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ASYMPTOTIC ANALYSIS OF MEASURES OF VARIATION

HANSJÖRG ALBRECHER∗ AND JEF TEUGELS

Abstract. The coefficient of variation and the dispersion are two examples of widely
used measures of variation. We show that their applicability in practice heavily depends
on the existence of sufficiently many moments of the underlying distribution. In partic-
ular, we offer a set of results that illustrate the behavior of these measures of variation
when such a moment condition is not satisfied.
Our analysis is based on an auxiliary statistic that is interesting in its own right. Let
Xi, i = 1, . . . , n be a sequence of positive independent identically distributed random
variables and define

Tn :=
X2

1 + X2
2 + . . . + X2

n

(X1 + X2 + . . . + Xn)2
.

Utilizing Karamata theory of functions of regular variation, we determine the asymptotic
behavior of arbitrary moments E(T k

n ) (k ∈ N) for large n, given that X1 satisfies a tail
condition, akin to the domain of attraction condition from extreme value theory. More-
over, weak laws for Tn are proven. The methodology is then used to analyze asymptotic
properties of both the sample coefficient of variation and the sample dispersion. As a
side product, the paper offers a new method for estimating the extreme value index of
Pareto-type tails.

1. Introduction

Let Xi, i = 1, . . . , n be a sequence of positive independent identically distributed (i.i.d.)
random variables with distribution function F and define

(1) Tn :=
X2

1 + X2
2 + . . . + X2

n

(X1 + X2 + . . . + Xn)2
.

The asymptotic behavior of E (Tn) was investigated in [7], simplifying and generalizing
earlier results in [4] and [11].
In this paper we extend several results of [7] and derive the limiting behavior of arbitrary
moments E (T k

n ) (k ∈ N). This is achieved by using an integral representation of E(T k
n ) in

terms of the Laplace transform of X1, which is derived in Section 2.
Most of our results will be derived under the condition that X1 satisfies

(2) 1− F (x) ∼ x−α`(x), x ↑ ∞
where α > 0 and `(x) is slowly varying, i.e. limx→∞ `(tx)/`(x) = 1∀ t > 0, see e.g. [3]. It is
well known that condition (2) appears as the essential condition in the domain of attraction
problem of extreme value theory. For a recent treatment, see [1]. A distribution satisfying
(2) is called of Pareto-type with index α. When α < 2, then the condition coincides with
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2 H. ALBRECHER AND J. TEUGELS

the domain of attraction condition for weak convergence to a non-normal stable law. It is
then obvious that for β > 0,

(3) E(Xβ
1 ) := µβ = β

∫ ∞

0
xβ−1(1− F (x) dx ≤ ∞

will be finite if β < α but infinite whenever β > α. For convenience, we define µ0 := 1 and
µ := µ1.
The main results are given in Section 3 and are based on the theory of functions of regular
variation (see e.g. [3]). Clearly, if E(X1) = ∞, both the numerator and the denominator
in (1) will exhibit an erratic behavior, whereas for E(X1) < ∞ and E(X2

1 ) = ∞ this is the
case only for the numerator. The results of Section 3 quantify this effect. Section 4 then
provides weak laws for Tn.

The quantity Tn represents, up to scaling, the sample coefficient of variation of a given set
of independent observations X1, . . . , Xn from a random variable X. Although this is a fre-
quently used risk measure in practical applications, the existence of moments of X is not
always ensured. The results of Sections 3 and 4 allow us to analyze asymptotic properties
of the sample coefficient of variation, viewed as a statistic, also in these cases (see Section
5.1). In Section 5.2, the asymptotic behavior of the sample dispersion is investigated.

As another by-product, the results of this paper suggest a new method for estimating the
extreme value index of Pareto-type distributions from a data set of observations, which is
discussed in Section 5.3.

2. Preliminaries

Let ϕ(s) := E(e−sX1) =
∫∞
0 e−sxdF (x), s ≥ 0 denote the Laplace transform of X1. Then,

following an idea of [7], one can use the identity

1
xβ

=
1

Γ(β)

∫ ∞

0
e−s xsβ−1 ds, β > 0

and Fubini’s theorem to deduce that

E
1

Xβ
1

=
1

Γ(β)

∫ ∞

0
sβ−1ϕ(s) ds.

More generally, for i.i.d. random variables X1, . . . , Xn, one obtains the representation
formula

(4) E
∏n

i=1 Xki
i

(X1 + X2 + . . . + Xn)β
=

(−1)k1+...+kn

Γ(β)

∫ ∞

0
sβ−1

n∏

i=1

∂kiϕ(s)
∂ski

ds,

for nonnegative integers ki (i = 1, . . . , n).
In particular, by symmetry

(5) E(Tn) = E
X2

1 + X2
2 + . . . + X2

n

(X1 + X2 + . . . + Xn)2
= n

∫ ∞

0
sϕ′′(s)ϕn−1(s) ds,

which formed the basis for the analysis in [7]. The representation (5) can be generalized
in the following way:
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Lemma 2.1. For an arbitrary positive integer k,

(6) E (T k
n ) =

k∑

r=1

∑

k1,...,kr≥1

k1+...+kr=k

k!
k1! · · · kr!

B(n, k1, . . . , kr)

with

B(n, k1, . . . , kr) =

(
n
r

)

Γ(2k)

∫ ∞

0
s2k−1ϕ(2k1)(s) · · ·ϕ(2kr)(s) ϕn−r(s) ds.

Proof. For an arbitrary positive integer k we have

E (T k
n ) = E

(X2
1 + X2

2 + . . . + X2
n)k

(X1 + X2 + . . . + Xn)2k
=

∑

k1,...,kn≥0

k1+...+kn=k

k!
k1! · · · kn!

