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Rostyslav V. Polyuga1, Arjan van der Schaft2

Abstract

The geometric formulation of general port-Hamiltonian systems is used

in order to obtain two structure preserving reduction methods. The main

idea is to construct a reduced-order Dirac structure corresponding to zero

power flow in some of the energy-storage ports. This can be performed in

two canonical ways, called the effort- and the flow-constraint methods. We

show how the effort-constraint method can be regarded as a projection-

based model reduction method.

Keywords: port-Hamiltonian systems; structure preserving model reduc-
tion; Dirac structure; effort-constraint method; flow-constraint method.

1 Introduction

A standard way to model large-scale physical systems is network model-
ing. In this approach the overall system is decomposed into (possibly many)
interconnected subsystems. Network modeling has many advantages, such as
reusability of subsystem models (libraries), flexibility (coarse models of sub-
systems may be replaced by more refined ones, leaving the rest of the system
modeling untouched), hierarchical modeling, and control (by adding new sub-
systems as control components). In port-based network modeling (e.g., bond
graph modeling) the overall system is decomposed into subsystems which are
interconnected to each other through (vector) pairs of variables, whose product
is the power exchanged among the subsystems. This approach is especially use-
ful for the systematic modeling of multi-physics systems, where the subsystems
belong to different physical domains (mechanical, electrical, hydraulic, etc.).

1Rostyslav V. Polyuga is with the Centre for Analysis, Scientific computing and Applica-
tions, Department of Mathematics and Computer Science, Eindhoven University of Technol-
ogy, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, Email address: R.V.Polyuga@tue.nl

2Arjan van der Schaft is with the Johann Bernoulli Institute for Mathematics and Com-
puter Science, University of Groningen, P.O.Box 407, 9700 AK Groningen, The Netherlands,
Tel. +31-50-3633731/3379, Email address: A.J.van.der.Schaft@rug.nl.
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Since the beginning of the nineties of the previous century it has been re-
alized [22, 5, 21, 20, 11] that the mathematical models arising from port-based
network modeling have an insightful geometric structure, which can be regarded
as a generalization of the geometric formulation of analytical mechanics into its
Hamiltonian form. These geometric dynamical system models that follow di-
rectly from port-based network modeling have been called port-Hamiltonian
systems [22, 21, 3].

The state-space dimensions of mathematical models arising from network
modeling easily become very large; think e.g. of electrical circuits, multi-body
systems, or spatial discretization of distributed-parameter systems. Thus there
is an immediate need for model reduction methods. However, since we want
the reduced order models again to be interconnectable to other (sub-)systems,
we want to retain the port-Hamiltonian structure of the reduced order sys-
tems. Furthermore, we want to preserve structural properties, such as energy
conservation, passivity and existence of conservation laws as implied by the
port-Hamiltonian structure. Thus the problem arises of structure preserving
model reduction of port-Hamiltonian systems.

The geometric formulation of port-Hamiltonian systems motivates a model
reduction approach for general port-Hamiltonian systems (possibly also includ-
ing the algebraic constraints), which involves the construction of a reduced
order Dirac structure, and subsequently the construction of a reduced Hamil-
tonian. This approach is directly based on port-based modeling by replacing
interconnections with almost zero energy flow by zero-power constraints. In this
paper we treat two canonical structure preserving model reduction methods,
called the effort-constraint reduction method and the flow-constraint reduction
method. We show how the effort-constraint method in suitable coordinates can
be regarded as a projection-based model reduction method. We suggest these
coordinates for the effort-constraint method and balanced coordinates for both
the effort- and flow-constraint methods as a possible choice of the coordinate
system in order to obtain the reduced order models.

Structure preserving model reduction of port-Hamiltonian systems was also
studied in [13, 12, 18]. The perturbation approach is considered in [10, 9]. The
use of the Krylov methods is addressed in [16, 8, 17, 24], see also [14]. Recent
overview of port-Hamiltonian model reduction methods can be found in [15].
For a general overview of model reduction techniques we refer the reader to [1],
[19].

Preliminary results of this work are presented in [23].
The paper is organized as follows. The general definition of port-Hamiltonian

systems using the notion of Dirac structure is given in Section 2. In Section 3
we explain the idea behind structure preserving model reduction based on zero-
power constraints. Equational representations of the reduced order models are
given in Section 4. These equational representations give rise to the effort- and
flow-constraint reduced models for linear input-state-output port-Hamiltonian
systems in Section 5. A numerical example, presented in Section 6, illustrates
the performance of the effort- and flow-constraint reduction methods.
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Figure 1: Geometric definition of a port-Hamiltonian system

2 Dirac structures and Port-Hamiltonian sys-

tems

The first main ingredient in the definition of a port-Hamiltonian system is the
notion of a Dirac structure, which relates the power variables of the composing
elements of the system in a power-conserving manner. The power variables
always appear in conjugated pairs (such as voltages and currents, or generalized
forces and velocities), and therefore mathematically they are modeled to take
their values in dual linear spaces.

