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Summary

Mathematical models are developed and applied to simulate polymer elongation processes, like
film casting and fiber spinning, thus replacing expensive experiments. The goal of the simulations
is to find the optimal processing conditions that guarantee efficient production and high quality
products. In these models, the polymer’s behavior is captured in constitutive relations that involve
parameters that are partly related to the visco-elastic nature of polymer fluids and partly to their
molecular structure. It is generally difficult to obtain the material parameters needed in these
models and only a few experiments are available in practice.

In this thesis a novel procedure is proposed to estimate the parameters in the constitutive models in
a fast and accurate way. The procedure is based on controlled filament elongation of the polymer
melt using a Rheotens set-up, which is a device that resembles a small scale fiber spinning process.
Moreover is the focus of the thesis on process limits as represented by stability issues. It proves
that both issues can be combined. In the Rheotens experiment we start to determine the eigenfre-
quencies of the force that the drawing wheels apply on the filament from experimental data. They
are subsequently used to match the eigenfrequencies as they result from the numerical simulations,
in dependence of the value of the material parameters. The procedure requires an efficient numer-
ical routine to calculate the true spectrum of a first order system of differential operators endowed
with two point boundary conditions. Application of the parameter estimation procedure developed
yields an adequate identification of the values of the parameters in the constitutive equations that
determine a polymer material and enables end-users to enhance quality - and improve process con-
trol. In this context, as an application, draw resonance in the film casting process is considered in
this thesis. A non-isothermal model is used to describe this process.

The main contribution of this thesis is the design of the parameter estimation procedure. For that,
dedicated numerical routines and associated software were necessary. In particular, we focused on
the calculation of eigenfrequencies that demands a (numerical) solution of the steady state of non-
linear systems of first order partial differential equations endowed with inhomogeneous boundary
conditions and on the computation of the spectrum of the corresponding linearized system. Both
computational steps are designed as generic as possible; they can be used for a wide class of
problems involving similar stability issues.

The main conclusion is that the procedure developed works accurately and fast, indeed, and can

i



be used on an operational level. The parameter estimation procedure is demonstrated to work for a
number of resins. With respect to the prediction of draw resonance in the film casting process, the
tests with the modified Giesekus model for a linear low density polyethylene show a perfect match
between experiments and simulations.
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CHAPTER ONE

General Introduction

Film casting, extrusion coating, film blowing and fiber spinning are examples of industrial pro-
cesses in which extruded polymer material in a viscoelastic state is elongated. Generally this
elongation is characterized by the draw ratio and the higher the draw ratio the more elongation is
achieved in the process. Most processes require a high draw ratio to generate efficient production.
But, at the critical draw ratio, the process is no longer stable and unwanted wavy-like phenomena
appear. These phenomena are commonly referred to as draw resonance. In the presence of draw
resonance, end products do not satisfy specifications, quality suffers, or even the complete process
breaks down and has to be reset, all at the cost of time and money. Therefore, the critical draw
ratio at which the system shows resonance behavior is an important characteristic of a polymer
elongation process.

Need for Simulation Tools

For decades, the polymer industry has been involved in the development of tools by which the
onset of draw resonance and the critical draw ratio can be predicted, given the type of polymer and
the type of process. A way to do this is by means of carrying out experiments based on an intel-
ligent design where process conditions and polymer material are the variable factors and drawing
force is the predictor. Then the associated statistical analysis may lead to a desired prediction on
the best polymer material and the best operating conditions to be used. The complexity of the
statistical design due to the many factors to be included make a statical approach less applicable.
The alternative is a software tool based on a mathematical model that is assumed to describe the
typical features of both the process and the polymer material. Simulation of the process using such
a tool should primarily predict the onset of draw resonance in the process but may also reveal other
features of the process such as elongation forces and velocity distributions.
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2 1 GENERAL INTRODUCTION

What are the Material Parameters?

Mathematical models combine the laws of physics obeyed by the process, e.g. balance of mass,
momentum, or energy, and the rheological behavior of the polymer material captured in constitu-
tive relations. The models contain parameters: process parameters and material parameters. The
process parameters describe the process conditions and may be assumed known. The material
parameters describe the kind of polymer material used, partly based on an assumed molecular con-
stitution, partly on an assumed rheological behavior, and are reflected in the constitutive relations.
As yet, the polymer industry does not constitute the polymers based on values of material param-
eters in a constitutive model. Of course, there are standard experiments carried out in industrial
laboratories in which polymers are classified according to their temperature dependent shear vis-
cosity and relaxation spectrum. But as constitutive models were designed for qualitative rather than
quantitative purposes, given a polymer, the majority of the parameters in the constitutive models
are undetermined and merely well- or badly guessed.

A Parameter Estimation Procedure

In this thesis, we describe a procedure that we designed such that for a given constitutive model
the material parameters related to a type of polymer can be determined. We prove applicability of
our procedure for a variety of different polymers, such as Linear Low Density Poly-Ethylene, Low
Density Poly-Ethylene, Poly-Propylene, and Poly-Styrene, using a modified Giesekus model as
the constitutive model. The procedure is based on a well-known experiment, namely, the Rheotens
test. The novel idea is that we perform the Rheotens experiment not only in its acceleration mode
but also in the constant mode with well specified drawing velocities. We prove that if data from this
experiment are matched with data from a dedicated mathematical model, a unique classification
of the polymer in terms of the parameters in the constitutive model is obtained. Matching data is
achieved by a parameter estimation method based on an optimization routine. Thus, we establish
a method, by which the polymer producing industry is enabled to characterize the material param-
eters of a polymer, and reset these parameters every time a new batch is produced. Our procedure
can, therefore, also be used for quality control during production.

Application on an Operational Level

In a polymer application environment, for instance in the environment where typical polymer elon-
gation processes are used, we propose to apply our parameter estimation method every time a new
batch of the polymer material arrives, and then to use the estimated parameters in a mathematical
model that describes the elongation process in order to establish the best operating conditions of
the process. As an example of such an application, we consider in this thesis film casting, where
we assume that the process satisfies non-isothermal conditions.
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Mathematical Issues

Both the mathematical model that describes the Rheotens experiment and those models that de-
scribe other polymer elongation processes consist of a number of first order nonlinear partial differ-
ential equations that constitute a hyperbolic system with space and time as independent variables.
The system of differential equations is supplemented with nonhomogeneous boundary conditions.
Such systems allow for a steady state stability analysis. The steady state describes the stationary
mode of the process; stability analysis describes oscillations on top of the stationary mode. If
these oscillations are damped, the process is stable. To determine from the model whether the
oscillations are damped, usually a linear stability analysis is carried out. The nonlinear system is
linearized about the steady state and a spectral analysis is applied to the resulting linear system.
This analysis reveals the discrete spectrum of eigenfrequencies together with the corresponding
damping factors and, also, the related eigenmodes. In a hyperbolic system these eigenmodes de-
termine traveling waves that move along the elongated material with a specific velocity. In our
parameter estimation procedure we make use of the steady state characteristics and the eigenfre-
quency characteristics, where we operate the Rheotens at a draw velocity for which resonance
effects are clearly apparent. If a velocity of the traveling wave is measured (for instance by the
Doppler velocimeter), this velocity can also be applied in the parameter estimation procedure.

The Simulation Tool

In order to have an operational software tool to estimate material parameters by searching for the
optimal match between simulation and experiment, a fast numerical routine to carry out the spectral
analysis is required. For that, dedicated numerical methods have been developed that determine
the steady state of the hyperbolic system of nonlinear differential equations, and the main eigenfre-
quencies and eigenmodes of the related linearized system accurately and fast. This thesis describes
and validates both methods, where the first one is based on a fourth order Runge-Kutta scheme in
combination with a shooting algorithm, and the second one on a Galerkin kind of approach using
local basis functions and a novel way to incorporate the homogeneous boundary conditions. In
contrast to other methods to determine eigenfrequencies of this type of hyperbolic systems, the
numerically calculated spectrum does not show spurious modes. Moreover, the calculation time of
the complete spectrum on an ordinary PC with one processor and 256 Mb of operational memory
takes only a few seconds. From each eigenmode we determine the amplitude and the phase. The
phase, combined with the corresponding eigenfrequency, determines the wave velocity of the os-
cillation, fixed by the eigenmode and eigenfrequency. In polymer elongation processes, the phase
is decreasing, which means that the waves travel from the die exit towards the point of take up.
This results from the simulations are (of course) affirmed by experiments.

Structure of the Thesis

This thesis is divided into three chapters. In Chapter two, we present the mathematical frame un-
derlying the mathematical models of the elongation processes. Tools from numerical mathematics
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and mathematical theory are the essential ingredients to tackle the problem of draw resonance.
Thus, we focus on the mathematics and at least suggest the hidden complications involved in the
kind of mathematical analyses we carry out. The steady state follows from a first order inhomo-
geneous boundary value problem; mathematics would demand a proof of unicity and existence of
the steady state solution. The stability of the steady state is determined by the spectrum of a first
order differential operator. This operator is approximated by a finite rank operator, a matrix, and
the spectrum by the eigenvalues of the matrix, a finite set of points. In Chapter two we validate our
approach on basis of a benchmark problem that has the same aspects as the mathematical models
representing the elongation processes.

In Chapter three, we describe the suggested measurement design to estimate parameters in a con-
stitutive model. We regard this design as the main part of this thesis. It is a novel contribution to the
complex field of parameters estimation in constitutive models. In our design we use the Rheotens
device that we operate at fixed velocities of the drawing wheels specified such that at these veloc-
ities draw resonance is induced in the drawn polymer filament. The recorded time series of the
force applied to the filament is analyzed for its characteristic frequencies by means of the Discrete
Fourier Transform. In Chapter three we propose a mathematical model of this experimental pro-
cess, from which we determine the eigenfrequencies, given the material parameters. We carry out
a sensitivity analysis and demonstrate the dependence of eigenfrequencies on model parameters.

In Chapter four, we study the process of film casting, an important polymer extension operation that
produces films. Knowledge of the dynamics and stability of this process enhances the productivity
and the uniformity of the film produced. We model the process non-isothermally, but temperature
is assumed to be quasi-static and not contained in the stability considerations, i.e., temperature
oscillations are disregarded. We study film casting assuming several types of constitutive models
such as the upper convected Maxwell (UCM), the Phan-Thien and Tanner (PTT), and the modified
Giesekus model. In literature, results of draw resonance investigations are presented only for
isothermal models. Validation of our results with respect to those available from the literature
show perfect agreement. As also observed experimentally, the model shows that the influence
on the stability of the process of a nonuniform temperature, due to cooling along the stretching
part between the flat die and the chill roll, is significant. We validate the model using available
experimental data taken from a laboratory set up where an LLDPE resin was casted. The validation
proved that our non-isothermal model, with modified Giesekus constitutive relations, give a very
accurate prediction of the draw resonance, while the material parameters are estimated by the
procedure described in Chapter three.



CHAPTER TWO

Mathematical Framework

2.1 Introduction

In this chapter, we present in a condensed way the mathematical framework on which we base the
further discussion of the stability of polymer elongation processes, in particular fiber spinning and
film casting. In these processes, after having been extruded through a circular die or a flat die, the
polymer fluid experiences elongation over a certain distance due to the pulling motion of a take-up
device (wheels in fiber spinning, rolls in film casting.) At some draw rates, fluctuations in the
dimensions of the polymer filament or polymer film are observed. This unwanted instability oc-
curring in such polymer elongation processes is called draw resonance. Since the first observation
of this phenomenon in 1962 by Christensen [1] and Miller [2], the issue of draw resonance has
been frequently addressed in literature and mathematical models to describe the instability have
been developed. To start we mention Petrie and Denn [3], Ishihara and Kase [4], Denn [5], who
presented a large amount of experimental results on draw resonance. Kase et al. [6], Pearson and
Matovich [7] were the first to perform a linear stability analysis describing draw resonance for a
Newtonian fluid. They were followed by Fisher and Denn [8], Ishihara and Kase [9] with the first
non-linear analysis, also for the Newtonian fluids, and Fisher and Denn [10] with the first stabil-
ity analysis for a viscoelastic fluid. Investigations of draw resonance phenomena in elongational
processes, for Newtonian as well as viscoelastic fluids, were pursued further by Hyun [11; 12],
Kase and Araki [13], Beris and Liu [14; 15], Bechel et al. [16], Kim et al. [17], Jung and Hyun
[79], Doufas et al. [19–21], to mention just a few. Hagen and Renardy [22–24] are considering
the problem of draw resonance from a more global mathematical prospective, involving serious
theory. A good description of the dynamics of film and fiber formation can be found in the book
of Agassant et al. [25]. Finally, there is a complete discussion of the mechanics of fiber spinning
process in the most recent book of Denn [26]. Most of the references mentioned are related to
fiber spinning. A more comprehensive review on draw resonance investigations in film casting is
presented in Chapter 4 of this thesis.
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6 2 MATHEMATICAL FRAMEWORK

Most developed models describing film or fiber formation, from a generic mathematical prospec-
tive, satisfy the basis formulation given by a quasi linear system of partial differential equations,
which are first order in time and place,

C(y; p)∂y
∂t

= A(y; p)∂y
∂x

+ b(y; p) , 0 < x < 1, t > 0. (2.1)

Here x and t are the independent variables, where x represents the normalized length and t -
the normalized time; p ∈ Rm is an array containing the process and material parameters, which
guide the elongation process. The state y = y(x, t; p) is an n-dimensional vector representing the
physical quantities involved in the process such as velocity, radius, and stress. The symbols A
and C denote n × n real valued matrix functions, and the symbol b denotes a real valued vector
function; they all depend on the state y and the parameters p. The matrix A is invertible, matrix C
is not necessarily invertible. To the equation we add two-point boundary conditions, at x = 0 and
at x = 1, which can be written as

P[y(0, t; p)] = ξ , Q[y(1, t; p)] = ζ , (2.2)

whereP andQ are projection operators fromRn to suitable subspaces. To complete the description
we should also include an initial condition in order to have a unique solution. In practice, an initial
condition is not always evident to choose, however, we can always assume we have one,

y(x, 0; p) = y0(x, p) . (2.3)

Generally, systems of the form (2.1) might be hyperbolic or elliptic, depending on the properties
of the matrices A(y) and C(y), see Courant and Hilbert [27], Tayler [28]. More specifically, the
nature of the system is determined by the characteristic determinant Λ of the system defined as
Λ = det(A + τC). If the equation Λ = 0 does not have real roots τ , then the system is called
elliptic. If the equation Λ = 0 has n real different roots τ , then the system is called totally hy-
perbolic. A more general definition of hyperbolicity does not exclude multiplicity of the roots of
the specified equation. In this work, we consider system (2.1) to be hyperbolic. We consider the
problem described by (2.1)-(2.3) strictly in the context of the practical applications, namely, as a
general description of the polymer elongation processes such as fiber spinning or film casting. The
particular systems describing the processes mentioned are hyperbolic, we refer to Beris and Liu
[14], Forest and Wang [29], Betchel et al. [30].

Some work on the existence and uniqueness of the solution of such or similar problems can be
found in the literature. In particular, the work of Hagen [31] is worth mentioning, where existence,
uniqueness, and regularity of solutions for the equations of fiber spinning of viscous (Newto-
nian) fluids are proven using the semigroup theory in a Hilbert space context. With respect to
the existence and uniqueness of the solution of the fiber spinning equations for more complicated
viscoelastic flow regimes, such as given by upper convective Maxwell, Phan-Thien and Tanner,
and Giesekus constitutive models, an outline of a prove is also presented in [31]. In this chapter,
discussing the mathematical framework underlying the mathematical models, we do not go to the
very detail of the uniqueness and existence of the solution of the hyperbolic systems under consid-
eration. We take a pragmatic approach and assume, where necessary, that existence and uniqueness
of the solution are satisfied, even if we did not check that.
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From a practical point of view, several questions are of interest:

• What is the form of the steady state for different values of the model parameters?

• Which process and material parameters guarantee stability of the steady state?

• Which of the process/model parameters is leading the bifurcation?

To answer these questions, however, we cannot rely on an analysis without doing some numerics.
Thus, we have to be sure on the efficiency and robustness of the numerical technique adopted for
the calculations. In order to guarantee a fast and robust implementation for eventually doing the
numerical analyses, we consider a model described in a generic form and we come to an approach
that is based on mathematics and not on the physics of the equations. Having said that, we present
the discussion on the general mathematics related to the problem of stability in the elongational
processes is presented in Section 2.2. Next, in Section 2.3 we give a generic numerical scheme
that can be easily adopted for any particularly considered problem. We conclude this chapter with
the validation of the numerical implementation developed, see Section 2.4.

In Chapter 3 we apply the mathematical model and related numerical scheme as discussed in this
chapter to the Rheotens experiment. This experiment basically is a small scale fiber spinning
process; it allows for observations of draw resonance. By applying the mathematical-numerical
technique developed, we are able to make use of draw resonance characteristics, measured in an
experiment, for the estimation of the parameters in the constitutive model. In Chapter 4 we address
the problem of draw resonance in the process of film casting.

2.2 Discussion on Stability

2.2.1 Auxiliary Statements

Let V be a finite dimensional vector space, with dimension dim V = n. Then V is a Banach space
for any vector norm, ∣ ⋅ ∣V. Its dual consists of all linear functionals on V and is denoted by V∗. For
a subset W ⊂ V∗, we denote by W0 the set of all elements of V that are annihilated by the elements
of W, i.e.,

v ∈ W0 ⇔ ∀w ∈ W < w, v >= 0 . (2.4)

By C([0, 1], V), we denote the vector space of all continuous vector functions v on [0, 1] with
values in V. Also the space C([0, 1], V) is a Banach space when endowed with the uniform norm

∥y∥C([0,1],V) = sup
x∈[0,1]

∣y(x)∣V (2.5)

For each f ∈ C([0, 1], V), we consider the following linear non-homogeneous system of first order
differential equations

dy
dx

+H(x)y = f , x ∈ (0, 1) , (2.6)
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together with the two-point boundary conditions

< pi, y(0) >= 0, i = 1, n − k; (2.7)

< q j, y(1) >= 0, j = 1, k. (2.8)

Here the sets {pi}n−k
i=1 and {q j}k

j=1 consist of linear functionals on V, and thus they are subsets of
V∗. In the terminology introduced above, the boundary conditions can also be written as

y(0) ∈ {pi}0, i = 1, n − k; (2.9)

y(1) ∈ {q j}0, j = 1, k. (2.10)

Existence and uniqueness of the solution of the boundary value problem (2.6)-(2.8) is an essential
condition for the stability of the steady state of hyperbolic systems. Stability issues are considered
further in the next section; here we discuss the conditions that guarantee the existence and unique-
ness of the solution for the problem formulated above. We understand the solution in a classical
sense,

y is a classical solution of (2.6)-(2.8) if y is continuously differentiable function on the open inter-
val (0, 1) that satisfies (2.6) point-wise, and also the conditions (2.7)-(2.8).

Let P(x) be the fundamental solution of the evolution equation

dy
dx

+H(x)y = 0, z > 0, (2.11)

that by definition satisfies the following relations: P(0) = I and dP
dx = −H(x)P. The fundamental

solution can be obtained from Picard iterations resulting into an iterative sequence

P0(x) = I , (2.12)
dPn

dx
= −H(x)Pn−1 , (2.13)

P(x) =
∞
∑
n=0

Pn(x) . (2.14)

The matrix function P(x) is continuously invertible, where x ↦ P(x)−1 satisfies the evolution
equation

dP−1

dx
= P−1H(x) . (2.15)

Statement 1. Let P be the fundamental solution of (2.11). Then, for given functions f and H on
[0, 1], functionals {pi}n−k

i=1 and {q j}k
j=1 on V, such that f ∈ C([0, 1], V), H(x) is non-singular for

all x, {pi}n−k
i=1 and {q j}k

j=1 are linear independent in V∗, and

P(1)({pi}o)∩ ({q j}o) = {0} , (2.16)

the two-point boundary value problem (2.6)-(2.8) has a unique solution in a classical sense.
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Proof. We prove the statement by actually constructing the solution of (2.6)-(2.8). Formally, a
solution of (2.6), in terms of the fundamental solution P(x), for x ∈ [0, 1] is unique and reads

y(x) = P(x)y(0)+
x

∫
0

P(x)P(σ)−1f(σ)dσ . (2.17)

Function y should satisfy < pi, y(0) >= 0, i = 1, .., n− k. Since {pi}n−k
i=1 is independent in V∗, there

is a linear independent collection {c1, ..., ck} ∈ V such that

y(0) =
k
∑
j=1

φ jc j . (2.18)

In turn, the condition < qi, y(1) >= 0 for l = 1, .., k results in the algebraic equation

Φφ = Ψf , (2.19)

where φ = {φ1, ...,φk} is a vector consisting of the expansion coefficients φ j; Φ is the (k × k)-
matrix defined by the elements

Φi j ≐< qi, P(1)c j > , (2.20)

and Ψ is a bounded operator from the Banach space C([0, 1], V) to Rk defined by

Ψf ≐ − < qi

1

∫
0

P(1)P(σ)−1f(σ)dσ > . (2.21)

Now the question on the existence and uniqueness of the classical solution of the system (2.6)-
(2.8) comes down to invertibility of the matrix Φ. The matrix Φ is invertible because the condition
(2.16) implies that the subspaces ({pi}o) and ({q j}o) are complementary, and thus the columns of
Φ are independent. Hence, we explicitly constructed the solution that reads

y(x) =
k
∑
j=1

(Φ−1(Ψ)f) jP(x)c j +
x

∫
0

P(x)P(σ)−1f(σ)dσ . (2.22)

Uniqueness is a consequence of the way we constructed the solution, i.e. taking y(0) such that the
boundary conditions are satisfied. ▲

Let us now consider a spaceW that contains all functions in C([0, 1], V) that satisfy the boundary
conditions (2.7) and (2.8),

W = {v ∈ C1([0, 1], V)∣v(0) ∈ {pi}0, v(1) ∈ {q j}0, i = 1, k; j = 1, n − k} . (2.23)

The spaceW is a dense linear subspace in C([0, 1], V). OnW we define the differential operator
D,

(Dv)(x) ≐ dv
dx

+H(x)v(x) , v ∈W . (2.24)
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Statement 2. If the Condition (2.16) is satisfied, the differential operator D ∶ W ↦ C([0, 1], V)
given by (2.24) has a compact inverse K ∶ C([0, 1], V)↦W .

Proof. From Statement 1 we conclude that the equation

Dv = f (2.25)

for f ∈ C([0, 1], V) has a unique solution v inW , which is presented by Formula (2.22). From this
formula we read that the operator K = D−1 on C([0, 1], V) is given by the following expression

(Kf)(x) =
k
∑
j=1

(Φ−1(Ψ)f) jP(x)c j +
x

∫
0

P(x)P(σ)−1f(σ)dσ . (2.26)

Considering the right hand side of this expression we see that the operator K is composed of
two parts, namely, K0 and K1. The operator K0 defined by K0 ≐ ∑k

j=1(Φ−1(Ψ)f) jP(x)c j is a
finite rank operator because its range is spanned by the finite set {P(x)c1, ..., P(x)c1}. The other

part, the operator K1 defined by K1 ≐
x

∫
0

P(x)P(σ)−1f(σ)dσ is a Volterra integral operator with a

continuous kernel P(x)P(σ)−1, and thus compact. Thus, we conclude that K is compact. ▲

The result presented in Statement 2 is used in the next section, where we address stability of the
linearized systems.