E
X2k1

1 X2k2
2 · · ·X2kn

n

(X1 + X2 + . . . + Xn)2k
,

where ki ≤ k are nonnegative integers. Choose an n-tuple (k1, . . . , kn) in the above sum
and let r denote the number of its non-zero elements (ki1 , . . . , kir) (clearly 1 ≤ r ≤ k).
There are exactly

(
n
r

)
possibilities of extending (ki1 , . . . , kir) to an n-tuple by filling in

n − r zeroes; each of the resulting n-tuples leads to the same summand in (6). Thus we
can write

(7) E (T k
n ) =

k∑

r=1

∑

k1,...,kr≥1

k1+...+kr=k

k!
k1! · · · kr!

(
n

r

)
E

X2k1
1 X2k2

2 · · ·X2kr
n

(X1 + X2 + . . . + Xn)2k

︸ ︷︷ ︸
:=B(n,k1,...,kr)

,

so that (6) holds in view of (4). 2

3. Main Results

As promised, we will assume in the sequel that X1 satisfies condition (2). Recall that
when α > 1 then µ < ∞ while µ2 < ∞ as soon as α > 2. The finiteness of µ and/or µ2

has its influence on the asymptotic behavior of the summands that make up the statistic
Tn. It is therefore not surprising that our results will be heavily depending on the range
of α. We state a first and general result.

Lemma 3.1. If X1 has a regularly varying tail with index α > 0 (i.e. 1−F (x) ∼ x−α`(x)),
then the asymptotic behavior of the m-th derivative of the Laplace transform ϕ(s) as s ↓ 0
is given by

(8) ϕ(m)(s) ∼ (−1)mα Γ(m− α) sα−m`(1/s), m > α.

Proof. Let χ(s) :=
∫∞
0 e−sx(1 − F (x)) dx. Since 1 − F (x) ∼ x−α`(x), it follows that for

k > α− 1

(−1)kχ(k)(s) =
∫ ∞

0
xke−sx(1− F (x)) dx ∼ Γ(k + 1− α)s−k−1(1− F (

1
s
)) as s → 0.

Since ϕ(s) = 1− s χ(s), we have for m ≥ 1

ϕ(m)(s) = −mχ(m−1)(s)− s χ(m)(s),
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so that for m > α

smϕ(m)(s)
1− F (1

s )
= −m

smχ(m−1)(s)
1− F (1

s )
− sm+1 χ(m)(s)

1− F (1
s )

∼ (−1)m(mΓ(m− α)− Γ(m + 1− α)) = (−1)m α Γ(m− α),

from which the assertion follows. 2

Theorem 3.1. If X1 belongs to the domain of attraction of a stable law with index α,
0 < α < 1, then for all k ≥ 1

(9) lim
n→∞E(T k

n ) =
k!

Γ(2k)

k∑

r=1

αr−1

r Γ(1− α)r
G(r, k),

where G(r, k) is the coefficient of xk in the polynomial


k−r+1∑

j=1

Γ(2j − α)
j!

xj




r

.

Proof. From 1 − F (x) ∼ x−α`(x) it follows that 1 − ϕ(s) ∼ Γ(1 − α) sα`(1
s ) (see e.g.

Corollary 8.1.7 in [3]). Moreover, for any sequence (an)n≥1 with an →∞ we have

ϕn(
s

an
) = en log ϕ(s/an) ∼ e−n (1−ϕ(s/an)) ∼ exp[−n

(
s

an

)α

`
(an

s

)
Γ(1− α)].

Choose (an)n≥1 such that

(10) na−α
n `(an)Γ(1− α) → 1 for n →∞.

Then for all s ≥ 0
lim

n→∞ϕn(
s

an
) = e−sα

.

We will now make use of the representation (6) for E(T k
n ). We have to investigate the

asymptotic behavior of B(n, k1, . . . , kr). The change of variables s = t/an together with an
application of Potter’s Theorem [3, Th.1.5.6], Lebesgue’s dominated convergence theorem
and Lemma 3.1 leads to

B(n, k1, . . . , kr) =

(
n
r

)

anΓ(2k)

∫ ∞

0

(
t

an

)2k−1

ϕ(2k1)

(
t

an

)
· · ·ϕ(2kr)

(
t

an

)
ϕn−r

(
t

an

)

︸ ︷︷ ︸
→ e−tα

dt

∼ αr
(
n
r

)

anΓ(2k)

∫ ∞

0

(
t

an

)2k−1 (
t

an

)r α−2k

`r
(an

t

)



r∏

j=1

Γ(2kj − α)


 e−tα dt

∼ αr
∏r

j=1 Γ(2kj − α)
Γ(2k)

(
n
r

)
`r(an)

an
r α︸ ︷︷ ︸

→Γ(1−α)−r/r!

∫ ∞

0
tr α−1 e−tα dt

︸ ︷︷ ︸
=(r−1)!/α

∼ αr−1
∏r

j=1 Γ(2kj − α)
r Γ(1− α)r Γ(2k)

.
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Summing up over all r = 1, . . . , k in (6), we arrive at

(11) lim
n→∞E (T k

n ) =
k!

(2k − 1)!

k∑

r=1

αr−1

r Γ(1− α)r

∑

k1,...,kr≥1

k1+...+kr=k

r∏

j=1

Γ(2kj − α)
kj !

.

Now observe that

G(r, k) :=
∑

k1,...,kr≥1

k1+...+kr=k

r∏

j=1

Γ(2kj − α)
kj !

can be determined by generating functions. Concretely, if we look at the r-fold product(
Γ(2− α) x +

Γ(4− α)
2!

x2 + . . . +
Γ(2m− α)

m!
xm

)r

for m sufficiently large, then G(r, k) can be read off as its coefficient of xk, since the kth
power exactly comprises all contributions of combinations k1, . . . , kr ≥ 1 with k1+. . .+kr =
k in the above sum. It suffices to choose m = k−r+1, since larger powers do not contribute
to the coefficient of xk any more. Hence Theorem 3.1 follows from (11). 2

Remark 3.1. For k = 1, we obtain lim
n→∞E(Tn) = 1− α, which is Theorem 5.3 of [7]. The

limit of moments of higher order can now be calculated from (9):

lim
n→∞E(T 2

n) = 1
3(1− α)(2α− 3),

lim
n→∞E(T 3

n) = 1
15(1− α)(15− 17α + 5 α2),

lim
n→∞E(T 4

n) = 1
105(1− α)(105− 155α + 79α2 − 14α3),

lim
n→∞E(T 5

n) = 1
945(1− α)(945− 1644α + 1106α2 − 344α3 + 42α4).

