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Time-Frequency Analysis of Accelerometry Data for
Detection of Myoclonic Seizures

Tamara M. E. Nijsen, Ronald M. Aarts, Fellow, IEEE, Pierre J. M. Cluitmans, Member, IEEE,
and Paul A. M. Griep

Abstract—Four time-frequency and time-scale methods are
studied for their ability of detecting myoclonic seizures from
accelerometric data. Methods that are used are: the short-time
Fourier transform (STFT), the Wigner distribution (WD), the con-
tinuous wavelet transform (CWT) using a Daubechies wavelet,
and a newly introduced model-based matched wavelet transform
(MOD). Real patient data are analyzed using these four time-
frequency and time-scale methods. To obtain quantitative results,
all four methods are evaluated in a linear classification setup. Data
from 15 patients are used for training and data from 21 patients for
testing. Using features based on the CWT and MOD, the success
rate of the classifier was 80%. Using STFT or WD-based features,
the classification success is reduced. Analysis of the false positives
revealed that they were either clonic seizures, the onset of tonic
seizures, or sharp peaks in “normal” movements indicating that
the patient was making a jerky movement. All these movements
are considered clinically important to detect. Thus, the results show
that both CWT and MOD are useful for the detection of myoclonic
seizures. On top of that, MOD has the advantage that it consists of
parameters that are related to seizure duration and intensity that
are physiologically meaningful. Furthermore, in future work, the
model can also be useful for the detection of other motor seizure
types.

Index Terms—Accelerometry (ACM), model, seizure detection,
time-frequency analysis.

I. INTRODUCTION

E PILEPSY is a common neurological disorder that is char-
acterized by recurrent seizures that are caused by hyper-

synchronous neuronal activity in the brain. The clinical signs of
seizures depend upon the location and extent of the propagation
of the discharging cortical neurons. Previously, we reported the
potential value of accelerometry (ACM) for detecting seizures
that have movement as the most important clinical manifesta-
tion, so-called motor seizures [1]. It was found that 95% of the
motor seizures consisted of characteristic elementary patterns.
These elementary patterns can be divided into three groups:
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myoclonic, clonic, and tonic patterns. It was found that 74%
of the motor seizures detected consisted of at least one my-
oclonic element. Myoclonic seizures are brief, shock-like jerks
of a muscle, or a group of muscles. Muscles of the face, the
neck, shoulders, and arms can be involved. During a myoclonic
seizure, the electrical activation of the muscles involved lasts
less than 50 ms [2]. It is of clinical importance to detect these
subtle seizures. Often a patient has many myoclonic seizures
during the night and, thus, their sleep pattern can be disturbed.
Severe motor seizures are often preceded by myoclonic seizures
and, thus, the detection of myoclonic seizures could be used for
early warning. Counting myoclonic seizures may also be an im-
portant measure for successful medical treatment, especially for
patients for whom seizures persist after medical treatment. This
paper presents a first approach for the detection of myoclonic
patterns from ACM data. The purpose of the methods under
study is to support off-line analysis for diagnostic and evalu-
ation purposes. In our detection setup, a supervised learning
approach is used, which requires the appropriate selection of
features and classifier. Experience from more mature research
areas, such as speech and audio, shows that the success of clas-
sification critically depends on the choice of features rather than
on the complexity of the type of classifier [3]. Therefore, we fo-
cus on the study of suitable features rather than on classification
methods. In ACM-literature, the choice for features depends on
the type of activities that are to be detected. For distinguishing
among normal daily activities, such as sitting, standing, lying,
and movement in general, statistical properties of the ampli-
tude of the signal such as mean and standard deviation seem
to be effective [4]. When distinguishing between various com-
plex movement patterns, features derived from time-frequency
methods such as the short-time Fourier transform (STFT) [5] or
a wavelet transform [6] are also applied. The dominant method
of seizure detection described in literature is based on the EEG
signal. Seizure detection based on the ACM-signal is new, and
consequently new detection algorithms need to be developed.
Nevertheless, from EEG-based detection methods, we can learn
that features based on morphological characteristics of the pat-
terns in the EEG signal associated with seizures, are more suc-
cessful to detect epileptic seizures [7], [8]. Thus, also for ACM-
based seizure detection, it is sensible to use features based on the
shape of the ACM-patterns associated with epileptic seizures.
Myoclonic seizures may be very subtle movements, and the am-
plitude in the ACM-signal during such a seizure can be very low.
Nevertheless, a small, short “shock-like” pattern can be visible
in the signal. A model was developed that describes the ACM
output during a myoclonic seizure [9]. In this paper, this model
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Fig. 1. (a) Isolated myoclonic waveform. (b). Myoclonic waveform in the
presence of other pattern. (c) Slow movement. (d) Nonmyoclonic waveforms
containing sharp peaks.

