike nucleation occurs as in isotactic polypropylene [97].

In this chapter, these experiments are compared to simulations with the model from Chapter

4. Similar results are obtained, but more insight is gained into the temperature dependencies

of creation and saturation of flow-induced precursors.

The concept of a critical molecular weight, related to a critical Weissenberg number,

for pointlike precursor creation is tested analytically. It turns out that, for temperatures

below but not too close to the nominal melting point, the shear-rate dependence of the

saturated number density of flow-induced precursors and nuclei Nf,max agrees with a critical

Weissenberg number based on stretching dynamics. This supports the concept of a stretch-

dependent creation rate Ipf , combined with the idea that saturation is due to depletion of

chains above the critical molecular weight. However, the number of these chains is many

orders of magnitude higher than the experimental number densities of spherulites. This

means that only a tiny fraction of those chains, long enough to be stretched by the flow,

actually give rise to the creation of precursors.

5.2 Experiments

5.2.1 Flow-enhanced nucleation

Similar to the experiments of Hristova et al. [98], discussed in Chapter 4, the short-term

shearing protocol was applied, using a Linkam shear cell, and number densities of spherulites

were determined using Eq. (4.9) [66],

Nsph

[

mm−3
]

=
(

Nsph

[

mm−2
])3/2

. (5.1)
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Different combinations of shear rate, shearing time, and temperature were investigated.

Oriented structures, typically about 100 µm in length, were observed at the highest shear

rates. These were quickly overgrown by spherulites in greater numbers; see also Baert

et al. [13]. Only the spherulites were counted. Quiescent number densities were not

determined, since they are so low that this cannot be done accurately. In all simulations in

this chapter, the initial, quiescent number density of precursors is taken equal to 10−1 mm−3.

The simulation results are very insensitive to variations in this value.

5.2.2 Rheological characterization

The iP1B used in this study, PB0400 from Basell, was characterized by Baert et al. [13];

see their supporting information. The reptation time of the HMW fraction was defined as

the inverse of the frequency where the terminal regime (G′ ∼ ω2 and G′′ ∼ ω) in small-

amplitude oscillatory shear measurements was reached. The corresponding HMW Rouse

time was estimated by Eq. (4.10),

λ0R =
λ0d

3Z
, (5.2)

with Z = Mw/Me. The relaxation times are included in Table 5.1.

5.3 Results and discussion

5.3.1 Flow-enhanced nucleation

The results of the globally formulated model, introduced in Chapter 4, are shown in Figures

5.1–5.4. The same conclusions can be drawn as in that chapter. Again it turns out that a

dependence of the precursor creation rate on orientation of the HMW chains is unable to

describe the effect of an increase in shear rate or shear time. The results shown are obtained

with a fourth-order dependence on the stretch parameter, Eq. (4.13) with m = 4. A higher

exponent m does not improve the results and a linear dependence on the second invariant

of the deviatoric elastic Finger tensor works equally well.

As seen in Figures 5.1–5.4, the saturated number density increases as a function of the shear

rate. The measured values of Nf,max are used as input for the model. The kinetic parameter

g0p and the ‘crosslinking’ parameter a were first fitted to the experiments with γ̇ = 0.1 s−1

at T = 93 ◦C and T = 98 ◦C. The same a was enforced, whereas g0p was allowed to take a

different value for each temperature. The reason for this was that g0p is a kinetic parameter,

which is expected to be temperature-dependent, contrary to the structural parameter a.

The values obtained suggested a temperature dependence, described by the rheological shift
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Figure 5.1: Final number density of spherulites as a function of shear strain for different
shear rates (symbols, Table 5.1) at T = 93 ◦C. Lines: simulations.
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Figure 5.2: Final number density of spherulites as a function of shear strain for different
shear rates (symbols, Table 5.1) at T = 98 ◦C. Lines: simulations.

factor,

g0p(T ) = aT (T, Tref)g0p(Tref) . (5.3)

This temperature dependence was then prescribed and the same experiments were fitted

again. The parameters thus obtained, g0p(93 ◦C) = 1.9 mm−3s−1 and a = 1.4 mm3, are used

in Figures 5.1–5.4 to predict the data at all other shear rates, shear times, and temperatures.

