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Abstract— In this paper an approach for description and 

validation of potential limit cycles of high order Sigma-Delta 

modulators is presented. The approach is based on a parallel 

decomposition of the modulator. In this representation, the 

general N-th order modulator is transformed into a 

decomposition of low order, generally complex modulators, 

which interact only through the quantizer function. The 

decomposition considered helps to describe easily the time 

domain behavior of the modulator. Based on this, the conditions 

for the existence of limit cycles in the high order modulator for 

constant inputs, are obtained. They are determined by the 

periodicity conditions for the states of the first order 

modulators. In this case, the state variables are uncoupled and 

the obtained conditions are very easy to be checked. Limit 

cycles correspond to periodic output sequences and the 

proposed method includes description and validation of possible 

sequences. 

I. INTRODUCTION 

Sigma-Delta (Σ∆) modulation has become in recent years 
an increasingly popular choice for robust and inexpensive 
analog-to-digital (AD) and digital-to-analog (DA) conversion 
[l], [2]. As a result of this, AD and DA converters based on 1-
bit Σ∆ modulators are widely used in different applications. 
Despite the widespread use of Σ∆ modulators theoretical 
understanding of Σ∆ concept is still very limited, because 
these systems are nonlinear, due to the presence of a 
discontinuous nonlinearity - the quantizer. Limit cycles are 
well known phenomena that often appear in practical Σ∆ 
modulators. In frequency domain they correspond to discrete 
peaks in the frequency spectrum of the modulator. If these 
peaks are inside the signal base band, the total harmonic 
distortion increases. Because of this, for data processing 
applications it is very important to predict and describe 
possible limit cycles. 

Since the pioneering work of Gray and his co-workers 
beginning with [3], a number of researchers have contributed 
to the development of a theory of Σ∆ modulation. Main 
results concerning the limit cycles for low order Σ∆ 

modulators are presented in [4], [5], [6]. In [7] a procedure 
for characterizing and validating potential limit cycles is 
presented. This enables to carry out an exhaustive search for 
cyclic sequences up to a length of 40 clock periods. In [8], [9] 
authors use state space approach and present a mathematical 
framework for the description of limit cycles in 1-bit Σ∆ 
modulators for constant inputs. 

Here we present a method for description and validation 
of potential limit cycles for high order modulators. Especially 
we focus our attention on constant input signals. The method 
is based on the decomposition of the general N-th order 
modulator presented in [10], [11], [12]. Using this 
presentation the modulator could be considered as made up of 
N first order modulators (generally complex modulators), 
which interact only through the quantizer function. The 
decomposition considered helps to easily describe the time 
domain behavior of the modulator. Based on this the 
conditions for the existence of limit cycles in the high order 
modulators are presented. These conditions are to be easily 
checked and they are the basis of the searching procedure. All 
cases of poles of the loop filter transfer function are 
considered. 

The paper is organized as follows. In the next section we 
give a brief overview of the decomposition technique. In 
Section III we consider the time domain behavior of high 
order modulators and describe their limit cycle performance. 
Then, in Section IV we present the conditions for validation 
of limit cycles. In Section V we give several examples and we 
end up with some conclusions in Section VI. 

II. PARALLEL DECOMPOSITION OF HIGH ORDER 

SIGMA  DELTA  MODULATORS 

The structure of a basic Sigma-Delta modulator is shown 
in Fig. 1, and it consists of a filter with transfer function G(z) 
followed by a one-bit quantizer in a feedback loop. The 
system operates in discrete time. 

The input to the loop is a discrete-time sequence u(n) 
from [-1, 1]. The discrete-time sequence x(n) is the output of 
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the filter and the input to the quantizer. Let us consider a N-th 
order modulator with a loop filter with a transfer function 
G(z). Suppose the transfer function has N real distinct roots of 
the denominator.  

 

Figure 1.  Basic structure of Sigma Delta modulator. 

The corresponding block diagram of modulator model is 
given in Fig. 2 [10], [11]. 

 

y=f(.)=sgn(.) 

 

Figure 2.  Block diagram of the modulator model using detailed parallel 

form of the loop filter. 

