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Abstract 

We give Taylor series expansions of performance functions of (max,+ )-linear 
stochastic systems. Instances of the performance measures considered are Laplace 
transforms, moments, distribution functions and tail probabilities. We study the 
domain of convergence of the Taylor series developed at any point of analyticity. 
The elements of the Taylor series can (in the most simple cases) be calculated 
analytically or estimated via simulation. The cornerstone of our analysis is the 
introduction of a calculus of higher-order weak differentiation for random matrices. 
This calculus is based on the concept of weak differentiation. In order to obtain our 
results, we extend this concept, originally formulated only for bounded performance 
measures, to a more general class of performance measures. 

Keywords: Queueing networks; stochastic Petri nets; Taylor senes expansions; 
perturbation analysis; weak derivatives; 

AMS 1991 subject classifications: Primary 60K25; Secondary: 41A58. 

1 Introduction 

We study stochastic (max,+ )-linear systems. This class of systems allows one to represent 
stochastic Petri nets belonging to the class of event graphs. It contains various instances 
of queueing networks like the G/G/1 queue, (finite) queues in tandem, Kanban systems 

*This research is supported by Deutsche Forschungsgemeinschaft under grant He3139/1-1. Part of this 
work was done while the author was with the Faculty of Information Technology and Systems, Delft 
University of Technology, the Netherlands, where he was supported by the EC-TMR project ALAPEDES 
under grant ERBFMRXCT960074. 
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[1], flexible manufacturing systems [12], fork-join queues or any parallel and/or series 
composition made with these elements. In particular, we consider parameter-dependent 
(max,+ )-linear stochastic systems, where the parameter, say 0, is a parameter of the 
distribution of the transition dynamic of the event graph. Thus, 0, for example, may be 
a parameter of one of the firing time distributions of the event graph. More precisely, in 
a queueing application, 0 may be the mean service time at one of the queues. Baccelli 
and Hong give an example from computer science in [5], where 0 is a parameter of the 
distribution governing the entire transition dynamic; they model a window flow control 
mechanism and let 0 be the probability that the window flow operates with nominal window 
size and 1 - 0 the probability that a reduced window size is used. 

We are interested in the analyticity of performance measures, J(O), like completion 
times or waiting times, of (max,+ )-linear systems, that is, we are interested in Taylor 
series expansions of J(O) in O. First results on analyticity of stochastic networks were given 
by Zazanis [17], who studied analyticity of performance measures of stochastic networks 
with a Poisson arrival stream with respect to the intensity of the arrival stream. Baccelli 
and Schmidt [6] considered the case in which the network is (max,+ )-linear. Their approach 
was further developed in [3] and [4]. For applications of their results to waiting times, see 
[13] and [16]. The results mentioned above are restricted to the case of open networks, 
where 0 is the intensity of the arrival stream. However, in a recent paper, Baccelli and 
Hong derived first results for the case of closed networks, see [5]. Strictly speaking, the 
aforementioned papers study Maclaurin series, that is, they only consider Taylor series 
developed at zero. 

In this paper we establish sufficient conditions for analyticity of transient (max,+)­
linear stochastic systems. We provide an algebraic approach for calculating higher-order 
derivatives of performance measures of (max,+ )-linear systems. Our approach applies to 
Laplace transforms, moments, distribution functions and tail probabilities. In particular, 

1. for open systems, we do not require the arrival stream to be of Poisson type; 

2. our analysis applies both to open and closed systems (not only do we recover the 
known results for open systems, we also extend them to closed systems); 

3. we establish the domain of convergence of the Taylor series developed at any point 
of analyticity. 

In particular cases, the derivatives obtained can be calculated analytically. In general, how­
ever, the formulae obtained have a simple interpretation as unbiased estimation algorithm. 

Our approach is based on the concept of weak differentiation, introduced by Pflug, 
see [15]. This concept is closely related to Markov chain analysis. In a recent paper, Cao 
developed steady-state performance functions of finite-state Markov chains in a Maclaurin 
series, see [8]. Although the types of systems Cao considers are different from the ones 
treated here, the approach Cao suggests is closely related to the one we propose in this 
paper. 

The paper is organised as follows. Section 2 introduces the (max,+ )-algebra and il­
lustrates its modelling power. Section 3 provides a short introduction to the theory of 
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weak differentiation, which is the basis of our further analysis. In Section 4, we establish a 
calculus of higher-order weak differentiation for random matrices in the (max,+ )-algebra 
setting. In Section 5 we provide our main result on analyticity of transient (max,+ )-linear 
systems. Finally, Section 6 illustrates how the results already known about analyticity of 
waiting times in open (max,+ )-linear systems can be recovered within our framework. 