is used to formulate a matched wavelet transform (MOD). This
MOD is used to derive features for the detection of myoclonic
seizures. Furthermore, in this paper, three other time-frequency
methods are studied for their feasibility to derive salient fea-
tures for seizure detection, the STFT, the continuous wavelet
transform (CWT), and the Wigner distribution (WD). All four
feature sets are evaluated in a linear classification analysis setup
on clinical data (see Section VII-A).

II. ACCELEROMETRIC WAVEFORMS

A myoclonus can affect muscles throughout the body but of-
ten only one limb is involved, in most cases the arm. Fig. 1
shows examples of ACM data during myoclonic seizures and
other movements measured on the arm. A myoclonic seizure is
a twitch-like contraction of an antagonistic muscle pair. Flexion
is dominantly innervated over extension, so typically the limb
involved flexes during the seizure. After the seizure, the limb
suddenly stops. This sudden cessation results in a sharp peak in
the ACM signal. Waveforms associated with myoclonic seizures
have a short duration (0.5–2 s), are asymmetric and seem to
damp out exponentially at the end. They can occur as isolated
events [see Fig. 1(a)] or in a sequence of other movement pat-
terns [see Fig. 1(b)]. Patterns associated with normal movements
can have various appearances. Slow movements cause a block-
shaped pattern in the ACM-signal [see Fig. 1(c)]. Rhythmic or
jerky movements can cause sharp peaks in the ACM-signal [see
Fig. 1(d)].

III. MODEL FOR MYOCLONIC ARM MOVEMENTS

A model was developed that describes the ACM output—
measured on the arm-during myoclonic seizures [9]. The model
description consists of a mechanical part and a electrophysiolog-
ical part. The electrophysiological part contains the definition
of stimuli and a muscle response to these stimuli during the
myoclonic seizure. The mechanical part is based on kinematic

Fig. 2. Model fitted to real seizure waveform.

and kinetic relations for the lower arm modeled as a rigid body
system. This part contains rigid body parameters that can be
linked to body mass and body length. In the model, one ago-
nistic muscle pair is included that is synchronously innervated
during the seizure [2]. The ACM pattern X(t) in the dominant
movement direction, observed during a myoclonic seizure, can
be analytically expressed by

X(t) = K

(
te

−t
τ 0 − t

A
e

−t
B τ 0

)
χ[0,∞)(t) t ∈ R (1)

where constant K = (0.66(BM × BL))(F0/τ0), F0 represents
the intensity of muscle contraction, the relaxation time τ0 is
related to the duration of muscle contraction, BM represents
the full body mass, and BL represents the full body length, A
and B are dimensionless constants. Both A and B are > 1,
in this way, an alternating positive and negative netto muscle
movement is generated that is necessary to generate the typical
myoclonic “shock-like” pattern. In (1), χ[0,∞)(t) = 0 for t < 0
and χ[0,∞)(t) = 1 for t ≥ 0. Fig. 2 shows this model fitted to an
ACM waveform associated to a myoclonic seizure. In a previous
study, it was shown that the values of τ0 varied between 20 and
70 ms, and that this corresponds to physiological values of motor
units of a muscle responding to a twitch [9].

IV. TIME-FREQUENCY METHODS

This section describes four different time-frequency methods
which will be used to analyze ACM waveforms. One measure
is based on the model described in Section III.

A. Short-Time Fourier Transform

For the STFT of signal f , the signal is multiplied by a window
function h and then the Fourier transform of the product function
is taken [10]. By translating the window along the signal, the
STFT is able to analyze the frequency behavior of f during the
time interval for which h is localized.

