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Estimating Posture-Recognition Performance
in Sensing Garments Using Geometric

Wrinkle Modeling
Holger Harms, Oliver Amft, and Gerhard Tröster, Senior Member, IEEE

Abstract—A fundamental challenge limiting information qual-
ity obtained from smart sensing garments is the influence of textile
movement relative to limbs. We present and validate a comprehen-
sive modeling and simulation framework to predict recognition
performance in casual loose-fitting garments. A statistical posture
and wrinkle-modeling approach is introduced to simulate sensor
orientation errors pertained to local garment wrinkles. A metric
was derived to assess fitting, the body-garment mobility. We vali-
dated our approach by analyzing simulations of shoulder and elbow
rehabilitation postures with respect to experimental data using ac-
tual casual garments. Results confirmed congruent performance
trends with estimation errors below 4% for all study participants.
Our approach allows to estimate the impact of fitting before im-
plementing a garment and performing evaluation studies with it.
These simulations revealed critical design parameters for garment
prototyping, related to performed body posture, utilized sensing
modalities, and garment fitting. We concluded that our modeling
approach can substantially expedite design and development of
smart garments through early-stage performance analysis.

Index Terms—Smart garments, SMASH, system performance,
wearable computers, wearable sensors.

I. INTRODUCTION

MOVEMENT and posture monitoring using body-worn
inertial sensors was found beneficial for out-of-lab, real-

life assistive systems in different fields, including sports moni-
toring and movement rehabilitation [1], [2]. Recent advances in
technology miniaturization allows integration of inertial sensors
and monitoring functionality into textiles and to create smart
sensing garments, e.g., the SMArt SHirt (SMASH) [3]. Even-
tually, these monitoring garments could enable new on-body
assistance solutions, such as emergency systems for patients
and the elderly [4], [5], personal sport coaches [6], and at-home
training assistants in movement rehabilitation [7], [8].

Robustness in derived information and wearer acceptance are
essential, but often contradictory requirements for such monitor-
ing garments. Wearer acceptance typically requires unobtrusive,
fashionable garments that can be conveniently worn, attached,
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H. Harms and G. Tröster are with the Wearable Computing Laboratory,
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and removed. In contrast, information robustness is hampered by
casual cut, plainly the “looseness” of a garment, where sensors
could pick up relative movements between garment and body.
Accordingly, sensors incur orientation errors and deliver dete-
riorated information quality, e.g., observed as reduced posture-
recognition performance [9]. Misalignment and movement of
sensors is a frequently occurring issue in body-worn system
design and in particular smart garments. The problem can be
broadly eliminated by tight fitting, as it is frequently done in re-
habilitation applications [7], [10], [11]. However, this approach
is not viable in fields including home rehabilitation, where hand-
icapped users often perceive difficulties in attaching normal ca-
sual clothes. In addition, movement rehabilitation benefits from
monitoring joint movement at high resolution [8], [12]. Conse-
quently, orientation errors need to be accounted for in garment
design and application at an early stage. While investigations
of orientation errors were made regarding elimination on sig-
nal [13] and recognition level [14], to our knowledge, there is
no explicit simulative analysis of orientation errors in garment-
attached sensors.

The challenge to estimate garment-related orientation errors
at the human skin is related to a variety of factors that in-
fluence textile drape. These include current and past postures
of the wearer, body proportions, fabric material properties,
and external factors, such as humidity, friction, and air move-
ment [15], [16]. Considering the variety of factors affecting
textile drape, its nonstationary, nonlinear, and anisotropic be-
havior [17], it was found intractable to approach a precise phys-
ical garment simulation [18]. Thus, garment wrinkle structure
and resulting effects on sensor information quality are not suf-
ficiently understood. Nevertheless, design, sensor choice, and
signal processing in smart garments require to systematically
account for garment fit and consequently for orientation errors
originating from textile wrinkles.

This paper introduces and validates a comprehensive frame-
work to simulate garment-based sensor orientation errors
(SOEs) and to estimate system performance in rehabilita-
tion applications. Our approach pioneers in describing struc-
ture and outline of textile wrinkles related to a metric quan-
tifying garment–skin fitting, which we call body-garment
mobility (BGM). Using wrinkle descriptions, we simulate its
statistical effect on sensor-orientation and posture-recognition
performance. Given a posture set, our framework allows esti-
mation of the required garment fitting for a particular recogni-
tion performance. In addition, it enables us to explore benefits
of alternative and additional sensor modalities before actually

1089-7771/$26.00 © 2010 IEEE
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Fig. 1. Outline of our simulation framework: 1) kinematic body model using parametric descriptions of postures to derive body-segment orientation; 2) sensor
model to simulate sensor readings of arbitrary inertial modalities; 3) geometric wrinkle model to estimate SOEs, as they occur in worn garments; and 4) recognition
simulation to estimate the influence of orientation errors on posture discrimination.

implementing them into a garment and performing participant
evaluation studies.