2 (Max,+ )-linear Systems 

In this section we introduce the (max,+ )-semiring. This structure was first introduced in 
[9]. For an extensive discussion of the (max,+ )-algebra and similar structures we refer to 
[2]. 

2.1 The (Max, + )-Semiring 

Let E = - 00 and denote by IRE the set IR U {E}. For elements a, b E IRE we define the 
operations EEl and 0 by 

a EEl b = max(a, b) and a 0 b = a + b, 

where we adopt the convention that for all a E IR max(a, -(0) = max( -00, a) = a and 
a + (-00) = -00 + a = -00. The set IRE together with the operations EEl and 0 is called 
the (max,+ )-algebra and is denoted by IRmax. In particular, E is the neutral element for 
the operation EEl and absorbing for 0, that is, for all a E IRE a 0 E = E. The neutral element 
for 0 is e := O. 

Some remarks on the particularities of the (max,+ )-algebra seem to be in order here. 
The name "(max,+ )-algebra" is only historically justified, since IRmax is by no means an 
algebra in the classical sense. Structures like IRmax are referred to as semiringsl in the 
literature. In particular, IRE is idempotent, that is, for all a E IRE a EEl a = a. Idempotent 
semirings are called dioids in [2]. Hence, the correct name for IRmax would be "idempo­
tent semi ring" or "dioid" (which might explain why the name "(max,+ )-algebra" is still 
predominant in the literature). The structure IRmax is richer than that of a semiring since 
o is commutative and has an inverse. However, in what follows we will work with matri­
ces over IRE and thereby lose, like in conventional algebra, the commutativity and general 
invertability of the product. 

Observe that the idempotency of EEl implies that EEl has no inverse (which explains why 
IRmax is no algebra). Indeed, if a =J. E had an inverse element, say b, w.r.t. EEl, then a EEl b = E 

would imply a EEl a EEl b = a EEl E. By idempotency, the left-hand side equals a EEl b, whereas 
the right-hand side is equal to a. Hence, we have a EEl b = a, which contradicts a EEl b = E. 

1 A semiring is a set R endowed with two binary operations, EB and 0, so that EB is associative and 
commutative with zero-element f, 0 is associative and has zero-element e, 0 distributes over EB and f is 
absorbing for 0. 

3 



We extend the (max,+ )-algebra operations to matrices in the following way. For A, B E 
IR; XJ, we define A EB B as follows: 

(A EB B)ij = Aj EB Bij , 1:S i, j :S J . 

For A E IR~XJ and B E IR;XK, we define A ° B by 

J 

(A ° B)ik = EB Aij ° Bjk , 1:S i :S I, 1 :S k :S K . (1) 
j=1 

The matrix £ with all elements equal to E is the zero element of the EB matrix operation. 
On IR;XJ, the matrix E with diagonal elements equal to e and E elsewhere is the neutral 
element of the ° matrix operation. We denote the J x J -dimensional matrices over IR€ 
equipped with the operations EB and ° defined as above by IR~~ = (IR;xJ,EB,0,£,E). 
Observe that IR~:~ is again a semiring. To simplify notation, we write IR; for IR;X1, that 
is, IR; denotes the set of J-dimensional vectors over IR€. 

Let some probability space be given on which all random variables introduced below 
are defined. 

2.2 Examples of (Max,+ )-linear Queueing Networks 

In the following we give some examples of (max,+ )-linear queueing networks. We refer 
to [11] for a necessary and sufficient condition for the (max,+ )-linearity of a queueing 
network. 

Example 1 Consider an open system of J single-server queues in tandem, with infinite 
buffers. We let queue 0 represent an external arrival stream of customers. Each customer 
who arrives at the system passes through queues 1 to J , and then leaves the system. For 
simplicity, we assume that the system starts empty. Let (/j(k) denote the kth service time at 
station j and xj(k) the time of the kth service completion at station j. In particular, (/o(k) 
denotes the kth interarrival time and xo(k) denotes the nth arrival epoch at the system. 
The time evolution of the system can then be described by a (J + 1) -dimensional vector 
x(k) = (xo(k), ... , xJ(k)) following the recursion 

where the matrix A(k) looks like 

(/o(k) 
(/o(k) ° (/1(k) 