0.2 0.4 0.6 0.8 1
Α

0.2

0.4

0.6

0.8

1

lim EHTnkL

Figure 1. limn→∞ E(T k
n ) as a function of α (k = 1, . . . , 5 from top to bottom)

The following result generalizes Theorem 5.5 of [7], where the case k = 1 was covered:

Theorem 3.2. If X1 belongs to the domain of attraction of a stable law with index α = 1
and E(X1) = ∞, then for all k ≥ 1

(12) E(T k
n ) ∼ 1

2k − 1
`(an)
˜̀(an)

,

where ˜̀(x) =
∫ x(`(t)/t) dt and (an)n≥1 is a sequence satisfying an ∼ n ˜̀(an).
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Proof. Since X1 belongs to the domain of attraction of a stable law with index α = 1, we
have 1−F (x) ∼ x−1`(x) for some slowly varying function `(x). Moreover 1−ϕ(s) ∼ s ˜̀(1

s )
with ˜̀(x) =

∫ x(`(t)/t) dt (see e.g. [3]). Note that ˜̀(x) is again a slowly varying function.
For any sequence (an)n≥1 with an →∞ we have

ϕn(
s

an
) = en log ϕ(s/an) ∼ e−n (1−ϕ(s/an)) ∼ exp[−n

(
s

an

)
˜̀
(an

s

)
].

If we choose an such that

(13) n a−1
n

˜̀(an) → 1 for n →∞,

then
lim

n→∞ϕn(
s

an
) = e−s.

Take an as in (13) and replace s by t/an in the representation (6). An application of
Potter’s Theorem, Lebesgue’s dominated convergence theorem and Lemma 3.1 yields

B(n, k1, . . . , kr) =

(
n
r

)

anΓ(2k)

∫ ∞

0

(
t

an

)2k−1

ϕ(2k1)

(
t

an

)
· · ·ϕ(2kr)

(
t

an

)
ϕn−r

(
t

an

)

︸ ︷︷ ︸
→ e−t

dt

∼
(
n
r

)

anΓ(2k)

∫ ∞

0

(
t

an

)2k−1 (
t

an

)r−2k

`r
(an

t

)



r∏

j=1

Γ(2kj − 1)


 e−t dt

∼
∏r

j=1 Γ(2kj − 1)
r! Γ(2k)

nr `r(an)
an

r

∫ ∞

0
tr−1 e−t dt

︸ ︷︷ ︸
=(r−1)!

∼
∏r

j=1 Γ(2kj − 1)
r Γ(2k)

(
`(an)
˜̀(an)

)r

Note that `(an)/˜̀(an) → 0 for n → ∞ and thus, opposed to the case α < 1, only the
summand with r = 1 contributes to the dominating asymptotic term of (6). Therefore we
obtain

E (T k
n ) ∼ 1

2k − 1
`(an)
˜̀(an)

.

2

Theorem 3.3. Let X1 belong to the domain of attraction of a stable law with index α,
1 ≤ α < 2 and µ := E(X1) < ∞. Then for all k ≥ 1

(14) E(T k
n ) ∼ Γ(2k − α)Γ(1 + α)

Γ(2k) µα
n1−α`(n).

Proof. Since µ is finite, it follows that

(15) lim
n→∞ϕn(t/n) = e−µt for all t ≥ 0.

However, in view of (15), we will use the change of variables s = t/n in the representa-
tion (6). By virtue of Potter’s Theorem, Lebesgue’s dominated convergence theorem and
Lemma 3.1 we then obtain
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B(n, k1, . . . , kr) =

(
n
r

)

nΓ(2k)

∫ ∞

0

(
t

n

)2k−1

ϕ(2k1)

(
t

n

)
· · ·ϕ(2kr)

(
t

n

)
ϕn−r

(
t

n

)

︸ ︷︷ ︸
→ e−µ t

dt

∼ αr
(
n
r

)

nΓ(2k)

∫ ∞

0

(
t

n

)2k−1 (
t

n

)r α−2k

`r
(n

t

)



r∏

j=1

Γ(2kj − α)


 e−µ t dt

∼ αr
∏r

j=1 Γ(2kj − α)
Γ(2k)

(
n
r

)
`r(n)

nr α︸ ︷︷ ︸
∼nr(1−α)`r(n)/r!

∫ ∞

0
tr α−1 e−µ t dt

︸ ︷︷ ︸
=Γ(r α)/µr α

∼ αr Γ(r α)
∏r

j=1 Γ(2kj − α)
r!µrα Γ(2k)

nr(1−α)`r(n).

Hence the first-order asymptotic behavior of (6) is solely determined by the term with
r = 1 and we obtain

E(T k
n ) ∼ Γ(2k − α)Γ(1 + α)

Γ(2k) µα
n1−α`(n).

2

Remark 3.2. For the special case k = 1, (14) yields E(Tn) ∼ Γ(2−α)Γ(1+α)
µα n1−α`(n), which

is Theorem 5.1. of [7].

We pass to the case α > 2.

Theorem 3.4. Let 1−F (x) ∼ x−α `(x) for some slowly varying function `(x) and α > 2.
Then for all integers k < α− 1

(16) E(T k
n ) ∼

(
µ2

µ2

)k

n−k

and for k > α− 1

(17) E(T k
n ) ∼ Γ(2k − α)Γ(1 + α)

Γ(2k) µα
n1−α`(n).

If k = α− 1, then

(i) (16) holds if E(Xk+1
1 ) < ∞,

(ii) E(T k
n ) ∼

((
µ2

µ2

)k
+ Γ(k−1)Γ(k+2)

Γ(2k) µ1+k

)
n−k holds if `(x) ∼ const.,

(iii) and else (17) holds.