STFTh [f ](t, ω) =
1√
2π

∫ ∞

−∞
f(τ)h∗(τ − t)e−iωτ dτ (2)

where ∗ denotes the complex conjugation. For h(t), a Han-
ning window is chosen. A myoclonic seizure can last less than
1 s, therefore, a large time resolution is desirable. The sample
frequency of the ACM signals used is 100 Hz, this limits the
choice of window length. Since a myoclonic seizure typically
lasts between 0.5 and 2 s, a window length of 50 samples is
chosen. This corresponds to a frequency resolution of 2 Hz. A
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Fig. 3. Example of a myoclonic waveform in an ACM-signal and the fifth
member of the Daubechies family.

shift of one sample with the STFT is chosen. A disadvantage of
using the STFT for myoclonic seizure detection is the tradeoff
between time and frequency resolution.

B. Continuous Wavelet Transform

The CWT of a signal f(t), at the scale a and position t is
defined as

CWTh [f ](t, a) =
1√
a

∫ ∞

−∞
f(τ)h∗

(
t − τ

a

)
dτ (3)

where h(t) is the mother wavelet and ∗ denotes the complex
conjugation [10]. While the STFT uses a single analysis window,
the wavelet transform uses short windows for analyzing high
frequencies and long windows for analyzing low frequencies.
As the scale changes, the wavelet is localized better in time,
but worse in frequency and vice-versa. Nevertheless the use
of various scales seems appropriate since movements can have
various durations and intensities and, thus, take place on various
scales. Furthermore, the shape of the pattern observed during a
myoclonic seizure resembles a wavelet. A disadvantage of using
the CWT for myoclonic seizure detection could be the bad time
localization at higher scales. The CWT is calculated for scales
2–256. This choice is made because the lower boundary for
frequencies in normal movements is approximately 0.3 Hz [11].
The scale of 256 corresponds to a frequency of 0.26 Hz. A
mother wavelet is used, that is suitable for the signal pattern of
interest and, thus, resembles the myoclonic waveform the most.
Therefore, the fifth member of the Daubechies wavelet is used.
This choice is motivated by the typical shape of a myoclonic
waveform that is also depicted in Fig. 3. The central frequency
of the wavelet used is 66 Hz.

C. Wigner Distribution

The WD involves the signal quadratically and aims at an
energetic description of the signal in time and frequency without
windowing. This windowing limits the resolution of the time-
frequency decomposition in case of the STFT and the CWT [10].
To our knowledge, the application of this technique to ACM
signals is new in literature. It is known that the WD, among
other favorable properties, achieves the best results in terms of
spread in the time-frequency plane, compared to other quadratic
time-frequency distributions that belong to the same class [12].
The WD of f at a point (t, ω) is the response at frequency ω of
the τ -function f(t + (τ/2))f ∗(t − (τ/2))

WD[f ](t, ω) =
1√
2π

∫ ∞

−∞
f

(
t +

τ

2

)
f ∗

(
t − τ

2

)
e−iωτ dτ .

(4)

In contrast to the STFT and the CWT, the WD is a nonlinear
operation. An advantage of the WD is that there is a good time-
frequency resolution. Since the WD is an energy distribution,
a link can be made to mechanical energy, that is expected to
be different between normal and epileptic movements. A dis-
advantage is that artifacts occur when multicomponent signals
are analyzed, because of the quadratic character of the distri-
bution. These artifacts are known as cross terms. These cross
terms can interfere with the actual signal terms and make it dif-
ficult to interpret the time-frequency plot. To avoid interference
terms between positive and negative frequencies, the signal is
transformed to its analytical version [13].

D. Model-Based Matched Wavelet Transform

The model described in Section III can be used as a MOD. In
this case, the mother wavelet h(t) is taken to be

h(t) = t

(
e−t − 1

A
e

−t
B

)
χ[0,∞)(t) t ∈ R. (5)

The parameters A and B are positive, and so is τ . In particular,
the case is considered when A ≈ B2 . In the case that A = B2 ,
the signal in (5) is admissible [14]–[16] as a wavelet since then∫ ∞

0

(
te

−t
τ − 1

A
te

−t
B τ

)
dt = τ 2

(
1 − B2

A

)
= 0. (6)

In a previous study, where the model is fitted to clinical data, it
is shown that this condition is met [9]. From this study, the value
1.023 for B is obtained. For the MOD, the wavelet transform is
performed with a time reversed version of h(t). In this case, the
highest value occurs when the signal waveforms best match the
model. The scale a is proportional to τ0 . A scale of 1 corresponds
to a value of τ0 =10 ms. Therefore, for this wavelet, the central
frequency is 100 Hz. It was found that the values for τ0 in a
myoclonic seizure vary between 20 and 70 ms, therefore, scales
from 2 to 7 are important for the analysis of myoclonic seizures.
For the distinction between other movements that are longer in
duration, the higher scales are also important. In our analysis,
we include scales up to 50.