2.2.2 General Issues

We consider the following first order quasi linear hyperbolic system of partial differential equations

C(y)∂y
∂t

= A(y)∂y
∂x

+ b(y) , (x, t) ∈ S , (2.27)

with two-point boundary conditions

< pi, y(0, t) >= ξi, i = 1, n − k; (2.28)

< q j, y(1, t) >= ζ j, j = 1, k , (2.29)

and initial condition

y(x, 0) = y0(x) . (2.30)

In this problem, S is a strip in R2 described by S = [0, 1]× [0,∞). As in (2.7)-(2.7), sets {pi}n−k
i=1

and {q j}k
j=1 consist of linear functionals on V, where V is n-dimensional vector space. Also in

(2.27),A(y) and C(y) are matrix valued functions, and b = b(y) is a vector function. We assume
that for every y the matrix A(y) is invertible. The matrix C(y) does not need to be invertible.

The steady state of the system is determined by the equation

A(y)dy
dx

+ b(y) = 0 x ∈ [0, 1] , (2.31)
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together with the two-point boundary conditions

< pi, y(0) >= ξi, i = 1, n − k; (2.32)

< q j, y(1) >= ζ j, j = 1, k , (2.33)

We look for a classical solution of this problem. Since A is invertible, (2.34) can be written as an
ordinary non-linear differential equation in a standard form,

dy
dx

= A(y)−1b(y) . (2.34)

If the right hand side of (2.34) is continuously differentiable with respect to y, then, given an
initial condition y(0) = ψ, there is a unique solution. However, the problem at hand is not an
initial value Cauchy problem but a two-point boundary value problem, thus the uniqueness of the
solution cannot be obtained from this classical theorem. Questions of existence and uniqueness for
the solutions of boundary value problems are much more difficult than for initial value problems,
for there is no general theory. There is, however, a vast literature on individual cases, for instance
Bernfeld and Lakshmikantham [32] present a variety of techniques that may be used. We outline
here some necessary conditions for solvability. In order to have a unique solution, the boundary
conditions should at least define n independent equations, i.e. both sets {pi}n−k

i=1 and {q j}k
j=1 have

to be linearly independent in the dual V∗. Existence of the solution can be proved by applying
a fixed point argument based on a suitable fixed point theorem, such as the one of Schauder. We
note that a fixed point argument does not guarantee the unicity of the solution. In what follows, we
assume that the solution of the (2.34), (2.32), (2.33) exists and is unique.

Suppose we have determined the steady state solution ystate. The next question is to determine
whether this state is stable. For this we apply the linear stability theory, which means that we
linearize (2.27) about the steady state and consider the stability of the linearized system. Thus, we
write y(x, t) = ystate(x) + v(x, t). Then the linearization yields C(y), A(y), and b(y) are to be
replaced by

C(y) ≐ C(ystate)+ ∂yC(ystate)v , (2.35)

A(y) ≐ A(ystate)+ ∂yA(ystate)v , (2.36)

b(y) ≐ b(ystate)+ ∂yb(ystate)v , (2.37)

where ∂yC and ∂yA are 3-tensors and ∂yb is a 2-tensor. Substituting (2.35)-(2.37) into (2.27) and
keeping only the linear terms with respect to v, we end up with the linearized system

C(x)∂v
∂t

= A(x)∂v
∂x

+ B(x)v , (x, t) ∈ S , (2.38)

with two-point homogeneous boundary conditions

< pi, v(0, t) >= 0, i = 1, n − k; (2.39)

< q j, v(1, t) >= 0, j = 1, k. (2.40)
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In the linearized system (2.38), the linear operators A, B, and C are given by the following relations

C(x) = C(ystate)(x), (2.41)

A(x) = A(ystate)(x), (2.42)

B(x)v = ∂yb(ystate)v + [∂yA(ystate)v]dystate

dx
. (2.43)

We recall that the matrix valued functionA is invertible, thus A(x) is an invertible linear mapping
on V for all x. Hence, we may write the system (2.38) as

A(x)−1C(x)∂v
∂t

= ∂v
∂x

+ A(x)−1B(x)v , (x, t) ∈ S . (2.44)

Since the function x ↦ A(x)−1C(x) is continuous, the linear operator G ∶ C([0, 1], V) ↦
C([0, 1], V) defined by

(Gv)(x) = A(x)−1C(x)v(x) , (2.45)

is bounded. OnW , the dense linear subspace in the Banach space C([0,1], V), defined by (2.23),

W = {v ∈ C1([0, 1], V)∣v(0) ∈ {pi}0, v(1) ∈ {q j}0, i = 1, k; j = 1, n − k}

we introduce the first order differential linear operator D as follows

(Dv)(x) ≐ dv
dx

+ H(x)v(x) , v ∈W (2.46)

where H(x) = A(x)−1B(x) (2.47)

With these linear operators G and D, the problem (2.38)-(2.40) can be presented as

G dv
dt

= Dv , v ∈W . (2.48)

The operator G is not necessarily invertible, thus the semigroup theory is not applicable. The
densely defined operator D has a compact inverse K, see Statement 2, Section 2.2.1. Having said
that, we can rewrite (2.48) as

KG dv
dt

= v . (2.49)

Since the operator G is bounded, the operator KG is compact as a multiplication of a compact and
bounded operator. Applying the Laplace transformation to both sides of (2.49) we deduce that

(I − sKG)v̂ = −KGv0 . (2.50)

where v̂ is the Laplace transform of v, and v0 represents the initial condition v0 = v(0, x). Thus,
everything comes down to the invertibility of (I − sKG), which is essentially equivalent to the
spectral problem for the operator KG. Since KG is compact, there are two possibilities:

• KG is not a purely spectral operator. That yields that KG has a quasi-nilpotent compo-
nent, i.e. KG decomposes into two communicative operators with one of them being quasi-
nilpotent, [33]. In this case the spectrum of KG does not reveal any conclusion on the
stability of the steady state.
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• KG is a purely spectral operator. The spectrum ofKG is discrete, {µr∣r ∈ N}, each eigenvalue
µr has a finite multiplicity and µr → 0 as r → ∞. The sum of the eigenspaces is dense in
C([0, 1], V), corresponding eigenprojections sum up to the identity. Thus, the resolvent
s ↦ (I − sKG)−1 has poles at γr = 1

µr
, which means that (I − sKG)−1 exists for all s except

for a countable number of poles γr with finite multiplicity. With that we take the inverse of
the Laplace transform of (2.50), deriving the formal solution of the problem (2.38)-(2.40).

v(z, t) = − 1
2π i

σ+i∞

∫
σ−i∞

v̂estds = − 1
2π i

σ+i∞

∫
σ−i∞

(I − sKG)−1KGv0estds . (2.51)

If the set of poles γr is contained in a sector of the negative real half plane, ∣Imγr −π ∣ <α <
π/2, the integral (2.51) is convergent for t > 0 and tends to zero as time tends to infinity.
That, according to the definition, means asymptotic stability of the solution. Suppose, there
is at least one γr with Re(γr) > 0. Then the function v(x, t) = vr(x) exp(srt), where vr

is an eigenfunction corresponding to γr, satisfies Equation (2.49) and is unbounded. This
implies that the steady state solution of (2.27)-(2.29) is not stable.

If the set γr is neither contained in a sector of the left half plain nor there is a γr with
Re(γr) > 0, then on the basis of (2.51) we cannot conclude on the stability/instability of the
steady state.

Thus, in order to establish the stability/instability of the steady state for given input parameters, we
have to find the spectrum of the operator KG from the eigenvalue problem

KGu = µu . (2.52)

Returning to the initial notations (see the definition of the operatorsK and G), we see that the prob-
lem (2.52) is equivalent to the generalized eigenvalue problem given by the ordinary differential
equation

A(x)du
dx

+ B(x)u = γC(x)u , (2.53)

endowed with the homogeneous boundary conditions. In this formulation γ = 1/µ. Further, the
set of characteristics values {γ} is also referred to as ”spectrum”. Equation (2.53) can be obtained
directly from (2.38), if the solution of (2.38) is assumed to be of the form

v(x, t) = v(x) exp(γt) . (2.54)

To take a perturbation term in the form (2.54) is a usual practice in the literature on stability
considerations. Here we have shown that this approach matches the mathematical derivations.

The remaining question is the calculation of the spectrum {γ}. This is a non-trivial task that usually
requires a numerical procedure. The numerical method that we use to calculate the spectrum is
discussed in Section 2.3. The derivation of a formal expression of the analytic function, whose
zeros determine the γ’s, is given in Appendix A1.
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Assuming that the spectrum {γ} is found, we can address the stability problem. If the spectrum is
empty, there is no conclusion from the linear stability analysis on the stability of the steady state.
If the spectrum is non-empty, then the γ with the largest real part determines stability. In that case,
for each eigenvalue γ we can calculate the corresponding eigenfrequencies fγ and eigenmode uγ.
Eigenfrequencies are calculated according to

fγ = ∣ Imγ

2π
∣ . (2.55)

The corresponding eigenmode can be written as

uγ(x) = Aγ(x) exp( jkγ(x)x) . (2.56)

Here Aγ(x) is the amplitude of the eigenmode determined up to a positive constant and kγ(x)x
is the phase of the eigenmode. From phase and frequency we calculate the wave velocity of the
eigenmode

cγ(x) = fγ
kγ(x) . (2.57)

Of course these wave velocities reflect the hyperbolicity of the initial system.

2.3 Implementation

In this section we introduce a fast and accurate numerical scheme with which the steady state of
(2.27) and the spectrum of the corresponding linearized problem (2.38) can be calculated. The
algorithm for calculating the steady state is generic if the right hand side of (2.34) is known; the
algorithm for the calculation of the spectrum is generic as soon as the functions A, B, and C are
known.

2.3.1 Stationary Problem

Generally, the steady state problem, presented as

dy
dz

= A(y)−1b(y) , z ∈ (0, 1) (2.58)

< pi, y(0) >= ξi, i = 1, k; (2.59)

< q j, y(1) >= ζ j, j = 1, n − k, (2.60)

requires numerical solving. For the aspects of solving boundary value problems numerically, one
can refer, for instance, to Keller [34], Kramer [35], Ascher et al. [36], Ascher and Petzold [37],
Quarteroni et al. [38], Mattheij and Molenaar [39]. Herein, we present an outline of an algorithm
that we used to solve (2.58) - (2.60). We start with a shooting method. That is, we introduce the
parameter κ ∈ Rn−k, by which we replace the boundary condition (2.60) specified in z = 1 with the
conditions specified in z = 0

< q j, y(0) >= κ j, j = 1, n − k . (2.61)
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Now, for any given κ, the problem (2.58)-(2.60) becomes a classical Cauchy problem (2.58),
(2.59), (2.61). To find a solution of this problem, one can use a 4-th order Runge-Kutta method
that is known for its accuracy in solving ODE systems. Because we are interested in the specific
solution that satisfies the condition in point x = 1, we have to find a value of the parameter κ,
which leads to that solution. To achieve that we suggest the following algorithm:

1 take a random value for κ ;

2 solve the System (2.58), (2.59), (2.61);

3 check whether the found solution satisfies condition (2.60);

3.1 if the answer is ”not”, then adapt the κ-value and go to step 2.

3.2 if the answer is ”yes”, then the solution of (2.58)-(2.60) is found.

2.3.2 Linearized Problem

From the previous section we learn that the equation

A(x)du
dx

+ B(x)u = γC(x)u , x ∈ (0, 1) (2.62)

has at most a countable number of characteristic values γ with corresponding eigenstates uγ. We
found a formal expression for the analytic function whose zeros determine γ’s, we presented the
formal expression for the eigenmodes, and we found the necessary and sufficient condition such
that the system of equations

A(x)du
dx

+ B(x)u = f(x) (2.63)

with associated 2-point boundary conditions has a unique solution. It turned out that the inverse
of (A d

dx + B) is compact. Thus we can apply the usual numerical techniques, such as Galerkin,
collocation, or projection methods to solve the equations. Here we present a modification of the
Galerkin method based on splines. We describe the method in general, and in the end become
more specific. We approximate the solution u by an expansion with the well chosen spline basic
functions {sl}N+2

l=1 related to a collection of equidistant nodes {xl}N+2
l=1 , xl = l−1

N+1 , partitioning the
interval [0, 1]. Thus we write

u =
N+2

∑
l=1

βl sl , (2.64)

where βl ∈ Rn, are expansion vector coefficients. Introducing u as given in (2.64) into equation
(2.62), we obtain

γ
N+2

∑
l=1

C (x)βl sl =
N+2

∑
l=1

B (x)βl sl +
N+2

∑
l=1

A (x)βl
dsl

dx
. (2.65)
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Equation (2.62) is supposed to be satisfied in a weak sense if for all test functions εk sl , where
k = 1, ..., D and l = 1, ..., N + 2,

γ (εk sl , C (x)u) = (εk sl , B (x)u)+ (εk sl , A (x) du
dx

) . (2.66)

Here (⋅, ⋅) denotes the inner product,

(v, w) = ∫
1

0
(v (x) , w (x))RD dx, (2.67)

and {εk}n
k=1 the standard basis of Rn. Accordingly, we work out Equation (2.62) and get

γ
N+2

∑
l=1
∫

1

0
(εk, C (x)βl)Rn s j (x) sl (x) dx = (2.68)

=
N+2

∑
l=1
∫

1

0
{(εk, B (x)βl)Rn s j (x) sl (x)+ (εk, A (x)βl)Rn s j (x) s l

′ (x)} dx.

Each spline s j has a support point x j. Thus for N sufficiently large, we can approximate the three
integrals in the above equation as

∫
1

0
(εk, C (x)βl)Rn s j (x) sl (x) dx ≗ (εk, C (x j)βl)Rn S jl , (2.69)

∫
1

0
(εk, B (x)βl)Rn s j (x) sl (x) dx ≗ (εk, B (x j)βl)Rn S jl , (2.70)

∫
1

0
(εk, A (x)βl)Rn s j (x) sl

′ (x) dx ≗ (εk, A (x j)βl)Rn Tjl , (2.71)

where

S jl = ∫
1

0
s j (x) sl (x) dx, (2.72)

Tjl = ∫
1

0
s j (x) sl

′ (x) dx. (2.73)

In matrix form the equations are written as

γ C̃

⎛
⎜⎜⎜⎜⎜⎜
⎝

β0
⋅
⋅
⋅

βN

⎞
⎟⎟⎟⎟⎟⎟
⎠

= B̃

⎛
⎜⎜⎜⎜⎜⎜
⎝

β0
⋅
⋅
⋅

βN

⎞
⎟⎟⎟⎟⎟⎟
⎠

+ Ã

⎛
⎜⎜⎜⎜⎜⎜
⎝

β0
⋅
⋅
⋅

βN

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.74)

where the matrices C̃, B̃ and Ã have dimension (N + 2)n × (N + 2)n and are in a block form
described as

C̃ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

C (x1) S1,N+2 ⋅ ⋅ ⋅ C (xN+2) S1,N+2
⋅ ⋅
⋅ ⋅
⋅ ⋅

C (z1) SN+2,1 C (xN+2) SN+2,N+2

⎞
⎟⎟⎟⎟⎟⎟
⎠

= diag (C (x1) , ..., C (xN+2))S

(2.75)
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with

S =

⎛
⎜⎜⎜⎜⎜⎜
⎝

S1,1 ID ⋅ ⋅ ⋅ S1,N+2 ID
⋅ ⋅
⋅ ⋅
⋅ ⋅

SN+2,1 In SN+2,N+2 In

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.76)

and In is the n × n identity matrix;

B̃ =diag (B (x1) , ..., B (xN+2))S (2.77)

and

Ã =diag (A (x1) , ..., A (xN+2))T (2.78)

with

T =

⎛
⎜⎜⎜⎜⎜⎜
⎝

T1,1 In ⋅ ⋅ ⋅ T1,N+2 In
⋅ ⋅
⋅ ⋅
⋅ ⋅

TN+2,1 In TN+2,N+2 In

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (2.79)

Consider the homogeneous boundary condition at x = 0: < pi , u(0) >= 0, i = 1, n − k. Let
s1, ..., sm, N > 2m − 2, be the splines that are non-zero in x = 0. Then the boundary condition at
x = 0 reads

m
∑
r=1

sr(0) < pi,βr >= 0 , i = 1, n − k . (2.80)

This is a set of linear homogeneous equations for the vector coefficients β1, ...,βm. Thus, we have
(n− k) equations for (mn) unknowns, which means that mn− (n− k) coefficients are free and the
others can be expressed in terms of them. For the sake of notation take

b = (β1, ...,βm)T ∈ Rmn (2.81)

Then we may assume that

⎛
⎜⎜⎜⎜⎜⎜
⎝

b1
.
.
.

bn−k

⎞
⎟⎟⎟⎟⎟⎟
⎠

= Z0

⎛
⎜⎜⎜⎜⎜⎜
⎝

bn−k+1
.
.
.

bm n

⎞
⎟⎟⎟⎟⎟⎟
⎠

≐ Z0b0 (2.82)

for a matrix Z0 ∈ R(n−k)×(mn−(n−k)). A similar matrix Z1 ∈ Rk×(mn−k) and a vector b1 ∈ Rmn−k

exist describing the boundary condition in x = 1. Thus, we find

β =

⎛
⎜⎜⎜⎜⎜⎜
⎝

β1
.
.
.

βN+2

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

Z ∅
I0

I
I1

∅ Z

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

b0
βm+1

.
βN+2−m

b1

⎞
⎟⎟⎟⎟⎟⎟
⎠

≐ Zβred (2.83)
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Here I0 is the identity matrix with dimension mn− (n− k), I1 is the identity matrix with dimension
mn − k, and I is the identity matrix with dimension N + 2 − 2m. Define Ã = ÃZ , C̃ = C̃Z , and
B̃ = B̃Z , then the initial system with the incorporated boundary conditions is discretized by

[γ C̃red − (B̃red + Ãred)]βred = 0. (2.84)

Let us further introduce the following notation

M = B̃red + Ãred and N = C̃red .

In terms ofM and N , Equation (2.84) becomes the generalized eigenvalue problem

[γN −M]βred = 0. (2.85)

The solution of this equation is obtained from the eigenvalue problem

[(MT M)−1 MTN −µI]βred = 0, (2.86)

where µ = γ−1. With this we conclude the generic description of our numerical method, which is
applicable to a spectral analysis of Equation (2.62).

In our implementation we use linear splines s1, ..., sN+2, where each node corresponds to one spline
that has value 1 in that node and 0 in the other nodes. Then the nonzero elements of the matrices
S and T are given by

S j, j = 2
3(N + 1) , S j, j−1 = 1

6(N + 1) , S j, j+1 = 1
6(N + 1) , j = 2, ..., N + 1,

S1,1 = 1
3(N + 1) , S1,2 = 1

6(N + 1) ,

SN+2,N+1 = 1
6(N + 1) , SN+2,N+2 = 1

3(N + 1) ,

and

Tj, j−1 = −1
2

, j = 2, ..., N + 2, Tj, j+1 = 1
2

, j = 1, ..., N + 1,

T1,1 = −1
2

, TN+2,N+2 = 1
2

.

The reduction matrix Z has the same form as before, namely

Z =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Z0 ∅
I0

I
I1

∅ Z1

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where in this case Z0 ∈ R(n−k)×k, Z1 ∈ Rk×(n−k), I0 is the identity matrix with dimension k, I1 is
the identity matrix with dimension (n − k), and I is the identity matrix with dimension N.
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2.4 Illustration and Validation

In this section we present two examples in which we demonstrate the accuracy of our implemen-
tation. Moreover, we want to clarify the role of eigenfrequencies and eigen-phases of the related
eigen-modes. In the first example we present a generalization of the classical wave equation and in
the second example we consider a simple way of describing a fiber spinning process and compare
our results with the ones from literature.

2.4.1 Generalized Wave Equation

We consider the stability of the steady state u = 0 of the linear system of the form (2.27) with A,
C and b defined by

A = I , (2.87)

C = ( 0 1
a2 − b2 2b ) , a > b > 0, (2.88)

b = 0 . (2.89)

The system consists of two equations for a two-dimensional state u = (u, v),

∂u
∂x

= C ∂u
∂t

, (x, t) ∈ (0, 1)× (0,∞) . (2.90)

We consider (2.90) supplemented with the boundary conditions

u(0, t) = u(1, t) = 0 . (2.91)

System (2.90) is totally hyperbolic. The roots of the characteristic equation are the eigenvalues of
C; the matrix C has two real different eigenvalues

λ1 = b + a , λ2 = b − a . (2.92)

We include the analysis of the problem (2.90)-(2.91) for two reasons. First, this simple hyperbolic
system represents the main concept of the systems describing traveling waves in polymeric fila-
ments. Second, a straightforward calculation yields the analytical solution of this problem. These
two reasons allow us to introduce the concept of a traveling wave described by the eigenmodes of
the system, and to validate our numerical technique by comparing numerical results with results
derived analytically. We are interested in the spectrum and the corresponding eigenmodes of the
system (2.90). For that we put

u(x, t) = U(x)eγt , (2.93)

where U = (U, V)T. Then the complex amplitude U satisfies the following system

dU
dx

= γCU . (2.94)
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The solution of this system can be written as

U(x) = c1eλ1γxU1 + c2eλ2γxU2 (2.95)

where λ1 and λ2 are the eigenvalues of the matrix C given by (2.92), and U1 and U2 are the
corresponding eigenvectors, U1 = (1, b + a)T and U2 = (1, b − a)T. Substituting expressions for
λ1, λ2, U1 and U2 into (2.95), we obtain the general solution of (2.94) in the form

U(x) = eγbx(C1U1eγax +C2U2e−γax) . (2.96)

Using the boundary conditions, we obtain the following expression for the characteristic values

γn = ±nπ

a
i , n ∈ N . (2.97)

The components of the eigenmodes U±n corresponding to γn are

U±n(x) = e±
nπbx

a i sin(nπx) , (2.98)

V±n(x) = e±
nπbx

a i (b sin(nπx)∓ ia cos(nπx)) . (2.99)

We focus on the first component of the n-th eigenmode, Un. Writing Un in polar form

Un(x) = An(x)eiφn(x) , (2.100)

we obtain its amplitude An(x), and its phase φn(x):

An(x) = ∣ sin nπx∣ , (2.101)

and φn(x) = nπb
a

x + [nx]π . (2.102)

Here [⋅] denotes the Entier function. In combination with the time factor eγnt, the modes Un

determine the waves

Re(Uneγnt) = cos(nπb
a

(x + 1
b

t)) sin(nπx) , (2.103)

Im(Uneγnt) = sin(nπb
a

(x + 1
b

t)) sin(nπx) . (2.104)

The expressions (2.103), (2.104) describe waves that travel from x = 1 to x = 0 with the velocity
ctr = 1

b with knots in the points x = k
n , k = 0, ..., n. We note that in case b = 0, the equations (2.103),

(2.104) describe the classical wave equation with eigenmodes that are standing waves

cos(nπ

a
t) sin(nπx) , sin(nπ

a
t) sin(nπx) . (2.105)

Obviously, in case b < 0, the waves are traveling from x = 0 to x = 1,

cos(nπb
a

(x − ∣1
b
∣t)) sin(nπx) , sin(nπb

a
(x − ∣1

b
∣t)) sin(nπx) . (2.106)

This ends the classical analysis. Next we show that our numerical procedure, described in the
previous section, is capable in handling this problem. In Figure 2.1 we present the resulting char-
acteristic spectra of the problem considered, calculated by applying the numerical technique ex-
plained in Section 2.3.2. The calculations where carried out with the number of discretization
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nodes N = 200. Generally, the calculation takes a few seconds. Calculations are performed for 4
cases, namely, when a = 1, 2, 3 and 4. According to (2.97), the actual spectra corresponding to the
selected values of the parameter a are

a = 1 ⇒ γn = ±nπ i , n ∈ N , (2.107)

a = 2 ⇒ γn = ±nπ

2
i , n ∈ N , (2.108)

a = 3 ⇒ γn = ±nπ

3
i , n ∈ N , (2.109)

a = 4 ⇒ γn = ±nπ

4
i , n ∈ N . (2.110)

Comparing the numerical results with the actual results given by (2.107)-(2.110), we conclude that
our numerical technique is very accurate in estimating the spectrum {γ} of hyperbolic systems,
like the one under consideration. Figure 2.2 presents amplitude and phase for the first component
of the first (n = 1) and the second (n = 2) eigenmode found for the two different sets of parameters:
a = 2, b = 1, and a = 4, b = 1. We observe that the phase is a continuous linear function; both
phase and amplitude agree perfectly with the ones given by formulas (2.102) and (2.101).
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Figure 2.1: Numerically found characteristic spectra of the problem (2.94) for the following values
of parameter a: a = 1, 2, 3, 4.
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Figure 2.2: Numerically found amplitude and phase of the U1 and U2, first and second eigenmodes.
Two different sets of parameters are considered: (a, b) = (2, 1) and (a, b) = (4, 1).