Based on this presentation the state equations of the 
Sigma Delta modulator are 
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where λ1, λ2 ,...,λN  are poles (or modes) of the loop filter, 
b=(b1, b2, …, bN)

T
 is the vector of fractional components 

coefficients and x=(x1, x2, …, xN)
T
 is the state vector. The 

quantizer function is a sign function 
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It should be stressed that the original approach in [10] is 
extended in [12] for complex pairs of poles. In this case, the 
block diagram is the same as in Figure 2, but for every 
complex conjugated pair of poles λi, λi+1 the corresponding 
coefficients bi, bi+1 are also complex conjugated. Thus the 
sigma delta modulator could be considered as made up of N 
first order complex modulators. However, the contribution 
biλi+bi+1 λi+1 of every complex conjugated pair of poles λi, λi+1 
to the weighted sum of the input of the quantizer is real [12]. 
Since the model is based on the parallel presentation of the 
loop filter it can be used for calculations only and the results 
in the paper are easily obtained. 

Without loosing the generality, the case of repeated poles 
will be considered when the pole λ1 is repeated with order two 
i.e. λ1 = λ2. Thus the state equations of the Sigma Delta 
modulator become [11] 
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III. TIME DOMAIN BEHAVIOR AND DESCRIPTION 

OF LIMIT CYCLES OF SIGMA DELTA MODULATORS 

Without loss of generality we will consider the case with 
real distinct poles. Then the discrete time sequence for state 
variables x1, x2, …, xN is given by: 

[ ]

[ ]

[ ] [ ]

[ ]

[ ] [ ]

[ ] [ ]

2

1

1 2

1

(1) (0) (0) (0) ,

(2) (1) (1) (1) (0)

(0) (0) (1) (1)

.............

( ) ( 1) ( 1) ( 1)

(0) (0) (0) (1) (1)

... ( 2) ( 2) ( 1) ( 1)

k k k

k k k k k

k

k k k

n n n

k k k k

k

x x u y

x x u y x

u y u y

x n x n u n y n

x u y u y

u n y n u n y n

λ

λ λ

λ

λ

λ λ λ

λ

λ

− −

= + −

= + − = +

+ − + −

= − + − − − =

= + − + − +

+ − − − + − − − =

= [ ]
1

1

0

(0) ( ) ( )

1, 2,..., .

n
n n i

k k k

i

x u i y i

k N

λ
−

− −

=

+ −

=

∑

   (4) 

The limit cycles correspond to periodic solutions in time 
domain. The periodic solutions can be observed at the output 
of the modulator as repetitive sequences of 1’s and -1’s. Let’s 
consider a periodic sequence y(0), y(1), …, y(M-1) with 
length M at the output of the modulator. In this case 
y(M)=y(0),y(M+1)=y(1),…, y(2M-1)=y(M-1), etc. Every 
periodic output sequence corresponds to a periodic sequence 
in the states, i.e. every state variable xk is periodic. This can 
be observed easily if we write the state variable xk after L 
periods. 
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Taking into account that every [u(i)-y(i)] is the same after 
each M samples, (5) can be rewritten as 
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The above is correct, because the geometric series 
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If |λk|<1, for every L that is large enough (after enough 
time) 
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i.e. xk(L.M) does not depend on L. This means repetition of 
the value of state xk after every M instances, i.e. the states are 
periodic. 

If |λk|>1, it follows from (6) that the boundness of the 
states is ensured iff 
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and thus ( . ) (0)
k k

x L M x= . This means that the initial 

condition with respect to xk should be taken in accordance 
with (7) in order to ensure stability of the solution. This fits 
with the results in [11], [12] concerning the stability of high 
order modulators when only one pole of the loop filter is 
larger than 1. 

If λk=1, ( . ) (0)
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x L M x=  for every L and every xk(0), 

because at the periodic orbit [ ]
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( ) 0
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i
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input signal u. This actually means that periodicity with 
respect to xk is ensured. 

In the case of complex pair of poles the results are similar, 
but the initial conditions connected with the complex 
conjugated pair of poles are also complex conjugated. We 
should stress again that the contribution of the state variables 
corresponding to these poles, to the input of the quantizer is 
real [12]. 

In the case of repeated poles, based on Eq. (3) we obtain 
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The solution of (0) ( ) , 1,3,...,
k k

x x M k N= = with respect 

to x1(0), x3(0), … and xN(0) is given by (7). From (8) the 

solution of 
2 2(0) ( )x x M=  with respect to x2(0) is 
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If λk=1, to ensure 
2 2(0) ( )x x M=  to be satisfied 
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Thus if we choose x1(0) in accordance to (10), conditions 
(8) are satisfied for every x2(0). 