It is seen that this works quite well, except for very fast flows, where saturation occurs almost

immediately. This may be related to the appearance of short oriented crystallites in these

experiments, which are eventually overgrown by spherulites, but which may locally alter the

rheology of the melt. See also the optical micrographs by Baert and Van Puyvelde [13].
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Figure 5.3: Final number density of spherulites as a function of shear strain for different
shear rates (symbols, Table 5.1) at T = 100.5 ◦C. Lines: simulations.
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Figure 5.4: Final number density of spherulites as a function of shear strain for different
shear rates (symbols, Table 5.1) at T = 103 ◦C. Lines: simulations.

5.3.2 Saturation

The objective of this section is to verify the idea that the saturation phenomenon observed

is caused by depletion of chains above a critical molecular weight, which undergo sufficient

orientation or stretching to create flow-induced precursors. If this is true, then Nf,max should

be proportional to the number density of chains in this HMW tail of the molecular weight

distribution,

NHMW (T, γ̇) = ρ(T )NA

∫ ∞

M∗(T,γ̇)

w(M)

M
dM =

ρ(T )NA

Mn

∫ ∞

M∗(T,γ̇)

n(M)dM . (5.4)

Here ρ is the density, NA is Avogadro’s number, w(M) and n(M) are the weight fraction

and the number fraction of the distribution, respectively, and M∗ is the critical molecular
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weight, marking the lower bound of the HMW tail, which should be related to a critical

Weissenberg number.

Theoretical analysis

For a specific molecular weight M in a distribution, the initial Weissenberg number is written

in the following form,

Wik(T, M) = γ̇λ0k = γ̇ξkaT (T, Tref)λe(Tref)

(

M

Me

)

ξk+3

2

; k ∈ {d, R} , (5.5)

where λe(Tref) is the relaxation time of a strand between two entanglements at a reference

temperature Tref and

ξd = 3 , (5.6)

ξR = 1 , (5.7)

for the reptation-based and stretch-based Weissenberg number, respectively. The exponent

(ξd + 3)/2 = 3 is accurate for long chains. With the critical value Wi∗k, the critical shear

rate for molecular weight M can be defined,

γ̇∗
k(T, M) =

Wi∗k
ξkaT (T, Tref)λe(Tref)

(

M

Me

)−
ξk+3

2

. (5.8)

Conversely, the critical molecular weight for a prescribed shear rate is then

M∗
k (T, γ̇) = Me

(

Wi∗k
γ̇ξkaT (T, Tref)λe(Tref)

)
2

ξk+3

, (5.9)

which can be used to calculate NHMW as a function of temperature and shear rate with Eq.

(5.4). A few data are needed for this. The density ρ(T ) of iP1B is documented in [211]. We

fit the data above the melting point and extrapolate them to the experimental temperatures

of the undercooled melts. The average molecular weight between entanglements is Me =

18 kg/mol [14]. The relaxation time λe is

λe =
λ0d

3Z3
. (5.10)

Again, following Baert et al. [14], taking Z = Mw/Me as an average of the HMW tail, we

find relaxation times on the order of 10−3 s at the experimental temperatures. However,

this Z is probably lower than the real average of the HMW tail. Therefore λe is used as an

adjustable parameter, taking the estimates from Eq. (5.10) as a guideline. These are upper
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Figure 5.5: Saturated flow-induced number density versus reptation-based Weissenberg
number at different temperatures. Lines are to guide the eye.

bounds if λ0d, corresponding to the onset of the terminal regime as explained in Section

5.2.2, is an adequate measure of the reptation time of the HMW tail.

