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Adaptive control of specially structured Ma!(Qv ch,ilns

by

K.M. van Ree

O. Summary

We consider Markov decision processes where the state at time n+ 1 is a func

tion of the state at time n, the action at time n and the outcome of a ran

dom variable Yn+l . The random variables Yl'Y2 'Y3"" are independent and

identically distributed with an incompletely known distribution. The class

of problems considered includes the linear system with quadratic cost and a

simple inventory control model. The minimal Bayesian expected total cost is

detennined or approximated. The strategy that takes, at each time, the ac

tion that is optimal if the estimated distribution is the true distribution,

is studied.

1. Introduction and preliminaries

Consider a Markov decision with state space X
N

1 and action spaceprocess cR

D c
N2

The cost function Borel measurable and boundedR • k: X x D-*R 1S from

below. The state of the system at time n, X is determined by a measurable
n

function F:

X = F(X I'U I'Y)'n n- n- n n

where Un_ 1 1S the action at time n- 1 and {y , n = 1,2,3, ••• } are independent
n N

and identically distributed random variables in R 3, not controllable by the

decisionmaker. At time n Y becomes visible to him. The
n

n = 1,2,3, ..• } is called the external process. The

process {y ,
n

distribution of Y is
n

not completely known: Y has a probability density p(>le) with respect to a
n

a-finite measure m where e is the unknown parameter belonging to the parame-

ter space 8~ a completely separable metric space endowed with the Borel a

field H. Let IT denote the set of all strategies which are based on the visi-

ble histories~ Le. for IT ( r: the action Un may depend on XO"" ,Xn,UO""

""Un-I'Y1""'Yn (see van Ree (1976A) for a fonnal definition).

For each x E X, IT E IT and 8 E e we have a random process {(X ,U ,Y +1)'n n n
n = O,I,2, ••• } and a probability measure pIT e on the sample space of the pro

x,
cess. (The expectation with respect to this probability is denoted by E

IT
8')x,
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Future cost are discounted by B E [0,1). The expected total cost v(x,8,TI),

x e X, e E 8, TI E IT is defined by

00

v(x,e,n) := ETI [L Snk(X,V)].
x,O ncO n n

N3We assume that for each y E R p(YI,) is H-meastlrable. Let Wbe the set of

all probability measures on (8,H) and let W be the Borel a-field generated

by the weak topology on W. We identify each e E 8 with the distribution in W

that is degenerated in e.
In the Bayesian approach we fix q E Wand we assume that the parameter 8 is

a random variable Z with prior distribution q on 8. After observing Y
j
""Yn

we have the posteriol'l distribution Q on W:
n

1• 1• Qn(B) := Pq[Z E B I Y1, •.• ,YnJ, B E H, n

QO := q

1,2,3, ...

where P is defined by
q

F [Z t: B, Y
1

EC1, ... ,Y EC J ;=
q n n

rj q(d6):F
6

[Y 1 E C1 , ••• 'Yn E CnJ

B

for B E Hand C. a
~

. n
Fe ~nstead of Px,6

process. Sometimes

N
3Borel subset of R , ~ 1,2, •.• ,n, (Nbte that we write

when we are dealing with the external process or the Bayes

we use P[ I QO = qJ := P q[ J).

We call the process {Q , n = O,1,2, ••• } the Bayes process. We first intro-
n N

d . 3uce some notat~ons: for y E R , cp EW

1.2. p(y,cp) := J p(yI6)cp(d8)

and if p(y,cp) > 0:

1.3. Ty(CP)(B) := f P(yI6)CP(d6).{P(y,cp)}-1, B E H •
B

Assume that for all cp E W there is an stationary optimal strategy if pC',cp)

is the density of the external process; i.e. there is for each cp E W a func-

tion f X ~ D such that it is optimal to choose U f (X ), n = 0,1,2, .•.
cp n cp n
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To control the process when the parameter is unknown one could use the stra

tegy, given by Un = f
Q

(Xn). We call this strategy the Paycs:"an equ/L'olent
n

ruLe. In fact p(',Q ) is the Bayes estimator of the density of the external
n

process at time n. If the controller uses the Bayesian equivalent rule, he

determines at time n: p(',Q ) and the optimal control for the model with this
n

density. Then he uses this control for one time period. In [Mandl (1974)J

this strategy 1S examined with respect to the average cost criterion and

more general estimation procedures. In this paper we study this strategy

with respect to the Bayes-ian expected total cost:

r
V(X,q,1T) := J v(x,e,rr)q(d8) •

We show that for the linear system with quadratic cost the Bayesian equ1va

lent rule is optimal (section 2) and also for models where k 1S separable,

i.e. k(x,u) = a(x) + b(u) and where F(x,u,y) does not depend on x (section

3). Finally we consider in section 3 a simple inventory control model (with

out fixed order cost) and we give approximations for the value of the Baye

sian equivalent rule.

We conclude this section with some preparations. We consider the Bayesian

decision problem for all prior distributions q E W simultaneously. The value

function v: X x W+R is defined by

1.4. v(x,q) := inf v(x,q,n) •
TId!

The Bayesian decision problem can be reduced to a dynamic program with state

space X x W, action space D and costfunction k(x,q,u) := k(x,u). See [Rieder

(1975)J for a proof of this statement if F(x,u,·) is a one to one mapping

and in [Van Hee (1976A)J this is proved for the general situation in a simi

lar way.

For this dynamic program we define the standard operators: Let g: X x W+R

be such that the following expression is defined for all fED

1.5. (Lfg) (x,q) :=k(x,f(x,q» +B f<s(F(X,f(X,q),y),Ty(q»)p(y,q)m(d Y)

where D := {f: X x W+ D I f measurable}

1.6. (Ug)(x,q) := inf (Lfg)(x,q) .
fED
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A strategy TI ~ IT such that U = f(X ,Q ) for all n O,I~2, •.• ~s called
n n n

stationary, if fED.

For each q E W the Bayes process forms a (stationary) Mcrkov chain and if

the right-hand side is defined we have:

(see [Van Hee (1976A)J).

Lemma 1.1. Let f: 8 +R be bounded and measurable. We extend f to a function

on Wby

f(q) := f f(6)q(d8), q E W .

For m snit holds that E[f(Qn) I ~] = f(~)

Proof. First let

N
f(6) := L akl~ (8), ~ E H, k

k=1 --k

Then it holds that

N
f(q) = L akq(Ak)

k=1

and

I, .•• ,N.

N
L

k=l

(see [Van Hee (1976A)] for the last equality).

Hence the statement is verified for step functions. Using standard arguments

it is easy to derive the desired result. 0

2. Linear systems with quadratic cost

In this section we use ideas and concepts which are familiar ~n the theory

of linear systems (see [Kushner (1971), chpt. 9J). The model specifications

are as follows.
N MThe state space X = R , the action space D = R the external process takes

on values in RN. The cost function is defined by

k(x,u) := x'Rx + u'Su

where R is a nonnegative definite N x N matrix and S a positive definite
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M x M matrix (x' is the transpose of x). The transition mechanism is given

by F(x,u,y) := Ax + Bu + y where the N x N matrix A and the N x M matrix B

satisfy the controllability assumption:

2.1. N-I
rank[B,AB, ••• ,A BJ = N •

the matrices M and E :
q q

:= J ~e(i)~e(j)q(de);

For q E Wwe define the vector ~ and
q

~q(i) := J YiP(y,q)m(dy); Mq(i,j)

Zq(i,j) := J YiYjP(y,q)m(dy)

(for y (RN y. ~s the i-th component of y). Note that L - M ~s the cova-
~ q q

riance matrix of Y averaged over 8 with q. Throughout this section we ag
n

sume that

2.2. J ly·y·!p(yIS)m(dy)
~ J

is bounded over a. Hence, ~ , M and L are bounded on W.
q q q

Lemma 2.1. For q E W it holds that

i)

ii)

J ~T (q)(i)p(y,q)m(dy) =
y

J Yj~T (q)(i)p(y,q)m(dy)
y

~ (i) •
q

=M (i,j).
q

Proof.

