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Fig. 1. Nine individuals in three clusters. Three cluster-checks and five
refinement-checks. Eight checks in total.

cation rate. This extends a result of Willems et al. [8] showing
that the maximum identification rate of a biometrical system
is equal to the mutual information between the enrollment and
identification observations, see also [4]. A crucial observation
to obtain this result is that a set of biometric enrollment vectors
can be regarded as a random channel code.

In the current manuscript we focus on speeding up the
search process, as in [9]. We are not interested in compressing
the database as in [5], [6]. We will show that in an information
theoretical setting quantization methods are optimal.

To demonstrate what we mean by quantization, suppose that
the system upon observing an individual, first detects to which
cluster the individual belongs, and after that decides about
the individual itself (two-stage identification). If there are M
individuals, an ideal systems will have v'iJ clusters each
containing v'iJ individuals. To determine the cluster index
v'iJ candidate-clusters can be checked, and then to determine
the individual within the cluster, v'iJ refinement-checks are
needed. This results in 2v'iJ checks in total, considerably less
than the M checks that are required for exhaustive search.
In general however individuals can be in more than one
cluster, see Fig. 1, and then the number of cluster-checks
times the number of refinement-checks exceeds the number
of individuals. Here we investigate the fundamental trade-off
between cluster-check rate and refinement-check rate.

An important point is what we mean by a cluster-check.
In principle a cluster-check could correspond to v'iJ sub
checks, one for each individual within the cluster. To prevent
this, we require the device that makes the cluster-decision to
be "ignorant" of the biometric enrollment vectors. Under this
assumption an optimal system contains an ignorant device that
acts as a vector quantizer.

In the next section we present our model of a biometrical
identification system based on two-stage identification and we

o
o
o

o

I. INTRODUCTION

Abstract-We study two-stage search procedures for biometric
identification systems in an information-theoretical setting. Our
main conclusion is that clustering based on vector-quantization
achieves the optimum trade-off between the number of clusters
(cluster rate) and the number of individuals within a cluster
(refinement rate). The notion of excess rate is introduced, a
parameter which relates to the amount of clusters to which
the individuals belong. We demonstrate that noisier observation
channels lead to larger excess rates.

Biometric identification systems rely on the physiological
and/or behavioral characteristics of individuals. Examples of
these characteristics are face, fingerprint, hand-geometry, iris,
retina, keystroke, signature, and voice, see Uludag et al. [7].
An identification system operates in two modes. In the first
mode, the enrollment mode, the biometric data of all individ
uals are observed, and maybe after some pre-processing, the
system stores in a database an enrollment vector (record) for
each individual. When at some later time an individual shows
up for identification, this corresponds to the second mode of
the system, the individual is observed again and this results,
possibly after some post-processing, in an identification vec
tor (record). The system then searches the database for the
enrollment vector that gives the best match with the observed
identification vector. It should be noted that in the enrollment
mode and the identification mode, the observed vectors are in
general noisy versions of the "real" feature vectors (records).

In principle the system can perform an exhaustive search on
all the enrollment records to find the best match. Chavez et al.
[2] give an extensive overview of methods that intend to reduce
the number of enrollment records that are actually accessed.
Weber et al. [9] compare indexing techniques to methods based
on what they call vector-approximations (VA). Similar to these
VA methods are the fingerprinting techniques that used in
content-based audio identification, see Haitsma and Kalker [3],
and Cano et al. [1]. In an information-theoretical context such
methods would be referred to as quantization methods. Weber
et al. [9] observe that for searching high-dimensional spaces
quantization methods like VA outperform indexing methods.

Quantization can also be used in the enrollment mode with
the objective to compress the database. Tuncel et al. [5], the
first authors that investigated the rate-distortion approach to
database searching, apply quantization during enrollment and
consider the fundamental trade-off between compression rate
and reconstruction distortion. Later Tuncel [6] also considered
the trade-off between enrollment compression rate and identifi-
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We assume that W E {I, 2, ... ,M}. The reliability of our
identification system is measured by the error probability

(7)

(8)

(9)

(10)

< N(RI + E),

< N(R2 + E),
> N(R - E), and

< E.