(/o(k) ° (/1(k) ° (/2(k) 

x(k + 1) = A(k) ° x(k) , 

E 

(/1 (k) 
(/1(k) ° (/2(k) 

4 

E 

E 

E 

(2) 

(3) 



for k 2: o. Alternatively, we could describe the system via a 1 -dimensional vector x( k) = 
(x1(k) , ... ,xAk)) following 

x(k + 1) = A(k) 0 x(k) EEl B(k) , (4) 

where the matrix A(k) looks like (3) except for the first column and the first row, which 
are missing, that is, (A(k))ij = (A(k))i+1j+1 for 1 ::; i,j ::; 1; the vector B(k) is given by 

B(k)j = B(k)j 0 r(k), with 

for k 2: 0; and 

B(k) = 

e 
0"1 (k) 

O"l(k) 0 0"2(k) 

O"l(k) 0 . . . 0 O"J(k) 

k 

r(k) = L 0"0 (i) 
i=l 

denotes the kth arrival epoch. For more examples of this kind we refer to [14J. 

(5) 

Example 1 models sequences of departure times from the queues via a (max,+)­
recursion. Another interesting application of (max,+ )-linear models is the analysis of wait­
ing times. 

Example 2 Consider an open queueing network the departure epochs of which can be 
described by a (max, + )-linear equation, cf. the open tandem network described in Example 
1. Let Wj (k) be the time the kth customer arriving at the network spends in the system 
until leaving node j. Using the notation introduced in the example above, we obtain 

(6) 

for k 2 1. After some algebraic manipulations (see [6) for details), the vector of system 
times W(k) = (W1(k), ... , WJ(k)) reads 

W(k + 1) = A(k) 0 C(O"o(k)) 0 W(k) EEl B(k) , 

where C (r) is a matrix with diagonal entries -r and all other entries equal to Eo 

Suppose that one of the service time distributions depends on a parameter, say, e, which 
may be the mean of the service times. In this case, the (max,+ )-linear recursion describing 
the system dynamics depends on e through these service times. The following example is 
of a different kind: here the distribution of the transition matrix as a whole depends on e. 
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Example 3 (Baccelli & Hong, [5]) Consider a cyclic tandem queueing network con­
sisting of a single server and a multi server, each with deterministic service times. Service 
times at the single-server station equal (J, whereas service times at the multi-server station 
equal (J'. Two customers circulate in the network. The time evolution of this network is 
described by a (max,+)-linear sequence x(k) = (xl(k), ... ,x4(k)), where xl(k) is the,k th 

beginning of service at the single-server station and X2 (k) its kth departure epoch; X3 (k) is 
the kth begin of service at the multi-server station and x4(k) its kth departure epoch. The 
system then follows 

where 

x(k+1)=A®x(k), 

A= 
[ 

(J E (J' E 1 
(J E E E 

E e E e 
E E (J' E 

Consider the cyclic tandem network again, but one of the servers of the multi-server station 
has broken down. This system follows 

x(k + 1) = A ® x(k) , 

where 

[ 

(J E (J' E 1 
A- (JEEE 

- E e (J' E 

E E (J' E 

Assume that the probability that such a breakdown occurs after service completion is 1 - e. 
Let Ao (k) have distribution 

P ( Ao (k) = A ) = e 
and 

P( Ao(k) = A) = 1 - e , 
then 

xo(k + 1) = Ao(k) ® xo(k) 

describes the time evolution of the system with breakdowns. 

2.3 Problem Statement 

We study sequences {xo(k) : k ~ O} following 

xo(k + l)=Ao(k) ® xo(k) EB Bo(k) , k ~ O. 

with xo(O) = xo, Ao(k) E IR: XJ
, Bo(k) E IR: and e E e c IR. For a given performance 

function g : IR: ---+ IR, we seek conditions for the analyticity of 

E[g(xo(k + l))lxo(O) = xo]. (7) 
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These conditions will depend on the type of performance function and the particular way in 
which the matrix Ao(k), respectively the vector Bo(k) , depends on B. In the next section, we 
introduce the concept of weak differentiability of measures. We will transfer this concept to 
that of weak differentiability of random matrices and eventually study "weak analyticity" 
of random matrices. Our main result will be that the @-product and EEl-sum of weakly 
analytical matrices is again weakly analytical on the same region. Weak analyticity of 
xo(k + 1) then implies analyticity of (7) for a particular class of performance measures. 

3 Weak Differentiability of Measures 

This section provides an introduction to the theory of weak differentiation of measures. A 
key reference on the basic concept of weak differentiation is [15]. 