~T (q)(i)p(y,q)
Y

= p(y,q) f z.{J p(zl~)p(~le) q(dS)}m(dz)
~ P y,q

Hence

z,p(z!S)p(YIS)m(dz)}q(d8)
~

and
J ~T ( )(i)p(y,q)m(dy)

y q
f.l (i)

q

f Yj~T (q)(i)p(y,q)m(dy ) = Iff Yj Z i P(zls)p(y!e)m(dz)m(dy )q(d8)
y

= I {J YjP(y!S)m(dY)}.{! ziP (zI8)m(dz)}q(d8) = Mq(i,j) •

(Note that all changings of integration order are allowed by 2.2.) o
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The next lenuna describes the behavior of the U-operator defined in 1.6. The

proof proceeds in a familiar way (see [Kushner (1971), section 9.2.2J).

Lenuna 2.2. Let

f(x,q) := x'Px + x'L~ + H(q), x E X, q E W ,
q

where P is a nonnegative definite matrix, LaN x N matrix and H a bounded

continuous function on W, then

(Uf)(x,q) = x'Px + x'L~ + H(q), x E X, q E W
q

where

P := FI(p) := R + SA'PA - SZA'PB(S + SB'PB)-l B'PA

2.3. L := FZ(L,P) :=2SA'P + SA'L - S2A'PB(S + SB'PB)-I (ZB'P + B'L)

:= F
3

(H,q,P,L) :=-!SZ].l' (ZPB +L'B)(S + I3B'PB)-1 (2B'P +B'L)~
q q

+ 13 JH(Ty(q))p(y,q)m(dy) + S trace(F}.;q) + S trace(LMq) .

And the minimizing control u(x,q) is

u(x,q) =-13(S + I3B'PB) -IB,PAx - S(S + I3B'PB) -I{B'P + ~B'L}~ •
q

Remark. Note that F3(H,',P,L) ~s bounded and continuous function on W since

~ , Land M are and because T (.) is continuous.
q q q y

Proof. By some evaluations, using lemma 2.1 we get

(U£) (x,q) = inf{u' (S + SB'PB)u + (2Sx'A'PB + ZB~'pB + Sfl'L'B)u} +
u q q

+ x' (R + 13A'PA)x + 13x' (ZA'P + A'L)fl +
q

+ B f H(T (q))p(y,q)m(dy) + i3 trace(Pfl ) + S trace(LM ) .y q q

Since P is nonnegative definite and S is positive definite we have the exis

tence of (S + SB'PB)-I. Hence by a standard argument for the minimization of

quadratic forms we have the desired result. o

Now we shall consider the sequence of successive approximations

vn(x,q) := (UnO)(x,q) and we define sequences of N x N matrices {Pn '

n = O,I,2, .•. },{Ln , n = 0,1,2, .•. } and a sequence of bounded continuous func

tions on W: {Hn , n = O,I,Z, ... }, Po := 0, LO := 0, HO := ° and for n=O,I,Z, ..
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Pn+l := F1(Pn )

2.4. Ln+1 := F2 (L ,P )n n

Hn+1 := F3 (H ,', P ,L ) .n n n

It ~s a direct consequence of lemma 2.2, that

v (x,q) = x'P x + x'L ~ + H (q) •n n n q n

In lemma 2.3 we prove that

nite matrix p* and that L
n

also be found in [Kushner,

Lemma 2.3.

P converges, elementwise, to a nonnegative defi-
n . * *converges to matruc L • The proof of P -+ P can

n
1971, section 9.2.3J.

i) Pn converges to

ii) Ln converges to

a nonnegative definite matrix p*, satisfying p*
. * . . * F (* *)a matr~x L , sat1sfylng L = 2 L ,P •

*= F
1

(P ).

Proof. Since P and L do not depend on the external process their limitingn n
behavior is the same if we assume Y := ~ ERN, i.e. Y has a degenerated dis-

tribution in ~ for all e E 8. Now we have a deterministic linear system. The

value of this system is denoted by vex) and the sequence of successive appro

ximations by v (x). First we show that for this system the value is finite.n
Let x = X o be the starting state. Note that

N- 1 N- I k N-j k
A Xo + I A BUN- 1- k + I A ~

k=O k=O

hence

x 
N

By the controllability assumption 2.1 we may choose actions uO, ... ,uN_ 1 such

that xN = 0 and so there is a strategy TI such that x
kN

= 0 for k=1,2,3, •..