2.4.2 Fiber Spinning: Simple Model

As explained in the introduction, we are interested in practical applications, namely in the predic-
tion the draw resonance instability occurring in polymer elongation processes. Therefore, in this
section we consider a fiber spinning process described by a simple model to validate our numerical
routine.

We adopt a model discussed in recent literature by Hagen and Langwallner, [40]. In this model
it is assumed that the cross-section of the polymer fluid filament is circular and that the radial
variations are small compared to the fiber drawing length. Surface tension and gravity are neglected
but viscous and inertial forces are accounted for. Then the governing equations describing the
process of forced elongation (equations of conservation of mass and momentum) take the following
dimensionless form

∂a
∂t

+ ∂(ua)
∂x

= 0 , (2.111)

Re a (∂u
∂t

+ u
∂u
∂x

) = ∂
∂x

(a
∂u
∂x

) , (2.112)

and associated 2-point boundary conditions

a(0, t) = u(0, t) = 1 , u(1, t) = Dr . (2.113)

In this hyperbolic system x, x ∈ [0, 1], and t, t ∈ [0,∞), are the independent variables denoting
the normalized flow direction and the normalized time, respectively. The point x = 0 denotes
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the source of the polymer fluid. The point x = 1 denotes the position where the pulling force is
applied. The functions a(x, t) and u(x, t) denote the area of cross-section of the polymer flow
and the axial velocity of the polymer flow, respectively. The parameter Re denotes the Reynolds
number, Re = ρuR/η with R - radius of the cross-section, the parameter Dr - the dimensionless
final velocity imposed by the pulling force. The parameter Dr actually represents a ratio between
the final and the initial flow velocities and is called ”draw ratio”.

The problem (2.111)-(2.113) was recently discussed by Hagen and Langwallner, [40]. After ap-
plying a linear stability analysis, they solve the resulting spectral problem by employing the Cheby-
shev collocation method, and they present several spectra for different values of the parameters Dr
and Re. This allows us to use [40] as a validation reference for our numerical routine used to
calculate the spectrum. Without repeating the analysis of the results, we use the same values of
the parameters Dr and Re and compare the spectra obtained with our methodology with those
presented in [40].

In order to solve (2.111)-(2.113), we reduce the order of the system by introducing the state vari-
able w = ∂u

∂x . After the corresponding steady state (a0, u0, w0) is found1, we linearize the system
around the steady state, and arrive at the following linear problem

A(x)∂y
∂x

+ B(x)y = C(x)∂y
∂t

, x ∈ (0, 1) , (2.114)

ap(0) = up(0) = 0 , up(1) = 0 , (2.115)

where the matrices A, B, and C are given by

A =
⎛
⎜
⎝

u0 0 0
−w0 0 a0

0 −1 1

⎞
⎟
⎠

, C =
⎛
⎜
⎝

−1 0 0
0 −Re a0 0
0 0 0

⎞
⎟
⎠

, (2.116)

B =
⎛
⎜⎜⎜⎜
⎝

w0
da0

dx
a0

Re u0w0 − dw0

dx
Re a0w0 Re u0a0 − da0

dx
0 0 1

⎞
⎟⎟⎟⎟
⎠

(2.117)

Applying now the numerical routine discussed in Section 2.3, we calculate the spectra {γ} from
the problem (2.114)-(2.115) for the parameters Dr = 34, and Re = 0.035 and 0.06. The comparison
between the spectra obtained and the ones given in [40] is presented in Figure 2.3. In both cases
we observe perfect agreement, especially for the leading values in the spectra.

Let us now look at the frequencies determined by the values of the spectrum calculated for Dr = 34
and Re = 0.035, see Figure 2.4. We observe that the frequencies form a shifted harmonic complex,
where the first mode frequency is approximately 2.30 fc Hz, and the difference between each next
frequency is 3.45 fc Hz. Here fc is the characteristic frequency determined by the characteristic
time of the process according to fc = 1/tc. In Figure 2.5 we present the amplitude and the phase of
the cross-sectional area ap and the flow velocity up corresponding to the first mode in the spectrum.

1The calculation of the steady state is not an issue; thus we do not present here the solution of the steady state of
(2.111)-(2.113). If interested in steady state, see [40].
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Taking the phase of the velocity at x = 0 equal to 0, the eigenstate of the velocity is determined up
to a positive constant. Therefore, we can determine phase differences between state components,
phase changes in a state component, and the relative amplitude. From the phase being increasing
or decreasing, we conclude that the wave is traveling towards or from the die exit, respectively. To
conclude the direction of the wave we have to take the phase corresponding to the characteristic
value with the positive imaginary part. We note that we cannot conclude anything about the size of
the wave traveling through the polymer filament because the amplitude is found up to a constant.
However, we see the shape of the wave. Also, based on the phase information, we conclude that
the wave velocity increases slightly as the wave travels.
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Figure 2.3: Characteristic spectra for Dr = 34, and Re = 0.035 (left), Re = 0.06 (right). Com-
parison between our numerical calculations and the one from Hagen and Langwallner,
[40].
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Figure 2.5: The amplitude and the phase of the eigenstates corresponding to the leading value in
the spectrum of (2.114)-(2.115) calculated for Dr = 34 and Re = 0.035

2.5 Conclusions

In this chapter we consider a general mathematical description of polymer elongation processes,
which is a hyperbolic system of quasi-linear differential equations with two-point boundary con-
ditions. We prove applicability of linear stability analysis to tackle the problem whether the steady
state is stable or not. For that we showed that the differential operator that drives the linear sys-
tem has a compact inverse and concluded that the spectrum of the linearized hyperbolic system is
discrete. This conclusion is essential as it indicates that numerical calculations of the spectrum of
eigenvalues and the corresponding eigenmodes make sense. The numerical routine developed to
calculate the spectrum is based on a modified Galerkin approach, using local basis functions and
a novel way to incorporate the homogeneous boundary conditions. We demonstrate the routine
to work splendidly for two benchmark problems; it produces a spectrum without spurious modes,
in contrast to other methods used to determine spectra of hyperbolic systems, and, furthermore,
within a reasonable calculation time. The complete spectrum with eigenmodes is calculated in a
few seconds on a standard PC with one processor and 256 Mb of operational memory. The mathe-
matical strategy developed, both the model as well as the implementation, allows us to tackle real
processes using more adequate viscoelastic constitutive equations in the next chapters.
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Appendix A

A1 Formal Expression for Spectrum

We consider the eigenvalue problem

KGu(x) = µu(x) , (A-1)

or the equivalent generalized eigenvalue problem

Du(x) = γGu(x) , where γ = 1
µ

. (A-2)

For the definition of the operators G, D, and K see formulas (2.45), (2.46), and (2.26) in Section
2.2.2. Here we shall derive a formal expression for the eigenvalues of KG. We note that K maps
the space C([0, 1], V) ontoW . Thus, u that satisfies the eigenvalue equation (2.52) belongs toW .
We assume that solution u can be found in the following form:

u(x) = P(x)v(x) , (A-3)

where v is in C([0, 1], V); and the matrix function P(x) is the fundamental solution of the system
Du = 0. If u satisfies (A-1) then v(x) satisfies v(0) = u(0) and

v(z) = v(0)+γ

x

∫
0

P(σ)−1C(σ)P(σ)v(σ)dσ . (A-4)

Now we define the operator J on C([0, 1], V) by

(J v)(x) =
x

∫
0

P(σ)−1C(σ)P(σ)v(σ)dσ . (A-5)

The operator J is compact and quasi-nilpotent because

∥J n∥ ≤ Mn

n!
where M = max

σ∈[0,1]
∥P(σ)∥C(σ)∥∥P(σ)−1∥ . (A-6)

This yields that the map λ ↦ (I − λJ )−1 is entirely analytic, i.e. (I − λJ )−1 exists for all λ,

(I −γJ )−1 =
∞
∑
n=0

γnJ n (A-7)

Using (A-5) and introducing the mapping Θ ∶ V → C([0, 1], V) such that

(Θc)(z) = c , (A-8)

we can rewrite Eq. (A-4) in the following way

v = Θ[u(0)]+γJ v . (A-9)
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The solution of this equation is then given by

vγ = (I −γJ )−1Θ[u(0)] (A-10)

and thus uγ defined by uγ(x) = P(x)vγ satisfies Equation (A-2).

Next we determine the γ’s by considering the homogeneous conditions in x = 0 and in x = 1.
Following the approach we already used while proving Statement 1, see (2.18), we write

u(0) =
n−k
∑
j=1

φ jc j , (A-11)

Additionally, we introduce the mappingH ∶ C([0, 1], V)→ V such that

Hv = v(1) . (A-12)

With (A-11) and (A-12), the boundary condition in z = 1 reads

n−k
∑
j=1

φ j < qi,Fγc j >= 0 , (A-13)

where the operator Fγ ∶ V → V is defined by the following

Fγ = P(1)H(I −γJ )−1Θ (A-14)

If Gγ denotes the matrix (< qi, Fγc j >) then the coefficient array {φ j} is in the kernel of that
matrix. Therefore, Equation (A-2), and so Equation (A-1), has a non-trivial solution uγ if and only
if det(Gγ) = 0. Since the function γ ↦ det(Gγ) is analytic, there can be at most a countable
number of zeros. The collection of zeros is called the spectrum. It is equivalent to the spectrum
of the operator KG in a sense that µ = 1/γ. Knowing the aspects of Fγ gives knowledge on the
behavior of the spectrum.





CHAPTER THREE

Rheotens

3.1 Introduction

3.1.1 Background

In polymer forming simulations, an important aim is to discover the best processing windows for
a given material without running the actual processes by tedious trial and error experiments. In
practice, simulation software is often used with simple rheological models only that are not up
to the complexity of the real polymer behavior. More complex polymer constitutive models are
under-used, even if they are implemented, because their parameters are not known a priori and are
difficult to determine. This is especially true for the transient elongational viscosity of polymer
melts and solutions that is extremely difficult to capture. A way to estimate model parameters
is to apply the model in question to simulate some generated data from the chosen experiment.
The model parameters are then defined as the best fitting parameters that make a correspondence
between the simulated data and the experimental data.

In this context, this chapter addresses the Rheotens experiment as an appropriate candidate for
model parameter estimation. The Rheotens experiment is a lab-scale fiber spinning experiment.
A polymer melt is extruded through a capillary die and stretched in the air under the action of a
drawing force. The drawing force is imposed and measured by a device developed by Meissner
[41; 42]. Actually, the device is called ”Rheotens”, but nowadays also the experiment is referred
to as Rheotens. The scheme of the Rheotens tester can be seen in Figure 3.1.1

1Both pictures are taken from the official brochure of the Rheotens 71.97 tensile tester available at the web-page of
the producer www.goettfert.com

29
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Figure 3.1: experimental set-up for Rheotens measurements (left), and a scheme of an actual
Rheotens unit (right)

3.1.2 Literature Review

The Rheotens test has found widespread application both in industry (for characterization pur-
poses) and in scientific research for polymer properties investigations or process modeling. In
particular, we mention: Meissner [43], who proved the sensitivity of the Rheotens test with respect
to small changes in polymer properties; White and Yamane [44], and Field et al. [45] who found
correlations between the Rheotens melt strength and filament extensibility with bubble stability and
minimum film thickness in film blowing. La Mantia and Acierno [46] reported on the influence of
molecular mass on melt strength and extensibility of linear and branched polyethylenes. Ghijsels
et al. investigated melt strength of polyethylenes [47], polyethylene blends [48], and polypropy-
lenes [49]. All of these tests were performed at a constant mass flow rate and their results can only
represent a qualitative comparison of melt strength because of the non-isothermal stretching and
prehistory of the polymer melt in the die and extruder.

For the more meaningful rheological results (in a quantitative sense), Sampers and Leblanc [50],
carried out tensile flow measurements by extruding the melt strand into a thermostatted chamber
so that drawing was carried out isothermally. Wagner et al. [51] proposed Rheotens mastercurves
for thermo-rheologically simple polymer melts, which provide a rheologically correct basis for a
quantitative comparison of Rheotens flow curves. Bernnat (see Bernnat et al. [52], Bernnat [53])
extended the latter work, proving the existence of various mastercurves.

In a Rheotens experiment elongation of the polymer melt is performed under the action of a tensile
drawing force, and not at a prescribed elongation rate. Therefore, the Rheotens test does not pro-
vide an elongational viscosity directly, as in the case of an uniaxial elongational rheometer (RME
or SER). Thus, for fundamental analysis, a model of the Rheotens process is needed. Laun and
Schuch [54] assumed a Newtonian fluid approximation in their research, i.e., the filament diameter
decreases exponentially with the distance from the die. Rauschenberger and Laun [55] developed
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a recursive algorithm to solve the equations of motion of the elongated strand complemented by a
single integral constitutive equation of the Wagner model under the condition of a constant draw-
ing force. A similar numerical scheme was developed by Fulchiron et al. [56]. Wagner et al.
[57; 58] proposed a model, where the elongational viscosity is a function of the draw ratio only.
This model, however, does not have a rheological constitutive equation basis. Recently Doufas
[61] presented a full approach for modeling and analysis of the Rheotens experiment. He consid-
ered and modeled the Rheotens experiment as a small-scale fiber spinning process. Doufas’ model
combines the filament transport equations (mass, momentum, and energy) with differential type
constitutive equations (modified Giesekus model). Doufas was also the first who used Rheotens to
determine parameters of the modified Giesekus constitutive model. His work is our starting point.

3.1.3 Objective

There are two procedures for running Rheotens: (i) the ”acceleration mode”, where the velocity of
the wheels is increased according to a specified constant acceleration and the force is measured as
a function of velocity; (ii) the ”constant mode”, where the velocity of the wheels is kept constant
for a certain measurement time, and the force is measured as a function of time. The graphs depict-
ing measurement data show force oscillations after a certain drawing velocity is reached. These
oscillations represent a stretching-related instability, called ”draw resonance”. Thus, Rheotens
establishes two different polymer operational regimes: stable and unstable.

In literature, when referring to the Rheotens experiment, only the acceleration mode is considered
and not the constant mode; from the resulting curve only the part related to the stable operation
is fitted (Doufas [61]). In this chapter, we study the constant mode of operating Rheotens and
demonstrate its applicability and importance for parameter estimation. The constant mode results
provide the precise value of the onset velocity of draw resonance. Additionally, by applying the
Fourier Transformation to the discrete time signal given by the force versus time measurements,
we obtain the frequency of the transversal oscillations of the fiber diameter. In this chapter we
describe a method to determine the model parameters from the measurement data obtained from
both, the acceleration and the constant mode. From acceleration mode we rely on the results of a
stable operation, and from the constant mode we use the results related to an instable operation.
Simulations of a low density polyethylene (LDPE), a linear low density polyethylene (LLDPE), a
polypropylene (PP), and a polystyrene (PS) with a modified Giesekus constitutive model demon-
strate the accuracy and efficiency of the method.

3.2 Rheotens Experiment

3.2.1 Description

The Rheotens experiment set-up system consists of a single-screw extruder with a gear pump, a
reservoir with a changeable circularly shaped small die, and the actual Rheotens device for filament
stretching. The extruder provides a constant polymer mass throughput Q at initial temperature
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T0. This temperature is imposed by heating elements in the extruder and near the die. Local
temperature variation due to e.g. viscous heating is usually neglected. In the experiments presented
here, a die was used with an entrance angle β = 600, a length Ldie = 60 mm, and a diameter
ddie = 2.5 mm. The values of entrance angle and length of the die affect the pressure in the barrel,
the die diameter affects the extrusion velocity of the polymer. Upon exiting the die, the polymer
melt initially swells after which it elongates due to the pulling motion of the take-up wheels. The
distance between the die exit and the take-up wheels, L, is typically 100 mm but may vary from
experiment to experiment. The final velocity of the filament u f is directly related to the wheel
velocity. At the take-up point the drawing force is measured. The measurement frequency varies
from 5 Hz to 100 Hz. The total number of measurement data points can go up to 10000. The
measurement error is ±10−3 N. The Rheotens test is non-isothermal. The air into which the sample
is extruded is not climate-controlled, but is assumed to be at room temperature and quiescent.
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Figure 3.2: Scheme of the Rheotens experiment

Acceleration Mode

We recall that there are two procedures to run Rheotens. In the standard procedure, called here
the ”acceleration mode”, the take-up wheels are rotating with a constant acceleration a, and thus
impose a change in final velocity u f of the polymer flow. The tensile force F, which is required to
stretch the filament, is continuously measured at the wheels as a function of the take-up velocity.

An example of the typical output of the acceleration mode for a linear low-density polyethylene
is given in Figure 3.3, where the horizontal axis represents the take-up velocity in millimeters per
second, and the vertical axis presents the tensile, draw-down force in Newton. The measurements
were performed for an acceleration of 24 mm/s2 with a sampling frequency of 100 Hz, i.e. 100
measurements a second were taken. The maximum drawing velocity achieved is called drawability
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of the melt; the maximum force value at rupture is called melt strength.
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Figure 3.3: Acceleration mode, a = 24 mm/s2. LLDPE resin: Q = 600 g/h, Textr = 190oC, L = 0.1
m

Constant Mode

In the ”constant mode” procedure, the velocity of the wheels is kept constant, taken from a prede-
fined range. The tensile force is measured as a function of time. An example of the output of the
constant mode operation is given in Figure 3.4. The experiment was done for a linear low-density
polyethylene. In Figure 3.4 the horizontal axis represents the time in seconds, the right vertical axis
represents the tensile force in Newton, and the left vertical axis represents the take-up velocity, in
millimeters per second. The measurements were performed at a sampling frequency of 10 Hz. We
observe that at low velocities the variation in force level is small, in the range of the measurement
error. As the velocity reaches a value of 500 mm/s, the amplitude of the force oscillations increases
significantly, indicating that draw resonance is present. Increase of the velocity above 500 mm/s
yields further increase of the amplitude of oscillations.

Further in this chapter, we discuss the onset velocities of draw resonance for different materials
and different processing conditions. We determine the onset velocities by analyzing the force-time-
velocity plots, as the one given in Figure 3.4. The error in determining the onset velocities depends
on the measurement resolution, i.e. the velocity step chosen in the measurements. The measure-
ment resolution varies for the different experiments. For instance, in the experiment considered in
Figure 3.4, at a velocity of 475 mm/s the process is stable, and at a velocity of 500 mm/s, the next
taken, the process is unstable. Therefore, the critical velocity is reported in the range of 475− 500
mm/s. Similarly, everywhere further, the critical velocity is reported to be in a certain interval,
where the lower boundary indicates the last value of velocity leading to stable processing, and the



34 3 RHEOTENS

higher boundary indicates the first value of the velocity at which draw resonance is observed.
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Figure 3.4: Constant mode: draw velocity is piece-wise constant. LLDPE resin: Q = 600 g/h,
Textr = 190oC, L = 0.1 m

Frequency Data

The data presented in Figure 3.4 is basically a discrete-time signal with a sampling frequency of
10 Hz. Treating them as such, we find the frequency of a force signal for any chosen velocity.
Let us consider the data from the segment related to the onset velocity of draw resonance, v = 500
mm/s (see Figure 3.5, right diagram). By applying the Discrete Fourier Transformation to these
time series, we obtain the amplitude spectrum depicted in the right diagram in Figure 3.5. In this
Figure the horizontal axis shows frequencies up to 5 Hz, the vertical axis shows amplitudes in dB,
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Figure 3.5: LLDPE 1: Q = 600 g/h, Textr = 190oC, L = 0.1 m. Picture on the left: constant
mode force measurements for v = 500 mm/s (onset of the draw resonance). Picture on
the right: amplitude spectrum of force signal obtained after application of the Fourier
Transformation to all data depicted in the left picture.

which is achieved by the following transformation:

A[dB] = 20 log10 (
A[N]
A0[N]) . (3.1)

We take A0 = 10−5 N, which makes the scale such that value of 0 dB denotes an amplitude equal
to 10−5 N. Keep in mind that A0 is not ”measurable”, as the measurement error is 10−3 N. So in
the amplitude spectrum we do not observe amplitudes with dB smaller than 0. In the spectrum
we observe a harmonic complex with a basic frequency of 0.58 Hz, which corresponds to the
frequency of the force oscillations in the draw resonance.

Further, we use the term ”onset frequency” that is defined as the peak frequency related to the force
signal measured at the onset velocity. As the experimental onset velocity is determined within a
range, we calculate the onset frequency for the highest value of the velocity in the given range. For
instance, if the onset velocity is 475-500 mm/s, then the onset frequency of 0.58 Hz is related to
500 mm/s.

The absolute error of the frequency calculations depends on the measurement sampling frequency
and the total number of measurement data points. The frequency bin size is then given by

frequency bin size = fs

N
, (3.2)

and the absolute error of the frequency calculations is half of the bin size. In the considered
example (Figure 3.5), the sampling frequency is 10 Hz, and the total number of measurements is
2150, which means that absolute error is 0.0023 Hz. In all other experiments, we take a sampling
frequency of 10 Hz and a sampling horizon of 110 s, which means that the number of samples is
1100. Therefore the frequency bin size is 0.009 Hz, which yields the absolute error of 0.0045 Hz.
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3.2.2 Materials

All materials used in the experiments described in this thesis were provided by the Dow Chemical
Company. Selected materials belong to 4 different classes:

1. low density polyethylene; we use 300E that is referred to as ”LDPE”.

2. linear low density polyethylene; we consider two materials of this class, namely
DOWLEXTM NG5056,2, further denoted by ”LLDPE 1”, and DOWLEXTM NG5056.01,
further denoted as ”LLDPE 2”.

3. polypropylene; we use DH109.00, which is referred to further simply as ”PP”.

4. polystyrene; material STYRONTM 648 is considered, it is denoted further by ”PS”.

The emphasis of our analysis is on the experiments with LDPE and LLDPE2 that were designed
and carried out within the scope of this Ph.D. project. Additionally, we make use of the results
of the experiments with LLDPE1, PP, and PS that were carried out at Dow in 2005 within the
framework of the 3PI (Postpone Polymer Processing Instabilities) project. In our work we apply
the new analysis tools to some of those 2005-data.

An overview of various material properties of all tested resins is given in Table 3.1. The melt index
(MI) is determined according to the ASTM D1238 method (1900C, 2.16 kg for LLDPE1, LLDPE2;
2300C, 2.16 kg for PP; 2000C, 5 kg for PS.) Solid density is determined according to ASTM D792
method. The molecular mass distribution data are obtained using a Waters 150C instrument via
triple detector gel permeation chromatography (GPC). It is noteworthy, however, that the Mw data
should be treated as indicative only because it was obtained in different experiments with different
calibration. Measurements of viscosity and relaxation time spectra at a reference temperature of
1900C are presented in Figures 3.6 and 3.7.