The proposed simulation framework was subsequently val-
idated by comparing performance estimations to experimental
study recordings from five participants using the SMASH pro-
totyping garment [3].

Specifically, this paper makes the following contributions:
1) We introduce a configurable modeling and simulation ap-

proach to describe natural human postures, derive readings
of body-worn inertial sensors, and simulate orientation er-
rors depending on the BGM metric. Postures of shoulder
and arm rehabilitation exercises are utilized to demon-
strate versatility of our modeling approach.

2) We present a geometric wrinkle model to describe SOEs
statistically. It enables our analysis and simulation of
garment-orientation impact.

3) We provide simulation results for rehabilitation posture-
recognition performances to a) validate our modeling ap-
proach with respect to empirical recordings; b) analyze
effects of garment fitting using BGM; and (c) estimate
benefits of different sensor modalities and locations.

In our earlier study, we compared rehabilitation posture
recognition between garment and skin-attached sensors and ob-
served an average recognition performance reduction of 13% [9]
for 21 postures. Moreover, we performed simulations using a
body model and empirically sampled textile orientation errors
to analyze orientation errors and found that the performance
deterioration of posture classification can be described [19].
However, due to the empirical error estimation, this approach
was constrained to the observed conditions. Our current study
profoundly extends on these initial results, as a complete pa-
rameterizable modeling framework is introduced to categorize
and quantify orientation errors, validated by empirical data.

II. MODELING AND SIMULATION FRAMEWORK

Our study aims to systematically evaluate the influence of
textile wrinkles on sensor orientation, and subsequent rehabili-
tation posture recognition for inertial sensors in smart garments.
Due to the hard predictability problem of drape in textiles and
garment movement, a full physical shape and alignment simu-
lation has been found unfeasible. Instead, we focus on deriving
a local statistical garment error model that considers BGM and
permits prediction of local sensor orientation errors. We employ
a theoretical framework of body and sensor models, which—
in combination with garment error model—provide statistical
orientation errors under the influence of local garment wrinkles.

As the performance of smart garments in rehabilitation-
posture-monitoring applications depend on several design as-
pects, we structured our approach in a modular, configurable
architecture, illustrated in Fig. 1. Our framework consists of the
following modules.

1) Kinematic body model: Number and characteristics of the
posture set that a garment should monitor influences dis-
crimination performance. This module translates paramet-
ric descriptions of arbitrary postures into the orientation
of body-model segments. The model is configured using
relative angles between body segments. In this study, we
concentrate on a specific set of postures used in shoulder
rehabilitation (see Section III).

2) Sensor model: Type and complexity of sensors can vary
from acceleration to attitude heading reference systems,
which provide complete orientation information. This
module transforms body-segment orientation of the kine-
matic body model into output of different sensor modali-
ties (see Section III). The sensor model is configured by
placement and modality parameters. In this study, we con-
sider acceleration, and earth magnetic field measurement
units attached to the upper limbs.

3) Geometric wrinkle model: BGM is related to SOEs, and
thus to system performance. This module is used to de-
scribe the local sensor orientation with respect to BGM
using a geometric textile curvature modeling approach.
Statistics of the induced orientation errors are derived from
this model and modulated on sensor data to perform sim-
ulations (see Section IV).

4) Simulation and posture recognition: The combined model
effects can be efficiently analyzed using simulations. This
module is dedicated to evaluate posture-recognition per-
formance on the basis of modeled postures, sensor po-
sitions, modalities, and BGM. In this study, we evaluate
the influence of these individual parameters and validate
recognition performance of the complete framework (see
Sections V and VI).

III. BODY-SENSOR MODELING

The body-sensor model contains two submodules. A kine-
matic body model is used to provide body-segment orientation
according to parametric posture descriptions. The body-segment
orientation is subsequently utilized by a sensor model to simu-
late the output of inertial sensors.
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TABLE I
DENAVIT–HARTENBERG PARAMETER FOR n = 7 LINKS SPECIFYING A

SERIAL-LINK MANIPULATOR FOR THE RIGHT BODY SIDE

A. Kinematic Body Model

A parametric description of body and arm postures is derived
by decomposing the upper body into serially linked segments
according to human anatomic structures. A serial-link manip-
ulator is formed, where each two segments are connected by a
joint with one or more rotational degrees of freedom. Subse-
quently, body postures are described by a relative configuration
of the segments, expressed as joint angles.