Since we have a discount factor 0 < S < 1 we see that the total cost of TI 1S

finite. Hence vn(x) is bounded in n, and so we have vn(x) converges for each

x. Note that

v (x) = x'P x + x'L ~ + H
n n n n

where H is defined in 2.3 and 2.4 for this special external process. Note
n

that H does not depend on x.
n
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If w = 0 we have x'P x converges for
n

(elementwise). Since v (0) converges
n

verges for all x and ~. Therefore L
n

nuous functions elementwise,we have

all x, which implies that P converges
n

we have that H converges. So x'L ~ con-
n n

converges. Since F1 and F2 are conti-

* * * * *F1(P ) = P and F2 (L ,P ) = L • 0

In lemma 2.4 we show that H (q) converges in general.
n

Lemma 2.4. H converges to a bounded and continuous function H* satisfying
n

* * *F3 (H ,', P ,L )

Proof. Let

b (q) := -!132~'(2P B+L'B)(S+6B'P B)-1(2B'P +B'L)]1n q n n n n n q

+ 6 trace(P L ) + 6 trace(L M ) •n q n q

Note that b (q) converges and call b(q) := lim b (q). We have, ~n terms of
n n

the Bayes process:

Hn+1(q) = bn(q) + 6 f Hn(Ty(q»p(y,q)m(dy)

= b
n

(q) + SE[H
n

(Ql) I QO q].

Iterating this equation yields

Hn+ 1 (q) = q]

s~nce the Bayes process ~s a Markov chain and HO = O. Note that bn(q), as

function of nand q, is bounded since uLand].l are. Hence for all € > 0.l.n' n q
there is a N such that

By the dominated convergence theorem we have for all k

lim E[bn-k(Qk) I QO = q] = E[b(Qk) I QO = q] •
n-+oo

Hence

lim H (q)
n

00

I S~[b(Qk) I Qok=O
*q] =: H (q) •
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* * * *H = F
3

(H ,',P ,L ).
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b (q) + SE[H* (QI) I Q
O

= q1 whl eh shows that

l~

We resume the following definitions, given ~n lemma 2.4:

b(q) 2 * * * -1 * *:= -is ~~ (2P B + L B) (S + I3B'P B) (2B'P + B'L )~q +

2.5. + 13 * *trace(P 1": ) + 13 trace(L M )q q
co

* L 13 rl:; [b (Q ) IH (q) := QO = qJ
n=O n

The next theorem is one of the main results of this section. It gives an ex

plicit expression for the optimal strategy and for the value function.

In fact the optimal strategy is a linear control (see [Kushner (1971)J) and

it 1S a Bayesian equivalent rule also.

Theorem 2.5.

i) The value function satisfies

* * *v(x,q) = x'P x + x'L ~ + H (q) •q

ii) The optimal strategy chooses in state (x,q) the action

* -1 * * -1 * *u(x,q) = -S(S + SB'P B) B'P Ax - S(S + I3B'P B) (B'P + !B'L)~ ,
q

* *(where P and L are defined in lemma 2.3).

Proof. It follows from lemmas 2.2, 2.3 and 2.4 that

and also

vco(x,q) * * *:= lim v (x,q) = x'P x + x'L ~ + H (q) ,
n+co n q

v (x,q) = (Uv )(x,q) = (L v )(x,a)
00 co Uoo '"

where u represents the stationary strategy defined ~n 2.6. Hence by [Schal

(1975), thm. 5.3.1J we have the desired result. iJ

In the next theorem we compare the value of our Bayesian control model with

the values of two other models.

First we consider the model where the parameter e is chosen according to the

probability q, but before the controller starts to control the system he will

be informed about the chosen value e. Hence his expected total cost will be:
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f v(x,e)q(de).

On the other hand we consider the model with a completely known exterlal

process with probability density

J p(·le)q(de)

with respect to m. We call the value of this process w(x,q). With these pro

cesses we can give bounds for the extra cost we have by the lack of informa

tion over the parameter.

Theorem 2.6.

J v(x,e)q(de) ~ v(x,q) ~ w(x,q)

ii) I ~ s J b(e)q(de) ~H(q) 5: ~<.:~

iii) v(x,q) - J v(x,e)q(de) ~ ~ S{b(q) - f b(e)q(de)} .

