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1. Introduction

In this thesis we investigate the arithmetic and algorithmic impact of elliptic and
hyperelliptic curves of genus 2 and 3 to cryptography and to integer factorisation.
When elliptic and hyperelliptic curves are used for cryptographic applications,
those are almost always based on the hardness of the discrete-logarithm problem
(DLP) in the group of points on an elliptic curve or in the Picard group of a
hyperelliptic curve of genus 2 or 3. In general, given a group G = 〈P 〉 and some
Q ∈ G, the discrete-logarithm problem is to find the integer k such that Q = [k]P ,
where [k]P stands for the k-fold addition of P to itself.

Cryptographers are looking for groups where this problem is secure against
currently known attacks. In the present work we will show that the discrete-
logarithm problem on divisor class groups of hyperelliptic curves of genus 2 and 3
over binary fields is so hard to solve, that it provides enough security to be used
for real-world applications.

The most important operation in curve-based cryptosystems is scalar multi-
plication [k]P , where P is a point on an elliptic curve or a divisor class of a
hyperelliptic curve and k an integer. To compute a scalar multiple one usually
uses algorithms that involve the computation of the double of a group element
or the addition of two different group elements. To increase the performance of
cryptosystems based on this, much effort was put into speeding up the doubling
operation and the addition operation. In the present work we suggest using di-
visor class halving instead of divisor class doubling. This provides a noticeable
speedup in certain settings.

In the next chapter we thoroughly introduce the divisor class group of hyper-
elliptic curves and explain the group operation. Further background is provided
in Appendix A where we explain currently known attacks.

For hyperelliptic curves of genus 2 over finite fields of characteristic 2 we pro-
vide efficient explicit halving formulas that can (for certain curves) outperform
the doubling formulas and therefore replace the usually used double-and-add al-
gorithms by halve-and-add algorithms. In Chapter 3 we investigate hyperelliptic
curves of genus 2 over binary fields in detail. We classify these curves depending
on their 2-rank and give for each case efficient doubling and halving formulas. The
formulas are given in affine coordinates and require the computation of inverse
elements in the base field. In some situations (e.g. in hardware implementations)
this is not desired since inversion is always the most costly field operation, and
not only in terms of time but also in terms of chip area. To provide efficient
arithmetic for those implementations we give efficient doubling formulas in new

1



1. Introduction

and recent coordinates which are completely inversion-free. This can be achieved
at the cost of a higher number of multiplications but the overall cost is lower
compared to implementations with inversions.

In Chapter 4 we have extended the halving results of the genus-2 curves to
genus 3. We derive a similar classification according to the 2-rank of the hyperel-
liptic curves and investigate efficient halving formulas for each case. It turns out
that for curves of Type III (i.e. h(x) = x in the curve equation) the computation
of one halving is noticeably faster than of one doubling. In the worst case one
halving takes 1 field inversion, 25 field multiplications, 4 squarings and 7 square-
root extractions whereas the appropriate doubling takes 1 field inversion, 44 field
multiplications and 6 squarings [GKP04]. We also provide a full case study where
we give halving formulas for all cases, including all special ones which occur with
lower probability.

The following two chapters are dedicated to Edwards and twisted Edwards
curves. We introduce these curves and investigate important properties. A very
interesting result is that elliptic curves in Montgomery form are birationally equiv-
alent to twisted Edwards curves, i.e. these curves are isomorphic to each other
except for a finite number a points. With this equivalence we can bring the speed
of the Edwards addition law to all Montgomery-form elliptic curves.

In Chapter 5 we also provide efficient formulas to perform the group law on
Edwards curves. We look at the affine case and give also formulas in projective
and inverted Edwards coordinates which are entirely inversion-free.

In the last chapter, we focus on Lenstra’s elliptic curve method (ECM) for
integer factorisation and on Edwards curves over the rational numbers. We show
how the performance of integer factorisation can be improved by using Edwards
curves. We give several methods to construct Edwards curves that are suitable
for ECM. We find parametrisations to generate infinitely many of such suitable
curves. First experiments have already shown a noticeable speedup compared to
ECM using elliptic curves in Weierstraß form.

2



2. Hyperelliptic Curves

In this chapter we provide important notions for the understanding of cryptosys-
tems based on the discrete-logarithm problem on hyperelliptic curves over finite
fields. One of the most important terms of this thesis is “hyperelliptic curve”. We
first give an abstract definition of this term and in the following lemma a more
concrete characterisation of those hyperelliptic curves that we will work with. The
reader will also be familiarised with divisors and principal divisors, Picard group,
Mumford representation, function fields, Cantor’s algorithm and the p-rank of a
hyperelliptic curve.

For the understanding of this chapter, it is useful (but not necessary) if the
reader is familiar with terms like projective variety, (smooth) curve and genus.
Comprehensive sources for this are e.g. the books of Fulton [Ful69] and Hartshorne
[Har97].

2.1. Curve equation

Definition 2.1 (Hyperelliptic curve). A hyperelliptic curve C over a field k is a
smooth projective curve over k with a map π : C → P1 which is 2-to-1 except for
finitely many points where it is 1-to-1.

The map π is called projection and it induces a map ι : C → C that permutes
the preimages of π. The map ι is called hyperelliptic involution of C. As a
shorthand for a curve defined over k one also writes C/k.

Lemma 2.2. Let k be a field and k an algebraic closure of k. Let C/k be a
hyperelliptic curve of genus g with a point P defined over k which is invariant
under the involution ι. Then we can give an affine model of C by an equation of
the form

C : y2 + h(x)y = f(x), (2.1)

where f ∈ k[x] is a monic polynomial of degree 2g+1, h ∈ k[x] is a polynomial of
degree at most g and no point (x, y) on the curve over k simultaneously satisfies
both partial derivatives 2y + h(x) = 0 and h(x)′y = f ′(x).

Proof. The proof follows by using the theorem of Riemann-Roch (see Theorem
I.5.15 in [Sti93]) and that the dimension of the L-space of 2P is `(2P ) = 2.

3



2. Hyperelliptic Curves

This form of the curve is called Weierstraß form. In this thesis we consider
only curves that satisfy the conditions of Lemma 2.2. Curves of the form (2.1)
have exactly one point at infinity, and since they share a lot of properties with
imaginary quadratic number fields, they are also called imaginary hyperelliptic
curves. Aside the imaginary hyperelliptic curves there are also real hyperelliptic
curves (see [SSW96] and [JMS04]) which have two points at infinity over k, but
those curves are not of interest in this work. From now on we will use the term
“hyperelliptic curve” and mean an “imaginary hyperelliptic curve”.

Elliptic curves are covered by Definition 2.1 and can be characterised as curves
of genus 1 by Lemma 2.2. Although this is not completely standard, we stick to
this since most of the algebraic properties that we are interested in are the same.

The last condition of the lemma ensures that the curve is non-singular, i.e. there
are no singular points on C. A singular point is a point on the curve such that
both partial derivatives vanish simultaneously. Note that if the characteristic of
k is equal to 2, then the polynomial h in (2.1) must be different from 0, otherwise
the curve is singular.

From a geometric point of view, a hyperelliptic curve is a smooth (i.e. non-
singular), absolutely irreducible, projective variety of dimension 1 with an invo-
lution, but considering the affine model of the curve is satisfactory for this work.
For more details on varieties and curves we refer to Chapter 4 in [ACD+05] and
to the books of Shafarevich [Sha94] and Hartshorne [Har97]. For algebraic curves
see also [Ful69].

For a curve C given in the form of (2.1) and an intermediate field L of k/k, we
define C(L) = {(x, y) |x, y ∈ L and y2 +h(x)y = f(x)}∪{P∞}. This is called the
set of L-rational points. As a shorthand, for L = k we write C instead of C(k).

2.1.1. Examples

Now we give two examples of curves (over the real numbers) having a singular
point (also singularity) at the origin. The first type of singularity is called node
and the second one cusp. From the shape one can easily see that the curve has no
uniquely defined tangent lines at the point (0, 0) and cannot be a smooth curve.

Example 2.3. Consider the curve given by the equation y2 + (x+ 1)y = x5 + 1
over F5. This curve is singular because the point (−1, 0) is on the curve and
satisfies both partial derivatives and is therefore a singularity. Thus, the equation
does not describe a hyperelliptic curve.

Example 2.4. This is an example of a (non-singular) hyperelliptic curve of genus
2 over the real numbers. The curve is given by the equation

C : y2 = x5 − x4 − 11x3 + 9x2 + 18x over R
= x(x− 2)(x− 3)(x+ 1)(x+ 3).

4



2.2. The function field of a hyperelliptic curve

Figure 2.1.: Typical shapes of singular curves with a node (left) and a cusp (right)

The polynomial f on the right-hand side has degree 5 which indicates that the
genus is 2. The polynomial h is (by intention) chosen to be 0. We now explain
the typical shape of the graph of this hyperelliptic curve.

We first look at points with y-coordinate equal to 0. These are P1 = (−3, 0),
P2 = (−1, 0), P3 = (0, 0), P4 = (2, 0) and P5 = (3, 0). It is clear that these points
satisfy the curve equation because the x-values of the points are exactly the zeros
of f . What about points with an x-coordinate between -3 and -1? If we plug in
for instance x = −2 into the curve equation, we obtain a product of four negative
and one positive values the product of which is positive. Since we consider points
over the real numbers, we can only extract square roots of positive values. Thus,
we get solutions for y only if the right-hand side of the equation is positive or
equal to 0, which is the case for points with x-coordinate between -3 and -1, 0
and 2 and greater than 3. So in these ranges, we always have two points with
the same x-coordinate, which explains the shape of the curve which is shown in
Figure 2.2.

2.2. The function field of a hyperelliptic curve

Now we discuss a very important structure that is related to a hyperelliptic curve,
the function field. Via this concept the geometric structure “curve” is associated
to the algebraic structure “function field”. Interesting properties of a curve can
be investigated by looking at its function field. We can associate a (principal)
divisor to a function in the function field and thus connect the geometric and
the algebraic view. For more details on function fields we refer to the book of
Stichtenoth [Sti93]. Now we introduce the coordinate ring of a curve and define
its quotient field to be the function field of the curve.

5



2. Hyperelliptic Curves

Figure 2.2.: Graph of the hyperelliptic curve C, plotted over the real numbers,
with the equation C : y2 = x5 − x4 − 11x3 + 9x2 + 18x

Definition 2.5 (Coordinate ring, function field). Let the hyperelliptic curve C
of genus g be given by the equation y2 + h(x)y = f(x) over the field k. The
coordinate ring of C over k is the quotient ring

k[C] = k[x, y]/(y2 + h(x)y − f(x)).

Similarly, the coordinate ring of C over k is

k[C] = k[x, y]/(y2 + h(x)y − f(x)).

An element of k[C] is called polynomial function on C. The function field of C,
denoted by k(C), is the field of fractions of the coordinate ring of C. The elements
of k(C) are called rational functions on C.

For a hyperelliptic curve C over k the function field is

k(C) = Quot(k[x, y]/(y2 + h(x)y − f(x)). (2.2)

This field is equal to the polynomial ring in the variable y over the rational
function field k(x) (see Example I.1.3 in [Sti93]) modulo the ideal generated by
the curve equation, i.e.

k(x)[y]/(y2 + h(x)y − f(x)). (2.3)

Recall that a hyperelliptic curve is always smooth and absolutely irreducible, i.e.
its curve equation y2 + h(x)y− f(x) is an irreducible polynomial. Hence the ring
in (2.3) is a field.

6



2.3. Algebraic perspective on the function field

2.3. Algebraic perspective on the function field

In the previous section we have seen that the function field of a hyperelliptic curve
is indeed a function field in the sense of Chapter I in [Sti93]. We now explain
valuation rings to be able to define the order of a rational function in the function
field evaluated at a point on a hyperelliptic curve afterwards.

We first introduce the general basic concepts and identify these in the context
of hyperelliptic curves afterwards.

Definition 2.6 (Valuation ring). A valuation ring of a field F/k is a ring O with
the following properties:

(1) k $ O $ F .

(2) For all r ∈ F we have r ∈ O or r−1 ∈ O.

Now we give some important properties of valuation rings. For the proof of the
following proposition see [Sti93, Proposition I.1.5 and Theorem I.1.6].

Proposition 2.7 (Properties of valuation rings). Let O be a valuation ring of a
field F/k. Then

(1) O is a local ring, i.e. it has a unique maximal ideal P = O \ O∗, where O∗
is the group of units of O.

(2) For 0 6= r ∈ F we have: r ∈ P ⇐⇒ r−1 6∈ O.

(3) The unique maximal ideal P of O is principal.

(4) The ring O is a principal ideal domain.

Definition 2.8 (Discrete valuation). A discrete valuation of a field F/k is a
function v : F → Z ∪ {∞} with the following properties:

(1) v(x) =∞ if and only if x = 0.

(2) v(xy) = v(x) + v(y) for any x, y ∈ F.

(3) v(x+ y) ≥ min{v(x), v(y)} for any x, y ∈ F.

(4) There exists an element z ∈ F with v(z) = 1.

(5) v(a) = 0 for any 0 6= a ∈ k.

7



2. Hyperelliptic Curves

2.3.1. Function fields of hyperelliptic curves

Definition 2.9 (Place). A place of the function field F/k is a maximal ideal of
some valuation ring O of F/k. The set of all places of F/k is denoted by PF .

Now we go back to hyperelliptic curves and their function fields. If C is a curve
over some field k and k(C) its function field, then the set

OP = {f ∈ k(C) | f = g/h, where g, h ∈ k[C] and h(P ) 6= 0}

is a local ring in k(C) with the unique maximal ideal

MP = {f ∈ OP | f(P ) = 0}.

If P ∈ C is a non-singular point, then OP is a discrete valuation ring (see
[ACD+05, Section 4.4.1]) and thus MP is a place of the function field k(C). The
appropriate discrete valuation at P on OP is given by

vP : OP → Z ∪ {∞},
vP (f) = max{i ∈ Z | f ∈M i

P}.

We can extend the valuation vP to the whole function field by defining the valu-
ation as

vP : k(C)→ Z ∪ {∞},
vP (g/h) = vP (g)− vP (h) for g, h ∈ OP .

With this we are able to define the order of a function evaluated at a point on
a hyperelliptic curve. This allows us to define the divisor of a rational function
which is essential for the definition of the Picard group of a hyperelliptic curve.
See the following two sections for the definition of divisors and principal divisors.

Definition 2.10 (Order of a function at a point). Let C be a curve over a field k,
and let be k(C) be its function field. For a point P ∈ C and a rational function
f ∈ k(C)∗ we define the order of f at P as

ordP (f) = vP (f).

2.4. Divisors and rational functions

We know that the points on an elliptic curve form a group. This is not true
for hyperelliptic curves of genus > 1. In the following we will introduce another
concept to impose a group structure for hyperelliptic curves, too. Instead of points
we use formal sums of points, called divisors, to form a group.

8



2.4. Divisors and rational functions

In this section we will introduce divisors, especially degree-0 divisors and prin-
cipal divisors, which we need to define the divisor class group of a hyperelliptic
curve in the next section. This group is of special interest for cryptographers
because (for certain curves) the discrete-logarithm problem in it is assumed to be
hard (cf. Appendix A).

From now on we assume C to be a hyperelliptic curve of genus g over k. As a
shorthand we write C for C(k).

Definition 2.11 (Divisor, divisor group, degree of a divisor). The free abelian
group generated by the points on C is called divisor group of C, denoted by
Div(C). The elements of this group are called divisors. A divisor D ∈ Div(C) is
a formal sum of points on C of the form

D =
∑
P∈C

nPP,

where nP ∈ Z and nP = 0 for all but finitely many P ∈ C. The support of the
divisor D is the set of all points P of D such that np 6= 0. The sum of two divisors
D1 =

∑
P∈C nPP and D2 =

∑
P∈CmPP is naturally defined as

D1 +D2 =
∑
P∈C

(nP +mP )P.

The homomorphism

deg : Div(C) → Z∑
P∈C

nPP 7→
∑
P∈C

nP

assigns an integer to each divisor of Div(C). This integer is called degree of the
divisor. The set of degree-0 divisors of C is denoted by Div0(C) and equals the
kernel of deg : Div(C)→ Z. Hence, it is a proper subgroup of Div(C).

The Galois group Gal(k/k) of the field extension k/k acts on the points of C
coordinatewise and on Div(C) and Div0(C) via

Dσ =
∑
P∈C

nPP
σ

for all σ ∈ Gal(k/k) and D ∈ Div(C).

Definition 2.12 (Rational divisor). Let L be an intermediate field of k/k. A
divisor D of C is called L-rational if

Dσ = D for all σ ∈ Gal(k/L).

We denote the set of L-rational divisors of C by DivL(C) and similarly the set of
L-rational divisors of degree 0 by Div0

L(C).
Note that for a divisor being L-rational does not necessarily mean that the

points in its support are L-rational but the automorphisms in the Galois group
do permute the points in the formal sum.

9



2. Hyperelliptic Curves

2.5. Principal divisors and divisor class groups

In the last sections we have introduced divisors and rational functions. Now, we
combine both notions by introducing the divisor of a rational function, which is
called principal divisor. This, in turn, allows us to define the divisor class group
of a hyperelliptic curve. In the next section we will show how the elements of this
important group can be represented and explain the group law.

Now we are ready to define the divisor of a rational function, called principal
divisor.

Definition 2.13 (Divisor of a rational function, principal divisor). Let f ∈ k(C)∗

be a rational function on C.

(1) The divisor of f is defined as

div(f) =
∑
P∈C

ordP (f)P.

(2) A divisor D is called principal if D = div(f) for some rational function
f ∈ k(C)∗ .

(3) The set of principal divisors on C is denoted by Princ(C).

Note that Princ(C) is a group and all principal divisors have degree 0. Hence,
Princ(C) is a subgroup of Div0(C).

Definition 2.14 (Divisor class group). The divisor class group of C over k is the
quotient group

Pic0(C) = Div0(C)/Princ(C).

This group is also called Picard group of C. For an intermediate field L with
k ⊆ L ⊆ k we analogously define Pic0

L(C) as the group of divisor classes which
are invariant under all automorphisms in Gal(k/L). The elements in Pic0(C) or
Pic0

L(C) are called divisor classes or L-rational divisor classes, respectively.

The Picard group is of great importance in cryptography because for certain
curves the discrete-logarithm problem in this group is assumed to be hard. De-
pending on the choice of the curve and the appropriate base field one can show
that the Picard group is not vulnerable against currently known attacks (cf. Ap-
pendix A). We note that for cryptography we require that the Picard group is
finite and thus the underlying fields are finite, but the results in this chapter are
correct for general fields.

Note that Pic0
L(C) is isomorphic as a group to the L-rational points on the

Jacobian of C. So we can identify the divisor classes in the Picard group with
the points in the Jacobian variety.
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2.6. Arithmetic in divisor class groups

2.5.1. Cardinality of the Picard group

To estimate the number of elements in the Picard group of a hyperelliptic curve,
one can use the theorem of Hasse-Weil which gives upper and lower bounds for
the number of divisor classes in this group. Observe that the theorem does only
depend on the finite field and the genus of the curve.

Theorem 2.15 (Hasse-Weil). The order of the Picard group of a hyperelliptic
curve C of genus g over a finite field Fq is within the range

(
√
q − 1)2g ≤ |Pic0

Fq
(C)| ≤ (

√
q + 1)2g.

For more details on the number of points on the curve and the group structure
of Pic0

Fq
(C) we refer to Section 5.2 in [ACD+05].

2.6. Arithmetic in divisor class groups

In the previous section we have introduced the divisor class group of a hyperelliptic
curve. Now we have to take care of two issues. First, how can an element of a
divisor class group be efficiently represented, and second, how can two elements
be combined, i.e. how can the group law be performed.

Divisor classes can be represented, using Mumford’s theorem, in a unique way
by two polynomials of degree less than or equal to the genus of the curve. This
provides a very compact representation in the Picard group. The group law can be
performed by using Cantor’s algorithm [Can87]. We shall present both methods
in the following.

2.6.1. Mumford representation

Theorem 2.16 (Mumford). Let C be a hyperelliptic curve of genus g over k.
Then each non-trivial k-rational divisor class of C can be represented by a unique
pair [u, v] of polynomials u, v ∈ k[x], where

(1) u is monic,

(2) deg(v) < deg(u) ≤ g,

(3) u | v2 + vh− f .

Proof. See [ACD+05, Theorem 4.145].

This theorem provides a very compact representation of divisor classes and
also allows to easily use divisor classes in implementations since only two lists
of coefficients (of the two polynomials u and v) of length at most g have to be
stored in a computer. In the following we sometimes write a divisor class as such

11



2. Hyperelliptic Curves

a list because explicit addition, doubling or halving formulas work directly on
the coefficients. It will be always clear from the context whether we work with
coefficients or polynomials.

In the Mumford representation the first polynomial u(x) splits over k into (at
most) g linear factors x− ai, where the values of the ai are the x-coordinates of
the affine points of the representative of the divisor class. So the roots of u(x)
are exactly the x-coordinates of the points of the divisor class. The polynomial
v(x) is a function that maps the x-coordinate of each point to its y-coordinate.

Since the degree of u(x) is less than or equal to the g, Theorem 2.16 has the
important consequence that each divisor class of a hyperelliptic curve of genus g
can be represented by a divisor, where the degree of u is at most g.

Example 2.17. We consider the genus-2 hyperelliptic curve given by

C : y2 + xy = x5 + 3x3 + 5x+ 1 (2.4)

over F17. The points P1 = (15, 16) and P2 = (5, 9) lie on the curve and form
the divisor D = P1 + P2 − 2P∞. The divisor class D of D in Mumford form is
represented by D = [x2 + 14x+ 7, 16x+ 14]. To see this we check the conditions
of the above theorem. The two first conditions are obviously satisfied. And the
last one also holds true since

v2 + vh− f = 16x5 + 14x3 + 15x+ 8 = (x2 + 14x+ 7)(x3 + 3x2 + 5x+ 11).

2.6.2. The group law

After introducing the representation of the elements in the Picard group, we have
to care about how to carry out the group law. For that, Cantor’s algorithm
[Can87] can be used. This algorithm allows the addition of two divisor classes in
the Picard group of the curve. If one wants to add a divisor class to itself, then
this is called divisor class doubling.

Looking at Cantor’s algorithm we see that it consists mainly of two parts.
First, the two divisor classes are combined (combination step) and second, the
intermediate result is reduced (reduction step) to obtain the result in Mumford
representation.

Algorithm 1 (Cantor)

Input: Two divisor classes D1 = [u1, v1] and D2 = [u2, v2] on the curve
C : y2 + h(x)y = f(x).

Output: The unique reduced divisor D such that D = D1 ⊕D2.

1: d1 ← gcd(u1, u2) . [d1 = e1u1 + e2u2]

2: d← gcd(d1, v1 + v2 + h) . [d = c1d1 + c2(v1 + v2 + h)]

12



2.6. Arithmetic in divisor class groups

3: s1 ← c1e1, s2 ← c1e2, s3 ← c2

4: u← u1u2

d2
, v ← s1u1u2+s2u2v1+s3(v1v2+f)

d
(mod u)

5: while deg(u) > g

6: u′ ← f−vh−v2
u

, v′ ← (−h− v) (mod u′)

7: u← u′, v ← v′

8: end while

9: make u monic

10: return [u, v]

Remark 2.18. Note that Cantor’s algorithm is completely general and holds for
any genus and any field. As we will see in Chapters 3 and 4, we obtain explicit
formulas from this algorithm by restricting it to binary fields and to a certain
class of hyperelliptic curves.

We will consider Cantor’s algorithm in two specialised versions (genus 2 and
genus 3) to get best performance on the one hand and to get the possibility to
invert its steps in order to obtain halving formulas on the other hand. For the
explicit formulas see Chapters 3 and 4.

Note that the loop in Steps 5 to 8 will terminate when deg(u) is less than or
equal to the genus of the curve, i.e. the sum of D1 and D2 is represented by at
most g points on the curve.

Doubling, halving and scalar multiplication

Cantor’s algorithm can compute the sum of two divisor classes in the Picard
group. This is called divisor class addition, denoted by D1⊕D2. We use a special
symbol for the addition here in order to not confuse it with the addition in the
underlying field. If D1 = D2, then we speak of divisor class doubling. One can
still write D1 ⊕D1 but we use [2]D1 to denote the doubling of D1.

In the Picard group it is always possible to compute the double of a divisor class.
This can be seen as a mapping that maps a divisor class D to its double [2]D.
In certain situations it is also possible to give the inverse map of the doubling
which is called divisor class halving. In Chapters 3 and 4 we investigate curves of
genus 2 and 3 which allow us to define the halving map. To be more precise we
define divisor class halving as follows: Given a divisor class E = [2]D we want to
find the divisor class D. For the halving we also write informally [1

2
]E = D.

The doubling map D 7→ [2]D can be generalised to D 7→ [n]D for an arbitrary
integer n, as the next definition shows.

Definition 2.19 (Multiplication-by-n map, torsion element). Let n be an integer

13



2. Hyperelliptic Curves

and let D ∈ Pic0(C) be a divisor class of the curve C. The map

[n] : Pic0(C) → Pic0(C)

D 7→ [n]D = D ⊕ . . .⊕D︸ ︷︷ ︸
n-times

is called multiplication-by-n map (also: scalar multiplication) on the Picard group
of C. The kernel of this mapping [n] is denoted Pic0(C)[n], and an element in
Pic0(C)[n] is called n-torsion element.

2.7. Torsion points and p-rank

A very important invariant of a hyperelliptic curve C over a finite field Fpk is
the p-rank. For instance, in Chapter 3 we classify binary hyperelliptic curves of
genus 2 into three categories depending on their 2-rank. We will show that curves
with 2-rank 1 have noticeable advantages over the others.

For cryptosystems based on elliptic or hyperelliptic curves the most important
operation is scalar multiplication (see Definition 2.19). This is the n-fold multi-
plication of a divisor class on a hyperelliptic curve to itself. Given an integer n
and a divisor class D we would like to compute [n]D = D ⊕ . . . ⊕ D. This is
almost always done by using a double-and-add like algorithm. For more details
on this we refer to Chapter 9 in [ACD+05].

The following theorem and definition are taken from Section 14.1.4 in [ACD+05].

Theorem 2.20. Let C be a hyperelliptic curve defined over a field k and let n
be an integer. If the characteristic of k is either 0 or prime to n, then

Pic0(C)[n] ∼= (Z/nZ)2g.

When char(k) = p there exist an integer r such that

Pic0(C)[pe] ∼= (Z/peZ)r,

where 0 ≤ r ≤ g and r is the same for all e ≥ 1.

Definition 2.21. Let k be a field of characteristic p and let C be a hyperelliptic
curve defined over k. The p-rank of C over k is defined to be the integer r in
Theorem 2.20.

Note that the p-rank of a hyperelliptic curve C is always less than or equal to
its genus.

The next proposition characterises the structure of the Picard group of a curve
of arbitrary genus over a finite field Fq.
Proposition 2.22. Let C/Fq be a curve of genus g. For the structure of the
group of the Fq-rational elements in the Picard group of C we have

Pic0
Fq

(C)[n] ∼= Z/n1Z× Z/n2Z× . . .× Z/n2gZ, (2.5)

where ni |ni+1 for 1 ≤ i < 2g, and for all 1 ≤ i ≤ g one has ni | q − 1.
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Supersingular curves

An elliptic curve E is called supersingular if it has p-rank 0. The Jacobian variety
(or Picard group) of a hyperelliptic curve is called supersingular if it is the product
of supersingular elliptic curves. Thus, the p-rank of a supersingular Jacobian
variety is 0, but the converse does not have to be true. Usually we speak of a
supersingular hyperelliptic curve if its Jacobian variety is supersingular.

Supersingular curves always have a small embedding degree (see Section A.5.1),
i.e. the Weil and Tate pairings map to a small extension field of Fq. For crypto-
graphic applications using the DLP, this is considered a weakness (see the section
on the MOV and Frey-Rück attack in Appendix A.5). In Chapters 3 and 4 we
classify binary hyperelliptic curves of genus 2 and 3 depending on their 2-rank
and identify supersingular curves.
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3. Arithmetic on Genus-2 Curves
over Binary Fields

In this chapter, we investigate the arithmetic in the divisor class group of hy-
perelliptic curves of genus 2 over binary fields. Our focus is on the efficiency of
the arithmetic on these curves. First, we classify curves of genus 2 depending on
their 2-rank and give explicit addition, doubling and halving formulas to be able
to perform scalar multiplication in the divisor class group of the curve. We show
that (for certain classes of curves) the scalar multiplication using a halve-and-
add algorithm can be faster than the traditional double-and-add method. Point
halving on elliptic curves proved already successful (see [Sch00b]).

For the different types of curves we provide explicit doubling and halving for-
mulas for fields of characteristic 2. We also give explicit addition formulas which
can be used in arbitrary characteristic. The last part of the chapter contains
inversion-free doubling and addition formulas, which are useful when the compu-
tation of inverse elements in the base field is rather costly.

The doubling formulas in Section 3.3 are taken from the paper by Lange and
Stevens [LS05], and can be found along with the addition formulas in Section 14.5
in [ACD+05].

The new contributions of this chapter are an extended classification of hyper-
elliptic curves of genus 2 over binary fields, going beyond [CY02] and [LS05]; a
complete study of explicit halving formulas for all curves with a Picard group
of order 2r, where r is odd; inversion-free addition and doubling formulas. The
halving formulas improve our own result in [Bir07] and the previous ones by Kita-
mura, Katagi and Takagi [KKT05]. This and the classification is joint work with
Nicolas Thériault and has been published in [BT08]. The inversion-free formulas
are joint work with Tanja Lange.

3.1. Classification of genus-2 curves

A hyperelliptic curve C of genus 2 over a binary field k can be given by an equation
of the form

C : y2 + h(x)y = f(x), (3.1)

where h(x) = h2x
2 +h1x+h0 6= 0 and f(x) = f5x

5 +f4x
4 +f3x

3 +f2x
2 +f1x+f0

are polynomials over k. As stated in Definition 2.1, the polynomial f ∈ k[x] has
degree 5 = 2g + 1, where g is the genus of the curve. The non-zero polynomial h
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3. Arithmetic on Genus-2 Curves over Binary Fields

is of degree at most g = 2, and no point on the curve C over the algebraic closure
k satisfies both partial derivatives of (3.1). Recall that in case of characteristic 2
we require that h 6= 0, otherwise there are singular points.

It is customary to use curve isomorphisms to impose that f is monic, but we will
relax this condition for some curves as the halving formulas are more efficient if
we use the isomorphisms to have a monic polynomial h at the cost of a non-monic
polynomial f .

In this chapter, the field k is binary, i.e. k = F2d for some d > 0. To a priori
eliminate Weil descent attacks (see Appendix A.6 or [GHS02]) we require the
extension degree d to be prime. There are also some prime extension degrees
which should be avoided, e.g. Mersenne and Fermat primes. We note that this
implies that d is odd, and so the mappings α 7→ α3 and α 7→ α5 are isomorphisms
in F2d . Therefore, we can extract third and fifth roots in F2d (see the isomorphisms
for Types II and III in Section 3.1.2).

3.1.1. The 2-rank

Roughly speaking, the 2-rank (see Definition 2.21) of a hyperelliptic curve C is
the number of copies of Z/2Z in the 2-torsion group of the divisor class group
of C. The 2-rank is less than or equal to the genus of C, hence it is at most 2
in the present situation. The next lemma relates the degree of the polynomial h
in (3.1) to the 2-rank (see Definition 2.21) of C and gives a condition when it is
supersingular (see Section 2.7).

Lemma 3.1. Let C be a hyperelliptic curve of genus 2 over a binary field k, given
by an equation of the form y2 + h(x)y = f(x) where h 6= 0. Then the following is
true:

(1) If deg(h) = 0, then the 2-rank of C is 0 and C is supersingular.

(2) If deg(h) = 1, then the 2-rank of C is equal to 1 and C is non-supersingular.

(3) If deg(h) = 2, then the 2-rank of C is equal to 1 or 2 and C is non-
supersingular.

Proof. In (1), to see that C is supersingular if it has 2-rank 0, we refer to [Gal01,
Theorem 4]. To compute the 2-rank of C we have to look at the 2-torsion group
Pic0(C)[2] of the Picard group of C. A divisor class D = [u, v] in Pic0(C) is of
2-torsion if 2D = [1, 0] which is equivalent to D = −D, i.e. [u, v] = [u,−v − h]
which is equal to [u, v + h] as k has characteristic 2. We now look for divisor
classes for which v ≡ v + h (mod u) holds.

(1) In the first case we have deg(h) = 0, which means h = c for a non-zero
constant c ∈ k and therefore of course v 6= v + c. Thus, there is only the
trivial divisor class E = [1, 0] satisfying 2E = [1, 0]. It follows that the
2-rank of C equals 0.
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3.1. Classification of genus-2 curves

(2) Here we have deg(h) = 1 and h has exactly one root x0 over k. The
equation v = v + h is only true for x = x0. Thus, there are two divisor
classes D satisfying 2D = [1, 0], namely the trivial one and D = [u, v]
where u = x− x0 and v =

√
f(x0). This can be seen by plugging in x0 for

x. We get v(x0) =
√
f(x0) = v(x0) + h(x0).

It is clear that D = [x−x0,
√
f(x0)] is a valid divisor class because it comes

from the degree-0 divisor P − P∞ where P = (x0,
√
f(x0)) is a point on C.

(3) In this case we have deg(h) = 2 and h has two roots x1 and x2 over k.
We have to distinguish the two cases: x1 = x2 and x1 6= x2. In the first
case the 2-rank equals 1 since h(x) = 0 only for x = x1. Thus, we have
Pic0(C)[2] = {[1, 0], D1} ∼= Z/2Z, where D1 = [x− x1,

√
f(x1)].

In the second case, where x1 6= x2, the divisor classes [1, 0], D1 = [x −
x1,
√
f(x1)] and D2 = [x− x2,

√
f(x2)] are of 2-torsion for the same reason

as in (2). Only one more class of 2-torsion is possible, namely

D3 =
[
(x− x1)(x− x2),

y2 − y1

x2 − x1

x+
y2 − y1

x2 − x1

x1 + y1

]
.

This class comes from the divisor P1 + P2 − [2]P∞ where P1 = (x1, y1) and
P2 = (x2, y2) are points on C and x1, x2 roots of h. Since the 2-rank is
at most 2, we have Pic0(C)[2] = {[1, 0], D1, D2, D3}. Under the group
operation via Cantor’s algorithm, the maximal order of each element is 2.
Thus Pic0(C)[2] ∼= Z/2Z× Z/2Z and therefore the 2-rank is 2.

Observe that hyperelliptic curves with 2-rank 0 are supersingular (see Sec-
tion 2.7) and therefore not suitable for DLP-based cryptography because they
are vulnerable against Frey-Rück attacks (cf. Appendix A.5 and [FR94]). Gal-
braith [Gal01, Section 4] has found a criterion to check whether a hyperelliptic
curve is supersingular or not. His result is even more general and covers general
abelian varieties over finite fields. Although interest in supersingular curves is
generally limited to pairing based cryptography, we will still cover these curves
for the sake of completeness.

3.1.2. Classification and isomorphic transformations

In this section, we impose a classification of hyperelliptic curves of genus 2 over
binary fields. Depending on the degree of h(x) the curves are sorted into three
main types: I, II and III. For curves of Type I (i.e. deg(h) = 2) we have three
subtypes: Ia, Ib and Ic. Here we sort the curves depending on the number of
k-rational roots of h(x).

In the following, we show for each type of curve how to apply isomorphic
transformations to the curve equation in order to simplify it as much as possible
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while not losing any generality. In this context, we need to compute the (absolute)
trace of an element in the finite field.