The unknown molecular weight distribution is assumed to be described by a log-normal

distribution,

w(M) =
1

Mσ
√

2π
exp

(

− (ln M − µ)2

2σ2

)

, (5.11)

which is completely determined by Mn and Mw. These are related to the mean µ and

standard deviation σ as follows,

Mw = Mn exp
(

σ2
)

= exp

(

µ +
σ2

2

)

. (5.12)

Since Mz is known (see Table 5.1) the second moment of the real w(M) can be calculated,

MwMz = 6.51× 1010, and compared to the second moment of the log-normal distribution,

(exp(µ + σ2))2 = 1.77 × 1011. Thus the log-normal distribution has a larger HMW tail.

However, considering that ultra-HMW chains, present in very small amounts, are difficult

to detect for example by gel permeation chromatography, and that our analysis is only

qualitative, the agreement is reasonable.

Application to experiments

The modeling results in Chapter 4 and the present chapter suggest that flow-induced

precursor creation is driven by stretch of the primitive path of a chain, i.e. orientation

on the level of Kuhn segments, whereas mere orientation of the primitive path is insufficient.
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This seems in contradiction with the analysis of a great number of FIC experiments by Van

Meerveld et al. [195]. However, Figure 5.5 shows that Nf,max is already increased by up to

two decades for reptation-based Weissenberg numbers 1 < Wid < 10. The corresponding

stretch-based Weissenberg numbers are a factor 3Z = 29 lower. The reason that the

model correctly captures the strong effect of flow on the creation of precursors, even under

these weak flow conditions, is that the reptation time and Rouse time of the HMW fraction

are very sensitive to Npf , according to Eq. (4.7), which feeds back into the creation rate.

Initial Weissenberg numbers are therefore not representative of the orientation and stretching

dynamics of this HMW fraction, which are enhanced tremendously. They can only be used to

assess the critical initial conditions in the undisturbed melt, which are apparently related to

orientation of the primitive path, in accordance with the results of Van Meerveld et al. [195].

Comparison of the experimental data for γ̇ = 10 s−1 in Figures 5.1–5.4 reveals that the

saturated number densities of spherulites at T = 100.5 ◦C and T = 103 ◦C are more than

a decade higher than the one at T = 98 ◦C. This seems in contradiction with the idea

that saturation is caused by depletion of chains above a critical molecular weight M∗, since

relaxation times are shorter at higher temperature, so the critical molecular weight would

be higher, yielding a lower Nf,max; see Eq. (5.4). Figure 5.5 plots the saturation level as

a function of the Weissenberg number (essentially the shear rate) for all four temperatures.

A quadratic relation is found at T = 93 ◦C and T = 98 ◦C, where, as expected, Nf,max

decreases with increasing temperature at the same shear rate. The quadratic shear rate

dependence changes into a third-order power law at T = 100.5 ◦C and a fourth-order

power law at T = 103 ◦C. This causes a crossover in the temperature dependence, from a

monotonic decrease of Nf,max at low shear rates to a decrease followed by an increase at

high shear rates.

For the two lowest temperatures, where the temperature dependence of Nf,max is

qualitatively as expected, the results of Eq. (5.4) are plotted, using Eqs. (5.5) and (5.9).

With k = R, i.e. a stretch-based criterion, the quadratic shear rate dependence is predicted.

See the solid curves in Figure 5.6. The entanglement relaxation time was set to λe = 10−5 s

at T = 93 ◦C. If Eq. (5.10) is used with the reptation time from Table 5.1, this corresponds

to a molecular weight of 5.6Mw, which seems a reasonable average for the HMW tail. The

solid curves in Figure 5.6 had to be shifted up vertically by a factor 10−6 (for T = 93 ◦C) and

by a factor 5×10−7 (for T = 98 ◦C) to fit the data. This implies that only a tiny fraction of

chains above M∗
R take part in flow-induced precursors, or at least in active ones, which can

nucleate at the temperature of the experiment. With k = d, i.e. a reptation-based criterion,

the shear rate dependence is not predicted. The corresponding dashed curves were shifted

up by one tenth of the factors used for the stretch-based criterion.
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Figure 5.6: Saturated number density of flow-induced precursors and nuclei versus shear
rate. Symbols: data from optical microscopy. Solid lines: stretch-based M∗

R criterion.
Dashed lines: reptation-based M∗

d criterion.