V. PATIENT DATA

For analysis and evaluation, ACM data were used from 36
mentally retarded patients who suffer from refractory epilepsy.
The patients were monitored with the setup described in our
previous clinical study [1], with five 3-D sensors placed on the
limbs and the sternum. The sampling frequency fs of the ACM
signals is 100 Hz. For each patient, at least one and a max-
imum of three video fragments per seizure type (myoclonic,
tonic, and clonic) were selected. Video fragments were selected
only if the patients were within the field of view of the cam-
era. This resulted in 156 video fragments with a total duration of
3.6 h. Three experts divided the corresponding ACM signals into
classes using both video and ACM information. These classes
were: no movement, myoclonic seizure waveform, tonic seizure
waveform, clonic seizure waveform, normal movement, and un-
clear. For the evaluation study, only events where at least two ex-
perts agreed on a particular classification were selected. Events
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TABLE I
COMPOSITION OF TRAINING AND TEST DATA

marked as “unclear” were also excluded from the evaluation. In
total, 30 min of data were excluded. The four time-frequency
methods were tested for their suitability to detect myoclonic
seizures in a linear classification setup. The data were divided
into a training and a test set. In order to ensure a robust inter-
patient classification, individual patient’s data were used, either
in the training set or the testing set, but not both. Data from the
first 15 patients were used for algorithm training (100.17 min).
Data from the remaining 21 patients were used for the test set
(79.2 min). The datasets are further specified in Table I. Since
our model-based approach is based on a model for arm move-
ments, only data from the arm sensors are included. From the
two 3-D arm sensors automatically the measurement direction
on which the movement has the greatest amplitude reading was
chosen automatically. The sensor selected per event can vary
per patient and per seizure. From the video footage, it has been
observed that during a myoclonic seizure the movement in the
direction of the thumbs, the x-direction of the accelerometer,
is typically the most dominant movement direction. The char-
acteristic waveform is most clearly visible and has the highest
amplitude in this direction. Analyzing all signals measured on
both arms during myoclonic seizures confirmed this hypothesis.

VI. TIME-FREQUENCY ANALYSIS ACCELEROMETER PATTERNS

A. Myoclonic Waveforms

Fig. 4 shows time-frequency and time-scale representations
that are typical for ACM patterns associated with myoclonic
seizures. For each method, the absolute value is plotted.

The ACM signal that yields this output is depicted in Fig. 1(a).
Data points that have high values for |STFT| form a clear dis-
tinct area. Most of the power is concentrated in the 4–6 Hz fre-
quency range. In the plot of the WD, there is also a distinct area,
but there are more high frequencies present. The frequencies
where most of the power is concentrated varies between 5 and
8 Hz. For the CWT, the observations are similar, the highest val-
ues of |CWT| lie in the 8–60 range of scales. The scale where
|CWT| is maximal lies in a range of 9–39 for all the seizures.
For MOD, the highest values of |MOD| lie in the 2–8 scale
range. This corresponds to the findings presented in [9].

Fig. 4. Time-frequency/scale representations of myoclonic pattern.

Fig. 5. Time-frequency/scale representations of normal movement.