Definition 3.2 (Trace). Let α be an element of the finite field Fqk . The trace of
α is given by the formula

TRF
qk/Fq(α) =

k∏
i=1

αq
i

. (3.2)

If it is clear from the context which field we are working with, then we will write
TR(α) instead of TRF

qk/Fq(α). See also Definition 2.52 and Proposition 2.97 in

[ACD+05].

Lemma 3.3. For a finite field Fqk the trace function TRF
qk/Fq satisfies the fol-

lowing properties:

(1) TRF
qk/Fq(α + β) = TRF

qk/Fq(α) + TRF
qk/Fq(β) for all α, β ∈ Fqk .

(2) TRF
qk/Fq(cα) = c · TRF

qk/Fq(α) for all c ∈ Fq and α ∈ Fqk .

(3) TRF
qk/Fq(αq) = TRF

qk/Fq(α) for all α ∈ Fqk .

Proof. See Theorem 2.23 in [LN97].

We also require to solve quadratic equations over F2d . We point out that the
equation x2+x+c = 0 has two solutions in F2d precisely if TR(c) = 0. To compute
the solutions, we need to calculate the half-trace of a field element (see Section
11.2.6 in [ACD+05] for a description). We denote the half-trace function by HT.
We note that the computation of solutions of an quadratic equation depends on
the extension degree d being odd or even. In this work we will have odd values
for d only.

For a curve C given by (3.1), the possible isomorphisms are

x 7→ αx+ β and y 7→ γy + δx2 + εx+ ζ, (3.3)

where both α and γ are non-zero. After applying the isomorphisms, we need to
divide the curve equation by γ2 to make it monic. In this way, we arrive at the
following five types of curves:

(Ia) deg(h) = 2 (i.e. h2 6= 0) and h(x) irreducible over k:

We first note that h1 6= 0 (otherwise h(x) would be a square) and h0 6= 0
(otherwise h(x) would be reducible). For the halving formulas it will be
better to have h1 = 1 than f5 = 1. So the first step is to force h2 = h1 = 1.
Applying the maps x 7→ αx with α = h1/h2 and y 7→ γy with γ = h2

1/h2

and dividing the equation by γ2 afterwards, yields an equation of the form

y2 + (x2 + x+ h0)y = f5x
5 + f4x

4 + f3x
3 + f2x

2 + f1x+ f0. (3.4)
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Since h is irreducible over k, the trace of h0 is 1 (otherwise h(x) would
split). Applying the transformation x 7→ x + β with β = HT(h0 + 1), we
get β2 + β + h0 + 1 = 0, and we can replace β2 + β + h0 by 1. Hence h(x)
can be transformed into x2 + x+ 1.

We would also like to have TR(f4)·TR(f5) = 0. Only if TR(f4) = TR(f5) =
1, this is not satisfied. The transformation x 7→ x+ 1 replaces f4 by f4 + f5

and does neither change f5 nor h(x). After this transformation, the product
of the traces is 0. Hence we can assume to always have TR(f4) ·TR(f5) = 0.

The next step is to apply the map y 7→ y + δx2. With this, the coefficient
of x4 becomes δ2 + δ + f4. With δ = HT(f4), we see that the coefficient of
x4 is either 0 or 1.

Applying the maps y 7→ y + f3x and y 7→ y + f2 forces f3 = f2 = 0 and the
curve equation is of the form

y2 + (x2 + x+ 1)y = f5x
5 + f4x

4 + f1x+ f0, (3.5)

where f4 ∈ F2 and f4 · TR(f5) = 0.

(Ib) deg(h) = 2 (i.e. h2 6= 0) and h(x) is the product of two distinct linear
factors:

Note that h1 6= 0 (otherwise h(x) would be a square). Using β and one of
the roots of h(x), we can obtain h0 = 0 via the map x 7→ x+ β. After that,
we can use α and γ to restrict h(x) to x2 + x. As in the previous case, we
can also impose TR(f5) ·TR(f4) = 0. Taking advantage of δ, we can restrict
f4 to F2. Afterwards, using ε and ζ allows us to remove f3 and f2. So the
curve equation has the form

y2 + (x2 + x)y = f5x
5 + f4x

4 + f1x+ f0, (3.6)

where f4 ∈ F2 and f4 · TR(f5) = 0.

(Ic) deg(h) = 2 (i.e. h2 6= 0) and h(x) is a square:

Observe that h1 6= 0 (otherwise h(x) would not be a square). Using α, β
and γ we can force h(x) = x2 and make f(x) monic. With ε and ζ we can
remove f3 and f2. Finally, δ can be used to limit f4 to F2. Hence a curve
of Type Ic has an equation of the form

y2 + x2y = x5 + f4x
4 + f1x+ f0, (3.7)

where f4 ∈ F2.

(II) deg(h) = 1 (i.e. h2 = 0, h1 6= 0):

Applying the isomorphisms with α = (h2
1/f5)1/3, β = h0/h1 and γ = h1α,

we obtain h(x) = x and make f(x) monic. Using δ and ζ allows us to
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3. Arithmetic on Genus-2 Curves over Binary Fields

remove f4 and f1. After that, if we apply the transformation y 7→ y + εx,
then the coefficient of x2 equals ε2 + ε + f2, and we can replace f2 by the
trace of f2. Thus the curve equation is of the form

y2 + xy = x5 + f3x
3 + f2x

2 + f0, (3.8)

where f2 ∈ F2.

(III) deg(h) = 0 (i.e. h2 = h1 = 0):

Using α = (h2
0/f5)1/5 and γ = h0, we can force h(x) = 1 and make f(x)

monic. With δ =
√
f4 and ε =

√
f2 we can remove f4 and f2. Finally,

y 7→ y+ ζ can be used to limit f0 to F2, since we can replace ζ2 + ζ + f0 by
0 or 1. The curve equation is of the form

y2 + y = x5 + f3x
3 + f1x+ f0, (3.9)

where f0 ∈ F2.

Note that we did not include the non-singularity condition, nor conditions on the
group order in the descriptions of the different types. In terms of isomorphism
classes, Types Ia and Ib are the most common (each with 3

2
q3 + O(q2) different

classes), followed by Types II and Ic (each with 2q2 + O(q) classes) and with
Type III (supersingular) the least common (O(q) classes). For more details on
the number of isomorphism classes of hyperelliptic curves of genus 2, we refer the
reader to [CY02]. Section 3 of this paper treats the case of binary fields.

3.1.3. Conditions on the order of the Picard group

In the following study, we limit ourselves to curves for which the order of Pic0
F
2d

(C)

is either odd (i.e. h(x) is constant), or 2r for an odd number r (which eliminates all
curves of Type Ib). This restriction is necessary to get a better performance out
of the halving. For any hyperelliptic curve, the halve-and-add algorithm allows
us to compute a scalar multiple of a divisor class if it is contained in a subgroup
of odd order. In this way, the preimage of the doubling can always be computed
and “becomes” unique (all other preimages of the doubling have even order). The
group order conditions are due to the following reasons:

(1) To verify that the preimage is in the subgroup of odd order, we make sure
that it can be halved again as many times as we want. If the group contains
divisor classes of order 2r, then we use as a test criterion that we can halve
the preimage (at least) r times, which obviously affects the cost of our
halving formulas. When r ≥ 2 (e.g. when there is a divisor class of order
4), the increased work required for this check becomes too expensive for the
halving to be interesting.
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3.2. Addition for arbitrary characteristic

(2) If C is of Type Ib, then there are four possible preimages of the doubling
map. The halving formula must then distinguish which of the four is in the
subgroup of odd order, which significantly increases the cost of the halving.
We also computed formulas in this case, and the halving does indeed become
much more expensive than the doubling.

When we consider all the isomorphism classes for a given type of curve (other
than Type III), between a half and two thirds of them have divisor classes of
order 4, so rejecting these curves has an acceptably small impact on the number
of possible curves. Furthermore, because of the attack of Pohlig and Hellman
(see Appendix A.1 and [PH78]), curves with a divisor class of order 4 are slightly
weaker than those with one of order 2 only. So the restriction can be seen as
advantageous for the security of the curves. From a cryptographic perspective,
the two most interesting types of curves for halving formulas are Type II (most
efficient halving) and Type Ia (largest number of isomorphism classes). In terms
of the benefits of halving over doubling, Type Ia gives the best savings, mostly
because Type II has very efficient doubling.

3.1.4. Notation

As always, we write divisor classes in Mumford representation, i.e. we use the
form D = [ua, va], where ua and va are polynomials satisfying the conditions of
Theorem 2.16. We will use ua and va for the inputs and uc and vc for the outputs
of our algorithms. Accordingly, the coefficients are denoted by uai, vai, uci and
vci for i = 0, 1, 2, . . .

Furthermore, in the following algorithms we denote a field multiplication by
M, a field inversion by I, a squaring by S and the extraction of a square root by
SR. For a half-trace computation we write HT, for a trace computation TR (cf.
Section 3.1.2).

3.2. Addition for arbitrary characteristic

When a scalar multiple of a divisor class is computed using a double-and-add like
algorithm, a doubling is computed for each bit of the scalar; an addition is only
computed for each non-zero bit. Nevertheless, the addition is important and we
need explicit formulas. The following algorithm for divisor class addition is taken
from [ACD+05, Algorithm 14.19] and works for arbitrary characteristic.

Note that if the characteristic is different from 5, then we can always achieve
h2 ∈ F2 and f4 = 0 by isomorphic transformations. Thus, we do not include
multiplications by h2 and f4 in the operation count. For curves of Types Ia and
Ib slightly different formulas will be necessary if f5 6= 1.
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3. Arithmetic on Genus-2 Curves over Binary Fields

Algorithm 2 (Addition for genus-2 curves, deg(u1) = deg(u2) = 2)

Input: Two divisor classes [u1, v1], [u2, v2] with ui = x2 + ui1x+ ui0 and
vi = vi1x+ vi0

Output: [u′, v′] = [u1, v1]⊕ [u2, v2]

1: z1 ← u11 − u21, z2 ← u20 − u10, z3 ← u11z1 + z2 . 1M

2: r ← z2z3 + z2
1u10, w0 ← v10 − v20, w1 ← v11 − v21 . 2M+1S

3: w2 ← z3w0, w3 ← z1w1 . 2M

4: s′1 ← (z1 + z3)(w0 + w1)− w2 − w3(1 + u11) . 2M

5: s′0 ← w2 − u10w3 . 1M

6: if s′1 = 0 then
7: s0 ← s′0r

−1, u′0 ← f4 − u21 − u11 − s2
0 − s0h2 . 1I+1M+1S

8: w1 ← s0(u21 − u′0) + h1 + v21 − h2u
′
0 . 1M

9: w2 ← u20s0 + v20 + h0, v′0 ← u′0w1 − w2 . 2M

10: else
11: w1 ← (rs′1)−1, w2 ← rw1, w3 ← s′21 w1 . 1I+3M+1S

12: w4 ← rw2, w5 ← w2
4, s′′0 ← s′0w2 . 2M+1S

13: l′2 ← u21 + s′′0, l′1 ← u21s
′′
0 + u20, l′0 ← u20s

′′
0 . 2M

14: u′0 ← (s′′0 − u11)(s′′0 − z1 + h2w4)− u10 . 1M

15: u′0 ← u′0 + l′1 + (h1 + 2v21)w4 + (2u21z1 − f4)w5 . 2M

16: u′1 ← 2s′′0 − z1 + h2w4 − w5

17: w1 ← l′2 − u′1, w2 ← u′1w1 + u′0 − l′1 . 1M

18: v′1 ← w2w3 − v21 − h1 + h2u
′
1 . 1M

19: w2 ← u′0w1 − l′0, v′0 ← w2w3 − v20 − h0 + h2u
′
0 . 2M

20: end if
21: return [u′, v′] . Total: 1I+22M+3S (1I+12M+2S if s′1 = 0)

3.3. Doubling

In this section we give explicit doubling formulas for hyperelliptic curves of
Types Ia, Ib, Ic and II. The formulas were derived from Cantor’s algorithm (see
Section 2.6.2) by restricting it to genus 2 and to fields of characteristic 2.
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3.3. Doubling

3.3.1. Distinguishing the cases

In genus 2, if we are given a non-trivial divisor class D = [ua, va] in Mumford
representation, then the degree of the polynomial ua is either 1 or 2. We will
now discuss divisor class doubling with Cantor’s algorithm for both cases and
investigate for each case the possible degree of uc in [uc, vc] = [2]D. We start with
a divisor class D = [ua, va].

(1) Let us assume deg(ua) = 1. In Step 4 of Algorithm 1 (Cantor), we compute
u = u2

a and v = c1uava + c2(v2
a + f) (mod u), where c1 = u−1

1 (mod h) and
c2 = h−1 (mod u1). The degree of u is 2, and thus the degree of v is less
than 2. The algorithm of Cantor now stops because deg(u) ≤ 2. We denote
this case by DBL12, since we doubled a divisor class with deg(ua) = 1 and
the degree of the output uc is 2.

(2) If deg(ua) = 2, then in Step 4 of Algorithm 1, we compute u = u2
a and

v = c1uava + c2(v2
a + f) (mod u). The degree of u is 4, and thus the degree

of v is less than 4. Next, we get into the loop in Steps 5 to 8, where u and
v are reduced. In Step 6, we compute u′ = (f + vh+ v2)/u and v′ = h+ v
(mod u′). Now, the degree of u′ is determined by 5 ≤ deg(f + v2) ≤ 6.

If deg(f+v2) = 5, then deg(u′) = deg(f)−deg(u) = 5−4 = 1 and Cantor’s
algorithm stops. We denote this case by DBL21.

The other case is deg(f + v2) = 6. In this case, the degree of u′ is deg(v2)−
deg(u) = 6−4 = 2 and the algorithm stops. We denote this case by DBL22.

By degree reasons, there are no other possible cases and we can summarise that
in genus 2 we have the following three doubling cases: DBL12, DBL21 and DBL22
(There are also the trivial cases DBL10 and DBL20, but we do not consider them
here separately). Necessarily, we have the following halving cases: HLV21, HLV12
and HLV22 (if the halving map can be defined).

3.3.2. Type Ia: h(x) = x2 + h1x+ h0

In the next algorithm which is taken from [LS05, Table 3] we give formulas to
double a divisor class on a curve with the equation

C : y2 + (x2 + h1x+ h0)y = x5 + f1x+ f0. (3.10)

This form of the curve equation is more general and covers curves of Type Ia for
h1 = h0 = 1. In this case the operations count of the doubling algorithm drops
down to 1I+15M+7S.

The algorithm computes the double of a divisor class D = [ua, va], where the
degree of the polynomial ua equals 2. We assume that the polynomial uc in the
output divisor class [uc, vc] = [2]D has degree 2 as well. This indicates that we
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3. Arithmetic on Genus-2 Curves over Binary Fields

are in the most frequent case. In Step 4, if s′1 is equal to 0, then deg(uc) = 1.
Formulas and operations counts for this special case can be found in [LS05]. Here
we give only formulas for the most common case, i.e. deg(ua) = deg(uc) = 2.

Algorithm 3 (DBL22, h(x) = x2 + h1x+ h0, f(x) = x5 + f1x+ f0)

Input: The divisor class D = [ua, va]

Output: The divisor class [uc, vc] = [2]D

1: z0 ← u2
a0, z1 ← u2

a1, w0 ← va1(h1 + va1), k′1 = z1 + va1 . 1M+2S

2: w1 = h1ua0, w2 = h0ua1 . 2M

3: r = h2
0 + z0 + (h1 + ua1)(w1 + w2) . 1M

4: s′1 = f1 + z0 + h0z1 + h1(ua1k
′
1 + w0) . 3M

5: m0 = f0 + w1k
′
1 + h0w0 + v2

a0, w1 = (rs′1)−1, w2 = rw1 . 1I+4M+1S

6: w3 = s′21 w1, w4 = rw2, w5 = w2
4, s′′0 = ua1 +m0w2 . 3M+2S

7: l′2 = ua1 + s′′0, l′1 = ua1s
′′
0 + ua0, l′0 = ua0s

′′
0 . 2M

8: uc0 = s′′0
2 + w4(s′′0 + ua1 + h1), uc1 = w4 + w5 . 1M+1S

9: w1 = l′2 + uc1, w2 = uc1w1 + uc0 + l′1 . 1M

10: vc1 = w2w3 + va1 + h1 + uc1, w2 = uc0w1 + l′0 . 2M

11: vc0 = w2w3 + v0 + h0 + uc0 . 1M

12: return [x2 + uc1x+ uc0, vc1x+ vc0] . 1I+21M+6S

3.3.3. Type Ib: h(x) = x2 + h1x

The following algorithm [LS05, Table 2] allows doubling of a divisor class for
curves of the form

C : y2 + (x2 + h1x)y = x5 + f4x
4 + f1x+ f0 (3.11)

over F2d . If d is odd (which is always the case in this chapter because we choose
d to be prime to avoid Weil descent attacks), then we can always obtain f4 ∈ F2.
Additionally, if we choose h1 = 0 then the curve equation can be brought to
Type Ic.

Assuming f4 ∈ F2 and h1 = 0, the operation count changes from 1I+17M+5S
to 1I+10M+6S but we give the algorithm in the more general form.
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3.3. Doubling

Algorithm 4 (DBL22, h(x) = x2 + h1x, f(x) = x5 + f4x
4 + f1x+ f0)

Input: The divisor class D = [ua, va]

Output: The divisor class [2]D = [uc, vc]

1: z0 ← u2
a0, z1 ← u2

a1, w0 ← va1(h1 + va1), k′1 ← z1 + va1 . 1M+2S

2: z2 ← h1ua1, z3 ← f4ua1, r̃ ← ua0 + h2
1 + z2 . 2M

3: w2 ← ua1(k′1 + z3) + w0, w3 ← va0 + h1k
′
1 . 2M

4: s′1 ← f1 + z0 + h1w2, m0 ← w2 + w3 . 1M

5: w2 ← (s′1)−1, w3 ← ua0w2, w4 ← r̃w3, w5 ← w2
4 . 1I+2M+1S

6: s′′0 ← ua1 +m0w3, z4 ← f4w4, uc1 ← w4 + w5 . 2M

7: uc0 ← s′′20 + w4(s′′0 + h1 + ua1 + z4) . 1M+1S

8: z5 ← w2(m2
0 + k′1(s′1 + h1m0)), z6 ← s′′0 + h1 + z4 + z5 . 3M+1S

9: vc0 ← va0 + z2 + z1 + w4(uc0 + z3) + s′′0z6 . 2M

10: vc1 ← va1 + w4(uc1 + s′′0 + f4 + ua1) + z5 . 1M

11: return [x2 + uc1x+ uc0, vc1x+ vc0] . 1I+17M+5S

12: . 1I+10M+6S (if f4 ∈ F2 and h1 = 0)

3.3.4. Type Ic: h(x) = x2

In this section, the curve C is of the form

C : y2 + x2y = x5 + f4x
4 + f1x+ f0, (3.12)

where f4 ∈ F2. For this case there are no dedicated doubling or addition formulas
published until now. Thus, we refer to Type Ib (i.e. h(x) = x2 + h1x) in the pre-
vious section and use those doubling formulas with h1 = 0. The operation count
for the most frequent case DBL22 drops down from 1I+17M+5S to 1I+10M+6S.

3.3.5. Type II: h(x) = h1x

In this case the curve equation is of the form

C : y2 + h1xy = x5 + f3x
3 + f2x

2 + f0, (3.13)

where f2 ∈ F2. This is the most interesting case because the form of h(x) allows
the fastest doubling (and halving) in genus 2. The following algorithm is taken
from [LS05, Table 1] but can also be found in [ACD+05, page 339].
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3. Arithmetic on Genus-2 Curves over Binary Fields

Using the isomorphic transformations for Type II in Section 3.1 we can make
h(x) monic, i.e. h1 = 1. In this case the operation count of the algorithm decreases
noticeably from 1I+9M+5S down to 1I+5M+6S.

Algorithm 5 (DBL22, h(x) = h1x, f(x) = x5 + f3x
3 + f2x

2 + f0, f2 ∈ F2)

Input: The divisor class D = [ua, va], h
2
1 and h−1

Output: The divisor class [uc, vc] = [2]D

1: z0 ← u2
a0, k′1 ← u2

a1 + f3, w0 ← f0 + v2
a0, w1 ← w−1

0 z0 . 1I+1M+3S

2: z1 ← k′1w1, s′′0 ← z1 + ua1, w2 ← h2
1w1 . 2M

3: uc1 ← w2w1, uc0 ← s′′20 + w2, w3 ← w2 + k′1 . 1M+1S

4: vc1 = h−1
1 (w3z1 + w2uc1 + f2 + v2

a1) . 3M+1S

5: vc0 = h−1
1 (w3uc0 + f1 + z0) . 2M

6: return [x2 + uc1x+ uc0, vc1x+ vc0] . 1I+9M+5S (1I+5M+6S if h1 = 1)

Note that in Step 1, if w0 = 0 we are in the DBL21 case, i.e. the polynomial uc
of the doubled divisor class has degree 1. As in the previous cases we assume to be
solely in the most frequent case DBL22. Formulas for the special case DBL21 can
be found in [LS05, Table 1] and [ACD+05, page 339]. For inversion-free formulas
we refer to the doubling algorithms in Section 3.5.

3.4. Halving

In this section we give explicit halving formulas for each type of the classification
from Section 3.1.2, except for Type Ib. The 2-torsion subgroup of the Picard
group of a Type-Ib curve has order 4, and the computation of a preimage of the
doubling in the odd-order subgroup is therefore significantly more costly than the
appropriate doubling. Therefore, we exclude this case from our considerations.

3.4.1. Type II: h(x) = x

In this section, the curve C is of the form

C : y2 + xy = x5 + f3x
3 + f2x

2 + f0, (3.14)

where f2 ∈ F2.

Theorem 3.4. Let Da = [ua, va] be a divisor class in Pic0(C). If deg(ua) = 2,
then Da can be halved if and only if TR(ua1(ua0 + f3 + u2

a1)) = 0. If deg(ua) = 1,
then Da can be halved if and only if TR(f2 + ua0(u2

a0 + f3)) = 0.
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Proof. We consider the doubling as described in Cantor’s algorithm (Algorithm 1)
and reverse its steps to investigate the halving of Da. One of the steps that we
will take back is computing F2d-rational solutions to a quadratic equation of the
form x2+x+c = 0. This equation has solutions in F2d if and only if TR(c) = 0 (cf.
Section 11.2.6 in [ACD+05]), i.e. Da can be halved if and only if TR(c) = 0. We
give the proof for the case deg(ua) = 2 and thus show that c = ua1(ua0 +f3 +u2

a1),
as stated in the theorem. The case deg(ua) = 1 is done analogously.

In Cantor’s algorithm, Step 4 (combination step) computes a polynomial u =
x4 +u2x

2 +u0 by squaring the degree-2 polynomial u1 = x2 +u11x+u10 from the
input divisor class. (For simplicity, we use the notation of Algorithm 1 here and
adapt it to our notation at the end of the proof.) In the reduction (Steps 5 to 8),
the degree of u will be reduced to 1 or 2. Since we consider the case HLV22, the
reduced polynomial u′ has degree 2 and is equal to x2 + u′1x + u′0. Since v and
v′ in Cantor’s algorithm are computed modulo u and u′, the degree of v is less
than 4 and the degree of v′ is less than 2. We obtain v = v3x

3 + v2x
2 + v1x+ v0,

v′ = v′1x+ v′0 and get the following relations from the reduction step by equating
the coefficients of the polynomials:

(1) v2
3u
′
1 = 1,

(2) v2
3u
′
0 = v3 + v2

2 + v2
3 + v2

3u2,

(3) 0 = v2 + f3 + u2.

From (1), we get v3 = 1/
√
u′1. Writing (2) with u2 = v2 + f3 from (3), we get a

relation to compute v2:

v2
3u
′
0 = v3 + v2

2 + v2
3(v2 + f3). (3.15)

This can be written as the quadratic equation

v2
2 + v2

3v2 + (v2
3f3 + v3 + v2

3u
′
0) (3.16)

in the variable v2. Dividing the equation by v4
3, writing c = (v2

3f3 + v3 + v2
3u
′
0)/v4

3

and applying the transformation x ← v2/v
2
3 (this procedure is explained in Sec-

tion 11.2.6 in [ACD+05]) gives:

v2 = v2
3 · RootOf

(
x2 + x+ (v3 + v2

3(f3 + u′0))/v4
3 = 0

)
. (3.17)

The factor v2
3 at the beginning of (3.17) corrects the transformation x ← v2/v

2
3.

Using relation (1), we can write this as

v2 = v2
3 · RootOf

(
x2 + x+ u′1(

√
u′1 + f3 + u′0) = 0

)
. (3.18)

A solution for v2 exists if and only if TR(u′1(
√
u′1 + f3 + u′0)) = 0, i.e. the divisor

class can be halved if and only if this trace is equal to 0. Using the fact that the
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trace is additive and that TR(a) = TR(a2) (see (1) and (3) in Lemma 3.3), we
can write

TR(u′1(
√
u′1 + f3 + u′0)) = TR(u′1(u′21 + f3 + u′0)). (3.19)

With this, we replace 1SR by 1S, which gives a small performance increase in the
computation because 1S can be faster computed than 1SR. Using our notation,
we see that Da can be halved if and only if TR(ua1(u2

a1 +f3 +ua0)) = 0, as claimed
in the theorem.

From Theorem 3.4, we obtain a simple condition for the group order:

Corollary 3.5. The Picard group of the curve C given by (3.14) has order 2r,
where r odd, if and only if f2 = 1.

Proof. The Picard group of the curve C has exactly one divisor class of order 2,
namely [x,

√
f0]. The group order is divisible by 4 if and only if [x,

√
f0] can

be halved. From Theorem 3.4, this is possible if and only if TR(f2) = 0. Since
f2 ∈ F2 we find that Pic0(C) has a divisor class of order 4 if and only if f2 = 0.

Observe that if Dc1 and Dc2 are the two preimages of Da under the doubling,
then Dc1 −Dc2 = [x,

√
f0] = Dc2 −Dc1 , i.e. the difference of two preimages is the

unique divisor class of order 2.

Lemma 3.6. Let Da = [ua, va] be a divisor class in Pic0(C) that can be halved
and let Dc = [uc, vc] = [1

2
]Da be its preimage (under the doubling) of odd order.

Then the following holds:

(1) If deg(ua) = 1, then deg(uc) = 2, and we are in case HLV12.

(2) If deg(ua) = 2 and ua1 6= 0, then deg(uc) = 2, and we are in case HLV22.

(3a) If deg(ua) = 2, ua1 = 0 and TR(f2+
√
ua0(ua0+f3)) = 0, then uc = x+

√
ua0,

vc = va0 +
√
ua0va1 and we are in case HLV21.

(3b) If deg(ua) = 2, ua1 = 0 and TR(f2 +
√
ua0(ua0 + f3)) = 1, then uc =

x2 +
√
ua0x, and we are in case HLV22.

Proof. In (1), the degree of ua is 1. According to Section 3.3.1, the only case with
deg(ua) = 1 is HLV12.

In (2), the degree of ua is 2 and ua1 6= 0. Let us assume deg(uc) = 1, i.e.
uc = x + uc0. Applying Cantor’s algorithm to double [uc, vc] gives ua = x2 + u2

c0

with ua1 = 0, which is a contradiction. Hence deg(uc) = 2, and we are in the case
HLV22.

In (3a) and (3b), we have deg(ua) = 2 and ua1 = 0, i.e. ua = x2 + ua0. A
possible choice for uc is

√
ua = x+

√
ua0, because this takes Step 4 of Algorithm 1

back. Now we have two possibilities for the preimage of [ua, va], namely

[x+
√
ua0, vc] or [x+

√
ua0, vc]⊕ [x,

√
f0].
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The second preimage results from adding the unique divisor class of order 2 to the
first one. The polynomial uc of the second preimage is equal to x2 +

√
ua0x. With

Theorem 3.4 we can now check which of the two divisor classes can be halved to
see which one has odd order. The check can be done using the trace conditions in
Theorem 3.4. If the first divisor class has odd order (i.e. TR(f2+

√
ua0(ua0+f3)) =

0), then we are in the case HLV21 and the preimage is [x+
√
ua0, va0 +

√
ua0va1],

which can be verified by Step 4 of Cantor’s algorithm. Otherwise, the second
divisor class has odd order and TR(f2+

√
ua0(ua0+f3)) = 1. Thus uc = x2+

√
ua0x,

and we are in the case HLV22.

In Cases (1) and (2), we still need to decide which of the two possible divisor
classes is the halved class in the subgroup of odd order. We use Theorem 3.4
on uc to ensure that the corresponding divisor class can be halved again and we
correct the computations if necessary. We obtain the following formulas which
have been verified with the help of Magma [BCP97]:

Algorithm 6 (HLV22, h(x) = x, f(x) = x5 + f3x
3 + x2 + f0)

Input: The divisor class Da = [x2 + ua1x+ ua0, va1x+ va0]

Output: The divisor class [x2 + uc1x+ uc0, vc1x+ vc0] = [1
2
]Da

1: s0 ←
√
ua1, s1 ← s−1

0 , s2 ← s2
1 . 1I+1S+1SR

2: s3 ← HT(ua1(ua0 + f3 + s0)), s4 ← s3s2, s5 ← s4 + f3 . 2M+1HT

3: s6 ← va0 + ua0(s4 + s0), s7 ← s6, uc1 ←
√
s5 . 1M+1SR

4: if TR(s5(s7 + f 2
3 + uc1)) = 1 then . 1M+1TR

5: s3 ← s3 + 1, s4 ← s4 + s2, s5 ← s5 + s2

6: s6 ← s6 + s2ua0, s7 ← s6, uc1 ← uc1 + s1 . 1M

7: end if

8: uc0 ←
√
s7, vc0 ←

√
s7s1 + f0 . 1M+2SR

9: vc1 ← va1 + 1 + s3 + s1(ua0 + u2
a1 + uc0 + s5) + s4uc1 . 2M+1S

10: return [x2 + uc1x+ uc0, vc1x+ vc0]

11: . Worst case: 1I+8M+2S+4SR+1HT+1TR

12: . Average: 1I+7.5M+2S+4SR+1HT+1TR
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Algorithm 7 (HLV12, h(x) = x, f(x) = x5 + f3x
3 + x2 + f0)

Input: The divisor class Da = [x+ ua0, va0]

Output: The divisor class [x2 + uc1x+ uc0, vc1x+ vc0] = [1
2
]Da

1: s0 ←
√
ua0, s1 ← f3 + s0, s2 ← 1 + s1ua0 . 1M+1SR

2: s3 ← HT(s2), s4 ← va0 + ua0(s3 + 1 + s0ua0) . 2M+1HT

3: uc1 ←
√
s1, uc0 ←

√
s4 . 2SR

4: if TR(uc1(uc0 + s1 + f3)) = 1 then . 1M+1TR

5: s3 ← s3 + 1, s4 ← s4 + ua0, uc0 ←
√
s4 . 1SR

6: end if

7: vc1 ← s3 + s0uc1, vc0 ← s4 + s0uc0 . 2M

8: return [x2 + uc1x+ uc0, vc1x+ vc0] . Worst case: 6M+4SR+1TR+1HT

9: . Average: 6M+3.5SR+1TR+1HT

Algorithm 8 (HLV21/22, h(x) = x, f(x) = x5 + f3x
3 + x2 + f0)

Input: The divisor class Da = [x2 + ua0, va1x+ va0]

Output: The divisor class [x+ uc0, vc0] = [1
2
]Da

or [x2 + uc1x, vc1x+ vc0] = [1
2
]Da

1: s0 ←
√
ua0, s1 ← va0 + s0va1 . 1M+1SR

2: if TR(ua0s0) = 1 then . 1M+1TR

3: E ← [x+ s0, s1]

4: else

5: s2 ← s−1
0 , vc1 ← (s1 +

√
f0)s2 . 1I+1M

6: vc0 ← s1 + vc1s0, E ← [x2 + s0x, vc1x+ vc0] . 1M

7: end if

8: return E . Worst case: 1I+4M+1SR+1TR

9: . Average: 0.5I+3M+1SR+1TR

3.4.2. Type Ia: h(x) = x2 + x+ 1

In this section, the curve C is of the form

C : y2 + (x2 + x+ 1)y = f5x
5 + f4x

4 + f1x+ f0, (3.20)
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where f4 ∈ F2 and f4 · TR(f5) = 0. To improve the efficiency of the halving
formulas, we will assume that f−1

5 and f−2
5 are precomputed. Note that this

computation is necessary only once per curve and the values are published along
with the system parameters.

Theorem 3.7. Let D = [ua, va] be a divisor class in Pic0(C). If deg(ua) = 2,
then D can be halved if and only if TR(ua1f5) = 0. If deg(ua) = 1, then D can
be halved if and only if TR(f4 + f5ua0) = 0.

Proof. To prove this, we can follow the same ideas as in Theorem 3.4, with one
difference: some of the halving formulas require to solve two quadratic equations
rather than one. In those formulas, it is easy to verify that switching between
the roots of the first quadratic equation (adding 1 to the half-trace) changes the
trace of the constant term of the second quadratic equation by 1. The choice of
root for the first equation (when roots exist in F2d) and the trace condition from
the second equation are then purely internal to the halving formula.

From this theorem, we obtain a simple condition for the group order:

Corollary 3.8. The Picard group of the curve C given by (3.20) has order 2r,
where r is odd, if and only if TR(f5) = 1 and f4 = 0.

Proof. The Picard group of the curve C has exactly one divisor class of order 2,
which is of the form [x2 + x+ 1, vh]. The order of the Picard group is divisible by
4 if and only if [x2 +x+1, vh] can be halved. From Theorem 3.7, this is possible if
and only if TR(f5) = 0. The condition f4 = 0 follows directly from the restriction
f4 · TR(f5) = 0.

Observe that if Dc1 and Dc2 are the two preimages of Da under the doubling,
then Dc1 −Dc2 = [x2 +x+ 1, vh] = Dc2 −Dc1 , i.e. the difference of two preimages
is the unique divisor class of order 2.

Lemma 3.9. Let Da = [ua, va] be a divisor class in Pic0(C) that can be halved
and let Dc = [uc, vc] = [1

2
]Da be its preimage (under the doubling) of odd order.

Then the following holds:

(1) If deg(ua) = 1, then deg(uc) = 2, and we are in case HLV12.

(2) If deg(ua) = 2 and ua1 6= 0, then deg(uc) = 2, and we are in case HLV22.

(3a) If deg(ua) = 2, ua1 = 0 and TR(f4 + f5
√
ua0) = 0, then we are in case

HLV21.

(3b) If deg(ua) = 2, ua1 = 0 and TR(f4 + f5
√
ua0) = 1, then we are in case

HLV22.
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Proof. In (1), the degree of ua is 1. According to Section 3.3.1, the only case with
deg(ua) = 1 is HLV12.

In (2), the degree of ua is 2 and ua1 6= 0. Let us assume deg(uc) = 1, i.e.
uc = x + uc0. Applying Cantor’s algorithm to double [uc, vc] gives ua = x2 + u2

c0

with ua1 = 0, which is a contradiction. Hence deg(uc) = 2, and we are in the case
HLV22.

In (3a) and (3b), we have deg(ua) = 2 and ua1 = 0, i.e. ua = x2 + ua0. A
possible choice for uc is

√
ua = x+

√
ua0, because this takes Step 4 of Algorithm 1

back. Now we have two possibilities for the preimage of [ua, va], namely

[x+
√
ua0, vc] or [x+

√
ua0, vc]⊕ [x2 + x+ 1, vh].

