
 

A derivative-based fast autofocus method

Citation for published version (APA):
Rudnaya, M., Morsche, ter, H. G., Maubach, J. M. L., & Mattheij, R. M. M. (2011). A derivative-based fast
autofocus method. (CASA-report; Vol. 1113). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/cba1c953-9054-48b4-ad74-67905e17dfa9


                                        
 
 

EINDHOVEN UNIVERSITY OF TECHNOLOGY 
Department of Mathematics and Computer Science 

 
 
 
 
 
 
 
 
 
 
 

CASA-Report 11-13 
February 2011 

 
 

A derivative-based fast autofocus method 
 

by 
 

M.E. Rudnaya, H.G. ter Morsche, 
J.M.L. Maubach, R.M.M. Mattheij 

 
 
 

 

 
 
 
 

Centre for Analysis, Scientific computing and Applications 
Department of Mathematics and Computer Science 
Eindhoven University of Technology 
P.O. Box 513 
5600 MB Eindhoven, The Netherlands 
ISSN: 0926-4507 



 



A derivative-based fast autofocus method

M.E. Rudnaya, H.G. ter Morsche, J.M.L. Maubach, R.M.M. Mattheij

Abstract

Most automatic focusing methods are based on a sharpness function, which delivers a real-
valued estimate of an image quality. In this paper, we study an L2−norm derivative-based
sharpness function, which has been used before based on heuristic consideration. We give a
more solid mathematical foundation for this function and get a better insight into its analytical
properties. Moreover an efficient autofocus method is presented, in which an artificila blur
variable plays an important role.

We show that for a specific choice of the artificial blur control variable, the function is
approximately a quadratic polynomial, which implies that after obtaining of at least three im-
ages one can find the approximate position of the optimal defocus. This provides the speed
improvement in comparison with existing approaches, which usually require recording of more
than ten images for autofocussing. The new autofocus method is employed for the scanning
transmission electron microscopy. To be more specific, it has been implemented in the FEI
scanning transmission electron microscope and its performance has been tested as a part of a
particle analysis application.

1 Introduction

Consider an optical device, such as a photocamera, a telescope or a microscope. An image
obtained with the optical device depends on a given object’s geometry, known as the object
function, and the optical device defocus. The method of automatic defocus determination,
such that the recorded image has the highest possible quality (the image is in-focus), is known
as automated focusing or autofocus method.

The existing autofocus methods used for different types of optical devices are usually based
on a sharpness function, a real-valued estimate of the image’s sharpness. For a through-focus
series an ideal sharpness function should reach a single optimum (maximum or minimum, de-
pending on a sharpness function definition) at the in-focus image. Existing sharpness functions
are based on the image derivatives [1, 21, 35], variance [4, 28], autocorrelation [9, 22, 34], his-
togram [14, 36] or Fourier transform [11, 27, 31, 33]. An overview of existing sharpness functions
can be found in [16, 27, 29, 36].

An autofocus method can be established in two different ways:

• A number of images is taken within a wide defocus range and for each image the sharpness
function is computed giving a discrete set of sharpness function values . Then the optimal
image (the in-focus image) is determined as the optimum of this discrete set of data
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(course focusing). Eventually the same procedure is repeated within a smaller defocus
range around the optimum, found on the previous step (fine focusing).

• Starting out with an initial defocus parameter d, an iterative optimization method is used
to find the optimal defocus value d0, (for example, Fibbonachi search [16, 36], Nelder-
Mead simplex method [28] or Powell interpolation-based trust-region method [25]).

The first approach requires recording of about 20-30 images, which can be time-consuming for
real-world applications. The goal of the second approach is to minimize the number of images
necessary to perform the autofocus. It usually requires not less than 10 images for the autofocus
procedure.

In literature a number of sharpness functions has been considered and discussed for different
optical devices, such as photographic and video cameras [5, 11, 14], telescopes [19, 12], light
microscopes [1, 9, 16, 29, 30, 35, 36] and electron microscopes [4, 22, 26, 27, 31, 33]. In this
paper use the electron microscopy as a reference application for our autofocus method. To be
more precise, the experimental application is tested for low resolution scanning transmission
electron microscopy (STEM).

For many practical applications in STEM, defocus has to be adjusted regularly during the
continuous image recording process. For instance, in electron tomography 50-100 images are
recorded at different tilt angles, where each tilting changes the defocus [33]. Other possible
reasons for change in defocus are for instance the instabilities of the electron microscope and
environment, as well as the magnetic nature of some samples. The capacity of the modern
processors allows computations of a sharpness function within a negligible amount of time.
However, image recording might require a noticeable amount of time. In particularly in STEM,
one image recording can take 1-to 10 seconds. For this reason the development of a method that
requires fewer images is important. A number of methods implemented on aberrated-corrected
electron microscopes are able to correct high and low aberrations including defocus [17, 8, 37].
For defocus correction these methods require from one to four images only. However they are
based on specific assumptions about the object geometry. These methods are not suitable for
applications that require continuous operation since they are not fully autonomous [32]. In
addition some of them make use of additional equipment, such as aberration correctors or a
special camera, which is not a part of every microscope.