Let (S, ds) be a separable metric space and let M = M(S) be the set of all finite signed 
regular measures on the measure space (S, F), where F denotes the Borel field of S. The 
set of all probability measures on (S, F) is denoted by Ml = M1(S). Let 1)(S) be a set 
of mappings from S to IR and assume that the constant function 9 _ 1 is in 1)(S). We say 
the mapping /-to : 8 ---t M1 is weakly differentiable at B with respect to 1)(S) if there exists 
a /-t' 0 EM, such that for all 9 E 1)(S) 

g~o ~ (J 9 d/-to+6. - J 9 d/-to) = J 9 d/-t' 0 • (8) 

From the well-known Hahn-Jordan decomposition theorem it follows that probability mea­
sures /-t~+1),/-t~-I) E Ml and constants C1,C2 20 exist, such that 

,_ (+1) (-1) 
/-t 0 - C1 /-to - C2 /-lo . 

The measure /-l~+1) is called the positive part and the measure /-l~-1) the negative part of /-le'. 
Moreover, a set A E F exists, such that either /-t~+l\A) = 0 or /-l~-I)(S\A) = 0, in symbols: 
/-l~ +1) ..L/-l~ -1). The above representation is not unique, since for an arbitrary non-negative 
measure 'Y E M and a positive constant b 

However, it can be shown that C1 + C2 is minimised if /-l~+I) ..L/-l~-1). 
For /-lo E M 1 , it follows that /-lo(S) = 1 for all B. Therefore, d/-to(S)/dB = 0 for all BE 8. 

Because the constant function 9 == 1 is in 1)(S), this implies /-l~+1)(S) = /-l~-l)(S). Thus, 
the normalisation constants are equal, Cl = C2, and /-l~ is completely characterised through 
h . I ( (+1) (-1)) . (+1) (-1) . ( (+1) (-1)) t e trIP e CJ1-9' /-lo , /-lo , WIth /-lo , /-to E )\..11 · We call the trIple CJ1-8' /-lo , /-lo a 

weak derivative of /-lo at e with respect to 1)(S). 
Weak differentiability of a random variable is defined by the weak differentiability of the 

induced measure: Let (Xo : B E 8) be defined on a common probability space (0, F, P), 
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such that pXo = flo. We call Xo weakly differentiable if flo is weakly differentiable. The 
weak derivative of Xo is a triple (C,X~+l),X~-l»), such that X~+l) has distribution fl~+1), 
X~-l) has distribution fl~-l) and c is the normalisation constant of fl~ . 

Higher-order derivatives are defined in the same way. More precisely, we call a triple 
(c(n) , fl~n.+l), fl~n.-I») a nth order weak derivative of flo at e with respect to V(5) if for all 
g E V(5) 

:;n J g dflo = c(n) (J g dfl~n.+l) - J g dfl~n.-I») . (9) 

If the left-hand side of the above equation equals zero for all g E V(5), we take (0, flo, flo) 
as the nth order weak derivative and say that the nth order weak derivative of flo is not 

significant, whereas it is called sienificant otherwise. 
Furthermore, we call (c~:, X o

n.+I ), X~n.-I») an nth order weak derivative of Xo if the 

distribution of Xo, denoted by flo, has nth order weak derivative (c~:) , fl~n.+I), fl~n,-I») , and 
X~n,+I) is distributed according to fl~n,+I), X~n,+I) is distributed according to fl~n ,+I) and 

c~: = c~:). If it causes no confusion, we simplify the notation by dropping the subscript 

Xo of c~: and write c(n) for c~:. 
In order to make the above definition useful, we have to choose V(5) in such a way 

that 

• it is rich enough to contain interesting performance functions, 

• the product of weakly differentiable measures is again weakly differentiable. 

In what follows, we study two examples of V(5) . Let CC(5) := CC(5, ds ) denote the set 
of all bounded continuous functions from (5, ds ) to JR. We assume that (5, +5, 05) is an 
(additive) monoid endowed with a quasi norm 11·115, that is, Ilslls = 0 if and only if s = 05 , 
Ilslls ~ 0 for all s E 5 , and lis +5 rlls ::; Ilslls + Ilrlls. We denote by Ck (5) := Ck (5, ds ) 
the set of all functions g : 5 ----? JR such that Ig(x)1 ::; CI + c211xW for all x E 5 and alll 
with 0 ::; l ::; k. In addition to that we assume that CC(5) C Ck (5) for all k ~ o. 