The second preimage results from adding the unique divisor class of order 2 to
the first divisor class. With Theorem 3.7 we can now check which of the two
divisor classes can be halved to see which one has odd order. The check can
be done using the trace conditions in Theorem 3.7. If the first divisor class
has odd order (i.e. TR(f4 + f5

√
ua0) = 0), then we are in the case HLV21 and

uc = x+
√
ua0. Otherwise, the second divisor class has odd order, and we are in

the case HLV22.

In Cases (1) and (2), we still need to decide which of the two possible divisor
classes is the halved class in the subgroup of odd order. We use Theorem 3.7
on uc to ensure that the corresponding divisor class can be halved again and we
correct the computations if necessary. We obtain the following formulas which
have been verified with the help of Magma [BCP97]:

Algorithm 9 (HLV22, h(x) = x2 + x+ 1, f(x) = f5x
5 + f1x+ f0)

Input: The divisor class D = [x2 + ua1x+ ua0, va1x+ va0],
and f−2

5 precomputed

Output: The divisor class [x2 + uc1x+ uc0, vc1x+ vc0] = [1
2
]D

1: s0 ← f5ua1, s1 ← u−1
a1 , s2 ← HT(s0), s3 ← s2s1 . 1I+2M+1HT

2: s4 ← s2ua1, s5 ← f5ua0 + s2 + s3 + va1 + 1 + ua1 + s4 . 2M

3: s6 ← s5ua1 . 1M

4: if TR(s6) = 1 then . 1TR

5: s2 ← s2 + 1, s3 ← s3 + s1, s4 ← s4 + ua1

6: s5 ← s5 + 1 + s1 + ua1, s6 ← s5ua1 . 1M

7: end if

8: s8 ← HT(s6), s9 ← s8s1 . 1M+1HT

9: s10 ← s3ua0 + s4 + s8 + va1 + 1 + ua1 . 1M

34



3.4. Halving

10: if TR((s10 + s3 + s9)(s3 + f5 + s1)) = 1 then . 1M+1TR

11: s8 ← s8 + 1, s9 ← s9 + s1, s10 ← s10 + 1

12: end if

13: s11 ← (s3 + f5 + s1)f−2
5 , s12 ← (s10 + s3 + s9)s11 . 2M

14: s13 ← (s2 + s9)ua0 + va0 + 1 + ua0 . 1M

15: s14 ← (s13 + s10 + f1)s11, uc0 ←
√
s14, uc1 ←

√
s12 . 1M+2SR

16: s15 ← s3uc1, s16 ← s15 + s9, s17 ← s16uc0 . 2M

17: vc1 ← s10 + (s3 + s16)(uc0 + uc1) + s15 + s17 . 1M

18: vc0 ← s13 + s17

19: return [x2 + uc1x+ uc0, vc1x+ vc0]

20: . Worst case: 1I+16M+2SR+2TR+2HT

21: . Average: 1I+15.5M+2SR+2TR+2HT

Note that for curves with f5 = 1, the worst-case operation count decreases to
1I+13M+2SR+2HT+2TR. If we move the computation of s11 and s12 before the
second trace computation (which becomes TR(s12)), then the average operation
count drops to 1I+12M+2SR+2HT+2TR (with that approach, a multiplication
is required to correct s12).

Algorithm 10 (HLV12, h(x) = x2 + x+ 1, f(x) = f5x
5 + f1x+ f0)

Input: The divisor class Da = [x+ ua0, va0] and f−1
5 precomputed

Output: The divisor class [x2 + uc1x+ uc0, vc1x+ vc0] = [1
2
]Da

1: s0 ← HT(f5ua0), s1 ← u2
a0 + ua0 . 1M+1S+1HT

2: s2 ← va0 + 1 + s1(s0 + 1) + s2
0 . 1M+1S

3: if TR(s2) = 1 then . 1TR

4: s0 ← s0 + 1, s2 ← s2 + s1 + 1

5: end if

6: s3 ← HT(s2) . 1HT

7: if TR(s3f5) = 1 then s3 ← s3 + 1 end if . 1M+1TR

8: s4 ← s3f
−1
5 , s5 ← s0 + s3, s6 ← s2

0 + s3(1 + ua0 + s3) . 2M+1S

9: s7 ← (f1 + s5 + s6)f−1
5 , uc1 ←

√
s4, uc0 ←

√
s7 . 1M+2SR

10: vc1 ← s5 + s0uc1, vc0 ← s6 + s0uc0 . 2M

11: return [x2 + uc1x+ uc0, vc1x+ vc0] . 8M+3S+2SR+2TR+2HT
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Algorithm 11 (HLV21/22, h(x) = x2 + x+ 1, f(x) = f5x
5 + f1x+ f0)

Input: The divisor class Da = [x2 + ua0, va1x+ va0] and f−2
5

Output: The divisor class [x+ uc0, vc0] = [1
2
]Da

or [x2 + uc1x, vc1x+ vc0] = [1
2
]Da

1: uc0 ←
√
ua0 . 1SR

2: if TR(f5uc0) = 0 then . 1M+1TR

3: vc0 ← va0 + uc0va1 . 1M

4: return [x+ uc0, vc0]
5: else

6: s0 ← va1 + 1 + ua0f5, s1 ← s0 + f1, s2 ← s0 + f5 . 1M

7: s3 ← ua0 + (s0 + s2
2)f−2

5 , uc1 ←
√
s3, s4 ← f5uc1, . 2M+1SR+1S

8: s5 ← s3ua0 + (s2 + s2
0 + f1)f−2

5 , uc0 ←
√
s5 . 2M+1SR+1S

9: s6 ← (s2 + s4)uc0, vc1 ← (s0 + s4)(uc1 + uc0 + 1) + s6 . 2M

10: vc0 ← s1 + s6

11: return [x2 + uc1x+ uc0, vc1x+ vc0]

12: end if

13: . Worst case: 8M+3SR+2S+1TR

14: . Average: 5M+2SR+1S+1TR

3.4.3. Type Ic: h(x) = x2

In this section, the curve C is of the form

C : y2 + x2y = x5 + f4x
4 + f1x+ f0, (3.21)

where f4 ∈ F2.

Theorem 3.10. Let D = [ua, va] be a divisor class in Pic0(C). If deg(ua) = 2,
then D can be halved if and only if TR(ua1) = 0. If deg(ua) = 1, then D can be
halved if and only if TR(f4 + ua0) = 0.

Proof. As in Theorem 3.4.

From this theorem, we obtain a simple condition for the group order:

Corollary 3.11. The Picard group of the curve C given by (3.21) has order 2r,
where r is odd, if and only if f4 = 1.
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Proof. The Picard group of the curve C has exactly one divisor class of order 2,
which is of the form [x,

√
f0]. The order of the Picard group is divisible by 4 if

and only if [x,
√
f0] can be halved. From Theorem 3.10, this is possible if and

only if TR(f4) = 0. Since f4 ∈ F2, the Picard group of C has a divisor class of
order 4 if and only if f4 = 0.

Observe that if Dc1 and Dc2 are the two preimages of Da under the doubling,
then Dc1 −Dc2 = [x,

√
f0] = Dc2 −Dc1 , i.e. the difference of two preimages is the

unique divisor class of order 2.

Lemma 3.12. Let Da = [ua, va] be a divisor class in Pic0(C) that can be halved
and let Dc = [uc, vc] = [1

2
]Da be its preimage (under the doubling) of odd order.

Then the following holds:

(1) If deg(ua) = 1, then deg(uc) = 2, and we are in case HLV12.

(2) If deg(ua) = 2 and ua1 6= 0, then deg(uc) = 2, and we are in case HLV22.

(3a) If deg(ua) = 2, ua1 = 0 and TR(f4 + ua0) = 0, then uc = x +
√
ua0,

vc = va0 +
√
ua0va1 and we are in case HLV21.

(3b) If deg(ua) = 2, ua1 = 0 and TR(
√
ua0) = 0, then uc = x2 +

√
ua0x, and we

are in case HLV22.

Proof. In (1), the degree of ua is 1. According to Section 3.3.1, the only case with
deg(ua) = 1 is HLV12.

In (2), the degree of ua is 2 and aa1 6= 0. Let us assume deg(uc) = 1, i.e.
uc = x + uc0. Applying Cantor’s algorithm to double [uc, vc] gives ua = x2 + u2

c0

with ua1 = 0, which is a contradiction. Hence deg(uc) = 2, and we are in the case
HLV22.

In (3a) and (3b), we have deg(ua) = 2 and ua1 = 0, i.e. ua = x2 + ua0. A
possible choice for uc is

√
ua = x+

√
ua0, because this takes Step 4 of Algorithm 1

back. Now we have two possibilities for the preimage of [ua, va], namely

[x+
√
ua0, vc] or [x+

√
ua0, vc]⊕ [x,

√
f0].

The second preimage results from adding the unique divisor class of order 2 to the
first one. The polynomial uc of the second preimage is equal to x2 +

√
ua0x. With

Theorem 3.10 we can now check which of the two divisor classes can be halved to
see which one has odd order. The check can be done using the trace conditions in
Theorem 3.10. If the first divisor class has odd order (i.e. TR(f4 +ua0) = 0), then
we are in the case HLV21 and the preimage is [x +

√
ua0, va0 +

√
ua0va1], which

can be verified by Step 4 of Cantor’s algorithm. Otherwise, the second divisor
class has odd order and TR(

√
ua0) = 0. Thus uc = x2 +

√
ua0x, and we are in the

case HLV22.
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In Cases (1) and (2), we still need to decide which of the two possible divisor
classes is the halved class in the subgroup of odd order. We use Theorem 3.10
on uc to ensure that the corresponding divisor class can be halved again and we
correct the computations if necessary. We obtain the following formulas which
have been verified with the help of Magma [BCP97]:

Algorithm 12 (HLV22, h(x) = x2, f(x) = x5 + x4 + f1x+ f0)

Input: The divisor class D = [x2 + ua1x+ ua0, va1x+ va0]

Output: The divisor class [x2 + uc1x+ uc0, vc1x+ vc0] = [1
2
]D

1: s0 ← u−1
a1 , s1 ← HT(ua1), s2 ← s1s0 . 1I+1M+1HT

2: s3 ← f1(s2 + 1 + s0), s4 ←
√
s1 + (va1 + ua0)s0 . 2M+1SR

3: s5 ← va1 + ua1(1 + s4 + s1) + s2ua0, s6 ← s5(s2 + 1 + s0) . 3M

4: if TR(s6) = 1 then . 1TR

5: s2 ← s2 + s0, s3 ← s3 + f1s0, s4 ← s4 + 1 . 1M

6: s5 ← s5 + ua0s0, s6 ← s5(s2 + 1 + s0) . 2M

7: end if
8: uc1 ←

√
s6, uc0 ←

√
s3, vc0 ←

√
f0 + s3(1 + s4) . 1M+3SR

9: vc1 ← s6 + s2uc0 + s4uc1 . 2M

10: return [x2 + uc1x+ uc0, vc1x+ vc0]

11: . Worst case: 1I+12M+4SR+1HT+1TR

12: . Average: 1I+10.5M+4SR+1HT+1TR

Algorithm 13 (HLV21/22, h(x) = x2, f(x) = x5 + f4x
4 + f1x+ f0)

Input: The divisor class Da = [x2 + ua0, va1x+ va0]

Output: The divisor class [x+ uc0, vc0] = [1
2
]Da

or [x2 + uc1x, vc1x+ vc0] = [1
2
]Da

1: s0 ←
√
ua0, s1 ← va0 + s0va1 . 1M+1SR

2: if TR(s0) = 1 then . 1TR

3: E ← [x+ s0, s1]

4: else

5: s2 ← s−1
0 , vc1 ← (s1 +

√
f0)s2 . 1I+1M

6: vc0 ← s1 + vc1s0, E ← [x2 + s0x, vc1x+ vc0] . 1M

7: end if
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8: return E . Worst case: 1I+3M+1SR+1TR

9: . Average: 0.5I+2M+1SR+1TR

Algorithm 14 (HLV12, h(x) = x2, f(x) = x5 + f4x
4 + f1x+ f0)

Input: The divisor class Da = [x+ ua0, va0]

Output: The divisor class [x2 + uc1x+ uc0, vc1x+ vc0] = [1
2
]Da

1: s1 ← HT(ua0 + 1), s2 ←
√
va0 + (s1 + 1)u2

a0 . 1M+1S+1SR+1HT

2: s3 ← s2(ua0 + s2), s4 ← s2 . 1M

3: if TR(s4) = 1 then . 1TR

4: s1 ← s1 + 1, s2 ← s2 + ua0, s4 ← s2

5: end if

6: uc1 ←
√
s4, uc0 ←

√
f1, vc1 ← s2 + s1uc1 . 1M+1SR

7: vc0 ← s3 + s1uc0, E ← [x2 + uc1x+ uc0, vc1x+ vc0] . 1M

8: return E . 4M+1S+2SR+1TR+1HT

3.4.4. Type III: h(x) = 1

In this section, the curve is of the form

C : y2 + y = x5 + f3x
3 + f1x+ f0 (3.22)

with f0 ∈ F2. According to the classification in Section 3.1, the 2-rank of Type-III
curves is 0, i.e. the Picard group has odd order. In particular, this implies that
every element in this group can be halved. Doing a case-by-case study of the
doubling algorithm gives us the following theorem, where the halving formulas
are obtained by inverting Cantor’s algorithm (see Section 2.6.2).

Lemma 3.13. Let Da = [ua, va] be a divisor class in Pic0(C) and let Dc =
[uc, vc] = [1

2
]Da be its preimage under the doubling.

(1) If deg(ua) = 1, then deg(uc) = 2 and we are in case HLV12.

(2) If deg(ua) = 2 and ua1 6= 0, then deg(uc) = 2 and we are in case HLV22.

(3) If deg(ua) = 2 and ua1 = 0, then uc = x+
√
ua0, vc = va0 +

√
ua0va1 and we

are in case HLV21.
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Proof. In (1), the degree of ua is 1. According to Section 3.3.1, the only case with
deg(ua) = 1 is HLV12.

In (2), the degree of ua is 2 and ua1 6= 0. Let us assume deg(uc) = 1, i.e.
uc = x + uc0. Applying Cantor’s algorithm to double [uc, vc] gives ua = x2 + u2

c0

with ua1 = 0, which is a contradiction. Hence deg(uc) = 2, and we are in the case
HLV22.

In (3), we have ua = x2 + ua0. Taking back Step 4 of Cantor’s algorithm by
extracting the square root of ua, we get uc = x +

√
ua0, i.e. deg(uc) = 1, and

we are in the case HLV21. Applying the combination step of Cantor’s algorithm
shows that [2][uc, vc] = [x2 + ua0, va]. We do not have to check if the preimage
has odd order, because the Picard group of a Type-III curve has odd order.

Algorithm 15 (HLV22, h(x) = 1, f(x) = x5 + f3x
3 + f1x+ f0)

Input: The divisor class D = [x2 + ua1x+ ua0, va1x+ va0]

Output: The divisor class [x2 + uc1x+ uc0, vc1x+ vc0] = [1
2
]D

1: s0 ←
√
ua1, s1 ← s−1

0 , s2 ← s1 + f3, uc1 ←
√
s2 . 1I+2SR

2: s3 ← s1

√
ua0 + s2, vc1 ←

√
s3, s4 ← ua1s1, s5 ← s3 + s4 . 2M+2SR

3: s6 ← ua0s5, s7 ← 1 + va0 + f0 + s6, vc0 ←
√
s7 . 1M+1SR

4: s8 ← va1 + f1 + (ua0 + ua1)(s1 + s5) + s4 + s6, uc0 ←
√
s8 . 1M+1SR

5: return [x2 + uc1x+ uc0, vc1x+ vc0] . 1I+4M+6SR

Algorithm 16 (HLV12, h(x) = 1, f(x) = x5 + f3x
3 + f1x+ f0)

Input: The divisor class D = [x+ ua0, va0]

Output: The divisor class [x2 + uc1x+ uc0, vc1x+ vc0] = [1
2
]D

1: s0 ←
√
ua0, s1 ← f3, s2 ← s1ua0, s3 ←

√
s0 + s2 . 1M+2SR

2: s4 ← s3 + f1, s5 ← va0 + 1 + ua0(s3 + s0ua0) . 2M

3: uc1 ←
√
s1, uc0 ←

√
s4, vc1 ← s3 +

√
s2, vc0 ← s5 + s0uc0 . 1M+3SR

4: return [x2 + uc1x+ uc0, vc1x+ vc0] . 4M+5SR
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Algorithm 17 (HLV21, h(x) = 1, f(x) = x5 + f3x
3 + f1x+ f0)

Input: The divisor class Da = [x2 + ua0, va1x+ va0]

Output: The divisor class [x+ uc0, vc0] = [1
2
]Da

1: uc0 ←
√
ua0, vc0 ← va0 + uc0va1 . 1M+SR

2: return [x+ uc0, vc0] . 1M+1SR

3.4.5. Comparison

There are only a few published results on divisor class halving for hyperellip-
tic curves of genus 2 until now. The author in [Bir07] has considered curves of
Type II and provided halving formulas that require 1I+8M+2S+5SR+1HT+1TR
per halving. In this chapter, which is based on joint work with Nicolas Thériault
[BT08], we improve the formulas in [Bir07] for Type II by 1SR. We do not explic-
itly list the operation count of the halving formulas in [Bir07] here.

In addition to [Bir07] and [BT08], there are halving formulas by Kitamura,
Katagi and Takagi [KKT05], to which we compare the present work. In Table 3.1
we give the operation counts for divisor class halving for curves of Types Ia, Ic,
II and III.

Type h(x) Kitamura et al. [KKT05] This work (Section 3.4)

II x 1I+15M+3S+3SR+2HT+2TR 1I+8M+2S+4SR+1HT+1TR

Ia x2 + x + 1 1I+14M+3S+3SR+2HT+2TR 1I+13M+2SR+2HT+2TR

Ic x2 1I+21M+2S+3SR+2HT+2TR 1I+12M+4SR+1HT+1TR

III 1 1I+21M+2S+3SR+2HT+2TR 1I+4M+6SR

Table 3.1.: Comparison of (worst case) operation counts for divisor class halving
for different curves types

Note that Kitamura et al. in [KKT05] study some special cases, which cannot
be obtained via generic isomorphic transformations.

3.5. Inversion-free arithmetic

The addition, doubling and halving formulas in the previous sections consist of a
series of field multiplications, inversions, additions, squarings, square root extrac-
tions, trace and half-trace computations. Usually, the field inversion is the most
expensive operation, followed by the field multiplication.
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The term “I/M ratio” states how costly an inversion is compared to a mul-
tiplication. For instance, an I/M ratio of 20 means that 1 field inversion is as
expensive as 20 field multiplications. The I/M ratio depends very much on how
the field arithmetic is implemented. An important role plays the field library, the
type of the CPU and if one is doing a software or hardware implementation.

Since the formulas in this chapter are designed for fields of characteristic 2, they
are especially useful for hardware implementations. Usually, for those applications
inversions should be completely avoided as the I/M ratio is usually large. This is
due to higher production costs of hardware inverters compared to multiplication
or addition units. To resolve this problem, we present addition and doubling
formulas without any field inversion at the cost of slightly higher number of field
multiplications.

The main contributions of this section are the doubling formulas in recent co-
ordinates in Section 3.5.2 which improve the fastest ones, published in [ACD+05],
Algorithm 14.51.

3.5.1. New coordinates

In this section, we give inversion-free addition and inversion-free doubling formulas
in new coordinates for hyperelliptic curves of Type II, i.e. the curve equation is
of the form

C : y2 + xy = x5 + f3x
3 + f2x

2 + f0, (3.23)

where f2 ∈ F2.
To remove all field inversions in the formulas, Lange (see Section 6 in [Lan05]

and Section 14.5.4.a in [ACD+05]) suggests to let [U1, U0, V1, V0, Z1, Z2] correspond
to the affine divisor class

[x2 + U1/Z
2
1x+ U0/Z

2
1 , V1/(Z

3
1Z2)x+ V0/(Z

3
1Z2)]. (3.24)

This representation is called new coordinates.
The following doubling formulas are taken from Appendix 2 in [Lan05]. Note

that in addition to the 6 coordinates, we use the four cached values z1 = Z2
1 ,

z2 = Z2
2 , z3 = Z1Z2, z4 = Z3

1Z2 for the input and output. If h1 = 1, then the
operation count decreases from 35M+6M to 30M+6S.

Algorithm 18 (DBL22, h(x) = x, f(x) = x5 + f3x
3 + f2x

2 + f0, f2 ∈ F2)

Input: The divisor class D = [U1, U0, V1, V0, Z1, Z2, z1, z2, z3, z4]

Output: The divisor class [U ′1, U
′
0, V

′
1 , V

′
0 , Z

′
1, Z

′
2, z
′
1, z
′
2, z
′
3, z
′
4] = [2]D

1: w1 ← h1U1 + h0z1, r ← h0w1 + h2
1U0, Z̃2 ← rz4, Z ′2 ← Z̃2z4 . 6M

2: inv1 ← h1, inv0 ← w1, w0 ← V 2
1 , w1 ← U2

1 . 2S
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3: k1 ← z2(f3z
2
1 + w1), k0 ← U1k1 + w0 + z4(f2z4 + V1h1) . 5M+1S

4: w0 ← k0inv0, w1 ← k1inv1 . 2M

5: s1 ← (inv0 + inv1)(k0 + k1) + w0 + w1(1 + U1) . 2M

6: s0 ← w0 + U0w1z1, Z ′1 ← s1z1, S0 ← s2
0, S ← s0Z

′
1 . 4M+1S

7: R← Z̃2Z
′
1, z′1 ← Z ′21 , z′2 ← Z ′2

2, z′3 ← Z ′1Z
′
2, z′4 ← z′1z

′
3 . 3M+2S

8: s0 ← s0s1, s1 ← Z ′1s1, h̃1 ← h1z
′
3 . 3M

9: l2 ← s1U1, l0 ← s0U0, l1 ← (s1 + s0)(U1 + U0) + l0 + l2 . 3M

10: l2 ← l2 + S, U ′0 ← S0 + h̃1, U ′1 ← z′2
11: l2 ← l2 + U ′1, w0 ← l2U

′
0, w1 ← l2U

′
1 . 2M

12: V ′1 ← w1 + z′1(l1 +RV1 + U ′0 + h̃1) . 2M

13: V ′0 ← w0 + z′1(l0 +RV0 + z′3h0) . 3M

14: return [U ′1, U
′
0, V

′
1 , V

′
0 , Z

′
1, Z

′
2, z
′
1, z
′
2, z
′
3, z
′
4]

. Worst case: 35M+6S (30M+6 if h1 = 1)

The following addition formulas are taken from Appendix 2 in [Lan05]. As
explained in the same appendix, to save space we can discard the coordinates Z1

and Z2. The values z1, z2, z3, z4 are again cached values.

Algorithm 19 (ADD, h(x) = x, f(x) = x5 + f3x
3 + f2x

2 + f0, f2 ∈ F2)

Input: Two divisor classes D1 = [U11, U10, V11, V10, z11, z12, z13, z14] and
D2 = [U21, U20, V21, V20, z21, z22, z23, z24]

Output: The divisor class [U ′1, U
′
0, V

′
1 , V

′
0 , z
′
1, z
′
2, z
′
3, z
′
4] = D1 ⊕D2

1: Ũ21 ← U21z11, Ũ20 ← U20z11, Ṽ21 ← V21z14, Ṽ20 ← V20z14 . 4M

2: Z1 ← z11z21, Z3 ← z13z23, y1 ← U11z21 + Ũ21 . 3M

3: y2 ← U10z21 + Ũ20, y3 ← U11y1 + y2z11, r ← y2y3 + y2
1U10 . 5M+1S

4: Z̃2 ← rZ3, Z ′2 ← Z̃2Z1, Z̃2 ← Z̃2
2 , Z̃2 ← Z̃2Z1 . 3M+1S

5: inv1 ← y1, inv0 ← y3, w0 ← V10z24 + Ṽ20 . 1M

6: w1 ← V11z24 + Ṽ21, w2 ← inv0w0, w3 ← inv1w1 . 3M

7: s1 ← (inv0 + inv1z11)(w0 + w1) + w2 + w3(z11 + U11) . 3M

8: s0 ← w2 + w3U10 . 1M

9: S1 ← s2
1, Z ′1 ← s1Z1, R← rZ ′1, S0 ← s0Z1 . 3M+1S

10: S ← S0Z
′
1, S0 ← S2

0 , z′1 ← Z ′21 , z′2 ← Z ′22 , z′3 ← Z ′1Z
′
2 . 2M+3S

11: z′4 ← z′1z
′
3, h̃1 ← h1z

′
3, s1 ← s1Z

′
1, s0 ← s0Z

′
1 . 4M

12: l2 ← s1Ũ21, l0 ← s0Ũ20, l1 ← (s0 + s1)(Ũ20 + Ũ21) + l2 + l0 . 3M
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13: l2 ← l2 + S, U ′0 ← S0 + y1(S1(y1 + Ũ21) + Z̃2) + y2s1 + h̃1 . 3M

14: U ′1 ← y1s1 + z′2, l2 ← l2 + U ′1, w0 ← l2U
′
0, w1 ← l2U

′
1 . 3M

15: V ′1 ← w1 + z′1(l1 +RṼ21 + U ′0 + h̃1) . 2M

16: V ′0 ← w0 + z′1(l0 +RṼ20) + z′4h0 . 3M

17: return [U ′1, U
′
0, V

′
1 , V

′
0 , Z

′, z′] . Total: 46M+6S

. Mixed addition (one input is affine): 38M+6S

3.5.2. Recent coordinates

In this section, we work with hyperelliptic curves of Type II over F2d for an odd
integer d, i.e. the curve equation is

C : y2 + h1xy = x5 + f3x
3 + f2x

2 + f0, (3.25)

where f2 ∈ F2 and h1, f3, f0 ∈ F2d . Type II normally requires h1 = 1, but the
addition and doubling formulas in this section are slightly more general and allow
arbitrary values for h1. We give separate operation counts for h1 = 1.

In 2005, Lange (cf. Section 14.5.5.b in [ACD+05]) suggests to let [U1, U0, V1, V0, Z]
correspond to the affine divisor class

[x2 + U1/Zx+ U0/Z, V1/Z
2x+ V0/Z

2]. (3.26)

This representation is called recent coordinates. In the following, we propose new
doubling formulas in recent coordinates for curves of Type II.

Algorithm 20 (DBL22, h(x) = h1x, f(x) = x5 + f3x
3 + f2x

2 + f0)

Input: A divisor class D = [U1, U0, V1, V0, Z] in recent coordinates and
the precomputed values h2

1, h−1
1

Output: The doubled divisor class [U ′1, U
′
0, V

′
1 , V

′
0 , Z

′] = [2]D

1: Z2 ← Z2, Z4 ← Z2
2, t1 ← f0Z4 + V 2

0 , t2 ← U2
1 + f3Z2 . 2M+4S

2: a1 ← U2
0 , a2 ← a1Z, a3 ← h2

1a1Z4, q1 ← (t2a2 + U1t1)2 + t1a3 . 6M+2S

3: q2 ← t21, q3 ← q2
2, q4 ← a1Z2, q5 ← t1t2, q6 ← (a3 + q5)t1 . 3M+2S

4: U ′0 ← q1, U ′1 ← a3q4, V ′0 ← h−1
1 (q6q1 + q3q4) . 4M

5: V ′1 ← h−1
1

(
q4(q5q6 + a2

3t1) + q3(f2Z4 + V 2
1 )
)

, Z ′ ← q2Z2 . 7M+2S

6: return [U ′1, U
′
0, V

′
1 , V

′
0 , Z

′] . 22M+10S (19M+10S if h1 = 1)

The following addition formulas in recent coordinates for curves of Type II are
taken from Algorithm 14.50 in [ACD+05]. The input can be either two divisor
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classes in recent coordinates, or one divisor class in recent coordinates and the
other one in affine coordinates. In the latter case, either Z1 or Z2 is equal to 1. An
addition in this way is called mixed addition and the operation count decreases
from 50M+8S to 43M+7S if Z1 = z1 = 1.

Algorithm 21 (ADD, h(x) = h1x, f(x) = x5 + f3x
3 + f2x

2 + f0)

Input: Two divisor classes D1 = [U11, U10, V11, V10, Z1, z1] and
D2 = [U21, U20, V21, V20, Z2, z2]

Output: The divisor class [U ′1, U
′
0, V

′
1 , V

′
0 , Z

′, z′] = D1 ⊕D2

1: Z ← Z1Z2, z ← Z2, Ũ21 ← U21Z1, Ũ20 ← U20Z1 . 3M+1S

2: Ṽ21 ← V21z1, Ṽ20 ← V20z1 . 2M

3: y1 ← U11Z2 + Ũ21, y2 ← U10Z2 + Ũ20 . 2M

4: y3 ← U11y1 + y2Z1, r ← y2y3 + y2
1U10 . 4M+1S

5: w0 ← V10z2 + Ṽ20, w1 ← V11z2 + Ṽ21 . 2M

6: w2 ← y3w0, w3 ← y1w1 . 2M

7: s1 ← (y3 + y1Z1)(w0 + w1) + w2 + w3(Z1 + U11) . 3M

8: s0 ← w2 + U10w3 . 1M

9: Z ← s1r, w4 ← rZ, w5 ← w2
4, S ← s0Z, Z ′ ← ZZ . 4M+1S

10: s̃0 ← s0Z
′, s1 ← s1Z, s̃1 ← s1Z . 3M

11: L2 ← s1Ũ21, `2 ← L2Z, `0 ← s̃0Ũ20 . 3M

12: `1 ← (Ũ21 + Ũ20)(s̃0 + s̃1) + `2 + `0 . 1M

13: `2 ← L2 + s̃0, h̃1 ← h1z . 1M

14: U ′0 ← r(S2 + y1(s2
1(y1 + Ũ21) + Zw5) + h̃1Z

′) + y2s̃1 . 6M+2S

15: U ′1 ← y1s1 + w4w5 . 2M

16: w1 ← `2 + U ′1, U ′1 ← U ′1w4, Z ← Z ′Z, `0 ← `0Z . 3M

17: w2 ← U ′1w1 + (U ′0 + `1)Z, Z ← Z
2

. 2M+1S

18: V ′1 ← w2s1 + (Ṽ21 + h̃1)Z, U ′0 ← U ′0r, w2 ← U ′0w1 + `0 . 4M

19: V ′0 ← w2s1 + Ṽ20Z, Z ′ ← Z ′2, z′ ← Z ′2 . 2M+2S

20: return [U ′1, U
′
0, V

′
1 , V

′
0 , Z

′, z′] . Worst case: 50M+8S

. Mixed addition (Z1 = z1 = 1): 43M+7S

If h1 = 1, then one more multiplication can be saved in Step 13.

Note that the inputs and the output of the addition formulas are given in
recent coordinates, but they include a sixth value zi, which is not an additional
coordinate, but the cached value zi = Z2

i . This saves 1 field squaring per addition.

45



3. Arithmetic on Genus-2 Curves over Binary Fields

If it is important to use as little memory as possible, then those values can be
omitted at the cost of 1 additional field squaring per addition.

3.6. Choice of secure curves

In the previous sections we have studied hyperelliptic curves of genus 2 over binary
fields, and provided efficient arithmetic on these curves. Now we will discuss the
security of these curves and suggest curve parameters and field sizes to make the
DLP on these curves intractable against currently known attacks.

For genus 2 index calculus attacks (see Appendix A.4) are not applicable. To
avoid the other types of attacks we restrict the base field to F2d , where d is prime
(this is to avoid Weil descent attacks, see Section A.6 for details), request that the
embedding degree k is at least 2000 (to avoid Frey-Rück attacks, see Section A.5)
and that the order of Pic0

F
2d

(C) is almost prime (i.e. it is of the form cp, where p is

a prime number and c a small integer that is called cofactor) and sufficiently large.
Due to the Hasse-Weil bound (Theorem 2.15) the size of the Picard group of a

hyperelliptic curve of genus 2 over F2d is at most (
√

2d+1)4 which is approximately
22d. Since the best known attacks for genus 2 are square-root attacks, e.g. baby-
step giant-step (Section A.2) and Pollard rho (Section A.3), the security level of
these curves is d bit.

According to the latest recommendations 80-bit security (i.e. d ≈ 80) is bor-
derline and 112 bit offer medium-term protection whereas 128 bit are good for
long-term secrecy (see [Gir08] and the ECRYPT recommendations [Nae08] for
more details). Suitable prime numbers in these ranges are d = 83, d = 113 and
d = 131.

3.6.1. HECTOR

To illustrate these choices we provide a secure curve which we also used for an
implementation. HECTOR (Hyperelliptic Curve with Two-Rank One) uses a
hyperelliptic curve of genus 2 with security level 113 bit and satisfying the re-
quirements of the previous section. This implementation is joint work with Peter
Schwabe. We implemented the Diffie-Hellman key exchange protocol (see Sec-
tion 1.6.1 in [ACD+05]) and an ElGamal signature scheme using that curve. The
equation of the HECTOR curve is

C : y2 + xy = x5 + t55x3 + x2 + t53, (3.27)

and the curve is defined over the field F2[t]/(t113 + t9 + 1). (We would like to
thank Wouter Castryck, Katholieke Universiteit Leuven, Belgium for providing
this curve.)
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The finite field implementation

The implementation of the finite field is based on the mpFq library [GT07]. More
than just a library, mpFq is a code generator for finite field arithmetic. Algorithms
for reduction can hence be optimised for just one special finite field. The library
makes extensive use of the SSE2 processor extensions, so HECTOR will only run
on machines, where this extension is available.

Scalar multiplication

We used recent coordinates (see Section 3.5.2) for the group operation. For the
scalar multiplication we use two different algorithms: To compute multiples of
the generator we use the 2-table comb method with 512 precomputed multiples
in total. For the computation of multiples of points other than the generator we
use the windowed NAF method with a window size of 5.

Performance

The HECTOR implementation was submitted to the ECRYPT benchmarking
project eBACS (ECRYPT Benchmarking of Cryptographic Systems, see [Be]).
The key exchange and signature implementation were benchmarked for time and
key size on a variety of machines (e.g. Intel Core 2 Duo, AMD Athlon 64 X2,
Intel Pentium D, Intel Core 2 Quad, Intel Pentium M).

For example, performing the Diffie-Hellman key-exchange protocol on an Intel
Core 2 Quad (6f8, “nmiv004”) we get the following figures for HECTOR and
surf2113. Both systems are based on a genus-2 hyperelliptic curve over a binary
field with 113 bit. The lengths of the secret key, public key and of the shared
secret are 29 byte, 60 byte and 60 byte for HECTOR, and 28 byte, 48 byte and
48 byte byte for surf2113.

Key pair generation Shared secret computation

HECTOR 523647 1729962

surf2113 1184571 1163061

Percentage 44.21% 148.74%

Table 3.2.: Diffie-Hellman benchmarks of HECTOR and surf2113 (in CPU cycles
and percent)

The surf2113 implementation uses a representation that does not allow general
additions. Therefore, no corresponding signature scheme exists. Instead, we
compare HECTOR to 1024-bit DSA using OpenSSL on an Intel Pentium 4 (f41,
“svlin002”) as reported by the same benchmarking project.
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Key pair generation Signing a short message Verification

HECTOR 1031805 1122953 4644240

1024-bit DSA 12486750 11816250 14106720

Percentage 8.26% 9.50% 32.92%

Table 3.3.: Signature scheme benchmarks of HECTOR and 1024-bit DSA (in CPU
cycles and percent)

Observe that the security level of 1024-bit DSA is at most 80 bit, while HEC-
TOR was designed to have 113 bit security.