In this paper we study derivative-based sharpness functions. The advantage of using these
functions has been already shown experimentally for scanning electron microscopy images [26,
27]. Some of them are based on a L2−norm of an image derivative [1, 14, 36]. The use of these
functions is heuristic in nature. Usually they are based on the assumption that the in-focus
image has a larger difference between neighboring pixels than the defocused one. In this paper
we show analytically that for the noise-free image formation the L2−norm derivative-based
sharpness function reaches its optimum for the in-focus image, and does not have any other
optima. Moreover under certain assumptions the function can accurately be approximated
by a quadratic polynomial. The error of this approximation can be decreased be adjusting
the artificial blur control variable, which is given as an input to the autofocus method. The
proposed quadratic polynomial interpolation leads to a new autofocus method that requires
recording of three or four images only. The method is implemented in FEI STEM and is
demonstrated for a real-world microscopy application.

The paper is set up as follows: Section 2 explains the image formation modelling used in this
paper. Section 3 provides the definition of the derivative-based sharpness function, and explains
the process of automated focussing. In Section 4 theoretical observations on derivative-based
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sharpness function are given. Subsequently Section 5 describes the quadratic interpolation of
the sharpness function and the autofocus method. Numerical computations for experimental
data obtained from a STEM FEI microscope are shown in Section 6. Section 7 presents the
results of the on-line autofocus correction method implemented and running on a FEI STEM
prototype. Finally Section 8 provides discussion on relationship between the mathematical
theory and real-world applications.

2 Modelling

Usually an image is two-dimensional. However for the simplification of our analysis we restrict
the theoretical observations to a one-dimensional setting. If the objective lens of the optical
device is rotationally symmetric, this restriction does not affect the real problem, because
the two-dimensional case in image formation is a repetition of the one-dimensional case in an
orthogonal direction. Nevertheless, in our numerical experiments and the real-world application
(sections 6-7) two-dimensional images are used. One of the experiments will correspond to the
situation of the non-symmetric lens (for instance, the lens with astigmatism abberation).

The Fourier transform f̂ of a function f ∈  L2(R) plays a fundamental role in our analysis
and modeling. It is defined as follows

f̂(ω) =

∫ ∞

−∞
f(x)e−iωxdx,

where x is a spatial coordinate and ω is a frequency coordinate.
Images for which our sharpness function will be computed are the output images f of the

so-called image formation model represented by Figure 1. The object’s geometry (or the object
function) is denoted by ψ. The filter ̺σ in Figure 1 describes the point spread function of an
optical device. The point spread function can accurately be approximated by a Lévi stable
density function for a wide class of optical devices [2, 3, 10]. The Lévi stable density function
is implicitly defined via its Fourier transform as follows

ˆ̺σ(ω) := e−
σ2ω2β

2 , 0 < β ≤ 1. (1)

The parameter β in (1) depends on the optical device, and σ in (1) is known as the width of
the point spread function. It is simply related to the control variable d, i.e. the defocus of the
optical device

σ = d− d0,

where d0 is unknown. The goal of the autofocus procedure is to find the value of d0.
The output of the ̺σ filter is denoted by f0 and often post-processed by a PC, cf. Figure 1.

In our model we assume that in such post-processing a Gaussian filter is applied to the image
f0

gα(x) :=
1√
2πα

e−
x2

2α2 .

Filtering with a Gaussian kernel is often applied for denoising purposes, which is an easy
alternative to more advanced denoising techniques [15, 18, 24]. In our autofocus procedure
the main use of the control variable α is not for denoising the image f0. As explained in
the following sections, it influences the approximation error when the sharpness function is
replaced by a quadratic polynomial, but it does not change the location of d0. The value of the
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Figure 1: The image formation model.

control variable α is fixed during the autofocus process; i.e. when we attempt to find d0 from
a number of recorded images corresponding to different values of d stemming from the same
object function ψ.

We apply the linear image formation model, which is often used for various optical devices
[2, 7, 21, 38], in particular for electron microscopes [4, 13]. This implies that the occurring
filters are linear and space invariant which easily can be described by means of convolution
products

f0 := ψ ∗ ̺σ, f := f0 ∗ gα. (2)

If no image post-processing is applied then, α = 0, and f = f0.

3 Sharpness function and problem formulation

In this section we introduce the derivative-based sharpness function explicitly and investigate
its behaviour with respect to the defocus parameter d. As the parameter d is closely related to
the width σ it is convenient to define the sharpness function as a function of σ as (cf.[14, 16])

Λ(σ) := ‖ ∂
∂x
f‖2

L2
. (3)

For the linear image formation model (2), we have

Λ(σ) := ‖ ∂
∂x

(ψ ∗ ̺σ ∗ gα)‖2
L2
. (4)

Since σ = d− d0, we will consider the function Λ(d− d0). For a through-focus series of images
the sharpness function is computed at different values of d for a fixed value of α. A general
behaviour of a sharpness function is shown in Figure 2. The image at the defocus d = d0 is
sharp or in-focus and the sharpness function reaches its optimum. The image far away from d0

is called out-of-focus.
We recall that for our autofocus procedure α is fixed and a finite number, say N , of the

defocus control d are chosen: d1, . . . , dN with d1 < d2 < . . . < dN . For each of the corresponding
images f1, f2, . . . , fN the value of a sharpness function is computed

Λi := Λ(di − d0), i = 1, . . . , N (5)
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Figure 2: Sharpness function F reaches its optimum at the in-focus image. The goal of the
autofocus procedure is to find the value of defocus d0.