Definition 1 [4] Let F be a linear space with a dual space E := F∗, and a
duality product denoted as < e | f > ∈ R, with f ∈ F and e ∈ E. In vector
notation we simply write the duality product as < e | f >= eT f . We call F
the space of flow variables, and E = F∗ the space of effort variables. Define on
F × E the following indefinite bilinear form

≪ (f1, e1), (f2, e2) ≫=< e1 | f2 > + < e2 | f1 >,

A subspace D ⊂ F × E is a constant3 Dirac structure if D = D⊥, where D⊥

is the orthogonal complement of D with respect to the indefinite bilinear form
≪ ·, · ≫.

Remark 1 It can be shown [4, 5, 3] that in the case of a finite-dimensional
linear space F , a Dirac structure D is equivalently characterized as a subspace
such that eT f =< e | f >= 0 for all (f, e) ∈ D, together with dimD = dimF .
The property < e | f >= 0 for all (f, e) ∈ D corresponds to power conservation.

A port-Hamiltonian system is defined as follows. We start with a Dirac
structure D (see Fig. 1) on the space of all flow and effort variables involved:

D ⊂ Fx × Ex ×FR × ER ×FP × EP . (1)

The space Fx × Ex is the space of flow and effort variables corresponding to
the energy-storing elements (to be defined later on), the space FR ×ER denotes
the space of flow and effort variables of the resistive elements, while FP × EP

3For the general definition of Dirac structures on manifolds we refer to e.g. [4, 5].
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is the space of flow and effort variables corresponding to the external ports (or
sources). The property < e | f >= 0 for all (f, e) ∈ D implies that the power
supplied through the external port is distributed between the energy-storing
port and the resistive port.

The vector of all the flow and effort variables of a port-Hamiltonian system

fx ∈ Fx, ex ∈ Ex, fR ∈ FR, eR ∈ ER, fP ∈ FP , eP ∈ EP .

is required to be in the Dirac structure

(fx, ex, fR, eR, fP , eP ) ∈ D, (2)

The constitutive relations for the energy-storing elements are defined as fol-
lows. Let the Hamiltonian H : X → R denote the total energy of the energy-
storing elements with state variables x = (x1, x2, · · · , xn)T ; i.e., the total energy
is given as H(x). In the sequel we will take X = Fx

4 Then the energy-storage
constitutive relations are given as5

ẋ = −fx, ex =
∂H

∂x
(x). (3)

This immediately implies the following energy balance

d

dt
H = −eT

x fx, (4)

that is, the increase in total energy H(x) is equal to the power −eT
x fx provided

to the energy-storing elements.
The constitutive relations for the resistive elements are given as6

fR = −ϕ(eR), (5)

for some function ϕ satisfying

eT
Rϕ(eR) > 0 for all eR 6= 0. (6)

Linear resistive elements are given as

fR = −ReR, R = RT
> 0. (7)

The interpretation is that power is always dissipated by the resistive elements.

Definition 2 Consider a Dirac structure (1), a Hamiltonian H : X → R with
constitutive relations (3), and a resistive relation fR = −ϕ(eR) as in (5). Then
the dynamics (2) of the resulting port-Hamiltonian system is given as

(−ẋ(t),
∂H

∂x
(x(t)),−ϕ(eR(t)), eR(t), fP (t), eP (t)) ∈ D. (8)

4This can be immediately generalized to taking X to be an n-dimensional manifold with
tangent space being Fx.

5The vector ∂H

∂x
(x) of partial derivatives of H will throughout be denoted as a column

vector.
6This can be immediately generalized to a nonlinear resistive relation R(fR, eR) = 0 having

the property that eT

R
fR 6 0 for all fR, eR satisfying this relation.
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It follows [21, 3] from the power-conservation property of Dirac structures, and
(4) and (6) that

d

dt
H = −eT

Rϕ(eR) + eT
P fP 6 eT

P fP , (9)

thus showing passivity if the Hamiltonian H is bounded from below.

3 Structure preserving model reduction based

on power conservation

Consider a general port-Hamiltonian system (8), with state variables x and
total stored energy H(x). Let us assume that we have been able to find
(e.g. by some balancing technique) a splitting of the state-space variables
x = (xT

1 , xT
2 )T , x1 ∈ Rr, x2 ∈ Rn−r, having the property that the x2 coor-

dinates hardly contribute to the input-output behavior of the system, and thus
could be omitted from the state-space description. It is easily seen that the
usual truncation method for obtaining a reduced order model in the reduced
state x1 in general does not preserve the port-Hamiltonian structure, like it
does also not preserve the passivity property, see e.g. [1], [15] (Remark 2.12).
The same holds for the so-called singular perturbation reduction method, as
was mentioned in [15] (Remark 2.14); see also [6], [7].