5.4 Conclusions

Short-term shear FIC experiments on iP1B with different shear rates and shear times, applied

at different temperatures, are simulated well by the model, developed in Chapter 4. The

results are equivalent to those obtained in Chapter 4 for iPP. A few additional conclusions can

be drawn, concerning the influence of temperature on the creation of flow-induced pointlike

precursors.

First of all, the kinetic parameter g0p (prefactor of the creation rate) scales with the

rheological shift factor aT . This suggests that segmental mobility plays an important role in

the formation of flow-induced precursors. For a given stretch Λ, the creation rate is lower

at higher temperature.

The saturated flow-induced number density Nf,max increases as a function of the shear

rate, which is expected, based on the idea that saturation occurs as a result of depletion

of chains above a critical molecular weight. However, the shear rate dependence gradually

changes from a second-order behavior at low temperatures to a fourth-order behavior at

high temperatures, closer to the melting point of crystalline form II (Tm2 in Table 5.1). This

causes a crossover from a low shear rate regime, where the saturation level monotonically

decreases as a function of temperature, to a high shear rate regime, where it passes through

a minimum and starts to increase upon further increase of the temperature (Figure 5.5).

The physical origin of this phenomenon, which has not been observed before, is unknown.

For the two lowest temperatures, the quadratic shear rate dependence agrees with a critical

molecular weight criterion based on a critical stretch-based Weissenberg number.





Chapter six

Conclusions and prospects

6.1 Rheology of crystallizing melts in the late stages

The suspension-based modeling approach of Chapter 2 is able to capture, in a

computationally inexpensive way, the evolution of rheological properties due to space filling.

Only at low frequencies, at least to our knowledge, no adequate suspension model is available.

This is an opportunity for future research. Another challenge is the development of an

accurate method to determine the time-dependent volume fraction of oriented crystallites,

which can be used as input in, for example, the 2D generalized self-consistent method.

An important conclusion is that the linear scaling of G′(t) [67,115], which is used very often

in FIC studies, yields very inaccurate estimates of the degree of space filling. The logarithmic

scaling [162] is comparable to the suspension modeling approach for spherulites, but does

not discriminate between spherulitic and oriented volume fractions and cannot be improved

to calculate both, or to use them as input and calculate G′(t) and G′′(t).

6.2 Local versus global flow-enhanced nucleation

In Chapter 3, we developed a flow-enhanced nucleation model, in which the effect of flow-

induced precursors and nuclei on the relaxation dynamics of the HMW chains is consistent

with the idea that they act as physical crosslinks on these chains. Specifically, the longest

reptation time and Rouse time are made dependent on the average number of flow-induced

precursors and nuclei in domains with a radius rv on the order of the radius of gyration of

the HMW chains. This increase of relaxation times enhances the creation rate within these

domains, which are therefore called incubators. The results in Section 3.6 show that the

103
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volume fraction of incubators nv is too small to explain the effect of flow on the experimental

number density of spherulites Nsph. Since the final number of incubators n should correspond

to Nsph, this can only be improved by increasing v.

In contrast to this local flow-enhanced nucleation model, the global model of Chapters 4 and

5 assumes that the creation of precursors is accelerated throughout the material, governed

by a dependence of the longest reptation time and Rouse time on the continuum average

number densities of flow-induced precursors and flow-induced nuclei with radius R < R∗.

Thus, the global formulation implicitly assumes a homogeneous distribution, where the

number densities inside and outside an incubator are equal, as depicted in Figure 3.1 on

the right (i.e. the whole material acts as an incubator, nv = 1). Although, contrary to

the local model, the global model successfully reproduces experimental number densities of

spherulites, these are much too low to justify this assumption.

By setting R∗ = 0, in combination with the instantaneous nucleation of precursors in the

absence of flow, see Eq. (4.11), the creation process is practically switched off when the flow

stops. The nearly constant Nsph observed in optical microscopy, see also [13,60,175], is thus

imposed artificially in the global model, whereas it follows naturally from the local model

of Chapter 3, because convection of flow-induced precursors and nuclei out of incubators is

necessary for them to grow into separate spherulites.