As already mentioned before, the problem of automated focussing is to estimate the optimum
location d0 of the sharpness function from the given points (5). The location d0 is independent
on the object function ψ.

In this paper our aim is to do this using a small number of recorded images, i.e., N = 3 or
N = 4, while in other papers N > 10 is usually used [14, 16, 36, 38]. For this purpose we will
look for the function shape which can be accurately approximated by a quadratic polynomial.
In the next section the error estimates of such an approximation for derivative-based sharpness
function are provided.

4 Theoretical observations

In this section we collect some useful properties of the derivative based sharpness function.
First, in Subsection 4.1, we deal with general properties of Λ in case the spread function ̺σ is a
Lévi stable density function function. In Subsection 4.2, we restrict ourselves to the Gaussian
point spread functions and study in more detail properties of Λ for a typical collection of object
functions: A Gaussian particle and the more general case of a digital image.

4.1 General properties of the sharpness function Λ

Property 1. If f is given by the linear image formation model (2) then the sharpness function
Λ is

Λ(σ) =
1

2π

∫ ∞

−∞
ω2|ψ̂(ω)|2e−σ2ω2β

e−α2ω2

dω. (6)

Proof. For ψ̂, ĝ, f̂ , the Fourier transforms of ψ, g, f respectively, it holds that f̂ = ψ̂ ˆ̺σĝα. Then
because of Parseval’s identity one has

Λ(σ) := ‖ ∂
∂x
f‖2

L2 =
1

2π
‖ωf̂‖2

L2 =
1

2π

∫ ∞

−∞
ω2|ψ̂(ω)|2| ˆ̺σ(ω)|2|ĝα(ω)|2dω.
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Figure 3: Numerically computed sharpness functions Λ.

We assume that the object function satisfies the property
∫ ∞

−∞
|ψ(x)|dx <∞, (7)

which holds throughout the paper. In practice this property will be easily satisfied because the
function ψ has a finite domain, i.e., the image has a finite size. As a consequence we have that
ψ̂ is bounded and continuous. In case of a digital image (cf. Subsection 4.2) having a finite
number of pixels, ψ̂ is a tri-geometric polynomial which again is bounded and smooth.

Property 2. For the object function (7), the sharpness function Λ(σ) is smooth, and is strictly
increasing for σ < 0 and strictly decreasing for σ > 0.

Property 3. For the object function (7) and α > 0, the sharpness function Λ(σ) has a finite
maximum at σ = 0

max
σ

Λ(σ) = Λ(0).

The properties 2-3 follow directly from (6). Figure 3 shows a numerically computed sharp-
ness functions Λ for different values of α.

Due to the physical limitations of the optical device the width of the point spread function
has a positive underbound: σ > σ0 for a certain positive number σ0. From now on, we consider
a Gaussian point spread function, i.e. β = 1 in (1). A Gaussian function (or a composition of
Gaussian functions) is often used as an approximation of the point spread function for different
optical devices [18, 21, 38], including the electron microscopes [4, 20].

As a special example of a sharpness function, we deal with an object function for which the
power spectrum corresponds to a Gaussian function. Such images often occur in experimental
images from single particles. In our one-dimensional setting we may therefore assume that

|ψ̂(ω)|2 = Ce−ω2γ2

, C > 0, γ ≥ 0. (8)

For γ = 0 in (8), |ψ̂|2 is a constant, which corresponds to the situation when the object is
nearly amorphous [4].

Property 4. For the object function (8) and a Gaussian point spread function it follows

Λ(σ) =
C

4
√
π(σ2 + α2 + γ2)

3
2

.
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Proof. By substituting η =
√

σ2 + α2 + γ2 in the identity
∫ ∞

−∞
ω2e−η2ω2

dω =

√
π

2η3
, (9)

we obtain

Λ(σ) =
C

2π

∫ ∞

−∞
ω2e−(σ2+α2+γ2)ω2

dω =
C

4
√
π(σ2 + α2 + γ2)

3
2

.

We also observe that the location d0 of the maximum of Λ does not depend on α. This, of
course, will be true in general.

Note that for the object function (8) the sharpness function

F (d) := Λ−2/3(d− d0), (10)

is a quadratic polynomial

F (d) = 3

√
π

C2
((d− d0)

2 + α2 + γ2).

It will be shown that in the general case the function F (d) can be well approximated by
a quadratic polynomial for suitable choices of the blur variable α. The quadratic shape of
the sharpness function makes finding its optimum faster and more robust in the real-world
applications.