In which way is it possible to retain the port-Hamiltonian structure in model
reduction? Recall that in the definition of a port-Hamiltonian system the vector
of flow and effort variables (2) is required to be in the Dirac structure

(f1

x , f2

x , e1

x, e2

x, fR, eR, fP , eP ) ∈ D, (10)

while the flow and effort variables fx, ex are linked to the constitutive relations
of the energy-storage by

ẋ1 = −f1
x , ∂H

∂x1
(x1, x2) = e1

x,

ẋ2 = −f2
x , ∂H

∂x2
(x1, x2) = e2

x,

which is shown in Fig. 2. This figure is a zoomed-in version of Fig. 1. The
basic idea of structure preserving model reduction considered in this paper is to
”cut” the interconnection

ẋ2 = −f2,
∂H

∂x2

(x1, x2) = e2, (11)

between the energy storage corresponding to x2 and the Dirac structure, in such
a way that no energy is transferred. Hence the exchange of energy between
the energy storage and the other system elements through the Dirac structure
happens only via the port associated to x1, with x1 being the reduced order
state vector.

The energy flow through the interconnection (11) is set equal to zero by
making both power products

( ∂H
∂x2

)T ẋ2 and (e2)
T f2
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Figure 2: Model reduction scheme

equal to zero.
This can be done in the two following canonical ways (see also [23])

(i): Set
∂H

∂x2

(x1, x2) = 0, e2 = 0. (12)

The first equation imposes an algebraic constraint on the space variables
x = (xT

1 , xT
2 )T . Under the general conditions on the Hamiltonian H , this

constraint allows one to solve for x2 as a function of x1 : x2 = x2(x1),
leading to a reduced Hamiltonian

Hec

red(x1) := H(x1, x2(x1)).

Furthermore, the second equation defines the reduced Dirac structure7

Dec

red
:= {(f1

x , e1
x, fR, eR, fP , eP ) | ∃ f2 such that

(f1
x , e1

x, f2, 0, fR, eR, fP , eP ) ∈ D},

leading to the reduced port-Hamiltonian system

(−ẋ1,
∂Hec

red

∂x1

(x1),−ϕ(eR), eR, fP , eP ) ∈ Dec

red.

We will call this reduction method the effort-constraint reduction method,
since it constrains the efforts e2 and ∂H

∂x2
to zero.

7Dec

red
is the composition of the full order Dirac structure D with the Dirac structure on

the space of flow and effort variables f2, e2 defined by e2 = 0. It is proven in [2] that Dec

red
is

indeed a Dirac structure.
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(ii): Set
ẋ2 = 0, f2 = 0. (13)

The first equation imposes the constraint

x2 = c,

where the constant c can be taken to be zero, and thus defines the reduced
Hamiltonian

H fc

red(x1) := H(x1, c), (14)

while the second equation leads to the reduced Dirac structure

Dfc

red
:= {(f1

x , e1
x, fR, eR, fP , eP ) | ∃ e2 such that

(f1
x , e1

x, 0, e2, fR, eR, fP , eP ) ∈ D},
(15)

and the corresponding reduced port-Hamiltonian system

(−ẋ1,
∂H fc

red

∂x1

(x1),−ϕ(eR), eR, fP , eP ) ∈ Dfc

red. (16)

We call this approach the flow-constraint reduction method, because it
constrains the flows −ẋ2, f2.

An important open question, which will not be answered in this paper, is

how to choose the coordinates

[

x1

x2

]

in such a way that the energy flow between

the energy storage corresponding to x2 and the rest of the system through
the Dirac structure is very small (negligeable) at all time instants. Then the
approximations (12) and (13) are at least from an energy transfer point of view
well justified.

In Section 5.5 we will briefly discuss the closely related question of how to
choose the coordinates in such a manner that the reduced model is close to the
full order model from an input-output point of view.

4 Equational representations of the reduced or-

der models

We will now provide explicit equational representations of the above two
methods for structure preserving model reduction starting from the general
representation by DAEs of the full order model (for details see [22, 5, 21, 3, 15]):

Fxẋ = Ex

∂H

∂x
(x) − FRϕ(eR) + EReR + FP fP + EP eP , (17)

where the matrices Fx, Ex, FR, ER, FP , EP satisfy [21, 3]

ExFT
x + FxET

x + ERFT
R + FRET

R + EP FT
P + FP ET

P = 0,

rank
[

Fx FR FP Ex ER EP

]

= nx + nR + np,
(18)
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with nx = dimFx, nR = dimFR, nP = dimFP .
Corresponding to the splitting of the state vector x into x = (xT

1 , xT
2 )T , x1 ∈

Rr, x2 ∈ Rn−r, where r is the dimension chosen for the reduced order model,
and the respective splitting of the flow and effort vectors fx, ex into f1

x , f2
x and

e1
x, e2

x, we write
Fx =

[

F 1
x F 2

x

]