Pc == Pr{W -1= W}.

log2(MI )

log2(M2)
log2(M)

Pr{W -1= W}

where C is the code. Finally a combiner forms an estimate
of the index of the individual that presented its biometric
sequence for identification, hence

III. PROOF

The proof consists of the achievability part, a converse, and
a cardinality bound part. We start with the converse.

R I 2:: I(Y; U),

R 2 2:: max(O,R - I(X; U)),

°<R ::; I(X; Y),

for P(x, y, u) == Qb(x)Qc(ylx)P(uly),

where lUI::; IYI + I}. (11)

B. Statement of Result

We now say that rate triple (R I , R 2 , R) with R 2:: °is
achievable if for all E > 0 there exist for all N large enough
mappings h(·), d(·,·, .), and c(·,·) such that

We call R the identification rate, and R I and R 2 resp. cluster
and refinement rate. We are now ready to state the main result
of this submission, the proof follows in section III.

Theorem 1: The region of achievable rate triples for our
biometric identification system is given by

Then a second decision is made (refinement decision), based
on the first decision WI and the list of generated biometric
sequences. This decision with outcome W2 E {I, 2, ... ,M2 }

is taken by a so-called "informed" decoder, hence

w
com
biner

In the identification process the probabilities for the indi
viduals to show up for identification all equal, hence

hence the components Xl, X 2 , ... ,XN are independent and
identically distributed according to {Qb(X), X E X}. Note
that this probability does not depend on the index w. We
assume that all biometric sequences are generated prior to the
identification procedure. They form what we call the "code"
here. This code C is the list of biometric sequences, hence

C == (x N(1),x N(2), ... ,xN(M)). (2)

Fig. 2. Model of a two-stage biometric identification system.

Pr{W == w} == 11M for w E {1,2,··· ,M}. (3)

When individual w shows up for identification, its biometric
sequence x N (w) is "selected" from the code C and presented
to the system, hence

In a biometric identification system, see Fig. 2, there are
M individuals indexed W E {I, 2, ... ,M} that are to be
identified. To each such individual there corresponds a ran
domly generated biometric sequence (vector) of length N.
This sequence has symbols X n , n == 1,2, ... ,N taking values
in the discrete alphabet X, and the probability that sequence
xN == (Xl, X2,· .. ,XN) occurs as biometric sequence for
individual W is

will state our main result. Section III contains the proof of
this result. In section IV we consider as an example a binary
symmetric system and we introduce the notion of excess rate
there. Concluding remarks will follow in Section V.

II. MODEL DESCRIPTION AND STATEMENT OF RESULT

A. Model Description

x N == s(w, C). (4) A. Converse Part

(12)

The system observes x N via a memory less observation chan
nel {Qc(ylx), X E X, Y E Y}, with discrete alphabet
Y, and the resulting channel output sequence is yN
(YI, Y2, ... ,YN), where Yn E Y for n == 1,2,· .. ,N. Now

Pr{yN== yNIXN(w) == x N} == n;;r=l Qc(Ynlxn). (5)

After observing yN identification starts by making a first
decision (cluster decision). This decision with outcome WI E

{I, 2, ... ,MI } is taken by a so-called "ignorant" helper, a
device that has no knowledge of the biometric sequences that
were generated, hence

(6)

For the range M I of the first decision we find that:

log2(MI ) 2:: H(WI) 2:: I(yN;WI)
N N

LI(yn;w1!yn-l) Cr;l LI(Yn;Wl,yn~l)
n=l n=l

N
(b) '"L.J I(Yn; Un),

n=l

where (a) follows from the fact that H(Ynlyn-l) == H(Yn)
since YI , Y2 , ... , and YN are independent of each other, and (b)

from definition Un ~ (wI,yn-l) for n == 1,2,···,N. Next
let N be a random variable taking values in {I, 2, ... ,N}
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(k)
N I(XN; YNIN) + F ::; N I(X; Y) + F. (16) (20)

.rrY=n+1 [p(Xj )p(Yj IXj) ]p(wllyN)

P(Yn)P(Xn IYn)p(yn-l, WI, nIYn).