Table 3.1: Material properties

Name Resin MI Mw Mn Mz Ea Solid density
(g/10min) (g/mol) (g/mol) (g/mol) (kJ/mol) (kg/m3)

LLDPE1 DOWLEXTM 1.05 105000 30000 279000 34.6 919
NG5056

LLDPE2 DOWLEXTM 1.03 136000 50000 367000 910
NG5056.01G

LDPE 300E 0.81 96600 15300 366000 57.7 924
PP DH 109.00 0.28 495000 114000 1950000 41.4 902.3
PS STYRONTM 648 1.3 296000 136000 462000 114.1 1046.8

2 TM - Trademark of The Dow Chemical Company
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3.2.3 Influence of Operating Conditions

Before using the experimental data for analysis, it is important to know what the factors are that in-
fluence the experimental outcome. In Rheotens, one can choose different types of take-up wheels,
flat or grooved; different dimensions of the gap between the wheels, from 0.1 mm to 0.6 mm;
and different sampling frequencies of force measurements, from 5 to 100 Hz. Additionally, the
Rheotens software contains a hardware filter, called damping factor, that is applied to the measure-
ment data. This damping factor can range from 1 to 100, but by default it is set to 10. Finally,
operating in the acceleration mode, we can choose different values of the acceleration, ranging
from 0.12 mm/s2 to 120 mm/s2.

Acceleration Mode

We test the acceleration mode for an LLDPE 2 under various conditions, regardless how obvious
the answer might seem. First, we notice that the measurement sampling frequency does not in-
fluence the resulting curve; this result is visualized in Figure 3.8. Next, we test the influence of
the damping factor, more precisely, we look at the difference between the results obtained with
the default value of this parameter, which is equal to 10, and the minimal damping, which is 1.
We conclude that this change does not influence the resulting Rheotens curves significantly, see
Figure 3.9. The data obtained with the minimal damping are more noisy, and filtering (increase of
damping factor to 10) makes the curve smoother, but it does not influence the appearance of the
draw resonance oscillations.

Figures 3.10 and 3.11 show the Rheotens curves obtained at different values of wheel’s acceler-
ation. The visible oscillations of force start sooner if the acceleration is smaller. Besides that
these figures also demonstrate that the curve obtained at a = 24 mm/s2 is always somewhat lower
than the ones obtained at a = 2.4 and a = 0.24 mm/s2. The force values obtained at constant
velocity (see Figure 3.11) are at the same level as force values obtained at low acceleration. This
observation is important: when we fit the Rheotens curves to obtain parameters, we sometimes use
experimental curves that are obtained at a = 24 mm/s2.

Another conclusion from our tests of the acceleration mode is that it does not really matter whether
we use the grooved or the flat wheels, when the gap between the wheels is 3 mm. This fact is
supported by Figure 3.12. The figure also confirms the reproducibility of the experiment. The
size of the gap between the wheels influences the outcome, see Figure 3.13. The smaller the gap
the higher the drawability. The curves presented in Figure 3.13 are obtained with different wheels
because the gap between the grooved wheels cannot be set smaller than 3 mm; for the 3 mm gap
there is no difference in the surface of the wheels; and for the flat wheels the gap of 6 mm in the
last stages of drawing becomes too big, i.e. the filament is thinner than 6 mm, thus the Rheotens
equipment reports a breakage, while it does not happen.
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Constant Mode

The next step is to study and analyze the influence of the operating conditions on the outcome of
the constant mode Rheotens. The results of the studies are presented in Tables 3.2, 3.3, and 3.4.
We remind that the way we determine the onset velocity and frequency are described in Sections
3.2.1 and 3.2.1, where the absolute error of the measurements and calculations is also presented.

In Table 3.2 the impact of a change in damping factor on the results of constant mode Rheotens
measurements is presented. The onset velocity and onset frequency are listed in columns 4 and
5 for LLDPE2 and LDPE, both for damping factor 1 and 10. In columns 6 and 7, velocities
other than onset and related frequencies are given. Because for velocities higher than critical, a
harmonic complex shows in the amplitude spectrum for LLDPE, but not for LDPE (discussion
follows in Section 3.2.4), in column 7 we present three values of the frequency for LLDPE 2, one
basic frequency and two higher harmonics, and one value of the frequency for LDPE. Analyzing
the results, we conclude that, as in the case of acceleration, the change in damping factor from
1 to 10 does not influence the onset velocity. However, the frequencies calculated for the same
velocities might become slightly lower.

In Table 3.3, we list the results of the evaluation of the different wheel surfaces, flat and grooved,
for LLDPE2 and LDPE. A damping factor of 1 and a gap size of 0.3 mm are taken in these exper-
iments. The use of flat or grooved wheels does not result in large differences in the frequencies
obtained at the same velocities. Moreover, as may be seen from column 6, Table 3.3, these fre-
quencies coincide. The onset velocities obtained with flat and grooved wheels differ only by 10
mm/s, which is within our error margin.

Finally, in Table 3.4, we present the results of experimenting with two different sizes of the gap
between the wheels in the Rheotens constant mode for LLDPE2 and LDPE. Other conditions
were kept as follows: drawing length is 100 mm, damping factor is 1, and wheel surface is flat.
Analyzing the results, we conclude that the gap size, as in the acceleration mode, has a big influence
on the value of the onset velocity observed. For the gap of 0.1 mm the onset velocity is about 50
mm/s higher than the one for the gap of 0.3 mm. Strikingly, however, the onset frequency does not
change.

Summarizing, the change of the damping factor from 1 to 10 does not influence the outcome of
the Rheotens constant mode. The difference in wheel surface, for a gap size of 0.3 mm, does not
have a significant influence on the results either. But we would like to emphasize that the latter
conclusion holds only if the gap size is 0.3 mm. Different wheel surfaces combined with other
gap sizes yield different results. The size of the gap between the wheels has a clear influence on
the onset velocity, but does not change the onset frequency. We notice that, even though the onset
velocity might vary either slightly due to the flat/grooved surface, or significantly due to the size of
the gap between the wheels, the onset frequency in all experiments remains the same; the variation
of 0.01 Hz is within our error margin. We conclude that the onset frequency of draw resonance
force oscillations does not depend on the operating conditions used.
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Table 3.2: Evaluation of the damping factor influence on the results of the Rheotens constant
mode with L = 100 mm and wheels with the flat surface. LLDPE2 is operated at 1900C
and LDPE at 1500C.

Material Gap Damping Onset velocity Frequency Velocity Frequency
(mm) factor (mm/s) (Hz) mm/s (Hz)

LLDPE2 0.1 1 410 - 420 0.52 430 0.51, 1.00, 1.50
10 410 - 420 0.51 430 0.49, 0.98, 1.45

LDPE 0.3 1 420 - 430 0.85 420 0.85
10 420 - 430 0.85 420 0.84

Table 3.3: Evaluation of the wheel surface influence on the results of the Rheotens constant mode
with L = 100 mm, damping factor being 1, and gap between the wheels 0.3 mm.
LLDPE2 is operated at 1900C and LDPE at 1500C.

Material Wheel Onset velocity Frequency Velocity Frequency
surface (mm/s) (Hz) mm/s (Hz)

LLDPE2 flat 360 - 365 0.52 380 0.48, 0.95, 1.42
grooved 350 - 355 0.51 380 0.48, 0.95, 1.42

LDPE flat 420 - 430 0.85 440 0.86
grooved 430 - 440 0.86 430 0.85

Table 3.4: Evaluation of the influence of the size of the gap between the wheels on the results of
the Rheotens constant mode with L = 100 mm, damping factor being 1, and wheels with
the flat surface. LLDPE2 is operated at 1900C and LDPE at 1500C.

Material Gap Onset velocity Frequency
(mm) (mm/s) (Hz)

LLDPE2 0.1 410 - 420 0.52
0.3 360 - 365 0.52

LDPE 0.1 470 - 480 0.86
0.3 420 - 430 0.85
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3.2.4 Difference in Materials

In this section we look at the amplitude spectra of the Rheotens response of different polymer
materials and we compare their characteristic frequencies. The aim is to find a confirmation that the
oscillation frequency at draw resonance can indeed be considered as a characteristic of a polymer.
In all experiments considered in this section, the drawing length is 100 mm, wheels are flat with
the gap 0.1 mm.

Figure 3.14 shows the amplitude spectra of the force of LLDPE 1 at different drawing velocities.
The choices of v = 400, 450, and 475 mm/s, correspond to stable operation; v = 500 mm/s corre-
sponds to first appearance of draw resonance. Analyzing the given plots, we see that all spectra
contain one distinctive peak of the same amplitude value, 140 dB, but with a frequency value
changing from 3.4 to 4.2 Hz. We think that this frequency is imposed by the wheels; naturally it
is changing, as the operating wheel velocity is changing. We notice also another frequency peak
present in all spectra, although at first sight it might be confused with the noise. This frequency
has approximately the same value in all spectra, 0.56-0.58 Hz, but the related amplitude is growing
as the velocity is increasing. Finally, when the velocity reaches the onset of the draw resonance,
i.e., v = 500 mm/s, the amplitude related to frequency 0.58 Hz becomes much higher than the
amplitude of the supposedly wheel frequency of 4.2 Hz. More strikingly, at the draw resonance we
also observe the harmonic complex with 0.58 Hz being its basic frequency. In the pictures related
to stable operation, harmonic complexes are not clearly present yet. If the velocity is increased
further above the critical level, the frequency peaks of the harmonic complex also grow, see Figure
3.15.

Next, we consider the same material, LLDPE 1, operated at a constant wheel velocity of 325 mm/s,
but with a changing mass throughput, Q = 100, 150, 200 g/h. A change of Q yields a change of
the initial velocity of the melt. Thus, even with the wheel velocity fixed, we still obtain different
drawing conditions (force). In all three tests, the input conditions are at stable operation, i.e. draw
resonance is not observed. The resulting spectra are given in Figure 3.16. Comparing the results of
these experiments with the previous ones (see Figure 3.14), we conclude that indeed the motion of
the wheels imposes a peak in the amplitude spectrum. This time the peak of higher frequency has
the same value for all three experiments, namely 2.7 Hz, as in this experiment we did not change
the value of wheel velocity.

Figure 3.17 shows the development of the amplitude spectrum of LLDPE 2 for a drawing velocity
ranging from 100 to 440 mm/s. We observe that at lower velocities not only the harmonic complex
but also the basic frequency disappears. At 300 mm/s, a basic frequency is present but with a not
well pronounced amplitude. At 400 mm/s, the amplitude related to the basic frequency is quite
high, but not yet higher than the peak corresponding to the wheel motion. Finally, at 420 mm/s
draw resonance is observed, and it is confirmed by the spectrum, where the basic frequency peak
becomes much higher than the peak correspondent to the wheel motion. Finally, at 440 mm/s, a
harmonic complex related to the draw resonance is fully present.

For LLDPE materials the harmonic complex appearing at draw resonance seems to be a material



3.2 RHEOTENS EXPERIMENT 45

characteristic, while for LDPE material it is not. We observe this in Figure 3.18, where the spectra
of LDPE are presented for v = 460, 470, 480 and 500 mm/s. According to the constant mode
measurements, the drawing velocities 460 and 470 mm/s correspond to stable operations and the
drawing velocities 480 and 500 mm/s correspond to draw resonance. At 480 mm/s, the oscillations
just start and do not yet have a high amplitude, whereas at 500 mm/s, after oscillating for some
time, the filament breaks. The amplitude spectra built for these velocities do indicate the presence
of a basic frequency of resonance oscillations, but the related amplitude is visibly lower than the
one for LLDPE material. A harmonic complex is not observed.

We summarize all the onset velocity and frequency data obtained for different materials in Table
3.5. In this Table, along with the already discussed LLDPE 1 we also present the results available
for PP and PC obtained from the experiments carried out at Dow in 2005. In those experiments
flat wheels were used with the default gap size, which is 0.3 mm. That is why we present here the
values of the onset velocities of LLDPE 2 and LDPE also obtained for a 0.3 mm gap size. The
onset frequency does not depend on the gap size between the wheels. We conclude that the velocity
and frequency of the draw resonance oscillations depend on the polymer material and, therefore,
can be considered a material characteristic.

Table 3.5: Velocity and frequency at onset of draw resonance oscillations for different materials. L
= 100 mm, gap size = 0.3 mm.

Polymer Onset velocity (mm/s) Frequency (Hz)
LLDPE 1 500 0.58
LLDPE 2 365 0.52
LDPE 430 0.86
PP 300 0.44
PC 575 0.63
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Figure 3.14: Change of amplitude spectra of force versus frequency for LLDPE 1, when the draw
velocities are taken at 400, 450, 475 and 500(DR) mm/s.
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Figure 3.15: Amplitude spectra of force versus frequency for LLDPE 1, at T = 1900C, L = 100 mm,
Q = 600 g/h. The draw velocities are 500, 510, and 530 mm/s.
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Figure 3.16: Amplitude spectra of force versus frequency for LLDPE 1, at T = 1900C, L = 100
mm, with the smaller die, ddie = 1 mm. The draw velocity is fixed at 325 mm/s and a
polymer mass throughput is changing, Q = 100, 150 and 200 g/h.
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Figure 3.17: Change of amplitude spectra of force versus frequency for LLDPE 2, when the draw
velocities are taken at 100, 200, 300, 400, 420(DR) and 440(DR) mm/s.
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Figure 3.18: Change of amplitude spectra of force versus frequency for LDPE, when the draw
velocities are taken at 460(stable), 470(stable), 480(DR) and 500(DR) mm/s. L =
100mm, flat wheels, g = 0.1 mm
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3.2.5 Influence of the Drawing Length

Because in the experiments on draw resonance oscillations we deal with wave phenomena, the
drawing length L has influence on the wave length and the frequency of oscillations. To check
how big that influence is, we conducted several experiments with both, acceleration and constant
mode. We determined the frequencies by applying the DFT. The experimental results obtained by
acceleration mode are presented in Figures 3.19 and 3.20. Figure 3.19 shows Rheotens curves for
LLDPE2 obtained for 4 different lengths, L = 100, 144, 185 and 300 mm, at an acceleration of 24
mm/s2. In Figure 3.20 the Rheotens curve for LDPE are present for 3 different lengths, L = 100,
140, and 300 mm. The curves are obtained with an acceleration 2.4 mm/s2. We conclude that the
longer the drawing length the higher the drawability of the polymer and the lower its melt strength.

The relationship between the drawing length L and the onset velocity and onset frequency, respec-
tively, is shown in Table 3.6. Visually these data are represented in Figure 3.21, where the onset
velocity is plotted versus the drawing length, and in Figure 3.22, where the onset frequency is
plotted versus the inverse of the drawing length. Experiments indicate that onset velocity is linear
with respect to length in the observation range, see Figure 3.21. An interesting result is that the
slopes of the velocity vs length are the same for both materials. It seems that the slope of velocity
is material independent. We do not want to draw more conclusions at the moment, experiments
with other materials should confirm our observations.

The onset frequency is linear with respect to the inverse of the length, as shown in Figure 3.22.
Since the offset values for both lines are 1 or 2 bin, thus within the accuracy of the experiment, we
may conclude that as the length increases, the onset frequency decreases with a limiting value in
zero. The slopes of the frequency lines are different, depending on the material. We conclude that
the dependence of frequency on the drawing length resembles the one of the frequency of a pure
string fixed at both edges.

Table 3.6: Change of the onset velocity and the onset frequency with the change of the drawing
length investigated for two materials, LLDPE2 and LDPE.

Material Length (mm) Onset velocity (mm/s) Frequency (Hz)
LLDPE2 100 410 - 420 0.52

144 430 - 440 0.36
185 470 - 480 0.29
300 510 - 520 0.19

LDPE 100 470 - 480 0.86
140 510 - 515 0.64
300 580 - 590 0.30
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3.2.6 Conclusions from Experiments

Experimental data obtained from operating Rheotens at constant mode is not reported in literature,
and the analysis of this data is one of the novel contributions of this thesis to material character-
ization. This data not only confirms the acceleration mode measurements but brings much more
information: a more accurate onset velocity estimation and an accurate estimation of the frequency
of oscillations, which effectively are traveling waves. Combined data from the acceleration mode
and the constant mode can be used to estimate constitutive model parameters. We build a model
to simulate the Rheotens constant mode experiment; it predicts the force response for a given
draw velocity (for modeling see Section 3.3). With respect to that, the main conclusion from the
acceleration mode experiments is that

• at low velocities, before the force reaches a plateau, the shape of the Rheotens steady state
curve depends on the acceleration used in the experiment. The results obtained at low ac-
celeration (2.4 mm/s2) are close to the results obtained at constant operating mode. The
results obtained at high acceleration (24 mm/s2) are slightly lower than the results obtained
at constant mode. This dependence of the shape of the Rheotens curve on the acceleration
should be remembered when the Rheotens curve is used for fitting parameters.

The main conclusions from the constant mode experiments are that:

• the peak hight in the amplitude spectrum at the resonance frequency is material dependent.

• the frequency at draw resonance does not depend on the gap size; it also does not depend on
the wheel surface, for a gap size of 0.3 mm.

• the onset velocity of draw resonance depends on the gap size. The onset velocity obtained
for gap size of 0.1 mm is about 50 mm/s higher than the one obtained for a gap size of 0.3
mm.

• the frequency at draw resonance depends on the kind of material and is, therefore, a material
characteristic.

• the frequency at draw resonance is linearly related to the inverse of the drawing length, with
zero offset.

• the onset velocity is linearly related with the drawing length, where the slope seems to be
material independent and the offset - material dependent.

• for LLDPE a harmonic complex develops at draw resonance.

All conclusions imply that any mathematical model of the Rheotens experiment should contain
material and process parameters that distinguish the different materials and process conditions.
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3.3 Mathematical Modeling

3.3.1 Configuration and Assumptions

The flow domain of the polymer is described by cylindrical coordinates (r, θ, z), as indicated in
Figure 3.23. The origin of the coordinate system is taken at the point of maximal swell. Thus, the
initial radius R0 of the fiber is the radius at maximal swell, R0 = Rswell

3. The flow is assumed to
be rotationally symmetric, i.e., independent of θ. The change of radius of the filament is quantified
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Figure 3.23: Configuration of the polymer flow domain in Rheotens experiment

by the function R(z, t). The thickness of the fiber, given by the radius, even in its highest value is
in the order of 10−2 smaller than its length. Thus, the fiber is approximated by a slender filament.
The polymer flow is assumed to be incompressible, i.e., the density ρ does not change with the
temperature and, thus, mass throughput Q [kg/h] is conserved. The initial velocity of the flow, u0,
depends on the mass throughput Q and on the initial radius R0,

u0 = Q
ρπR2

0
. (3.3)

The velocity of the fiber at the pulling wheels is u f . The ratio between the initial and final velocities
is called Draw ratio (Dr = u f

u0
). It is an important dimensionless parameter that actually specifies

the drawing force. The velocity field of the polymer flow is

u = urer + uzez . (3.4)

The polymer flow field is considered to be in elongation direction mainly. Thus, the velocity
component in the extension direction is assumed to be uniform over the cross-section,

uz = uz(z, t) . (3.5)

The forces acting in the process on a filament segment are drawing force, gravity, inertia, air drag,
and surface tension. All of them are considered in the modeling, except for the surface tension

3One can always neglect extrudate swell by taking R0 = Rdie.
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since it is relatively small with respect to drawing force. The stress tensor is denoted by σ . We
consider the normal stresses introduced in the filament by σrr, σθθ, and σzz. The normal stress
at the fiber surface is zero, σrr(z, R, t) = 0. Due to the slender filament approximation, the latter
statement is replaced by

σrr(z, r, t) = 0 . (3.6)

Because diffusion of heat in the considered process is much slower than convection of heat, we
consider the temperature averaged over the cross-section. Thus, the temperature profile in the
length direction is specified by the function T(z, t). The temperature dependence of polymer
characteristics, such as viscosity η and relaxation time λ, is assumed to be reflected by an Arrhenius
law.

This way, the fundamental unknowns of our problem are the velocity u(r, z, t), the radius of the
filament R(z, t), the temperature of the filament T(z, t), and the normal stress σzz(z, r, t), with the
independent variables r, z, and t.

3.3.2 Equations

For a given process configuration, with all introduced assumptions and unknowns, the system
of governing equations consists of conservation of mass, momentum, and energy, and polymer
constitutive equations, which are presented in this section.

Conservation of Mass

The mass in the fiber must be conserved,

∂
∂t

(ρA)+ ∂
∂z

(ρAuz) = 0 . (3.7)

Here A denotes the area of a cross-section, A = πR2, and ρ - the density of the polymer. The
polymer fluid of the fiber is assumed to be incompressible. This implies that ρ is constant and
uniform, ρ(z, t) = ρ, which in turn yields

∂R
∂t

+ uz
∂R
∂z

+ R
2

∂uz

∂z
= 0 . (3.8)

Air Drag Effect

At the surface of the fiber r = R(z, t), we have the following condition for the stresses due to the
air friction

n = τs , (3.9)

where n and s are the normal and the tangential unit vectors along the filament, and τ expresses
the amount of air friction. The normal and the tangential vectors at the surface of the fiber obey
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Figure 3.24: 2-D geometry expressing the boundary conditions at the fiber surface

the following expressions (see Fig.3.24)

n = cosαer + sinαez , (3.10)

s = sinαer − cosαez , (3.11)

where the small angle α =α(z, t) is defined by

tanα = −∂R
∂z

. (3.12)

With this we get from the z - component of (3.9)

σrz cosα +σzz sinα = −τ cosα . (3.13)

Dividing (3.13) by cosα and using (3.12), we get

σrz = σzz
∂R
∂z

−τ . (3.14)

After Matsui [59], Gould and Smith [60], it is common to use for air friction the following relation

τ = C f ρau2
z , (3.15)

where ρa is the air density, and C f is the dimensionless air drag coefficient, which is expressed via
Reynolds number for the air

C f = 0.205Re−0.61
a = 0.205 (ρauzR

ηa
)
−0.61

. (3.16)

Equation of Motion

The equation of motion takes in our case the following quasi-static form

ρLv = divσT +ρb . (3.17)

We consider only the most important component of that equation, namely the last one,

ρuz
∂uz

∂z
= ∂σzz

∂z
+ 1

r
σrz +ρg . (3.18)
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By integrating this equation over the cross-section, we obtain

πR2ρuz
∂uz

∂z
= πR2 ∂σzz

∂z
+ 2πRσrz + πR2ρg . (3.19)

The left hand side term of (3.19) presents inertia, the last term on the right hand side presents
gravity. By substituting (3.14) and (3.15) into (3.19), and making a simple transformation, we get

ρR2uz
∂uz

∂z
= ∂

∂z
(R2σzz)− 2C f ρaRu2

z +ρgR2 . (3.20)

Temperature Evolution Equation

Generally, in accordance with our assumptions the temperature evolution in the fiber is given by
the following quasi-static equation

ρCpuz
∂T
∂z

= −2hc

R
(T − Ta)+σzz

∂uz

∂z
, (3.21)

where Cp ( J
kgK ) is the heat capacity of the polymer, which is assumed to depend linearly on the

temperature of the polymer according to

Cp = 969.9 + 3.7T. (3.22)

The first term on the right hand side of (3.21) presents the heat transfer between the fiber and the
surrounding air due to the forced convection of the air. Here the convective heat transfer coefficient
hc takes the form

hc = 0.21
ka

R
(Rea)1/3 , (3.23)

with air heat conductivity ka, and Reynolds number for the air Reair = (ρauzR
ηa

)−0.61
.