, Ex =
[

E1
x E2

x

]

. (19)

Now the reduced Dirac structure Dec

red
corresponding to the effort-constraint

e2
x = 0 is given by the explicit equations (see [2])

LecF 1
x f1

x + LecE1
xe1

x + LecFRfR + LecEReR+

LecFP fP + LecEP eP = 0,
(20)

where Lec is any matrix of maximal rank satisfying

LecF 2

x = 0. (21)

Similarly, the reduced Dirac structure Dfc

red
corresponding to the flow-constraint

f2
x = 0 is given by the equations

LfcF 1
xf1

x + LfcE1
xe1

x + LfcFRfR + LfcEReR+

LfcFP fP + LfcEP eP = 0,
(22)

where Lfc is any matrix of maximal rank satisfying

LfcE2

x = 0. (23)

It follows that the reduced order model resulting from applying the effort-
constraint method is given by

LecF 1
x ẋ1 = LecE1

x
∂Hec

red

∂x1
(x1) − LecFRϕ(eR)+

LecEReR + LecFP fP + LecEP eP ,
(24)

whereas the reduced order model resulting from applying the flow-constraint
method is given by

LfcF 1
x ẋ1 = LfcE1

x
∂Hfc

red

∂x1
(x1) − LfcFRϕ(eR)+

LfcEReR + LfcFP fP + LfcEP eP .
(25)

The steps of model reduction leading to the reduced order models (24), (25)
are depicted in Fig. 3. Firstly, we consider a full order port-Hamiltonian system
with the corresponding full order Dirac structure. Secondly, we reduce the full
order Dirac structure to obtain the reduced order Dirac structure. At the same
time we are approximating the full order Hamiltonian of the full order model
in order to obtain the reduced order Hamiltonian of the reduced order model.
Note that the reduced order models obtained in this way are port-Hamiltonian
by construction.
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Original PHS

D Dred

Reduced PHS

H Hred

Figure 3: Steps of model reduction of a full order port-Hamiltonian system
(PHS) with the Hamiltonian H and the Dirac structure D

5 Reduced models for linear input-state-output

port-Hamiltonian systems

In this section we specialize the results of the previous section to the case of
linear input-state-output port-Hamiltonian systems ([21, 3])

{

ẋ = (J − R)Qx + Gu, J = −JT , R = RT > 0, Q = QT

y = GT Qx.
(26)

The model (26) is obtained after the termination of the resistive port. In order
to use the Dirac structure representation of this model (17) we rewrite (26) in
the form















ẋ = JQx + GRfR + Gu,

y = GT Qx,

eR = GT
RQx, fR = −R̄eR,

(27)

where the matrix R̄ is such that

GRR̄GT
R = R. (28)

Splitting of the state vector into x =

[

x1

x2

]

, x1 ∈ Rr, x2 ∈ Rn−r, for r being

the dimension of the reduced order model, then leads to the following partitioned

9



system description



































[

ẋ1

ẋ2

]

=

[

J11 J12

J21 J22

][

Q11 Q12

Q21 Q22

] [

x1

x2

]

+

[

GR1

GR2

]

fR +

[

G1

G2

]

u,

y =
[

GT
1 GT

2

]

[

Q11 Q12

Q21 Q22

] [

x1

x2

]

,

eR =
[

GT
R1

GT
R2

]

[

Q11 Q12

Q21 Q22

]

fR, fR = −R̄eR.

(29)

5.1 Effort-constraint method

Rewriting these equations into the form (17), and applying the general effort-
constraint reduction method (20) from the previous section, yields (assuming
that Q22 is invertible) the reduced model

{

ẋ1 = (J11 − R11)(Q11 − Q12Q
−1

22
Q21)x1 + G1u,

yec = GT
1 (Q11 − Q12Q

−1

22
Q21)x1,

(30)

for the full order model (26). This reduced model was already obtained by direct
methods in [12], as well as in scattering coordinates in [18].

Full details for the derivation of the reduced order model (30) are relegated
to Appendix A.

5.2 Flow-constraint method

The application of the flow-constraint method (22) to (29) (rewritten in
the DAE-form (17)) is more involved. Assuming invertibility of J22 the flow-
constraint method, as shown in detail in Appendix B, is seen to lead to the
reduced model



























ẋ1 = [(Js − βT Zskβ) − βT Zsymβ]Q11x1+

+[(−αT + βT ZskγT ) − (−βT ZsymγT )]u,

yfc = [(−α − γZskβ) − γZsymβ)]Q11x1+

+[(−η + γZskγT ) + γZsymγT ]u.