Computation of position and orientation of a serial-link ma-
nipulator in world coordinates is a forward-kinematics problem,
where homogeneous transformation matrices can be used to
describe links from serial segments [20]. The minimal form
of these transformation matrices is given by four Denavit–
Hartenberg (D–H) parameters [21]: 1) length ri of the link
(derived from anatomy); 2) twist αi of the link (derived from
anatomy); 3) offset di , denoting the relative link length; and
4) angle θ, denoting the inclination of a rotational joint. In this
study, parameter di is treated as fixed, and θ as configurable.

Left and right body sides were obtained by two indepen-
dent kinematic chains of seven links. Table I specifies the D–H
parameter set used for the right upper body side. Our link rep-
resentation allows for 5 DOF in each manipulator, which is
sufficient to describe elbow and shoulder movements. Physical
dimensions of links, which represent limb segments, were as-
sumed according to standardized anthropometric measures of
man (20–65 years, 78.4 kg) [22].

We described upper body postures as relative configuration
of rotational joints, expressed using θn and utilizing the Poser
rendering software [23], to derive link configurations from an
animated avatar. The approach allowed us to visually inspect
and verify link configurations, and manipulate the avatar to
match pictures taken during actual posture performances. Fig. 2
illustrates our digitizing and modeling procedure. A normal
posture (standing upright, arms down, and elbow and back of
the hand laterally aligned to the trunk) was used as reference for
modeling all elbow and shoulder exercises.

B. Sensor Model

A sensor modeling was used to derive outputs of arbitrary
sensors attached to body segments based on the kinematic body
model, according to Fig. 1. This module transforms link orienta-
tions, provided in world coordinates, into specific sensor outputs
in a local coordinate system. The sensor model can be config-

Fig. 2. Illustration of the posture modeling approach. Actual posture pictures
(left) were reproduced using a Poser avatar (middle). Subsequently, joint angles,
represented by link configurations, were extracted for a kinematic body model
(right).

ured regarding location at body segments and sensor modality.
Both are garment design aspects, which are typically defined
during prototyping. In this study, we considered the following
modalities.

1) 3-D-acceleration: Acceleration sensors are sufficient for
gravity-based detection of various static postures [9]. The
sensor output was derived by projecting the body-model
orientation vectors along the three axes of a link’s local
coordinate system onto the z-axis of the world system. A
detailed description of the acceleration sensor model was
provided in an earlier study [19].

2) 3-D-magnetic field: Magnetic field sensors are advanta-
geous in static and dynamic applications, in particular to
supplement the incomplete orientation information of ac-
celeration sensors. The output for magnetic field sensors
was derived in the same way as for acceleration sensors.
Unit vectors along a link’s local coordinate axes were pro-
jected onto the global system’s y-axis.

This investigation considered static postures. Nevertheless,
the framework could be extended to address dynamic motion.
For this purpose, a motion should be generated in the kinematic
body model as a chronological variation of link configurations.

IV. GARMENT ERROR MODELING

The body-sensor modeling introduced in Section III provides
ideal sensor outputs as they would occur for sensors tightly
fixed to the human body. We subsequently introduce a wrinkle-
modeling approach (see Fig. 1) to derive orientation errors
modulated onto those ideal sensor orientation. Our modeling
addresses a local, geometric wrinkle representation as a conse-
quence of BGM. Due to the challenges in garment shape sim-
ulation, we focus here on a statistical estimation of orientation
errors. Subsequently, terms used to describe orientation errors
are introduced, a generalized analytical model for wrinkles that
depends on BGM is presented, and the influence of BGM on
SOEs is described.

A. Terms Used to Describe Orientation Errors

Body-Garment Mobility (BGM): To derive the wrinkle
model, we approximate body segments, including extremi-
ties considered in this study, by cylinders. Fig. 3 illustrates a
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Fig. 3. Left: Illustration of arm cross sections with a potential wrinkle config-
uration in casual garment with BGM = 0.3. Red dots represent potential sensor
locations and their normal vectors. Right: Normal vectors of skin and garment
describe an AD, quantified in a distribution plot. The SOE is 25◦. See Section IV
for details.

body-segment cross section embraced by a casual garment with
an arbitrary outline. The BGM of this cross section is linked arm
and garment geometry. We postulate BGM as a dimensionless
ratio between circumferences of garment DGarment and body
segment DSegment . At an arbitrary cross-section position

BGM =
DGarment

DSegment
− 1. (1)

For tight-fitting garments, circumferences of garment and
body segment will be almost identical; hence, BGM → 0. If
garment circumference increases, BGM increases too. Accord-
ing to conversations with designers, convenient casual clothing
typically exhibits some “looseness”. Using the BGM metric,
we expect BGM ≈ 0.1, . . . , 0.5 at most body positions. We
subsequently consider BGM as the metric describing garment
fitting.