The second term on the right hand side of (3.21) is the viscous heat dissipation.

Constitutive Equations

Here we first give the general expressions that are valid for any constitutive model applied to
the Rheotens experiment, and then go to the particular examples of a Newtonian and a modified
Giesekus model. For any constitutive model, the total stress tensor σ is given by

σ = −pI + T , (3.24)

where p = p(z, t) is the pressure, and T is the extra-stress tensor, satisfying trT = 0. From the
assumption about the zero normal stress at the fiber surface (3.6), we deduce the pressure

σrr = −p +τrr = 0 ⇒ p = τrr . (3.25)
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Any constitutive model contains the gradient of the velocity field, L = gradv. The incompressibil-
ity assumption, divv = 0, yields the following relation for the velocity component ur in terms of
uz

ur = − r
2

∂uz

∂z
. (3.26)

The polymer flow is strongly elongational, meaning that the diagonal terms of the tensor L domi-
nate the off-diagonal ones. Now, using the expression (3.26) and neglecting the off-diagonal terms,
we write the velocity gradient tensor L as

L =
⎛
⎜⎜
⎝

∂ur
∂r 0 ∂ur

∂z
0 1

r ur 0
∂uz
∂r 0 ∂uz

∂z

⎞
⎟⎟
⎠
≃
⎛
⎜⎜
⎝

− 1
2

∂uz
∂z 0 0

0 − 1
2

∂uz
∂z 0

0 0 ∂uz
∂z

⎞
⎟⎟
⎠

. (3.27)

Also further we use λ to denote the characteristic relaxation time of a polymer (as we consider
only one mode models); η to denote the viscosity of a polymer. The temperature dependence of
both, λ and η, is assumed to be covered by Arrhenius law,

λ(T) = λ0 exp [ Ea

RT0
(T0

T
− 1)] , (3.28)

η(T) = η0 exp [ Ea

RT0
(T0

T
− 1)] , (3.29)

where Ea is the activation energy of the polymer, T0 - reference temperature that we take as ex-
trusion temperature, R - the universal gas constant, λ0 and η0 are the values of the relaxation time
and the viscosity at the extrusion temperature T0: λ0 = λ(T0), η0 = η(T0).

• Newtonian Constitutive Equations

For a Newtonian incompressible fluid, the extra-stress tensor satisfies a simple relation

T = 2ηD , (3.30)

where the polymer viscosity η is temperature dependent. The rate-of-deformation tensor D
is defined as

D = 1
2
(L+LT) . (3.31)

Substituting (3.30) into (3.24), and using relation (3.25) afterwards, we find that σθθ = 0 ,
and the only remaining equation is the one for σzz,

σzz = 3η
∂uz

∂z
. (3.32)

• Modified Giesekus Constitutive Equations

Expressing a polymer rheological behavior with the modified Giesekus constitutive equa-
tions, we follow Doufas et al. [61]. We express the extra-stress tensor, and so the stress
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tensor, in terms of conformation tensor C (components ci j). The conformation tensor is pro-
posed to characterize the microstructure, i.e. molecular orientation and stretching, of a melt.
The relation between the extra-stress tensor and the conformation tensor is

T = nkBT ( 3
N0l2 EC − I) . (3.33)

The polymer melt exiting the die is modeled as a concentrated suspension of non-linear elas-
tic dumbbell molecules. Each molecular chain is assumed to contain N0 flexible statistical
links of length l. In (3.33), n is the number of molecules per unit volume, and kb is the
Boltzmann constant. The quantity E, the non-linear spring force factor accounting for a
finite chain extensibility, is approximated by Cohen [62] with the following expression

E = 3N2
0 l2 − trC

3N2
0 l2 − 3trC . (3.34)

Now, substituting (3.33) into (3.24), and using (3.25), we find also an expression of σzz in
terms of the conformation tensor,

σzz = 3nkBT
N0l2 E(czz − crr) . (3.35)

We use this expression of σzz in the equation of motion (3.20) and the equation of tempera-
ture evolution (3.21) when considering the modified Giesekus constitutive model.

Finally, the evolution equation for the conformation tensor C is

DC
Dt

= −1
λ

kbT
K0

((1 −α)I +α
K0

kbT
EC)( K0

kbT
EC − I) . (3.36)

Here α is a modified Giesekus model parameter representing molecular mobility. The upper
convective derivative D

Dt is in general form defined by

D∗
Dt

= ∂∗
∂t

+ (v,
∂

∂x
) ∗−L∗− ∗LT . (3.37)

With (3.37) and L given by (3.27), and with component cθθ excluded (as we assume cθθ =
crr), the evolution equation of conformation tensor (3.36) in components reads

λ (∂crr

∂t
+ uz

∂crr

∂z
+ crr

∂uz

∂z
) = N0l2

3
((1 −α)+α

3
N0l2 Ecrr)(1 − 3

N0l2 Ecrr) , (3.38)

λ (∂czz

∂t
+ uz

∂czz

∂z
− 2czz

∂uz

∂z
) = N0l2

3
((1 −α)+α

3
N0l2 Eczz)( 3

1 − N0l2 Eczz) .

(3.39)

3.3.3 Boundary Conditions

In the previous subsection we derived the governing system of equations for the small scale fiber
spinning process represented by the Rheotens experiment. We recall that this system of governing
equations consists of
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• (3.8), (3.20), (3.21), and (3.32) with unknowns R(z, t), uz(z, t), T(z, t), and σzz(z, t) for
the Newtonian fluid;

• (3.8), (3.20), (3.21), (3.38), and (3.39) with unknowns R(z, t), uz(z, t), T(z, t), crr(z, t)
and czz(z, t) for the modified Giesekus fluid.

For a complete problem descriptions boundary conditions need to be added. From the process
conditions, we deduce the following obvious boundary conditions at z = 0 and z = L:

uz(0, t) = u0, R(0, t) = R0, T(0, t) = Textr, uz(L, t) = u f . (3.40)

In case of the Newtonian model, the number of conditions are enough. In case of the modified
Giesekus model, we additionally need one more boundary condition. We assume that the poly-
meric fluid in the point of the highest swell is in nearly equilibrium state. Thus, we take the
boundary value of crr at the equilibrium value, keeping in mind that all extra stresses are relaxed
at equilibrium,

crr(0, t) = ceq
rr =

N0l2

3Eeq
. (3.41)

The value of Eeq = E(ceq
ii ) is found by substituting (3.41) in (3.34) and then solving the quadratic

equation with respect to Eeq

Eeq = 1 + N0

2N0
+

√
9 + 6N0 + 9N2

0

6N0
. (3.42)

3.3.4 Scaling

To have a simpler form of governing equations, and also to better identify which parameters have
the most influence on the solution stability, we apply a dimensionless form of the system. For that,
the following dimensionless variables are used:

ẑ = z
L

; û = u
u0

; R̂ = R
R0

; T̂ = T
T0

; t̂ = u0

L
t; (3.43)

In the Newtonian formulation of the problem, the stress component is naturally scaled according
to

σ̂zz = σzz

σ0
zz

, (3.44)

where the value σ0
zz represents the initial value of the stress factor at the point z = 0. In the

modified Giesekus formulation of the problem, the components of the conformation tensor become
dimensionless via

ĉii = cii

N0l2/3
, (3.45)

and the stress component σzz is now scaled according to

σ̂zz = σzz

G0
, (3.46)

where G0 is the shear modulus at the initial temperature, G0 = η(T0)
λ(T0) .
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3.3.5 Dimensionless Systems

Grouping and Notations

In our representation of the scaled systems, for convenience, hats are omitted and the following
dimensionless groups are introduced:

W = u0

σ0
zzL

, (3.47)

K1 =
ρu2

0

σ0
zz

, (3.48)

K2 = L
u2

0
g , (3.49)

K3(uz, R) = 2C f
ρaL
ρR0

= 0.21
ρaL
ρR0

(ρau0R0uzR
ηa

)
−0.61

, (3.50)

V1 = 0.42Lka

ρu2/3
0 R5/3

0

(ρa

ηa
)

1/3
, (3.51)

V2 = σ0
zz

ρT0
, (3.52)

V3 = G0

ρT0
, (3.53)

C1 =
ρu2

0

G0
, (3.54)

C2 =
2C f ρaLu2

0

G0R0
, (3.55)

C3 =
ρgL
G0

. (3.56)

The non-linear force factor E and its derivative are in the dimensionless form given by

E(C) = 9N0 − 2crr − czz

9N0 − 6crr − 3czz
, (3.57)

∂E
∂z

(C) = 18N0

(9N0 − 6crr − 3czz)2 . (3.58)

The heat capacity Cp has the following representation in the new variables

Cp(T) = a + bT0T . (3.59)

The important dimensionless processing parameters are the draw ratio Dr, representing the ratio
between the final and initial velocity of the filament, and the Deborah number De(T), representing
the ratio of relaxation time and process time,

Dr = u f

u0
; De(T) = λ(T)u0

L
.

We also use the notation De0 for Deborah number at initial temperature, De0 = λ0u0/L.



3.3 MATHEMATICAL MODELING 61

Dimensionless System for a Newtonian Fluid

With the above introduced grouping and notations, the system characterizing the non-isothermal
Rheotens experiment for the case of the Newtonian fluid takes the form

σzz = 3ηW
∂uz

∂z
, (3.60)

∂R
∂t

+ uz
∂R
∂z

+ R
2

∂uz

∂z
= 0 , (3.61)

2σzz
∂R
∂z

+ R
∂σzz

∂z
= K1 (Ruz

∂uz

∂z
−K2R +K3(uz, R)u2

z) , (3.62)

∂T
∂z

= −V1
1

Cp(T)u2/3
z R5/3

(T − Ta

T0
)+V2

σzz

Cp(T)uz

∂uz

∂z
, (3.63)

where 0 < z < 1 and t > 0. Dimensionless boundary conditions are

uz(0, t) = 1, R(0, t) = 1, T(0, t) = 1, uz(1, t) = Dr . (3.64)

Dimensionless System for a Modified Giesekus Fluid

The system characterizing the non-isothermal Rheotens experiment for the case of the modified
Giesekus constitutive model takes the form

∂crr

∂t
+ uz

∂crr

∂z
+ crr

∂uz

∂z
= − T

De(T) ((1 −α)+α
E(C)crr

T
)(E(C)crr

T
− 1) , (3.65)

∂czz

∂t
+ uz

∂czz

∂z
− 2czz

∂uz

∂z
= − T

De(T) ((1 −α)+α
E(C)czz

T
)(E(C)czz

T
− 1) , (3.66)

∂R
∂t

+ uz
∂R
∂z

+ R
2

∂uz

∂z
= 0 , (3.67)

2E(C)(czz − crr)
R

∂R
∂z

+ (2
∂E
∂z

(czz − crr)− E(C)) ∂crr

∂z
+

(∂E
∂z

(czz − crr)+ E(C)) ∂czz

∂z
−C1uz

∂uz

∂z
−C2

u2
z

R
+C3 = 0 , (3.68)

∂T
∂z

= −V1
1

Cp(T)u2/3
z R5/3

(T − Ta

T0
)+V3

E(C)(czz − crr)
Cp(T)uz

∂uz

∂z
, (3.69)

where 0 < z < 1 and t > 0. The boundary conditions are

uz(0, t) = 1, R(0, t) = 1, T(0, t) = 1, uz(1, t) = Dr, crr(0, t) = 1
Eeq

, (3.70)

where Eeq is given by (3.42).
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3.3.6 General Formulation

After scaling, the model of fiber spinning results in a quasi-linear system of differential equations
with two point boundary conditions. Its general form can be written as given in Chapter 2,

C (y) ∂y
∂t

= A (y) ∂y
∂z

+ b (y) , 0 < z < 1, t > 0 .

P (y (0, t)) = ξ , Q (y (1, t)) = ζ .

In this formulation z and t are independent variables; y (z, t) is a vector function consisting of all
the state variables in the dynamic autonomic system:

y = (uz, R,σzz, T) for the Newtonian model;

y = (uz, R, crr, czz, T) for the modified Gieskus model.

Connection between Numerical and Experimental Data

The ultimate goal of the development of the mathematical model is to simulate the results of
the Rheotens experiment in order to find the constitutive model parameters. Having established
these parameters we can use them in the simulations of other industrial polymer processes. The
experimental results that we use for parameter estimation are the steady state Rheotens curve, the
onset velocity and frequency at draw resonance. In order to compare the simulation results with
the steady state Rheotens curve, we have to establish such a curve from our mathematical model.
To do this, we compute the steady state solution ysteady(x) for several drawing velocities from the
system of the form

A (ysteady)
∂ysteady

∂z
+ b (ysteady) = 0 , 0 < z < 1,

completed with the inhomogeneous 2-point boundary conditions. In the calculation of the steady
state, a shooting method combined with a fourth order Runge-Kutta scheme is used. As a result
we obtain the steady state velocity, radius, and stress profile in a filament for each given drawing
velocity. From the calculated stress we recalculate the force at each drawing velocity, so we can
compare the computed force with the force measured by the Rheotens experiment and presented
by the Rheotens curve. This is the procedure to obtain numerically a ”force vs velocity” curve for
one given set of model parameters. We also developed a program where the simulation procedure
mentioned is repeated a certain number of times, depending on the convergence of the optimization
routine. In each iteration step the model parameters are changed until the simulated curve differs
slightly from the experimental curve. In this search for optimal parameters that yield the best fit
between the simulated and experimental curve, we use particle swarm optimization (PSO), which
is a stochastic, population based technique developed by Kennedy and Eberhart, [63], in 1995.4

4Although relatively new, PSO has been applied to a variety of tasks and has evolved greatly since the original
version; for more information see www.swarminteligence.org or Kennedy and Eberhart [64].
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To find the onset velocity and frequency, we linearize the initial system around the steady solution
by introducing y(z, t) = ysteady(z) + ypert(z, t), where we look for the perturbations ypert that
satisfy ypert(z, t) = ỹ(z) expγt. The temperature is not taken as a component of ypert because
of its quasi-static nature. As explained in Chapter 2, the result of the linearization is a gener-
alized eigenvalue problem that yields a set of complex characteristic values {γ}, which we call
the spectrum. Once the spectrum is known, the stability/instability of the steady state solution is
determined according to the following criterium:

if ∀γ Re(γ) < 0 ⇒ the calculated steady state is stable ,

if ∃γ Re(γ) > 0 ⇒ the calculated steady state is unstable .

To calculate the spectrum {γ} we use the numerical routine explained in detail in Chapter 2,
Section 2.3. To find the onset velocity of draw resonance for a specified set of model parameters,
we calculate the spectrum for a number of drawing velocities, starting from relatively small values
and moving upward with a step of 10 mm/s. The drawing velocity for which the spectrum contains
a critical point, γcrit, with a positive real part is then defined as the onset velocity. The imaginary
part of γcrit determines the frequency of draw resonance oscillations according to

fcrit = u0

L
[ Im(γcrit)

2π
] . (3.71)

The calculated onset velocity and onset frequency for one particular set of model parameters are
then compared to the experimentally measured ones. If the calculated values are not sufficiently
close to the measured values of the onset velocity and frequency, we tune the model parameters
and repeat the calculation procedure.

3.4 Simulations: Newtonian Model

In this section we present the results of the Newtonian model. The Newtonian model is the simplest
constitutive model. The only material parameter it contains is viscosity. Apart from viscosity, in
this section we also discuss the initial diameter of the filament, which is a process parameter, and its
influence on the simulation results. This way we hope to clarify our choices of viscosity and initial
diameter, when we work with the more enhanced rheological models, like the modified Giesekus
model.

3.4.1 Remarks about Viscosity

Viscosity is the only polymer characteristic present in the Newtonian model. In our simulations, we
do not use a zero-shear viscosity, as in common practice, but we rather choose the value of viscosity
at shear rate γ̇ =1 s−1. On one hand, using the ANSYS R© POLYFLOW R©5 simulations carried out

5ANSYS, ANSYS Workbench, AUTODYN, CFX, FLUENT and any and all ANSYS, Inc. brand, product, service
and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the
United States or other countries. All other brand, product, service and feature names or trademarks are the property of
their respective owners.
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at Dow [65], we found that a shear rate of 1 s−1 is more realistic for the average share rate at the
extrudate swell. On the other hand, running our stability simulations, we found that the value of
viscosity does not have a significant influence on the prediction of draw resonance. Viscosity does
indicate the level of the drawing force at steady state (see Figure 3.25), but prediction for the onset
velocity for these choices of viscosity remains the same.

Qualitatively the Newtonian model gives a well predicted Rheotens curve, quantitatively it does
not, for whatever value of the viscosity. But, obviously, with the viscosity at γ̇ =1 s−1 the predicted
Rheotens curve gives a much better indication of the real values of the drawing force than the
curve predicted with the zero-shear viscosity. If we try to fit sophisticated models with two or
more parameters on the Rheotens curve, it is good to eliminate at least one of the parameters
before hand.
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Figure 3.25: Dependence of the fitted curve on the viscosity values: the upper curve was found for
η = 7591 Pa⋅s, the lower curve for η = 6200 Pa⋅s. The Reotense curve presents the
LLDPE 1 experiment for the conditions: ddie = 2.5 mm, L = 100 mm, T = 190oC,
Q = 600 g/h, ρ = 762 kg/m3

3.4.2 Influence of Extrudate Swell

It is common practice to ignore extrudate swell when simulating models of the fiber spinning
process, even when a small scale process like the Rheotens test is considered. We think that
neglect of extrudate swell is not necessarily a correct assumption. Thus, in this section we discuss
the relevance of the choice of the initial diameter for the draw resonance predictions. We base
our discussion on the Newtonian model results. For the simulations we choose the experiment
with LLDPE 1 with an extrusion temperature of 1900C, since for this experiment the actual onset
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velocity uar and frequency of transversal oscillations were measured accurately.

We run the simulations, keeping all operating conditions the same, only changing the value of the
initial diameter. Results are given in Table 3.7. The first row represents the value of the initial
diameter used in numerical simulations. The first value chosen is the die diameter with no swell,
the diameter of 2.5 mm. The last value chosen is the value measured with a laser system in the
following way: the polymer extruded through the die was allowed to fall freely; the radius of the
resulting filament was measured at the end of the spin line. The second row in the table indicates
how much the chosen value of the initial diameter is larger than the die diameter, in percentage.
The third row gives the values of the initial velocity that significantly changes with the change of
the initial diameter. Next, the predicted onset velocity is given for each value of the initial diameter.
The last row indicates the critical Draw ratio Dr.

The change of the initial diameter yields a significant change of initial velocity of the flow because
this velocity depends on the initial diameter d0, on the mass throughput Q, and on the density ρ:

u0 = 4Q
ρπd2

0
.

Because the mass throughput Q is kept constant and the fluid is assumed incompressible, thus, the
density is constant6, the only factor that remains in play is the diameter.

Thus, the initial velocity is influenced by extrudate swell. The critical Draw ratio, however, is about
the same, Dr ∈ (20, 21), for all tested conditions. Therefore, the onset velocity of draw resonance
changes with the change of the radius. The higher the extrudate swell is, meaning the higher the
initial diameter, the lower the initial velocity of the flow is and thus the lower the onset velocity of
draw resonance. With the extrudate swell neglected, the onset velocity of draw resonance is about
910 mm/s, which is completely unrealistic.

Table 3.7: Influence of extrudate swell on draw resonance: LLDPE, T = 190oC, Q = 600 g/h,
L = 100 mm, ρ = 762 kg/m3, ddie = 2.5 mm, uar = 480 − 500 mm/s

d0 (mm) 2.5 (die) 3.3 3.4 3.5 3.63 (value of swell measured after 100 mm)
swell (%) 0 32 35 40 45
u0 (mm/s) 44.56 25.57 24.09 22.73 21.13
upr (mm/s) 910 530 500 480 440
Dr 20.42 20.73 20.76 21.11 20.82

The results presented prove that the value chosen for the initial diameter of the fiber is an impor-
tant factor in the prediction of stability. Thus, if we want to have a reliable stability prediction,
we cannot neglect extrudate swell. We do not regard the above described procedure to measure
extrudate swell as completely satisfactory for the following reasons: the diameter of the filament is
measured after 100 mm and the real swelling, if any, takes place in a few millimeters from the die

6Even if we do not assume incompressibility, the change of temperature on a short distance of few millimeters near
the die is insignificant, and thus density does not change either.
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exit; besides, the pulling motion of the wheels obviously has a decreasing influence on extrudate
swell. Also, as poor as the measurements of extrudate swell might be, they are simply not avail-
able for all experiments we are analyzing. Therefore, we decided to consider the initial diameter as
an additional fitting parameter when interpreting the results of the Rheotens experiment with the
results of numerical simulations.

3.5 Simulations: the Modified Giesekus Model

The goal of our research on the Rheotens experiment is to establish a method to estimate consti-
tutive model parameters from the experimental results. We achieve this goal by considering two
types of experimental results: the steady state Rheotens curve and onset velocity and frequency
of oscillations. We simulate this data with the modified Giesekus model. The two parameters of
this model are α (0 < α < 1) and N0 (N0 > 0), which characterize the flexibility and the average
number of links in the molecular chain, respectively. However, α and N0 are not the only unknown
material parameters that we have to deal with in the simulations. Others are the viscosity of the
polymer melt η, the relaxation time λ (keep in mind that the model we use has only one mode, i.e.
one relaxation time), and the initial diameter of a filament d0, which is supposed to be taken at the
highest swell. In literature, the fiber spinning models usually suggest to take a zero-shear viscosity
as input and neglect extrudate swell. In this way Doufas [61] attempted to find the constitutive
model parameters from the Rheotens steady state curve; fitting the relaxation time λ along with
α and N0. Our simulations of the Newtonian model, however, suggest that a zero-shear value for
viscosity as well as a die diameter value instead of an initial diameter might not necessarily be the
best choice (see Sections 3.4.1 and 3.4.2).

With five parameters at hand, we found that if we consider only the steady state Rheotens curve
obtained from the acceleration mode, we can find several different parameter settings that fit the
curve equally well, see Figure 3.26, where two different settings are presented. In other words,
any optimization procedure, in which the parameters at every step are adjusted in order to fit the
Rheotens curve will result into an infinite number of solutions. Therefore we decided to extend
the procedure of parameter determination with additional experimental results obtained with the
Rheotens constant mode, namely: the onset velocity and onset frequency at draw resonance oscil-
lations. Before we start to describe the fitting procedure, in the following subsection we carry out a
sensitivity analysis. In this analysis we determine if and how the frequency and the onset velocity
depend on parameters α, N0, d0, λ, and η.
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3.5.1 Sensitivity Analysis

In this section we investigate the influence that the parameters of our model have on the resulting
frequency and onset velocity. For that, as a basis, we take the experimental conditions of LDPE,
meaning that the extrusion temperature is 150 oC, activation energy is 57.7 kJ/mol, density is 781.5
kg/m3, mass throughput is 0.6 kg/h, drawing length is 100 mm, and the die diameter is ddie = 2, 5
mm. In every numerical simulation, we keep all parameters fixed except the parameter under
investigation; that parameter we vary within a given range and for each of its values we calculate
the onset critical velocity and for a fixed velocity of 480 mm/s we calculate the frequency. In our
numerical calculations the velocity step size is 10 mm/s, so that a reported predicted onset velocity
of 450 mm/s means that the previous one, 440 mm/s, leads to a stable solution, when 450 mm/s
does not.