Proof. Since

v(x,q) inf J v(x,e,TI)q(de) ~ J inf v(x,e,TI)q(de)
TIED TIETI

f v(x,e)q(de).

The left-hand side of has been proved. Note that

* * * -I * *G := (2P B + L B)(S + SB'P B) (2B'P + B'L)

1S positive definite since (S + SB'P*B) is. Hence G can be written as C'AC

where C is orthogonal and A is a diagonal matrix with nonnegative entries

AI, ••• ,AN• And therefore

]1'G]1 =
q q

N

I
i=1

N
A.{ L C.. ]1 (i)}2

1 . I 1J q
J=

Hence, by Jensen's inequality:

N N
(j ) ] }2Eq[]1~G]1Qn ] ~ L A.[E { L c.. ]1Q

i=l 1 q. 1 1J nJ=

and by lenuna 1.1

N N
}2E [jJQ G]1Q ] ~ L A.{ I c.. jJ .

q n n i=1 1
j = 1 1J q
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Note that

and that

trace(P*L ) = I I P*(i,j)f {f y.y.p(y!S)m(dy)}q(dS) •
q i=1 j=1 ~ J

Hence by lemma 1.1

* * *E [trace (L M
Q

) J = trace (L M ) and E [trace (p L
Q

) J
q n q q n

Therefore we have E [b(Q )J ~ b(q). It is easy to verify that
q n

*= trace(P L )
q

w(x,q)

and that

J v(x,S)q(d8) =
r b(S)q(d8)

x'P*X+X'L\l +..J_~_-:::-_.
q 1 - 13

This implies the assertions of the theorem.

3. Bayesian equivalent rules and a simple inventory model

o

In this section we consider an adaptive control problem with the property

that the Bayesian equivalent rule is optimal. We apply results for this mo

del to a simple inventory control problem afterwards.

The model we are dealing with here is specified by:

3. I. i) D is compact.

ii) k(x,u) := a(x) + b(u) where a and b are lower semi continuous and a is

bounded from below.

iii) the transition function F(x,u,y) does not depend on the first coordina

te and is continuous 1n the second. (We shall write F(u,y) instead of

F(x,u,y).)

iv) J a(F(u,y»p(yle)m(dy) 1S bounded over B for all u E D.

It is easy to verify that this model satisfies the conditions C and W of

[Schal (1975)J which implies that:

3.2. i) v (x,q) := (UnO)(x,q) converges to the value function v (pointwise).
n

ii) There is an optimal stationary strategy.



- 12 -

Theorem 3.1. The value function v of the model given by 3.1 satisfies

v(x,q) = a(x) + L S~[d(Qn) I QO = qJ
n=O

where

d(q) := inf{b(u) + S f a(F(u,y»p(y,q)m(dy)}
uED

is bounded and continuous on W. The following holds: there is a measurable

function s: W -+ D such that the optimal strategy chooses in state (x,q) the

action u(x,q) = seq). Since

Proof. Since

b(u) + f a(F(u,y»p(y,q)m(dy)

is lower semi continuous and 3.1iv) we have that d is bounded and continuous

on W. Let e := min{b(u)}. Then since vO(x,q) = a for all x E X, q E W we have
UED

vI (x,q) a(x) + e. With induction we prove that

v (x,q) = a(x) +
n

n-2
~ k ~1
L S-E[d (Qk) I QO = qJ + S e.

k=O

Assume (*) holds for n. Then

Using the Markov property of the Bayes process we have the assertion. By 3.2

we have an optimal stationary strategy and by considering the optimality

equation it is easy to see that the optimal action in (x,q) can be chosen

independently of x. 0

Remarks.

I. The optimal strategy ~s a myopic rule s~nce the optimal strategy for the

n-horizon problem is the same for all n ~ 2.

2. Note that v(x,q) is a separable function, i.e. v(x,q)

h (q) : = E[I Snd (Qn) I Qo = qJ •
n=O

a(x) + h(q) where

In fact this property guarantees that the Bayes equivalent rule is opti

mal in more general models.

3. We call seq) the aontrot point.
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In the next theorem we have bounds for the value function in a way similar

ly to theorem 2.6.