3.6.2. More secure curves

In this section we give a list of hyperelliptic curves of genus 2 over F2d , where d
is 83, 113, 149 and 163 bit. The security level (see Section 3.6) of these curves is
also 83, 113, 149 and 163 bit. All curves are of Type II, i.e. the curve equation is

C : y2 + xy = x5 + f3x
3 + f2x

2 + f0, (3.28)

where f2 ∈ F2. In the following four lists, the polynomial f is the right-hand side
of (3.28) and N the order of the Picard group of C/F2d , which is always of the
form N = 2p for a prime number p.

For each extension field we state the polynomial w ∈ F2[t], which was used to
construct F2d as F2[t]/(w). This polynomial is primitive over F2 in all four cases,
and since w(t) = 0 in F2d , the value t is a primitive element of F2d . Hence we can
give the coefficients of the polynomial f as powers of t.

All curves were found using a Magma ([BCP97]) script, which chooses random
values in F2d for f3 and f0 and calculates the order of the Picard group of C/F2d .
We always use f2 = 1 to force the Picard group to have order 2r, where r is odd
(see Corollary 3.5).

Type-II curves over F283

We use the defining polynomial w = z83 + z7 + z4 + z2 + 1 for all 83-bit curves.

(1) f = x5 + t54x3 + x2 + t29

N = 2 · 46768052394561751542354784660987249779745362988177

(2) f = x5 + t69x3 + x2 + t33

N = 2 · 46768052394577308246949266967927240740335248666553

(3) f = x5 + t23x3 + x2 + t31

N = 2 · 46768052394607406765949581676696473664021731005249
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(4) f = x5 + tx3 + x2 + t10

N = 2 · 46768052394579337194183828392824594259496991276441

(5) f = x5 + t4x3 + x2 + t77

N = 2 · 46768052394579543467798544190638008669642519977753

(6) f = x5 + t7x3 + x2 + t27

N = 2 · 46768052394581783449408257323615100308124477126221

(7) f = x5 + t47x3 + x2 + t54

N = 2 · 46768052394575498407217219630200003663262435987801

(8) f = x5 + t4x3 + x2 + t16

N = 2 · 46768052394568564984363929097791243516961231133809

(9) f = x5 + t78x3 + x2 + t4

N = 2 · 46768052394629915916164228562288264921251567504809

(10) f = x5 + t26x3 + x2 + t46

N = 2 · 46768052394593267815720169005703651195415593135081

Type-II curves over F2113

We use the defining polynomial w = z113 + z5 + z3 + z2 + 1 for all 133-bit curves.

(1) f = x5 + t40x3 + x2 + t31

N = 2 · 539198933343012804554333757109228108792327555987288078
01602463751127

(2) f = x5 + t95x3 + x2 + t58

N = 2 · 539198933343012797408833037346605281204082216855018306
06187275299369

(3) f = x5 + t22x3 + x2 + t90

N = 2 · 539198933343012792745729085421826471317405624383234049
50569137935617

Type-II curves over F2149

We use the defining polynomial w = z149 + z9 + z7 + z6 + z5 + z4 + z3 + z + 1 for
all 149-bit curves.

(1) f = x5 + t34x3 + x2 + t132

N = 2 · 254629497041810760783543837841758863527394285585687415
744692931424147016474942655225989317
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(2) f = x5 + t6x3 + x2 + t22

N = 2 · 254629497041810760783571353585685813581160610958295629
251155448003340361494968858668726433

(3) f = x5 + t20x3 + x2 + t37

N = 2 · 254629497041810760783557207378766737922615296764621184
516547749621154313446393714379530769

(4) f = x5 + tx3 + x2 + t96

N = 2 · 254629497041810760783551696533799163638182445019953900
369519745891403966840037729120940689

Type-II curves over F2163

We use the defining polynomial w = z163 + z7 + z6 + z3 + 1 for all 163-bit curves.

(1) f = x5 + t118x3 + x2 + t126

N = 2 · 683515851494691226366406601587353369646155722245433931
30695474249598160715926049859163263859836673

(2) f = x5 + t31x3 + x2 + t83

N = 2 · 683515851494691226366407285669878172553863739546503625
26385509723061252896148610687014173886824449

(3) f = x5 + t132x3 + x2 + t98

N = 2 · 683515851494691226366407197867286396965313528777724043
70842922418462335908523897368335475724905953
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4. Arithmetic on Genus-3 Curves
over Binary Fields

In this chapter, we investigate halving and doubling of divisor classes of hyperel-
liptic curves of genus 3 over finite fields of characteristic 2. With this, we extend
the results on genus-2 halving in Chapter 3. The work in this chapter is joint
work with Nicolas Thériault.

In the following sections, we present efficient halving and doubling formulas for
many interesting cases (i.e. different types of curves). In Section 4.1, we explain
why it is important to use special types of binary fields (e.g. fields with prime
extension degree to avoid Weil descent attacks A.6). In Section 4.2 we discuss the
order of the Picard group of the curves, in particular if it is odd or 2 times an odd
number. In the next section we sort hyperelliptic curves of genus 3 into different
categories, depending on the degree and factorisation of the polynomial h in the
curve equation. In the following section we list the different types of curves and
give their main properties. In Section 4.4, we provide isomorphic transformations
to each type of curve and achieve a more simple form for each case. This is mainly
for performance reasons. In Section 4.5, we investigate the optimal-performance
case, i.e. we obtain the best operation counts for the explicit doubling and halving
formulas. In the same section, we also give a complete case study for the most
frequent case and for all special cases which can occur when doubling or halving
a divisor class. This provides a programmer with everything for a complete im-
plementation of high-speed scalar multiplication. In Section 4.6, we treat other
interesting cases. In particular, we look at curves the equation of which has a
polynomial h that is different from 1. Those cases are especially interesting since
we gain comparable and sometimes even noticeable better performance for the
halving compared to the appropriate doubling formulas. For these cases, we give
explicit halving formulas for the most common case.

In a normal double-and-add scalar multiplication, all but an almost insignificant
proportion of the additions and doublings should fall in the most common cases.
One can then implement explicit formulas only for the most common cases, and
use Cantor’s algorithm (see Section 2.6.2) when a special case occurs. In practise,
this approach does not create any measurable loss in the average performance
compared to an implementation which has explicit formulas for all possible cases.
The same is not so clearly true for the halve-and-add algorithm. However, since
the inverse operation of Cantor’s doubling algorithm cannot easily be written in
terms of polynomials, a halve-and-add algorithm must therefore contain explicit
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4. Arithmetic on Genus-3 Curves over Binary Fields

formulas for all possible cases of the halving operation.
Like in Chapter 3, we always work with the Mumford representation (see Theo-

rem 2.16) of a divisor class and obtain the different cases depending on the degree
of the first polynomial of the Mumford representation of the inputs and outputs.

Main results

The main results of this chapter are as follows:

(1) For genus-3 curves with h(x) = 1 (this is the optimal-performance case),
we provide explicit doubling formulas for all special cases, and we thereby
extend the formulas which are already published for the most common case
only [ATW08, FWW06, GKP04].

(2) In the optimal-performance case, we also provide explicit halving formulas
for all possible cases and therefore allow a complete implementation of a
DLP-based cryptosystem on a genus-3 curve using halving (and doubling)
of divisor classes.

(3) We look at three more general types of genus-3 hyperelliptic curves and
provide halving formulas which compare extremely well to the best previ-
ously known doubling formulas. It turns out that in those cases halving
is always faster. In some situations halving is almost twice as fast as the
corresponding doubling operation.

4.1. Choice of the field and divisor class halving

Throughout this chapter, we will assume that the field is F2d , where d is odd
and not divisible by 3. This is mainly due to security concerns, since various
versions of the Weil descent attack (see Appendix A.6) could be applied when d
admits a factor of 2 or 3 (for example, see [Gau04, GHS02, Thé03b]). In fact,
for cryptographic applications it is often assumed that d is a prime number. As
an added bonus, having d coprime to 6 means that we can take third, fifth and
seventh roots in the field (since the map α 7→ αi for i = 3, 5, 7 is an isomorphism
as 3, 5 and 7 are coprime to 2d−1), which allows us to simplify the curve equations
a little more.

In finite fields of characteristic 2, some operations which are computationally
hard in fields of odd characteristic become efficient, in particular the computation
of the square root of a field element. This observation led to the development of
halve-and-add algorithms, a variation of the double-and-add scalar multiplication
where the doubling operation is replaced with a halving (the representation of
the scalar is adjusted accordingly). Such an approach was first used for ellip-
tic curves [Knu99, Sch00b], and was recently extended to hyperelliptic curves of
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genus 2 (see Chapter 3 and [KKT05, Bir07, BT08]). In fact, some fields have
the property that the computation of square roots can be faster than the compu-
tation of squares [AT07, FHLM04]. It can therefore become a good strategy to
“replace” squares with square roots for curve arithmetic in these fields, and this
is exactly what our halving formulas do. Furthermore, since d will be odd, we will
have TR(1) = 1. In various places, we implicitly take advantage of the identity
TR(α) = TR(α2) (see (3) in Lemma 3.3) to simplify some trace computations.

To count the number of operations, we denote inversions by I, multiplications
by M, squares by S, square roots by SR, traces by TR and half-traces by HT.

4.2. Conditions on the order of the Picard group

We limit ourselves to curves for which the order of the Picard group is either
odd (h(x) constant) or 2 times an odd number. This restriction is needed to
get a better performance out of the halving. Given any hyperelliptic curve, the
halve-and-add algorithm allows us to compute the scalar multiple of a divisor
class, given that it is in a (sub)group of odd order. In this way, the preimage of
the doubling can always be computed and “becomes” unique (all other preimages
of the doubling have even order). The group order conditions are due to the
following reasons:

(1) To verify that the preimage is in the subgroup of odd order, we make sure
that it can be halved again as many times as we want. If the group contains
divisor classes of order 2r, we use as a test criterion that we can halve the
preimage (at least) r times, which obviously affects the cost of our halving
formulas. When r ≥ 2 (e.g. when there is a divisor class of order 4), the
increased work required for this check becomes too expensive for the halving
to be interesting.

(2) The number of preimages of the halving depends directly on the number
of divisor classes of order 2 in the group, which in turn depends on the
factorisation of h(x). If h(x) has r distinct irreducible factors (multiplicities
do not have an impact here), then we have 2r distinct preimages of the
doubling. Since we must identify the unique preimage of odd order, having
r > 1 would force us to choose between four or more divisor classes, which
increases the algorithmic cost of halving significantly. We will therefore
require r to be at most 1.

Note that if h(x) has r distinct irreducible factors, then the group order is divisible
by (at least) 2r, so asking the group order to be either odd or 2 times an odd
number removes all curves for which h(x) has 2 or 3 distinct irreducible factors.
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4.3. Types of curves

We can distinguish the genus-3 hyperelliptic curves in characteristic 2 according
to the degree of h(x) and the form of its factorisation over F2d . We find the
following types:

• Type Ia: h(x) is irreducible of degree 3.

• Type Ib: h(x) has degree 3 and is the product of an irreducible polynomial
of degree 2 and a linear factor (r = 2).

• Type Ic: h(x) has degree 3 and is the product of 3 distinct linear factors
(r = 3).

• Type Id: h(x) has degree 3 and is the product of 2 distinct linear factors,
one of which is repeated twice (r = 2).

• Type Ie: h(x) is the cube of a linear factor (degree 3, r = 1).

• Type IIa: h(x) is irreducible of degree 2.

• Type IIb: h(x) has degree 2 and is the product of 2 distinct linear factors
(r = 2).

• Type IIc: h(x) is the square of a linear factor (degree 2, r = 1).

• Type III: h(x) is linear (degree 1).

• Type IV: h(x) is constant (degree 0).

For each type of curve, we can use curve isomorphisms to “simplify” the equation
of the curve. This will be handled in the next subsection.

Due to our condition on the group order, we will limit ourselves to curves of
Types Ia, IIa, III and IV. Because of the structure of their 2-torsion group, curves
of Types Ie and IIc have very similar properties (and essentially the same number
of isomorphism classes) as curves of Type III. On the other hand, the higher
degree of h(x) in Type Ie and IIc makes them less efficient than curves of Type
III.

4.4. Forms of the curve equations

An imaginary hyperelliptic curve of genus 3 over F2d is of the form

C : y2 + h(x)y = f(x), (4.1)

where h(x) = h3x
3 + h2x

2 + h1x+ h0 6= 0 and f(x) = f7x
7 + f6x

6 + f5x
5 + f4x

4 +
f3x

3 + f2x
2 + f1x+ f0. It is customary to use isomorphisms to impose that f(x)
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is monic, i.e. that f7 = 1, but we will relax this condition for some curves as the
halving formulas are more efficient if we use the isomorphisms to force a specific
coefficient of h(x) to be 1 (which coefficient depends on the curve type).

For a curve given by (4.1), the possible isomorphisms are

x 7→ αx+ β and y 7→ γy + δx3 + εx2 + %x+ ζ, (4.2)

where both α and γ are non-zero. After applying the isomorphisms, the equation
is divided by γ2 to make it monic.

Proposition 4.1. Given an isomorphism that replaces f2i by f2i + ω2 + ω, then
we can restrict f2i to TR(f2i) ∈ F2.

Proof. Since f2i + TR(f2i) has trace 0, we can choose ω such that ω2 + ω = f2i +
TR(f2i). This choice of ω replaces f2i with TR(f2i). Note that the isomorphism
does not permit us to change the trace of f2i.

For the four types of curves where halving is interesting, we have:

(Ia) h3 6= 0 and h(x) irreducible:

We first use β = h2/h3 to remove h2. Once h2 = 0, h1 must be non-zero
(otherwise h(x) would not be irreducible), so we can set α =

√
h1/h3 and

γ =
√
h3

1/h3 to obtain h(x) = x3 + x+ h0.

We can then use δ to restrict f6 to F2, then ε to force f5 = 0, % to force
f4 = 0 and finally ζ to have f3 = 0. The curve equation is of the form

y2 + (x3 + x+ h0)y = f7x
7 + f6x

6 + f2x
2 + f1x+ f0, (4.3)

where f6 ∈ F2.

(IIa) h3 = 0, h2 6= 0 and h(x) is irreducible:

Using α = h1/h2 and γ = h2
1/h2 we can force h2 = h1 = 1. Since h(x) is

irreducible, we have TR(h1) = 1 and we can use β = HT(h1 + 1) to restrict
h(x) to x2 + x + 1. The remaining freedom on β (i.e. β ∈ F2) allows us to
impose TR(f7) · TR(f5) = 0.

We can then use δ to force f6 = 0, then ε to restrict f4 to F2, then % to force
f3 = 0 and finally ζ to have f2 = 0. The curve equation is of the form

y2 + (x2 + x+ 1)y = f7x
7 + f5x

5 + f4x
4 + f1x+ f0, (4.4)

where f4 ∈ F2 and TR(f7) · TR(f5) = 0.
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(III) h3 = h2 = 0 and h1 6= 1:

Taking α = (h2
1/f7)1/5 and γ = (h7

1/f7)1/5, we can force both h(x) and f(x)
to be monic. Once h1 = f7 = 1, we can use β = h0 to obtain h(x) = x.

We can then use δ to force f6 = 0, then ε to force f4 = 0, % to restrict f2 to
F2 and finally ζ to have f1 = 0. The curve equation is of the form

y2 + xy = x7 + f5x
5 + f3x

3 + f2x
2 + f0, (4.5)

where f2 ∈ F2.

(IV) h3 = h2 = h1 = 0 and h0 6= 0:

Taking α = (h2
0/f7)1/7 and γ = h0, we can have h(x) = 1 and force f(x) to

be monic.

Once f7 = 1, we can use β =
√
f5 to remove f5 from f(x). We can then use

δ to force f6 = 0, then ε to force f4 = 0, % to force f2 = 0 and finally ζ to
restrict f0 to F2. The curve equation is of the form

y2 + y = x7 + f3x
3 + f1x+ f0, (4.6)

where f0 ∈ F2.

Note that we did not include the non-singularity condition, nor conditions on the
group order in the descriptions of the different types. In terms of isomorphism
classes, Type Ia is the most common (with 2

3
q5 + O(q4) classes), followed by

Type IIa (with 3
2
q4 +O(q3) classes), then Type III (with 2q3 +O(q2) classes) and

finally Type IV (with 2q2 +O(q) classes).

4.5. Type IV: h(x) = 1

In this section, we consider the optimal-performance case, namely Type IV.
Curves of that type are preferred when computational speed is more important
than flexibility in the choice of the curve (even then, there are enough isomorphism
classes available for most applications).

Since the coefficients of the curve equation (the coefficients of h(x) and f(x))
have a direct impact on the computations in Cantor’s algorithm, it is quite natural
to use isomorphisms to obtain an equivalent curve with “simpler” coefficients (i.e.
getting coefficients equal to 0, restricting them to F2, etc). From the results of
the previous section, we can assume that curves of Type IV are of the form

C : y2 + y = x7 + f3x
3 + f1x+ f0, (4.7)

with f0 ∈ F2.
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4.5.1. Advantages of Type IV

As well as having all but two of the coefficients of the curve equation in F2 (and
many of those being 0), these curves offer other advantages:

(1) The doubling is significantly faster than for other types of curves, and also
much faster than the group addition.

(2) The curve C is not supersingular (see Theorem 1.2 in [SZ02] with n = 3).
This is an important advantage over the genus-1 and genus-2 situation where
curves with h = c are supersingular if c is a constant. Hence our genus-
3 curves are secure against specialised attacks as long as the order of the
Picard group is divisible by a large prime.

(3) Since h(x) = 1, the 2-rank of the curve C is 0.

Given any non-zero element D = [u, v] of the Picard group in Mumford
representation, its negative is

−D = [u,−v − h (mod u)] = [u, v + 1]. (4.8)

Since v 6≡ v + 1 (mod u) for all D 6= [1, 0], we have D 6= −D and therefore
[2]D 6= [1, 0] for all non-zero D in the Picard group of the curve, which
shows that there are no non-trivial 2-torsion elements (and the group order
is odd).

This simple fact is extremely useful for the halving formulas. It means that
the doubling map is a one-to-one function, rather than a two-to-one as it
is the case for the other curves considered in this chapter. The preimage of
the doubling will be unique, removing the need for a potentially expensive
verification step to find which of the preimage has odd order.

We will now give explicit formulas for the doubling and the halving of divisor
classes, and cover both the most frequent case and all other possible special cases.
Combined with the divisor class addition formulas in [ACD+05, ATW08, GKP04],
this allows to program the most efficient implementation of genus-3 hyperelliptic
curve group arithmetic.

4.5.2. Explicit doubling formulas

In the following, we give a complete study of all cases that can occur when per-
forming doubling of a divisor class on a genus-3 hyperelliptic curve of Type IV,
i.e. we assume that we are given a curve of the form (4.7) over a binary field. We
consider the different cases by looking at the degree of the polynomial ua in the
Mumford representation of a divisor class Da = [ua, va], where ua is monic, has
degree at most 3 and va has smaller degree than ua such that ua divides v2

a+va+f .
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We will give criteria to detect which case is present, depending on the coeffi-
cients of the polynomials ua and va. Therefore, we follow the steps of Cantor’s
algorithm to see how the degrees of the polynomials behave during the doubling.
The details of Cantor’s algorithm for curves of genus 3 are given in Algorithm 22.

Algorithm 22 Cantor’s doubling algorithm for genus-3 HEC in characteristic 2
with h(x) = 1 (Type IV)

Input: The divisor class D = [ua, va]

Output: The divisor class E = [uc, vc] such that E = [2]D

1: u1 ← u2
a, v1 ← v2

a + f mod u1

2: if deg(u1) ≤ 3 then

3: uc ← u1, vc ← v1

4: else

5: u2 ← monic
(
f+v1+v21

u1

)
, v2 ← v1 + 1 mod u2

6: if deg(u2) ≤ 3 then

7: uc ← u2, vc ← v2

8: else

9: uc ← monic
(
f+v2+v22

u2

)
, vc ← v2 + 1 mod uc

10: end if

11: end if

12: return [uc, vc]

Note that from now on, we will use the following notation: “Doubling n→ m”
(shortened to DBLnm) stands for a doubling where the degree of the the first
polynomial of the divisor class to be doubled is n and the degree of the first
polynomial of the target divisor class (in Mumford representation) is m. We will
use the same syntax for halving (shortened to HLVnm).

4.5.3. Distinguishing the cases

To distinguish the different doubling cases, we start with a divisor class Da =
[ua, va] and investigate (depending on the degree of ua) which degrees are possible
for uc in Dc = [uc, vc] = [2]Da.

If ua has degree 3, then the first step in Algorithm 22 computes u1 = u2
a and

v1 ≡ v2
a + f mod u1. We obtain

u1 = u2
a = x6 + u2

a2x
4 + u2

a1x
2 + u2

a0,
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and

v1 = v2
a + f(x) (mod u1)

= u2
a2x

5 + v2
a2x

4 + (u2
a1 + f3)x3 + v2

a1x
2 (4.9)

+(u2
a0 + f1)x+ (f0 + v2

a0).

Since u1 has degree 6, we must do at least one reduction step, so we compute

u2 = Monic

(
f + v1 + v2

1

u1

)
.

We now have different possibilities for deg(u2), depending on the degree of v1.
Since deg(u1) = 6, the degree of v1 is less than or equal to 5. We have the
following three cases:

(1) When deg(v1) is equal to 1, 2 or 3, the dominating part of the numerator
comes from f . The degree of u2 is then deg(u2) = deg(f) − deg(u1) = 1.
Cantor’s algorithm will then output uc ← u2 of degree 1. This is case
DBL31.

(2) When deg(v1) = 4, the numerator is dominated by v2
1. The degree of u2 is

then deg(u2) = deg(v2
1)− deg(u1) = 2. Cantor’s algorithm outputs uc ← u2

of degree 2. This is case DBL32.

(3) When deg(v1) = 5, the numerator is again dominated by v2
1, but this time we

have deg(u2) = 4. Note that we also have deg(v2) ≤ 3. Cantor’s algorithm
will proceed with a second reduction step, computing uc as

uc = Monic

(
f + v2 + v2

2

u2

)
. (4.10)

The numerator is once again dominated by f , and uc has degree deg(f) −
deg(u2) = 3. This is case DBL33.

If ua has degree 2, then deg(u1) = 4 and deg(v1) ≤ 3. We must do one reduction
step, with

u2 = Monic

(
f + v1 + v2

1

u1

)
, (4.11)

where the numerator is dominated by f . The degree of u2 is deg(u2) = deg(f)−
deg(u1) = 3 and Cantor’s algorithm will output uc ← u2 of degree 3. This is case
DBL23.

Finally, if ua has degree 1, then deg(u1) = 2 and deg(v1) ≤ 1 and Cantor’s
algorithm outputs uc = u1 and vc = v1. This is case DBL12.
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Doubling 3→ 3

This is in fact the most common case of doubling From the previous section,
we know this will happen when deg(v1) = 5, which means u2

a2 6= 0, i.e. when
deg(ua) = 3 and ua2 6= 0.

We can now state the actual formula to double in the 3→ 3 case. This formula
is taken from [FWW06, Table XXVI], although we adapted the notation to the
one used in this chapter.

Algorithm 23 (DBL33, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0], ua2 6= 0

Output: [2]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ← u2
a2, s1 ← u2

a1, s2 ← v2
a2, s3 ← f3 + s1, s4 ← s−1

0 . 1I+3S

2: s5 ← s4s2, s6 ← s4s3, uc1 ← s2
5 + s0, s7 ← s0uc1 . 3M+1S

3: s8 ← s2
6 + s1 + s7, s9 ← s7 + s3, s10 ← s2uc1, s11 ← s2s8 . 2M+1S

4: s12 ← s11 + f0 + v2
a0, s13 ← s10 + v2

a1 + s4, s14 ← s2
4 . 3S

5: s15 ← (s0 + s2)(s8 + s14) + s11 + f1 + u2
a0 + s4, uc2 ← s2

9 . 1M+2S

6: uc0 ← uc2uc1 + s2
13 + s14, s16 ← s9uc0, s17 ← s9uc1 . 3M+1S

7: s18 ← s9uc2, vc2 ← s13 + s18, vc1 ← s15 + s17, vc0 ← s12 + s16 . 1M

8: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0] . 1I+10M+11S

Doubling 3→ 2

From Subsection 4.5.3 (2), we know that this case occurs when deg(v1) = 4. And
from (4.9) this happens if and only if deg(ua) = 3, ua2 = 0 and va2 6= 0.

Algorithm 24 (DBL32, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x3 + ua1x+ ua0, va2x
2 + va1x+ va0], va2 6= 0

Output: [2]D = [x2 + uc1x+ uc0, vc1x+ vc0]

1: s0 ← v2
a2, s1 ← s−1

0 , uc1 ← s2
1, s2 ← f3 + u2

a1, s3 ← s2
2 . 1I+4S

2: uc0 ← uc1s3, s4 ← s1 + s2, s5 ← s4uc0 . 2M

3: s6 ← v2
a1 + (s0 + s4)(uc0 + uc1) + s5 + s1, s7 ← s6uc0 . 2M+1S

4: s8 ← s6uc1, vc1 ← f1 + u2
a0 + s5 + s8, vc0 ← f0 + 1 + v2

a0 + s7 . 1M+2S

5: return [x2 + uc1x+ uc0, vc1x+ vc0] . 1I+5M+7S

60



4.5. Type IV: h(x) = 1

Doubling 3→ 1

From Subsection 4.5.3 (1), we see that this case occurs when deg(v1) is less than
or equal to 3, and from (4.9) this happens when deg(ua) = 3, ua2 = 0 and va2 = 0.

Since any divisor class must satisfy ua | v2
a + hva − f , it is easy to show that

we must also have va1 = 0. We can therefore assume that the input divisor class
has the form [x3 + ua1x + ua0, va0] and the output divisor class is of the form
[x+ uc0, vc0].

Note that in the operation count we assumed f 2
3 was precomputed. However,

because of the low probability of having to perform the 3 → 1 doubling, it may
be considered more useful (in terms of memory usage) to compute f 2

3 only when
it is needed, giving an operation count of 2M+6S.

Algorithm 25 (DBL31, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x3 + ua1x+ ua0, va0]

Output: [2]D = [x+ uc0, vc0]

1: s0 ← u2
a1, s1 ← f 2

3 , s2 ← s2
0, uc0 ← s1 + s2, s4 ← u2

c0 . 3S

2: vc0 ← uc0 ((s0 + f3)s4 + (u2
a0 + f1)) + v2

a0 + f0 + 1 . 2M+2S

3: return [x+ uc0, vc0] . 2M+5S

Doubling 2→ 3

As stated in Section 4.5.3, this is the only case that can occur when deg(ua) = 2.
The first step of Cantor’s algorithm gives us u1 = u2

a = x4 + u2
a1x

2 + u2
a0 and

v1 = (f3 + u2
a0 + u4

a1)x3 + v2
a1x

2 + (u2
a1u

2
a0 + f1)x+ (f0v

2
a0), (4.12)

after which one reduction step is performed to obtain uc and vc. The formula is
as follows:

Algorithm 26 (DBL23, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x2 + ua1x+ ua0, va1x+ va0]

Output: [2]D = [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: uc1 ← u2
a1, s0 ← f3 + u2

c1, s1 ← s0 + u2
a0, uc2 ← s2

1, s2 ← v2
a1 . 5S

2: s3 ← s2 + s1ua1, uc0 ← s2
3, s4 ← s1uc0, s5 ← s1uc2 . 3M+1S

3: vc2 ← s2 + s5, vc1 ← f1 + s0uc1, vc0 ← f0 + v2
a0 + 1 + s4 . 1M+1S

4: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0] . 4M+7S
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Doubling 1→ 2

This is the last case which can occur when performing a doubling. Since deg(u2
a) =

2 < 3, only the first step of Cantor’s algorithm is necessary, and we obtain
uc = u1 = u2

a = x2 + u2
a0 and

vc = v1 = (f1 + u6
a0 + f3u

2
a0)x+ (v2

a0 + f0). (4.13)

We get the very short formula:

Algorithm 27 (DBL12, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x+ ua0, va0]

Output: [2]D = [x2 + uc0, vc1x+ vc0]

1: uc0 ← u2
a0, vc0 ← f0 + v2

a0, vc1 ← f1 + uc0(f3 + u2
c0) . 1M+3S

2: return [x2 + uc0, vc1x+ vc0] . 1M+3S

4.5.4. Explicit halving formulas

Having developed formulas for all the possible cases of divisor class doubling, we
can now look at halving these same classes of our proposed genus-3 curves over
binary fields. Our general approach will consist in inverting (or “backtracking”)
each one of the doubling cases to obtain the halving formulas. We will therefore
have five cases of halvings:

• Halving 3→ 3 (from the doubling 3→ 3)

• Halving 2→ 3 (from the doubling 3→ 2)

• Halving 1→ 3 (from the doubling 3→ 1)

• Halving 3→ 2 (from the doubling 2→ 3)

• Halving 2→ 1 (from the doubling 1→ 2)

Before going into the specifics of each formula, let us consider how to distinguish
between the different cases. Let us consider the halving of a divisor class [uc, vc]
known to come from the doubling of a divisor class [ua, va] (to be determined
later):

• If deg(uc) = 1, then we can only be in the 1→ 3 case.
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• If deg(uc) = 2, then deg(ua) was either 1 (doubling 1 → 2)—in which case
uc(x) is of the form x2 + uc0—or 3 (doubling 3 → 2). To have a simple
distinguishing condition, we would like to say that if [uc, vc] comes from a
doubling 3 → 2 then uc(x) is of the form x2 + uc1x + uc0 with uc1 6= 0,
and indeed, an easy computation from the doubling formula shows that
uc1 = 1/v4

a2, where va2 6= 0 as we are coming from the 3→ 2 doubling case.

• If deg(uc) = 3, then deg(ua) was either 2 (doubling 2 → 3) or 3 (doubling
3 → 3). There is no direct way to distinguishing between these two cases
simply by looking at the form of uc and vc. However, the doubling formulas
do present us with a natural candidate when we notice that the 3 → 3
doubling contains an inversion while the 2 → 3 doubling does not. Not
surprisingly, the same situation happens in the halving formulas. If we
assume that [uc, vc] is in the halving 3→ 3 case and try to work backwards
through the 3→ 3 doubling, we need to compute the inverse of uc0 + v2

c1 +
uc2(uc1 + u2

c2) (or it’s square root), so the operation cannot be valid if this
value is 0 (i.e. it must be 6= 0). On the other hand, if we take the result of a
2→ 3 doubling and substitute the values of the uc0, uc1, uc2 and vc1 (in terms
of the coefficients of ua and va) in the expression uc0 + v2

c1 + uc2(uc1 + u2
c2),

then we can verify that it must always be 0. We can therefore use the value
of uc0 + v2

c1 + uc2(uc1 + u2
c2) to safely distinguish between the two cases.

Now that the different cases can be identified, we can look at the formulas.
To have a more “standard” look, they are written with input [ua, va] and output
[uc, vc] = [1

2
][ua, va], so the condition to distinguish between the cases are ua1

equal or not to 0 when deg(ua) = 2 and ua0 + v2
a1 + ua2(ua1 + u2

a2) equal or not to
0 when deg(ua) = 3.

Halving 3→ 3

We can now optimise the halving 3 → 3. In general, we cannot distinguish this
case from the halving 3 → 2 until s4 = ua0 + v2

a1 + ua2(ua1 + u2
a2) has been

computed. If s4 = 0, then we must change to the same line of Algorithm 11.
Note that both ua0

√
ua2 and ua2

√
ua2 are needed in both the 3 → 3 and 3 → 2

halvings, so they can be computed before we distinguish the two cases.

Algorithm 28 (HLV33, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [1
2
]D = [x3 + uc2x

2 + uc1x+ uc0, vc2x
2 + vc1x+ vc0]

1: s0 ←
√
ua2, s1 ← ua2s0, s2 ← ua0s0, s3 ← va2 + s1 . 2M+1SR

2: s4 ← ua0 + s2
3 + ua1ua2, s5 ←

√
s4, s6 ← s−1

5 . 1I+1M+1S+1SR
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3: s7 ← ua1s6, s8 ← s0 + s7, s9 ← s6

√
s6 + ua1 . 2M+1SR

4: s10 ← s3 + ua1s9 + s5, s11 ← s8 + f3, s12 ← s11 + s4s
2
8 + s7 . 2M+1S

5: s13 ← s12s9, s14 ← va1 + ua1s0 + (s4 + s12)(s9 + s6) + s13 + s5 . 3M

6: s15 ← va0 + s2 + s13, vc2 ←
√
s9, vc1 ←

√
s10 . 2SR

7: vc0 ←
√
s15 + f0, uc2 ←

√
s6, uc1 ←

√
s11, uc0 ←

√
s14 + f1 . 4SR

8: return [x2 + uc0, vc1x+ vc0] . 1I+10M+2S+9SR

Halving 2→ 3

Since this case of the halving is the inverse of a 3 → 2 doubling, we know that
the output must be of the form [x3 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]. However, the
output has one more coefficient than the input, and it is not enough to simply
reverse the doubling formula—doing so would leave us with q possible choices for
the output, which is clearly impossible as the halving operation is injective.

To solve this problem, we must recall the last condition in Theorem 2.16, i.e.
that uc must divide v2

c+vc+f if [uc, vc] is a divisor class. Computing the coefficient
of x2 in

(vc2x
2 + vc1x+ vc0)2 + (vc2x

2 + vc1x+ vc0) + f (mod x3 + uc1x+ uc0),

we find that vc2 + v2
c1 + uc1v

2
c2 must be 0 (since the whole equation must equal

0), giving us the relation vc1 =
√
vc2 + uc1v2

c2 which allows us to complete the
formula.

Algorithm 29 (HLV23, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x2 + ua1x+ ua0, va1x+ va0]

Output: [1
2
]D = [x3 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

1: s0 ←
√
ua1, s1 ← s−1

0 , vc2 ←
√
s1, s2 ←

√
ua0, s3 ← s1s2 . 1I+1M+3SR

2: s6 ← s1ua0, uc1 ←
√
s3 + f3, s4 ← vc2 + uc1s1, vc1 ←

√
s4 . 2M+2SR

3: , s5 ← s3 + s0, s7 ← (s4 + s6)ua1, s8 ← ua0 + u2
a1 . 1M+1S

4: s9 ← s5s8, s10 ← s5ua1, uc0 ←
√
f1 + s9 + s7 + va1 . 2M+1SR

5: s11 ← s4 + s6 + s10, vc0 ←
√
f0 + 1 + s11ua0 + va0 . 1M+1SR

6: return [x3 + uc1x+ uc0, vc2x
2 + vc1x+ vc0] . 1I+7M+1S+7SR
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Halving 1→ 3

Just as in the 2→ 3 case, the output has more coefficients than the input, giving
us difficulties to reverse the doubling formula. This time, the output must be
of the form [x3 + uc1x + uc0, vc0], and once again the solution can be found in
Theorem 2.16. We compute the coefficient of x in

v2
c0 + vc0 + f(x) (mod x3 + uc1x+ uc0)

to find that f1 + u2
c0 + uc1f3 + u3

c1 must be 0, and we can complete the formula
using the relation uc0 =

√
f1 + uc1(f3 + u2

c1).

Algorithm 30 (HLV13, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x+ ua0, va0]

Output: [1
2
]D = [x3 + uc1x+ uc0, vc0]

1: s0 ←
√
ua0 + f3, uc1 ←

√
s0, s1 ← u2

a0 . 1S+2SR

2: s2 ← (f3 + s0)uc1, s3 ← (f3 + s0)s1, uc0 ←
√
f1 + s2 . 2M+1SR

3: vc0 ←
√
va0 + ua0 (s3 + s2) + f0 + 1 . 1M+1SR

4: return [x3 + uc1x+ uc0, vc2x
2 + vc1x+ vc0] . 3M+1S+4SR

Halving 3→ 2

Although reversing the 2 → 3 doubling formula can be done in 2M and 5SR,
distinguishing the 3 → 2 halving from the 3 → 3 case requires a few more
operations.