Angular Deviation (AD): Angular deviation (AD) denotes
the effective deviation of garment and body-segment orientation,
and thus is affected by garment fitting and sensor location. For
example, body-attached sensors and tight-fitting garments (see
Fig. 3) would result in identical directions of normal vectors
for sensor and body segment. When BGM increases, garment-
attached sensors can vary in orientation, thus normal vectors of
sensor and body segments assume different directions. Hence,
we define AD as angle between normal vectors of skin- and
garment-attached sensors at a specific body position. AD was
used in this form in our earlier study [19], and is needed here to
formulate the location-independent SOE.

Sensor-Orientation Error (SOE): SOE describes the statis-
tical orientation error between garment-attached sensor and a
body segment. While AD depends on the actual position at a
body segment cross section, SOE is independent of it.

We derive SOE by estimating AD at equidistant cross-section
positions, yielding an AD probability distribution function
(PDF). Using kernel density estimation (KDE), we approxi-
mate a Gaussian distribution for AD by sampling orientations of
a wrinkle surface, corresponding to potential sensor locations.
Fig. 3 shows the PDF for AD exemplarily with BGM = 0.3.
Since the probability for large normal vector deviations in-
creases with wrinkle size, the standard deviation of AD will
increase as well. In contrast, tight-fitting garments will exhibit

a minimal standard deviation for AD, since AD is zero at all
positions. Subsequently, we denote the SOE as standard devia-
tion of AD. The implementation of this approach is detailed in
Section IV-C.

B. Generalized Geometric Wrinkle Model

To obtain AD statistics and SOE, a complete description of
potential textile orientation in wrinkles is needed. For this pur-
pose, we developed a geometric wrinkle model that approxi-
mates the textile shape.

Previous research in the field of drape formation approxi-
mated garment wrinkles by symmetric buckling curves [24].
These models have a large number of independent parame-
ters and demand to resolve elliptic integrals. This makes them
impractical for extensive simulations. Our modeling approach
approximates wrinkles by circles. It allows computational inex-
pensive simulations of symmetric and asymmetric wrinkles by
a minimal set of independent parameters.

Fig. 4 illustrates essential elements of our modeling approach.
Two circles serve as textile guide to form configurable wrinkles
in two modes. A center circle (CC) determines position and
shape of the wrinkle top. A decentered circle (DC) is positioned
at the body segment circumference and defines a wrinkle’s onset.
While the DC circle is always in contact with a body segment
in our model, the CC circle can scale in distance to the body
segment.

A symmetric-type wrinkle is formed, if a wrinkle cross section
is rotation-symmetric. Wrinkle geometry can be described by
one wrinkle-half in this case. The symmetric-type mimics wrin-
kles that are formed when zero or negative force is observed at
wrinkle top, pointing to the cross section center. Such wrinkles
occur naturally, e.g., when a wrinkle pointing in the direction of
earth gravitation occurs.

An asymmetric-type wrinkle is a “flipped” wrinkle, as illus-
trated in Fig. 4. This type is frequently observed when positive
force is applied to a wrinkle top pointing to the cross section
center or if a textile is compressed.

By configuring the two circles, arbitrary wrinkles can be ap-
proximated with a set of five parameters:

1) ra : radius of body segment, e.g., arm (constant);
2) rCC : radius of CC circle;
3) lCC : elevation of CC circle above body segment surface;
4) rDC : radius of DC circle;
5) ω: angle between CC and DC circles.
These five parameter are sufficient to derive both, textile

orientation through normal vectors and textile circumference
around a body segment. The latter is used in combination with
body-segment circumference to determine BGM, according to
(1).

The wrinkle shape is derived in closed form by describing
sectors that begin and end at CC and DC circles, and body-
segment circumference (see Fig. 4). Symmetric-type wrinkles
are represented by four individual sectors (S1–S4), that are
mirrored to represent the complementary half. Asymmetric-type
wrinkles form a more complex shape, which can nevertheless
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Fig. 4. Illustration of two potential wrinkle configurations. Both wrinkle types are defined by five parameters (ω, lCC , rCC , rDC , ra ) that determine position
of two circles determining the wrinkle shape. Symmetric-type wrinkle orientation was described by four sectors (S1 –S4 ). For asymmetric-type wrinkles, seven
sectors (S1 –S7 ) were required.

be fully described by seven sectors (S1–S7). Our procedure to
calculate ADs is the same for both cases.