Proof. Let us look at the quantity B(n, k1, . . . , kr). By Lemma 3.1 and the Bingham-
Doney Lemma (see e.g. [3, Th.8.1.6]) the asymptotic behavior of ϕ(m)(s) at the origin is
given by

(−1)m ϕ(m)(s) ∼




α Γ(m− α) sα−m`(1/s) if m > α

α ˜̀(1/s) if m = α and E(Xm
1 ) = ∞

µm if m ≤ α and E(Xm
1 ) < ∞

,
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where ˜̀(x) =
∫ x
0 (`(u)/u)du is itself a slowly varying function. For simplicity, let us first

assume that α 6∈ N. Then one can conclude in an analogous way as in the proof of Theorem
3.3 that the asymptotic behavior of B(n, k1, . . . , kr) is given by

B(n, k1, . . . , kr) ∼ C nr−α r1−2(k−u1)`r1(n),

where r1 is the number of integers among k1, . . . , kr that are greater than α/2, u1 is the
sum of these and C is some constant. It remains to determine the dominating asymptotic
term among all possible B(n, k1, . . . , kr): If r1 > 0, then r1 = 1, u1 = k and thus r = 1
yields the largest exponent, so that the asymptotic order is n1−α`(n). Note that r1 > 0 is
possible for 2k > α only. For r1 = 0, on the other hand, r = k and thus k1 = . . . = kr = 1
dominates leading to asymptotic order n−k. Hence the asymptotically dominating power
among B(n, k1, . . . , kr) is given by max(1− α,−k). From this we see that for k < α − 1,
r = k dominates and we obtain from (6)

E(T k
n ) ∼ k!

nk µk
2 Γ(2k)

k! Γ(2k)n2k µ2k
∼

(
µ2

µ2

)k

n−k.

Alternatively, if k > α− 1, the term with r = 1 dominates and we obtain (17) in just the
same way as in Theorem 3.3.
Finally, the above conclusions also hold for α ∈ N except when k = α − 1. In the latter
case the slowly varying function `(x) determines which of the two terms n1−α`(n) (corre-
sponding to r = 1) and n−k (corresponding to r = k) dominates the asymptotic behavior:
if `(x) = o(1) (which due to E(Xk+1

1 ) ∼ (k+1)
∫ n
0 x−1`(x) dx is equivalent to E(X1) < ∞),

the second one dominates. If `(x) ∼ const., then both terms matter and the assertion of
the theorem follows. 2

Corollary 3.1. If 1− F (x) ∼ x−2 `(x), then for k ≥ 2

E(T k
n ) ∼ 1

(k − 1)(2k − 1)µ2

`(n)
n

and

E(Tn) ∼
{ µ2

µ2 n
if E(X2

1 ) < ∞
2
µ2

˜̀(n)
n if E(X2

1 ) = ∞.

Proof. One can easily verify that Theorem 3.4 remains true for α = 2 except for k = 1
in the case E(X2

1 ) = ∞. In the latter case obviously r = 1 and one obtains (using
ϕ′′(s) ∼ 2 ˜̀(1/s))

E(Tn) ∼ B(n, 1) ∼ 2n ˜̀(n)
n2

∫ ∞

0
te−µ t dt ∼ 2

µ2

˜̀(n)
n

,

which is already contained in [7, Theorem 5.2]. 2

Remark 3.3. One might wonder whether a general limit result for E(T k
n ) for X1 in the

domain of attraction of a normal law (in the spirit of Theorem 5.2 of [7] for k = 1) can be
obtained with the integral representation approach used in this paper. This is however not
the case: From

∫ x
0 y2 dF (y) ∼ `2(x) (where `2(x) is a slowly varying function) it follows

by partial integration that ϕ(2k)(s)/`2(1/s) = o(s2−2k) for k > 1 as s → 0, but the latter
is not strong enough to identify the dominating term among the B(n, k1, . . . , kr) without
any further assumptions on the distribution of X1.
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E(Tn) Var (Tn) Var (Tn)/E(Tn)

0 < α < 1 1− α α(1−α)
3

α
3

α = 1 `(an)
˜̀(an)

(→ 0) 1
3

`(an)
˜̀(an)

(→ 0) 1
3

1 < α < 2 Γ(2−α)Γ(1+α)
µ2 n1−α`(n) Γ(4−α)Γ(1+α)

6µα n1−α`(n) (3−α)(2−α)
6

α = 2 2
µ2

˜̀(n)
n

`(n)
3 n µ2

1
6

`(n)
˜̀(n)

(→ 0)

2 < α < 4 µ2

µ2 n
Γ(4−α)Γ(1+α)

6 µα n1−α`(n) Γ(4−α)Γ(1+α)
6 µα−2 µ2

n2−α`(n)

α ≥ 4 µ2

µ2 n
µ4µ2−µ2

2µ2+4 µ3
2−4µµ2µ3

µ6
1
n3

µ4µ2/µ2−µ2µ2+4 µ2
2−4µµ3

µ4
1
n2

Table 1. First order asymptotic terms of E(Tn), Var (Tn) and
Var (Tn)/E(Tn) for 1− F (x) ∼ x−α`(x) as a function of α

As an illustration of the results of this section, Table 1 gives the first order asymptotic
terms of E(Tn), Var (Tn) and the dispersion Var (Tn)/E(Tn) as a function of α. Note that
the entries for α > 2 have been obtained by calculating second-order asymptotic terms.
The result for α > 4 in the table actually holds whenever µ4 < ∞, since in this case the
derivation of second-order terms does not rely on the assumption of regular variation and
one obtains E(T 2

n) ∼ µ2
2

µ4
1
n2 + (10µ3

2−3µ2
2µ2−8µµ2µ3+µ2µ4

µ6 ) 1
n3 + O( 1

n4 ) and E2(Tn) ∼ µ2
2

µ4
1
n2 +

(6µ3
2−4µµ2µ3−2µ2µ2

2
µ6 ) 1

n3 + O( 1
n4 )).