It is important to note that, in the local formulation used in Chapter 3, the averaging of flow-

induced precursors and nuclei over the incubators might have a large effect on the results.

Essentially, in every time step, newly created incubators instantaneously gain a number of

physical crosslinks at the expense of older incubators. However, due to the nonlinear effect

of an increased relaxation time, a small number of incubators with many physical crosslinks

might be much more effective than many incubators with few physical crosslinks. The

multi-mode description, proposed in Appendix 3B, is therefore strongly recommended.

6.2.1 Role of dormant flow-induced precursors

At the end of Section 3.5, it was briefly explained how the local model for flow-enhanced

nucleation may be generalized to include dormant flow-induced precursors, which do not

nucleate until the temperature is lowered sufficiently. It is reasonable to assume that these

have a similar effect on the HMW relaxation dynamics as active flow-induced precursors

and nuclei, which could provide a foundation for the global model. If the average distance

between adjacent dormant flow-induced precursors is on the order of the radius of gyration

〈r2
g〉1/2 of the HMW chains or shorter, the physical crosslink density is the same locally and

globally, as depicted on the right side of Figure 3.1, irrespective of the number density of

active flow-induced precursors.

Janeschitz-Kriegl [108] plotted the logarithm of spherulite density versus temperature for

different amounts of mechanical work, applied to an iPP melt in short-term shear. He then
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fitted linear curves through data for the same work, and extrapolated them towards lower

temperatures. He found an approximate convergence of these ‘isoergons’ around T = 75 ◦C,

where Nsph ∼ 1018 m−3, suggesting that this is the maximum amount of flow-induced

precursors attainable at any temperature, dormant and active ones combined. The minimum

average distance between nearest neighbors, based on this maximum number density, is then

davg = N
−1/3
sph = 1 µm. This is still large compared to the radius of gyration 〈r2

g〉1/2 ∼ 10 nm.

Therefore the presence of dormant flow-induced precursors seems insufficient to justify the

global formulation of flow-enhanced nucleation, based on Eq. (4.7). Also note that the

assumption of Janeschitz-Kriegl [108], that all dormant precursors are intrinsically present

in the melt, does not fit in this picture, since then their effect on the relaxation dynamics

would be there from the beginning.

Another possible explanation is that the HMW fraction forms a loose network, initially

connected by entanglements only, which are partly replaced by flow-induced precursors,

slowing down the relaxation of this network. This idea is certainly more plausible with

davg = 1 µm, as derived here including dormant flow-induced precursors, then with davg >

10 µm, for typical number densities Nsph < 1015 µm.

More experiments are needed to check whether log(Nsph) is indeed linear in T for the same

amount of work, especially at lower temperatures, since Janeschitz-Kriegl’s extrapolation to

T = 75 ◦C was based on a limited amount of data in the relatively narrow range 140 6

T 6 160 ◦C. Crystallization during flow, causing changes in rheological properties as well

as in the flow itself, becomes a problem when going to lower temperatures. Therefore the

flow should be applied before cooling. Another problem at low temperatures may be that

the number density of spherulites is too high to be determined with optical microscopy. The

method of Housmans et al. [97], in which the number density is derived from rheological

measurements by means of a suspension model, overcomes this problem.

For modeling of nonisothermal FIC processes, it is crucial to investigate how the distribution

of dormant precursors versus activation temperature changes as a function of flow

parameters, preferably ones closer related to molecular deformation than work.

6.3 FIC criteria: does work work for pointlike precursors?

The Weissenberg number has been used as a parameter to characterize transitions between

FIC regimes, from quasi-quiescent crystallization (regime 1) to flow-enhanced pointlike

nucleation (regime 2) and oriented structure formation (regime 3). See for example Acierno

et al. [1] and Van Meerveld et al. [195]. Janeschitz-Kriegl and coworkers [107, 108, 175]

showed that the number density of spherulites correlates with the mechanical work,

w(t) =

∫ t

0

τ (t′) : D(t′) dt′ . (6.1)
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While this definition of work is macroscopic, in the sense that it is related to the average

conformation of all chains in the melt, it can be redefined in terms of the HMW chains by

substituting the stress of the slowest mode τM for the total stress τ in Eq. (6.1).