4.2 Digital image object

In classical signal analysis a discrete signal ψ is modelled as a finite linear combination of delta
functions (cf.[23])

ψ(x) =
K∑

k=1

akδ(x− µk), ak ≥ 0. (11)

In our setting, the finite sequence of numbers ak are the pixel values located at x = µk of
the one-dimensional object function, K is the number of pixels in the image. We consider an
equally distributed set of pixels, so

µk := kτ, τ > 0. (12)

The sampling period τ is known as the pixel width. We define the vector of pixel values

a := (ak)K
k=1. (13)

In this paper we consider the image with a finite number of pixels, i.e. K <∞.

Proposition 1. The power spectrum of the object function (11) can be expressed as

|ψ̂(ω)|2 =
∑

m

ρme
imτω, (14)

where
ρm :=

∑

l

alam+l (15)

are the autocorrelation coëfficiënts of the pixel values.

7



Proof. The Fourier transform of the object function (11)

ψ̂(ω) =
∑

k

ak

∫ ∞

−∞
e−ixωδ(x− kτ)dx =

∑

k

ake
−ikτω

is a periodic function with the period 2π
τ

. Then its squared modulus |ψ̂(ω)|2 is also a periodic
function with period 2π

τ
having the Fourier expansion

|ψ̂(ω)|2 =
∑

m

ρme
imτω,

where

ρm =
τ

2π

∫ π
τ

−π
τ

|ψ̂(ω)|2e−imτωdω =
τ

2π

∫ π
τ

−π
τ

ψ̂(ω)
∑

l

ale
−ilτωe−imτωdω =

τ

2π

∑

l

al

∫ π
τ

−π
τ

ψ̂(ω)e−i(l+m)τωdu =
∑

l

alām+l =
∑

l

alam+l.

From definition (15) it trivially follows that
∑

m

ρm = ‖a‖2
1. (16)

Property 5. The sharpness function Λ can be expressed by means of the autocorrelation
coëfficiënts (15) as follows

Λ(σ) =
1

2π(σ2 + α2)3/2

∑

m

ρm

∫ ∞

−∞
ω2e

imωτ√
α2+σ2 e−ω2

dω. (17)

Proof. The proof is straight forward after we rewrite the sharpness function (6) for β = 1 as

Λ(σ) =
1

2π(σ2 + α2)3/2

∫ ∞

−∞
ω2|ψ̂(

ω√
α2 + σ2

)|2e−ω2

dω.

and substitute the expression for the power spectrum (14).

In the two propositions below we approximate the sharpness function Λ by a function of
the type C

(α2+σ)3/2 in such a way that Λ can be written as

Λ(σ) =
C

(α2 + σ2)3/2
(1 +R(σ)), (18)

where C depends only on the pixel values C = C(a) and a relative error R, which can be small
in typical circumstances. This implies that the sharpness function (10) can be expressed as

F (d) = P(d)(1 + ǫ(d)),

where P is the second order polynomial. For a small error R(σ), the relative error ǫ(d) will be
small: ǫ(d)

.
= −2

3
R(σ).

In practical applications the value of σ is important in relation to the pixel width τ . For
instance if σ ≫ τ , the image is totally out-of-focus (for example, Figure 4(e)). It is often the
case that σ > τ , but not σ ≫ τ . However by controlling the blur α, the value

√
α2 + σ2 can

be much greater than τ , which is important for our error analysis in the next propositions.
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Proposition 2. The sharpness function can be expressed as follows

Λ(σ) =
C1

2π(α2 + σ2)3/2
(1 +R1(σ)), (19)

where
|R1(σ)| ≤ K1

τ√
α2 + σ2

, (20)

and C1, K1 depend only on the pixel values a.

Proof. Splitting e
imτω√
α2+σ2 into (e

imτω√
α2+σ2 − 1) + 1 in (17), one obtains

Λ(σ) =
1

2π(σ2 + α2)3/2
(

∫ ∞

−∞
ω2e−ω2

dω
∑

m

ρm

︸ ︷︷ ︸

C1

+

∫ ∞

−∞
ω2e−ω2

∑

m

ρm(e
imτω√
α2+σ2 − 1)dω). (21)

Applying (16), and (9) for η = 1, one obtains

C1 :=

∫ ∞

−∞
ω2e−ω2

dω
∑

m

ρm =

√
π

2
‖a‖1.

To estimate R1 observe that

|eiη − 1| = 2| sin η
2
| ≤ |η|, η ∈ R, (22)

for η = mτω√
α2+σ2 , and consequentially

∣
∣
∣

∑

m

ρm(e
imτω√
α2+σ2 − 1)

∣
∣
∣ ≤

(∑

m

|m|ρm

) |ω|τ√
α2 + σ2

. (23)

From the estimate (23) and
∫ ∞
−∞ |ω|3e−ω2

dω = 1 it follows that

∣
∣
∣

∫ ∞

−∞
ω2e−ω2

∑

m

ρm(e
imτω√
α2+σ2 − 1)dω

∣
∣
∣ ≤

( ∑

m

|m|ρm

) τ√
α2 + σ2

.