Suppose that the derivative of J g dflo does not vanish for all g E V(5) . Obviously, 
there are two different ways of calculating the second-order weak derivative of the measure 
flo. On the one hand, we can obtain a second-order weak derivative (C(2), fl~2 ,+I), fl~2,-I») 
with respect to V(5) through (9), where we assume fl~2,+I) l..fl~2,-I) in order to obtain a 
unique decomposition. On the other hand, we can take the weak derivative of fl~, that is, 
weakly differentiate the positive and negative part of fl~ separately, and afterwards rescale 
the measures in order to obtain probability measures. This yields 

and 
( 

(-I»), _ (-1) ((-1)+1) (-1) ((-1)-1) 
flo - c flo - c flo , 
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with J..l~(il)i2) E M1 for iI, i2 E {-I , +1}, where we assume that J..l~(+1)+1) ..lJ..l~(+l)-l) and 
J..l~(-1)+1) ..lJ..l~(-l)-l). Let 9 E 7)(S), then 

::2 1 9 dJ..lo= :e (1 9 dJ..l~+l) - 1 9 dJ..l~-l») 
=C(+I) 1 9 dJ..l~(+l)+l) - C(+I) 1 9 dJ..l~(+l)-l) 

+ c(-l) 1 9 dJ..l~(-l)+l) - C(-l) 1 9 dJ..l~(-I)-I) . 

Regrouping the positive and negative parts yields 

::21 gdJ..lo 

(C
(+l) + C(-I») ( C(+l) 1 «+1)+1) C(-I) 1 «-1)+1) 

C(+I) + C<-1) 9 dJ..lo + C<+I) + C(-I) 9 dJ..lo 

( 
c( +1) 1 « +1)-1) c( -1) 1 « -1)-1») ) 

- C(+I) + C<-I) 9 dJ..lo + C<+I) + C<-1) 9 dJ..lo , 

and we obtain a second-order weak derivative of J..lo from 

(
C(+I) + C(-l) C(+I) «+1)+1) + C(-I) «-1)+1) 

, C<+I) + C(-1) J..lo C<+I) + C(-I) J..lo , 

C(+I) «+1)-1) C(-I) «-1)-1») 

C<+I) + C(-I)J..lO + C<+I) + C<-1)J..lo 

We assumed that (S, ds ) is a metric space and that the measures in M are defined on 
(S, F), where F is the Borel field with respect to d s . Therefore, two measures J..l, l/ E M 

are equal if J f dJ..l = J f dl/ for all f E CC(S), for a proof see e.g. Lemma 30.14 in [7]. 
Hence, if CC(S) c 7)(S), then C(2) = C(+I) + d- 1) and 

(2,+1) _ C(+I) «+1)+1) + C(-I) «-1)+1) 

J..lo - c< +1) + c( -1) J..lo c( +1) + c( -1) J..lo 

and 
(2,-1) _ C(+I) «+1)-1) C(-I) «-1)-1) 

J..lo - C<+I) + C<-I)J..lO + C<+I) + C<-I)J..lO . 

Put another way, the definitions (8) and (9) are compatible. It can easily be seen that the 
same holds true for all higher-order weak derivatives, provided that they exist. 

3.1 The Space CC(S) 

The weak convergence of measures in Ml is defined by means of CC(S). We say that 
J..ln E M 1 converges weakly towards J..l E M 1 if for all 9 E CC (S) 

lim IgdJ..ln = IgdJ..l. 
n--+oo 
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The above definition explains why the limit in (8) is called a "weak" derivative. The product 
of two weakly differentiable measures is weakly differentiable, see [15]. 

Unfortunately, the space CC(S) is too small for many interesting problems in appli­
cations. For example, for S = IR, the identity id : IR --+ IR is generally not in CC(IR). 
Therefore, we generally cannot calculate the derivative of the moments of fJ-9. 

3.2 The Space Ck(S) 

The space Ck(S) allows us to describe many interesting performance characteristics as the 
following example illustrates. 

Example 4 For J 2: 1, take S = [O,oo)J and let X = (Xl, . .. ,XJ) E S be defined on a 
probability space (0, A, P) such that pX = fJ-. Taking g(x) = exp( -r Xj), with r 2: 0, we 
obtain the Laplace transform of X through 

For g( x) = xJ, we obtain the higher-order moments of X through 

E [XJ] = J g dfJ-, for k 2: 1, 

and, taking g(x) = l xj >u , we obtain 

P(Xj > u) 

the tail probabilities of X. 