To be able to estimate wether the sensitivity of the results to a change in parameters is significant,
we recall that the frequency bin size in the experiments conducted with LDPE is 0.009 Hz. We
also recall that, in contrast to the onset frequency, the onset velocity depends slightly on the gap
size between the wheels. As we do not consider a final condition on filament radius in our model,
which would be determined by the gap size, we do not know if the results of our model are closer
to the experiments with a gap size of 0.1 mm or with a gap size of 0.3 mm. That is why for the
onset velocity we consider a wider bin size, namely, instead of the initial experimental step size of
10 mm/s, we consider 50 mm/s, which is the difference between the experimental onset velocities
obtained with 0.1 mm and 0.3 mm gap.

Influence of Viscosity

The plot of a viscosity versus shear rate for LDPE at 1500C is given in Appendix B1. From the
plot we see that viscosity ranges from approximately 1 kPa⋅s to about 70 kPa⋅s, with an estimated
zero-shear value of 95 kPa⋅s. We vary the viscosity in the specified range, while keeping the other
parameters fixed, d0 = 2.5 mm, λ = 0.08 s, α = 0.1, N0 = 10. The results of simulations are
presented in the graphs of Figure 3.27. The left hand side graph shows how the frequency at 480
mm/s changes with the change of viscosity and the right hand side graph shows the same with
respect to the onset velocity. Minding the scale of the frequency vs viscosity plot, we see that
influence of the viscosity on frequency prediction is very small. The frequency changes mainly
when the viscosity is very low, 1-10 kPa; such low values are unlikely to fit the force level in the
Rheotens curve of LDPE. But even if they do, the maximum frequency variation is 0.02 Hz, when
the frequency drops from 1.002 Hz to 0.982 Hz. In the experiments the frequency bin size is 0.009
Hz; thus, the difference of about 2 bins (0.02 Hz) is negligible. With respect to the onset velocity,
the change of 10 mm/s over the whole range of tested viscosities falls within one bin size, as we
consider a bin size of 50 mm/s. Thus, we conclude that viscosity influences neither the prediction
of frequency nor the onset velocity.
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Influence of the Modified Giesekus Model Parameters α and N0

The sensitivity of frequency and onset velocity with respect to change in the modified Giesekus
model parameters α and N0 is visualized in the graphs of Figure 3.28. We recall that α ∈ (0, 1)
and N0 ∈ (0,∞). It turns out that N0 does not influence the predicted frequency value at all. We
observe a slight change of frequency for N0 <5, but this difference is far less than 2 bin sizes for
all test cases. For N0 >5, the frequency remains the same if all other conditions are not changed.
The influence of the parameter α on frequency is larger and increasing α from 0.01 to 0.9 gives a
difference of approximately 0.127 Hz, which is about 14 bin sizes.

A change in parameterα does not lead to a significant change in onset velocity, as one can see from
the graph on the right hand side of Figure 3.28. Forα-values varying from 0 to 1, the onset velocity
remains almost the same. It changes only slightly, mainly for the smaller α-values, α < 0.3. This
change varies from 10 to 30 mm/s depending on the choice of N0. But the largest difference of
30 mm/s is still far within 1 velocity bin size. A change in parameter N0 influences the calculated
onset velocity, especially when N0 is between 2 and 10; for N0 between 10 and 100, the difference
in the onset velocity is only 20 mm/s, which is within a bin size.

Influence of the Initial Diameter

Figure 3.29 shows the sensitivity of the calculated frequency (top diagram) and the calculated
onset velocity (bottom diagram) to the change of initial diameter d0. Each plot contains 4 graphs
obtained for 4 different settings of α and N0. The frequency decreases to almost half its value,
when the diameter increases from 2.5 mm to 3.8 mm. Even more, in terms of influence on the
resulting frequency, a change in diameter by only 0.2 mm has the same effect as the change in
α over its whole range, from 0.01 to 0.9. The parameter N0 does not influence the frequency, as
discussed in the previous section. Thus, the overall influence of the initial diameter on frequency
is much more significant than the influence of the parameter α. Similarly to the frequency, the
calculated onset velocity is sensitive for the initial diameter. As can be seen in the plot at a right
hand side of Figure 3.29, increasing the initial diameter from 2.5 mm to 3.8 mm yields the decrease
of the onset velocity on average by 200 mm/s.

Influence of the Relaxation Time

The sensitivity of the numerical results, frequency and onset velocity, to a change in relaxation time
is shown in Figure 3.30. We consider the relaxation time λ ranging from 0.01 to 5 seconds. In the
plots, these values are shown in a logarithmical scale for better visualization. We observe that both
frequency and onset velocity are strongly influenced by λ; although the influence of λ on onset
velocity seems to be more significant than on frequency. The frequency is not uniquely determined
by λ: the same value of frequency is obtained for two and in some cases even three different values
of λ. In contrast, the onset velocity is only determined by one value of the relaxation time.
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Figure 3.27: Numerical simulations: sensitivity of frequency (top) and onset velocity (bottom) to a
change in viscosity. The input conditions are taken according to the experiment with
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Figure 3.30: Numerical simulations: sensitivity of frequency (top) and onset velocity (bottom) to a
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the velocity of 480 mm/s. Other parameters are: d0 = 2.7 mm, η = 22 kPa s, α = 0.3,
and N0 = 5.



74 3 RHEOTENS

3.5.2 Parameter Estimation

Procedure

As we showed in the sensibility analysis discussed in the previous subsections, the initial diameter
and the relaxation time are the most important parameters in terms of their influence on calculated
frequency and onset velocity. Parameter N0 has no influence on frequency and only a slight in-
fluence on the onset velocity; α does not influence the onset velocity but has a slight influence
on the frequency. Based on these observations we design a scheme by which we can estimate the
materials and process parameters, including the parameters of the modified Giesekus constitutive
model. First, we go after a value of the initial diameter that is supposed to be taken at the point
of highest swell. For each fixed value of d0, starting from 2.5 mm and moving up with a step of
0.1 mm, we consider 2 limiting settings of a pair (α, N0); here we take (0.01, 2) and (0.9, 100).
For both sets we find the value of the relaxation time, further referred to as λ1, that leads to a
correct prediction of the onset velocity of draw resonance; we record also the correspondent onset
frequency. This simple numerical experiment yields the range of onset frequencies that can be
obtained for each given d0. The difference between the maximum and the minimum possible onset
frequency is not large; this difference is determined by α, thus is not more than 0.13 Hz, as we
demonstrated in Subsection 3.5.1. Such an evaluation allows us to estimate the initial diameter d0

up to ±0.1 mm, by comparing the calculated range of onset frequencies to the measured value of
the onset frequency. Thus, we bring d0 down to three values which differ by 0.1 mm. For each
of these three values of d0, we calculate λ1 and the corresponding onset frequency for a few more
wisely chosen sets of (α, N0). This allows to determine roughly the range of the parameters α and
N0, again by making a correspondence between the calculated onset frequency and the measured
one. We notice that for different values of d0 the estimated regions of α and N0 do not overlap.
With this information at hand, we proceed with simulations of the Rheotens steady state curve; the
optimization procedure takes a reasonably short time to run, since we have limited the region in the
parameter space to be explored. In fitting the Rheotens curve, the value of the viscosity becomes
important, as it influences the resulting force. According to the conclusions drawn from the New-
tonian model simulations, we choose the viscosity according to shear rates between 0 and 1, but
rather in the vicinity of 1 per second. We found that whatever values of the other parameters we
take, it proves impossible to get a good fit of the Rheotens curve using the relaxation time value of
λ1, which is in the order of 10−2. Therefore, to fit the Rheotens curve, we introduce a second mode
with a second relaxation time, further called λ2. We usually take λ2 coupled with the viscosity,
meaning that λ2 is the inverse of the shear rate at which the viscosity value is chosen. Therefore λ2

is in the order of 1, which is much higher than the value of λ1. Thus, in order to predict both, the
steady state and the oscillations characteristics accurately, we need two different modes of λ. This
makes λ the unique Hopf bifurcation parameter that switches between two states of the physical
system describing a process: the steady state and the oscillations about the steady state.7

7For bifurcation theory see Marsden and McCracken [66], Strogatz [67], Kuznetsov [68]. Application of bifurcation
theory to oscillations in polymer elongation processes is considered by Demay [69].
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Finally, in order to avoid ending up with more than one set of estimated parameters, which is possi-
ble as demonstrated in Figure 3.26, and which can not be prevented using the procedure described
above, we suggest the following approach. When performing the Rheotens experiment for further
use in parameter estimation, one should perform measurements at constant and acceleration mode
with the same material for at least two different drawing lengths. Then, the analysis of the experi-
mental onset frequencies compared to the calculated ones allows to specify the initial diameter d0

taken at a swell region precisely. Moreover, from this frequency analysis the values of α and N0

can be estimated accurately. In this case, it is not necessary any longer to fit the Rheotens steady
state curve, although we still suggest to do that, either for validation or for higher precision of
estimated parameters, or for both of these reasons. The suggested procedure does require to obtain
the experimental data for two drawing lengths, which increases the time of performing the actual
Rheotens experiments. However, this procedure yields the highly desired result, namely the unique
set of parameters (for a given material at a given temperature). Moreover, it makes the analysis
simple and fast.

Results

In this section we present the parameter estimation results for LDPE, LLDPE1, PP, and PS. The
input values for the simulations performed for these materials are given in Table 3.8. In the same
table we find the estimated values of the modified Giesekus constitutive model parameters α and
N0, as well as two relaxation time modes λ1 and λ2 that specify the oscillatory and stationary
states of the system, respectively.

Table 3.8: Process and polymer experimental conditions for LDPE, LLDPE1, PP, and PS. The
second part of the Table contains the estimated values of the relaxation time and the
modified Giesekus model parameters.

LDPE LLDPE1 PP PS
Textr (oC) 150 190 220 220
Tair (oC) 20 20 20 20
Q (kg/h) 0.6 0.6 0.6 0.6
ρ (kg/m3) 781.5 760 748.5 957
Ea (kJ/mol) 57.7 34.5 41.4 114.1
L (mm) 100 140 300 100 100 50
ddie (mm) 2.5 2.5 2.5 2.5
d0 (mm) 2.7 3.6 4.0 3.8
λ1 (s) 0.007 0.075 0.095 0.024 0.060 0.009
λ2 (s) 1.5 2 4 1 2.8 1.4
η (kPa ⋅ s) 18.5 22 32 6 33.6 7.6
α 0.105 0.19 0.31 0.29
N0 3 5 3 14
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For LDPE we have experimental data obtained for 3 different drawing lengths, L = 100, 140, and
300 mm for both the constant and the acceleration mode. The analysis of the onset velocities and
frequencies, as described in Section 3.5.2, yields the a value of the initial diameter of 2.7 mm, and
following values for the modified Giesekus model parameters: α = 0.105, N0 = 3. The quality
of the fit between the experimental and calculated onset velocity and frequency may be seen in
Table 3.9. We observe that the relaxation time mode λ1 is increasing linearly with the increase in
drawing length. To validate the established model parameters, we also fitted the Rheotens steady
state curves obtained with the acceleration mode for the same three drawing lengths. The result
of this fitting is given in Figure 3.31.8 We observe a perfect fit between the experimental and
the simulated curves. Similar to λ1, the value of λ2 is increasing linearly as drawing length is
increasing.

For the materials LLDPE1, PP, and PS we do not have the measurements of frequency and onset
velocity for different drawing lengths. Thus, in order to establish the model parameters we have to
rely on both, velocity-frequency analysis and the fit of the steady state Rheotens curve. The best
fit between the simulated and the experimental onset velocity and frequency data obtained from
the Rheotens constant mode is presented in Table 3.9. The best fit between the simulated and the
experimental Rheotens curves is presented in Figure 3.32.

Table 3.9: Critical velocity at onset of draw resonance and frequency of force oscillations: com-
parison of experimentally measured values (exp) with the simulated ones (sim). In ex-
periments with LDPE the frequency bin size is 0.0046 Hz; for LLDPE1 the frequency
bin size is 0.0046 Hz, for PP it is 0.05 Hz, and for PS it is 0.009 Hz.

Material Drawing Relaxation time Onset velocity (mm/s) Frequency (Hz)
length L (mm) λ1 (s) exp sim exp sim

LDPE 100 0.07 430 - 480 450-460 0.86 0.85
140 0.075 470 - 515 510-520 0.64 0.63
300 0.095 540 - 590 580-590 0.30 0.30

LLDPE1 100 0.024 475 - 500 470-480 0.58 0.59
PP 100 0.06 290 - 300 300-310 0.44 0.44
PS 50 0.009 400 - 425 420-430 1.15 1.17

Finally, we also consider the Rheotens experiment where LLDPE1 is used at different tempera-
tures. The results of the fitting of simulation data to experimental curves are presented in Figure
3.33. We do not have precise measurements of the onset velocity or frequency of oscillations for
this experiment, thus, the results of the fitting should be considered carefully. We notice, however,
that the fitting results are consistent and indicative for the dependence of the model parameters
on temperature. The model parameters obtained by the best fit are decreasing as temperature in-
creases.

8All experimental curves considered in this section are corrected for the influence of gravity according to [61].
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Figure 3.31: Demonstration of the Rheotens curves fitted under the steady state conditions for
LDPE. The curves are obtained for the drawing lengths of (from up to down): 100,
140, and 300 mm. The experiments were performed at T = 1500C.
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Figure 3.33: Demonstration of the fitted under the steady state conditions Rheotens curves ob-
tained for LLDPE 1 at three different temperatures: T = 150, 170, and 2100C.

Conclusions

The results presented in the previous section show the accuracy and efficiency of the suggested
methodology for model parameters estimation when the modified Giesekus model is applied in the
mathematical description. Analysis of the data obtained by the Rheotens constant mode, when the
velocity of the pulling wheels is constant, proves the importance of those experimental data not
only for the parameter determination problem, but for many other possible applications.
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Appendix B

B1 Viscosity Data for LDPE at 1500C

100

1000

10000

100000

0,01 0,1 1 10 100 1000

shear rate, s
-1

V
is

c
o

s
it

y
,

P
a

s

shear rate viscosity

(s-1) (Pa*s)

0,02272 67424

0,04041 57539

0,07185 47834

0,1278 39122

0,2272 31626

0,4041 24659

0,7185 18952

1,278 14383

2,272 10579

4,041 7739

7,185 5583

12,78 3941

22,72 2784

40,41 1935

71,85 1331

127,8 916,2

Figure B.1: Viscosity versus shear rate for LDPE at 1500C.





CHAPTER FOUR

Film Casting

4.1 Introduction

4.1.1 Description of the Process

In the process of film casting, a molten polymer is extruded through a flat die, elongated, and taken
up by a rotating chill roll (see Figure 4.1). The elongation is due to the positive difference between
the take-up velocity at the chill roll and the extrusion velocity. The distance between the die and
the chill roll is relatively short, with respect to the die width. Although the film is mainly cooled
at the chill roll, the casting process between the die and the chill-roll is not completely isothermal.
The polymer also looses heat by convection that happens due to the motion of the hot polymer in
low temperature environment and due to blown quench air.

extruder

die

molten polymer

chill roll

product

extruder

die

molten polymer

chill roll

product

Figure 4.1: Production process: front and side view.

The productivity of the process is linearly related to draw velocity that is only limited by the

81
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equipment and by the material. As newer cast film lines allow operations at ever higher speed,
an opportunity arises for development of new resins that would have high drawability and, most
importantly, would avoid stretching instability, called ”draw resonance”. This instability manifests
itself as sudden periodic variations of film dimensions that occur at high production speeds but
still below the take-up speed expected to lead to breakage. In order to develop materials with high
performance, it is critical to be able to accurately predict the onset of draw resonance, taking into
account the effect of cooling.

4.1.2 Literature Review

From the earliest observations of draw resonance, in the beginning of the 60-ties, many experi-
mental and theoretical studies on this subject have been carried out. Different constitutive models
describing the polymer behavior were adopted in modeling the film casting process. In particular,
we can mention the work of Silagy et al. [70; 71], who used Newtonian, Maxwell, and Phan-
Thien and Tanner constitutive models; Anturkar and Co [72] with the Maxwell model; Lee et al.
[73; 74] with the Phan-Thien and Tanner model; Iyengar and Co [75; 76] with a Giesekus model.
The resulting mathematical model of the casting process is represented by a quasi-linear system of
first order partial differential equations. This model allows to replace the process instability by a
mathematical instability that can be tackled with various techniques. Most researchers, like Silagy
et al. [70; 71], Anturkar and Co [72], Pis-Lopez and Co [77; 78] treat stability of the system by
performing linear stability analysis. Other researchers approached the stability problem by using a
non-linear analysis, Iyengar and Co [76], a kinematic wave approach, Lee at al. [73; 74; 79], and
a frequency response method, Lee at al. [80].

The non-isothermality of the film casting process has drawn more attention in recent years and is
considered only in a few papers, for instance in work of Sologoub et al. [81], Agassant et al. [82],
Lamberti et al. [84; 85], Smith [86], [87]. These works concentrate on the modeling of the steady
state of the process; stability is not addressed. The work of Smith [86] is an exception, though it
presents only one result related to the temperature influence on process stability.

4.1.3 Objective

In this chapter, a non-isothermal viscoelastic model describing the film casting process is consid-
ered. The model is one-dimensional in the sense that all unknown functions depend on one space
variable. In the model, temperature is incorporated through forced and natural convection of heat.
Heat diffusion, radiation, and heat dissipation are neglected. To model the polymer’s rheologi-
cal behavior, a number of constitutive equations are used, including Newtonian, upper convected
Maxwell, Phan-Thien and Tanner, and the modified Giesekus constitutive equations. In the end,
regardless of the constitutive equations used, the model of the film casting process is described by
the same mathematical formulation that satisfies the conditions in Chapter 2. Thus, to solve the
problem of stability/instability, we apply the mathematical and numerical routines that are based
on the spectral analysis described in Chapter 2. We do not present or discuss the steady state re-
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sults of our modeling. They are in full agreement with the results reported in [70] for the 1 − D
model. We mention that 2−D steady state models of film casting are also considered in literature;
their results are reported in [71], [83]. These 2 −D models predict both, the neck-in effect in film
width as well as the edge-bead effect in film thickness. Our objective is not focusing on steady
state but on the investigation of the stability of the film casting process, especially with tempera-
ture taken into account. Therefore, we present stability results obtained under both, isothermal and
non-isothermal conditions. We discuss the difference between the stability maps built for the same
material if different constitutive equations are considered, and try to find which constitutive model
is most efficient, if any, by comparison with some available experimental data.

4.2 Modeling

4.2.1 Configuration

Figure 4.2 shows the geometry of the polymer flow in the film casting process. The configuration
is described in Cartesian coordinates. The x-direction is the length direction of the polymer flow,
y- and z-directions are the width and the thickness directions, respectively. The process is assumed
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Figure 4.2: Modeling geometry of a film casting process.

to be symmetric with respect to the x-axis and with respect to the y axis. This assumption allows
us to consider from now on a polymer flow in the following space-and-time domain

Ω = {(x, y, z, t)∣ 0 ≤ x ≤ X, 0 ≤ y ≤ L(x, z, t), 0 ≤ z ≤ 1
2

e(x, y, t), t ≥ 0} , (4.1)

where X is the stretching distance, i.e. the distance between the die exit and the chill roll; L(x, z, t)
is half the width, and e(x, y, t) is the thickness of the film. The initial values of L(x, z, t) and
e(x, y, t) are given by the dimensions of the die, L0 and e0. On the flow domain Ω we introduce a
general velocity field u = (ux, uy, uz), the stresses in the film σi j, and the temperature T = T(x, t)
of the film. Variables x = (x, y, z) and t are independent.

The mean extrusion velocity of the polymer is denoted by u0, and the chill roll velocity is uroll .
The temperature of the polymer melt at the die exit is T0. Main cooling of the film takes place at
the chill roll. Yet, the casting process cannot be considered as isothermal. The polymer fluid looses
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heat because of natural and forced heat convection. The forced heat convection is induced by the
motion of the hot polymer in a low temperature environment. If necessary, additional cooling can
be applied by means of quench air blown around the polymer flow.

4.2.2 Assumptions

In our mathematical modeling the following assumptions are made:

1. The thickness e0 is small compared to the other dimensions L0 and X, while L0 and X have
the same order of magnitude: X ∼ L0, e0 << L0 and e0 << X. Thus, we apply the membrane
hypothesis in our further derivations, [70].

2. Effects such as gravity, surface stress, and inertia are neglected.

3. The polymer fluid is mechanically and thermally incompressible, i.e. divv = 0 and the
density of the polymer does not change with temperature.

4. The influence of extrudate swell on the process is negligible.

5. The velocity component ux(x, t) is independent of y and z (ux = u(x, t)), uy(x, t) is in-
dependent of z, and vz(x, t) is independent of y. Consequently, also taking into account
incompressibility, vy(x, t) and uz(x, t) vary linearly with their respective coordinates, [70],

u(x, t) = u(x, t)ex + y f (x, t)ey + zg(x, t)ez . (4.2)

6. The width and the thickness of the film are independent of y and z, respectively:

L = L(x, t) , and e = e(x, t) . (4.3)

7. The polymeric fluid is in nearly equilibrium state after it exits the die, i.e. all extra stresses
are relaxed.

8. Variation of the temperature over the cross-section is small compared to the variation in draw
direction.

9. Heat transport in the film is only due to convection, diffusion is neglected. Viscous heat
dissipation and radiation are neglected.

4.2.3 The Model Equations

In this section we present all equations involved in our mathematical model of non-isothermal
film casting. Our assumptions imply that the fundamental unknowns of our problem are: u(x, t),
f (x, t), g(x, t), L(x, t), e(x, t), the normal stresses σxx(x, t),σyy(x, t), σzz(x, t), and the temper-
ature T(x, t). For these unknowns we have the following general relations:
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• Conservation of mass (cf Assumption 3)

∂
∂t

(eL)+ ∂
∂x

(eLv) = 0 . (4.4)

• The equation of motion (cf Assumption 2)

∂
∂x

(σxxeL) = 0 . (4.5)

• By Assumption 2, the edges y = L(x, t) and z = e(x, t) of the film are stress free and
kinematic free material surfaces.

a) From the stress free surface condition, σn = 0, with n = sinαex + cosαey (see Figure
4.3), we get

σxx sinα +σxy cosα = 0 , (4.6)

σxy sinα +σyy cosα = 0 , (4.7)

σzz = 0 . (4.8)

After elimination of σxy in (4.6) and (4.7), and with use of tanα = − ∂L
∂x , we obtain

σyy = (∂L
∂x

)
2

σxx. (4.9)

Assumption 1 (the membrane hypothesis) implies that (4.8) and (4.9) hold everywhere in Ω.
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Figure 4.3: The 2−D geometry expressing the boundary conditions at the edges of the film.

b) From the kinematic free material surface condition, vn = 0, we obtain the velocity com-
ponents y f and zg, see (4.2), with

f = 1
L

∂L
∂t

+ v
L

∂L
∂x

, (4.10)

and

g = 1
e

∂e
∂t
+ v

e
∂e
∂x

. (4.11)
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• We consider the temperature averaged over the cross-section (Assumption 8). The tempera-
ture change is a quasi-static process1 driven by convection only (Assumption 9),

ρCpv
∂T
∂x

= −2h
e
(T − Ta) , (4.12)

where Ta is an ambient air temperature, in K. The heat capacity of the polymer Cp is assumed
to depend linearly on the temperature

Cp = a + bT , where a = 969.9, b = 3.7 . (4.13)

The heat transfer coefficient h accounts for a heat transfer due to forced and natural convec-
tion, h = hforce + hnat. Representation of hf and hnat that are used in the modeling are given
by [91]:

hforce =
0.66ka

x
(Caηa

ka
)

1/3
(xvt

µa
)

1/2
, (4.14)

hnat = 0.56ka

x
(gx3Caρa(T − Ta)

µakaTa
)

1/4

. (4.15)

In (4.14) and (4.15) quantities ka, Ca, ηa, µa denote conductivity, heat capacity, dynamic
viscosity, and kinematic viscosity of air, respectively; their values are given in Appendix
C1. Quantity g is the magnitude of gravitational acceleration. The total velocity term vt in
(4.14) is composed of two: vt = va + u, with va being the cooling air velocity.