Then the statement of the proposition is straight forward with

K1 :=
2√
π

∑

m |m|ρm
∑

m ρm

in (20).

It follows from the proposition that the sharpness function (10) can approximated by a
quadratic polynomial at any accuracy by increasing the value of the blur α.

Imagine σ ≤ τ . It means that the image is almost in-focus and might be only slightly
unsharp. Figures 4(a)-4(c) show the examples of artificially blurred images. From left to right:
original image, blurred image with σ/τ = 0.5, blurred image with σ/τ = 1. We can hardly
see any difference between original and blurred images. However, if we zoom into the details
(figures 5(a)-5(c)) the difference is visible. This correspond to the fine focussing, which is
considered in the proposition below.
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Original image: σ=0

(a)

σ/τ=0.5

(b)

σ/τ=1

(c)

σ/τ=10

(d)

σ/τ=100

(e)

Figure 4: Artificially blurred images of a gold particle with different values of σ/τ .

Original image: σ=0

(a)

σ/τ=0.5

(b)

σ/τ=1

(c)

σ/τ=10

(d)

Figure 5: Artificially blurred images of a gold particle with different values of σ/τ . The images
are the magnified versions of those shown in Figure 4. Only if we zoom into the small particles
we can see the difference in the image quality for the small values of σ.

Proposition 3. The sharpness function can be expressed as follows

Λ(σ) =
C2

2π(α2 + σ2)3/2
(1 +R2(σ)), (24)

where

|R2(σ)| ≤ K2
α2 + σ2

τ 2
, (25)

and C2, K2 depend only on the pixel values a.

Proof. Splitting
∑

m ρm into ρ0 +
∑

m6=0 ρm in (17) one obtains

Λ(σ) =
1

2π(σ2 + α2)3/2

(

ρ0

∫ ∞

−∞
ω2e−ω2

dω

︸ ︷︷ ︸

C2

+
∑

m6=0

ρm

∫ ∞

−∞
ω2e

− imτω√
α2+σ2 e−ω2

dω
)

,

C2 := ρ0

∫ ∞

−∞
ω2e−ω2

dω =

√
π

2
‖a‖2.

To estimate R2 observe that

∣
∣
∣

∫ ∞

−∞
ω2e−ω2

eiηωdω
∣
∣
∣ =

∣
∣
∣

√
π

4
(2 − η2)e−

η2

4

∣
∣
∣ ≤ 4

η2
, (26)

i.e. substitute η = mτ√
α2+σ2

∣
∣
∣

∫ ∞

−∞
ω2e−ω2

e
imτω√
α2+σ2 dω

∣
∣
∣ ≤ 4

α2 + σ2

m2τ 2
.
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Figure 6: Sharpness function Λ computed for different values of the blur α.

Then the statement of the proposition is straight forward with

K2 :=
8√
π

∑

m6=0
ρm

m2

ρ0

in (25).

Proposition 3 considers the situation of a very fine focussing, which is different from Proposi-
tion 2, where a more general case is considered. However it is shown that in both situations the
sharpness function F can be approximated by a quadratic polynomial with a given accuracy.
This coincides with findings of Property 4 for a different object function model.

5 The autofocus algorithm

It has been mentioned before that the function evaluations in our problem are very expensive
and derivative information is not available. For this reason quadratic interpolation is a conve-
nient approach for computing a quadratic polynomial approximation of the sharpness function.
In our autofocus method we take the minimum of the polynomial as the minimum of the sharp-
ness function. For the given data points Fk := F (dk), k = 1, 2, 3 we interpolate the sharpness
function F by a polynomial P(d) := c0 + c1d+ c2d

2. So,one has

F (d) = P(d)(1 + ǫ(d)),

where P (dk) = Fk, k = 1, 2, 3.
From Proposition 2 we conclude that the error ǫ(d) can be decreased by increasing α.

Theoretically the error of this approximation (cf. Proposition 2) can be made as small as
needed by dramatically increasing the value α. However, if α → ∞ then F (d) → 0 and all
its derivatives, which may causes numerical errors and make it difficult to find the optimum
of the function. Figure 6 shows three sharpness functions computed for different α values. In
the next section it will be shown how the large values of α influence the shape of the sharpness
function computed for experimental through-focus series.

The above observations lead to the following autofocus algorithm:

1. Let d2 be the current defocus control value of the optical device. Choose a ∆d, then
d1 := d2 − ∆d, d3 := d3 − ∆d.

11



Table 1: Overview of carbon cross grating experimental focus series.
N Magnification Pixel width Defocus range Defocus step Number of images

τ [nm] (dN − d1) [nm] ∆d [nm] N
1. 10 000 × 42 36000 2000 19
2. 10 000 × 42 10000 500 21
3. 200 000 × 2.1 20000 1000 21
4. 200 000 × 2.1 10000 500 21
5. 400 000 × 1.05 900 50 19

2. Obtain three images at d1, d2, d3 and compute F1, F2, F3. We set N = 3.

3. We fit N given points with a quadratic polynomial for instance with the least squares
and estimate dN+1, the optimum of the quadratic polynomial.