In what follows we study weak differentiability of product measures with respect to Ck(S). 
The main difference between weak differentiability with respect to Ck(S) and weak dif­
ferentiability with respect to CC(S) is that for the latter we needn't restrict the class of 
measures which can be treated. 

For fJ-, v EM, we say that fJ- is v continuous (in symbols v » fJ-) if v( A) = 0 implies 
fJ-(A) = 0 for all A E F. The v continuity of fJ- implies that the Radon-Nikodyn derivative 
of fJ- with respect to v exists. Put another way, if v » fJ-, then the v density of fJ-, denoted 
by f(fJ-, v), exists. If fJ- » fJ-9 for all () E e, we write fe(x) = f(fJ-9, fJ-)(x). In what follows we 
let dnfeld()n denote the nth derivative of fe, provided that it exists, and set f9 = dD feld()D. 

Definition 1 Let v E M I (S) be such that v » fJ-e for all () E e. We call fJ-e n times 
v-Lipschitz differentiable at () with respect to Ck(S), or n times Lipschitz differentiable for 
short, if 

• f9 (x) is (n + 1) times differentiable with respect to () on e for v almost all x; 
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• for all 0 ~ m ~ n + 1 

v almost surely, and 

• for all 0 ~ m ~ n + 1 

1 Ilxll~ Kj(x) v(dx) < 00. 

The nth Lipschitz derivative at e is said to be not significant if dn io(x)/dne = 0 for 
v-almost all x and significant otherwise. Furthermore, we let s(j.1o) denote the highest 
order of a significant derivative. If all higher-order derivatives are significant, then we set 
s(j.1o) = 00. 