From Table 1 we see that the dispersion of Tn is a continuous function in α with its
maximum in α = 1 (see Figure 2).

0.5 1 1.5 2
Α

0.05

0.1

0.15

0.2

0.25

0.3

lim VarHTnkL�EHTnkL

Figure 2. Limit of the dispersion of Tn as a function of α

4. Weak laws for Tn

We will now complement the results of Section 3 by providing weak laws for the sequence
of random variables (Tn)n≥1. This is done by distinguishing four cases depending on the
value of α:

Proposition 4.1. Let X1 belong to the domain of attraction of a stable law with index α,
0 < α < 1 (including α = 1 if E(X1) = ∞). Then

(18) Tn
d−→ U

V 2
,
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where the joint distribution of the random variables (U, V ) is given by the Laplace transform

(19) E(e−s U−t V ) = exp

(
−2 et2/(4 s)

∫ ∞

0
e
−

(
u+ t

2
√

s

)2 (
u +

t

2
√

s

) (
t√
s

)−α

du

)
.

Proof. For θ > 0, ψ ≥ 0 we have

1− E (e−θ X2
1−ψ X1) =

∫ ∞

0
(1− e−θ x2−ψ x) dF (x)

=
∫ ∞

0
(1− F (x)) e−θ x2−ψ x(2θ x + ψ) dx

= 2eψ2/(4θ)

∫ ∞

ψ/(2
√

θ)
e−y2

y

(
1− F (

y√
θ
− ψ

2θ
)
)

dy(20)

where the last equality is obtained by the change of variables y =
√

θ x + ψ

2
√

θ
.

Define a sequence (an)n≥1 by 1− F (an) ∼ 1
n , i.e. `(an)/aα

n ∼ 1
n . Now, from the indepen-

dence of the random variables Xi one gets

E
(

e
−s 1

a2
n

∑n
i=1 X2

i −t 1
an

∑n
i=1 Xi

)
= exp

(
n log E (−s

1
a2

n

X2
1 − t

1
an

X1)
)

∼ exp
(
−n (1− E (−s

1
a2

n

X2
1 − t

1
an

X1))
)

and by choosing θ = s/a2
n and ψ = t/an, we obtain from (20) and dominated convergence

E
(

e
− s

a2
n

∑n
i=1 X2

i − t
an

∑n
i=1 Xi

)
∼ exp

(
− 2 et2/(4 s)

∫ ∞

t
2
√

s

y e−y2
n

(
1− F (an(

y√
s
− t

2 s
))

)
dy

)

→ exp

(
−2 et2/(4 s)

∫ ∞

t
2
√

s

y e−y2

(
y√
s
− t

2 s

)−α

dy

)
:= e−ψα(s,t).

An additional change of variables y = u + t
2
√

s
leads to

ψα(s, t) = 2 et2/(4 s)

∫ ∞

0
e
−

(
u+ t

2
√

s

)2 (
u +

t

2
√

s

)(
t√
s

)−α

du.

Thus we have shown ( 1
a2

n

n∑

i=1

X2
i ,

1
an

n∑

i=1

Xi

)
d−→ (U, V ),

where the joint distribution of U and V is given by (19). The continuous mapping theorem
finally gives

Tn =
X2

1 + X2
2 + . . . + X2

n

(X1 + X2 + . . . + Xn)2
d−→ U

V 2
.

2

Remark 4.1. The marginal distribution of U is the weak limit of 1
a2

n

∑n
i=1 X2

i and hence
is determined by taking t = 0 in (19). This leads to

E(e−s U ) = exp(−sα/2 Γ(1− α/2)),
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so that U is a stable distribution with index α/2. For the marginal distribution of V ,
which is the weak limit of 1

an

∑n
i=1 Xi, a little more care is needed, but following the same

line of arguments in the proof above with s = 0, one obtains

E(e−t V ) = exp(−tα Γ(1− α)),

so V is stable with index α, as it should be.

Proposition 4.2. Let X1 belong to the domain of attraction of a stable law with index α,
1 < α < 2 (including α = 1 if E(X1) < ∞ and α = 2 if E(X2

1 ) = ∞). Then

(21)
(

n

an

)2

Tn
d−→ U

µ2
,

where U is a stable random variable with Laplace transform

(22) E(e−s U ) = exp(−sα/2 Γ(1− α/2))

and (an)n≥1 is defined by 1− F (an) ∼ 1
n .

Proof. Repeating the arguments of the proof of Proposition 4.1 and Remark 4.1, one
obtains 1

a2
n

∑n
i=1 X2

i
d−→ U with (22) (note that X2

1 is in the domain of attraction of a

stable law with index α/2). Moreover, since E(X1) < ∞, it follows that 1
n

∑n
i=1 Xi

p−→ µ.
But then, Slutsky’s theorem and the continuous mapping theorem can be used to deduce
that

1
a2

n

∑n
i=1 X2

i

( 1
n

∑n
i=1 Xi)2

d−→ U

µ2

which is equivalent to (21). 2

Proposition 4.3. Let X1 be regularly varying with index α, 2 < α < 4 (including α = 2
if E(X2

1 ) < ∞ and α = 4 if E(X4
1 ) = ∞). Then

(23)
n1−2/α

`1(n)

(
nTn − µ2

µ2

)
d−→ W

µ2
,

where W is a stable random variable with index α/2, `1(n) is a slowly varying func-
tion given by `1(n) ∼ cn n−2/α and where in turn the sequence (cn)n≥1 is defined by
1− F (

√
cn) ∼ 1

n .

Proof. For a deterministic sequence (bn)n≥1 to be chosen later on, consider

bn

(
nTn − µ2

µ2

)
=

n2 bn

(X1 + · · ·+ Xn)2

(
1
n

n∑

i=1

X2
i − µ2

)

︸ ︷︷ ︸
:=An

+
µ2 n2 bn

(X1 + · · ·+ Xn)2
− bn µ2

µ2

︸ ︷︷ ︸
:=Bn

.