(31)

where we have adopted the notation

α := GT
2 J−1

22
J21 − GT

1 , β := GT
R2

J−1

22
J21 − GT

R1
,

γ := GT
2 J−1

22
GR2

, δ := GT
R2

J−1

22
GR2

,

η := GT
2 J−1

22
G2, Z := R̄(I − δR̄)−1,

Zsym := 1

2
(Z + ZT ), Zsk := 1

2
(Z − ZT ),

Js := J11 − J12J
−1

22
J21.

(32)
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Note that even though we started with a full order port-Hamiltonian system
(26) without feed-through terms, the flow-constraint method, in contrast to the
effort-constraint method, results in the reduced order model (31), which is a
linear input-state-output port-Hamiltonian system with feedthrough terms [3]8:

{

ẋ1 = (Jr − Rr)Qrx1 + (Gr − Pr)u,

yfc = (GT
r + PT

r )Qrx1 + (Mr + Sr)u,

where the reduced order matrices are

Jr = Js − βT Zskβ, Rr = βT Zsymβ,

Qr = Q11, Gr = −αT + βT ZskγT ,

Pr = −βT ZsymγT , Mr = −η + γZskγT ,

Sr = γZsymγT .

One can easily verify that Jr, Mr are skew-symmetric, Rr, Sr are positive
semi-definite symmetric, Qr is positive definite symmetric, while Rr, Pr and Sr

satisfy
[

Rr Pr

PT
r Sr

]

> 0

(Lemma 1 in Appendix B demonstrates that Zsym in (32) is positive definite).

Remark 2 Whenever G2 = 0, then the reduced order port-Hamiltonian system
(31) specializes to the reduced order system without feed-through terms

{

ẋ1 = [Js − (GR1
− J12J

−1

22
GR2

)Z(GT
R1

− GT
R2

J−1

22
J21)]Q11x1 + G1u,

yfc = GT
1 Q11x1.

(33)

Remark 3 In the case of a lossless full order port-Hamiltonian system (26),
that is R = 0 and R̄ = 0, the reduced order port-Hamiltonian system (31) is
also lossless and is given as

{

ẋ1 = JsQ11x1 + (G1 − J12J
−1

22
G2)u,

yfc = (GT
1 − GT

2 J−1

22
J21)Q11x1 − GT

2 J−1

22
G2u.

(34)

5.3 Effort- and flow-constraint methods in the bond-graph

modeling framework

Effort- and flow-constraint methods have a direct interpretation from the
bond-graph modeling point of view. Constraining the efforts

e2

x =
∂H

∂x2

(x1, x2) = 0, e2 = 0,

8See [3] for an extensive discussion on port-Hamiltonian systems with feed-through terms
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e2
x e2

0

e

f2
x

1
f2

f

Figure 4: 0-junction (left) and 1-junction (right)

in the lower part of Fig. 2, which results in the effort-constraint method, corre-
sponds to the so-called 0-junction, shown in Fig. 4 (without orientations). On
the other hand, constraining the flows

f2

x = −ẋ2 = 0, f2 = 0,

as in the flow-constraint method corresponds to the 1-junction in Fig. 4. The
0- and 1-junctions represent generalized, i.e. domain independent, Kirchhoff
current and voltage laws respectively. For details see e.g. [3].

5.4 The effort-constraint method and moment matching

Consider a single-input single-output port-Hamiltonian system (26)

{

ẋ = (J − R)Qx + gu,

y = gT Qx,
(35)

with an input matrix g ∈ Rn×1. The effort-constraint method, which leads in
this case to the following reduced order model

{

ẋ1 = F11(Q11 − Q12Q
−1

22
Q21)x1 + g1u,

yec = gT
1 (Q11 − Q12Q

−1

22
Q21)x1,

(36)

turns out to have a relation to the projection based methods matching moments
of the full order system at certain points in the complex plane. The moment-
matching approach, discussed in [1] and the references therein, requires com-
puting (e.g. by the Arnoldi method) a map Vr ∈ Rn×r, x = Vrxr , with xr ∈ Rr

being the reduced order state vector. The map Vr is used then to project the
full order system (35) in such a way that r moments of (35) and the projected
reduced order system match at s0 ∈ C or at infinity. The moment-matching
approach for port-Hamiltonian systems is presented in [16, 17, 8, 24]

To illustrate the relation of the effort-constraint method to moment match-
ing, consider a full order single-input single-output port-Hamiltonian system
(35). The co-energy variable representation of (35) (with the usual coordinate

12



transformation e = Qx, see [3, 15]) will take the form

{

ė = Q(J − R)e + Qgu,

y = gT e.
(37)

Recall from literature on moment matching (see again [1]) that a map Ve ∈ Rn×r

matches the first r moments of (37) at infinity or at s0 ∈ C if (for A := Q(J−R))

imVe = im[Qg
... AQg

... . . .
... Ar−1Qg], respectively

imVe = im[(A − s0I)−1Qg
... . . .

... (A − s0I)−rQg].

(38)

Then the following result holds true.