4. If for the given tolerance dtol ∈ R, |dN − dN+1| < dtol, stop. Else, compute FN+1 =
F (dN+1) and go to the previous step.

The parameter dtol can be determined from the knowledge of the optical device behaviour.
For instance, in electron microscopy the tolerable defocus error is defined as [33]

dtol :=

√

(
w

2
)2 + (

t

2
)2,

where t is the object’s thickness and w is the depth of field defined in [6] as

w :=
τ

φ
,

where φ is the convergence semiangle of the magnetic lens and τ is the pixel width. The
tolerable defocus error can be considered as the lower bound set by the depth of field

dtol =
τ

2φ
. (27)

More steps (N > 3) of the method iterations are required only if a very accurate focusing
is needed. The main goal of this paper is to try to estimate the in-focus image position from
three or four recorded images. In the step three different numerical method could be used. The
choice of the method is not quite significant for N = 4.

6 Numerical experiments with STEM images

Ten experimental through-focus series are obtained with the FEI STEM microscope. Two
different samples are used: a carbon cross grating sample and a gold particle sample. Carbon
cross grating is the standard sample for STEM calibration. The gold particle sample is a
typical image example, used for particle analysis applications. The size of each image in the
series is 512× 512 pixels. The series are obtained at different magnifications and with different
defocus steps. Figures 7-8 show the first image in the series, the in-focus image, and the
computed sharpness function values plotted versus the values of defocus control. Each of the
figures represent five series, described in the tables 1-2 (carbon cross grating sample and gold

12
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Figure 7: Sharpness functions computed for experimental STEM focus series of carbon cross
grating sample. From top to bottom: The first image in the series, in-focus image from the
series, sharpness functions with and without artificial blur plotted versus defocus. From left to
right: Five different experimental focus series.
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Figure 8: Sharpness functions computed for experimental STEM focus series of gold particles
sample. From top to bottom: The first image in the series, in-focus image from the series,
sharpness functions with and without artificial blur plotted versus defocus. From left to right:
Five different experimental focus series.
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Table 2: Overview of gold particles experimental focus series.
N Magnification Pixel width Defocus range Defocus step Number of images

τ [nm] (dN − d1) [nm] ∆d [nm] N
1. 10 000 × 42 31500 450 70
2. 10 000 × 42 4704 96 50
3. 56 000 × 7.5 800 16 51
4. 56 000 × 7.5 5600 80 71
5. 115 000 × 3.75 2800 40 71

particles sample correspondingly). The line numbers in the tables N=1,2,3,4,5 correspond to
the columns of the figures 7-8 (from left to right). For each series two functions are computed:
with α = 0 (dotted line) and with α > 0 (dashed line). The values of both functions are scaled
between 0 and 1. Computed derivative-based sharpness functions with α > 0 can accurately
be approximated with a quadratic polynomial.

The series shown in the second columns of figures 7-8 are recorded with a small defocus
step. The qualities of the first image in the series and the in-focus image do not differ so much:
We can see the details on the first images from the series, only the edges are a bit unsharp. It
is shown in tables 1-2 (N=2) that these series have relatively small defocus ranges and defocus
steps for particular magnification. For these cases the sharpness function has a shape nearly
quadratic even with α = 0, as follows from Proposition (3). The sharpness function shape is
different in a broader defocus range for the same sample at the same magnification (Figure 7,
first column and Figure 8, first column). The functions with α = 0 have shapes similar to a
Gaussian, but not a quadratic polynomial. In this case the functions have a nearly quadratic
shape after applying the blur α to the images.

The fourth series of carbon cross grating (Figure 7, fourth column) is the only experimental
series recorded with the presence of astigmatism aberration. For other experimental series
astigmatism of the magnetic lens has been corrected before the recording. The lens with
astigmatism is not perfectly symmetric and as a consequence has more than one focal point
[22], which results in the asymmetry of the point spread function. Consequentially the recorded
image cannot be totally sharp. The sharpness function might have local optima due to the
presence of astigmatism [4, 28]. Two local minima can be seen in the plot. They disappear
after applying the artificial blur.

In the last experiments (figures 7-8, fifth column) the magnification of the microscope is
higher and as a consequence the influence of noise on the image quality increases. We can see
that in these cases the blur α helps to cope with the noise in the sharpness function.

Figure 9 shows sharpness function F computed for different values of the blur α for ex-
perimental through-focus series of gold particles (N=1,2). For the large α = 20 the function
becomes noisy and does not provide useful information anymore. It follows that for the proper
work of the method we have to make a proper choice of the value α, which is not too large, but
also not too small. This choice might depend on the sample geometry as well as on the defocus
range (how far away we are actually from the ideal d0). The choice does not have to be made
every time, but once for a particular application, where we deal with the class of geometrical
objects. For all the runs of the method within the particle analysis application described in the
next section the value of α if fixed α = 3. The choice is made experimentally by computing
the sharpness function for experimental data and fitting it with a quadratic polynomial. The
value of α corresponding to the smallest approximation error is chosen.
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Figure 9: Sharpness function F computed for different values of the blur α for experimental
through-focus series of gold particles (N=1,2), Table 2.