The name "Lipschitz differentiability" stems from the fact that 

~~~ Idde:fo(x)1 ~ Kj(x) 

implies that dm - 1 fo(x)/de m - 1 satisfies a Lipschitz condition, that is, 

~ D.Kj(x) , 

for eo, eo + D. E 8. 
Lipschitz differentiability allows for weak differentiation. More precisely, the n times 

j.1-Lipschitz differentiability of j.1o implies that for all 9 E Ck (5) 

dnl 1 d
n 1 d

n 
den gdj.1o = 9 deni(j.10, j.1) dj.1 = 9 denio dj.1. (10) 

Set 

c(n) = ~ 1 I~ fol dj.1. 2 den 

Note that c(n) is finite whenever j.1o is n times Lipschitz differentiable. We define j.1-densities 

(n,+l) _ 1 ( dn 
) (n ,-l) _ 1 (dn 

) 
fo - C<n) max denio, 0 ,fo - C<n) max - denio, 0 , 

then equation (10) reads 

:e: 1 9 dj.1o = c(n) (I 9 f~n,+l) dj.1 - 1 9 f~n,-l) dj.1 ) (11) 

From the densities f~n,+l) and f~n ,-l) we obtain measures j.1~n ,+l) and j.1~n,-l), respectively, 
on (5, F) through 

(n,-l)(A) -1 {(n ,-l) d j.1o - J 0 j.1 , 
A 

(12) 

for A E F, and we recover the definition of weak differentiability as stated in (9). 
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Example 5 We illustrate the concept of weak differentiability with the following examples. 

1. Take 5 = [0 , 00) , Ilxlls = Ixl for x E 5, and let fJ,()( x ) = 1 - e-()x be the exponential 
distribution on 5, with e = [B/, Brl for 0 < Bt < Br < 00. Let ).(-) denote the Lebesgue 
measure on 5. Then the A density of fJ,() is given by 

f()(x) = f(fJ,o, A) = Be-(Jx . 

We show that fJ,(J is 00 times weakly differentiable. The density f(J is bounded by 

supf()(x) = Br e-(JIX =: KJ(x). 
(JEG 

For n 2: 1, the nth derivative of f(J (x) is given by 

which implies 

(13) 

for n 2: 1. Since all higher moments of the exponential distribution exist, we obtain 
for all n and all k 

is II x II ~ Kj (x) A ( dx ) < 00. 

It follows that fJ,(J is n times A-Lipschitz differentiable on [B/, Brl with respect to 
Ck([O, 00)) for all k and all n. In particular, we obtain for the normalisation constant 
of the nth derivative of f(J 

c( n) = (Bne) n 

2. Consider the counting measure fJ,(J on X = {Xl, X2} c S with fJ,(J ( {xd) = B = 
1 - fJ,(J( {X2} ). Let v be the uniform distribution on X and let us denote the Radon­
Nikodyn derivative of fJ,(J with respect to v by 

then 
sup f(J(x) ::; 2 =: KJ(x) 
(JEG 

and for all n 2: 1 
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Therefore, dnf(}(x)/dOn is v-Lipschitz. Since 2l:xEsllx ll~v({x}) < 00 for all k, we 
have that /1(} is 00 times Lipschitz differentiable on [0 , 1] with respect to Ck(S) for all 
k. 

Following the construction in {12} we obtain from df(}(x)/dO = 2 for x = Xl and -2 
for X = X2 

as first-order weak derivative of /1(} , where Dx denotes the Dirac measure in x . Fur­
thermore, all higher-order weak derivatives of /1(} are not significant. 

The following lemma establishes the main property of Lipschitz differentiable measures, 
namely that the product of two Lipschitz differentiable measures is again Lipschitz differ­
entiable. Let (5, ds) and (Z, dz ) be two metric spaces, such that the product space 5 x Z is 
endowed with a quasi norm 11·llsxz. We call 11·llsxz decomposable if for all (s, z ) E 5 x Z 

II(s,z)llsxz ~ Ilslls + Ilzllz, 

where II . lis and II . liz are appropriate quasi norms on 5 and Z, respectively. 
Before we state our lemma on the Lipschitz differentiability of the product of two 

Lipschitz differentiable measures we introduce the following multi indices. For n, m E IN 
and /1k EM, with 0 ~ k ~ m - 1, we set 

£(m, n) = £CJ1.0 ,. J1.rn-l)(m, n) 

= { (10, ... ,1m - I) E {D, ... , n}m I, <; sCi") and ~ I, = n} . 
and for l E £(m, n) we introduce the set 

I(m, l) = 

{(io, ... ,im- l ) E {-l,o,+l}ml ik = 0 iff lk = 0 and II ik = +1}. 
io, ... ,irn-l 

ik:f:O 

For i E I( m, l) we introduce the auxiliary multi index i- as follows. Let k* be the highest 
position of a non-zero entry in i, that is, ik = 0 for all k > k*. We now set 

that is, the multi index i- is generated out of i be changing the sign of the last non-zero 

Lemma 1 Let /1(} E M 1 (5) be n times /1-Lipschitz differentiable with respect to Ck(5) and 
let v(} E MI(Z) be n times v-Lipschitz differentiable with respect to Ck(Z). 
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1. If a decomposable quasi norm" . Ils xz on S x Z exists, then the product measure 
f-le x Ve on S x Z is n times f-l x v-Lipschitz differentiable with respect to Ck(S x Z) 
with 

with 

and 

I 
~ ~ (c(lo) . c(ll») 
~ l 'l I /1-0 Vo ' 

1=(lo,11)E.c(2,n) o· 1· 

~ n! ~ (Io ,io) (Il ,il) 
~ "fIiI ~ f-le x ve 

1=(lo,11)E.c(2,n) O· 1· (io,il)EI(2,1) 

(f-le x Ve)(n,-1) = L l7l! I L f-l~lo,io) x v~ll,il) 