Theorem 3.2.

a(x) + (I -6)-1 J d(8)q(d8) s v(x,q) s a(x) + (I -S)-Id(q) •

Proof. Since

E [d(Q )J s inf E [b(u) + s f a(F(u,y»p(y,Q )m(dy)]
q n uED q n

we have by lemma 1.1

E [d(~)J s inf{b(u) + 6 f a(F(u,y»)p(y,q)m(dy)} = d(q) •
q UED

This gives the right-hand inequality; the left-hand side proceeds analogous

ly to theorem 2.6i). 0

Now we shall consider an inventory control model which is narrowly related to

models of the type described in 3.1: the only difference is that the actions

allowed in state x depend on, x.

We call this model (A). Interesting results for this model are given by

[Scarf (1959)J, [Iglehart (1964)J and [Rieder (1972)J.

Model (A):

i)

ii)

iii)

iv)

v)

X := {x E R I x s M}, M > 0 is the capacity.

D := {u E R I x sus M}, u is the inventory after ordering.
x

the external process is one dimensional and represents the demand:

p(Yle) = 0 for y s 0 for all e E e and sup ~e < 00,

BEe
k(x,u) := hx+ + px + c(u - x) where h is the holding cost~ p the shor-

tage cost and c the production cost~ h,p,c > 0 and S(p + c) > c.

F(x,u,y) := u - y, U ED.
x

We call the value function of model (A): v. We shall compare model (A)

with model (B), which model only differs from (A) by its action space:

Model (B): D := {u E RiO s u :::; H}, further specifications as in model (A),

The value function for model (B) will be denoted by w. The control point seq)

for model (B) can be chosen as the minimum of M and the smallest u ~ 0 such

that
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U-€ I-S

J
p - - c

lim p(y,q)m(dy) ~ ~S ~

O p + n
€-t 0

u

f p(y,q)m(dy) •

o

Note that s (q) > 0 for all q E: W, since S(p + c) > c. We shall cons ider for

model (A) the strategy that orders until seq) if possible, i.e.

3.4. u(x,q) := max{x,s(q)}

the value of this strategy is denoted by v.

If we are dealing with a known parameter 6 this strategy u(x,6) = s(6) is

optimal for model (A), and it ~s the Bayesian equivalent rule for the adap

tive control of model (A). It is our goal to compare v, wand v. First we

need some preparations.

Lennna 3.3.

i) There is a measurable function t: W + X such that there ~s an optimal

strategy for model (A) satisfying:

u(x,q) = max{x,t(q)} •

ii) The control point seq) for model (B) satisfies

Proof.

seq) ~ t(q) for all q E W .

i) See [Rieder (1972), tho 7.2 and tho 7.3J.

ii) Let f(x,q) := v(x,q) - {hx+ + px - cx}.

By the optimality equation for model (A) we have

f(x,q) = inf {cu + S Jv(u-y,T (q»p(y,q)m(dy)}.
M~u~x y

Therefore f(.,q) is nondecreasing for all q E: W. Note that f satisfies:

(*) f(x,q) = inf {cu+(3 Jr [h(u-y)++p(u-y)--c(u-y)Jp(y,q)m(dy) +
x~u~M

+(3 f f(u-y,Ty(q»p(y,q)m(dy )} .

Note that, by considering model (B),

cu + S J [h(u-y)+ + p(u-y)- - c(u-y)Jp(y,q)m(dy)

~s convex and attains a minimum on [O,MJ in seq) and note further that
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s f f(u-y),Ty(q»p(y,q)m(dy)

is nondecreasing. Hence the minimizer of (*),t(q),must satisfy t(q) ~ s(q).D

Lemma 3.4. For each strategy TI for model (A), which has the property that

a ~ u ~ M it holds that for some 6 > 0:
n

+v(x,q,TI) ~ hx + px - cx + 6 .

Proof.

00 r
+ - \ n J +v(x,q,TI) ~hx +px -c(M-x) + l.. S J q(d6)E e[h(M- Yn) +

n=1

+ p (0 - Y) + c (M - Y )
n n

+ - 1
~hx +px -cx+cM+

1
_ S{(h+p-C)J.lq+(c+h)M} •

Lemma 3.5. It holds that

D

v(x + 6,q) - v(x,q) h6
:0;

1 - S for all 6 > 0, q E W .