Mykhaylyk et al. [146] showed that the onset of regime 3 can be characterized by a critical

work w∗, which is independent on the strain rate as long as the latter exceeds the inverse

Rouse time of the HMW chains, i.e. WiR > 1. The critical work was found to decrease

with increasing concentration of these chains. These observations are supported by results

of Housmans et al. [97]. Compared to a critical Weissenberg number, w∗ has the advantage

that it contains the effect of flow time in addition to the strain rate.

Kumaraswamy et al. [121] studied crystallization during and after pressure-driven shear flow.

The stress, increasing linearly from the center to the wall of the flow cell, could be controlled

to reach a constant level within 50 ms [119]. The same stress was applied at different

temperatures. Consequently, the strain rate was constant but different at each temperature.

Their results for isotactic polypropylene (Mw ≈ 300 kg/mol, 6 < Mw/Mn < 8) show an

upturn in the birefringence during flow at t = tu ∼ aT . This was correlated with the

appearance of oriented crystallites in WAXD.

Under constant stress, the mechanical work is

w(T, t) = τ : D(T ) t =
τ : τ t

2η (T )
. (6.2)

The time needed to reach a critical work w∗ is then

t∗(T ) =
2η(T )w∗

τ : τ
∼ aT (T )

bT (T )
, (6.3)

in accordance with the temperature dependence of tu observed by Kumaraswamy et al. [121]

if the variation of bT over their experimental temperature range of 35 degrees was relatively

small, as is normally the case. Although shear thinning is ignored, the viscosity being

expressed as a function of temperature only, this simple result is remarkable.

When the same constant strain rate is applied at different temperatures,

w(T, t > tsu) =

[
∫ tsu

0

τ (T, t′) dt′ + 2η(T )D (t − tsu)

]

: D , (6.4)

in which tsu is the startup time and τss is the stress in the steady state. Neglecting startup

behavior, the work criterion yields

t∗(T ) ≈ w∗

2η(T )D : D
∼ bT (T )

aT (T )
. (6.5)

This agrees with the temperature dependence of the creation rate prefactor in our global
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flow-enhanced nucleation model, g0p ∼ aT , as obtained from simulations in Section 5.3.1.

Mykhaylyk et al. [146] explained the critical work for shish formation as follows. Again

neglecting startup behavior, for a constant strain rate, mechanical work is the product of

stress and strain: w = τγ. When WiR > 1, the role of stress is to stretch the HMW chains,

while sufficient strain can bring these stretched chains together, allowing them to aggregate

and form the shish structure. The local flow-enhanced nucleation model of Chapter 3 offers

a different explanation. There strain is required for the convection of flow-induced precursors

out of their incubators, after which they serve as incubators themselves. Large strain thus

results in long, slender rows of incubators, while high stress (i.e. fast local creation processes)

leads to high number densities of precursors along these rows. When these closely spaced

precursors nucleate, they will grow into kebab-like lamellae. For lower number densities,

the lamellae will have more freedom to splay and the resulting morphology will look like

rows of spherulites. Examples can be seen in the works of Azzurri and Alfonso [12] and

Elmoumni et al. [60], and Elmoumni and Winter [61] and were also observed in the optical

microscopy experiments used in Chapter 4. Finally, as shown in Chapter 3, convection of

flow-induced species out of incubators is also necessary to generate the kind of spherulite

densities observed experimentally in regime 2.

6.4 Bimodal blends

Bimodal blends of low and high molecular weight components are often used in FIC studies,

since they can reveal details about the role of HMW chains [18, 20, 88, 146, 171, 210].

Modeling of FIC of bimodal systems was done by Acierno et al. [3], based on the double

reptation concept [49]. An alternative, based on work of Giesekus, is presented here.