N(RI + E) > log2(MI ) 2: NI(Y; U),

N(R2 + E) > log2(M2) 2: 0,

N(R2 + E) > log2(M2) 2: log2(M) - NI(X; U) - F,

> (1 - E)N(R - E) - 1 - NI(X; U),

N(R - E)
1

< log2(M)::; -(NI(X;Y) + 1), (19)
1-E

p(X, y, u) == p(xn, Yn, WI, yn-l, n)
1

N

Note that xn-l - yn-l - X n, WI (and (g)) follows from

( n-l n-l )P X ,y ,Xn,WI

L p(W)[rr~IP(Xi)P(Yilxi)]P(wllyN)

Lw,xN 'Y:!+l p(W)p(xN)p(yN IxN)

Lw,xN ,Yn 'Y:!+l p(W)p(xN)p(yN IxN)

LxN 'Y:!+l p(xN)p(yN /x
N)

LxN»:«; p(xN)p(yN IxN)

rrr=l LXi P(Xi)P(Yilxi)

rrr==-ll LXi P(Xi)P(Yilxi)

LP(Xn)P(Ynlxn) == P(Yn). (18)

.[rrY=n+IP(Xj )p(Yj IXj )]p(wllyN)

p(yn-l )p(xn-Ilyn-l )p(Xn)p(wIIXn, yn-l), (17)

h h . b ~ bwere we use t e extra notation xa == Xa, Xa+l,· .. ,X .
Furthermore Yn is independent of yn-l, used in (a), since

Assume that (R I, R 2 , R) is achievable. Then for all block
lengths N and small enough E > 0, using F ::; 1+ E log2 (M),
we obtain from (12) and (13), (14) and (15), and (16) that

for some p(x, y, u) == Qb(x)Qc(ylx)P(uly). Note that this
follows from

(15)

(14)

with equal probability, and let X == X n and Y == Yn , when
N == n. Then

log2(M) == H(W) ::; I(W; W) + F

(i) N

< I(XN;yN) + F <J1 L I(Xn; Yn) + F
n=l

log2(M) == H(W) ::; H(W) - H(WIW) + F

< I(W; W, WI, W2 ) + F

~ I(W; WI) + I(W; W2IWI) + F

< I(W, X N; WI) + log2(M2) + F

(f) I(XN ; WI) + log2(M2) + F
N

L I(Xn; WI\Xn- l) + log2(M2) + F
n=l

N

< L I(Xn; WI, X n- l, y n- l) + log2(M2) + F
n=l

N

(!J) L I(Xn;WI, yn-I) + log2(M2) + F
n=l

(c) NH(Y) - NH(YIUN, N) == NI(Y; (UN, N))

@ NI(Y;U), (13)

N

L I(Yn; Un) == NH(YNIN) - NH(YNIUN, N)
n=l

Moreover consider, using F ~ 1+Pr{W i- W} log2 (M), the
series of (in)equalities:

where (e) follows from the fact that I(W; WI, W2 , W) ==
I(W; WI, W2 ) , (0 since W - X N - WI, (g) since xn-l 
yn-l - X n, WI, and (h) similar to how (13) was obtained.

Finally consider the number M of individuals:

where step (c) follows since YI , Y2 , ... , and YN are identically

distributed and YN == Y, and (d) from U ~ (UN, N).

Since M 2 2: 1 we obtain for the range M 2 of the second
decision that:

where (i) follows from I(W;W) ::; I(W;yN,C,W) ==
I(W; v«, C) == I(W; yNIC) == I(W, X N; yNIC) <
H(yN) - H(yNIXN) == I(XN; y N), and U) from the
fact that (Xl, YI ) , (X2 , Y2 ) , · · · , (YN, YN) are independent,
(k) since these pairs are identically distributed and since
(X, Y) == (Xn , Yn ) for N == n.