Since P(X2
1 > x) = P(X1 >

√
x) ∼ x−α/2`(

√
x), the tail of X2

1 is regularly varying with

index α/2. Thus we have n
cn

( 1
n

∑n
i=1 X2

i − µ2)
d−→ W for a stable law W with index α/2

and a sequence of normalizing constants (cn)n≥1 defined by 1 − F (
√

cn) ∼ 1
n . The latter

implies cn ∼ n2/α `−2/α(
√

cn) so that for `1(n) := `−2/α(
√

cn) we obtain

n1−2/α

`1(n)

(
1
n

n∑

i=1

X2
i − µ2

)
d−→ W.
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Clearly, 1
n

∑n
i=1 Xi

p−→ µ and thus Slutsky’s theorem and the continuous mapping theo-

rem imply An
d−→ `1(n) bn

µ2 n1−2/α W . At the same time, we have

Bn = − n2 µ2

(X1 + · · ·+ Xn)2︸ ︷︷ ︸
p−→ µ2

µ2

bn

µ

(
1
n

n∑

i=1

Xi − µ

)

︸ ︷︷ ︸
d−→ (σ/

√
n) N(0,1)

(
1

nµ

n∑

i=1

Xi + 1

)

︸ ︷︷ ︸
p−→ 2

,

where σ2 := VarXi. Now, the choice bn = n1−2/α

`1(n) yields An
d−→ W

µ2 and Bn
d−→ 0, so that

the result follows by another application of Slutsky’s theorem. 2

Finally, if the fourth moment of X1 exists, then nTn is asymptotically normal:

Proposition 4.4. Let E(X4
1 ) = µ4 < ∞. Then

(24)
√

n

(
nTn − µ2

µ2

)
d−→ N

(
0, σ2

∗
)
,

where

(25) σ2
∗ =

µ4

µ4
−

(
µ2

µ2

)2

+ 4
(

µ2

µ2

)3

− 4µ2µ3

µ5
.

Proof. This result is contained in classical statistical theory and the proof is just sketched
here for completeness: From the two-dimensional Lindeberg-Lévy central limit theorem
one deduces that the random vector ( 1

n

∑n
i=1 Xi,

1
n

∑n
i=1 X2

i ) converges weakly to a bi-
variate normal distribution with mean vector (µ, µ2) and covariance matrix

(
µ2 − µ2 µ3 − µµ2

µ3 − µµ2 µ4 − µ2
2

)
.

The asymptotic normality then carries over to any function H( 1
n

∑n
i=1 Xi,

1
n

∑n
i=1 X2

i )
that is twice continuously differentiable in the neighborhood of (µ, µ2) (see for instance
[5]). The limiting normal distribution has mean H(µ, µ2) and variance

H2
1 Var (

1
n

n∑

i=1

Xi) + 2H1H2 Cov(
1
n

n∑

i=1

Xi,
1
n

n∑

i=1

X2
i ) + H2

2 Var (
1
n

n∑

i=1

X2
i )

with

H1 =
∂ H

∂ a1

∣∣∣
a1=µ,a2=µ2

and H2 =
∂ H

∂ a2

∣∣∣
a1=µ,a2=µ2

.

The choice H(a1, a2) = a2

a2
1

finally yields (24). 2

Remark 4.2. Given the uniform integrability of n(nTn − µ2/µ2)2, one can obtain the
asymptotic behavior of Var (nTn) as the corresponding variance of the limiting normal
distribution which leads to Var (n Tn) ∼ σ2∗/n (this was also obtained directly from The-
orem 3.4 by employing a second-order asymptotic analysis of the integral representation,
cf. Table 1).
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5. Applications

5.1. Implications for the asymptotic behavior of the sample coefficient of vari-
ation. In various practical situations (including applications in finance and insurance, in
particular reinsurance), the coefficient of variation of a positive random variable X (with
distribution function F ) defined by

CoV (X) =
√

VarX

EX

is used as a measure to assess the risk associated with X. From a given set of independent
observations X1, . . . , Xn of X with sample mean X̄ := X1+···+Xn

n and sample variance
S2 = 1

n

∑n
i=1(Xi − X̄)2, CoV (X) is then typically estimated by

̂CoV (X) :=
S

X̄
,

which is called the sample coefficient of variation. (Note that there is a slight abuse of
notation, since S is usually estimated with norming factor n− 1 instead of n, but for the
asymptotic considerations in the sequel this does not matter). The analysis of properties
of ̂CoV (X) is typically based on the assumption that sufficiently many moments of X
exist (see e.g. [6, 10]). The special case of normally distributed X, where the exact
distribution of ̂CoV (X) is available, has received considerable attention in the literature
(see e.g. [2, 8, 12]). For statistical inference for the coefficient of variation based on
small sample size n, we refer to [13]. For applications within the context of insurance and
especially reinsurance, see [9].
Although ̂CoV (X) is a widely-used risk measure, the existence of moments of X is not
always ensured in practical applications and there is a need to study asymptotic properties
of ̂CoV (X), viewed as a statistic, also in these cases. Due to

nTn = ̂CoV (X)
2
+ 1,

this can be done by using the results of Sections 3 and 4:

(i) 0 < α < 1: If X is in the domain of attraction of a stable law with index 0 < α < 1
(including α = 1 if E(X) = ∞), then it follows from Proposition 4.1, Slutsky’s theorem
and the continuous mapping theorem that

√
Tn − 1/n

d−→ √
U/V so that

̂CoV (X)√
n

d−→
√

U

V
,

where the joint distribution of U and V is given by (19). Thus ̂CoV (X) ↗∞ at rate n1/2

as n →∞ and the estimator ̂CoV (X) is useless in this case. Note that from Theorem 3.1
it follows that E(nTn) ∼ (1− α) n and Var (nTn) ∼ α(1− α)n2/3.