IV. VALIDATIONS OF LIMIT CYCLES OF SIGMA 

DELTA MODULATORS 

The results in the previous section have been derived 
without matching the time sequence of the states xk(0), xk(1), 
…, xk(M-1), k=1,2,… N  with the time sequence of the output 
signal y(0), y(1), …, y(M-1) in the framework of one period. 
In fact, to have a valid output sequence y(0), y(1), …, y(M-1), 
(2) should be satisfied. Thus, 
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Hence 
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Conditions (13) can be rewritten in the following form: 
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In the case of a complex pair of poles λi, λi+1 the result has 
the same form. It should be noted that the left and right parts 
of inequalities (14) are real. 
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For the case of repeated poles (Eq.(3)), (14) becomes 
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Conditions (14) or (16) validate the limit cycles connected 
with the corresponding vector of initial conditions xk(0), 
k=1,2,…,N that are obtained in the previous section. It should 
be stressed that these conditions can be easily checked and 
very simply implemented. 

The strategy for searching the limit cycles consists in the 
following. For every periodic output sequence of 1’s and -1’s 
with arbitrary length M, we check whether initial conditions 
that ensure periodicity after the first period exist. Afterward 
the validity of the corresponding output sequences has to be 
checked. 

V. EXAMPLES 

To demonstrate the applicability of the approach we 
consider four third order modulators with the following 
parameters λ=[λ1 λ2 λ3]

T
, b=[bl b2 b3]

T
 and u: λ=[0.7 0.8 0.9]

T
, 

b=[1 1 1]
T
, u=0.4=const; λ=[0.8 0.9 1]

T
, b=[1 1 1]

T
, 

u=0.5=const; λ=[0.9 0.9 1]
T
, b=[1 1 1]

T
, u=0.5=const; λ=[1 

1 0.9]
T
, b=[1 1 1]

T
, u=0.2=const. 

Let’s check the output sequence 1, 1, -1 with length M=3 
for the first modulator. The initial conditions that lead to this 
periodic output sequence without transient are x1(0)=1.0441, 
x2(0)=1.0984, x3(0)=1.3801. For the second modulator 
x1(0)=0.8875, x2(0)=0.8156, and every x3(0) from [1.624, 
3.026] leads to a periodic output sequence 1, 1, 1, -1 with 
length M=4. For the third modulator x1(0)=0.8156, x2(0)=-
0.6879 and every x3(0) from [0.8784, 2.1799] leads to the 
periodic output sequence with length M=4, y(0)=1, y(1)=1, 
y(2)=1, y(3)=-1. For the forth modulator, the initial 
conditions that lead to a periodic output sequence 1, 1, -1, 1, -
1 without transient are x1(0)=0.8, x3(0)=0.8398 and every 
x2(0) from interval [-0.7558, 0.4002]. 

The last example is a second order Σ∆ modulator with the 
following loop filter transfer function 

1 2 2

1 2 2

2 cos
( )

1 2 cos

r z r z
G z

r z r z

θ

θ

− −

− −

−
=

− +
. 

Here λ1=α+jβ, λ2=α-jβ, b1=δ-jγ, b2=δ+jγ and α=r.cosθ, 
β=r.sinθ, δ=r.cosθ, γ=r.(cos2θ)/(2sinθ). If r=0.9 and θ=30 
and we try the output sequence 1, 1, -1, the initial conditions 
that lead to this periodic output sequence without transient 
are x1(0)=0.779-j0.123, x2(0)=0.779+j0.123.  

Simulations confirm these results. 

VI. CONCLUSIONS 

In this paper we present an approach for characterization 
and validation of potential limit cycles of one bit high order 
Sigma-Delta modulators with constant input. The approach is 
general because it uses the general form of a Sigma-Delta 
modulator. It is based on a parallel decomposition of the 
modulator. In this representation, the general N-th order 
modulator is transformed into a decomposition of low order, 
generally complex modulators, which interact only through 
the quantizer function. The results are given for all possible 
cases of poles of the loop filter transfer function. The 
advantage of the approach is that because of the 
decomposition, the state variables are uncoupled and obtained 
conditions are very easy to be checked. The formulas are very 
easy to be implemented and straightforward calculations 
allow an analytical check and validation of possible limit 
cycles with arbitrarily length. 
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