Theorem 1 Suppose that the energy coordinates x of (35) are such that the
projection map

Ve =

[

V1

0

]

, V1 ∈ R
r×r, V1 − invertible.

matches the first r moments at s0 ∈ C or at infinity of the full order system
in co-energy coordinates (37). Then the reduced order port-Hamiltonian model
obtained by the effort-constraint method

{

ẋ1 = F11(Q11 − Q12Q
−1

22
Q21)x1 + g1u,

yec = gT
1 (Q11 − Q12Q

−1

22
Q21)x1,

(39)

matches the first r moments of the full order system (35) at s0 ∈ C or at infinity.

Proof The moment matching projection of the rewritten port-Hamiltonian
system (37)

{

Q−1ė = (J − R)e + gu,

y = gT e,

is given by
{

V T
e Q−1Veėr = V T

e (J − R)Veer + V T
e gu,

ŷ = gT Veer.
(40)

Using the well-known matrix inversion formula we get

V T
e Q−1Ve =

[

V T
1 0

]

[

Q−1
s ∗
∗ ∗

][

V1

0

]

= V T
1 Q−1

s V1,

where Qs = Q11 − Q12Q
−1

22
Q21 is the Schur complement of Q. Therefore the

reduced order system becomes
{

V T
1 Q−1

s V1ėr = V T
1 (J11 − R11)V1er + V T

1 g1u,

ŷ = gT
1 V1er.

13



q1 q(n/2)

k (n/2)

c1

u m1

1 k2

q2

2m ... m(n/2)

k

c2 c(n/2)

Figure 5: n-dimensional mass-spring-damper system

Since e = Veer implies that e1 = V1er and since V T
1 is invertible the reduced

order model transforms to
{

Q−1
s ė1 = (J11 − R11)e1 + g1u,

ŷ = gT
1 e1,

which is, after the transformation from co-energy to energy coordinates
e1 = Qsx1, nothing but the reduced order system (39) obtained by the effort-
constraint method

{

ẋ1 = F11(Q11 − Q12Q
−1

22
Q21)x1 + g1u,

yec = gT
1 (Q11 − Q12Q

−1

22
Q21)x1.

(41)

Since there are only linear coordinate transformations involved, the moments of
(41) and (40) are the same which completes the proof.

5.5 The choice of the coordinate system for model reduc-

tion

As already indicated before, we do not address in this paper the question
of how to choose the coordinate system in which we apply either the effort-
or the flow-constraint method. One possible choice of coordinates is balanced
coordinates using Lyapunov balancing, positive real (Chapter 4 of [15]) or some
other type of balancing. Another choice for the flow-constraint method would
be to choose the coordinates where G2 = 0, which would significantly simplify
the expression of the reduced order model (31), see (33). The effort-constraint
method for the SISO port-Hamiltonian systems naturally suggests coordinates
x as in Theorem 1 in order to match moments at specific points in the com-
plex plane, which would pose a question of how to find such coordinates in a
numerically efficient way.

6 Numerical example

Consider an n-dimensional full order port-Hamiltonian mass-spring-damper
system as shown in Fig. 5, with masses mi, spring constants ki and damping
constants ci > 0, for i = 1, . . . , n/2. pi and qi are the momentum and displace-
ment of the mass mi, respectively. The external force acting on the first mass,

14
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Figure 6: Evolution of the relative H2- and H∞-norms

m1, is the input u, while its velocity is the output y. State variables are defined
in the following way: for i = 1, . . . , n/2, x2i−1 = qi and x2i = pi. A detailed
port-Hamiltonian description of this system is given in [8].

We considered a 100-dimensional mass-spring-damper system with mi =
1, ki = 2, and ci = 3.6, and applied the effort-constraint method from (30),
the flow-constraint method as in (31) and the regular balanced truncation. The
coordinates chosen for reduction are (Lyapunov) balanced coordinates.

The reduced order systems are constructed for the orders r = 2 to r = 30
with increments of 2. Evolution of the relative H2- and H∞-norms is shown
in Fig. 6. The figure demonstrates that both relative norms for the effort-
constraint method consistently decay as the dimension of the reduced order
models increases, perhaps apart from the orders r = 28 and r = 30. The
relative H∞-norm for the flow-constraint method surprisingly does not show
similar decaying behavior. Therefore the effort-constraint method outperforms
the flow-constraint method for the considered mass-spring-damper system for
all dimension of the reduced order models except for r = 6. The performance
of the effort-constraint method was also studied in [12, 8, 15]. Note that a feed-
through term is present in the flow-constraint method (31). Thus the H2-norms
of the flow-constraint method are unbounded and are not shown in the figure.

The regular balanced truncation method, as seen from Fig. 6, outperforms
the presented effort- and flow-constraint methods for all dimensions of the re-
duced order models. Yet we want to underline that the balanced truncation
method does not preserve the port-Hamiltonian structure (as explained in [15],
Remark 2.12).