From (19) the converse to Thm. 1 now follows after letting
E 10 and N ---+ 00.

B. Achievability

We can only give an outline of the achievability proof
here. Fix an 0 < E < 1, a distribution p(x, y, u) == Qb(X)
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IV. EXAMPLE, EXCESS RATE

Therefore X == Y EBZ where EB denotes modulo-2 addition and
Z is additive noise independent of Y with Pr{ Z == I} == q.

We can write

The entire probability distribution {Q (x, y), x EX, Y E Y}
and consequently the entropies H(X) and H(Y) are now
specified and therefore also both I(U; Y) and I(U; X). This
implies that cardinality lUI == IYI + 1 suffices.

(25)

(22)

1- H(YIU),

1- H(XIU).

P(y) for all but one y,

Hp(Y),

Hp(X),

L aucPy(Pu) for all but one y,
u=I,IYI+I

L aucPY(Pu),
u=I,IYI+I

L aucPx(Pu). (23)
u=I,IYI+I

I(U; Y)

I(U; X)

P(y)

H(YIU)

H(XIU)

the IYI + 1 continuous functions of P E V defined as

We consider here a system with binary uniform biometric
sequences hence Qb(X) == 1/2 for x E {O, I} and a binary
symmetric observation channel, thus Q c (y Ix) == q if y -=I- x
and Qc(ylx) == 1 - q if y == x where y E {O, I}. Parameter
o ~ q ~ 1/2 is called the crossover probability. Note that
Qy(y) == 1/2 for y E {O, I}.

It is important to observe that the "backward" channel from
Y to X is also binary symmetric with crossover probability q
since

where in the last equation we use Pr{ X
x} == EyP(Y)Qxly(xly) where QXly(xly) ==
Qb(x)Qc(ylx)/ Ex Qb(x)Qc(ylx). By the Fenchel-Eggleston
strengthening of the Caratheodory lemma (see Wyner and Ziv
[11]) there are /YI + 1 elements Pu E V and au that sum to
one, such that

Since the channel from Y to X is binary additive with
crossover probability q Mrs. Gerber's Lemma [10] tells us
that if H(YIU) == v then H(XIU) ~ h(q * h-I(v)), where

h(a) ~ -alog2(a)-(1-a) log2(1-a) for 0 ~ a ~ 1 denotes
the binary entropy function. If now 0 ~ p ~ 1/2 is such that
h(p) == v then H(YIU) == h(p) and H(XIU) ~ h(q *p).

When we take the "channel" from Y to U binary sym
metric with crossover probability p the minimum H(XIU)
is achieved and consequently the region of achievable rate

Qc(ylx)P(uly), and identification rate 0 < R < I(X; Y).
Now we define the sets B~N) (YU) as

B~N)(yU) ~

{(1L'~) : Pr{(X,1L,~) E A~N)(XYU) I (Y, U) == (1L'~)}

~ 1 - E}, (21)

where X is the output of a "backward" channel QXly(xly) ==
Q(x, y)/ Ex Q(x, y), with Q(x, y) == Qb(x)Qc(ylx), having
input y. Typical set A~N) (XYU) corresponds to p(x, y, u).

Wefirst use a random coding argument to construct a col
lection of covering sequences ~(1), ~(2), ... ,~(MI), where
we take M I == 2N (I (Y ;U )+ 4E) . Averaged over the random
covering code, the probability that a sequence y, i.i.d. accord
ing top(y) == Ex,up(x,y,u) occurs, such that (U.,~(WI)) ~

B~N) (YU) (not jointly B-typical) for all WI E {I, 2, ... ,MI},
can be made ~ 3E letting N ~ 00. Consequently there exists a
covering code with probability that at least one of the covering
sequences is jointly B-typical with an i.i.d. y of at least 1 - 3E.