Proof. Let X denote the inventory at time n using the control 3.4 if the
n

starting state is x and X if the starting state is x + 6. Note that X and
~ n n
X both satisfy the recurrence relation ~n z:

n

Hence

o :0; X - X :0; 6 for n = 0,1,2, •..•
n n

And the difference between the direct cost for both processes at time n:

+ + ~- ~ + -
h(~ - X ) + p(X - X ) + c{(s(Q ) - X) - (s(Q ) -X ) } :0; hu.n n n n n n n n

This proves the lemma. D

In the following theorem we give bounds for the difference of the value

functions for models (A) and (B). Define:

Sn:= s(~), n = 0,1,2, •••.

Theorem 3.6. For all x E X, q E Wwe have

i) w(x,q) :0; v(x,q) :0; v(x,q) •
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00

v(x,q) -w(x,q) ~{l ~Q h+c}{(x-s(q»+ + L (3~ [(S 1 -y -S )+]}.
" n=l q n- n n

i) Note that the lower bound for the action space in model (B) is not essen

tial, hence w(x,q) ~ v(x,q).

ii) Define ~(x,q) := v(x,q) - w(x,q).

For x ~ seq) we have

(*) ~(x,q) = (3 I ~(s(q) -y,Ty(q»p(y,q)m(dy) = t(s(q),q) .

For x > seq) we have by lemma 3.5

h
v(x,q) $ v(s(q),q) + (x - s(q»1 - (3 •

And therefore, since

w(x,q) = w(s(q),q) + (h-c)(x - seq»~

it holds that

(**) t(x,q) ~ t(s(q),q) + (x - seq»~ + {I ~ (3 h + c} •

Let A := B h + c. By (*) and (**) we have in terms of the Bayes process:- B

t(x,q) $ A(x - s(q»+ + BE[~(SO -Y1,QI) I QO = q] •

And s~nce the Bayes process forms a Markov chain, for n = 0,1,2, •••

Iterating this equation yields:

(***)
N

E[J/,(SO-Y1,Ql)!QO=q] $A L S~[(Sn -Yn+1 -Sn+I)+IQO = q] +
k=1

N+l I+ S E[ J/, (SN+ 1 - YN+2 ' QN+2) QO = qJ •

+Let d(q) := w(x,q) - {hx + px - cx} (note that d does not depend on x).

Then by lennna 3.4 and theorem 3.2 we have for some 6 > 0:

f d(6)q(6) -1
O$J/,(x,q)~6- 1 ~6-infd(6){1-S} <00.

- S Sd3

Hence the last term of (***) tends to zero if N tends to infinity. o
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Corollary 3.7. If for all q E W it holds that

3.5. f p(y,q)m(dy) = 1

{yls(q)-y~s(T (q»}
y

then for all x ~ seq) we have v(x,q) = w(x,q) and therefore the Bayesian

equivalent rule is optimal.

We conclude this section with some remarks:

1) The statement of corollary 3.7 is not new. In [Veinott (1965) section 6J

a similar condition is considered for a multiproduct inventory model with

dependent demand to prove an analogous statement. In [Rieder (1972),

tho 7.6J Veinott's result is proved in the Bayesian inventory problem.

The inequality of theorem 3.6 ii) seems to be new and it gives us the

opportunity to compute an upper bound for the value belonging to the

Bayesian equivalent rule.

2) The condition 3.5 ~s fulfilled in the following situation. Let

u

G(u,q) := f p(y,q)m(dy)

a

and assume that G(',8) is continuous for all 8 E e. The control point

seq) is the smallest root of

1 - 8
p - c

8G(u,q) = --~~
p + h

Define

smin := inf s(8), s := sup s(8) .
8Ee max 8Ee

It ~s easy to verify that smin ~ seq) :::; s for all q E W. If there ~s

max
an e > a such that

i) G(e,8) > a for all 8 E e.

ii) e ;:: s - s .
max m~n

then 3.5 holds.

3) In [van Ree (1976B)J methods are studied to approximate the value of a

Bayesian control problem in case where X, D and 8 are finite. If we are

dealing with models, which approximate the structure of models given in

3.1 then the approximation methods are very good.
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