• Constitutive equations are used to describe polymer rheological behavior. Depending on the
constitutive model chosen the extra-stress tensor T (components τi j) takes a different form.
Thus, the total stress tensor σ (components σi j) also depends on the model selected, as it is
expressed via the extra-stress tensor with addition of the isostatic pressure p = p(x, t),

σ = −pI + T . (4.16)

In further derivations the upper convected derivative is employed that in its general form is
defined as

D
Dt

∗ = ∂
∂t
∗+(v,

∂
∂x

) ∗−L∗− ∗LT , (4.17)

with L the gradient of the velocity field, L = gradv. Because the polymer flow is strongly
elongational, the diagonal terms of L dominate the off-diagonal ones. Thus, we ignore off-
diagonal terms,

L =
⎛
⎜⎜
⎝

∂u
∂x 0 0

y ∂ f
∂x f 0

z ∂g
∂x 0 g

⎞
⎟⎟
⎠
≃
⎛
⎜
⎝

∂u
∂x 0 0
0 f 0
0 0 g

⎞
⎟
⎠

. (4.18)

1The proof that we can neglect the time derivatives is presented in Appendix C1
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By ignoring off-diagonal terms we keep the model one-dimensional (in the sense that all
unknowns depend only on the one variable x).

Also everywhere further λ denotes the characteristic relaxation time of the polymer (as we
consider only one mode models); η denotes the viscosity of a polymer. The temperature
dependence of both, λ and η, is assumed to be covered by the Arrhenius law,

λ(T) = λ0 exp [ Ea

RT0
(T0

T
− 1)] , (4.19)

η(T) = η0 exp [ Ea

RT0
(T0

T
− 1)] , (4.20)

where Ea is the activation energy of the polymer, T0 - reference temperature that we take
as the extrusion temperature, R - the universal gas constant, λ0 and η0 are the values of the
relaxation time and the viscosity at the die temperature T0: λ0 = λ(T0), η0 = η(T0).

a) For Newtonian, upper convected Maxwell (UCM), and Phan-Thien and Tanner (PTT)
fluids the extra-stress tensor is governed by the constitutive equation expressed by the same
general form,

H(T )T + λ
DT
Dt

= 2ηD . (4.21)

Here D is the rate of deformation tensor, D = 1
2(L +LT). The relaxation time λ for the

Newtonian model is zero. The tensor H(T ) is satisfies the following relation

H(T ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

I , Maxwell, Newton;

exp (ελ

η
tr(T ))I , PTT, [88], (4.22)

where ε is a PTT model parameter. In this work we consider the one-parameter PTT model.

By use of the stress free surface condition (4.8), relation (4.16) yields p = τzz and the
following expression for the components of the stress tensor

σxx = τxx −τzz , σyy = τyy −τzz . (4.23)

With the velocity gradient given by (4.18) and the upper convective derivative defined by
(4.17), the constitutive equations for τxx ,τyy , and τzz are fully defined by (4.21). Using
relation (4.23) thereafter, we get the following three constitutive equations for τxx ,σxx and
σyy:

Hτxx + λ(∂τxx

∂t
+ u

∂τxx

∂x
− 2τxx

∂u
∂x

) = 2η
∂u
∂x

, (4.24)

Hσxx + λ(∂σxx

∂t
+ u

∂σxx

∂x
− 2τxx(∂u

∂x
− g)− 2σxxg) = 2η(∂u

∂x
− g) , (4.25)

Hσyy + λ(∂σyy

∂t
+ u

∂σyy

∂x
+ 2(σxx −τxx)( f − g)− 2σyy f ) = 2η( f − g) , (4.26)

where the functions f and g are given by (4.10) and (4.11), function H is given by

H =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, Maxwell, Newton;

exp(ελ0

η0
(3τxx +σyy − 2σxx)), PTT, (4.27)
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and λ = 0 in case of Newtonian fluid.

b) Developing the modified Giesekus model, we follow the method that was introduced by
Doufas et al. [20] in their modeling of the fiber spinning process. We consider the stress
tensor σ in terms of the conformation tensor C (components ci j) instead of the extra stress.
Thus, in (4.16) the extra-stress tensor T is replaced by the conformation tensor C, using the
following relation

T = nkbT( 3
N0l2 EC − I) . (4.28)

The conformation tensor C is proposed to characterize the microstructure, i.e. the orientation
and stretching of the molecules in a melt. The polymer melt exiting the die is modeled as
a concentrated suspension of non-linear elastic dumbbell molecules. Each molecular chain
is assumed to contain N0 flexible statistical links of length l. In (4.28), n is the number of
molecules per unit volume, and kb is the Boltzmann constant. The quantity E, the non-linear
spring force factor, accounts for a finite chain extensibility and is approximated by Cohen
[62] with the following expression

E = 3N2
0 l2 − trC

3N2
0 l2 − 3trC . (4.29)

By substitution of (4.28) into (4.16) and use of the condition (4.8), the stress tensor compo-
nents σxx and σyy are expressed via the conformation tensor. They are then used to modify
equations (4.5) and (4.9) that in terms of conformation tensor components become

∂
∂x

(E(cxx − czz)eL) = 0 , (4.30)

(cxx − czz) (∂L
∂x

)
2

= (cyy − czz) . (4.31)

The evolution equation for the conformation tensor C is given by

D
Dt
C = −1

λ

N0l2

3
((1 −α)I +α

3
N0l2 EC)( 3

N0l2 EC − I) . (4.32)

Here α is a modified Giesekus model parameter representing molecular mobility. With
(4.17) and (4.18), the evolution equation of conformation tensor (4.32) in components reads

λ (∂cxx

∂t
+ u

∂cxx

∂x
− 2cxx

∂u
∂x

) = N0l2

3
((1 −α)+α

3
N0l2 Ecxx)(1 − 3

N0l2 Ecxx) ,

(4.33)

λ (∂cyy

∂t
+ u

∂cyy

∂x
− 2cxx f) = N0l2

3
((1 −α)+α

3
N0l2 Ecyy)(1 − 3

N0l2 Ecyy) ,

(4.34)

λ (∂czz

∂t
+ u

∂czz

∂x
− 2czzg) = N0l2

3
((1 −α)+α

3
N0l2 Eczz)(1 − 3

N0l2 Eczz) . (4.35)

The functions f and g are given by (4.10) and (4.11).

With this, for every model considered, except for the Newtonian case, we derive a system of 7
first order non-linear differential equations for 7 unknowns. The Newtonian model results in 5
equations for 5 unknowns.
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4.2.4 Boundary Conditions

To have a consistent model, we need to introduce boundary conditions. Since we have a one-
dimensional problem with respect to variable x, the boundaries are x = 0 and x = X. From the
process conditions, we introduce the following obvious boundary conditions:

u(0, t) = u0 , L(0, t) =L0 , e(0, t) = e0 , T(0, t) = T0 , u(X, t) = uroll . (4.36)

For the Newtonian case these boundary conditions suffice. For the Maxwell and for the PTT fluid
model we need two more conditions, namely one for τxx and one for σyy. The boundary condition
for τxx is less obvious. We assume that polymer exiting the die is nearly at equilibrium, the extra
stresses are relaxed or close to, thus we put

τxx(0, t) = k0 , (4.37)

where k0 is positive and small, close to zero. This is in agreement with the previous research
[70], [89]. For the component σyy, we solve the Newtonian steady state problem and then use the
obtained value σyy(0)Newtonian as the boundary value for the Maxwell and PTT case,

σyy(0, t) = σyy(0)Newtonian . (4.38)

In case of the modified Giesekus model, boundary conditions for the conformation tensor compo-
nents are needed. According to Assumption 7, boundary values of cyy and czz at the die exit, x = 0,
are taken at equilibrium:

cyy(0, t) = ceq
yy , czz(0, t) = ceq

zz . (4.39)

As at equilibrium all extra-stresses are relaxed, we get ceq
yy and ceq

zz from (4.28):

ceq
ii =

N0l2

3Eeq
. (4.40)

To find Eeq = E(Ceq), we substitute (4.40) in (4.29) and solve the resulting second order equation
with respect to Eeq,

Eeq = 1 + N0

2N0
+

√
9 + 6N0 + 9N2

0

6N0
. (4.41)

4.2.5 Scaling

To have a concise form of governing equations, and also to see better which parameters have influ-
ence on the solution stability, we use a dimensionless form of the system. For that, the following
dimensionless variables are used:

û = u
u0

; ê = e
e0

; L̂ = L
L0

; x̂ = x
X

; T̂ = T
T0

; t̂ = X
u0

t. (4.42)
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For the consideration of the Newtonian, UCM, and PTT models, the stress tensor and extra-stress
tensor components are scaled according to

σ̂ii = σiie0L0

F0
; τ̂ii = τiie0L0

F0
, (4.43)

where the value F0 represents the force in x−direction at x = 0. In case of the modified Giesekus
model, the conformation tensor components become dimensionless by

ĉii = cii

N0l2/3
. (4.44)

The important dimensionless processing parameters are the Draw ratio (Dr), and the Aspect ratio
(A)

Dr = uroll

u0
; A = X

L0
;

and the Deborah number (De), representing ratios of relaxation time and a process time,

De(T) = De0 exp [ Ea

RT0
( 1

T
− 1)] . (4.45)

Here De0 is the value at initial temperature T0, De0 = λ0u0
L .

4.2.6 Dimensionless System

In representation of the scaled systems, for convenience, the hats over scaled variables are omitted
and the following dimensionless groups are introduced

V1(Ta, u, e; x) = 1.32ka

ρu0e0
(Cpaηa

ka
)

1/3

(X(u0u + va)
νa

)
1/2 1

ue
√

x
, (4.46)

V2(Ta, u, e; x) = 2Bka

ρu0e0
(gX3CpaρaT0

νakaTa
)

p
x3p−1

ue
, (4.47)

W(T) = η0e0L0u0

F0X
exp [ Ea

RT0
( 1

T
− 1)] , (4.48)

Kx(x, t) = ((1 −α)+αEcxx) (1 − Ecxx) , (4.49)

Ky(x, t) = ((1 −α)+αEcyy) (1 − Ecyy) , (4.50)

Kz(x, t) = ((1 −α)+αEczz) (1 − Eczz) . (4.51)

The non-linear force factor E, see (4.29), and its derivative in scaled variables take the form

E = 9N0 − trC
9N0 − 3trC , (4.52)

∂E
∂x

= 2N0

(3N0 − trC)2
∂(trC)

∂x
. (4.53)

Further also, to make system look simpler, the total time derivative is used,

δ

δt
= ∂

δt
+ u

∂
∂x

. (4.54)

With such grouping and notations, the system characterizing the non-isothermal film casting of a
viscoelastic polymer takes the form
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• for the Newtonian, UCM, and PTT cases

Hτxx +De (δτxx

δt
− 2τxx

∂u
∂x

) = 2W
∂u
∂x

, (4.55)

Hσxx +De (δσxx

δt
− 2τxx(∂u

∂x
− 1

e
δe
δt

)− 2
σxx

e
δe
δt

) = 2W (∂u
∂x

− 1
e
δe
δt

) , (4.56)

Hσyy +De(δσyy

δt
+ 2(σxx −τxx)( 1

L
δL
δt

− 1
e
δe
δt

)− 2σyy
1
L

δL
δt

) = 2W ( 1
L

δL
δt

− 1
e
δe
δt

) ,

(4.57)

A2σyy = σxx (∂L
∂x

)
2

, (4.58)

∂
∂t

(eL)+ ∂
∂x

(eLu) = 0 , (4.59)

∂
∂x

(σxxeL) = 0 , (4.60)

∂T
∂x

= − V1

a + bT
(T − Ta

T0
)− V2

a + bT
(T − Ta

T0
)

1+p
. (4.61)

In this system the function H equals

H =
⎧⎪⎪⎨⎪⎪⎩

1, Maxwell, Newton;
exp ( ελ0F0

η0e0 L0
(3τxx +σyy − 2σxx)) , PTT,

(4.62)

with ε the PTT model parameter. The system of equations (4.55)-(4.60) is valid in case of
three mentioned constitutive models, namely Newtonian, Maxwell, and PTT. Just have to
keep in mind that H is different in these three models, and that De = 0 for a Newtonian
fluid.

The scaled boundary conditions are

u(0, t) = 1, L(0, t) = 1, e(0, t) = 1, T(0, t) = 1, u(X, t) = Dr . (4.63)

Those four conditions completely specify the Newtonian model. For the Maxwell and PTT
in addition we demand

τxx(0, t) = k = k0e0L0

F0
, σyy(0, t) = σyy(0)Newtonian . (4.64)
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• for the modified Giesekus the scaled equations are

De (δcxx

δt
− 2cxx

∂u
∂x

) = Kx , (4.65)

De(δcyy

δt
− 2

cxx

L
δL
δt

) = Ky , (4.66)

De (δczz

δt
− 2czz

1
e
δe
δt

) = Kz , (4.67)

(cxx − czz)(∂L
∂x

)2 = A2(cyy − czz) , (4.68)

∂
∂t

(eL)+ ∂
∂x

(eLu) = 0 , (4.69)

∂
∂x

(TE(cxx − czz)eL) = 0 , (4.70)

∂T
∂x

= − V1

a + bT
(T − Ta

T0
)− V2

a + bT
(T − Ta

T0
)1+p . (4.71)

and the scaled boundary conditions are:

u(0, t) = 1 , L(0, t) = 1 , e(0, t) = 1 , T(0, t) = 1 , u(1, t) = Dr , (4.72)

cyy(0, t) = 1/Eeq , czz(0, t) = 1/Eeq ,

with the equilibrium value of the non-linear force factor Eeq given by (4.41).

4.2.7 General Formulation

After scaling, the model of film casting, regardless of the constitutive equations chosen, Newto-
nian, UCM, PTT, or modified Giesekus, results in the quasi-linear system of differential equations
with two points boundary conditions, as mathematically described in Chapter 2,

C (y) ∂y
∂t

= A (y) ∂y
∂x

+ b (y) , 0 < x < 1, t > 0 . (4.73)

P (y (0, t)) = ξ , Q (y (1, t)) = ζ (4.74)

In this general formulation x and t are the independent variables; y (x, t) is the vector function
consisting of the state variables,

• y = (L, e, u, T,σyy) for the Newtonian model.

• y = (L, e, u, T,τxx,σxx,σyy) for the UCM, and PTT models.

• y = (L, e, u, T, cxx, cyy, czz) for the modified Giesekus model.
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4.3 Stability Recognition

To answer on stability/instability issues in film casting, we apply the analysis as described in Chap-
ter 2: first we determine a steady state solution ysteady(x) from the quasi-linear system of first
order differential equations with inhomogeneous boundary conditions, then we define stability as
the asymptotical stability of the steady state. We linearize the initial system about the steady solu-
tion by introducing y(x, t) = ysteady(x) + ỹ(x) expγt. The generalized eigenvalue problem that
results from the linearization yields a set of characteristic values {γ}, which we call the spectrum.
Once the spectrum is known, the stability/instability of the process is determined according to:

if ∀γ Re(γ) < 0 ⇒ the solution is stable ,

if ∃γ Re(γ) > 0 ⇒ the solution is unstable .

To calculate the spectrum {γ} we use a numerical scheme, which allows to calculate a full spec-
trum in a matter of seconds (see Section 2.3). Here we proceed with the results of our stability
analysis obtained by using different constitutive models. We discuss the numerical precision and
present the spectra that reveil stability/instability in the example of the Newtonian model. The
Newtonian and Maxwell models are used for validation purposes and discussed only in Section
4.3.4. In Sections 4.3.4, 4.3.5, 4.3.5 stability/instability maps are built by simulating the process
using the PTT and modified Giesekus constitutive equations. Finally, in Section 4.3.6 we compare
the prediction of draw resonance given by PTT and modified Giesekus models by simulating real
experimental conditions with the real draw resonance onset measured in the experiments.

4.3.1 Model Parameters

In order to make a comparison between the predicted stability maps given by two constitutive
models, PTT and modified Giesekus, we decide to build those maps for two types of materials, a
low- and a linear low density polyethylene. More specifically, we do not talk about the particular
materials but rather about their general type. To simulate the behavior of each material type, we
have to choose the values of the constitutive model parameters that are representative for the type.

• Choosing of Phan-Thien and Tanner model parameters.

For LDPE, it is suggested in [90] to take ε = 0.015. This suggestion is confirmed at Dow,
[65]; fitting the steady state Rheotens, they found ε to be in a range from 0.01 to 0.02. For
LLDPE, a similar numerical experiment resulted in the values of ε ranging from 0.09 to
0.1. In this thesis we rely on these results, as we did not carry out our parameter estimation
procedure for PTT model.

• Choosing the modified Giesekus model parameters.

The parameters for 3 different LLDPE materials are reported by Doufas in [61]. These three
materials have a value for α between 0.2 and 0.3, and the value for N0 between 20 and 35.
In this thesis we determined parameters for only one LLDPE material (see Section 3.5.2).
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According to our findings, the value of α varies, depending on the process temperature, from
0.15 to 0.3, which is in agreement with findings reported in [61]. The value of N0 that we
found is lower, between 4 and 9. We conclude about the values of model parameters for the
material of LDPE type by analyzing the results of three different LDPE materials. Two of
those LDPE’s are considered in this thesis (see Section 3.5.2 and Appendix C2) and one is
considered by Doufas, [61]. For the three LDPE materials, the value of α is found to be
0.05, 0.06 and 0.1, while the value of N0 varies more significantly, i.e. N0 = 3, 7, and 90.
Analyzing this information, we conclude that α-values for all considered LDPE’s are lower
than 0.1; and they are lower than the α-values for the 4 LLDPE materials considered. We
cannot conclude much about the behavior of N0 depending on the material, the variation
in the values of N0 is quite large, and thus, more investigation is needed. The sensitivity
analysis, presented in Section 3.5.1, shows that N0 does not have much influence on the
prediction of draw resonance, especially when it reaches values higher than 10. We do
realize that this sensitivity analysis is based on the simulations of the Rheotens experiment.
However, because essentially fiber spinning and film casting are very similar processes by
nature, there is reason to believe that the results in film casting depend on parameters in
similar manner as the results of fiber spinning.

Having said all above, we choose the parameters for LLDPE and LDPE in the simulations of the
mathematical model of film casting as given in Table 4.1.

Table 4.1: Materials and related model parameters that are used for simulations

Material α N0 ε

M1 (LDPE type) 0.01 100 0.01
M2 (LLDPE type) 0.2 35 0.1

4.3.2 Numerical Precision

In our numerical approach we have to choose the number of space grid points N. The choice of N
defines the precision of calculations and depends on the specifics of the problem at hand. As the
complexity of model increases, the numerical results converge if a higher number of grid points N
are taken in the calculations. For a Newtonian fluid, N = 100 yields accurate results, see Figure
4.4. For the upper convected Maxwell model and the PTT model the number of grid points should
be at least 200, and for the modified Giesekus model, the number of the grid points should be at
least 300.
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Figure 4.4: Newtonian fluid: numerical stability curves. Each pair of input parameters Aspect
ratio A and Draw ratio Dr at the left hand side of curves gives a stable film casting
process, oppositely it gives instability. The curves are obtained for the number of grid
points N = {10, 20, 50, 90, 100}. The curve tends to converge numerically at N = 100.

4.3.3 Spectrum

The process is set stable/unstable for each given set of parameters (A, Dr) by the results of analysis
of the spectrum {γ} of (4.73). In this section, in Figures 4.5 and 4.6 we present the inverse of that
spectrum, namely { 1

γ
}, which does not change the outcome of the stability analysis but gives a

better visualization, i.e., without zooming one can see a complete set of { 1
γ
} and the behavior of

the critical points.

We consider here the examples of the spectrum for the PTT model. The analysis does not
change for any other model at hand. Figure 4.5 shows the evolution of the spectrum for
(A, De) = (0.2, 0.01), and the number of grid points N = 200, when Dr is irregularly increased:
Dr = {20, 24, 40, 50, 60, 70}. The investigation is made for M1 (LDPE, ε = 0.01) under the
non-isothermal conditions but without additional cooling, i.e. va = 0 m/s.

The spectrum has a typical point that has the largest imaginary part, indicated by a circle. As Dr is
increasing, this point is ”moving” in the direction of the positive part of the real axis and back, thus
it is critical for stability/instability. Therefore, in this case (low resolution), the system is unstable
for 23 < Dr < 70. Thus, we have two critical values of the Draw ratio Dr: Dr = 24 is the value
when system changes from being stable to being unstable, and Dr = 70 is the value that indicates
when system is stable again.

Next, we change the PTT model parameter ε from 0.01 to 0.1, which means we now deal with
M2 (LLDPE type of material). Figure 4.6 shows the change of the spectrum for this type of resin.
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Parameters and conditions are kept the same: (A, De) = (0.2, 0.01), N = 200, va = 0 m/s. Values
of the Draw ratio chosen to visualize the spectrum are Dr = {20, 21, 40, 60}. Again, we observe
the presence in the spectra of a leading characteristic value that indicate stability/instability of the
system. As Dr increases, the real part of this value also increases. For Dr = 21 the real part of the
leading value becomes positive, while for Dr = 20 it is still negative. The critical value of Dr in
this case is taken to be D = 20.5. In contrast to M1 (LDPE) example, the leading characteristic
value is not ”moving” back to the negative real half-plane as we increase Dr. On the contrary, its
real part continues to grow. Moreover, new modes are coming to the positive real half-plane.
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γ
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4.3.4 Stability Solution: Isothermal

Newton and UCM: Comparison with Literature

In this section we show that the results on stability as we obtain them are consistent and in agree-
ment with the results presented in literature, [8; 70; 71]. While Silagy et al. [70; 71] consider a
film casting process and present stability curves for an isothermal Newtonian and isothermal upper
convected Maxwell (UCM) models, Fisher and Denn [8] describe a fiber spinning process. The
stability curve obtained by Silagy et al. for a UCM model with a value of Aspect ratio close to
zero coincides with the curve obtained by Fisher and Denn. The diagrams in Figure 4.7 show that
the stability curves obtained by our method and the ones given in the references mentioned above
are in complete agreement.

PTT

In this section we give the results of the isothermal PTT model. This model is obtained from the
model given in Section 4.2.6 if we drop the temperature equation and temperature dependence
of the variables and parameters. In Figure 4.8 we show the stability curves for the material M1
(LDPE type, ε = 0.01) obtained for a number of values of the Deborah number, namely De ∈
{0.008, 0.009, 0.01, 0.011, 0.012, 0.0125}. The stability region for each De is at the left hand
side of or otherwise above its corresponding curve. As De increases, the stability region is getting
larger. Moreover, for some De, playing with Dr and A we can even overcome the unstable zone.
As De tends to zero, the curves tend to behave like a Newtonian stability curve (De = 0).