Algorithm 31 (HLV32, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [1
2
]D = [x2 + uc1x+ uc0, vc1x+ vc0]

1: s0 ←
√
ua2, s1 ← ua2s0, s2 ← ua0s0, s3 ← va2 + s1 . 2M+1SR

2: s4 ← ua0 + s2
3 + ua1ua2, uc1 ←

√
ua1, uc0 ← ua1 +

√
s0 + f3 . 1M+1S+2SR

3: vc1 ←
√
v2 + s1, vc0 ←

√
va0 + f0 + 1 + s2 . 2SR

4: return [x2 + uc1x+ uc0, vc1x+ vc0] . 3M+1S+5SR
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Halving 2→ 1

This is the final case of halving, and the simplest one.

Algorithm 32 (HLV21, h(x) = 1, f(x) = x7 + f3x
3 + f1x+ f0)

Input: D = [x2 + ua0, va1x+ va0]

Output: [1
2
]D = [x+ uc0, vc0]

1: uc0 ←
√
ua0, vc0 ←

√
va0 + f0

2: return [x+ uc0, vc0] . 2SR

4.6. Halving for other types of curves

In this section, we consider halving formulas for curves of genus 3 with h irre-
ducible (and non-constant), i.e. curves of Type Ia, IIa, and III.

In general, it would be safe to say that the cost of the halving operation increases
with the degree of h, but this is in a way offset by having a larger number of
isomorphism classes (in particular when h is irreducible), giving us more flexibility
in the choice of the curves.

Unlike the curves in the previous section (Type IV), the doubling of a divisor
class admits two preimages, and we must distinguish which of the two has odd
order. Since the doubling is a 2-to-1 map, the structure of the special cases will
be somewhat altered. How to deal with this altered situation will be described in
Subsection 4.6.1.

In the following subsections, we will study the three types of curves in increasing
order of complexity (i.e. increasing the degree of h). For each type of curve, we
will “define” the different cases (i.e. describe how to distinguish them) and obtain
necessary and sufficient conditions under which a divisor class can be halved. This
will allow us to give a simple criterion for the curve to have order 2r, where r is
odd, after which we give the explicit formulas for the most common case.

Finally, we will analyse the results in Subsection 4.6.5.

4.6.1. Halving 3→ 3 versus special cases

If we look at the doubling algorithm when deg(h) > 0, the most obvious difference
is that we cannot ignore the gcd of h and ua. If gcd(ua, h) 6= 1, we first divide
ua by gcd(ua, h), and reduce va accordingly, after which the “normal” structure
of special cases applies (clearly only the doublings 2→ 3 and 1→ 2 are possible
if ua/ gcd(ua, h) is different from 1).

The observation on gcd(ua, h) 6= 1 is very indicative of the problem we face
with the special cases of halving, but also hints at the solution. In the curves
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we are interested in this section, the doubling is a 2-to-1 function, so to compute
the halving we will find two possible preimages, but these preimages could have
different degrees (which complicates the distinction between the different special
cases). On the other hand, the difference between the two preimages is always
the unique divisor class of order 2, so once we can compute a preimage the other
one can be found using Cantor’s algorithm (adding the divisor class of order 2).
Note that the divisor class of order 2 is of the form [h, vh] when h is irreducible,
and of the form [x,

√
f0] when h is a square or a cube.

To denote the halving cases, we will base ourselves on the lowest degree of the
preimage, and then aggregate the degree of the other preimage if it is different.
For example, HLV32/33 indicates that the input has degree 3, that one of the two
preimages has degree 2 and the second one has degree 3. If both preimages have
the same degree, we keep the same notation as before (for example HLV23). The
main advantage of this notation is that the preimage of lowest degree is generally
the one that closely matches the corresponding case for Type-IV curves.

In fact, when the preimages have distinct degrees, the second preimage can
often be found simply by adding the (unique) divisor class of order 2 to the first
preimage using Cantor’s algorithm without the reduction step (as long as the total
degree remains less than 3), and it is usually more efficient to compute it explicitly
in this way. When a reduction step would be required to add the divisor class of
order 2, we could still use Cantor’s algorithm, but it appears more efficient to go
back to inverting the doubling. We observe that those cases are due to certain
coefficients being 0 in the doubling, leading to “degenerate” quadratic equations,
for example z2 + 0z = α (which has a double root instead of two distinct ones).

4.6.2. Type III: h(x) = x

According to Section 4.4, curves of Type III are of the form

C : y2 + xy = x7 + f5x
5 + f3x

3 + f2x
2 + f0, (4.14)

where f2 ∈ F2. The Picard group of these curves has precisely one divisor class
of order 2, which is of the form [x,

√
f0].

Theorem 4.2. Let Da = [ua, va] be a divisor class in Pic0(C). If deg(ua) = 3,
then Da can be halved if and only if TR(ua1((u2

a2 + f5)ua2 + v2
a2 + ua0)) = 0.

If deg(ua) = 2, then Da can be halved if and only if TR(ua1((ua0 + u2
a1)(ua0 +

f5) + u4
a1 + f3)) = 0. If deg(ua) = 1, then Da can be halved if and only if

TR(ua0(u2
a0(u2

a0 + f5) + f3) + f2) = 0.

Proof. To halve a divisor class Da = [ua, va], we assume that it is the image under
the doubling of a divisor class Dc = [uc, vc]. To perform the halving, we work our
way backwards through the doubling of Dc, trying to solve for the coefficients of
uc and vc given the coefficients of ua and va (the form of uc and vc are determined
by the halving case).
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In cases HLV33, HLV23 and HLV13, the halving requires us to solve an equation
of the form z2 + z + α = 0 at some point in the computations. If Da is indeed
equal to [2]Dc for some F2d-rational divisor class Dc, then an F2d-rational root
of z2 + z + α = 0 must exist (since all the operations in Cantor’s algorithm are
performed over F2d). If TR(α) = 1, then no such root can exist, so a divisor class
must have TR(α) = 0 if we want to halve it.

For cases HLV21/22 and HLV32/33, it is always possible to halve them, but
there are special conditions on the coefficients of ua and va and it can be shown
that these conditions force α = 0 (and obviously TR(α) = 0). This gives us the
necessity of the trace conditions.

To complete the proof, we must show that the trace conditions are also suf-
ficient. To do this, we show that as long as that condition holds for a reduced
divisor, then applying one of the halving formula to this divisor will return an
output that is a valid divisor. By construction (of the formula), the double of
that new divisor must be the input of our halving, hence this input can be halved.
Note that being able to compute two F2d-rational polynomials uc and vc with the
halving formulas is not sufficient on its own to give us a divisor. We must also
verify that v2

c + vch+ f is divisible by uc.

We explain how to do this in the HLV33 case, the other cases follow the same
pattern. We begin with a divisor class [ua, va], i.e. v2

a + vah + f ≡ 0 (mod ua).
The coefficients of x0, x1 and x2 in this equality give us 3 coefficient identities, the
“divisibility conditions”. To obtain the halving formulas, we compute a sequence
of pairs of polynomials [ui, vi] which should all be semi-reduced divisors if we want
the output to be a reduced divisor (rather than a random pair of polynomials).

From [ua, va], we first compute [u2, v2] using the polynomial equations

ua = Monic

(
v2

2 + v2h+ f

u2

)
,

va ≡ v2 + h(x) (mod ua),

v2
2 + v2h+ f ≡ 0 (mod u2)

(working backwards through the second reduction and making sure we have a
semi-reduced divisor). These equations give us 10 identities that must be satisfied
by the coefficients of u2 and v2. We use 7 of these identities to compute the
coefficients, and the 3 remaining identities become our new divisibility conditions.
To show that [uc, vc] is a semi-reduced divisor, we use the 7 identities of the
halving formula to show that the 3 divisibility conditions of [uc, vc] imply the
3 new divisibility conditions (once all 10 identities are satisfied, so are the 3
polynomial equations).

We then repeat the same idea to show that [u1, v1] (first reduction) is also a
semi-reduced divisor: To compute the coefficients of u1 and v1, we used 9 of the
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13 coefficient identities in the equations

u2 = Monic

(
v2

1 + v1h+ f

u1

)
,

v2 ≡ v1 + h (mod u1),

v2
1 + v1h+ f ≡ 0 (mod u1).

We are left with 4 divisibility conditions, which can be shown to be implied by
the 3 divisibility conditions on u1 and v1 (once again using the 9 identities of the
halving formula to perform the simplifications).

To finish, we have to show that v2
0 + v0h + f ≡ 0 (mod u0), where u0 =

√
u1

and v0 ≡ v1 (mod u0) (i.e. performing the composition step backwards). This
comes directly from v2

1 + v1h + f ≡ 0 (mod u1). Since this halving case comes
from gcd(uc, h) = 1 in the doubling of [uc, vc] (the preimage of the doubling), we
have uc = u0 and vc = v0 and all the divisibility conditions are already obtained.

To complete the proof, this process is repeated for the other halving cases,
showing that in all cases the preimages computed are valid divisors if the trace
conditions are satisfied. Note that for the HLV21/22 and HLV32/33 cases there
is only one possible choice for u0 and v0. The first preimage (of lower degree)
corresponds to gcd(uc, h) = 1 and no further work is required. The second preim-
age corresponds to gcd(uc, h) = x and the divisibility conditions come from the
addition of the reduced divisor [u0, v0] to the reduced divisor of order 2 (using
Cantor’s algorithm, which does not require any reduction step in this case).

Corollary 4.3. The Picard group of the curve C given by (4.14) has order 2r,
where r is odd, if and only if f2 = 1.

Proof. The Picard group of the curve C has exactly one divisor class of order 2,
namely [x,

√
f0]. The order of the Picard group is divisible by 4 if and only if

[x,
√
f0] can be halved. From Theorem 4.2, this is possible if and only if TR(f2) =

0. Since f2 ∈ F2, we find that Pic0(C) has a divisor class of order 4 if and only if
f2 = 0.

Observe that if Dc1 and Dc2 are the two preimages of Da under the doubling,
then Dc1 − Dc2 = [x,

√
f0] = Dc2 − Dc1 , i.e. the difference of two preimages is

the unique divisor class of order 2. This observation allows us to distinguish the
different special cases.

Remark 4.4. Let Da = [ua, va] be a divisor class in Pic0(C) that can be halved
and Dc = [uc, vc] = [1

2
]Da its preimage (under the doubling) of odd order.

(1a) If deg(ua) = 3 and v2
a2+ua2(u2

a2+ua1+f5)+
√
ua2+ua0 6= 0, then deg(uc) = 3

and we are in case HLV33.

(1b) If deg(ua) = 3 and v2
a2+ua2(u2

a2+ua1+f5)+
√
ua2+ua0 = 0, then deg(uc) = 2

or 3 (with uc0 = 0 in the second case) and we are in case HLV32 or HLV33.
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(2a) If deg(ua) = 2 and ua1 6= 0, then deg(uc) = 2 and we are in case HLV23.

(2b) If deg(ua) = 2 and ua1 = 0, then deg(uc) = 1 or 2 (with uc0 = 0 in the
second case) and we are in case HLV21 or HLV22.

(3) If deg(ua) = 1, then deg(uc) = 3 and we are in case HLV13.

We obtain the following halving formulas:

Algorithm 33 (HLV33, h(x) = x, f(x) = x7 + f5x
5 + f3x

3 + x2 + f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [1
2
]D = [x3 + uc2x

2 + uc1x+ uc0, vc2x
2 + vc1x+ vc0]

1: s0 ←
√
ua2, s1 ← ua1 + f5, s2 ← s0ua2 + va2, s3 ← s1ua2 . 2M+1SR

2: s4 ← s0 + s2
2 + s3 + ua0, s5 ← s4ua1, s6 ← s0ua1 + va1 + 1 . 2M+1S

3: s7 ← s0ua0 + va0, s8 ← s2 + f3 + (s4 + s1)(ua2 + ua1) + s3 + s5 . 2M

4: s9 ← s−1
4 , s10 ←

√
s9, s11 ← s10s1, s12 ← s11 + s0 . 1I+1M+1SR

5: s13 ← HT(s5), s14 ← s9s13 . 1M+1HT

6: s15 ← s2 + (s14 + s10)(s4 + s1) + s11 + s13, s16 ← s14s8 + s7 . 2M

7: s17 ← s14 + f5, uc2 ←
√
s17, s18 ← s15 + f3, uc1 ←

√
s18 . 2SR

8: s19 ← s16 + f1, uc0 ←
√
s19, s20 ← s10s8 + s13 + s6 + 1 . 1M+1SR

9: s21 ← s10uc2, s22 ← s14 + s21, s23 ← s22uc1 . 2M

10: s24 ← s12 + (s10 + s22)(uc1 + uc2) + s21 + s23, s25 ← s24uc0 . 2M

11: vc2 ← s15 + s23 + (s10 + s24)(uc0 + uc2) + s21 + s25 . 1M

12: s26 ← TR(uc1(uc2(s17 + f5) + v2
c2 + uc0)) . 2M+1S+1TR

13: if s26 = 1 then

14: s20 ← s20 + 1, s27 ← s10
√
s8, s16 ← s16 + s2

27 . 1M+1S+1SR

15: uc2 ← uc2 + s10, s28 ← s10
√
s1, uc1 ← uc1 + s28 . 1M+1SR

16: uc0 ← uc0 + s27, s21 ← s21 + s9, s23 ← s23 + s22s28 . 1M

17: s24 ← s24 + s10(s22 + s28), s25 ← s24uc0 . 2M

18: vc2 ← s15 + s2
28 + s23 + (s10 + s24)(uc0 + uc2) + s21 + s25 . 1M+1S

19: end if

20: vc1 ← s20 + (s24 + s22)(uc0 + uc1) + s23 + s25, vc0 ← s16 + s25 . 1M

21: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

. 1I+25M+4S+7SR+1HT+1TR

We have a worst-case cost of 1I+25M+4S+7SR+1HT+1TR, which compares
quite well with the doubling cost of 1I+44M+6S of [GKP04].
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However, the conditional block of lines 13 to 19 is only used when the initial
“choice” of the root of z2 + z + s5 = 0 (i.e. HT(s5) rather than HT(s5) + 1) is
incorrect and the variables computed afterwards must be corrected. This means
that the 6M+2S+2SR associated to that correction in the conditional block will
only be needed half of the time (on average), and the average cost of the halving
operation becomes 1I+22M+3S+6SR+1HT+1TR.

4.6.3. Type IIa: h(x) = x2 + x+ 1

According to Section 4.4, curves of Type IIa are of the form

C : y2 + (x2 + x+ 1)y = f7x
7 + f5x

5 + f4x
4 + f1x+ f0, (4.15)

where f4 ∈ F2 and TR(f7) · TR(f5) = 0. The Picard group of these curves has
precisely one divisor class of order 2, which is of the form [h, vh] = [x2 +x+ 1, vh].

Theorem 4.5. Let Da = [ua, va] be a divisor class in Pic0(C). If deg(ua) = 3,
then Da can be halved if and only if TR(f7ua0 + f4 + ua2(f7(ua1 + u2

a2) + f5 +
f7)) = 0. If deg(ua) = 2, then Da can be halved if and only if TR(ua1(f7(u2

a1 +
ua0) + f5 + f7)) = 0. If deg(ua) = 1, then Da can be halved if and only if
TR(f4 + ua0(f7u

2
a0 + f5 + f7)) = 0.

Proof. We use the same approach as in Theorem 4.2. Note that some of the
formulas require solving two quadratic equations. In those cases, it is easy to
verify that changing the root of the first quadratic equation changes the trace
of the constant term of the second quadratic equation by 1, so only one of the
two roots of the first quadratic equation allows us to compute an F2d-rational
preimage.

Corollary 4.6. The Picard group of the curve C given by (4.15) has order 2r,
where r is odd, if and only if TR(f7) 6= TR(f5).

Proof. The Picard group of the curve C has exactly one divisor class of order 2,
namely [x2 +x+ 1, vh]. The order of the Picard group is divisible by 4 if and only
if [x2 + x+ 1, vh] can be halved. From Theorem 4.5, this is possible if and only if
TR(f5 + f7) = 0 and since TR(f7) ·TR(f5) = 0 we find that Pic0(C) has a divisor
class of order 4 if and only if TR(f7) = TR(f5) = 0.

Observe that if Dc1 and Dc2 are the two preimages of Da under the doubling,
then Dc1 −Dc2 = [x2 +x+ 1, vh] = Dc2 −Dc1 , i.e. the difference of two preimages
is the unique divisor class of order 2. This observation allows us to distinguish
the different special cases.

Remark 4.7. Let Da = [ua, va] be a divisor class in Pic0(C) that can be halved
and Dc = [uc, vc] = [1

2
]Da its preimage (under the doubling) of odd order.
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(1a) If deg(ua) = 3 and v2
a2+va2+ua2(f5+ua1f7+u2

a2f7)+
√
ua2f7+f4+ua0f7 6= 0,

then deg(uc) = 3 and we are in case HLV33.

(1b) If deg(ua) = 3 and v2
a2+va2+ua2(f5+ua1f7+u2

a2f7)+
√
ua2f7+f4+ua0f7 = 0,

then deg(uc) = 2 or 3 and we are in case HLV32 or HLV33.

(2a) If deg(ua) = 2 and ua1 6= 0, then deg(uc) = 2 and we are in case HLV23.

(2b) If deg(ua) = 2 and ua1 = 0, then deg(uc) = 1 or 2 (with uc2 = uc1 = uc0 + 1
in the second case) and we are in case HLV21 or HLV23.

(3) If deg(ua) = 1, then deg(uc) = 3 and we are in case HLV13.

Algorithm 34 (HLV33, h(x) = x2 +x+ 1, f(x) = f7x
7 + f5x

5 + f4x
4 + f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [1
2
]D = [x3 + uc2x

2 + uc1x+ uc0, vc2x
2 + vc1x+ vc0]

1: s0 ← ua2f7, s1 ←
√
s0, s2 ← (s1 + f5)f−1

7 + ua1 . 2M+1SR

2: s3 ← s1ua2 + va2 + 1, s4 ← s1ua1 + va1 + 1, s5 ← s1ua0 + va0 + 1 . 3M

3: s6 ← s2s0, s7 ← (s6 + s2
3 + s3 + s1 + f4)f−1

7 + ua0, s8 ← s−1
7 . 1I+2M+1S

4: s9 ← (s7s0 + s4 + s3 + s1)f−1
7 + s2ua1, s10 ← f7s7, s11 ← HT(s10) . 4M+1HT

5: s12 ← s11s8, s13 ← (f7s2 + s1 + f5 + s12)s7, s14 ← TR(s13) . 3M+1TR

6: if s14 = 1 then

7: s11 ← s11 + 1, s12 ← s12 + s8, s13 ← s13 + 1

8: end if

9: s15 ← HT(s13), s16 ← s15s8, s17 ← s12s2 + s1 . 2M+1HT

10: s18 ← s16s2 + s3 + 1 + s11, s19 ← s12s9 + s4 + 1 + s15 . 2M

11: s20 ← (s12 + s8 + f7)f−2
7 , s21 ← (s17 + s16 + s12 + f5)s20 . 2M

12: uc2 ←
√
s21, s22 ← (s19 + s18 + s17)s20, uc1 ←

√
s22 . 1M+2SR

13: s24 ← (s23 + s19 + f1)s20, uc0 ←
√
s24 . 1M+1SR

14: s25 ← TR(uc0f7 + f4 + uc2(f5 + f7(uc1 + s21 + 1))) . 3M+1TR

15: if s25 = 1 then

16: s16 ← s16 + s8, s26 ← s8s2, s18 ← s18 + s26, s19 ← s19 + 1 . 1M

17: s27 ← s8s9, s23 ← s23 + s27, uc0 ← uc0 +
√

(s27 + 1)s20 . 2M+1SR

18: uc2 ← uc2 +
√
s8s20, uc1 ← uc1 +

√
(s26 + 1)s20 . 2M+2SR

19: end if

20: s28 ← s12uc2, s29 ← s16 + s28, s30 ← s29uc1 . 2M
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21: s31 ← s17 + (s12 + s29)(uc2 + uc1) + s28 + s30, s32 ← s31uc0 . 2M

22: vc0 ← s23 + s32, vc1 ← s19 + (s29 + s31)(uc1 + uc0) + s30 + s32 . 1M

23: vc2 ← s18 + (s12 + s31)(uc2 + uc0) + s28 + s32 + s30 . 1M

24: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

. 1I+36M+1S+7SR+2HT+2TR
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We note that in these formulas a division by s12+f7 would normally be required
to compute s21, s22 and s24. However, s12 is a root of s7z

2 + z + f7 = 0 (since
s12 = s11/s7), so s7(s12+f7)(s12+f7+1/s7) = s7s

2
12+s7f

2
7 +s12+f7 = s7f

2
7 . We can

therefore replace divisions by s12 +f7 with multiplications by (s12 +f7 +1/s7)f 2
7 =

s20, replacing the inverse by a single multiplication.
We therefore have a worst-case cost of 1I+36M+1S+7SR+2HT+2TR, which

compares quite well with the doubling cost of 1I+52M+8S of [GKP04].
Conditional line 7 has very little impact on the overall cost, but the conditional

block of lines 15 to 19 has a noticeable cost. However, it is only used when the
initial “choice” of the root of z2+z+s13 = 0 (i.e. HT(s13) rather than HT(s13)+1)
is incorrect and the variables computed afterwards must be corrected. This means
that the cost of 5M+3SR associated to that correction will only be needed half
of the time (on average). The average cost of the halving operation becomes
1I+33.5M+1S+5.5SR+2HT+2TR.

4.6.4. Type Ia: h(x) = x3 + x+ h0 irreducible

According to Section 4.4, curves of Type Ia are of the form

C : y2 + (x3 + x+ h0)y = f7x
7 + x6 + f2x

2 + f1x+ f0, (4.16)

where x3 + x+ h0 is irreducible over F2d and f6 ∈ F2. The Picard group of these
curves has precisely one divisor class of order 2, which is of the form [h, vh] =
[x3 + x+ h0, vh].

Proposition 4.8. If the polynomial x3 + x+ h0 is irreducible over F2d , then the
equation x4 + x2 + h0x+ a = 0 has exactly one root in F2d for each a ∈ F2d .

Proof. Since x4 and x2 act linearly in fields of characteristic 2, the operator T (x) =
x4 + x2 + h0x is linear. We also note that the roots of T (x) = 0 are 0, ζ1, ζ2 and
ζ3, where the ζi are the roots of x3 + x + h0 = 0 in F2d3 \ F2d (since x3 + x + h0

is irreducible). Because of this, for any a ∈ F2d there cannot exist more than one
F2d-rational root, otherwise we would have two F2d-rational roots of T (x) = 0. To
each element α ∈ F2d we can associate a polynomial of the form x4 +x2 +h0x+a,
namely with a = T (α), all of which have exactly one F2d-rational root.

Note that T (x) = x4+x2+h0x being a linear operator also allows us to compute
the F2d-rational root. We first compute the images of T (ei) for every ei in the
basis used to represent field elements, which gives us a system of linear equations
(that can be used to describe the image of every field element). By inverting
this system, we can precompute the roots xi of x4 + x2 + h0x + ei = 0. For any
given a ∈ F2d , a =

∑n−1
i=0 aiei (with ai ∈ F2), we can then compute the root xa of

x4 +x2 +h0x+a = 0 as xa =
∑n−1

i=0 aixi. With a little more work (computing the
roots for all blocks of w bits), it becomes possible to compute roots of the quartic

74



4.6. Halving for other types of curves

in time QR at least as fast as a multiplication. In fact, this method is equivalent
to what is used to compute half-traces, so QR ≈ HT ≤ M.

Remark 4.9. In the case where h0 = 1, we can express the root of x4+x2+x+a =

0 as the “two-third-trace” of a: if n ≡ 1 mod 3, we let xa = TR(a)−∑n−4
3

i=0 a
23i+1

,

and if n ≡ 2 mod 3, we let xa = TR(a)−∑n−2
3

i=0 a
23i

.

Theorem 4.10. Let Da = [ua, va] be a divisor class in Pic0(C). If deg(ua) = 3,
then Da can be halved if and only if TR(f7ua2 + f6) = 0. If deg(ua) = 2, then
Da can be halved if and only if TR(f7ua1) = 0. If deg(ua) = 1, then Da can be
halved if and only if TR(f7ua0 + f6) = 0.

Proof. As in Theorem 4.2.

Corollary 4.11. The Picard group of the curve C given by (4.16) has order 2r,
where r is odd, if and only if f6 = 1.

Proof. The Picard group of the curve C has exactly one divisor class of order 2,
namely [x3 + x + h0, vh]. The order of the Picard group is divisible by 4 if and
only if [x3 + x+ h0, vh] can be halved. From Theorem 4.10, this is possible if and
only if TR(f6) = 0. Since f6 ∈ F2, we find that Pic0(C) has a divisor class of
order 4 if and only if f6 = 0.

Observe that if Dc1 and Dc2 are the two preimages of Da under the doubling,
then Dc1−Dc2 = [x3 +x+h0, vh] = Dc2−Dc1 , i.e. the difference of two preimages
is the unique divisor class of order 2. This observation allows us to distinguish
the different special cases.

Remark 4.12. Let Da = [ua, va] be a divisor class in Pic0(C) that can be halved
and Dc = [uc, vc] = [1

2
]Da its preimage (under the doubling) of odd order.

(1a) If deg(ua) = 3 and

(1 + ua1)(va1 + ua0f7 + v2
a2 + ua2va2 + (u2

a2 + ua1)(1 + ua2f7))

+(va1 + ua0f7 + v2
a2 + ua2va2 + (u2

a2 + ua1)(1 + ua2f7))2

+ua1 + (1 + ua2f7)(1 + u2
a1) 6= 0,

then deg(uc) = 3 and we are in case HLV33.

(1b) If deg(ua) = 3 and

(1 + ua1)(va1 + ua0f7 + v2
a2 + ua2va2 + (u2

a2 + ua1)(1 + ua2f7))

+(va1 + ua0f7 + v2
a2 + ua2va2 + (u2

a2 + ua1)(1 + ua2f7))2

+ua1 + (1 + ua2f7)(1 + u2
a1) = 0,

then deg(uc) = 2 or 3 and we are in case HLV32 or HLV33.
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(2a) If deg(ua) = 2 and ua1 6= 0, then deg(uc) = 2 and we are in case HLV23.

(2b) If deg(ua) = 2 and ua1 = 0, then deg(uc) = 1 or 2 and we are in case HLV21
or HLV23.

(3) If deg(ua) = 1, then deg(uc) = 3 and we are in case HLV13.

We obtain the following halving formulas:

Algorithm 35 (HLV33, h(x) = x3 +x+h0 irreducible, f(x) = f7x
7 +x6 +f2x

2 +
f1x+ f0)

Input: D = [x3 + ua2x
2 + ua1x+ ua0, va2x

2 + va1x+ va0]

Output: [1
2
]D = [x3 + uc2x

2 + uc1x+ uc0, vc2x
2 + vc1x+ vc0]

1: s0 ← HT(f7ua2 + 1), s1 ← va2 + ua2(s0 + 1) . 2M+1HT

2: s2 ← va1 + 1 + ua1(s0 + 1), s3 ← va0 + h0 + ua0(s0 + 1) . 2M

3: s4 ← s1f
−1
7 + ua1, s5 ← (s2 + s0 + s2

1)f−1
7 + ua0 + s4ua2 . 3M+1S

4: s6 ← (s1 + (s4 + 1)f7)s5 + (s5f7)2, s7 ← QR(s6) . 3M+1S+1QR

5: s8 ← s2
7, s9 ← s8s5, s10 ← s−1

9 , s11 ← s10s8, s12 ← s10s
2
5 . 1I+3M+2S

6: s13 ← s7s11, s14 ← s2
13s5 + f7, s15 ← (s4 + 1)s14 + (h0 + s5)s13 + s1 . 4M+1S

7: s16 ← s12s15, s17 ← TR(s16f
2
7 ) . 2M+1TR

8: if s17 = 0 then

9: s0 ← s0 + 1, s1 ← s1 + ua2, s2 ← s2 + ua1, s3 ← s3 + ua0

10: s4 ← s4 + ua2f
−1
7 , s5 ← s5 + (ua1 + 1)f−1

7 . 2M

11: s6 ← (s1 + (s4 + 1)f7)s5 + (s5f7)2, s7 ← QR(s6) . 3M+1S+1QR

12: s8 ← s2
7, s9 ← s8s5, s10 ← s−1

9 , s11 ← s10s8 . 1I+2M+1S

13: s12 ← s10s
2
5, s13 ← s7s11, s14 ← s2

13s5 + f7 . 3M+2S

14: s15 ← (s4 + 1)s14 + (h0 + s5)s13 + s1, s16 ← s12s15 . 3M

15: end if

16: s18 ← (s3 + s1 + s0h0)f−1
7 + s4ua1 + s5ua2, s19 ← s13s4 . 5M

17: s20 ← s0 + 1 + s19, s21 ← (s14 + s13)(s5 + s4), s22 ← s14s5 . 2M

18: s23 ← s1 + s19 + s21 + s22, s24 ← s2 + 1 + s13s18 + s22 . 1M

19: s25 ← h0 + s3 + s14s18, s26 ← (s23 + s20h0 + s25)s12 . 3M

20: s27 ← (f1 + s24h0 + s25)s12, uc2 ←
√
s16, uc1 ←

√
s26 . 2M+2SR

21: uc0 ←
√
s27, s28 ← s13uc2, s29 ← s14 + s28, s30 ← s29uc1 . 2M+1SR

22: s31 ← s20 + (s13 + s29)(uc2 + uc1) + s28 + s30, s32 ← s31uc0 . 2M

23: vc0 ← s25 + s32, vc1 ← s24 + (s29 + s31)(uc1 + uc0) + s30 + s32 . 1M
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24: vc2 ← s23 + (s13 + s31)(uc2 + uc0) + s28 + s32 + s30 . 1M

25: return [x3 + uc2x
2 + uc1x+ uc0, vc2x

2 + vc1x+ vc0]

. 2I+51M+9S+3SR+1TR+1HT+2QR

We note that in these formulas a division by s14+f7 would normally be required
to compute s16, s26 and s27. However, s14 + f7 = s2

13s5, which we can compute as
s5/(s13s5)2. Since s13 = s7/s5, 1/(s13s5) = 1/s7 and we can combine this inverse
with the computation of 1/s5. As a result, we can compute both inverses using
only 1I+3M+1S.

We therefore have a worst-case cost of 2I+49M+9S+3SR+1HT+1TR+2QR,
which compares well with the doubling cost of 1I+63M+9S of Guyot, Kaveh and
Patankar [GKP04], as long as inversion costs are not too high.

However, the conditional block of lines 10 to 17 is only used when the initial
“choice” for the root of z2 + z + ua2 + 1 = 0 (i.e. HT(ua2 + 1) rather than
HT(ua2 + 1) + 1) is incorrect and the variables computed afterwards must be
corrected. This means that the 1I+13M+4S+1QR associated to that correction
will only be needed half of the time (on average). The average cost of the halving
operation becomes 1.5I+42.5M+7S+3SR+1HT+1TR+1.5QR.

Remark 4.13. There is another approach to “optimise” the formulas, limit-
ing ourselves to no more than one inversion per halving. The idea consists of
doing the computations for both roots of z2 + z + ua2 + 1 = 0 together until
the computations of the inverses, at which points the two inverses can be com-
bined into one using Montgomery’s trick (doing both in 1I+3M), after which we
can use the normal branching approach. In this way, we get a worst-case cost
of 1I+52M+9S+3SR+1HT+1TR+2QR, from which we expect to save 7M+2S
when the first choice of the root is correct (half of the time). The final cost will
increase whenever an inversion costs less than 12M+2S+1QR, making this ap-
proach unlikely to be useful with many implementations of the field arithmetic
(for field sizes used on genus-3 curves at standard cryptographic security levels).

4.6.5. Discussion of the halving approach

To obtain the formulas in this section, we inverted Cantor’s doubling algorithm
rather than inverting the corresponding explicit formulas. Even though we used
the general algorithm rather than the highly optimised version to obtain our
formulas, we obtained operations that are more efficient.

At first glance, this could seem contradictory. After all, one of the main meth-
ods used in explicit formulas to produce such savings in comparison with Cantor’s
algorithm is through the merging of the composition and the first reduction step.
This merging is completely ignored in our approach, but the resulting formulas
are still faster.
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At the same time, the halving formulas must include the cost coming from
choosing the “wrong” roots of quadratic equations, which naturally increases as
the quadratic equation is encountered earlier in the formula (since the condition to
determine the “correct root” comes from whether or not the computed preimage
can be halved again). As a consequence, one would expect the correction cost
to increase as the degree of h also does, and in fact this is more or less what we
observe (h = x2 + x + 1 seems to be an exception to this rule of thumb). This
means that the halving formulas get a higher penalty for selecting the correct
preimage when the degree of h increases, and we do see this very clearly for the
curves with h irreducible of degree 3.

Nevertheless, the absolute saving when comparing with the doubling seems to
remain almost constant between the different curve types. In fact these apparent
discrepancies come from the inherent difference between doubling and halving.

In the doubling, even with optimised explicit formulas, the composition step
requires the computation of h−1 modulo ua, or at least its almost-inverse, after
which the reduction steps are relatively simple and straightforward. In fact,
simply looking at the distribution of the cost in the different steps of the algorithm
makes it quite clear that the composition, and in particular the computation of
the almost-inverse, is one of the dominant factors.

For the halving, we work our way backwards through the reductions steps until
we obtain [u0, v0]. In general, the cost of an “un-reduction” step may be higher
than for the corresponding reduction step, but this increase is usually small. Once
[u0, v0] is known, computing uc (the first polynomial of the output) only requires
computing the square-root of u0, while vc is obtained by reducing v0 modulo uc.

These last two operations are quite inexpensive, requiring a total of 6M and
3SR, no matter what form the curve has. In comparison, the composition step,
even when merged with the first reduction, requires the computation of h−1 mod-
ulo ua (or an almost-inverse), which becomes much more costly as the degree of
h increases. The savings obtained by switching from almost-inverse to modular
reduction (from doubling to halving) are therefore much greater when h becomes
more complicated, and easily compensate for any of the “inconveniences” of halv-
ing that we just described.

This also explains why the costs of doubling and halving are essentially identical
when h = 1: in that case, h−1 comes for free and the optimised doubling does not
merge the composition and first reduction, making doubling and halving perfect
mirror images of each other.

4.7. Choice of secure curves

In the previous sections we have studied hyperelliptic curves of genus-3 over binary
fields, and provided efficient arithmetic on these curves. Now we will discuss the
security of these curves and suggest curve parameters and field sizes to make the
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DLP on these curves intractable against currently known attacks.
For genus-3 index calculus attacks are not applicable. To avoid the other types

of attacks we restrict the base field to F2d , where d is prime (this is to avoid Weil
descent attacks, see Section A.6 for details), request that the embedding degree k
is at least 3000 (to avoid Frey-Rück attacks, see Section A.5) and that the order
of Pic0

F
2d

(C) is almost prime and sufficiently large. Due to the Hasse-Weil bound

(Theorem 2.15) the size of the Picard group of a hyperelliptic curve of genus 3

over F2d is at most (
√

2d + 1)6 which is approximately 23d. Since the best known
attacks for genus 3 are square-root attacks, e.g. baby-step giant-step (Section A.2)
and Pollard rho (Section A.3), the security level of these curves is (3/2)d bit.