7 Application

The method is tested in a prototype FEI Tecnai F20 STEM electron microscope with the help
of Java-based experimental platform (called EXPLA), which consists of a core that connects to
the TEMScripting interface for FEI microscope control, and an application control framework
[28]. For our experiment the autofocus method is implemented in Matlab V7.5 (R2007b). The
method is integrated with a particle analysis application. The goal of this application is a
statistical analysis of the particle distribution (particle locations and sizes). During the appli-
cation run the images for further analysis are recorded at different positions and magnifications.
During the run the position of the ideal defocus d0 changes as the result of machine controls
changes (stage position and magnification), as well as sample and environment instabilities. If
the image is out-of-focus, the particle analysis software might give errors. For this reason it is
important to run the algorithm of automated defocus correction with a certain periodicity in
time as a part of particle analysis automated application.

Four examples of application runs are shown in Figure 10. The images of gold particles are
focussed automatically. First two columns show autofocussing with three images, and the third
and the fourth columns show autofocussing with four images. The recording of the fourth image
might improve the final image quality (the sharpness function has a lower value). However,
the improvement is not that strong. The difference between the fourth and the fifth resulting
images in this experiment is not distinguishable by a human eye.

8 Discussion

The new method for rapid autofocussing is developed and tested for the reference case of scan-
ning transmission electron microscopy. The tests are performed with the standard calibration
sample and the particle analysis application. The algorithm is based on the general assump-
tions, and thus could be considered for other applications, such as electron tomography [33], as
well as for other types of microscopes and different optical devices.

It has been proven that the derivative-based sharpness function is strictly monotone and has
a unique optimum at the in-focus image for the noise-free image formation. This has already
been used before on heuristic grounds in practical applications. The assumption of a Lévi point
spread function is more general than a Gaussian point spread function used in a number of
literature sources [4, 21, 38]. In a more general case the point spread function of a scanning
transmission microscope could be modelled via the aberration function [13]. This assumption
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Figure 10: On-line experiment: Image defocus improvement via interpolation the sharpness
function by a quadratic polynomial.
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makes the model difficult for analysis. In general case the sharpness function is not a quadratic
polynomial. However, it has been shown that for the proper choice of the artificial blur α it
can accurately be approximated by a quadratic polynomial. This provides the possibility of
increasing the speed of the autofocus procedure.

The influence of noise, which is always present during the image formation in optical devices,
on the sharpness function is not studied in this paper. We can see from numerical experiments
with the real data as well as from the different papers [16, 28] that the noise in the image
formation might result in the noise in the sharpness function, thus the function might obtain
local optima and the statement of Property 1 is not true anymore. However, it is clear from
numerical experiments with the real data and the on-line application runs that the sharpness
function is nearly a quadratic polynomial for a reasonable amount of noise (the machine settings
for recording the images are chosen in the same way as for the real-world applications). The
artificial blur parameter α provides image smoothing that results in the smoothing of the
sharpness function. The quantification of the influence of noise and the automated optimal
choice of parameter α could be a topic of a research study in future.

Astigmatism aberration of the optical device lens results in the point spread function, which
is not rotationally symmetric. This phenomenon has not been studied in this paper, because
we have considered only one-dimensional setting. The presence of the astigmatism aberration
might result in the multiple optima in a sharpness function [4, 27]. In one of the numerical
experiments in this paper this effect has been shown. The influence of astigmatism on the
sharpness function could be a topic of the future research. Moreover, by considering two-
dimensional case the method might be extended to the simultaneous automated defocus and
astigmatism correction method.

Appendix A

In this appendix we provide one more representation of the sharpness function with a different
error estimates, which is controlled by σ

α
.

Proposition 4. The sharpness function

Λ(σ) =
1

2π(σ2 + α2)3/2

(∫ ∞

−∞
ω2|ψ̂(

ω

α
)|2e−ω2

dω +R3(σ)
)

, (28)

where
|R3(σ)| ≤ (

∑

m

|m|ρm)
τ

α
(
σ

α
)2.

Proof. It is clear that in (28)

R3 =

∫ ∞

−∞
ω2(|ψ̂(

ω√
α2 + σ2

)|2 − |ψ̂(
ω

α
)|2)e−ω2

dω =

∫ ∞

−∞
ω2e−ω2

∑

m

ρm(e
imτ ω√

α2+ω2 − eimτ ω
α )dω.

Using (22), we obtain

|R3| ≤ 2

∫ ∞

−∞
ω2e−ω2

∑

m

ρm

∣
∣
∣ sin

mτ

2
ω(

1

α
− 1√

α2 + σ2
)
∣
∣
∣dω.
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It is valid that
1

α
− 1√

α2 + σ2
=

1

α
√

1 + (σ
α

)2

(σ
α

)2

1 +
√

1 + (σ
α

)2
≤ σ2

α3
.