Figure 4.9 shows the stability curves of M2 (LLDPE, ε = 0.1) for the same values of the Deborah
number as in the previous example. A stability region of each case is at the left-hand side of its
corresponding curve. We see that M2 (LLDPE) shows less stability than M1 (LDPE), i.e. we meet
the instability zone for smaller values of Dr than for M1 (LDPE) case. Also, in contrast to M1
(LDPE), the stability zone for M2 (LLDPE) becomes smaller as De increases. Besides, as Figure
4.9 shows, for M2 (LLDPE) we cannot overcome the unstable zone by increasing the operating
velocity or geometry of the process, i.e. Dr and A.
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4.3.5 Stability Solution: Non-isothermal

In this section we proceed with simulations of the behavior of M1 (LDPE) and M2 (LLDPE)
resins in film casting with PTT and modified Giesekus models. Input model parameters for the
resins considered are given in Table 4.1, Section 4.3.1. In the pictures below, we show general
stability plots built with respect to the three main dimensionless process parameters: Aspect Ratio
(A), Draw Ratio (Dr), and Deborah number (De). The curves presented indicate the critical points
where the process changes from stable to unstable or vice versa. In all pictures the blue curve is
built based on the results of the isothermal model. The black curve corresponds to a non-isothermal
process with no cooling air, i.e., air velocity va = 0 m/s; and the red curve corresponds to a non-
isothermal process with additional cooling, va = 15 m/s. Our objective is to evaluate impact of
non-isothermality on the model predictions.

PTT

In this section we present two types of figures: A vs Dr for a fixed De = 0.01 (Figures 4.10 and
4.12); Dr vs De for a fixed A = 0.6 (Figures 4.11 and 4.13). In Figure 4.10, the region under the
respective curve is instability region, i.e., it contains those values of the parameters, A and Dr,
that make the process unstable; the complementary region is therefore a stability region. In Figure
4.11 the instability region is above and on the left hand side of the presented curve. In Figures
4.12 and 4.13 stability and instability regions are on the left hand and right hand side of the curve,
respectively. This being said, we analyze the Figures 4.10 to 4.13 one by one.

The stability curves for M1 (LDPE) are depicted in Figures 4.10 and 4.11. The results show that
the influence of the temperature increases if we increase the air velocity, which means increased
cooling. Already natural cooling (va = 0 m/s) improves the stability for M1 (LDPE). If va = 15
m/s, the instability region becomes significantly smaller compared to the instability region for the
isothermal case.

From Figure 4.10, we conclude that for relatively small Draw ratios Dr, 20 < Dr < 30, cooling
shifts the stability curve a bit to the left, i.e., the instability region starts at lower Dr. We do not
consider this change as being significant, especially when compared to the shift of the curve for the
higher Dr-values. Higher Dr-values are more important for the process because the higher Dr, the
higher the operation speed we can access. And for those high operation speed values, a drop of the
temperature diminishes the instability region. These results are confirmed by Figure 4.11, where
the situation is considered for wider range of Deborah numbers. For very small Deborah numbers,
De < 0.0072, the instability region is wide, the critical values of Dr are low, and cooling does
not seem to help. With increase of De, the temperature influence becomes significant. According
to the prediction of our temperature-dependent model with va = 15 m/s: for De changing from
0.0072 to 0.012, the stable region can be reached for low and then again for high values of Dr; for
De > 0.012, the process is stable for all Dr.

The results for M2 (LLDPE) are presented in Figures 4.12 and 4.13. In contrast to M1 (LDPE),
cooling does not improve stability. It does just the opposite, it makes the instability region wider,
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as can be seen in Figure 4.12. Results presented in Figure 4.13 additionally indicate two ranges
Deborah numbers: De < 0.02 with a visible negative effect of cooling; De > 0.02 with no effect
of cooling.
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Figure 4.10: Temperature influence on the stability curve resulted from PTT model simulations for
the material M1 (LDPE), ε = 0.01, De = 0.01.
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104 4 FILM CASTING

Modified Giesekus

In this section we present the results of simulations of non-isothermal film casting with the mod-
ified Giesekus model. The materials and conditions are the same as in the previous section. For
each of the materials, M1 (LDPE) and M2 (LLDPE), we build two diagrams picturing their sta-
bility behavior, i.e., one of Aspect ratio versus Draw ratio, A vs Dr, for a fixed Deborah number
De = 0.01 (Figures4.14 and 4.16), and one of Draw ratio versus Deborah number, Dr vs De, for
a fixed A = 0.6 (Figures 4.15 and 4.17). Each diagram contains three critical stability curves ob-
tained under isothermal conditions, non-isothermal conditions with natural cooling (va = 0 m/s),
and non-isothermal conditions with additional cooling (va = 15 m/s).

We first consider the results for the material M1 (LDPE). As in the case of the PTT model, the
resulting critical curves plotted in Figure 4.14 and 4.15 clearly indicate a temperature influence on
the stability outcome. Next, by comparing PTT and Giesekus results for M1 (LDPE), we notice
similarities and differences. The ”A vs Dr” diagram, in Figure 4.14, is comparable to the one
obtained from the PTT model, see Figure 4.10. The shape of the curves is similar for both models.
The stability curves of both models show that for some fixed A, increased drawing leads to change
of the stable zone into an unstable and than to a stable one again. In case of the modified Giesekus
simulations of M1 (LDPE), the unstable zone is narrower than the one obtained from PTT. Also
cooling shifts the unstable zone to the left and makes it even more narrow. In contrast to PTT,
the top of the stability curve does not become lower. To our opinion, the results of the modified
Giesekus model are more consistent than the ones of PTT. For instance, all three stability curves
show more or less the same values of the critical Draw ratio for A close to zero. That seems
logical in relation to film casting, as A ∼ 0 means a small drawing distance and thus little influence
of cooling. This is not reflected by the results of the PTT model.

In Figure 4.15, we show the ”Dr vs De” diagram build for M1 (LDPE). It is quite different from
the one based on the PTT model results, see Figure 4.11. The unstable zone predicted by the
modified Giesekus model is much smaller than the one predicted by PTT. According to the PTT
model results, for De ≤ 0.007 the unstable zone starts at about Dr = 20 and cannot be overcome.
The results of the modified Giesekus model indicate that much higher values of Dr than 20 can be
reached.

We look now at the stability maps for material M2 (LLDPE), see Figures 4.16 and 4.17. Ana-
lyzing both plots, we conclude that cooling has a big impact on the resulting prediction of the
critical Draw ratio. Generally, one assumes that additional cooling systematically postpones draw
resonance. Yet, our numerical results show the opposite for a certain range of Deborah numbers
De. Indeed, the plot of ”Dr vs De”, given in Figure 4.17, shows the existence of three different
regimes depending on the value of the Deborah number. In the first regime, De < 0.035, cool-
ing has a negative impact on the stability; in the second regime, 0.035 < De < 0.07, where the
cooling has a positive effect and stability zone becomes wider; in the third regime, De > 0.07,
cooling makes no difference. The difference between the critical curves obtained under isothermal
and non-isothermal condition for De < 0.035 may seem insignificant at first. But all these three
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curves are steeply descending. Thus, the small shift of the curve to the left or to the right yields
big difference in the results.
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Figure 4.14: LDPE (Giesekus with a = 0.01, N0 = 100 De = 0.01): Temperature influence on the
stability curve.
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Figure 4.16: LLDPE (Giesekus with a = 0.2, N0 = 32 De = 0.01): Temperature influence on the
stability curve.
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4.3.6 Comparison with the Experimental Data

Material

The material used for the film casting experiments is a Dow polyolefin plastomer AFFINITYTM

EG 8200. The various material properties of this resin are reported in [61]. We briefly summarize
the information about the material properties of this resin in Table 4.2. The melt index (MI) is
determined according to the ASTM D1238 method (190 C, 2.16 kg) and the solid density according
to the ASTM D792 method. The molecular mass distribution data are obtained using a Waters
150C instrument via both conventional and triple detector gel permeation chromatography (GPC).
The Mn data are accurate within 8%, the Mw data within 4%, and the Mz data within 10%.

Table 4.2: Material properties of AFFINITYTM EG8200.

Resin Molecular Melt index Mw Mn Mz Mw/Mn Solid
structure (g/10 min) (g/mol) (g/mol) (g/mol) density

AFFINITYTM Substantially 5 70860 34030 111100 2.08 0.87
EG 8200 linear,

homogeneously
brunched
ethylene
polymer

Experimental Conditions

The film casting experiments are run on a Black Clawson 8.9-cm film coater fitted with a 30 L/D
extruder with a 150 Hp drive. The die is a 76.2-cm Cloeren with a 0.635 mm die gap and a Cloeren
3-layer feedblock. The melt temperature is controlled in the range from 226 to 245oC. The air
gaps from 14.5 to 38 cm are applied. Cooling is achieved by using quenched air with the velocity
of 15m/s. The extrusion output is taken such that the initial velocity is 0.1 m/s. At a start of the
measurements the take-up speed is such that the film is stable. The drawdown is measured as
the speed where the polymer rips off the die. In order to determine the onset of draw resonance,
the line speed is increased with increments of 6 m/min from the starting speed until the width of
the film begins to oscillate with the amplitude larger than ±1.3 cm. The line speed at which the
oscillations occur is refined by lowering the line speed until the film stabilizes again and increasing
line speed again with smaller increments.

Input Conditions

To simulate experimental data with our model, values for three parameters are needed, namely,
value for one characteristic time λ, and the values for the modified Giesekus coefficients: the
molecular mobility parameter α and finite chain extensibility parameter N0. The complete method



108 4 FILM CASTING

to obtain the modified Giesekus model parameters (as well as parameters of any other constitutive
model) is discussed in Chapter 3. However, the parameters of the modified Giesekus model for
AFFINITY EG8200 have been found and justified by Doufas [61]. Therefore, for our simulations
we take the values given in [61]: α = 0.195, and N0 = 35. To find an appropriate value for the
relaxation time, we recalculated the discrete relaxation spectrum from the complex shear modulus,
extrapolated at the extrusion temperature by the time-temperature superposition principle. For
that we used the NLREG routine based on the method of Honerkamp and Weese, [92]. Then, an
average relaxation time is deduced from the spectrum using the following equation:

λ0 = ∑
n
i=1 Giλ

2
i

∑n
i=1 Giλi

. (4.75)

The resulting input conditions used in numerical simulations as well as both values for the critical
Draw Ratio, experimental and predicted, are collected in Table 4.3.

Table 4.3: Experimentally measured and numerically predicted critical Draw Ratios. Input param-
eters for simulations deduced from experimental conditions.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7
Extrusion Temperature, oC 245 231 231 226 245 229 231
Aspect Ratio (A) 0.47 0.475 0.58 0.75 0.75 0.92 1.25
Relaxation time (λ0) 0.0185 0.0230 0.0247 0.0251 0.0182 0.0224 0.0228
Deborah Number (De) 0.013 0.016 0.014 0.011 0.008 0.008 0.006
Critical DR (experiments) 21.6 17.9 19.7 25.8 33.6 44.7 58.6
Critical DR (Giesekus with T) 22 17.5 22 30.5 39 44.5 61
Critical DR (Giesekus iso) 28.5 23.1 28.5 41.5 55 60.5 93.5
Critical DR (PTT with T) 21.2 21.5 22.7 22.2 21.5 22.5 23.5
Critical DR (PTT iso) 23.2 22.5 23.5 24.5 25.5 26.3 29

Results

The visualization of the results is given in Figure 4.18, where the critical Draw ratio predicted
by the modified Giesekus and the PTT models is plotted versus experimentally measured critical
Draw ratios. We conclude that the modified Giesekus model proves to be suitable for modeling
the flow behavior of the resin studied here. The experiments confirm the strength of our model,
since we did not tune model parameters in our simulations, but we took values from an independent
source. Another important conclusion is that the modified Giesekus model with the non-isothermal
condition gives much better prediction than with the isothermal one. The isothermal modified
Gisekus model overestimates reality by 50 %. Thus, cooling effects cannot be neglected in the
stability studies. The PTT model is not capable of grasping the experimental results neither with
the isothermal, nor with non-isothermal condition; the simulation results of the PTT model are far
from reality. In Figure 4.19, we show the exact experimentally detected draw resonance data (Table
4.3) on the ”Dr vs De” stability maps. The left plot describes the modified Giesekus model results,
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and the right plot describes the PTT model results. The values of critical Draw ratio (Dr) that
were measured experimentally are depicted by dots. The experimental values were obtained with
different values of the Aspect ratio (A). The stability maps are built for the single value of Aspect
ratio, A = 0.6. Thus, we should be careful with a direct quantitative comparison between the
simulated results given in the maps and the experiments.However, even a qualitative comparison
shows that the modified Giesekus model is far better capable of predicting the sharp increase of
the critical Draw ratio as the Deborah number decreases than the PTT model. Such effect is not
captured by the neither by the PTT model, nor by the upper convected Maxwell model, see Figure
4.7.
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Figure 4.18: Prediction given by the modified Gisekus model (left) and PTT model (right) versus
experimental data: the x-coordinate of every data point in a scatter indicates the
measured value of the critical Dr (draw ratio) and the y-coordinate indicates the
predicted value of the critical Dr for the same experiment. The filled dark circles
denote results of the correspondent isothermal model and the filled dark diamonds
are the ones of temperature dependent model. The regression lines indicate quality of
the prediction. The closer the line is to y = x, the better the prediction.
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4.4 Conclusions

We validated our method against literature results for the isothermal Newtonian and isothermal
UCM constitutive models and observed perfect agreement. Results of our numerical simulations
show that the temperature influence on the stability is significant and cannot be excluded from
analysis. Moreover, the validation against available experimental data for casting LLDPE resin
shows that the non-isothermal modified Giesekus model gives good prediction, both qualitative
and quantitative, without adjusting model parameters.

Appendix C

C1 Temperature Analysis

The temperature evolution is given by the convection equation

∂T
∂t

+ u
∂T
∂x

= − 2ht

ρCpe
(T − Ta) , (C-1)

where T is the absolute temperature of a polymer flow ([T] = [K]); Ta is the temperature of the
surrounding air around a polymer flow ([Ta] = [K]). In (C-1) ρ is the density of the polymer
([ρ] = [ kg

m3 ]), which is taken independent of temperature; Cp is the heat capacity of the polymer

([Cp] = [ J
kgK ]); ht is the heat transfer coefficient that consists of two terms:

ht = h f + hnat . (C-2)

The term h f is due to forced convection and hnat is due to natural convection of heat ([ht] = [ kg
s3K ]).

Heat transfer due to radiation and heat dissipation are assumed negligible. For h f and hnat, we use
the following relations

h f =
0.66ka

x
(Cpaηa

ka
)

1/3

(xv
νa

)
1/2

, (C-3)

hnat = Bka

x
(gx3Cpaρa(T − Ta)

νakaTa
)

p

. (C-4)

The heat capacity Cp depends linearly on the temperature of the polymer

Cp = 969.9 + 3.7T . (C-5)

In the expressions for h f and hnat:

• B = 0.56 and p = 0.25.

• ka = 1.5207 ⋅ 10−11T3
a − 4.8574 ⋅ 10−8T2

a + 1.0184 ⋅ 10−4Ta − 3.9333 ⋅ 10−4, [ka] = [ W
mK ] =

[ kgm
s3K ].
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• Cpa = −5 ⋅ 10−7T3
a + 10−3T2

a − 0.4139Ta + 1052, [Cpa] = [ J
kgK ].

• ρa = 360.77819
Ta

, [ρa] = [ kg
m3 ].

• νa = −1.1555 ⋅ 10−14T3
a + 9.5728 ⋅ 10−11T2

a + 3.7604 ⋅ 10−8Ta − 3.4484 ⋅ 10−6,
[νa] = [m2

s ].

• ηa = νaρa, [ηa] = [ kg
ms].

• v = va + u, with va being the local air velocity. As a first approximation we take va = 0, and,
thus, v is equal to u, the local velocity of the flow.

By substituting (C-3) and (C-4) into (C-1) and dividing by u, we get

1
u

∂T
∂t

+ ∂T
∂x

= −1.32ka

ρuex
(Cpaηa

ka
)

1/3

(xv
νa

)
1/2 T − Ta

Cp(T)

−2Bka

ρuex
(gx3Cpaρa

νakaTa
)

p (T − Ta)1+p

Cp(T) . (C-6)

We scale the variables as follows

T̄ = T
T0

, x̄ = x
X

, ū = u
u0

, ē = e
e0

. (C-7)

For Cp(T) this leads to a linear relation

Cp = a + bT̄ , (C-8)

with a = 969.9 and b = 3.7T0. After scaling and omitting bars, temperature equation (??) takes the
form

1
u

∂T
∂t

+ ∂T
∂x

= − V1

a + bT
(T − Ta

T0
)− V2

a + bT
(T − Ta

T0
)1+p , (C-9)

where

V1(Ta, u, e; x) = 1.32ka

ρu0e0uex
(Cpaηa

ka
)

1/3

(Xx(u0u + va)
νa

)
1/2

(C-10)

V2(Ta, u, e; x) = 2Bka

ρu0e0uex
(gX3x3Cpaρa

νakaTr
)

p

. (C-11)

C1.1 Coefficients Analysis

The dimensionless equation (C-9) represents the temperature evolution in the film casting process.
Before using it further in our model, however, we provide some analysis, to prove that we can
neglect the time derivative in this equation.

Let us look first at the behavior of the dimensionless coefficients V1 and V2 in equation (C-9) under
the condition that the air velocity is equal to zero (va = 0).
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Figure C.1: Behavior of the coefficient functions V1 and V2. Air velocity is taken to be zero.

In Figure C.1, the left hand side represents V1, and right hand side represents V2. The values of V1

and V2 are at the vertical axis, and the horizontal axis represents x. Almost on the whole interval
(0, 1) both functions are of the order 10, except for a small intervals (0, 0.04) for V1 and (0, 0.1)
for V2, where these coefficients become even of the order 102.
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Figure C.2: Behavior of the coefficient functions V1 and V2. Air velocity is taken to be 15m/s.

Correspondingly, Figure C.2 shows the behavior of V1 and V2 for the case if air velocity is taken
to be 15m/s. Now, the behavior of V2 remains the same because V2 is derived from the natural
convection term that is not influenced by va. In contrast, the forced convection related coefficient
V1 changes significantly and becomes of the order 102 for almost all x ∈ (0, 1) (the minimal value
is equal 2 ⋅ 102), except for a small interval (0, 0.05), where V1 is even of the order 103.

Figure C.4 presents the coefficient 1
u of the time-derivative of the temperature. The values of this

function were calculated for the same input Dr, as for which V1 and V2 were calculated. Figure
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C.4 clearly shows that 1
u drops very rapidly; it is nearly 1 on the small interval (0, 0.1), then, on

the interval (0.1, 0, 6) is of the order 10−1, and on (0.6, 1) it is of the order 10−2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1/u vs x

Figure C.3: Behavior of the coefficient function 1
u .

C1.2 Conclusion

Coming back now to the temperature equation (C-9), we notice that

• coefficients V1 and V2 are of order 10 or 100, depending on the specified input conditions.

• coefficient of the space-derivative of temperature is equal to 1.

• coefficient of the time-derivative of temperature is of order 10−1 − 10−2.

On the base of this analysis we conclude that time-derivative of the temperature ∂T
∂t in Eq.(C-9)

vanishes very quickly with respect to the other temperature terms. Thus, we decided to neglect it.
That means that final temperature equation, we are going to consider further, does not contain time
derivative of temperature

∂T
∂x

= −V1
T − Tr

a + bT
−V2

(T − Tr)1+p

a + bT
. (C-12)

Relation for the coefficients V1 and V2 are given by (C-10) and (C-11).
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C2 An example of the modified Giesekus constitutive model
parameters for LDPE material
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Figure C.4: The steady state Rheotens curve of LDPE material fitted with the numerical data ob-
tained by simulating the modified Giesekus model. The fitting parameters are found
to be α = 0.05 and N0 = 90.



CHAPTER FIVE

Conclusions

Draw resonance instability, which occurs in industrial polymer elongation processes, influences
the quality of the end-product and narrows the process operating conditions. This instability is
highly unwanted; therefore, knowledge gained from studies that can help to understand, predict,
and avoid (or reduce) draw resonance is of great importance. A lot was done in this field already,
which is reflected in the bibliography mentioned at the end of this thesis. Yet, still there are many
open issues remaining. In this thesis, we try to cover some of them.

First of all, we consider a generic mathematical description applicable for polymer elongation pro-
cess. This description results in a hyperbolic system of quasi-linear differential equations with
two-point boundary conditions. We do not concentrate on a proof of the solvability of the steady
state system, a boundary value problems for ordinary differential equations. Although such prob-
lems are not covered by general theory on existence and uniqueness, there exists a vast amount
of mathematical proofs and numerical approaches for particular cases. Instead, we put efforts on
analyzing the linearized system. We prove, without involving complex arguments, the invertibil-
ity of the differential operator that drives the linear system. Moreover, we prove that the inverse
operator is compact, which in turn yields that the spectrum of the linearized hyperbolic system
is discrete. In terms of the spectrum a criterium of stability/instability is derived. We also point
at some difficulties that may arise when the spectrum is empty, so no relevant information on the
stability can be obtained. The main conclusion from the task that we put on ourself for this part is
that the approach adopted to treat draw resonance instabilities has a sound mathematical basis.

The second issue, addressed in this thesis, is a design of an implementation that yields fast and
robust calculations of the spectrum and corresponding modes. Thus far, to our knowledge, im-
plementations being both fast and robust are not achieved, nor presented in literature. We base
our numerical routine on a modified Galerkin approach, using local basis functions and a novel
way to incorporate the homogeneous boundary conditions. Validation on a couple of benchmark
problems shows excellent performance of the proposed routine. We also conclude that the routine
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developed yields a spectrum without spurious modes, in contrast to other methods used to deter-
mine spectra of hyperbolic systems. Furthermore, the calculation time of the complete spectrum
with eigenmodes on a standard PC with one processor and 256 Mb of operational memory takes
only a few seconds.

The next issue that we address is recognized in simulations of general polymer processes, not
necessarily elongational. Namely, the constitutive and rheological parameters describing polymer
characteristics are not known and hard to estimate. In this thesis we propose a measurement design
to quantitatively estimate parameters in a constitutive model. We use the well-known Rheotens ex-
periment that we operate at fixed velocities of the drawing wheels; the velocities are specified such
that onset of draw resonance is observed. The recorded data of force-versus-time are analyzed
by means of the Discrete Fourier Transformation resulting into peak process frequencies. From
Fourier analysis of the experiments conducted for various resins, we conclude that: there is al-
ways a main peak frequency of force oscillations at draw resonance; this frequency is material
dependent; thus, the main frequency value can be used for characterization.

In order to use the experimentally observed frequencies for parameter estimation, we need a model
that describes the Rheotens experiment as we operate it. From this model, for given parameters, we
determine the spectrum, and from the spectrum we determine the frequencies. From a sensitivity
analysis we conclude that there are straightforward relations between the calculated frequencies
and model parameters. Matching data from the simulations to data from the experiments, we
determine the parameters of the constitutive model considered. We conclude that the procedure
developed to find parameters is very effective and can be used on an operational level. We also
conclude that draw resonance, induced in a controlled way, can be used in our favor.

Having a procedure to determine parameters, we can make a final step and apply these parame-
ters in simulations of polymer elongation processes. In this thesis, as an example of application,
we consider the process of casting of polymer films. The aim is to determine the process condi-
tions that lead to draw resonance. In particular, we are interested in the effect of cooling on draw
resonance and whether it can be reflected by the simulations. We present a number of stability
maps obtained with and without temperature taken into account. Our conclusion is that the tem-
perature essentially influences the predicted stability. Non-isothermality of the process can and
must be taken into account in the modeling. In particular, the simulation tests with the modified
Giesekus constitutive relations for linear low density polyethylene show a perfect match between
the experimentally measured and the numerically predicted draw resonance.
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