According to the latest recommendations 80-bit security (i.e. d ≈ 66) is bor-
derline and 112 bit (i.e. d ≈ 75) offer medium-term protection whereas 128 bit
(i.e. d ≈ 83) are good for long-term secrecy (see [Gir08] and the ECRYPT recom-
mendations [Nae08] for more details). Suitable primes in these ranges are d = 67,
d = 79 and d = 83.
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5. Edwards Curves

Edwards in [Edw07] introduced a new normal form for elliptic curves. He showed
that every elliptic curve over a field k of characteristic different from 2 can be
written in this normal form over an extension of k. Bernstein and Lange in
[BL07b] studied the use of Edwards curves for cryptography and provided efficient
point addition and point doubling formulas. It turns out that the arithmetic on
Edwards curves is even faster than on Jacobian-form elliptic curves introduced in
[CC87] which were considered the fastest so far. Soon after their first paper on
Edwards curves, Bernstein and Lange improved their own results by introducing
inverted Edwards coordinates [BL07c] which provide even faster addition formulas
on Edwards curves.

In this chapter, we give an introduction to Edwards curves, their addition law
and we show how inverted Edwards coordinates can make this addition faster.
After that, we demonstrate how the concept of Edwards curves can be generalised
to cover a larger family of curves. In particular, we show that every elliptic curve
in Montgomery form is birationally equivalent to a twisted Edwards curve (see
Section 5.3.1). We also give the group law for this type of curve.

Furthermore, we develop tripling formulas for points on Edwards curves. With
that, we show that for single-scalar multiplication using double-base chains (with
basis {2, 3}) there is no gain in speed compared to traditional methods based on
double-and-add.

In this thesis, we consider Edwards and twisted Edwards curves over non-binary
fields only. For the characteristic-2 case, we refer the reader to [BLRF08], in which
binary Edwards curves are introduced and discussed.

Section 5.2 is a review of Edwards curves, based on the papers by Edwards
[Edw07] and Bernstein and Lange [BL07b, BL07c]. The results on the tripling
formulas in Section 5.4 and on optimising scalar multiplication in Section 5.5
are new and are joint work with Bernstein, Lange and Peters [BBLP07]. The
results on twisted Edwards curves in Section 5.3 are new and are joint work with
Bernstein, Joye, Lange and Peters [BBJ+08].

Notation

Note that in this chapter we use the same notation for the operation counts as in
the two previous chapters. A field multiplication is denoted by M, an inversion by
I, a squaring by S, the extraction of a square root by SR, a field addition by add
and a multiplication by 2 by 1times2. The letter D stands for a multiplication by
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5. Edwards Curves

a curve parameter. We treat those multiplications separately because they are
cheaper than normal multiplications if the curve parameter has small height.

Before we begin to explain Edwards curves, we need to present some facts about
birational equivalence and desingularisation of curves.

5.1. Birational equivalence and desingularisation

Definition 5.1 (Rational map). Let k be any field. Let C1 and C2 be two curves
in P2(k). A rational map from C1 to C2 is of the form

ϕ : C1 → C2

ϕ = (f0, f1, f2),

where f0, f1, f2 ∈ k(C1) have the property that for every point P ∈ C1 at which
f0, f1, f2 are all defined,

ϕ(P ) = (f0(P ) : f1(P ) : f2(P )) ∈ C2. (5.1)

Remark 5.2 ([Sil86], page 15). Note that a rational map ϕ : C1 → C2 is not
necessarily a function on all of C1. However, it is sometimes possible to evaluate
ϕ(P ) at points P of C1 where some fi is not regular by replacing each fi with gfi
for an appropriate g ∈ k(C1).

Definition 5.3 (Birational equivalence, isomorphic). Two curves C1 and C2 are
birationally equivalent if there exist two rational maps ϕ : C1 → C2 and ψ : C2 →
C1 with ϕ ◦ ψ = idC1 and ψ ◦ ϕ = idC2 .

The curves are isomorphic if in addition ϕ is regular on all points of C1 and ψ
is regular on all points on C2.

For the following statements, it is necessary that the curves are absolutely
irreducible.

Theorem 5.4. Every projective curve C is birationally equivalent to a (not nece-
sarily plane) projective smooth curve, which is called desingularisation of C.

The next theorem justifies that we speak of isomorphism classes of desingular-
isations.

Theorem 5.5. Let C1 and C2 be two projective and smooth curves. If they are
birationally equivalent, then they are isomorphic.

From now on, due to the existence of the desingularisation we can extend the
definition of the genus to singular curves.

Definition 5.6. Let C be a curve. We call the genus of C the genus of the
desingularisation.

Proposition 5.7. If two curves are birationally equivalent, then they have the
same genus.
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5.2. Edwards curves

5.2. Edwards curves

In this section, we give the definition of Edwards curves and investigate their
properties. We provide the (affine) addition law and present projective and in-
verted Edwards coordinates together with explicit formulas for point addition and
point doubling.

Definition 5.8. Let k be a field with char(k) 6= 2. An Edwards curve over k is
given by an equation of the form

E : x2 + y2 = 1 + dx2y2, (5.2)

where d ∈ k is not equal to 0 or 1. An affine point on an Edwards curve is given
by a pair (x1, y1) such that x1 and y1 satisfy the curve equation.

If d equals 0, then (5.2) describes a circle of radius 1 which has genus 0. For
d = 1, the equation factors as (x2 − 1)(y2 − 1) = 0. Hence, in both cases E is
not an elliptic curve. To see that E is a non-singular curve in all other cases,
we consider the two partial derivatives 2x = 2dxy2 and 2y = 2dyx2 of (5.2). For
x and y not equal to 0 we get 1 = dy2 and 1 = dx2 which implies d = 1/y2.
Plugging this into the curve equation gives x2 + y2 = 1 + x2 and thus y = ±1. It
follows that d = 1 which is a contradiction. The only points on the curve with
x-coordinate 0 are (0, 1) and (0,−1). In those cases the partial derivative with
respect to y becomes 2 = 0 or −2 = 0 which is false since char(k) 6= 2. The
points with y-coordinate 0 are (−1, 0) and (1, 0). With the same argument the
partial derivative with respect to x does not hold true. We can conclude that it
does indeed make sense to exclude exactly 0, 1 for d in Definition 5.8.

Edwards in [Edw07] shows that (5.2) describes an elliptic curve, so the curve E
has genus 1 and it is covered by Definition 2.1.

The following theorem states conditions under which (twists of) elliptic curves
are birationally equivalent to curves in Edwards form.

Theorem 5.9. Let k be a field in which 2 6= 0. Let E be an elliptic curve over k
such that the group E(k) has an element of order 4. Then:

(1) There exists d ∈ k \ {0, 1} such that the curve x2 + y2 = 1 + dx2y2 is
birationally equivalent over k to a quadratic twist of E.

(2) If E(k) has a unique element of order 2, then there is a non-square d ∈ k
such that the curve x2 + y2 = 1 + dx2y2 is birationally equivalent over k to
a quadratic twist of E.

(3) If k is finite and E(k) has a unique element of order 2, then there is a
non-square d ∈ k such that the curve x2 + y2 = 1 + dx2y2 is birationally
equivalent over k to E.

Proof. See Theorem 2.1 in [BL07b].
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5. Edwards Curves

5.2.1. Addition law and properties

For affine points, the addition law on an Edwards curve is given by

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

1 + dx1x2y1y2

,
y1y2 − x1x2

1− dx1x2y1y2

)
. (5.3)

If the curve parameter d is not a perfect square, then the addition law is complete,
i.e. the addition formulas hold for any valid input without exception. The point
(0, 1) is the neutral element in the group of points on E. The negative of a
point P = (x1, y1) can be computed by reflecting it across the y-axis, so we have
−P = (−x1, y1). The point (0,−1) has order 2. The points (1, 0) and (−1, 0)
have order 4.

In the projective model, the Edwards curve equation is

(X2 + Y 2)Z2 = Z4 + dX2Y 2. (5.4)

To find its points at infinity we put Z = 0 and look for points (X, Y ) such that
0 = dX2Y 2. First we assume X 6= 0. To satisfy the equation, we need Y = 0.
Thus the point (1 : 0 : 0) is at infinity. Now we assume Y 6= 0. Analogously we
require X = 0 and see that (0 : 1 : 0) is the second point at infinity. There are no
more points at infinity on the projective curve. To check whether the two points
are singular, we dehomogenise the curve equation with respect to X and Y and
check using the partial derivatives if the point (0, 0) is singular on both affine
curves. It turns out that both points are singularities on the projective curve,
and after resolving them using blow-up techniques we get two further points of
order 2 and two points of order 4 of which the minimal field of definition is k(

√
d).

Therefore, there are three k-rational points of order 2 if and only if d is a square
in k.

5.2.2. Projective Edwards coordinates

An affine point on an Edwards curve is given by a pair (x1, y1). To avoid inver-
sions in the addition and doubling formulas, one usually homogenises the curve
equation. This leads to

(X2 + Y 2)Z2 = (Z4 + dX2Y 2). (5.5)

A point (X1 : Y1 : Z1) with Z1 6= 0 that satisfies this equation, corresponds to the
affine point (X1/Z1, Y1/Z1). The neutral element in projective coordinates is the
point (0 : 1 : 1).

Inversion-free formulas for addition and doubling in homogenised form were
introduced by Bernstein and Lange [BL07b]. A general addition in Edwards co-
ordinates takes 10M+1S+1D+7add, i.e. 10 field multiplications, 1 field squaring,
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5.2. Edwards curves

1 multiplication by the curve parameter d and 7 field additions. A doubling takes
3M+4S+6add.

For a collection of explicit formulas and operation counts for elliptic curves in
various representations we refer to the Explicit-Formulas Database [BL07a].

5.2.3. Inverted Edwards coordinates

Another way of representing points on an Edwards curve is using inverted Edwards
coordinates [BL07c]. This coordinate system allows inversion-free addition and
doubling. The advantage of inverted Edwards coordinates is that the addition
is faster than in the projective case. On the other hand the doubling is slightly
more costly.

A projective point (X1 : Y1 : Z1) with X1, Y1 6= 0 in inverted Edwards coor-
dinates corresponds to the affine point (Z1/X1, Z1/Y1). Normally, in projective
coordinates one divides by the third coordinate Z1. Using inverted Edwards
coordinates it is the other way round; we divide Z1 by X1 and by Y1. This
is the reason for the name “inverted”. The addition of two points in inverted
Edwards coordinates costs 9M+1S+1D+7add, which is a speedup of 1M com-
pared to standard projective Edwards coordinates. However, a doubling costs
3M+4S+1D+5add+1times2, and is thus a little more expensive than in pro-
jective Edwards coordinates. The addition and doubling formulas are provided
below.

Algorithm 36 (Addition in inverted Edwards coordinates)

Input: Two points (X1, Y1, Z1), (X2, Y2, Z2)

Output: The point (X3, Y3, Z3) = (X1, Y1, Z1) + (X2, Y2, Z2)

1: A← Z1Z2, B ← dA2, C ← X1X2, D ← Y1Y2, E ← CD . 4M+1S+1D

2: H ← C −D, I ← (X1 + Y1)(X2 + Y2)− C −D . 1M+5add

3: X3 ← (E +B)H, Y3 ← (E −B)I, Z3 ← AHI . 4M+2add

4: return (X3, Y3, Z3) . 9M+1S+1D+7add

Algorithm 37 (Doubling in inverted Edwards coordinates)

Input: The point (X1, Y1, Z1)

Output: The point (X3, Y3, Z3) = [2](X1, Y1, Z1)

1: A← X2
1 , B ← Y 2

1 , C ← A+B, D ← A−B . 2S+2add

2: E ← (X1 + Y1)2 − C, Z3 ← DE, X3 ← CD . 2M+1S+2add

85



5. Edwards Curves

3: Y3 ← E(C − 2dZ2
1) . 1M+1S+1D+1add+1times2

4: return (X3, Y3, Z3) . 3M+4S+1D+5add+1times2

5.3. Twisted Edwards curves

An Edwards curve has always a point of order 4. This restricts the number of
elliptic curves in Edwards form over k. To cover more elliptic curves, we embed
the set of Edwards curves in a larger set of elliptic curves with a similar shaped
curve equation by introducing twisted Edwards curves. The work in this section
is based on [BBJ+08].

In 1987, Montgomery [Mon87] introduced elliptic curves with curve equations
of the form Bv2 = u3 + Au2 + u to speed up the Pollard and Elliptic Curve
Methods of integer factorisation. These Montgomery curves turned out to have
interesting properties. In this chapter, we will show that every twisted Edwards
curve is birationally equivalent to an elliptic curve in Montgomery form, and vice
versa. With this equivalence we bring the speed of the Edwards addition law to
every elliptic curve in Montgomery form.

Definition 5.10. Let k be a field with char(k) 6= 2. For two distinct non-zero
elements a, d ∈ k the twisted Edwards curve with coefficients a, d is given by the
equation

EE,a,d : ax2 + y2 = 1 + dx2y2. (5.6)

An Edwards curve is a twisted Edwards curve with a = 1. We will see later on
in this section that a twisted Edwards curve is isomorphic to an Edwards curve
if and only if a is a square in k.

For the purpose of Section 6.2 the twisted form is interesting since we will find
and use curves over Q with coefficients d of small height, i.e. small numerator and
denominator. The smallest integer congruent to d modulo n will usually have as
many bits as n, so multiplications by d, as they appear in the addition and dou-
bling formulas of inverted Edwards coordinates, are costly while multiplications
by the numerator and denominator separately are cheap.

5.3.1. Montgomery curves and twisted Edwards curves

In this section, we give the definition and basic facts about Montgomery curves.
Furthermore, we prove that every elliptic curve in Montgomery form over a non-
binary field is birationally equivalent to a twisted Edwards curve.

Definition 5.11 (Montgomery curve). Let k be a field with char(k) 6= 2. Fix
A ∈ k \ {−2, 2} and B ∈ k \ {0}. The Montgomery curve with coefficients A and
B is the curve

EM,A,B : Bv2 = u3 + Au2 + u. (5.7)
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This form of the curve equation allows a very efficient arithmetic which relies
on the computation of x-coordinates only. This technique was first introduced by
Montgomery [Mon87] for fields with large characteristic.

In projective coordinates, point addition and point doubling on a Montgomery
curve can be computed without the knowledge of any y-coordinate. Hence the
advantages are very efficient addition and doubling formulas. A point addition re-
quires 4M+2S, while a doubling requires 3M+2S (see Section 13.2.3 in [ACD+05]).
The scalar multiplication [n]P can be efficiently computed using the Montgomery
ladder (cf. Section 13.2.3.d in [ACD+05]), but one still needs to recover the
y-coordinate afterwards.

The drawback of Montgomery arithmetic is that some applications (e.g. the
ElGamal signature scheme) require the computation of many y-coordinates, but
recovering these coordinates is comparatively inefficient.

The next theorem states the birational equivalence between Montgomery curves
and twisted Edwards curves over non-binary fields.

Theorem 5.12. Let k be a field with char(k) 6= 2 and let a, d be distinct non-zero
elements of k. Let u = (1+y)/(1−y) and v = u/x. Then the map (x, y) 7→ (u, v)
with inverse (u, v) 7→ (u/v, (u − 1)/(u + 1)) is a birational equivalence over k
from the twisted Edwards curve ax2 + y2 = 1 + dx2y2 to the Montgomery curve
Bv2 = u3 + Au2 + u, where B = 4/(a− d) and A = 2(a+ d)/(a− d).

Conversely, every Montgomery curve over k is birationally equivalent over k to
a twisted Edwards curve. Specifically, fix A ∈ k \ {−2, 2} and B ∈ k \ {0}. Then
the Montgomery curve EM,A,B is birationally equivalent to the twisted Edwards
curve EE,a,d, where a = (A+ 2)/B and d = (A− 2)/B.

Proof. We show that Bv2 − u3 − Au2 − u = 0 holds if u, v, A and B are chosen
as above and (x, y) ∈ k × k is a point on the twisted Edwards curve.

Bv2 − u3 − Au2 − u =
4(1 + y)2

(a− d)x2(1− y)2
− (1 + y)3

(1− y)3
− 2(a+ d)(1 + y)2

(a− d)(1− y)2

−1 + y

1− y

=
−4(1 + y)(ax2 + y2 − 1− dx2y2)

(a− d)x2(1− y)3
= 0

since ax2 + y2 = 1 + dx2y2.
The exceptional cases y = 1 and x = 0 occur for only finitely many points

(x, y) on EE,a,d. Conversely, we have x = u/v and y = (u − 1)/(u + 1) and the
exceptional cases v = 0 and u = −1 occur for only finitely many points (u, v) on
EM,A,B.

To proof the second part of the theorem, note that a and d are defined, since
B 6= 0. Note further that a 6= 0 since A 6= −2; d 6= 0 since A 6= 2; and a 6= d.
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Thus EE,a,d is a twisted Edwards curve. Furthermore

2
a+ d

a− d = 2
A+2
B

+ A−2
B

A+2
B
− A−2

B

= A and
4

(a− d)
=

4
A+2
B
− A−2

B

= B.

Hence EE,a,d is birationally equivalent to EM,A,B by (1).

Exceptional points for the birational equivalence

Remark 5.13. The map (u, v) 7→ (u/v, (u − 1)/(u + 1)) from EM,A,B to EE,a,d

in Theorem 5.12 is undefined at the points of EM,A,B : Bv2 = u3 + Au2 + u with
v = 0 or u+ 1 = 0. We investigate these points in more detail:

(1) The point (0, 0) on EM,A,B corresponds to the affine point of order 2 on
EE,a,d, namely (0,−1). This point and (0, 1) are the only exceptional points
of the inverse map (x, y) 7→ ((1 + y)/(1− y), (1 + y)/(1− y)x), where (0, 1)
is mapped to the point at infinity.

(2) If (A+ 2)(A− 2) is a square (i.e. if ad is a square) then there are two more
points with v = 0, namely ((−A ±

√
(A+ 2)(A− 2))/2, 0). These points

have order 2. These points correspond to two points of order 2 at infinity
on the desingularisation of EE,a,d.

(3) If (A− 2)/B is a square (i.e. if d is a square) then there are two points with
u = −1, namely (−1,±

√
(A− 2)/B). These points have order 4. These

points correspond to two points of order 4 at infinity on the desingularisation
of EE,a,d.

5.3.2. Arithmetic on twisted Edwards curves

In this section we derive fast explicit formulas for addition and doubling on twisted
Edwards curves.

Let (x1, y1), (x2, y2) be points on (5.6). The addition law on twisted Edwards
curves is given by

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2

,
y1y2 − ax1x2

1− dx1x2y1y2

)
.

The neutral element is (0, 1) and −(x1, y1) = (−x1, y1).
These formulas work for addition as well as for doubling. The remark in the

previous section considers points for which the birational map to a Montgomery
curve is not defined. This implies that the desingularisation of a twisted Edwards
curve has no points at infinity exactly if a is a square in k and d is a non-square in
k. This implies that the addition law is complete exactly if the curve is isomorphic
to a complete Edwards curve, i.e. an Edwards curve with a non-square d.
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For the correctness of the addition law observe that it coincides with the Ed-
wards addition law on x̄2 + y2 = 1 + (d/a)x̄2y2 with x̄ = x

√
a which is proven

correct in [BL07b, Section 3].

5.3.3. Arithmetic in projective form

To avoid inversions, we work on the projective twisted Edwards curve

(aX2 + Y 2)Z2 = Z4 + dX2Y 2.

For Z1 6= 0 the homogeneous point (X1 : Y1 : Z1) represents the affine point
(X1/Z1, Y1/Z1).

Addition

The following formulas compute an addition in 10M+1S+2D+7add.

A = Z1 · Z2; B = A2; C = X1 ·X2; D = Y1 · Y2; E = d · C ·D;

F = B − E; G = B + E; X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C −D);

Y3 = A ·G · (D − a · C); Z3 = F ·G.

Remark 5.14. If a is a square in k, then the twisted Edwards curve ax̄2 + ȳ2 =
1 + dx̄2ȳ2 is isomorphic to the Edwards curve x2 + y2 = 1 + (d/a)x2y2, where
x = x̄

√
a and y = ȳ (cf. Section 5.3.5). One can perform additions on the Edwards

curve with the following explicit formulas which need 10M+1S+3D+7add, where
the 3D are two multiplications by a and one by d. The formulas for twisted
Edwards curves are faster by 1 multiplication by a.

A = Z1 · Z2; B = a · A2; A = a · A; C = X1 ·X2; D = Y1 · Y2; E = d · C ·D;

F = B − E; G = B + E; X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C −D);

Y3 = A ·G · (D − C); Z3 = F ·G.

Doubling

The following formulas compute doubling in 3M+4S+1D+7add, where the 1D is
the multiplication by a.

B = (X1 + Y1)2; C = X2
1 ; D = Y 2

1 ; E = a · C;F := E +D; H = Z2
1 ;

J = F − 2H; X3 = c · (B − C −D) · J ; Y3 = F · (E −D); Z3 = F · J.
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5.3.4. Arithmetic in inverted form

The generalisation of inverted Edwards coordinates (see Bernstein and Lange
[BL07c]) to twisted Edwards curves lets a point (X1 : Y1 : Z1) with X1Y1Z1 6= 0
on the curve

(X2 + aY 2)Z2 = X2Y 2 + dZ4

correspond to the affine point (Z1/X1, Z1/Y1).

Addition

The addition formulas in inverted coordinates on the twisted Edwards curve are:

A = Z1 · Z2; B = dA2; C = X1 ·X2; D = Y1 · Y2; E = C ·D;

H = C − aD; I = (X1 + Y1) · (X2 + Y2)− C −D;

X3 = (E +B) ·H; Y3 = (E −B) · I; Z3 = A ·H · I.

One readily counts 9M+1S+2D+7add, where the 2D are one multiplication by a
and one by d.

Doubling

The doubling formulas in inverted coordinates on the twisted Edwards curve are:

A = X2
1 ; B = Y 2

1 ; U = aB; C = A+ U ; D = A− U ; E = (X1 + Y1)2 − A−B;

X3 = C ·D; Y3 = E · (C − 2d · Z2
1); Z3 = D · E.

The computation needs 3M+4S+2D+6add, where the 2D are one multiplication
by a and one by d.

5.3.5. Twisted Edwards curves as twists of Edwards
curves

The twisted Edwards curve EE,a,d : ax2 + y2 = 1 + dx2y2 is a quadratic twist of
the Edwards curve EE,1,d/a : x̄2 + ȳ2 = 1 + (d/a)x̄2ȳ2. The map (x̄, ȳ) 7→ (x, y) =
(x̄/
√
a, ȳ) is an isomorphism from EE,1,d/a to EE,a,d over k(

√
a). If a is a square

in k, then EE,a,d is isomorphic to EE,1,d/a over k.
More generally, EE,a,d is a quadratic twist of EE,ā,d̄ for any ā, d̄ satisfying d̄/ā =

d/a. Conversely, every quadratic twist of a twisted Edwards curve is isomorphic
to a twisted Edwards curve, i.e. the set of twisted Edwards curves is invariant
under quadratic twists.

Furthermore, the twisted Edwards curve EE,a,d : ax2 + y2 = 1 + dx2y2 is bira-
tionally equivalent to the twisted Edwards curve EE,d,a : dx̄2 + ȳ2 = 1 + ax̄2ȳ2.
The map (x̄, ȳ) 7→ (x, y) = (x̄, 1/ȳ) is a birational equivalence from EE,d,a to

90



5.4. Doubling and tripling on Edwards curves

EE,a,d. More generally, EE,a,d is a quadratic twist of EE,ā,d̄ for any ā, d̄ satisfying
d̄/ā = a/d. This generalises the known fact, used in [BL07b, proof of Theorem
2.1], that EE,1,d is a quadratic twist of EE,1,1/d.

5.4. Doubling and tripling on Edwards curves

As we have already seen in Chapters 3 and 4, doubling formulas are essential
for the computation of scalar multiples, e.g. when we use the double-and-add
algorithm or a variant of it.

Another approach is to use the double-base number system ([DIM05, DI06]),
where the scalar is represented by a sum of powers of two base elements; in this
case we speak of a double-base chain (cf. Section 5.5.1). Very often, the basis is
{2, 3} and hence we need efficient doubling and tripling formulas.

In the following, we provide doubling and tripling formulas (see also Section 2
in [BBLP07] and Section 4 in [BL07b]) for Edwards curves. We obtained the
doubling formulas from the addition formulas (5.3) with x1 = x2 and y1 = y2,
and we found the tripling formulas by composing the addition and the doubling
formulas. All of them have been verified with the help of Magma [BCP97].

The double of a point (x1, y1) on the Edwards curve given by the equation
x2 + y2 = 1 + dx2y2 is

[2](x1, y1) =

(
2x1y1

x2
1 + y2

1

,
y2

1 − x2
1

2− (x2
1 + y2

1)

)
, (5.8)

while the triple is

[3](x1, y1) =

(
(x2

1 + y2
1)2 − (2y1)2

4(x2
1 − 1)x2

1 − (x2
1 − y2

1)2
x1,

(x2
1 + y2

1)2 − (2x1)2

−4(y2
1 − 1)y2

1 + (x2
1 − y2

1)2
y1

)
. (5.9)

Another interesting use of the doubling and tripling formulas is the generation
of Edwards curves over Q with prescribed torsion subgroup. In Section 6.2.1 we
use doubling formulas to generate a point of order 8 which allows us to generate an
Edwards curve with torsion subgroup isomorphic to Z/2Z×Z/8Z. In Section 6.2.2
we show how to generate an Edwards curve with torsion subgroup isomorphic to
Z12 by finding a point of order 3 using the tripling formulas.

5.5. Impact of point tripling on double-base

chains

In this section, we investigate the influence of triplings on double-base chains for
many different shapes of elliptic curves and many different coordinate systems. In
particular, we look at the relevance of double-base chains for scalar multiplication
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on Edwards curves. The main result of this section is that double-base chains offer
no advantage for scalar multiplication on Edwards curves.

In the following, we explain single-base and double-base chains, describe the
different curve shapes that we used in our experiments and give details about the
parameters of the experiments. This section is based on joint work with Bernstein,
Lange and Peters [BBLP07].

5.5.1. Double-base chains

A single-base chain is an expansion of the scalar multiplication [n]P as

[n]P =
∑

ci2
iP with ci ∈ {0, 1}, (5.10)

where the basis is the set {2}.
In 2005, double-base chains were introduced by Dimitrov, Imbert and Mishra

[DIM05]. The main idea of double-base chains is to expand the scalar multiplica-
tion [n]P in various ways as

[n]P =
∑

ci2
ai3biP with ci ∈ {−1, 1}. (5.11)

This can be seen as a generalisation of single-base chains with basis {2, 3}.
There were several previous “double-base number system” results expanding

[n]P in that way, e.g. using greedy algorithms, but they are mostly quite expen-
sive, which makes this approach unsuitable in practise. The critical advance in
[DIM05] was to require a1 ≥ a2 ≥ a3 ≥ . . . and b1 ≥ b2 ≥ b3 ≥ . . ., allowing
a straightforward computation without the expensive backtracking that plagued
previous papers. In this paper, the authors use a Horner-like evaluation, so the
representation is “easy” to compute since only a1 doublings and b1 triplings need
to be computed. However, this approach comes at the cost of more additions.

A further improvement was presented by Doche and Imbert [DI06] in 2006.
The authors suggest to use sliding windows and to choose ±ci from a set S that
is larger than the usual choice S = {1} in [DIM05]. For the choices of S in our
experiments see Section 5.5.3.

5.5.2. Curves shapes and coordinate systems

For our experiments we have taken many different shapes of elliptic curves and
many different coordinate systems into account. In the following, we give a brief
explanation of the shapes we used. In this section, let E be an elliptic curve over
a field k of characteristic at least 5.

The most popular representation of an affine point is in Jacobian coordinates.
A point (x1, y1) on E is represented as (X1 : Y1 : Z1), satisfying the equation
Y 2

1 = X3
1 + a4X1Z

2
1 + a6Z

6
1 . An addition of generic points (X1 : Y1 : Z1) and
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(X2 : Y2 : Z2) in Jacobian coordinates costs 11M+5S. A doubling, i.e. an addition,
where (X1 : Y1 : Z1) and (X2 : Y2 : Z2) are equal, costs 1M+8S. A tripling costs
5M+10S.

If a4 = −3, then the cost for doubling changes to 3M+5S and that for tripling
to 7M+7S. Not every curve can be transformed to allow a4 = −3, but important
examples such as the NIST curves [P1300] make this choice. We refer to this case
as Jacobian-3.

Most of the literature presents slower formulas producing the same output, and
correspondingly reports higher costs for arithmetic in Jacobian coordinates. See,
for example, the P1363 standards [P1300] and the aforementioned overviews. We
include the slower formulas in our experiments to simplify the comparison of our
results to previous results in [DI06] and [DIM05]. We refer to the slower formulas
as Std-Jac and Std-Jac-3.

“ExtJQuartic” and “Hessian” and “JacIntersect” refer to the latest addition
formulas for Jacobi quartics Y 2 = X4 + 2aX2Z2 +Z4, Hessian curves X3 + Y 3 +
Z3 = 3dXY Z, and Jacobi intersections S2 + C2 = T 2, aS2 +D2 = T 2.

“3DIK” is an abbreviation for “tripling-oriented Doche-Icart-Kohel curves,” the
curves Y 2 = X3 + a(X + Z2)2Z2 introduced in 2006 [DIK06].

5.5.3. Results

Figure 5.1 gives an overview of the results of our experiments, which included
several bit sizes `, namely 160, 200, 256, 300, 400, and 500. The choices 200,
300, 400, 500 were used in [DI06], and we include them to ease comparison. The
choices 160 and 256 are common in cryptographic applications. Our experiments
also included many choices of the parameter a0 in [DI06, Algorithm 1]. The
largest power of 2 allowed in the algorithm is 2a0 , and the largest power of 3
allowed in the algorithm is 3b0 , where b0 = d(`− a0)/ lg 3e. Specifically, we tried
each a0 ∈ {0, 10, 20, . . . , 10b`/10c}. This matches the experiments reported in
[DI06] for ` = 200.

Our experiments included several coefficient sets S, i.e. sets of coefficients c
allowed in c2a3b:

• the set {1} used in [DIM05];

• the sets {1, 5, 7, 11, 13, 17, 19, 23, 25}, {1, 2, 3, 4, 8, 9, 16, 27, 81}, {1, 5, 7} and
{1, 2, 3} appearing in the graphs in [DI06, Appendix B] with labels “(1, 1)”
and “(4, 4)” and “S2” and “S8”;

• the sets {1, 2, 3, 4, 9}, {1, 2, 3, 4, 8, 9, 27}, {1, 5}, {1, 5, 7, 11}, {1, 5, 7, 11, 13},
{1, 5, 7, 11, 13, 17, 19} appearing in the tables in [DI06, Appendix B].

We also included the sets {1, 2, 3, 5}, {1, 2, 3, 5, 7}, {1, 2, 3, 5, 7, 9} and so on
through {1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25}. These sets are standard in the
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base-2 context, but do not seem to have been included in previous double-base
experiments. We used straightforward combinations of additions, doublings and
triplings for the initial computation of cP for each c ∈ S.

We follow the standard (although debatable) practise of counting S=0.8M and
disregarding other field operations.

Figure 5.1.: Doubling/tripling ratios for double-base chains in various coordinate
systems

There are 8236 combinations of `, a0 and S described above. For each combi-
nation, we

• generated 10000 uniform random integers n ∈ {0, 1, . . . , 2` − 1},

• converted each integer into a chain as specified by a0 and S,

• checked that the chain indeed computed n starting the chain from 1 and

• counted the number of triplings, doublings, additions, re-additions and
mixed additions for those 10000 choices of n.

We converted the results into multiplication counts for ExtJQuartic, 3DIK,
Hessian, Edwards, InvEdwards, JacIntersect, Jacobian, Jacobian-3, Std-Jac and
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Std-Jac-3, obtaining a cost for each of the 82360 combinations of `, curve shape,
a0 and S.

Figure 5.1 shows, for each a0 (horizontal axis) and each curve shape, the cost (in
multiplications) for ` = 200 when S is chosen optimally. This graph demonstrates
the importance of choosing the right bounds for a0 and b0 depending on the ratio
of the doubling/tripling costs.

Curve shape Mults a0 a0/` S

3DIK 1879.200960 100 0.5 {1, 2, 3, 5, 7}
Edwards 1642.867360 196 0.98 {1, 2, 3, 5, . . . , 15}
ExtJQuartic 1628.386660 196 0.98 {1, 2, 3, 5, . . . , 15}
Hessian 1939.682780 120 0.6 {1, 2, 3, 5, . . . , 13}
InvEdwards 1603.737760 196 0.98 {1, 2, 3, 5, . . . , 15}
JacIntersect 1784.742 190 0.95 {1, 2, 3, 5, . . . , 15}
Jacobian 1937.129960 130 0.65 {1, 2, 3, 5, . . . , 13}
Jacobian-3 1868.530560 130 0.65 {1, 2, 3, 5, . . . , 13}

Table 5.1.: Multiplication counts and percentage of doublings for various coordi-
nate systems

In Table 5.1, we show basically the same results as in Figure 5.1, but the impact
of the doubling/tripling ratio can be seen more clearly. In the third column, we
list the number of doublings in the double-base chain for an optimal choice of
the set S. The fourth column shows the same number in percent of ` = 200.
The optimal choice of S is given in the last column. One can see that for the
three systems Edwards, ExtJQuartic and InvEdwards the amount of doublings is
almost 100%.

These three systems are also the fastest ones. They need the lowest number of
multiplications for values of a0 very close to `. These systems are using larger sets
of precomputations than slower systems such as Jacobian-3 or Jacobian and fewer
triplings. The faster systems all come with particularly fast addition laws, making
the precomputations less costly, and particularly fast doublings, making triplings
less attractive. This means that currently double-base chains offer no or very
little advantage for the fastest systems. See [BL07b] for a detailed description of
single-base scalar multiplication on Edwards curves.
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6. Edwards Curves over Q and
Applications to Factoring

In this chapter, we use Edwards and twisted Edwards curves, which we discussed
in detail in the preceding chapter, to improve the speed of the Elliptic Curve
Method of factoring. The most expensive operation in ECM is scalar multipli-
cation of points on an elliptic curve over the rational numbers. Since Edwards
curves currently offer the best speed for scalar multiplication (when represent-
ing the points and performing the computations in inverted Edwards coordinates
[BL07c]), we want to find Edwards and twisted Edwards curves which are suitable
for ECM, i.e. curves over Q with large torsion subgroup and positive rank (see
Chapter VIII, §10 in[Sil86]).

In Section 6.1, we give an overview of ECM. In the next section, we show how to
construct Edwards curves over Q with large torsion subgroup. For elliptic curves
in Weierstraß form there are two parametrisation that generate curves over Q with
torsion subgroup consisting of 6 (Suyama) and 16 (Atkin and Morain) elements.
We translate both parametrisations to Edwards form. Then we show how to
find curves with large torsion subgroup, small-height coefficients and small-height
parameters to speed up ECM.

The work in this chapter is based on joint work with Bernstein, Lange and
Peters. A preliminary version was published as [BBLP08].

6.1. Lenstra’s elliptic curve method

In 1987, H. W. Lenstra [Len87] proposed a method for factoring integers using
elliptic curves, the elliptic curve method (short: ECM). The method consists of
two parts which are called “Stage 1” and “Stage 2”. In this chapter we give an
overview of Stage 1 and show how to construct elliptic curves in Edwards form
such that they are suitable for ECM.