C. Estimation of AD and BGM From Wrinkles

The derived wrinkle descriptions were used to represent po-
tential sensor positions at equidistant cross section positions.
For each position, textile normal vectors of a wrinkle tex dir
are compared to normal vectors of the underlying skin skin dir
to compute AD and BGM. Algorithm 1 specifies the procedure
based on a sectorwise description Sn .

We detail our approach to obtain a wrinkle description by
exemplary discussing all procedural steps for sector 1 (S1)
in a symmetrical-type wrinkle, as illustrated in Fig. 5. Sec-
tor S1 starts at top of CC and follows the CC circumfer-
ence to angle δCC . The distance between body-segment cen-

Fig. 5. Left: Illustration of geometric relations to obtain angle ωm ax . Right:
Illustration of all geometric parameters required to derive AD and BGM for
sector 1 (S1 ) of a symmetric wrinkle.

ter (0,0) and CC (lCC ) is given as a simulation parameter,
while for DC, lDC = ra + rDC . The distance between CC
and DC centers (lx ) is obtained according to the cosines law

lx =
√

lCC
2 + lDC

2 − 2lCC lDC cos(ω). These distances are

needed to obtain angles of CC, where β = acos( lD C
2 −lx

2 −lC C
2

−2lx lC C
),

γ = acos( rC C +rD C
lx

), δCC = π − (γ + β). This geometric in-
formation is sufficient to calculate length, start, and ending co-
ordinates of S1 in lines 5–7 of Algorithm 1

S1
start = {0, lCC + rCC} (2)

S1
end =

{
rCCcos

(
π

2
− δCC

)
, lCC + rCCsin

(
π

2
− δCC

)}
(3)

S1
len = 2(γ + β)rCC . (4)
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In (4), a factor 2 is inserted to account for wrinkle symmetry.
Subsequently, the shape of S1 is sampled to obtain sensor

orientations. In our simulations, we defined a sampling interval
d to d = 0.1 mm, as it represents a typical distance between
yarns in a fabric. In total, I = S1

len/d potential sensor positions
are considered in S1 ; thus, the set of ADs obtained for S1 is
AD = {ad1 , . . . , adI }. As result, adi (line 11 in Algorithm 1) is
derived for each sensor position i = {1, . . . , I} at S1 according
to

adi = atan

(
rCCcos ((π/2) − (δCC i/I))

lCC + rCCsin ((π/2) − (δCC i/I))

)
−

(
δCC i

I

)
.

(5)
The terms in (5) corresponds to textile orientation (tex dir)

and skin orientation (skin dir). To account for a symmetric-
type wrinkle, the complementary side is considered by ap-
pending negated AD values to our result set obtained: AD =
{AD,−AD}.

Start and end coordinates, length, and AD of all remaining
sectors S2–S4 for symmetric-type wrinkles, and all seven sec-
tors of asymmetric-type wrinkles were obtained corresponding
to this procedure. By summing all sector length results Sn

len , a
garment’s BGM [corresponding to (1)] was obtained

BGM =

(
1

2πra

∑
n

Sn
len

)
− 1. (6)

D. Model Boundary Conditions

Specific parameter configurations of the wrinkle model re-
sult in undefined model states, such as when textile and body-
segment cross section collide, or model sectors become non-
continuous due to circle collisions. To resolve collisions, an
automatic parameter adaptation for ω and lCC was performed
as a function of all remaining parameters ra , rDC , and rCC . This
step is essential to reduce model boundary conditions when per-
forming simulations.

1) Adaptation of ω: Angle ω needs to be constrained to
avoid intersection of textile and arm cross section. The bound-
ary condition for ω = ωmax is illustrated in Fig. 5. ωmax
occurs, if sector 2 (S2) connects CC and body segment as
tangent with S2

len > 0. As depicted in Fig. 5, section CD
is given by rCC , BD by lCC , and AB by ra . According
to the intercept theorem, ED was obtained through ED =
−rCC lCC/(rCC − ra). EC was obtained by trigonometric re-
lations to EC = cos

[
arcsin

(
rCC/ED

)]
ED. Given EC and

ED, α is determined by α = atan
(
rCCED/EClCC

)
, and

thus, the maximum angle for ω is

ωmax = asin

(
rCCsin(π

2 − α)
lCCsin(α)

)
. (7)

2) Adaptation of lCC : For small ω the distance between CC
and DC centers (lx ) could become smaller than rCC + rDC .
Consequently, CC and DC would intersect and wrinkle model
sectors become noncontinuous. To avoid this condition, CC
is elevated by increasing lCC to the minimal value at which
no intersection occurs. For a given parameter set, minimum

elevation lCC ′ is determined by

lCC ′ =
rDC + rCC

sin(ω)
sin

[
π − ω − arcsin

(
lDCsin(ω)
rDC + rCC

)]
.