Giesekus [69] wrote the evolution equation for the extra stress tensor τ as

▽

τ +
1

2λd

(

β · τ + τ · βT
)

= 2GD (6.6)

Here β is the mobility tensor, which is proportional to the inverse of the friction tensor in a

bead-spring description of the chains [70]. The neo-Hookean expression, Eq. (3.1) with

τ = G (Be − I) = G
(

3Λ2S − I
)

, (6.7)

is used. The orientation tensor S and stretch parameter Λ are given by Eqs. (3.3) and

(3.4), respectively. With Eq. (6.7), Eq. (6.6) can be split into separate evolution equations

for the stretch,

Λ̇ = Λ (D : S) − 1

6λdΛ
β :
(

3Λ2S − I
)

, (6.8)
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and the orientation,

▽

S + 2 (D : S)S − 1

3λdΛ2
β :
(

3Λ2S − I
)

S

+
1

6λdΛ2

(

β ·
(

3Λ2S − I
)

+
(

3Λ2S − I
)

· βT
)

= O , (6.9)

in which Eq. (6.8) has been applied.

Departing from the evolution equation for Be, Eq. (3.2), we get

Λ̇ = Λ (D − A) : S (6.10)

and

▽

S + 2 [(D − A) : S] S + A · S + S · AT = O . (6.11)

See also Verbeeten et al. [200, 202]. This gives the following relation between the mobility

tensor and the slip tensor,

A =
1

2λd
β ·
(

I − 1

3Λ2
S−1

)

. (6.12)

6.4.1 Multi-mode Giesekus model

Giesekus argued that the mobility tensor of any mode i ∈ [1, M ] should depend on the

conformations of all modes j ∈ [1, M ]. He proposed a linear relation,

βi = I +
M
∑

j=1

αij

(

3Λ2
jSj − I

)

. (6.13)

An M-mode model with interactions among chains of all lengths, hence among all modes,

contains M2 nonzero parameters αij . Since this is generally not practical, Giesekus restricted

himself to the single-mode model. However, for bimodal blends of (nearly) monodisperse

polymers, a two-mode model with at most four coupling parameters is attractive.

6.4.2 Multi-mode XPP model

Since the XPP model performs better than the Giesekus model for linear as well as branched

polymer melts in different types of flow [200–202], it is worthwhile to formulate a coupled

multi-mode XPP model. The mobility tensor of the single-mode (or uncoupled multi-mode)
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version is

β = α
(

3Λ2S − I
)

+

(

2λ0b

λs

[

1 − 1

Λ2

]

+
1

3Λ2

[

3 − α
(

3Λ2S − I
)

:
(

3Λ2S − I
)]

)

(

I +
(

3Λ2S − I
)−1
)

−
(

3Λ2S − I
)−1

. (6.14)

If this is substituted in Eqs. (6.8) and (6.9), the double-equation formulation of the single-

mode XPP model is obtained (Table 4.4a). If it is substituted in Eq. (6.6), the single-

equation formulation of the single-mode XPP model is obtained (Table 4.4b).

We derive the mobility tensor of mode i in an M-mode XPP model by demanding that it

reduces to Eq. (6.14) for M = 1 and, additionally, that the stretch evolution of mode i is

not affected directly by the other modes, i.e. that it is still described by the stretch equation

in Table 4.4a. Using Eq. (6.8), this requirement can be expressed as

βi :
(

3Λ2
i Si − I

)

=
6λ0b,i

λs,i

(

Λ2
i − 1

)

(6.15)

It is important to note that the other modes do influence Λi indirectly, through the orientation

tensor Si, whose evolution is coupled to the orientation tensors of the other modes. The

resulting mobility tensor is

βi =
M
∑

j=1

αij

(

3Λ2
jSj − I

)

+

(

2λ0b,i

λs,i

[

1 − 1

Λ2
i

]

+
1

3Λ2
i

[

3 −
M
∑

j=1

αij

(

3Λ2
jSj − Sj − I

)

:
(

3Λ2
i Si − I

)

])

(

I +
(

3Λ2
i Si − I

)−1
)

−
(

3Λ2
i Si − I

)−1
. (6.16)

With Eq. (6.12), this can be converted to an expression for the slip tensor Ai, which reduces

to the result of Verbeeten et al. [202] for the uncoupled multi-mode XPP model.