Therefore,

|R3| ≤
σ2τ

α3

∫ ∞

−∞
ω3e−ω2

∑

m

|m|ρmdω = (
∑

m

|m|ρm)
τ

α
(
σ

α
)2.

Appendix B

In the current appendix a different representation of the sharpness function is shown. The two
corollaries below do not provide the prove, but give an intuitive feeling about the quadratic
approximation of the sharpness function. They lead to the same conclusions as the propositions
3-2, which are more precise and contain the error estimates.

Property 6.

Λ(σ) =
1

8
√
π(α2 + σ2)3/2

∑

m

ρm(2 − m2τ 2

α2 + σ2
)e

− 1
4

m2τ2

α2+σ2 . (29)

Proof. Using the identity

1

2π

∫ ∞

−∞
ω2e−ω2

eiηωdω =
(2 − η2)e−

η2

4

8
√
π

,

we obtain (29) straight forward from (17).

The same representation as (29) is obtained via the matrix form in the theorem below.

Theorem 7. For the object function (11)-(12) with a vector of amplitudes (13) and a lin-
ear image formation with a Gaussian point spread function the sharpness function (3) can be
expressed as

Λ(σ) = (Aa, a), (30)

where

A := (Ak,l)
K
k,l=1, Ak,l =

1√
2π(σ2 + α2)3/2

(1 − τ 2(k − l)2

σ2 + α2
)e

− τ2(k−l)2

2(σ2+α2) .

Proof. We express ∂
∂x

(ψ ∗ gσ ∗ gα) as a linear combination

∂

∂x
(ψ ∗ gσ ∗ gα) =

∑

k

akg
′
k, where g′k :=

∂

∂x
g√σ2+α2(x− µk),

Then the norm can be expressed as

‖ ∂
∂x

(ψ ∗ gσ ∗ gα)‖2
L2

= ‖
∑

k

akg
′
k‖2

L2
= (

∑

k

akg
′
k,

∑

l

alg
′
l) =

∑

k,l

(g′k, g
′
l)akal = (Aa, a),
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Figure 11: Density plots of matrix A computed for
√
σ2 + α2 = 1 and the values τ =

10, 1, 0.1, 0.01 (from left to right).

where
Ak,l = (g′k, g

′
l).

For the Gaussian function we have ∂
∂x
g = − ∂

∂µ
g. Hence,

(g′k, g
′
l) =

∂

∂µk

∂

∂µl

∫ ∞

−∞
g√σ2+α2(x− µk)g√σ2+α2(x− µl)dx,

which according to the Gaussian product property is

(g′k, g
′
l) =

∂

∂µk

∂

∂µl
g√σ2+α2(µk − µl) =

1

σ2 + α2
(1 − (µk − µl)

2

σ2 + α2
)g√σ2+α2(µk − µl).

Further, for (12)

Ak,l =
1√

2π(σ2 + α2)3/2
(1 − τ 2(k − l)2

σ2 + α2
)e

− τ2(k−l)2

2(σ2+α2) . (31)

It follows from Theorem 7 that matrix A is symmetric, Toeplitz matrix, and it is positive-
definite. The last property is a consequence of the fact that sharpness function Λ is defined as
a norm. Hence, (Aa, a) ≥ 0 for any a. We denote Ak := Ak,1. We rewrite (30) as

Λ(σ) =
∑

k

∑

l

akalAk,l = KA1

∑

k

a2
k + 2

N∑

n=2

(K + 1 − n)An

∑

k

akak+1−n.

In the following corollaries we consider two cases: 1) The matrix A is close to diagonal; 2)
the matrix A is close to constant.

Corollary 8. For
√
σ2 + α2 ≪ τ the matrix elements Ak,l

.
= 0 for k 6= l, thus A

.
= 1√

2π(σ2+α2)3/2 I,

where I is identity matrix. As a consequence

Λ(σ) = (Aa, a)
.
=

1√
2π(σ2 + α2)3/2

‖a‖2
2,

or for (10)

F (d)
.
= ((d− d0)

2 + α2) 3

√

2π‖a‖−4
2 (32)

is a quadratic polynomial of defocus d.
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This situation is illustrated in Figure 11. The density plot on the left is computed for√
σ2 + α2 = 1 and τ = 10. The resulting matrix is nearly diagonal dominant. It means that

close to the optimal defocus d = d0 for small or zero α the sharpness function F can accurately
be approximated by a quadratic polynomial.

Corollary 9. For
√
σ2 + α2 ≫ τ the matrix elements Ak,l

.
= 1√

2π(σ2+α2)3/2 , and as a consequence

Λ(σ) = (Aa, a)
.
=

1√
2π(σ2 + α2)3/2

‖a‖2
1,

for (10)

F (d)
.
= ((d− d0)

2 + α2) 3

√

2π

‖a‖4
1

(33)

is a quadratic polynomial of defocus d.

This situation is illustrated in Figure 11. The density plot on the right is computed for√
σ2 + α2 = 1 and τ = 0.01. In this case the matrix could be approximated with a constant

and the sharpness function with a quadratic polynomial.
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