(8)

E. Estimating SOE for Given BGM

The geometric wrinkle model allows inference of AD and
BGM from specific wrinkles according to Algorithm 1. How-
ever, this algorithm does not reveal information about AD for
wrinkles that can emerge at a given BGM. In this section, we
illustrate the relation between SOE and BGM for a generic pa-
rameter set of our wrinkle model.

To derive a SOE-BGM mapping, we swept wrinkle model
parameters in a specified range. For all resulting wrinkle imple-
mentations, we calculated AD and BGM. In our simulation, we
addressed the following parameter space:

1) ra : is constant (e.g., 60 mm);
2) rCC : 1 mm to ra/2 in steps of 1 mm;
3) lCC : rCC + ra to rCC + ra + ra/2 in steps of 1 mm;
4) rDC : 1 mm to ra/2 in steps of 1 ;
5) ω: ωmax to −ωmax in steps of −1◦.
Resulting wrinkles outside a range of 0 ≤ BGM ≤ 0.8 were

neglected, since BGM < 0 is not feasible and BGM > 0.8 is
impractical for conventional garments.

Algorithm 2 was used to analyze our parameter space and
estimate SOE from BGM. The parameter sweep resulted in
1 018 195 valid, unique wrinkle descriptions. For each wrinkle,
this algorithm assigns AD (ADtemp ) from Algorithm 1 to a set
of ADs for wrinkles of a particular BGM (AD(BGM)). In a
subsequent step, the AD(BGM) set was used for a KDE with
a Gaussian kernel [25]. Finally, we calculated SOE as standard
deviation of obtained AD distributions. Since the expected value
of AD is E [AD] = 0, the standard deviation is simplified to

SOE(BGM) =

√
1

|AD(BGM)|
∑
BGM

AD(BGM)2 . (9)

F. Evaluation of the Garment Model

Fig. 6 shows that sensor mobility and SOE are increasing
with BGM.

For BGM = 0, which represents a tight-fitting garment, SOE
is 0◦, as expected. For casual garments, a BGM = 0.2 can be
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Fig. 6. SOE with respect to BGM as simulated with the geometric wrinkle
model.

expected at forearm and upper arm. For this BGM, a SOE of
15.5◦is predicted by the model.

V. FRAMEWORK VALIDATION

We validated our framework by comparing estimated recogni-
tion performance between simulation and an experimental study
using the SMASH prototyping garment [3].

In particular, we targeted to analyze effects of different BGM
settings on SOE and the final posture-recognition performance
for rehabilitation exercise postures.

A. Experimental Study Methodology

We asked five healthy volunteers to perform a set of shoul-
der rehabilitation exercises including ten postures, as illustrated
in Fig. 8. Each posture was adopted for ∼3 s followed by a
normal posture (see posture 1 in Fig. 8) to realign the garment
and prepare for subsequent postures. The complete exercise set
was repeated for three times. During recordings, the garment
was not manually realigned. The posture set was specified by
rehabilitation experts, as it is used in movement rehabilitation
to train shoulder and elbow functions.

Study participants wore a SMASH prototyping garment [3].
SMASH is a rapid prototyping architecture that has been specif-
ically designed to study sensing and processing functions of
smart garments. It comprises a garment-embedded distributed
processing network and sensing/actuation elements that can be
flexibly configured.

In this study, 3-D-acceleration sensors were attached to the
forearm and upper arm (see Fig. 7). Sensor data was continu-
ously streamed using a Bluetooth link from SMASH to a record-
ing PC. In a postprocessing step, acquired data were inspected
and annotations obtained during study recordings were refined.

One SMASH garment in size “large” was used and kept for
recordings with all participants. Four participants were selected
to include different body proportions and varying BGM values.
BGM figures were derived from circumference measurements
of each participant and the SMASH garment used [according
to (1)]. For the fifth participant, sensors were fixed onto skin to
evaluate the effect of an ideal tight-fitting garment, thus resulting

Fig. 7. (a) Inner side of the SMASH prototyping garment, including a hierar-
chical sensing and processing architecture. (b) Sensor positioning at the forearm
and upper arm (encircled) used for model and simulation validation.

TABLE II
VALIDATION STUDY PARTICIPANT DATA AND RECOGNITION PERFORMANCES

in a BGM of zero. Table II summarizes the participant data of
our validation study.