B. Normal Movements

Fig. 5 shows time-frequency and time-scale representations
that are typical for ACM patterns associated with normal move-
ments. For each method, the absolute value is plotted. The ACM
signal that yields this output is depicted in Fig. 1(c). Most of
the power of |STFT| is concentrated below 2 Hz. In the case
of the WD, the frequency resolution is better and the power
is mainly concentrated below 0.8 Hz. For |CWT|, the high-
est values occur in the scales ranging from 74 to 256. For the
model-based wavelet, the range is 10–50. For normal move-
ments that are more rhythmical and contain sharper peaks, it
was observed that high power values up to 30 Hz occur in the
plot of |STFT|. For the WD, a complicated pattern is visi-
ble which contains a broad spectrum of frequencies (interfer-
ence). For both wavelets, high values of |CWT| or |MOD| occur
also in the lowest scales. These observations suggest that sharp
peaks due to normal movement differ from peaks induced by
myoclonic seizures. They posses a pulse-like broader frequency
pattern, and they have higher wavelet coefficients at lower scales.
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TABLE II
FEATURES USED IN EVALUATION FOR EACH METHOD

Myoclonic seizures have a more isolated frequency pattern (4–
10 Hz) and higher wavelet coefficients in an isolated range of
scales 8–60 or 2–8 depending on the wavelet used.

VII. EVALUATION OF TIME-FREQUENCY FEATURES IN

DETECTION SETUP

A. Detection Setup

To evaluate the value of the time-frequency methods for the
detection of myoclonic seizures, a “two-class” classification
setup was used. The two classes were: “myoclonic seizure,” and
“other.” Tonic, clonic, no movement, and normal movements
were regarded as one class. The choice of only two classes can
potentially result in some of the false positives actually belong-
ing to one of the two other motor seizure types. In the future,
however, we aim for a detection setup that consists of a number
of “two class” modules, with each module designed for a spe-
cific movement type. Eventually, all the modules together will
provide a detection system consisting of more classes. Table II
lists which features were used and the number of features used
for each method. For the STFT and the WD, the magnitude of
the spectral powers are used as features. For CWT and MOD,
the absolute wavelet coefficients are tested as features.

The features are calculated for each sampling point in the
data, thus, for each 10 ms in the signal a feature value is cal-
culated and classification in performed. Then, the classification
outputs of all segments are again aligned in time and compared
to the judgement of the signal by experts. Fisher’s linear discrim-
inant analysis (FLDA) is used as a classification method [17].
This classification method projects the multidimensional fea-
ture space onto one line. The projection maximizes the distance
between the means of the two classes while minimizing the vari-
ance within each class. Classification is performed in the 1-D
space that is created. A threshold is set by optimizing a cost
function on training data, which takes into account the distance
between the means of the two classes and the variance within
each class. The performance per feature set (for the optimal
threshold) is expressed in the percentage of myoclonic seizures
correctly classified (SEN), the number of false detections, the
positive predictive value (PPV), which is the ratio between cor-
rect detected myoclonic seizures and all events that are classi-
fied as a myoclonic seizure, and the specificity (SPEC), that is
the percentage of the data without myoclonic seizures that is
correctly discarded. A receiver operating characteristic (ROC)
analysis is performed to study the influence of a varying thresh-
old on the results, thus, also other thresholds than the one that
was found by optimizing the cost function are used. Sensitivity
(SEN) is plotted versus 1 - SPEC as the discrimination threshold
is varied. Classification results are compared with experts score

TABLE III
DETECTION PERFORMANCE FOR EACH FEATURE SET

Fig. 6. ROC analysis for four feature sets.

in the signal over time. It is to be expected that precise onset
and offset times for a particular event will vary between the
detection algorithm and the experts. Taking this into account,
a timing difference of 0.3 s or less in the onset of an event is
tolerated. When the algorithm or the experts score a different
number of events within the same time interval, these events
are considered as one event if the timing difference between the
separate events is within 0.3 s.

B. Detection Results

Table III shows the performance for each method for the op-
timal threshold. The highest SEN are seen with the CWT and
the model-based MOD. The SEN of the WD is poor. The per-
formance of the STFT is in between the results of the wavelet
methods and the WD. All four methods have a similar value for
the PPV. SPEC obtained using these methods varies between
85% and 93%. These are the percentages of data without my-
oclonic seizures that are correctly discarded. The ROC analysis
in Fig. 6 is in agreement with these results, the curves of STFT
and WD lie below CWT and MOD. Furthermore, we can see that
shifting the threshold found by FLDA either leads to a too low
SEN or too many false positives. Table IV shows the number of
false positives and total duration of the false positives per move-
ment type. It can be seen that STFT, CWT, and MOD detect all
the clonic seizures in the dataset. WD detects five out of seven
clonic seizures. Furthermore, some of the false detections occur
at the onset of a tonic seizure. Most of the false detections are
in the normal movement periods. The analysis of these patterns
reveals that these events translate to sharp peaks in normal move-
ments, that occur during a jerky movement or when the patients’
arm bumps into a surrounding object. Slow normal movements
are successfully distinguished from myoclonic-motor activity.
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TABLE IV
FALSE DETECTION NUMBER AND TOTAL DURATION PER MOVEMENT TYPE