Stage 1 of ECM tries to factor a positive integer n as follows. Choose an
elliptic curve E defined over Q. Choose a rational function ϕ : E → Q that
has a pole at the neutral element of E; for example choose ϕ as the Weierstraß
x-coordinate. Choose a non-torsion element P ∈ E(Q). Choose a positive integer
s with many small prime factors. Choose a sequence of additions, subtractions,
multiplications and divisions to compute ϕ([s]P ), where [s]P denotes the sth
multiple of P in E(Q). Compute ϕ([s]P ) modulo n by carrying out this sequence
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of additions, subtractions, multiplications and divisions modulo n. Hope for an
impossible division modulo n. An attempt to divide by a non-zero non-unit
modulo n immediately reveals a factor of n; an attempt to divide by 0 modulo n
is not quite as informative but usually allows a factor of n to be obtained without
much extra work.

If n has a prime divisor q such that [s]P is the neutral element of E(Z/qZ)
then the Stage-1 ECM computation will involve an impossible division modulo n,
usually revealing a factor of n. This occurs, in particular, whenever s is a multiple
of the group size #E(Z/qZ). As E varies randomly, #E(Z/qZ) varies randomly
in the Hasse interval [q − 2

√
q + 1, q + 2

√
q + 1]. What makes ECM useful is

that a surprisingly small s, allowing a surprisingly fast computation of [s]P , is a
multiple of a surprisingly large percentage of the integers in the Hasse interval,
and is a multiple of the order of P modulo q with (conjecturally) an even larger
probability.

6.1.1. Example

For example, one could try to factor n as follows. Choose the curve E : y2 =
x3− 2, the Weierstraß x-coordinate as ϕ, the point (x, y) = (3, 5) and the integer
s = 420 = 22 · 3 · 5 · 7. Choose the following strategy to compute the x-coordinate
of [420](3, 5): use the standard affine-coordinate doubling formulas to compute
[2](3, 5), then [4](3, 5), then [8](3, 5); use the standard affine-coordinate addi-
tion formulas to compute [12](3, 5); continue similarly through [2](3, 5), [4](3, 5),
[8](3, 5), [12](3, 5), [24](3, 5), [48](3, 5), [96](3, 5), [192](3, 5), [384](3, 5), [408](3, 5),
[420](3, 5). Carry out these computations modulo n, hoping for a division by a
non-zero non-unit modulo n.

The denominator of the x-coordinate of [420](3, 5) in E(Q) has many small
prime factors: 2, 3, 5, 7, 11, 19, 29, 31, 41, 43, 59, 67, 71, 83, 89, 109, 163,
179, 181, 211, 223, 241, 269, 283, 383, 409, 419, 433, 523, 739, 769, 811, 839,
etc. If n shares any of these prime factors then the computation of [420](3, 5)
will encounter an impossible division modulo n. To verify the presence of (for
example) the primes 769, 811, and 839 one can observe that [420](3, 5) is the
neutral element in each of the groups E(Z/769Z), E(Z/811Z), E(Z/839Z); the
order of (3, 5) turns out to be 7, 42, 35 respectively. Note that the group orders
are 819, 756, and 840, none of which divide 420.

6.1.2. The standard choice of s

Pollard in [Pol78, page 527] suggested choosing s as “the product of all the primes
pi ≤ L each to some power ci ≥ 1. There is some freedom in the choice of the
ci but the smallest primes should certainly occur to some power higher than the
first.”
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Pollard’s prime bound “L” is now called B1. One possibility is to choose, for
each prime π ≤ B1, the largest power of π in the interval [1, n+ 2

√
n+ 1]. Then

[s]P is the neutral element in E(Z/qZ) if and only if the order of P is “B1-
smooth”, i.e. if and only if the order has no prime divisors larger than B1. This
possibility is theoretically pleasing but clearly suboptimal.

Brent in [Bre86, Section 5] says that “in practise we choose” the largest power
of π in the interval [1, B1] “because this significantly reduces the cost of a trial
without significantly reducing the probability of success.” GMP-ECM uses the
same strategy; see [ZD07, page 529].

6.1.3. Speeding up ECM

In this section, we discuss how the elliptic curve method can be sped up. We sug-
gest to use Edwards curves instead of Montgomery curves for two reasons: First,
the scalar multiplication can be computed faster since the arithmetic on Edwards
curves is more efficient than on Montgomery curves (which are traditionally used
in ECM implementations). Second, we can construct Edwards curves over Q with
large torsion group (in particular, larger than previous methods). Our implemen-
tation GMP-EECM (the additional letter “E” stands for “Edwards”) [BBLP08]
makes use of these improvements. We compare it to the widely used GMP-ECM
implementation by Zimmermann et al. to demonstrate the advantages of Edwards
curves for factoring with elliptic curves.

Edwards versus Montgomery arithmetic

The most time consuming operation in ECM is scalar multiplication [s]P for a
non-torsion point P and a scalar s as in the previous section. We now explain
how this operation can be sped up when using Edwards arithmetic instead of
Montgomery arithmetic.

In particular, the GMP-ECM implementation uses Montgomery coordinates
for stage 1, with “PRAC,” a particular differential addition chain introduced by
Montgomery. Zimmermann and Dodson in [ZD07, page 532, Figure 2] report a
total cost of 2193683 differential additions to multiply an elliptic-curve point by

2 · 3 · 5 · 7 · 11 · . . . · 999983 ≈ 21440508.1677

in Montgomery coordinates. By adding a few counters to the GMP-ECM 6.1.3
source code, we observed that GMP-ECM’s stage 1, with B1 = 106 and hence
s ≈ 21442098.6271, used 12982280 multiplications modulo n for 2196070 elliptic-
curve additions, of which only 194155 were doublings.

The speedups of the GMP-EECM implementation are as follows:

(1) GMP-EECM uses twisted Edwards curves ax2+y2 = 1+dx2y2 with inverted
Edwards coordinates with ϕ = 1/x whereas GMP-ECM uses Montgomery
curves with Montgomery coordinates.
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(2) GMP-EECM handles the prime factors π of s in batches, whereas GMP-
ECM handles each prime factor separately. GMP-EECM computes the
product t of a batch, replaces P with [t]P , and then moves on to the next
batch. We do not insist on batching all of the primes together (although we
have done this in all computations so far); the cost of the multiplications
to compute t should be balanced against the time saved by larger t. Note,
however, that for small P there is no reason that [t]P should be small, so
the advantage of a small base point holds for only the first batch.

(3) GMP-EECM uses “signed sliding window” addition chains. These chains
compute P 7→ [t]P using only 1 doubling and ε additions for each bit of
t. Here ε converges to 0 as t increases in length; this is why a larger t
saves time. Note that these chains are not compatible with Montgomery
coordinates; they are shorter than any differential addition chain can be.

GMP-EECM follows tradition in its choice of s. We have considered, but not
yet analysed or implemented, other choices of s; in particular, we comment that
allowing prime powers in the larger interval [1, B1.5

1 ] would have negligible extra
cost.

To understand the potential speedup here one can simply count multiplications.
GMP-ECM uses approximately 9 multiplications for each bit of s, see the example
with B1 = 106 above.

Doubling in Edwards coordinates uses only 7 multiplications; addition in Ed-
wards coordinates uses 12 multiplications but occurs for only a fraction ε of the
bits of s. The total multiplication count 7 + 12ε is below 9 for ε < 1/6.

Of course, reality is more complicated than a multiplication count. One disad-
vantage of Edwards coordinates is the cost of computing products of batches of
prime factors of s. One advantage of Edwards coordinates is that a larger fraction
of the multiplications are squarings and multiplications by curve constants. Using
inverted Edwards coordinates on twisted Edwards curves (as in GMP-EECM) has
many more multiplications by curve constants, but this is a good tradeoff when
the parameters are small.

A numerical example

We provided n = (5367 +1)/(2 ·3 ·73219364069) as input to GMP-ECM 6.1.3, with
stage-1 bound B1 = 16384, on an Intel Pentium M (6b8) running at 800MHz.
Stage 1 used 210299 multiplications modulo n and consumed a total of 2448
milliseconds.

We then provided the same input to our new GMP-EECM software. We used
the same stage-1 bound and the same s, but we used our new curve x2 + y2 =
1 + 1612x2y2/2892 (see Section 6.2.7) in inverted twisted Edwards coordinates,
with width-6 signed sliding windows. Stage 1 used only 195111 multiplications
modulo n, consumed only 2276 milliseconds, and printed the (previously known)
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prime 70057995652034894429. We inspected the point order and found that it
has largest prime factor 9103 and second-largest prime factor 2459.

Because GMP-EECM is very new we have not yet tried to use it to find record-
setting factorisations.

Large torsion group

The success of ECM depends on finding a point with smooth order modulo prime
numbers (of good reduction). More precisely, we want to find a non-torsion point
P on an elliptic curve E over Q such that this point has smooth order on E
modulo a prime number p of good reduction. If the curve E over Q has a torsion
subgroup with m elements, then we know that the reduced curve E modulo p has
group order divisible by m. So the reduction guarantees a factor of m in the order
of E modulo p. The larger this guaranteed factor is, the higher is the chance of
finding a point with smooth order on E modulo p. The group order of elliptic
curves over finite fields is investigated in [How93], the distribution of the group
order is studied in [McK99].

In Sections 6.2.1 and 6.2.2, we show how to construct Edwards curves over Q
with torsion group isomorphic to Z/2Z × Z/8Z and Z/12Z. With this, we can
guarantee a factor of 12 and 16 in the group order of the Edwards curves modulo
prime numbers. The widely known GMP-ECM implementation by Zimmermann
et al. uses Montgomery curves with torsion groups of order 6 and can therefore
guarantee a factor of 6 only.

6.2. Edwards curves suitable for ECM

The theorem of Mazur [Sil86, Theorem 7.5, page 223] says that the torsion group
Etor(Q) of any elliptic curve E over Q is isomorphic to one of the following fifteen
finite groups:

Etor(Q) ∼=
{

Z/mZ, m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12,

Z/2Z× Z/2mZ, m = 1, 2, 3, 4.
.

Any elliptic curve in Edwards form has a point of order 4 as we have seen in
the preceding chapter. It follows that the torsion group of an Edwards curve is
isomorphic to either Z/4Z, Z/8Z, Z/12Z, Z/2Z× Z/4Z, or Z/2Z× Z/8Z.

The most interesting cases for ECM are Z/12Z and Z/2Z × Z/8Z, since they
force the group orders of E modulo primes p (of good reduction) to be divisible
by 12 and 16, respectively. In this section, we show which conditions an Edwards
curve x2 + y2 = 1 + dx2y2 over Q must satisfy to have torsion group isomorphic
to Z/12Z or Z/2Z× Z/8Z. We give parametrisations for both cases.
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6.2.1. Torsion group Z/2Z× Z/8Z
Theorem 6.1 states a genus-0 cover of the set of Edwards curves over Q with
torsion group Z/2Z × Z/8Z, i.e. a surjective map from a genus-0 curve to the
set of all Edwards curves over Q with this torsion group. Theorem 6.3 states a
rational cover (i.e. there exists a rational parametrisation that allows us to hit all
Edwards curves over Q with torsion group Z/2Z×Z/8Z) and identifies the degree
of the cover. Theorem 6.2 identifies all the points of order 8 on such curves.

Theorem 6.1. The torsion group of an Edwards curve x2 + y2 = 1 + dx2y2 over
Q is isomorphic to Z/2Z × Z/8Z if and only if d is a square and there exists a
rational number x8 /∈ {0,±1} satisfying (2x2

8 − 1)/x4
8 = d.

Proof. Assume that the torsion group is isomorphic to Z/2Z× Z/8Z. The point
(1, 0) has order 4, so there must be a point (x8, y8) on the curve with [2](x8, y8) =
(1, 0). This implies y2

8 − x2
8 = 0 by Formula (5.8), and then the curve equation

x2
8 +y2

8 = 1+dx2
8y

2
8 implies 2x2

8 = 1+dx4
8. In particular, x8 /∈ {0,±1} since d 6= 1,

and therefore d = (2x2
8 − 1)/x4

8. Furthermore, the torsion group has three points
of order 2 and so d must be a square.

Conversely, assume that d is a square and that d = (2x2
8 − 1)/x4

8. Then the
curve (after desingularisation) has three points of order 2, and it also has the
point (x8, x8) of order 8. The torsion group thus contains a copy of Z/2Z×Z/8Z.
By Mazur’s theorem the torsion group cannot be larger.

Theorem 6.2. Assume that d ∈ Q\{0, 1} is a square, and that x8 ∈ Q\{0,±1}
satisfies (2x2

8 − 1)/x4
8 = d. Then the set of 8 points

{(±x8,±x8) ,
(
±1/(x8

√
d),±1/(x8

√
d)
)
},

where the signs are taken independently, is exactly the set of points of order 8 on
the Edwards curve x2 + y2 = 1 + dx2y2 over Q.

Proof. We will show that these 8 points are distinct points of order 8 on the curve.
The torsion group of the curve is isomorphic to Z/2Z×Z/8Z by Theorem 6.1, so
it has exactly 8 elements of order 8, which must be exactly these points.

To see that the 8 points are distinct,suppose that x8 = ±1/(x8

√
d). Then

x2
8

√
d = ±1 so dx4

8 = 1 so 2x2
8 = 2 so x2

8 = 1, contradiction.
To see that the points (±x8,±x8) are on the curve, use the equation 2x2

8− 1 =

dx4
8. To see that the points

(
±1/(x8

√
d),±1/(x8

√
d)
)

are on the curve, observe

that

1 + d
1

(±x8

√
d)2

1

(±x8

√
d)2

=
1 + dx4

8

dx4
8

=
2x2

8

dx4
8

=
2

(±x8

√
d)2

,

again using the equation 2x2
8 − 1 = dx4

8.
To see that all the points have order 8, observe that [2](x1,±x1) = (±1, 0) by

Formula (5.8), and that (±1, 0) has order 4.
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Theorem 6.3. If u ∈ Q\{0,−1,−2} then the Edwards curve x2 +y2 = 1+dx2y2

over Q, where

x8 =
u2 + 2u+ 2

u2 − 2
, d =

2x2
8 − 1

x4
8

,

has P8 = (x8, x8) as a point of order 8 and has torsion group isomorphic to
Z/2Z× Z/8Z.

Conversely, every Edwards curve over Q with torsion group isomorphic to
Z/2Z× Z/8Z is expressible in this way.

The parameters u, 2/u, −2(u+1)/(u+2), −(2+u)/(1+u), −(u+2), −2/(u+2),
−u/(u+1), and −2(u+1)/u give the same value of d and they are the only values
giving this d.

Proof. By Theorem 6.1 the necessary and sufficient condition for Etor(Q) ∼=
Z/2Z × Z/8Z is that there exists x8 /∈ {0,±1} satisfying (2x2

8 − 1)/x4
8 = d and

that d is a square, i.e. that 2x2
8 − 1 is a square.

The equation 2x2
8 − 1 = r2 has 4 trivial solutions (1, 1), (1,−1), (−1, 1), and

(−1,−1). These tuples violate the condition x8 /∈ {0,±1}. There are no other
solutions to 2x2

8 − 1 = r2 that violate the condition on x8.
We parametrise r2 = 2x2

8 − 1 by intersecting it with lines through (1,−1), i.e.
the lines given by r = ux8 − u− 1.

0 = (ux8 − u− 1)2 − 2x2
8 + 1 = (u2 − 2)x2

8 − 2u(u+ 1)x8 + (u+ 1)2 + 1

= (u2 − 2)(x8 − 1)(x8 − (u2 + 2u+ 2)/(u2 − 2)).

A new solution to r2 = 2x2
8 − 1 in terms of u is given by (x8, r) = ((u2 + 2u2 +

2)/(u2 − 2), (u2 + 4u+ 2)/(u2 − 2)), where the value for r is computed using the
line.

This parametrisation cannot find (1, 1), but this solution is excluded anyway.
The solutions (1,−1), (−1, 1), and (−1,−1) are found for u = −2, u = −1, and
u = 0, respectively. So u ∈ Q \ {0,−1,−2} gives a complete parametrisation of
all Edwards curves with Etor(Q) ∼= Z/2Z× Z/8Z.

The value of x8 is invariant under the change u← −2(u+ 1)/(u+ 2) since

4(u+ 1)2 − 4(u+ 1)(u+ 2) + 2(u+ 2)2

4(u+ 1)2 − 2(u+ 2)2
=

2u2 + 4u+ 4

2u2 − 4
=
u2 + 2u+ 2

u2 − 2
.

The change u← 2/u changes the sign of x8:

4 + 4u+ 2u2

4− 2u2
= −u

2 + 2u+ 2

u2 − 2
.

Since d depends only on x8 these 2 transformations account for the first 4 values
of u giving the same curve.
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6. Edwards Curves over Q and Applications to Factoring

By Theorem 6.2 the same d, and thus the same curve, is obtained also for
x′8 = 1/(

√
dx8) = x8/r = u2+2u+2

u2+4u+2
. This value is obtained for the parameter

−(u+ 2) since

(u+ 2)2 − 2(u+ 2) + 2

(u+ 2)2 − 2
=
u2 + 2u+ 2

u2 + 4u+ 2
.

The other 3 values are obtained by applying the same 2 transformations as before.
Since there are exactly 8 points of order 8 and since each of them determines the
curve, these are precisely the values of u leading to the same curve.

6.2.2. Torsion group Z/12Z
Theorem 6.4 states a genus-0 cover of the set of Edwards curves over Q with
torsion group Z/12Z. Theorem 6.6 states a rational cover. Theorem 6.5 identifies
all the points of order 12 on such curves.

Theorem 6.4. The torsion group of an Edwards curve x2 + y2 = 1 + dx2y2

over Q is isomorphic to Z/12Z if and only if there exists a rational number y6 /∈
{−2,−1/2, 0,±1} satisfying (2y6 + 1)/(y3

6(y6 + 2)) = d and such that −(y2
6 + 2y6)

is a square.

Proof. Rational points of order 3 or 6 are exactly the points (x6, y6) for which the
x-coordinate of [3](x6, y6) is 0. By (5.9) these are exactly the points for which
(x2

6 + y2
6)2 = (2y6)2. If this holds for one (x6, y6) then also for (±x6,±y6), where

the signs are taken independently. Up to signs this means that x2
6 +y2

6 = −2y6. If
the curve has such a point then d must satisfy the equation x2

6 + y2
6 = 1 + dx2

6y
2
6,

i.e. −2y6 = 1 + d(−2y6 − y2
6)y2

6. For y6 /∈ {−2,−1/2, 0,±1} the value d =
(2y6 + 1)/(y3

6(y6 + 2)) is defined and not equal to 0 or 1.

For this d we get a point of order 3 or 6 exactly if x2
6 = −(y2

6 + 2y6) has a
rational solution.

Since each Edwards curve has a point of order 4 the torsion group must contain
a copy of Z/12Z; by Mazur’s theorem the torsion group cannot be larger.

Theorem 6.5. Let x2+y2 = 1+dx2y2 be an Edwards curve over Q with Etor(Q) ∼=
Z/12Z and let P3 = (x3, y3) be a point of order 3 on the curve.

The 12 torsion points on the curve and their respective orders are as follows:

point (0, 1) (0,−1) (±x3, y3) (±1, 0) (±x3,−y3) (±y3,±x3)

order 1 2 3 4 6 12

Proof. The points of order 6 are obtained as (±x3, y3) + (0,−1), the points of
order 12 by adding (±1, 0) to the points of order 3 and 6.
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Theorem 6.6. If u ∈ Q \ {0,±1} then the Edwards curve x2 + y2 = 1 + dx2y2

over Q, where

x3 =
u2 − 1

u2 + 1
, y3 = −(u− 1)2

u2 + 1
, d =

(u2 + 1)3(u2 − 4u+ 1)

(u− 1)6(u+ 1)2

has P3 = (x3, y3) as a point of order 3 and has torsion group isomorphic to Z/12Z.
Conversely, every Edwards curve over Q with torsion group isomorphic to

Z/12Z is expressible in this way.
The parameters u and 1/u give the same value of d.

Proof. The points of order 3 are determined by [2](x3, y3) = (−x3, y3) and x3, y3 6=
0. Solving this equation gives x2

3 + y2
3 = −2y3, i.e. x2

3 + (y3 + 1)2 = 1. Parametri-
sation of the unit circle r2 + s2 = 1 (with r = x3 and s = y3 + 1) yields
(r, s) = (((u2 − 1)/(u2 + 1), 2u/(u2 + 1)) and thus the point

(x3, y3) =
(
(u2 − 1)/(u2 + 1), 2u/(u2 + 1)− 1

)
=

(
(u2 − 1)/(u2 + 1),−(u− 1)2/(u2 + 1)

)
.

The parametrisation does not find the solution (r, s) = (1, 0), i.e. (x3, y3) = (1,−1)
which is not a point of order 3. Likewise, (r, s) = (−1, 0) which is found for u = 0
does not lead to a point of order 3. The solutions (r, s) = (0,±1), obtained for
u = ±1 lead to x3 = 0 and are therefore excluded.

The value for d follows from Theorem 6.4. For u ∈ Q \ {0,±1} the value of d
is defined and not equal to 0 or 1.

The value of d is invariant under the change u← 1/u since

(1 + u2)3(1− 4u+ u2)

(1− u)6(1 + u)2
=

(u2 + 1)3(u2 − 4u+ 1)

(u− 1)6(u+ 1)2
.

Solving the equation d(u′) = d(u) for u′ in terms of u over the rationals shows
that u ← 1/u is the only rational transformation leaving d invariant that works
independently of u.

6.2.3. Torsion group Z/2Z× Z/6Z
Theorem 6.7. There exists no twisted Edwards curve over Q with torsion sub-
group isomorphic to Z/2Z× Z/6Z.

Proof. A twisted Edwards curve is birationally equivalent to a Montgomery curve
(see Section 5.3.1 and Section 3 in [BBJ+08]). So for simplicity we give the proof
for curves in Montgomery form.
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6. Edwards Curves over Q and Applications to Factoring

Let A,B ∈ Q and let EM,A,B : By2 = x3 + Ax2 + x be an elliptic curve over Q
in Montgomery form. We show that there is no point of order 3 on EM,A,B and
therefore no point of order 6.

The right-hand side of the curve equation is equal to (x− a1)(x− a2)x, where
a1, a2 are distinct non-zero rational numbers. Due to Vieta’s formula we know
that A = −(a1 + a2) and 1 = a1a2. Hence, a2 = 1/a1.

The condition to have a point P3 = (x3, y3) of order 3 on the curve is [2]P3 =
−P3 = (x3,−y3). Using the addition law on elliptic curves we get the equality
for the x-coordinate x3 = Bλ2 − 2x3 − A, where λ = (3x2

3 + 2Ax3 + 1)/(2By).
Solving the equation for A, we get

A = −3x4
3 + 6x2

3 − 1

4x3
3

= −(a1 + 1/a1).

This can be written as the curve a1(3x4
3 + 6x2

3 − 1) = (a2
1 + 1)4x3

3. Changing
the variable names from a1 to V and x3 to U , we get (after homogenisation) the
projective curve

C : V (3U4 + 6U2Z2 − Z4) = (V 2 + Z2)4U3,

which has rank 0, genus 1 and exactly the eight points (4/3 : 1 : 0), (0 : 1 : 0),
(0 : 0 : 1), (1 : 0 : 0), (−1/3 : 1 : 1), (1/3 : −1 : 1), (1 : 1 : 1) and (−1 : −1 : 1).
Three of the points are at infinity; the other five points give values for x3 and A
such that the appropriate Montgomery curve is singular.

6.2.4. Parametrisations

Atkin and Morain in [AM93] found an infinite family of elliptic curves over Q
with torsion group Z/2Z× Z/8Z and with explicit non-torsion points.

In this section, we quote the Atkin-Morain theorem and then translate it from
Weierstraß form to Edwards form.

Suyama in [Suy85] gives an infinite sequence of Montgomery curves which have
torsion subgroup Z/6Z over Q. Note that these curves have group order divisi-
ble by 4 when considered modulo any odd prime number. We will convert this
sequence of curves to twisted Edwards curves and discuss its use for ECM with
Edwards curves.

6.2.5. Atkin and Morain’s parametrisation

The Atkin-Morain family is parametrised by points (s, t) on a particular elliptic
curve T 2 = S3− 8S− 32. Atkin and Morain suggest computing multiples (s, t) of
(12, 40), a non-torsion point on this curve. Beware that these points have rapidly
increasing height.
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6.2. Edwards curves suitable for ECM

Theorem 6.8 (Atkin, Morain). Let (s, t) be a rational point on the curve T 2 =
S3 − 8S − 32. Define α = ((t+ 25)/(s− 9) + 1)−1, β = 2α(4α + 1)/(8α2 − 1),
c = (2β − 1)(β − 1)/β, and b = βc. Then the elliptic curve

Eα : Y 2 = X3 +
((c− 1)2 − 4b)

4
X2 +

b(c− 1)

2
X +

b2

4

has torsion group isomorphic to Z/2Z × Z/8Z and a non-torsion point with x-
coordinate −(2β − 1)/4.

Theorem 6.9. Let (s, t) be a rational point on the curve T 2 = S3 − 8S − 32.
Define α and β as in Theorem 6.8. Define d = (2(2β − 1)2 − 1)/(2β − 1)4.
Then the Edwards curve x2 + y2 = 1 + dx2y2 has torsion group isomorphic to
Z/2Z × Z/8Z and a point (x1, y1) with x1 = (2β − 1)(4β − 3)/(6β − 5) and
y1 = (2β − 1)(t2 + 50t− 2s3 + 27s2 − 104)/(t+ 3s− 2)(t+ s+ 16).

Proof. By construction x8 = 2β − 1 satisfies (2x2
8 − 1)/x4

8 = d. Furthermore

d =
(8α2 − 1)2(8α2 + 8α + 1)2

(8α2 + 4α + 1)4
,

so d is a square. By Theorem 6.1, the Edwards curve has torsion group isomorphic
to Z/2Z × Z/8Z. Finally, a straightforward calculation shows that x2

1 + y2
1 =

1 + dx2
1y

2
1.

The point with x-coordinate −(2β − 1)/4 in Theorem 6.8 is generically a non-
torsion point. The y-coordinate of the point is not stated explicitly in [AM93].
The point (x1, y1) in Theorem 6.9 is the corresponding point on the Edwards
curve.

6.2.6. Suyama’s parametrisation

The GMP-ECM package uses a family of elliptic curves in Montgomery form given
by Suyama’s parametrisation (see [ZD07]). We briefly revise this parametrisation
and show how we can obtain a similar result for twisted Edwards curves.

Theorem 6.10. Let σ > 5 be an integer. We define

α = σ2 − 5, β = 4σ, U0 = α3, W0 = β3,

A = (β − α)3(3α + β)/(4α3β)− 2, B = α/W0.

Then the elliptic curve EM,A,B : Bv2 = u3 +Au2 +u has torsion group Z/6Z over
the rational numbers.

Let V0 = (σ2 − 1)(σ2 − 25)(σ4 − 25). The point (u0, v0) = (U0/W0, V0/W0) on
EM,A,B is a non-torsion point.
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6. Edwards Curves over Q and Applications to Factoring

Remark 6.11. It is well known that reducing the curve modulo a prime p yields
a factor 4 in the group order of EM,A,B. Thus, 12 divides #EM,A,B(Z/pZ).

Theorem 6.12. Let σ > 5 and α, β, U0, V0,W0 as in Theorem 6.10. For a =
(β−α)3(3α+β)β2/(4α4) and d = (β+α)3(β−3α)β2/(4α4) the twisted Edwards
curve ax2 + y2 = 1 + dx2y2 has group order divisible by 12 over any field of prime
order and a point (x0, y0) = (α3/V0, (α

3 − β3)/(α3 + β3)).

Proof. We showed in Section 5.3.1 that over a non-binary field k every Mont-
gomery curve EM,A,B : Bv2 = u3 + Au2 + u is birationally equivalent to a
twisted Edwards curve EE,a,d : ax2 + y2 = 1 + dx2y2. The relations between
the curve coefficients are a = (A + 2)/B and d = (A − 2)/B and the map from
EM,A,B to EE,a,d is given by (u, v) 7→ (x, y) = (u/v, (u − 1)/(u + 1)). With
A = (β − α)3(3α + β)/(4α3β)− 2 and B = α/β3 as in Theorem 6.10 we get the
desired values for a and d. Mapping the point (u0, v0) = (α3/β3, V0/β

3) to EE,a,d
yields the desired point (x0, y0):

x0 = u0/v0 = α3/V0 and y0 =
u0 − 1

u0 + 1
=
α3 − β3

α3 + β3
.

The theorem now follows from Remark 6.11.

In order to compare the curves used in GMP-ECM to Edwards curves we con-
sidered Suyama’s parametrisation for twisted Edwards curves. However, it is
questionable if this parametrisation yields better results for GMP-EECM than
the conditions on Edwards curves given in the previous section.

In our tests we considered Edwards curves with torsion group Z/12Z as in
Section 6.2 and computed the group order modulo primes p in the interval [106, 2 ·
106]. The average exponent of a factor 2 in the group order was 11/3 and the
average exponent of a factor 3 was 5/3.

For Montgomery curves given by the Suyama parametrisation we get the same
values for the exponents of 2 and 3 only in the case σ = 11 whereas for all other
tested values of σ the group order has less small factors.

6.2.7. Edwards curves with small parameters

One way to save time in computations on generalised Edwards curves is to choose
small parameters a, d and small points (X1 : Y1 : Z1); see Section 5.3. Another
way to save time is to construct curves of rank at least 1 with large torsion over
Q. Unfortunately, essentially all of the curves constructed in the previous sections
have large a, d,X1, Y1, Z1.

Our aim in this section is to combine these two time-saving techniques, finding
twisted Edwards curves that simultaneously have small parameters a, d, a small
non-torsion point (X1 : Y1 : Z1), and large torsion over Q.
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Overall we found more than 100 small Edwards curves having small non-torsion
points and at least 12 torsion points over Q. Of course, one can easily write down
many more small curves if one is willing to sacrifice some torsion.

Torsion group Z/2Z× Z/8Z

First we consider the case where the curve has torsion group isomorphic to Z/2Z×
Z/8Z, i.e. there exists a point of order 8 on the curve and d is a square.

Theorem 6.2 states all points of order 8. The other affine points of finite order
are (0,±1) and (±1, 0). Any other point (x1, y1) on the curve must have infinite
order.

Theorem 6.3 gives a complete parametrisation of all curves with torsion group
isomorphic to Z/2Z × Z/8Z. Any rational point (u, x8, d, x1, y1) on the surface
described by x8 = (u2 +2u+2)/(u2−2), d = (2x2

8−1)/x4
8, and x2

1 +y2
1 = 1+dx2

1y
2
1

for u ∈ Q\{0,−1,−2} gives us a suitable curve for ECM as long as we can ensure
that (x1, y1) is none of the points of finite order.

We consider only u >
√

2. This does not cause any loss of generality: if
0 < u <

√
2 then 2/u >

√
2, and 2/u produces the same curve by Theorem 6.3; if

u < −2 then −(u+2) > 0, and −(u+2) produces the same curve by Theorem 6.3;
if −2 < u < −1 then −2(u+ 1)/(u+ 2) > 0, and −2(u+ 1)/(u+ 2) produces the
same curve by Theorem 6.3; if −1 < u < 0 then −u/(u+ 1) > 0, and −u/(u+ 1)
produces the same curve by Theorem 6.3.

Write u as a/b for positive integers a, b. Expressing x8 and d in terms of a and
b produces the denominator (a2 + 2ab + 2b2)4 for d and thus for dx2

1y
2
1. Thus we

scale x1 and y1 as

x1 = (a2 + 2ab+ 2b2)/e, y1 = (a2 + 2ab+ 2b2)/f.

Expressing all variables in a, b, e, f we find that solutions (u, x8, d, x1, y1) corre-
spond to integer solutions a, b, e, f of the (1, 1, 2, 2)-weighted-homogeneous equa-
tion

(e2 − (a2 + 2ab+ 2b2)2)(f 2 − (a2 + 2ab+ 2b2)2) = (4ab(a+ b)(a+ 2b))2.

We found many small solutions to this equation, and thus many of the desired
Edwards curves, as follows. We considered a range of positive integers a. For each
a we enumerated integers b between 1 and ba/

√
2c. For each (a, b) we enumerated

all divisors of (4ab(a + b)(a + 2b))2, added (a2 + 2ab + 2b2)2 to each divisor, and
searched for squares.

After about a week of computation on some computers at LORIA, roughly
2 · 1016 CPU cycles in total, we had inspected more than 1014 divisors, found 25
different values of d, and checked that we had 25 different j-invariants.

Here are two examples:
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(1) The solution (a, b, e, f) = (3, 1, 19, 33) produces the order-8 point (17/7, 17/7)
and the non-torsion point (17/19, 17/33) on the Edwards curve x2 + y2 =
1 + dx2y2 where d = 1612/174.

(2) The solution (a, b, e, f) = (24882, 9009, 258492663, 580153002) produces the
non-torsion point (86866/18259, 8481/4001) on the Edwards curve x2 +y2 =
1 + dx2y2 where d = 56577192/33414.

The number of d’s below height H appears to grow as roughly lgH. For
comparison, the Atkin-Morain procedure discussed in Section 6.2.5 generates only
about

√
lgH examples below height H.

Torsion group Z/12Z

Writing u = a/b in Theorem 6.6 yields an Edwards parameter d, a non-torsion
point (x1, y1) and a point (x3, y3) of order 3 as follows:

d =
(a2 + b2)3(a2 − 4ab+ b2)

(a− b)6(a+ b)2
, x3 =

(a2 − b2)

(a2 + b2)
, y3 =

−(a− b)2

(a2 + b2)
,

x1 =
(a2 − b2)

e
, y1 =

−(a− b)2

f
.

We have to exclude x1 from being any of the torsion points stated in Theorem 6.5
and need that u ∈ Q \ {0,±1}. Writing x2

1 + y2
1 = 1 + dx2

1y
2
1 in terms of a, b, e, f

shows that we have to look for points (a, b, e, f) on the surface

(e2 − (a2 − b2)2)(f 2 − (a− b)4) = 16a3b3(a2 − ab+ b2).

We found many small solutions as in Section 6.2.7: for each small (a, b) we enu-
merated all divisors of 16a3b3(a2 − ab+ b2), added (a2 − b2)2 to each divisor, and
looked for squares.

After about a week of computation on some computers at LORIA we had found
78 different values of d and checked that we had 78 different j-invariants.

Here are two examples:

(1) The solution (a, b, e, f) = (3, 2, 23, 7) produces the order-3 point (5/13,−1/13)
and the non-torsion point (5/23,−1/7) on the Edwards curve x2 + y2 =
1 + dx2y2 where d = −11 · 133/52.

(2) The solution (a, b, e, f) = (15180,−7540, 265039550, 161866240) produces
the non-torsion point (3471616/5300791,−201640/63229) on the Edwards
curve x2 + y2 = 1 + dx2y2 where d = 931391 · 3591053/1400033300482.
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In this thesis, we have studied two main topics. First, we investigated the use of
hyperelliptic curves for cryptography. More precisely, we looked at hyperelliptic
curves of genus 2 and 3 over binary fields, their Picard groups and especially the
arithmetic on these groups. Second, we studied Edwards and twisted Edwards
curves and how they can be applied for cryptography and for integer factorisation.