Performance evaluation: To derive posture-recognition per-
formance, a nearest centroid classifier (NCC) was deployed for
both, experimental data and the framework-simulation output.
The NCC was trained with sensor data (simulated or recorded)
as features. Classification performance was analyzed in a three-
fold cross-validation scheme, where each two of all three exer-
cise iterations were used for training, and testing was performed
on the remaining set. Each exercise repetition was used once
for testing. The final accuracy was determined as average of
individual cross-validation results.

B. Framework Configuration

Our framework was configured according to used postures,
sensors, and BGM of the validation study. We summarize our
steps to obtain configuration data in this section.

Configuration of the kinematic body model: Reference pho-
tographs were taken from all study postures. These served as
modeling reference to obtain link configurations for the body
model as described in Section III. Rendered representation of
the postures are depicted in Fig. 8, respective link configurations
are summarized in Table III.

Configuration of the sensor simulation model: Using the
kinematic body-model output, 3-D-acceleration sensors and
their positions at forearm (at the wrist) and upper arm (at the
deltoid muscle onset) were simulated.

Configuration of the garment error model: Each sensor and
sensor axis of our sensor simulation model output was superim-
posed with a Gaussian distribution of zero mean and a standard
deviation corresponding to our estimated SOE. In particular,
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Fig. 8. Illustration of shoulder rehabilitation exercise postures used in validation and exploratory analyses. Postures were modeled for the kinematic body model
according to Section III. The resulting link configurations are listed in Table III.

TABLE III
LINK CONFIGURATIONS FOR ALL SIMULATED REHABILITATION POSTURES (AS

ILLUSTRATED IN FIG. 8)

SOE was estimated according to the simulation results derived
in Section IV, as shown in Fig. 6.

BGM of forearm and upper arm were individually adjusted
according to participant-specific parameters (see Table II). As
these BGM figures indicate, participants fitted the garment in
a wide range of 0 ≤ BGM ≤ 0.65. To provide a semantic in-
terpretation, we partitioned BGM ranges into tight, ideal, and
loose.

C. Validation Results

Table II shows the recognition performances as predicted by
simulation and obtained from study data. Our evaluation of par-
ticipant #5 showed that when skin-attached sensors were used
(BGM = 0), simulation predicted a perfect posture classifica-
tion accuracy. This result was closely achieved with our study
data as well, which confirmed that our considered rehabilitation
postures can be well discriminated with the chosen configura-
tion.

Body height of participant #2 matched SMASH according to
the garment manufacturer’s sizing guide. Participant #3 fitted the
garment similarly regarding BGM, nevertheless, participant #2
was lean compared to #3. Our simulation predicted accuracies of
84% for participant #2 and 86% for #3, while study data yielded
85% for #2 and 94% for #3. This result confirms that body
proportions determine sensor mobility and influence recognition
performance. Height seems to be less relevant.

Participant #1 was subjectively too large for the selected
SMASH garment. Both, simulation framework performance
prediction (93%) as well as that from study data (98%) con-

Fig. 9. Posture classification confusion matrices for participant #2 to assess
misclassified postures. (a) Framework simulation. (b) Experimental study data.

firmed that the garment incurs only small performance drops
compared to skin-attached sensors. Participant #4 was too small
to fit SMASH, thus resulting in a loose fit. Recognition accuracy
of 79% for simulation overestimated our experiment slightly
(75%). Visual inspection of garment sleeves confirmed exten-
sive compressions and shifts at wrist region where one sensor
was attached.

An essential point of interest during garment prototyping is a
priori information on potentially misclassified postures. Early
evaluations of potential errors could be performed by analyzing
confusion matrices derived from classifier outputs. Fig. 9 shows
confusion matrices for simulated and study sensor data from
participant #2. The simulation result in Fig. 9 indicates minor
confusion of postures (1,2) and further confusions for postures
(3,6) and (9,10). Although the result matrix obtained for study
data showed no confusion for postures (1,2), it reveals similar
results for (3,6) and (9,10). A congruence between simulation
and study data was obtained for participants #1 and #3. For
participant #4, different confusions were found, which we at-
tributed to the loose-fit condition and resulting randomness in
SOE for this case.

We concluded that framework predictions of posture-
discrimination performance matched well with validation study
results. The mean difference between predicted recognition per-
formances and results from validation trials was below 4%.

VI. EXPLORATORY PERFORMANCE ANALYSIS

Our simulation framework can be used to investigate effects
of garment fitting, sensor modalities, and sensor position on
posture-recognition performance before implementing garment
prototypes. We exemplarily analyze the impact of garment fit-
ting and benefits of additional sensor modalities in this section.
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Fig. 10. Simulated recognition performance of rehabilitation postures (see
Fig. 8) regarding BGM for acceleration sensors at forearm and upper arm.