The amplitude Bode plots of the full, reduced and error systems for r = 10
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Figure 7: Amplitude Bode plots for r = 10

are shown in Fig. 7. The figure exhibits that the approximation by the flow-
constraint method is better for low frequencies, while the approximation by
the effort-constraint method does a better job for high frequencies. The error
plot illustrates that the H∞-norm is larger for the reduced model by the flow-
constraint method. This is consistent with the information from Fig. 6.

Naturally, the considered reduced order models produced by the effort- and
flow-constraint methods inherit the port-Hamiltonian structure, are asymptot-
ically stable and passive.

7 Conclusions

In this paper we considered two port-Hamiltonian structure preserving model
reduction methods: the effort-constraint method and the flow-constraint method.
These methods arise from the geometric description of general port-Hamiltonian
systems and are based on the idea of replacing the interconnections to the
energy-storage which carry little power by zero-power constraints. These con-
straints can be interpreted within the bond-graph modeling framework as effort-
or flow-constraints. We showed that the effort-constraint method, applied in
particular coordinates, matches the first moments of the SISO full order port-
Hamiltonian system at specific points in the complex plane. A numerical ex-
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ample illustrates the performance of the effort- and flow-constraint methods. A
systematic way of choosing the coordinates for the full order port-Hamiltonian
system in order to obtain the most accurate approximation from the input-
output point of view, and possible error bounds for the effort-constraint and
flow-constraint methods, are questions for future research.

A Effort-constraint reduction

Consider the full order port-Hamiltonian system (29) with a splitting of the
state according to the dimension r chosen for the reduced order model:



































[

ẋ1

ẋ2

]

=

[

J11 J12

J21 J22

][

Q11 Q12

Q21 Q22

] [

x1

x2

]

+

[

GR1

GR2

]

fR +

[

G1

G2

]

u,

y =
[

GT
1 GT

2

]

[

Q11 Q12

Q21 Q22

] [

x1

x2

]

,

eR =
[

GT
R1

GT
R2

]

[

Q11 Q12

Q21 Q22

]

fR, fR = −R̄eR.

(42)

The full order Dirac structure corresponding to the model (42) is given by
the explicit equation in the DAE form (17)

Fxẋ = Ex

∂H

∂x
(x) + FRfR + EReR + FP fP + EP eP , (43)

or




In

0m×n

0mR×n



 ẋ =





J
−GT

−GT
R





∂H
∂x

(x) +





GR

0m×mR

0mR



 fR +





0n×mR

0m×mR

ImR



 eR+





G
0m×m

0mR×m



 fP +





0n×m

Im

0mR×m



 eP ,

where mR is the dimension of the vector of resistive variables fR, eR, and m is
that of the vectors of input and output variables fP = u, eP = y.

Using the notation ex = ∂H
∂x

(x), the above equation reads









Ir 0
0 In−r

0m×n

0mR×n









[

ẋ1

ẋ2

]

=









J11 J12

J21 J22

−GT
1 −GT

2

−GT
R1

−GT
R2









[

e1
x

e2
x

]

+









GR1

GR2

0m×mR

0mR









fR+





0n×mR

0m×mR

ImR



 eR +









G1

G2

0m×m

0mR×m









u +





0n×m

Im

0mR×m



 y.

(44)
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Recall from Section 4 that the effort-constraint method assumes finding a
(non-unique) maximal rank matrix Lec satisfying

LecF 2

x = 0,

as well as setting e2
x = 0. The simplest choice for Lec is

Lec =





Ir 0 0 0
0 0 Im 0
0 0 0 ImR



 . (45)

Premultiplying (44) with Lec, while setting e2
x = 0, leads to





Ir

0m×r

0mR×r



 ẋ1 =





J11

−GT
1

−GT
R1



 e1
x +





GR1

0m×mR

0mR



 fR+





0r×mR

0m×mR

ImR



 eR +





G1

0m×m

0mR×m



u +





0r×m

Im

0mR×m



 ŷ,

(46)

which is the equational representation (20)

LecF 1

xf1

x + LecE1

xe1

x + LecFRfR + LecEReR + LecFP fP + LecEP eP = 0,

of the reduced order Dirac structure (note that f1
x = −ẋ1).

Recall from [15] (Section 2.6.1) that setting e2
x = 0 implies that e1

x = Qsx1,
where Qs = Q11 − Q12Q

−1

22
Q21 is the Schur complement of the energy matrix

Q. The equational representation (46) is hence equivalent to














ẋ1 = J11Qsx1 + GR1
fR + G1u,

ŷ = GT
1 Qsx1,

eR = GT
R1

Qsx1.