(ii) 1 < α < 2: If at least the mean exists and X is in the domain of attraction of a stable
law with 1 < α < 2 (including α = 1 if E(X) < ∞ and α = 2 if E(X2) = ∞), Proposition
4.2, Slutsky’s theorem and the continuous mapping theorem lead to

√
n

an

̂CoV (X) d−→
√

U

µ
,
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where the distribution of U is given by (22) and (an)n≥1 is defined by 1 − F (an) ∼ 1
n .

This implies ̂CoV (X) ↗∞ at rate an/
√

n as n →∞. Theorem 3.3 shows that E(nTn) ∼
Γ(2−α) Γ(1+α)

µα n2−α`(n) and Var (nTn) ∼ Γ(4−α) Γ(1+α)
6 µα n3−α`(n).

(iii) 2 < α < 4: (including α = 2 if E(X2) < ∞ and α = 4 if E(X4) = ∞)

Here Var (X) < ∞ and from Proposition 4.3 we see that nTn
p−→ µ2

µ2 + o
(

`1(n)

n1−2/α

)
. Thus

by virtue of the continuous mapping theorem

(26) ̂CoV (X)
p−→
√

VarX

EX
+ o

(
`1(n)

n1−2/α

)
.

Moreover, using the identity

bn

(
̂CoV (X)−

√
VarX

EX

)
=

bn ( ̂CoV (X)
2 − VarX

E2X
)

2
√

VarX
EX︸ ︷︷ ︸

:=An

−
bn

(
̂CoV (X)

2 − VarX
E2X

)2

2
√

VarX
EX

(
̂CoV (X) +

√
VarX
EX

)2

︸ ︷︷ ︸
:=Bn

one also observes from Proposition 4.3 that for bn = n1−2/α

`1(n) we have An
d−→ 1

2EX
√

VarX
W

and Bn
d−→ 0 leading to

n1−2/α

`1(n)

(
̂CoV (X)− CoV (X)

)
d−→ 1

2EX
√

VarX
W,

where W is a stable law with index α/2.
Now, a detailed study of the proof of Theorem 3.4 gives E(nTn) → µ2

µ2 +O
(
nmax(2−α,−1)

)

which implies (by virtue of the above identity and Bn ≥ 0) that bn( ̂CoV (X)− CoV (X))
is uniformly integrable and subsequently E( ̂CoV (X)) → CoV (X) as n → ∞. Together
with (26), it follows that ̂CoV (X) is a consistent and asymptotically unbiased estimator
for CoV (X).
From Theorem 3.4 we also see that for α < 3, Var (nTn) ∼ Γ(4−α) Γ(1+α)

6 µα n3−α`(n) ↗∞.
Only in the case α > 3 we have Var (nTn) ↘ 0. However,

Var ( ̂CoV (X)) = E( ̂CoV (X)
2
)− E2( ̂CoV (X)) = E(nTn − 1)− E2( ̂CoV (X)) → 0.

(iv) µ4 = E(X4) < ∞: If the first four moments of X exist, then Proposition 4.4 shows
that nTn is asymptotically normal. Moreover, the corresponding proof can be repeated
using the function H(a1, a2) =

√
a2 − a2

1/a1, leading to

(27)
√

n
(
̂CoV (X)− CoV (X)

)
d−→ N

(
0,

σ2∗ µ2

4σ2

)
,

where σ2∗ is given by (25) and σ2 := VarX (alternatively, this result can also be obtained
by using the decomposition under (iii)). The weak law (27) can now be used to set up
confidence intervals for the estimation procedure of CoV (X).
If n( ̂CoV (X) − CoV (X))2 is uniformly integrable, then one can obtain the limit of
Var (n ̂CoV (X)) as the variance of the limiting normal distribution, which by (27) implies
that Var ( ̂CoV (X)) ∼ σ2∗µ2/(4σ2 n). Thus ”the coefficient of variation of the coefficient
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of variation” behaves like CoV ( ̂CoV (X)) ∼ σ∗µ2/(2σ2√n).
Another approach to determine the limiting behavior of E( ̂CoV (X)

k
) based on k-statistics

can be found in [6].

Summarizing, ̂CoV (X) should be used as an estimator for CoV (X) with great care, and
only for E(X4) < ∞ practical confidence intervals are available.

5.2. The asymptotic behavior of the sample dispersion. Another measure of vari-
ation of a random variable X that is frequently used in practice is the dispersion

D(X) =
Var (X)
E(X)

.

For instance, in insurance the value of the dispersion allows to determine whether a
given portfolio has a Poissonian character or not. From a given set of independent
observations X1, . . . , Xn of X with sample mean X̄ := X1+···+Xn

n and sample variance
S2 = 1

n

∑n
i=1(Xi − X̄)2, D(X) is typically estimated by

D̂(X) :=
S2

X̄
,

which is called the sample dispersion. (Again, the norming factor n instead of n− 1 in S2

does not matter asymptotically). If we introduce

Cn :=
X2

1 + · · ·+ X2
n

X1 + · · ·+ Xn
,

then
D̂(X) = Cn − X̄,

and we can use results from Sections 3 and 4 to investigate asymptotic properties of the
statistic D̂(X) also in cases where X is in the domain of attraction of a stable law:

(i) 0 < α < 1: If X is in the domain of attraction of a stable law with index 0 < α < 1
(including α = 1 if E(X) = ∞), then it follows from Proposition 4.1 and the continuous
mapping theorem that 1

an
Cn

d−→ U/V , where (an)n≥1 is defined by 1 − F (an) ∼ 1
n and

the joint distribution of the random variables (U, V ) is given by (19). Slutsky’s theorem
yields

1
an

D̂(X) d−→ U

V
,

so D̂(X) goes to infinity at rate an as n →∞.
It is easy to verify that, since α < 1, E(Cn/an) and subsequently E(D̂(X)) goes to ∞.

(ii) 1 < α < 2: If at least the mean exists and X is in the domain of attraction of a stable
law with 1 < α < 2 (including α = 1 if E(X) < ∞ and α = 2 if E(X2) = ∞), Proposition
4.2, Slutsky’s theorem and the continuous mapping theorem lead to

n

a2
n

D̂(X) d−→ U

µ
,



16 H. ALBRECHER AND J. TEUGELS

where the distribution of U is given by (22) and again (an)n≥1 is defined by 1−F (an) ∼ 1
n .