In Chapter 3 we studied hyperelliptic curves of genus 2 over finite fields of
the form F2d . As a starting point we have used the most general form of the
curve equation in genus 2 and did a classification of all these curves according
to their 2-rank. We found three main types of curves (and more sub types) and
investigated the order of the Picard group (see Definition 2.14) of these curves
for each class and gave explicit formulas for divisor class halving and divisor class
doubling. It turned out that for some curve types the halving formulas require
less field operations than the doubling ones. For other types the halving formulas
can compete with their doubling counterparts, and for some types the halving
formulas are slower. The main outcome is that halving formulas—together with
a halve-and-add like algorithm—can improve the performance of scalar multipli-
cation of divisor classes in the Picard group of genus-2 curves. This, in turn,
can improve the overall speed of curve-based cryptosystems. In addition, in the
second to last section of Chapter 3 we have given divisor class addition formulas
and divisor class doubling formulas that are completely inversion-free. This is
extremely important for applications in which field inversions are very costly (e.g.
for hardware implementations).

We also answered the question on security at the very end of the chapter.
We discussed the effects of currently known attacks to genus-2 curves with 2-
rank 1. The result is that it is not difficult to select a curve such that the Picard
group of this curve is secure against square-root attacks (Sections A.2 and A.3),
Index calculus (Section A.3), MOV and Frey-Rück attacks (Section A.5) and Weil
descent attacks (Section A.6). Hence we can recommend genus-2 curves for DLP-
based cryptosystems since they can comply with the two most important criteria:
efficient arithmetic and security.

In Chapter 4 we studied hyperelliptic curves of genus 3 over finite fields of the
form F2d . Analogously we did a classification of the curves, again, according to
the 2-rank of the curves. It has turned out that curves with h(x) = 1 offer best
performance for scalar multiplication in genus 3. In this case we could find explicit
halving formulas that perform equally well as the doubling formulas. For curves
of Type III (i.e. h(x) = x) we could develop halving formulas that are almost
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twice as fast as the corresponding doubling ones, but curves of Type Ia are faster.
As in the genus-2 chapter we also checked the curves of genus 3 for susceptibility

to currently known attacks and found that they can be suitable for cryptographic
applications. Curves of higher genus are weak under Index Calculus attacks and
cannot be recommended for DLP-based applications.

The third main subject in this thesis is Edwards curves (see Section 5) over
fields of characteristic 0 or odd characteristic. We have explained Edwards and
twisted Edwards curves and gave explicit formulas to perform the group law. It
turned out that elliptic curves in Edwards form—when using Inverted Edwards
coordinates—offer best speed for scalar multiplication. We have proved that all
elliptic curves in Montgomery form are birationally equivalent to twisted Edwards
curves (i.e. isomorphic with finitely many exceptions). This brought the speed of
the Edwards addition law to all Montgomery curves.

We have also investigated the use of (twisted) Edwards curves over Q for the
ECM factorisation method (cf. Section 6). We found parametrisations to generate
infinitely many “good curves” for ECM, i.e. curves with large torsion subgroup,
positive rank over Q and small-height parameters. First results showed a notice-
able increase of the performance of ECM when using Edwards curves instead of
elliptic curves in Weierstraß form. But not only the different form of the elliptic
curve is responsible for the better performance, but also the small-height curve
parameters and the larger torsion subgroup improved the integer factorisation.

7.1. Outlook

The halving formulas for curves of genus 2 and 3 work directly on the coefficients
of the polynomials in the Mumford representation of a divisor class. For each case
we have different explicit formulas. It would be interesting to investigate if it is
possible to write down a halving algorithm that is completely general and works
for any genus, like Cantor’s algorithm does for divisor class doubling.

Edwards curves had such a large impact on elliptic-curve arithmetic that it is
natural to ask if similar results can be obtained for higher-genus curves. A very
interesting questions is whether it is possible to find an analogue of genus-2 curves
in Edwards form, and if those can offer the same useful properties.
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menting curve-based key exchanges. Proceedings of SPEED workshop,
Amsterdam, 2007. URL: http://www.hyperelliptic.org/SPEED.

[Har97] Robin Hartshorne. Algebraic Geometry. Springer-Verlag, New-York,
1997.

[How93] Everett W. Howe. On the group orders of elliptic curves over finite
fields. Compositio Mathematica, 85(2):229–247, 1993.

[JL02] Antoine Joux and Reynald Lercier. The Function Field Sieve Is Quite
Special. In Algorithmic Number Theory Symposium – ANTS V, volume
2369 of Lecture Notes in Computer Science, pages 431–445. Springer-
Verlag, 2002.

116

http://eprint.iacr.org/2004/073
http://www.keylength.com
http://www.hyperelliptic.org/SPEED


Bibliography

[JL06] Antoine Joux and Reynald Lercier. The Function Field Sieve in the
Medium Prime Case. In Advances in Cryptology – EUROCRYPT
2006, volume 4004 of Lecture Notes in Computer Science, pages 254–
270. Springer-Verlag, 2006.

[JLSV06] Antoine Joux, Reynald Lercier, Nigel Smart, and Frederik Ver-
cauteren. The Number Field Sieve in the Medium Prime Case. In Ad-
vances in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes
in Computer Science, pages 326–344. Springer-Verlag, 2006.

[JMS04] Michael Jacobson, Alfred J. Menezes, and Andreas Stein. Hyperelliptic
curves and cryptography. In High Primes and Misdemeanors: Lectures
in Honour of the 60th Birthday of Hugh Cowie Williams, volume 41
of Fields Institute Communications, pages 255–282, 2004.

[KKT05] Izuru Kitamura, Masanobu Katagi, and Tsuyoshi Takagi. A Complete
Divisor Class Halving Algorithm for Hyperelliptic Curve Cryptosys-
tems of Genus Two. In Information Security and Privacy – ACISP
2005, volume 3574 of Lecture Notes in Computer Science, pages 146–
157. Springer-Verlag, 2005.

[Knu99] Erik W. Knudsen. Elliptic Scalar Multiplication Using Point Halving.
In Advances in Cryptology – ASIACRYPT99, volume 1716 of Lecture
Notes in Computer Science, pages 135–149. Springer-Verlag, 1999.

[Kob] Neal Koblitz. Miracles of the Height Function—A Golden Shield
Protecting ECC. URL: http://www.cacr.math.uwaterloo.ca/

conferences/2000/ecc2000/koblitz.ps. Talk at the 4th workshop
on Elliptic Curve Cryptography (ECC 2000).

[Lan05] Tanja Lange. Formulae for Arithmetic on Genus 2 Hyperelliptic
Curves. Applicable Algebra in Engineering, Communication and Com-
puting, 15(5):295–328, 2005.

[Len87] Hendrik W. Lenstra, Jr. Factoring integers with elliptic curves. Annals
of Mathematics, 126(3):649–673, 1987.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields, volume 20 of En-
cyclopedia of Mathematics and its Applications. Cambridge University
Press, 2nd edition, 1997.

[LS05] Tanja Lange and Marc Stevens. Efficient Doubling for Genus Two
Curves over Binary Fields. In Selected Areas in Cryptography – SAC
2004, volume 3357 of Lecture Notes in Computer Science, pages 170–
181. Springer-Verlag, 2005.

117

http://www.cacr.math.uwaterloo.ca/conferences/2000/ecc2000/koblitz.ps
http://www.cacr.math.uwaterloo.ca/conferences/2000/ecc2000/koblitz.ps


Bibliography

[McK99] James McKee. Subtleties in the Distribution of the Numbers of Points
on Elliptic Curves Over a Finite Prime Field. Journal of the London
Mathematical Society, 59(2):448–460, 1999.

[Mil86] Victor S. Miller. Short Programs for functions on Curves. IBM,
Thomas J. Watson Research Center, Exploratory Computer Science,
Yorktown Heights, NY, 1986. URL: http://crypto.stanford.edu/
miller/miller.pdf.

[Mil04] Victor S. Miller. The Weil Pairing, and Its Efficient Calculation. Jour-
nal of Cryptology, 17(4):235–261, 2004.

[MNT01] Atsuko Miyaji, Masaki Nakabayashi, and Shunzou Takano. New ex-
plicit conditions of elliptic curve traces for FR-reduction. IEICE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, E84-A(5):1234–1243, 2001.

[Mon87] Peter L. Montgomery. Speeding the pollard and elliptic curve methods
of factorization. Mathematics of Computation, 48(177):243–264, 1987.

[MOV93] Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reduc-
ing elliptic curve logarithms to a finite field. IEEE Transactions on
Information Theory, 39:1639–1646, 1993.

[Nae08] Mats Naeslund. ECRYPT Final Report on Algorithms and Key
Lengths (2008). URL: http://www.ecrypt.eu.org/documents/D.

SPA.28-1.1.pdf, August 2008. Revision 1.1.

[P1300] IEEE P1363. Standard specifications for public key cryptography.
IEEE, 2000. URL: http://grouper.ieee.org/groups/1363/index.
html.

[PH78] S. Pohlig and M. Hellmann. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance. IEEE Trans-
actions on Information Theory, IT-24:106–110, 1978.

[Pol78] John M. Pollard. Monte carlo methods for index computation mod p.
Mathematics of Computation, 32(143):918–924, 1978.

[Sch00a] Oliver Schirokauer. Using number fields to compute logarithms in
finite fields. Mathematics of Computation, 69(231):1267–1283, 2000.

[Sch00b] Richard Schroeppel. Elliptic Curve Point Halving Wins Big. 2nd
Midwest Arithmetical Geometry in Cryptography Workshop, Urbana,
IL, 2000. URL: http://www.math.uiuc.edu/~boston/magctitles.
html.

118

http://crypto.stanford.edu/miller/miller.pdf
http://crypto.stanford.edu/miller/miller.pdf
http://www.ecrypt.eu.org/documents/D.SPA.28-1.1.pdf
http://www.ecrypt.eu.org/documents/D.SPA.28-1.1.pdf
http://grouper.ieee.org/groups/1363/index.html
http://grouper.ieee.org/groups/1363/index.html
http://www.math.uiuc.edu/~boston/magctitles.html
http://www.math.uiuc.edu/~boston/magctitles.html


Bibliography

[Sha71] Daniel Shanks. Class number, a theory of factorization, and genera.
In Proceedings of Symposia in Pure Mathematics, volume 20, pages
415–440, Providence, 1971. American Mathematical Society.

[Sha94] Igor R. Shafarevich. Basic Algebraic Geometry 1. Springer-Verlag,
Berlin, 1994.

[Sil86] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Springer-
Verlag, New York, 1986.

[SSW96] Renate Scheidler, Andreas Stein, and Hugh C. Williams. Key-
Exchange in Real Quadratic Congruence Function Fields. Designs,
Codes and Cryptography, (7):153–174, 1996.

[Sti93] Henning Stichtenoth. Algebraic Function Fields and Codes. Springer-
Verlag, New York, 1993.

[Suy85] Hiromi Suyama. Informal preliminary report (8). By courtesy of
Richard Brent, 1985.

[SZ02] Jasper Scholten and Hui June Zhu. Hyperelliptic Curves in Charac-
teristic 2. International Mathematics Research Notices, 17:905–917,
2002.
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A. Attacks on the
Discrete-Logarithm Problem

In this appendix we discuss attacks on the discrete-logarithm problem (DLP)
on general groups and on elliptic and hyperelliptic curves (i.e. on their Picard
groups). At the beginning we present the algorithm of Pohlig and Hellman
([PH78]), but this not an attack but a method to split up the DLP into smaller
DLPs which then can be solved using one of the other methods presented in
this appendix. The next two methods are the baby-step giant-step method and
Pollard’s rho method which are both designed to find the discrete logarithm in
general cyclic groups. After that we discuss the MOV [MOV93] and Frey-Rück
[FR94] reductions as well as Weil descent (see [GS99], [GHS02] and [Gal03]).
These methods can be used for elliptic curves and general abelian varieties.

A.1. Pohlig-Hellman algorithm

The Pohlig-Hellman algorithm is a method to determine the discrete logarithm
in general cyclic groups. This method is mainly based on the Chinese remainder
theorem. The algorithm is a method to split up the (large) discrete-logarithm
problem into many smaller ones.

We start with a cyclic group G of order n with prime factorisation

n = pk11 · . . . · pkr
r

and consider the DLP

h = gx (A.1)

in the group G, where g is of order n and h an arbitrary element in G. Our goal
is to determine the exponent x.

The idea of the Pohlig-Hellman strategy is to solve the DLP in all the subgroups
of order pki

i of G and assemble the partial results to a solution in G. This can be
done using the Chinese remainder theorem. The DLP in a subgroup of order pki

i

can be, in turn, split up into even more simple DLPs in subgroups of order pi.
The DLP in the order-pi subgroup can then be solved using other methods like
Pollard rho or Shanks’ baby-step giant-step algorithm.
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A. Attacks on the Discrete-Logarithm Problem

A.1.1. Reducing the group order to prime powers

We will now describe how to reduce the first DLP into smaller DLPs in subgroups
of order pki

i .
To split up the main DLP into the smaller DLPs we write the exponent as

x = aip
ki
i + bi, where bi < pki

i . Thus, we obtain the following equations from
(A.1):

hn/p
ki
i = (gx)n/p

ki
i

= g(aip
ki
i +bi)n/p

ki
i

= gain︸︷︷︸
=1

gbin/p
ki
i (A.2)

= (gn/pi
ki

)bi .

Looking at the first and the last expression we get a new and particular smaller

DLP, namely that of finding bi given hn/p
ki
i and (gn/pi

ki )bi because raising h and
g to the power of n/pki

i transfers the DLP into the subgroup of order pki
i where

the DLP is easier to solve.
We perform the same procedure with all pki

i , and we can thus formulate the
following system of linear equivalences:

x ≡ b1 (mod pk11 )

x ≡ b2 (mod pk22 )
...

x ≡ br (mod pkr
r ).

Using the Chinese remainder theorem we can efficiently compute a solution x to
this system, which gives us the solution of our initial DLP (A.1) in G. We remark
that the Chinese remainder theorem can be applied to this situation since the
moduli pki

i are pairwise coprime.

A.1.2. Reducing to prime order

It remains to explain how we can compute the exponent bi in (A.2) explicitly.
Therefore we show how to reduce a DLP in a group of order pki

i to a DLP in a
subgroup of order pi, and how a solution to this can be lifted to a solution of the
DLP in the order-pki

i subgroup.
In (A.2), raising g and h to the power of ni/p

ki
i ensures that both values are of

order pki
i which we from now denote by γ = gni/p

ki
i and ψ = hni/p

ki
i . For simplicity

we also omit the fixed index i. Hence, we obtain a DLP in the subgroup of order
pk, given by the equation

γb = ψ,
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where γ is of order pk. We now write the exponent in base-p as b = akp
k +

ak−1p
k−1 + . . .+ a1p+ a0. This gives us the following equations:

ψp
k−1

= (γb)p
k−1

= γp
k−1(akp

k+ak−1p
k−1+...+a1p+a0)

= γp
k−1a0 γp

k(akp
k−1+ak−1p

k−2+...+a1)︸ ︷︷ ︸
=1

.

= γp
k−1a0

Now, γp
k−1

and ψp
k−1

are of order p and computing a0 can be done by using
Pollard’s rho method or Shanks’ baby-step giant-step algorithm. So we assume
a0 to be known and get

ψγ−a0 = γakp
k+ak−1p

k−1+...+a1p.

Raising both sides to the power of pk−2 gives

(ψγ−a0)p
k−2

= γp
k(akp

k−2+ak−1p
k−3+...+a2)γp

k−1a1

= γp
k−1a1 ,

since γ has order pk, and we also get a new DLP for a1 which can be solved the
same way we solved the DLP for a0. Repeating this for all coefficients up to ak,
the exponent b = bi of the first DLP is successfully determined.

A.2. Shanks’ baby-step giant-step method

The baby-step giant-step method was introduced by D. Shanks [Sha71] to com-
pute the class number of quadratic number fields. The method can be used to
solve the discrete-logarithm problem in general groups.

One starts with a cyclic group G = 〈g〉. Let n be the order of G and q = d√ne.
We want to find the integer x such that gx = h for a given element h ∈ G. The
idea of the baby-step giant-step method is to write the exponent x as x = dq + s
and compute s with baby steps and d with giant steps.

We start with computing hg−r for r = 0, 1, . . . , q − 1. If hg−r = 1 for some r,
then we are already done and x = r. We keep track of the values of hg−r and
create a list R of the pairs (hg−r, r). In other words, we have

R = {(hg−r, r) | r = 0, 1, . . . , q − 1}.
The computations of the elements of R are called baby steps.

Now we compute gcq for c = 1, 2, . . . , q (these calculations are called giant steps)
and check if gcq is equal to hg−r for some r ∈ {0, 1, . . . , q − 1}. If yes, then we
have gcq = hg−r and thus gcq+r = h. With d = c and s = r the discrete logarithm
of h is x = dq + s.

This algorithm requires approximately
√
n group operations and

√
n storage

(Section 5.2.1 in [Was08]). Therefore it is practically not feasible if the order of
G is large enough.
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A.3. Pollard’s rho method

Here we present Pollard’s rho method to compute the discrete logarithm in general
cyclic groups. This method was originally designed for finding discrete logarithms
in F∗p [Pol78] and is based on Floyd’s cycle-finding algorithm and the birthday
paradox. In the following, let G be a cyclic group of order n with a generator g.

The idea is to construct a sequence (wi)i≥0 of randomly chosen group elements
until a collision occurs. A collision is a pair (wl, wm) with l 6= m, such that
wl = wm. The expected number of steps, that have to be performed before a
collision occurs, is

√
πn/2 (cf. Section 19.5 in [ACD+05]). The sequence (wi)i≥0

is called random walk in G.

•

•

•

•

•
•

•

•

•

w0

w1

w2

wt−1

wt

wt+1

wt+2

wt+s−2

wt+s−1

wt+s

1

A pictorial description of the rho method can be given by drawing the Greek
letter ρ, representing the random walk and starting at the tail with w0. “Walking”
along the line means going from wi to wi+1. If a collision occurs at wt, then
wt = wt+s for some integer s, and the elements wt, wt+1, . . . , wt+s−1 form a loop.

To find a collision, one usually uses Floyd’s cycle-finding algorithm (see Sec-
tion 19.5.1.a in [ACD+05]). This idea of this algorithm is to walk along the
sequence at two different speeds and hope for a collision. This can be done by
using the two sequences wi and w2i. Doing a step means to increase i by 1. If
wi = w2i for some i, then we have found a collision.

Let h be a group element of G. We want to find an integer k such that [k]g = h.
To solve the discrete-logarithm problem in G, i.e. computing k, we can set the
random walk as

(wi)i≥0 := ([ai]g ⊕ [bi]h)i≥0

for some integer sequences (ai)i≥0 and (bi)i≥0. If we have found a collision wl = wm
for l 6= m, then we obtain

[al]g ⊕ [bl]h = [am]g ⊕ [bm]h,

which implies (al − am)g = (bm − bl)h and hence k = logg(h) = al−am

bm−bl .
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A.3.1. Improvements and conclusion

The Pollard-Rho method can be improved by using cycle-detection tricks like
Gosper’s or Brent’s algorithms (cf. Section 19.5 in [ACD+05]), but the time
complexity does only improve by a constant factor.

Even considering all improvements to Pollard’s rho method, it remains a so
called “square root” algorithm, so the number of expected operations to compute
the discrete logarithm remains unfeasible if the group order is large enough.

A.4. Index calculus

Index calculus is a method to compute the discrete logarithm and can be applied to
some special groups. For simplicity we explain the method for the multiplicative
group F∗p of a finite field Fp, where p is prime, and show how to apply this method
to divisor class groups of hyperelliptic curves afterwards. This section is based
on Section 5.1 in [Was08].

A.4.1. Index calculus for finite fields

Let G = 〈g〉 be a cyclic subgroup of F∗p and h ∈ G such that h = gk. Let
DL(h) = k denote the discrete logarithm of h in G. For two elements h1 and h2

in G we have
gDL(h1h2) = h1h2 = gDL(h1)+DL(h2), (A.3)

i.e. we can write the exponents as DL(h1h2) ≡ DL(h1)+DL(h2) modulo the group
order of G. Thus, the function DL changes multiplication into addition.

The idea of index calculus is to compute DL(`) for many small prime numbers
` in order to compute DL(h) for an arbitrary value of h. We first choose a set
B = {p1, p2, . . . , pn} of small primes numbers, called factor base. Then we try to
find at least n+ 1 relations of the form

gri = pe11 · pe22 · . . . · pen
n for some integers e1, e2, . . . , en, (A.4)

where gri is lifted from F∗p to Z, i.e. we consider gri (mod p) as an element of Z.
Now we solve this linear system of equations to compute the discrete logarithm
(i.e. the value of DL-function) for each prime number in the factor base B. Then
we can compute h · gr in G for random exponents r, lift this value to Z and hope
that it factors over the factor base. Since we know the values of the function DL
for all elements in B, we can eventually compute the discrete logarithm k = DL(h)
of h.

There are also index calculus algorithms to compute the discrete logarithm in
arbitrary finite fields of the form Fpd . For small fixed values of p see e.g. [JL02],

in which the running time of the algorithm is Lpd [1
3
, c], where c = (32/9)

1
3 and

Ln[v, c] = e(c+o(1))(logn)v(log logn)1−v

. (A.5)
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If v = 0, then the L-function gives a polynomial running time; for v = 1 it is
exponential.

For the special case F2d we refer to [Cop84]. In this paper, Coppersmith presents

an algorithm with complexity L2d [1
3
, c], where c is between (32/9)

1
3 and 4

1
3 . For

finite fields Fq with q = pd and p fixed the running time of the index calculus

algorithm is Lq[
1
3
, (64/9)

1
3 + o(1)] [Sch00a], where o(1) is for q → ∞. If q is

a power of a medium-size prime number the same complexity (with a different
constant c) was achieved using the function field sieve [JL06] and using the number
field sieve [JLSV06].

A.4.2. Index calculus for hyperelliptic curves

To apply index calculus to divisor class groups of hyperelliptic curves, we have to
transfer the notions of “prime” and “factor base” to divisor classes. Let D = [u, v]
be a divisor class over Fq with deg(u) ≤ g, where g is the genus of the curve. We
say that D is a prime divisor if u(x) is irreducible over Fq. To choose the factor
base we select a subset of the set of prime divisors, e.g. the set of the first 50
prime divisors such that the first polynomial of each divisor in Mumford form has
degree 1. Then for a divisor class E = [u1, v1] we test if u1(x) completely “splits”
over the factor base, i.e. if E can be written as a sum of elements of the factor
base. If yes, then we can analogously apply the index calculus method to find
relations and compute the discrete logarithm in the divisor class group. For more
details we refer to Section 13.4 in [Was08].

Genus 2 3 4 5

Square-root algorithm q q
3
2 q2 q

5
2

Index calculus [Gau00] q2 q2 q2 q2

Reduced factor base q
4
3 q

3
2 q

8
5 q

5
3

With large primes q
6
5 q

10
7 q

14
9 q

18
11

Table A.1.: Comparison of running times for square-root and index calculus algo-
rithms in genus 2, 3, 4 and 5

In Table A.1 we compare the running times of square-root and index calculus
algorithms for hyperelliptic curves of genus 2, 3, 4 and 5. According to the Hasse-
Weil bound (see 2.15) the Picard group of a hyperelliptic curve of genus g over
Fq has at most (

√
q + 1)2g elements, i.e. a square-root attack in genus 2, 3, 4 and

5 requires q, q
3
2 , q2 and q

5
2 operations.

In 2000, Gaudry [Gau00] presented an index calculus algorithm, which is effi-
cient in practise and has running time O(q2) for curves of genus less than 9 over
Fq. This method cannot outperform the square-root algorithms for genus 2 and
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3, but for genus 4 the running time is equal to q2 and even better in genus 5. The

running time for the reduced factor base variant of index calculus is O(g5q2− 2
g+1

+ε)

and for the large-prime variant O(g5q2− 4
2g+1

+ε) [Thé03a]. Looking at the two last
rows of the table we see that for genus 2 the square-root algorithms perform best.
For genus 3 the large-prime variant gives a very slight speedup over the square-
root algorithm but this is negligible and we can still consider genus 3 safe. For
the genus-4 and 5 case we see a noticeable improvement over q2 and hence, these
genera cannot be considered safe anymore.

Much research was put into finding different ways to apply index calculus meth-
ods to elliptic curves. So far none of them leads to success for curves over Fp or
F2p and some evidence was given why this should be the case (cf. [Kob]).

A.5. The MOV and Frey-Rück reductions

The MOV reduction was proposed by Menezes, Okamoto and Vanstone [MOV93]
in 1993. The idea of this technique is to transfer a discrete-logarithm problem
(DLP) on an elliptic curve over Fq to a discrete-logarithm problem in the multi-
plicative group F∗

qk using a specific isomorphism. If the value k (which is called

the embedding degree of the elliptic curve) is small enough, then the discrete log-
arithm in F∗

qk can be computed using index calculus methods in sub-exponential
time, which is a significant improvement over for instance the square-root algo-
rithms from the preceding sections. In this way the reduction can be seen as an
attack, and therefore the name “MOV attack” is also used when talking about
this method.

Luckily, it is quite easy to find elliptic curves which are not vulnerable to this
kind of attack. It is very likely that a randomly chosen elliptic curve has a very
large embedding degree which makes the MOV attack infeasible. Note that the
transfer is always possible but the discrete-logarithm problem can only be eased
via the MOV reduction if the embedding degree is sufficiently small. We will
explain later what we mean by “small”.

For a generalisation of the MOV reduction to hyperelliptic curves we refer to
the Frey-Rück attack [FR94].

The MOV reduction is based on the use of a pairing.

Definition A.1. A pairing is a bilinear mapping

e : G1 ×G2 → G,

where (G1,⊕), (G2,⊕) and (G, ·) are groups such that

(1) e(P ⊕Q,R) = e(P,R) · e(Q,R) for all P,Q ∈ G1 and R ∈ G2;

(2) e(P,R⊕ S) = e(P,R) · e(P, S) for all P ∈ G1 and R, S ∈ G2;
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(3) For all P ∈ G1 which are different to the neutral element, there exists an
element R ∈ G2 such that e(P,R) 6= 1 (non-degeneracy).

A.5.1. The Weil paring

In case of the MOV reduction we utilise the Weil pairing to accomplish the transfer
of the elliptic curve discrete-logarithm problem to the multiplicative group of a
finite field.

Definition A.2. The Weil pairing is a function

wn : E(Fq)[n]× E(Fq)[n]→ µn

wn(P,Q) =
fP (Q̃)

fQ(P̃ )
,

where E is an elliptic curve defined over Fq and µn the group of nth roots of

unity in F∗q. The functions fP , fQ are elements of the function field Fq(E) of E.

The elements P̃ and Q̃ are divisors that are equivalent to P − P∞ and Q − P∞,
respectively. Observe, that we can evaluate the functions fP and fQ at a divisor.

The embedding degree k is the smallest integer such that µn ⊂ F∗
qk , i.e. k is

minimal such that k | qk − 1.

The Weil pairing is bilinear, non-degenerate (see [Sil86], Proposition 8.1) and
computable, i.e. there exists an efficient algorithm to compute the function wn.
In particular, Miller in [Mil86] and [Mil04] shows how to compute the functions
fP and fQ efficiently. For P,Q ∈ E[n], the divisors n(P − P∞) and n(Q − P∞)
are principal divisors. Hence there are functions the divisors of which are equal
to n(P − P∞) and n(Q − P∞). These functions are precisely fP and fQ, i.e.
div(fP ) = n(P − P∞) and div(fQ) = n(Q− P∞). Note that we can define such a
function for every n-torsion point on E.

A.5.2. The reduction

Now we show how the reduction can be used to transfer the elliptic-curve DLP
to an ordinary DLP in a finite field. Let P ∈ E(Fq) be a point of order n on
the elliptic curve E over Fq and Q ∈ 〈P 〉. The elliptic curve discrete-logarithm
problem is to find an integer λ such that Q = [λ]P .

We now compute α := wn(P,R) and β := wn(Q,R) for an n-torsion point R
with wn(P,R) 6= 1 on E. Due to the bilinearity of the Weil pairing wn we have

β = wn([λ]P,R) = wn(P,R)λ,

which states the new discrete-logarithm problem αλ = β. This new problem is
defined in µn ⊂ F∗

qk .
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Note that wn implies an isomorphism

〈P 〉 → µn, Q 7→ wn(Q,R) = wn(P,R)λ

for a fixed n-torsion point R on E and Q = [λ]P .

To protect systems from this attack one should avoid curves with small em-
bedding degree or at least ensure that the discrete-logarithm problem in F∗

qk is as
hard as the original problem on the elliptic curve. We remark that pairing-based
cryptography uses the Weil and Tate pairings in a constructive manner. The
parameters q and k are balanced so that attacks are avoided in µn and E(Fq).
Constructing curves with such small values of k is a topic of active research. MNT
curves [MNT01] have k ≤ 6 while BN curves [BN06] have k = 12. If the pairing
is not used, curves with small k should be avoided.

A.6. Weil descent

In this section we discuss Weil descent, which is a technique to transfer the
discrete-logarithm problem (DLP) on an elliptic curve E over a finite field Fqn to
the Jacobian variety Jac(C) of a curve C of higher genus over the much smaller
field Fq. In certain situations the DLP on Jac(C)(Fq) can be solved more easily
using an index-calculus method, and this gives us the solution of the DLP on
E(Fqn), which reduces the security of the elliptic curve DLP.

Using Weil descent to transfer the elliptic curve DLP to another abelian variety,
e.g. to the Jacobian of a higher genus curve was first proposed by Frey [Fre98]. The
method was further developed by Galbraith and Smart [GS99] and by Gaudry,
Hess and Smart [GHS02]. In [Gal03] Galbraith has shown that the technique of
Weil descent can also be applied to the case of the discrete-logarithm problem in
the Jacobian of curves of genus greater than one.

Weil restriction

We will now give the idea of how to use Weil descent to transfer the DLP of an
elliptic curve over a field K to an abelian variety defined over a subfield of K.

Let k = Fq be a finite field of odd characteristic p and q = pr for r > 1. Let
K = Fqn be a field extension of degree n over k. Now we consider an elliptic curve
over K given by the equation

E : Y 2 = X3 + αX + β, (A.6)

where α, β ∈ K. If the characteristic of k is 2, then we need to use a more general
form of the curve equation.
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The field K is a k-vector space of dimension n. So let {θ0, θ1, . . . , θn−1} be a
k-basis of K. We write

X =
n−1∑
i=0

xiθi, Y =
n−1∑
i=0

yiθi, α =
n−1∑
i=0

aiθi and β =
n−1∑
i=0

biθi,

where ai, bi ∈ k.
Now, we substitute these expressions into the curve equation (A.6) and equate

the coefficients of θ0, θ1, . . . , θn−1. We obtain n equations in the 2n unknowns
{x0, x1, . . . , xn−1, y0, y1, . . . , yn−1}. By means of these relations we are given an
abelian variety A over the smaller field k of dimension n. This variety is called
Weil restriction of scalars of E, and the procedure of creating this variety from
the curve E is called Weil descent.

The variety A over k is isomorphic (as a group) to the elliptic curve E over K,
and we can perform the group law on A(k) by converting a point

(x0, x1, . . . , xn−1, y0, y1, . . . , yn−1) ∈ A(k)

to the point

(x0θ0 + x1θ1 + . . .+ xn−1θn−1, y0θ0 + y1θ1 + . . .+ yn−1θn−1) ∈ E(K).

Now, we can use the addition formulas on E.
Let us assume the elliptic curve E(K) contains a subgroup of large prime or-

der `. Since A(k) is isomorphic to E(K), the abelian variety A contains an
irreducible subvariety B which, in turn, contains a subgroup of order `. To solve
the DLP in the order ` subgroup of E(K) we can now try to solve the DLP in
the subvariety B, or more precisely in its order ` subgroup. To do so we find
a curve C on the variety A the Jacobian of which contains a subvariety which
is isogeneous to B. The dimension of the abelian variety A is n. To obtain a
curve (which is a variety of dimension 1) we have to reduce the dimension of A.
This can be done for example by intersecting A with all hyperplanes which pass
through the zero element of A. Therefore we set x0 = x1 = . . . = xn−1. If we
apply this to the set of relations generating A, we reduce the dimension to 1 and
get a curve with the desired properties. Since 〈P 〉 has to be contained in Div0

k(C)
the genus of C is at least n; for most curves it is much larger. If the genus of this
curve is not too large, it can be possible to solve the DLP using index calculus
methods in Div0

k(C). The transfer from the elliptic curve can be accomplished
via the conorm-norm homomorphism φ : E(K) → Div0

k(C) (see Section 3.6 in
[GHS02] for details).

Remarks and conclusion

We have to point out that an attacker is completely free in choosing a curve
within the variety A(k). Intersecting the variety with hyperplanes is just one way
to reduce its dimension and to get a curve with the desired properties.
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Since the abelian variety A is defined over a subfield of K, it is obvious that
this method cannot be applied when the curve E is defined over Fp, where p is
prime. For fields F2p , where p is prime, there exists no intermediate field, so the
Weil descent has to go to F2. In general, the genus of a curve on A(k) grows
exponentially with the extension degree. However, it could be that for some
curves over F2p there exists a Weil descent process, that is successful and leads
to a curve of genus p over F2. So far the only susceptible primes are Mersenne
primes, e.g. p = 127.
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Summary: Efficient Arithmetic on Low-Genus
Curves

Public key cryptosystems are almost always based on two problems in number
theory, the discrete-logarithm problem and the factorisation of integers. In this
thesis we treat certain aspects of both of these problems.

The most crucial parts of a cryptosystem that is based on the discrete-logarithm
problem are the group and the efficiency of the arithmetic in this group. In this
work we have investigated divisor class groups of hyperelliptic curves of genus 2
and 3 over binary fields. We suggest certain curves such that the appropriate
group is considered secure, and provide efficient arithmetic on these curves.

The most important operation in curve-based cryptosystems is single-scalar
multiplication of divisor classes. Therefore a very time-efficient arithmetic is
necessary. Since scalar multiplication is almost always computed using double-
and-add algorithms (or variants of these), it stands to reason to develop efficient
doubling and addition formulas. In case of elliptic curves it turned out that
point halving is very efficient, and hence halve-and-add algorithms proved very
successful and could even replace the double-and-add methods in some situations.
So it is natural to ask if similar results can be obtained for hyperelliptic curves as
well. For genus-2 curves we have developed explicit halving formulas which can
in some settings even beat the doubling counterparts. For the high-speed case
on the genus-2 curves we also give a complete case study, that covers all special
cases, depending on the polynomial representation of the divisor class.

We have generalised this also to the genus-3 case and investigated several types
of curves and developed explicit halving formulas. For some curves of a rather
general form we could even beat the doubling formulas by 10 to 20 field multi-
plications which is a speedup of about 30-40%. For the most common setting in
genus 3 we give (like in genus 2) a complete case study for all possible subcases.
This provides a programmer with everything he needs to do an implementation of
a cryptosystem based on the DLP on divisor class groups of hyperelliptic curves
of genus 3.

The third subject in this thesis (besides hyperelliptic curves of genus 2 and
genus 3) is Edwards curves. We have investigated elliptic curves in Edwards
and twisted Edwards form. We have looked at explicit addition, doubling and
tripling formulas in affine, projective and inverted Edwards coordinates. The
arithmetic on Edwards curves turns out to be faster than on elliptic curves in
other forms. Twisted Edwards curves cover even more elliptic curves: We have
shown that every Montgomery-form elliptic curve is birationally equivalent to a
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twisted Edwards curve. This brings the speed of the Edwards addition law to
Montgomery curves.

Furthermore, we have demonstrated how to construct Edwards and twisted Ed-
wards curves with prescribed torsion subgroup and positive rank, which is essen-
tial for the ECM method of factorisation. With this we treat the second problem
on which cryptosystem can be based on. The use of Edwards curves improved
the speed of factoring integers by using better curves and faster arithmetic.
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