VIII. DISCUSSION

Detecting myoclonic seizures from ACM signals is an entire
novel research topic. As a first step, ACM signals measured in
patients with epilepsy were analyzed using the STFT, the WD,
the CWT, and a newly introduced model-based MOD. It was
found that ACM waveforms associated with myoclonic seizures
have similar time-frequency characteristics across all patients.
The purpose of the methods under study is to support offline
analysis for diagnostic and evaluation purposes. In the future
also a real-time alarm system is pursued. Therefore, our cri-
terium for SEN and PPV are 90% and 50%, respectively [1].
Using the STFT leads to a SEN of 71% but a PPV of only 16%.
There were 136 false positives detected. This is mainly caused
by the fact that most of the difference between the movement
types occurs in the 0–2 Hz frequency band which corresponds
to just one bin for the STFT. The WD performs poorly, only
34% of the myoclonic seizures is detected. The PPV was 15%
and 67 false positives were detected. This poor performance
could be caused by the cross terms that are introduced by the
WD. In the literature much can be found about solutions to
decrease the contribution of these cross terms [18]. Applying
such a solution could contribute to a valuable set of features.
Using the CWT leads to a SEN of 80% with a PPV of 16%
and 148 false positives. The model-based method MOD has a
similar performance with an SEN of 80%, a PPV of 15% and
155 false positives. As we can see all the methods have a similar
PPV, and both wavelet methods, CWT and MOD, have the best
SEN for detecting myoclonic seizures. MOD was designed to
match a myoclonic waveform and this is shown in the high SEN.
The Daubechies wavelet used was specifically chosen because
it resembles a myoclonic pattern the most, therefore, also here a
high SEN is shown. The results obtained for CWT and MOD are
similar, but an advantage of our newly introduced model is that
it contains parameters that have a physiological meaning related
to seizure pathophysiology. It was especially designed for the
detection of myoclonic seizures. In this setup, we used 50 scales
and obtained similar results as with the CWT using 255 scales.
Further research should focus on the optimization of feature
selection for these methods and then perhaps the superiority of
one of these two methods can be shown. Future research should
also focus on increasing SEN and decreasing the number of
false positives. From ROC analysis, it can be concluded that for
these feature sets the optimal results were obtained. Therefore,

an increase of SEN can only be achieved by using an other com-
bination of features or extra features. For all methods, the large
number of frequencies or scales is not ideal. From the analysis
in Section V, it can be observed that for the wavelets mainly
the lower scales and the highest scales are important. Future re-
search should, therefore, first focus on the optimal subsection of
features for each method. After analysis of the false positives, it
was observed that some of the false positives were actual motor
seizures. STFT, CWT, and MOD detected all clonic seizures in
the set. The WD detected five out of the seven clonic seizures.
Per definition clonic seizures consist of myoclonic jerks re-
curring at a regular repetition rate [19]. The clonic events are
longer in duration and the ACM amplitude is higher than that
during a myoclonic seizure. As a result, we decided to treat
them as two different classes. Nevertheless, these results imply
that similar features can be used for the detection of clonic pat-
terns. This will be a topic for further research. Tonic seizures
are more block shaped in appearance, more like slow normal
movements, but in some cases also a FD was seen at the onset
of a tonic seizure. This corresponds with findings of a clinical
study that shows that 67% of the tonic seizures observed started
as a myoclonic seizure but evolved into a tonic seizure [1]. The
majority of the false positives were sharp peaks during normal
movements. Slow normal movements are never falsely detected.
This could be expected since the analysis results showed that
the characteristics of slow movements vary distinctly from my-
oclonic patterns. Sharp peaks in normal movements, on the other
hand, can resemble myoclonic seizures. In our analysis, we ob-
served some difference in the higher frequencies and lowest
scales but our experimental results at this stage do not confirm
this observation. In future work, we could focus on features that
distinguish between sharp peaks in normal movements and my-
oclonic seizures. On the other hand, clinically, these sharp peaks
could be interesting. They coincide with the arm bumping into
a surrounding object or an abrupt jerk. These are both situations
that can be seizure related.