So in this case D̂(X) ↗∞ at rate a2
n/n as n →∞. Moreover, along the line of arguments

developed in Section 3 it follows that

E(Cn) = n

∫ ∞

0
ϕ′′(s)ϕn−1(s) ds =

∫ ∞

0
ϕ′′

(
t

n

)
ϕn−1

(
t

n

)

︸ ︷︷ ︸
→ e−µ t

dt

∼ α Γ(2− α) n2−α`(n)
∫ ∞

0
tα−2 e−µ t dt =

α π

sin((α− 1)π) µα−1
n2−α`(n).

Since E(X̄) ∼ µ, this term is negligible and we obtain

E(D̂(X)) ∼ α π

sin((α− 1)π) µα−1
n2−α`(n).

(iii) 2 < α < 4: (including α = 2 if E(X2) < ∞ and α = 4 if E(X4) = ∞)

Here Var (X) < ∞ and analogous to Proposition 4.3 we obtain for bn = n1−2/α

`1(n)

bn

(
D̂(X)−D(X)

)
= bn(Cn − µ2

µ
− X̄ + µ)

=
bn

X̄

(
1
n

n∑

i=1

X2
i − µ2

)

︸ ︷︷ ︸
d−→W

µ

+
µ2 bn

X̄ µ
(µ− X̄)

︸ ︷︷ ︸
d−→0

− bn(X̄ − µ)︸ ︷︷ ︸
d−→0

,

where W is a stable law with index α/2 and the slowly varying function `1(n) is defined
as in Proposition 4.3. Slutsky’s theorem now leads to

n1−2/α

`1(n)

(
D̂(X)− Var (X)

E(X)

)
d−→ W

µ
.

Analogous to Theorem 3.4, one can derive E(Cn) → µ2

µ + O(nmax(2−α,−1)) and subse-

quently E(D̂(X)) → D(X) + O(nmax(2−α,−1)). It follows that D̂(X) is a consistent and
asymptotically unbiased estimator for the dispersion of X. Furthermore, by adaptation of
the proof of Theorem 3.4,

E(C2
n) = n

∫ ∞

0
sϕ(4)(s)ϕn−1(s) ds + n(n− 1)

∫ ∞

0
s(ϕ′′(s))2ϕn−2(s) ds

∼ α Γ(4− α) Γ(α− 2)
µα−2

n3−α `(n) +
µ2

2

µ2
,

where the first term asymptotically dominates for α < 3 and the second for α ≥ 3 with
µ3 < ∞. Now,

E(D̂(X)
2
) = E(C2

n)− 2E(
1
n

n∑

i=1

X2
i ) + E(X̄2) ∼ E(C2

n)− 2µ2 + µ2.

Thus Var (D̂(X)) = ED̂(X)
2−E2(D̂(X)) is bounded only if the third moment exists and

since the constant terms in Var (D̂(X)) cancel out, we obtain in general

Var (D̂(X)) = O(n3−α`(n)).
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(iv) µ4 = E(X4) < ∞: If the first four moments of X exist, then using the function H(a1, a2) =
a2/a1 − a1 in the proof of Proposition 4.4 yields

(28)
√

n
(
D̂(X)−D(X)

)
d−→ N(0, σ̃2),

where σ̃2 := (µ2µ
4 − µ6 + µ3

2 − 2µ3µ3 − 2µµ2µ3 + 2µ2
2µ

2 + µ4µ
2)/µ4. This weak law can

be used to set up confidence intervals for the estimation procedure of D(X).
If sufficiently many moments exist, then it follows from an adaptation of Theorem 3.4
that E(Ck

n) → (µ2

µ2 )k + O( 1
n). In particular Var (D̂(X)) = O( 1

n) and, more specifically,

from (28) we have Var (D̂(X)) ∼ σ̃2/ n. Thus ”the dispersion of the sample dispersion”
behaves like D(D̂(X)) ∼ σ̃2µ/(σ2 n).

5.3. Estimation of the extreme value index for Pareto-type tails. The results of
Section 3 also give rise to an alternative and seemingly new method for estimating the
extreme value index 1/α for Pareto-type tails 1 − F (x) ∼ x−α`(n) with 0 < α < 2 from
a given data set of independent observations (see e.g. [1] for other estimators of the ex-
treme value index). In fact, plotting nTn against n will tend to a line with slope 1 − α,
if 0 < α < 1 and plotting log(nTn) against log n will tend to a line with slope 2 − α,
if 1 < α < 2. The asymptotic behavior of higher order moments of nTn available from
Section 3 can then be used to increase the efficiency of the estimation procedure.
At the same time, this provides a technique to test the finiteness of the mean of a distri-
bution in the domain of attraction of a stable law.

6. Conclusion

In practice, the unconscientious use of some measures of variation can lead to wrong
conclusions. As a general statement one needs to emphasize that the norming sequence
(an)n≥1 is unknown in practice and thus needs to be estimated.
The sample dispersion D̂(X) is perhaps the most vulnerable among the statistics we
considered. In the case 0 < α < 1, E(D̂(X)) tends to infinity at a rate faster than an. The
same applies to the variance whenever α < 2. Only when α > 4 the asymptotic properties
of D̂(X) guarantee a reassuring conclusion. The sample coefficient of variation ̂CoV (X)
seems to have slightly better properties. For both statistics, the best results are obtained
in terms of weak convergence. Results on expectations and/or variances are seemingly
intricate.
A more promising approach seems to consider statistics like Tn and Cn directly. Apart
from the weak limits, we have been able to derive rather explicit results about expectations
and variances, even about arbitrary moments. For 0 < α < 1, a plot of the sample values
of Tn will show a constant pattern from which the parameter α can be estimated. For
1 < α < 2, a similar procedure can be used on the logarithms of the sample values.
Moreover, the approach introduced in Section 2 offers the additional possibility to involve
the parameter β.
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