If a very low concentration of HMW chains (mode 2) is added to a matrix of LMW chains

(mode 1), so that both components are mainly surrounded by LMW chains, then α12 =

α22 = 0. If, moreover, the LMW component is only weakly anisotropic, we may take

α11 = 0. The behavior of the resulting 2-mode XPP model in simple shear flow is illustrated

in Figures 6.1 and 6.2. It is seen that mode 2 becomes more shear thinning as the coupling

parameter α21 increases (Figure 6.1). The effect on the first normal stress difference is

negligible (Figure 6.2).
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Figure 6.1: Shear component of the elastic Finger tensor for γ̇ = 10 s−1 in a two-mode
XPP model with λ0b,1 = 5 s, λ0b,2 = 100 s, λ0s,1 = 0.1 s, λ0s,2 = 0.5 s, q1 = q2 = 1 and
α11 = α12 = α22 = 0. Dashed lines: α21 = 0, solid lines: α21 = 0.5.
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Figure 6.2: First normal component difference of the elastic Finger tensor for γ̇ = 10 s−1

in a two-mode XPP model with λ0b,1 = 5 s, λ0b,2 = 100 s, λ0s,1 = 0.1 s, λ0s,2 = 0.5 s,
q1 = q2 = 1 and α11 = α12 = α22 = 0. Dashed lines: α21 = 0, solid lines: α21 = 0.5.
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Samenvatting

Stromingsgëınduceerde kristallisatie (flow-induced crystallization, FIC) is de bepalende factor

voor de eigenschappen van in de smelt verwerkte semikristallijne polymeren producten.1 Er is

daarom al veel wetenschappelijk onderzoek aan gewijd, zowel experimenteel als theoretisch.

Hoewel de essentiële fenomenen in FIC langzaam onthuld worden, ontbreekt nog een

overkoepelend theoretisch raamwerk, waarmee al deze fenomenen verklaard kunnen worden.

Kristallisatie van polymeren is in drie regimes op te delen:

1. kristallisatie in rust, waarbij bolvormige structuren (sferulieten) gevormd worden,

2. door stroming versterkte nucleatie, met als gevolg een groter aantal sferulieten,

3. vorming van georiënteerde vezels, de nuclei van anisotrope kristallijne structuren.

Wanneer de snelheid of duur van stroming verhoogd wordt, zien we overgangen van regime

1 naar regime 2 en regime 3. Het doel van dit proefschrift is te onderzoeken hoe versterkte

nucleatie (regime 2) gemodelleerd kan worden vanuit een reologische benadering, inclusief

de koppeling tussen de gevormde structuur en het viscoelastische gedrag van de smelt.

De resultaten van dit proefschrift zijn tweeledig. Ten eerste wordt de reologie van polymere

smelten in de late stadia van kristallisatie, waarin, in regime 2, sferulieten groeien, beschreven

met een viscoelastisch suspensiemodel. Ten tweede wordt versterkte nucleatie in de vroege

stadia, die de latere ontwikkeling van de sferulitische structuur bepaalt, gemodelleerd.

Een lokale en een globale formulering van dit fenomeen worden vergeleken. De lokale

formulering biedt een consistent theoretisch concept voor de vorming en nucleatie van

stromingsgëınduceerde precursors (subkritische nuclei). Het is echter nog niet in staat om

experimentele waarnemingen te verklaren. De meer empirische globale formulering stemt

daarentegen zeer goed overeen met experimentele data. Uit deze resultaten volgen conclusies

en aanbevelingen voor toekomstig onderzoek.

1Strikt spreekt men van polymere materialen – ‘van de aard van polymerie of gepaard gaand met
polymerisatie’ [Van Dale, 14e Editie (2005)] – maar niet van hieruit vervaardigde polymeren producten.
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