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Fix for Solution Errors near Interfaces in
Two-Fluid Flow Computations

B. Koren!, EH. van Brummelen', P.W. Hemker!, B. van Leer?, and
M.R. Lewis!

! CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
2 The University of Michigan, Ann Arbor, MI 48109-2140, USA

Abstract. A finite-volume method is considered for the computation of flows of two
compressible, immiscible fluids at very different densities. A level-set technique is em-
ployed to distinguish between the two fluids. A simple ghost-fluid method is presented
as a fix for the solution errors (‘pressure oscillations’} that may occur near two-fluid
interfaces when applying a capturing method. Computations with it for compressible
two-fluid flows with arbitrarily large density ratios yield perfectly sharp, pressure-
oscillation-free interfaces. The masses of the separate fluids appear to be conserved up
to first-order accuracy.

1 Introduction

A known difficulty of capturing two-fluid interfaces in a conservative formula-
tion of the compressible Euler equations is that @(hY) = O(1) solution errors
(in literature often called ‘pressure oscillations’) may arise near the two-fluid in-
terface. Without remedial intervening, the conservative formulation considered
in the present paper also suffers from the pressure-oscillation problem. Fixes
for the problem can be found in the literature. We refer to the works of Karni
[6,7) and Abgrall [1], their common paper [2], and also to [3,5,9]. In most of
the available literature though, the ratio of the two densities at the interface is
O(1)-0(10?). To our knowledge, only in [3,9] ratios of O(10%), typical water-air
ratios, are considered. In this paper a fix is proposed, which allows arbitrarily
large density ratios. The fix is a simple variant of the ghost-fluid method [3)].

2 Flow Model

2.1 Conservation Equations

In 1D, for a sufficiently small control volume {2, conservation of mass and mo-
mentum reads:

1]
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with p the bulk density: ¢ = oz, t)ow(p) + (1 — afz,t))0.(p), where « is, e.g.,
the volume-of-water fraction, and where 0.,(p) and g.(p) are the equations of
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state for water and air, respectively. To balance this system, the equations of
state and an equation determining the location of the interface (and hence )
still have to be chosen. An accurate resolution of the interface location(s) is of
paramount importance. For this purpose, we follow a level-set approach, to be
outlined in the next section.

2.2 Level-Set Equation

To accurately resolve the interface location(s), a level-set approach [10] is more
appropriate than the classical volume-of-fluid (VOF) approach [4], because of
its better smoothness (and thus accuracy) properties at precisely the point of
interest: the interface. Good smoothness of the level-set function is first taken
care of in the level-set function’s initialization. A common approach is to initialize
the level-set function as the signed distance to the initial interface, with the
distance positive in, e.g., water and negative in air. During the computation, the
level-set function may need to be reinitialized.

Denoting the level-set function by ¢, in 1D, it is advected: 5% + uz,f = 0.
Combined with the bulk-mass conservation equation from (1), thxa advection
equation may be written in the conservative control-volume form

[ A28 4+ (oub)pszuen — (o = 0. (2)

Conservation of g¢ is not physical, there is no conservation law for it. The form
(2) is simply practical because it is consistent with system (1).

2.3 Egquation of State

In homentropic water-air computations, for both fluids, elegant use can be made
of a single equation of state, viz. Tait's: ﬁ—g;—’ﬁ& = (zf-'-)v, whiere the sub-
script ‘ref’ indicates some reference statc. The reference pressure prer is chosen
freely but equally for the two fluids. The value of ge for cach of the two Huids
corresponds with prer and is read from standard data bases for Huid properties.
Concerning the material constants v and B, for water it holds: v = 7, B = 3000
and for air: v = %, B =0.

3 Ghost-Fluid Method

In (8], it is shown that - unfortunately  the present conservative formulation
(1)-(2) also leads to O(1) pressure errors near two-fluid interfaces. As a remedy
against this, we outline a siinple variant of the ghost-fluid method.
In updating the finite-volume solutions with a single explicit time step the
following is done. Suppose we have an equidistant. cell-contered finite-volnme
grid £2;, i = 1,2,...,N, with cell faces d.(.?,Jrl i = 0.1.....N. where ()!).
aud 012y 4y are at the domain boundaries. Also suppose Hml al time lovel 2 we
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have a k.nown, unique solution (uf, p?, ¢?), i =1,2,..., N. Then, at first, at the
actual time level n the cells and cell faces are classified into different tyz;w. For
c:('ells, the following three types are distinguished: (i) pure-water cells, (ii) pure-
air cells a.n.d (iti) cells with one (or two) interface(s). To make this classification,
we determine ¢, | = 3 (47 + %), i=1,2,..., N — 1. At the inflow-boundary
face, say 002, we take ¢’£ = ¢}, with ¢ the boundary condition, and at the
outflow boundary, say 92y, 1 8y = ¢n. Then, cell §2; is: (i) a pure-water
cell if 7 > 0, cp;‘_% > 0 and ¢:‘+% > 0, (ii) a pure-air cell if ¢f <0, ¢7 , <0
and ¢, <0, and - else ~ (iii) a cell with one or two interfaces. The third type
of cells are named ghost cells. This classification is also applied to the cell faces;
(i) pure-water, (i) pure-air and (iii) ghost faces are distinguished. The two faces
of a ghost cell are both identified as ghost faces. Le., if £2; is found to be a ghost
cell, then both 092,_y and 892, 4 are ghost faces. A cell face not belonging to
a ghost cell is — depending on the sign of ¢ at that face - either a pure-water or
a pure-air face. Across the latter two types of faces, the flux is simply computed
with the single-fluid linearized Godunov scheme F(go, §1), 4§ = (u,p). So, across
pure-water faces we get F = F,, and across pure-air faces F' = F,;. Across the
ghost faces two fuxes are computed: a water and an air flux, so both Fy,(do,d1)

and F,(do,d1). Applying the forward Euler scheme, the subsequent update of
finite-volume solutions reads then:

(1) in pure-water cells: gf*! = g7 — 4¢ ((Fw):‘+§ - (Fuw)i %)‘

(ii) in pure-air cells: gl'*! = g — 4t ((F a)iyy — (Fa)ie %),

(iii) in ghost cells: (gy,)Pt" = gP ~ 4t ((Fw);;% - (Fw)}‘__%) and
(@) = a7 = 4t ((Fo)lyy - (Fa)Ly)-

i—3

So, in ghost cells we are left with two, possibly different updated solutions: gy,
and g,. Expressed in § = (u,p)-variables, these two new ghost solutions will
not differ very much for the flows considered here. In case a solution ambiguity
does arise, we proceed as follows. From the updated level-set function, which is
updated separately through an advection equation, the volume-of-fluid fraction
o+ in the ghost cell is computed. Next, the updated solution in the ghost cell
is made unique with

@t =of ™ (@) + (- ) @)TT 3)

4 Numerical Results Ghost-Fluid Method

4.1 Woater Front at Constant Speed and Pressure

Coonsider a 1D tube with unit length, z € [0, 1], inflow at 2 = 0, outflowat z =1
and with as initial solution: u(z,t =0) = 1, p(z,t =0) = 1, (T),0 = 0, 2z =
0,t=0)=pw(l) =1, and p(z,t = 0)z>0 = 2a(1) € 1, where z, is the location
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of the free surface, i.e., the water-air interface. The boundary conditions to be
imposed are u(z = 0,%) = 1, ¢(z = 0,t) = t and p(z = 1,1} = 1. The exact Euler-
flow solution reads u(z,t) = 1, p(x,t) = 1, oz, t)z<: = 1 and o(z,t)z>: = ga(1).
This simple model flow precisely uncovers the deficiency of capturing methods
with regard to material interfaces. Various values are considered for the density
ratio ﬂﬂ The grids to be used are equidistant. The space discretization is taken
first-order accurate and time integration is done with the forward Euler scheme.

Results of several numerical approaches that do not work satisfactorily are
given in [8]. The ghost-fluid method performs very well; pressure (not shown)
remains constant. In Figure 1 we present the computed bulk-density profiles at
t = 0.0,0.1,0.2,...,1.0. The results are perfect; the interface is captured over a
single mesh width A only (thanks to the level-set approach). The method does not
break down with increasing deusity ratio. It works for standard water-air density
ratios, &2 = O(10%), as well as for much larger ratios (Figure 2). Reinitialization
of the level-set function is not necessary for the running water front.

rho

0 0.5 1 0 0.5 1 ] 0.5 1

Fig.1l. Bulk-density profiles at ¢t = 0.0,0.1,0.2,...,1.0, h = ;,‘7;, density ratios from
left to right: 10, 100, 1000
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Fig. 2. Bulk-density profiles at ¢ = 0.0,0.1,0.2,...,1.0, h = -, density ratios from
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4.2 Oscillating Water Column

In the ghost cells, the conservation laws are applied to virtual amounts of water
and air, not to the real physical amouunts. Hence, proper conservation of mass and
momentuin in these cells is not guaranteed. As a second test case, we consider
a closed 1D tube (impermeable boundary at the left and right), with the initial
condition as sketched in Figure 3. Starting from ¢ = 0, the air at the right is

e

S Xgg [ N i

et Y

Fig. 3. Initial condition: closed tube with column of water (grey) in between two
columns of air, all three columns flowing to the right at constant speed and pressure

compressed by the water and the air at the left expands. The column of water
is decelerated until stagnation, and next accelerated to the left. The latter leads
to a reverse pressure gradient across the water column, which redirects the flow
from left to right again, and so on: the water columnu starts to oscillate.

We present numerical results obtained through the ghost-fluid metbod, taking
£= — 1000 and (), = 0.1. An equidistant grid with h = g; is applied. The
spacc discretization is again first-order accurate and time integration is done
again with the forward Euler scheme. The level-set function is taken as the
signed-distance function. For this test case, the level-set function is reinitialized.
(The reinitialization is done after each time step.)

In the left graph of Figure 4 we give the time evolution of the relative mass
error M(t) = %)i%‘;ﬂ, where m,(¢) is the total mass of air in the tube at
time t. The error appears to be composed of two components: one oscillating and
the other behaving linearly in time. The total mass of air is slowly decreasing;
air is converted into water. Fortunately, the orders of both the oscillatory and
the linear error component are close to the computational method’s order of
accuracy, which is first-order. To show the latter, in the right graph of Figure 4
the time evolution of the relative air-mass error is also given for a grid and time
step twice as fine. (The orders of accuracy of the oscillatory and linear error
component - in going from h = 315 toh = 515 ~ appear to be 0.78 and 0.90,
respectively.)

5 Conclusions

To avoid large solution errors near interfaces, a problem for many conserva-
tive capturing methods, a simple ghost-fluid fix has been proposed. For density
ratios of the order 1000 {typical water-air ratio) the shmple ghost-fluid tech-
nique performs perfectly. Even the computation of fronts running into vacuum
is expected to be possible. Extension of the method to higher-order accuracy is
straightforward through the use of, e.g., a MUSCL approach and a multi-stage
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Fig. 4. Time evolution of relative error in total mass of air in closed tube, left: h = Elﬁ’
right: A = ;3%

time integrator. Concerning the extension to higher dimensions, no principal
difficulties exist.
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