(47)

This is the reduced order port-Hamiltonian model by the effort-constraint method
with the open resistive port. Termination of the resistive port employing the
original linear relation fR = −R̄eR (while using R11 = GR1

R̄GT
R1

after the cor-
responding splitting of R from (28)) leads to the reduced order port-Hamiltonian
model by the effort-constraint method (30)

{

ẋ1 = (J11 − R11)(Q11 − Q12Q
−1

22
Q21)x1 + G1u,

yec = GT
1 (Q11 − Q12Q

−1

22
Q21)x1.

(48)

B Flow-constraint reduction

We start with the equational representation of the full order Dirac structure
(44). A maximal rank matrix Lfc satisfying

LfcE2

x = 0
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is

Lfc =





Ir −J12J
−1

22
0 0

0 GT
2 J−1

22
Im 0

0 GT
R2

J−1

22
0 ImR



 , (49)

assuming that J22 is invertible. For details see again Section 4. Multiplication of
the equations by Lfc and setting f2

x = −ẋ2 = 0 leads to the following equational
representation of the reduced order Dirac structure





Ir −J12J
−1

22

0m×r GT
2 J−1

22

0mR×r GT
R2

J−1

22





[

ẋ1

0

]

=





Js 0
GT

2 J−1

22
J21 − GT

1 0
GT

R2
J−1

22
J21 − GT

R1
0





[

e1
x

e2
x

]

+





GR1
− J12J

−1

22
GR2

GT
2 J−1

22
GR2

GT
R2

J−1

22
GR2



 fR +





0r×mR

0m×mR

ImR



 eR+





G1 − J12J
−1

22
G2

GT
2 J−1

22
G2

GT
R2

J−1

22
G2



 u +





0r×m

Im

0mR×m



 ŷ.

Using the notation as in (32)

α := GT
2 J−1

22
J21 − GT

1 , β := GT
R2

J−1

22
J21 − GT

R1
,

γ := GT
2 J−1

22
GR2

, δ := GT
R2

J−1

22
GR2

,

η := GT
2 J−1

22
G2,

the above equation takes the form





Ir

0m×r

0mR×r



 ẋ1 =





Js

α
β



 e1
x +





−βT

γ
δ



 fR +





0r×mR

0m×mR

ImR



 eR+





−αT

η
−γT



u +





0r×m

Im

0mR×m



 ŷ,

(50)

The equational representation (50) of the reduced order Dirac structure im-
plies the reduced order port-Hamiltonian model















ẋ1 = Jse
1
x − βT fR − αT u,

ŷ = −αe1
x − γfR − ηu,

0 = βe1
x + δfR + eR − γT u.

(51)

The resistive relation fR = −R̄eR allows to solve the third equation for eR,
which, after substituting in the other equations and using the fact that e1

x is
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such that e1
x = Q11x1 (ẋ2 = 0 implies x2 = constant taken to be zero), results

in the reduced order port-Hamiltonian model (31)
{

ẋ1 = (Js − βT Zβ)Q11x1 + (−αT + βT ZγT )u,

yfc = (−α − γZβ)Q11x1 + (−η + γZγT )u,
(52)

where Z = R̄(I − δR̄)−1.
Finally, we prove that the symmetric part of the matrix Z is positive-definite,

showing that the reduced order model obtained by the flow-constraint method
is indeed port-Hamiltonian.

Lemma 1 Consider the matrix Z from (32) given as

Z := R̄(I − δR̄)−1

for a skew-symmetric matrix δ = −δT = GT
R2

J−1

22
GR2

, and a symmetric positive

definite matrix R̄ = R̄T > 0. Then the matrix Z can be decomposed into its
symmetric Zsym and skew-symmetric Zsk parts as follows:

Zsym = (R̄−1 − δR̄δ)−1, Zsk = (R̄−1δ−1R̄−1 − δ)−1.

Furthermore, the symmetric part of the matrix Z is positive definite:

Zsym = (R̄−1 − δR̄δ)−1 > 0.

Proof 1 The matrix Z can be rewritten as Z = (R̄−1 − δ)−1. Then straightfor-
ward calculations show that

Zsym = 1

2
(Z + ZT )

= 1

2
[(R̄−1 − δ)−1 + (R̄−1 + δ)−1]

= 1

2
(R̄−1 − δ)−1[(R̄−1 + δ) + (R̄−1 − δ)](R̄−1 + δ)−1

= (R̄−1 − δ)−1R̄−1(R̄−1 + δ)−1

= (R̄−1 − δ)−1(I + δR̄)−1

= [(I + δR̄)(R̄−1 − δ)]−1

= (R̄−1 − δR̄δ)−1.

Similarly

Zsk =
1

2
(Z − ZT ) = (R̄−1δ−1R̄−1 − δ)−1.

Moreover, Z = (R̄−1 − δ)−1 implies that Z−1 = R̄−1 − δ. Hence, the symmetric
part of Z−1, which is R̄−1, is necessarily positive definite.

Since any real vector w can be written as w = Z−1v for a certain v, it follows
that

wT Zw = vT Z−T ZZ−1v = vT Z−T v = vT Z−1v > 0.

This proves that the symmetric part of Z is positive definite.

Finally note that in the case of a lossless full order port-Hamiltonian system
R̄ = 0 and, consequently, Z = 0.
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