During enrollment, after biometric sequence ;J2(w) was
generated, for W == 1, 2, ... ,M, the system finds out which
~(WI) are jointly typical with ;J2(w) for WI E {I, 2,·· . ,MI}.
In this way the system creates index-lists £( WI) == {w :
(;J2(W),~(WI)) E A~N)(XU)}, one for each WI. These index
lists are available to the informed decoder and the combiner.

During identification, the ignorant helper upon receiving U.
chooses list-index Wi such that covering sequence ~(Wi) is
jointly B-typical with y i.e. (~(Wi), y) E B~N) (YU). If such
a list-index cannot be found, an error is declared. Note that
the ignorant helper makes at most M I cluster-checks. The
corresponding error probability is not larger than 3E. If no
error is declared the ignorant helper sends the index Wi to the
informed decoder and the combiner.

Next the informed decoder chooses a uni~ue index iiJ from
list £(Wi) such that (;J2(W) , y,~(Wi)) E A~N (XYU). If such
a unique index cannot be found, an error is declared. Note that
the informed decoder makes at most M 2 refinement-checks.

It follows from the definition of B~N) (YU) that the proba
bility, that the actual index W doesn't lead to joint typicality,
is smaller than E. Note that this typicality also implies that the
actual index is in the list £(Wi).

The probability that some "other" index w' -=I- W results in
joint typicality (and is in the list £(Wi)) can be made ~ E for
M == 2N (R - 4E) and N large enough. The informed decoder
sends the rank of iii2 within the list £(Wi) to the combiner only
if it is not larger than M 2 == 2N (R - I (X ;U )) . Otherwise an error
is declared. It can be shown that also this probability is not
larger than E for N large enough. When no errors occurred the
combiner will reconstruct the actual individual-index W == W

from both the list index Wi and rank iii2.
This demonstrates the achievability part corresponding to

Thm.l.

C. Cardinality Bounds for Auxiliary Random Variable U

To find a bound on the cardinality of the auxiliary variable U
let V be the set of probability distributions on Y and consider
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6. = H(Y IX) - H(YIX, U) :::; H(YIX) . (29)

REFERENCES

ACKNOWLEDGMENT

The author thanks Ton Kalker and Jaap Haitsma for intro
ducing him to audio fingerprinting, and Michael Gastpar for
discussions on ignorant devices.

[1] P. Cano, E. Battle, T. Kalker, and J. Haitsma, "A Review of Algorithms
for Audio Fingerprinting, in Proc. 5th IEEE Workshop MMSP , St.
Thomas, Virgin Islands, 2002, pp. 196 - 173.

[2] E. Chavez, G. Navarro, R. Baeza-Yates, J. Marroquin, "Searching in
Metric Spaces," ACM Comput. Surv., vol. 33, No.3., pp. 273 - 321,
2001.

[3] J. Haitsma and T. Kalker, "A Highly Robust Audio Fingerprintng
System," Proc. 3rd Int. Conf. on Music Inform . Retriev.• ISMIR, Paris,
France, Oct. 13-17, 2002, pp. 107 - 115.

[4] J.A. O'Sullivan and N.A. Schmidt, "Large Deviation Performance Anal
ysis for Biometrics Recognition," Proc. 40th Ann. Allerton Conf Comm.
Control. and Comput., Oct. 2-4, 2002, Monticello, Ill., pp. 1482 - 1492.

[5] E. Tuncel, P. Koulgi, and K. Rose, "Rate-Distortion Approach to
Databases: Storage and Content-Based Retrieval," IEEE Trans. Inform.
Th., Vol. IT - 50, No.6, pp. 953 - 967, June 2004.

[6] E. Tuncel, "Capacity/Storage Tradeoff in High-Dimensional Identifica
tion Systems," IEEE Int. Symp. Inform. Th., Seattle, July 9-14, 2006.
pp. 1929 - 1933.

[7] U. Uludag, S. Pankanti., S. Prabhakar, amd A.K. Jain, "Biometric
Cryptosystems: Issues and Challenges," Proc. IEEE, Vol. 92, No.6,
June 2004, pp. 948 - 960.