A. Impact of Garment Fit (BGM) on Recognition Performance

To investigate effects of garment-induced errors on recogni-
tion performance of rehabilitation postures depicted in Fig. 8,
we evaluated BGM in the parameter space 0 ≤ BGM ≤ 0.8. For
this simulation, NCC class centroids were trained by noise-free
sensor data; thus; no SOE was modulated onto training sensor
data. Classification performance was evaluated with 1500 test
samples that were modulated with a Gaussian-sampled SOE
corresponding to a particular BGM. All other framework con-
figurations and our evaluation methodology were kept constant,
as detailed in Section V.

We derived sensor outputs for forearm and upper arm inde-
pendently. Fig. 10 shows a simulated classification performance
map for both sensor positions. The color-coded classification
performance confirms its dependency on SOE and consequently
on garment fitting. For a tight fit (BGM = 0) at forearm and up-
per arm, a perfect discrimination is achieved. For our configured
posture set, performance remains perfect when the forearm sen-
sor remains tight fitted and BGM at the upper arm is increased
up to 0.15. Hence, in this configuration, tight alignment of a
garment at the forearm is crucial, while non-tight fit can be
tolerated at the upper arm.

We observed that convenient clothing typically exhibits a
BGM of ∼0.2 at the upper arm, and ∼0.3 at the lower arm. For
this case and our analysis configuration (rehabilitation postures
and sensors), a classification accuracy of 85% is predicted.

B. Impact of Sensing Modalities

Fig. 9 indicates that classifier confusions occur due to incom-
plete orientation information as provided by static acceleration
sensing. Specifically, postures (3,6) and (9,10), that were con-
fused, differ predominantly in body-segment rotation around
the gravity vector. Since this information cannot be captured
by acceleration sensors, additional sensor modalities could be
considered to resolve these misclassifications. We analyzed po-
tential benefits of additional magnetic field sensors to supple-
ment acceleration readings. The complementary information of
these two modalities provides complete orientation information
in static situations, thus potentially resolve confusions and in-
crease robustness against orientation errors.

The sensor simulation model was reconfigured to include
3-D magnetic field sensing instances at forearm and upper arm.

Fig. 11. Simulated recognition performance regarding BGM for a combina-
tion of acceleration and magnetic field sensors at forearm and upper arm.

Fig. 11 shows a simulated classification performance map for
this configuration. Our result indicated that an almost perfect
discrimination of all postures (>98%) can be achieved for BGM
values up to ∼0.4 at the upper arm and forearm.

These exploratory results for using additional magnetic field
sensors indicated that for all study participants considered in
Section V, a recognition of >97% would be achieved. This
result suggests that an additional selected sensor modality can
lead to profound performance improvements, also for casual
clothing. The average recognition performance of participants
#1–4 would be increased by ∼12% to ∼97.5% for this situation.

VII. CONCLUSION

In this study, we introduced a framework to simulate garment-
based SOEs depending on BGM. Validation of our simula-
tion framework with experimentally derived recognition per-
formances in a set of rehabilitation exercise postures confirmed
congruent performance trends with errors below 4% for all study
participants. In addition, similar confusion matrices were ob-
served for four out of five participants. We concluded that our
simulation approach is adequate to be utilized in performance
prediction related to garment fitting and estimation of posture
confusion.

Moreover, our framework enables us to analyze benefits of
using alternative or complementary sensor modalities in specific
BGM settings. Simulation of complementary magnetic field sen-
sors increased recognition performance by ∼12% for rehabil-
itation exercises considered in this study. From these results,
we concluded that a combination of acceleration and magnetic
field sensors could compensate recognition errors for settings
with larger BGM. Thus, setups with extended, specifically se-
lected sensors could enable robust garment operation at reduced
constraints on tight garment fitting.

We showed how our framework can become a valuable tool
during rapid prototyping of smart garments: it allows evalu-
ating design options before implementing them into garments
and performing participant evaluation studies. Further work is
needed to address additional sources of BGM, regarding prop-
agated garment strain and dynamic movements. We expect that
our framework could be extended to address these challenges.
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He completed one semester of traineeship at IBM,
Tucson, AZ, and two years in the core development
of former Siemens VDO, Germany. His research in-
terests include garment-based sensing of motions in
sports and rehabilitation.

Oliver Amft received the M.Sc. degree from Chem-
nitz Technical University, Germany, in 1999 and the
Dr.Sc. ETH (Ph.D.) degree from ETH Zürich, Zürich,
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