IX. CONCLUSION

This paper discusses the use of four time-frequency and time-
scale methods for detecting myoclonic seizures in ACM data:
the STFT, the WD, the CWT and a method based on a newly
introduced model-based matched wavelet (MOD). The choice
for time-frequency and time-scale methods was made because
of the nonstationary character of the signals of interest. To our
knowledge, this is the first attempt to detect myoclonic seizures
based on ACM recordings. This paper demonstrates that time-
frequency and time-scale methods can contribute to the detec-
tion of myoclonic waveforms from ACM data from epilepsy
patients. Wavelet-based features demonstrate an especially high
SEN for seizure detection. An extra advantage of our model-
based matched wavelet is that it consists of parameters that are
related to seizure duration and intensity and are physiologically
meaningful. The model can also be adapted so that it is useful for
other motor seizure types. Our model-based matched wavelet is
a promising tool for the detection of myoclonic seizures from
ACM signals, and may be extended to make part of a real-time
alarm system.



NIJSEN et al.: TIME-FREQUENCY ANALYSIS OF ACCELEROMETRY DATA FOR DETECTION OF MYOCLONIC SEIZURES 1203

ACKNOWLEDGMENT

The authors would like to thank Dr. Ir. A.J.E.M. Janssen for
his contribution to the revised version of this manuscript.

REFERENCES

[1] T. M. E. Nijsen, J. B. A. M. Arends, P. A. M. Griep, and P. J. M. Cluitmans,
“The potential value of 3-D accelerometry for detection of motor seizures
in severe epilepsy,” Epilepsy Behav., vol. 7, pp. 74–84, 2005.

[2] M. Hallett, “Myoclonus: Relation to epilepsy,” Epilepsia, vol. 26 pp.
S67:S77, 1985.

[3] M. McKinney and J. Breebaart, “Features for audio and music classifica-
tion,” presented at the 4th Int. Conf. Music Inf. Retrieval, Baltimore, MD,
Oct. 26–30, 2003.

[4] P. Veltink, H. B. Bussmann, W. de Vries, W. Martens, and R. C. Van
Lummel, “Detection of static and dynamic activities using uniaxial ac-
celerometers,” IEEE Trans. Rehabil. Eng., vol. 4, no. 4, pp. 375–385,
Dec. 1996.

[5] T. Thielgen, F. Foerster, G. Fuchs, A. Hornig, and J. Fahrenberg, “Tremor
in parkinson’s disease: 24-hr monitoring with calibrated accelerometry,”
Electromyogr. Clin. Neurophysiol., vol. 44, pp. 137–146, 2004.

[6] B. Najafi, K. Aminian, A. Paraschiv-Ionescu, F. Loew, C. Bula, and
P. Robert, “Ambulatory system for human motion analysis using a kine-
matic sensor: Monitoring of daily physical activity in the elderly,” IEEE
Trans. Biomed. Eng., vol. 50, no. 6, pp. 711–723, Jun. 2003.

[7] J. Gotman, “Automatic seizure detection: Improvements and evaluation,”
Electroenchephalogr. Clin. Neurophysiol., vol. 76, pp. 317–324, 1990.

[8] A. Aarabi, F. Wallois, and R. Grebe, “Automated neonatal seizure detec-
tion: A multistage classification system through feature selection based
on relevance and redundancy analysis,” Clin. Neurophysiol., vol. 117,
pp. 328–340, 2006.

[9] T. M. E. Nijsen, R. M. Aarts, J. B. A. M. Arends, and P. J. M. Cluitmans,
“Model for arm movements during myoclonic seizures,” in Proc. 29th
Annu. Int. Conf. IEEE EMBS, 2007, pp. 1582–1585.

[10] L. Sörnmo and P. Laguna, Bioelectrical Signal Processing in Cardiac and
Neurological Applications. New York: Academic, 2005.

[11] C. V. Bouten, K. T. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen, “A
triaxial accelerometer and portable data processing unit for the assessment
of daily physical activity,” IEEE Trans. Biomed. Eng., vol. 44, no. 3,
pp. 136–47, Mar. 1997.
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