[8] F. Willems, T. Kalker, J. Goseling, and J.-P. Linnartz, "On the Capacity
of a Biometrical Identification System," IEEE Int. Symp. Inform. Th.,
Yokohama, June 29 - July 4, 2003, p. 82.

[9] R. Weber, H.-J. Schek, S. Blott, "A Quantitative Analysis and Perfor
mance Study for Similarity Search in High-Dimemsional Spaces," Proc.
24th VLDB Conf., New York, 1998, pp. 194 - 205.

[10] A.D. Wyner and J. Ziv, "A Theorem on the Entropy of Certain Binary
Sequences and Application: Part I," IEEE Trans. Inform. Th., Vol. IT 
19, No.6, pp. 769 - 773, November 1973.

[II] A.D. Wyner and J. Ziv, "The Rate-Distortion Function for Source Coding
with Side Information at the Decoder," IEEE Trans. Inform. Th.• Vol.
IT - 22, No.1 , pp. I - 10, January 1976.

This maximum excess rate is achieved for U = Y, and this
results in refinement rate R 2 = O. Note that the upper bound on
the excess rate is larger for more noisy observation channels.
Noise-free observation channels allow for a zero excess rate.

V. CONCLUDING REMARKS

We have investigated the fundamental trade-off for a two
stage search procedure in a biometric identification system.
Our main conclusion is that clustering based on vector
quantization achieves optimum cluster-refinement rate-pairs.
We have introduced the notion of excess rate and demonstrated
that noisier channels lead to a larger excess rate .

Although our investigation suggests that our random cover
ing code does not contain structure we could use a structured
vector quantizer in practise . In such a situation the search
complexity of this code (i.e. the cluster rate) is not relevant,
however the refinement rate remains significant.

We have only considered a two-step system here. It is not so
difficult hoever to find the fundamental limits for multi-stage
systems .

The concept of an ignorant helper turns out to be crucial
here. We anticipate that the notion of ignorant devices can lead
to interesting statements about other information processing
systems.

0.8

---e--- R=O.5310

---e- R=O.3540

---A- R=O.177 0

- R1=R2

0.70.4 0.5 0.6
R, cluster rate (bit)

0.30.20.1

0.1

6. = R I + R 2 - R > I(U; Y) - I(U; X)

H(UIX) - H(UIY,X)

I(U;Y IX)

H(Y IX) - H(Y IX, U) . (28)

For U such that R ~ I(X; U) and for optimum cluster
refinement rate-pairs (R I , R2 ) we get

$
~

oj 0.3

~

r£

R I ~ 1 - h(p), (26)

R 2 ~ max(O, R - 1 + h(p * q),

0 :::; R :::; 1 - h(q), for 0 :::; »< 1/2}.

triples for binary uniform biometrics and a binary symmetric
observation channel is given by

Note that the number of cluster-checks that have to be
made by the ignorant helper is roughly 2N R 1 and the num
ber of refinement-checks made by the informed decoder is
approximately 2N Rz. Minimizing the total number of checks
is therefore roughly equivalent to minimizing max (R I , R2 ) .

The figure therefore shows the line R I = R2 .

It is interesting to observe that there is always an "excess
rate", in the sense that

Fig. 3 contains the optimal cluster-refinement rate-pairs
(R I , R 2 ) for three values of the identification rate R for an
observation channel with crossover probability q = 0.1.

R I +R2 ~ 1 - h(p) +R - 1+h(p *q) = R +h(p *q) - h(p) .
(27)

The excess rate 6. ~ R I +R 2 - R for maximum identification
rate R = 0.5310 is equal to 0.1248.

In the general case we can write for the excess rate

Fig. 3. Optimum cluster-refinement rates-pairs (RI, R2) for a system with
uniform biometric sequences and a binary symmetric observation channel with
crossover probability q = 0.1, for biometric rates R = 0.5310 (maximum),
0.3640, and 0.1770.
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