1=(lo,lt)E.c(2,n) O· 1· (ia,il)EI(2,1) 

where f-l~o,o) = f-le and l/~o , o) = I/e. 

2. Let (R, dR ) be a separable metric space endowed with a quasi norm II . IIR. Let h : 
R x Z ~ S with Ilh(r, z)lls -:::; IlrliR + Ilzllz be measurable and independent of e, then 
(f-le x I/e)h-

l 
is weakly differentiable with respect to Ck(R), and the nth order weak 

derivative of (f-le x I/e )h-
I 

is given by 

Proof: We prove the first part of the lemma. Let fe be the f-l-density of f-le and he the 
v-density of I/e. The density of the product measure is therefore given by fehe. We obtain 

n! dlo dll 
= sup L lo!l" delo fe(s) dell he(Z) 

eEe (la,1t )E.c(2,n) . 

< ~ n! KIO( )KII( ) 
~ lo!l" f S h Z . 

(lo,II)EC(2,n) . 

We show that II(s, z)ll~xzK}O(s)K~I(Z) is v x f-l integrable. 
The quasi norm on S x Z is decomposable and we obtain 
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for all (s, z) E S x Z . This implies 

f Ig(s, z)K}O(s) Khl(z) I f-L x v(ds,dz) 
Jsxz 

s f (C1 + C2 (II s II s + II z II z l) K}o ( s) Khl (z) f-L x v ( ds, dz) 
Js xz 

k 

S 2: di 1 Ilsll~-i Il z ll~ K}O (s) Khl (z) f-L x v( ds, dz) , 
i=O SxZ 

with di ~ 0 for 0 SiS k. Applying Fubini's theorem, we obtain for the individual terms 
of the above inequality 

f Ilsll~-illzll~K}O(s)Khl(Z )f-L x v(ds,dz) 
Jsxz 

S (llls"~-iK}O(s)f-L(ds)) (fzll z ll~Khl(Z)V(dZ)) , 

which is finite by assumption. Therefore, the dominated convergence theorem applies and 
we may interchange the n-fold differentiational operator and the integration. This yields 

~~----------~v~----------~~ 
(*) 

Since only the first s(f-Le) derivatives of ie and first s(v(J) derivatives of h(J are significant, 
we only have to take into account indices l = (lo , ll) such that lo S s(f-L(J) and h S s(v(J). 
Considering the positive and negative parts of (*) separately, like in (11), the term (*) can 
be written 

dlO dll 
2: dOlo ie(s) dOll he(z) 

(10.l1 )E.c(2,n) 

2: cjl)°) (iJlo,+l)(S) - iJlo,-l)(S)) c~;) (h~II,+l)(Z) - h~II'-l)(Z)) 
(10.l1)E.c(2,n) 

Regrouping the positive and negative parts, we obtain the associate measures as in (12). 
Since CC(S x Z) c Ck(S x Z), the obtained decomposition is unique. This concludes the 
proof of the first part of the lemma. 

For the proof of the second part of the lemma, observe that 
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for all (r, z) E R x Z. Following the same line of argument as for the proof of part one of 
the lemma, we obtain for all 9 E Ck(R) 

dnl dnl dOn g(s) (/10 X VO)h-
1 

(ds)= dOn g(h(r, z)) (/10 X vo)(dr, dz) 
S RxZ 

= r g(h(r, z)) (/10 X vo)(n) (dr, dz) 
JRXZ 

= Is g(s) (/10 X vo)(n))h-
1 

(ds) , 

which proves the second part of the lemma. 0 

Definition 2 We call a measure /10 E M I (S) n times weakly differentiable if there ex­
ists a /1 E M I , such that /10 is n times /1-Lipschitz differentiable on Ck(S). The triple 
(c(n),/1~n,+1),/1~n,-I)) is called an nth order weak derivative of /10 if for all 9 E Ck(S) 

dd
O
: Is 9 d/10 = c(n) (Is 9 d/1~n,+I) - Is 9 d/1~n'-I)) . 

If the left-hand side of the above equation equals zero for all 9 E Ck(S), we take (0, /10, /10) 
as the nth order derivative and call the nth order weak derivative not significant; whereas 
it is called significant otherwise. 

We call a random variable Xo n times weakly differentiable if the induced measure is 
n times weakly differentiable. We call the triple (c(n), X~n,+l), X~n,-I)) an nth order weak 
derivative of Xo if X~n,+I) is distributed according to /1~n,+I) and X~n,-I) according to /1~n , -I), 
respectively, that is, if for all 9 E Ck(S) 

If the left-hand side of the above equation equals zero for all 9 E Ck(S), we take (0, X o, Xo) 
as the nth order derivative and call the nth order weak derivative not significant, whereas 
it is called significant otherwise. 

To illustrate the above, we give the following example. 

Example 6 

1. Let Xo E IR be exponentially distributed with mean I/O. Set C~I) = (Oe)-I, and let 
X~I,+I) have Lebesgue density 

and X~I,-I) density 

1 ( 0) -ox 1x<1 -0 1 - x e 
(J e 

{(l,-I)(X) = 1 1 ~(1 - 0 x) e-ox . 
J 0 x?(j 0 e 
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Then the weak derivative of Xe is given by (C~l), X~l,+l), X~l,-l»). Let tL~l,+l) and 

tL~l , -l) be the measures obtained from f~l,+l)(x) and f~l,-l\X) , respectively, via {12}. 
Then, the above weak derivative is unique in the sense that tL~l,+l) 1. tL~l,-l). However, 
we may take another representation of the weak derivative. For example, let "Ie have a 
Gamma{2 , O} distribution, then (l/0 , X e) "Ie) is a weak derivative of X e, see Example 
3.34 {4} in [l5}. 

2. LetXe E {D1,D2} c S be Bernoulli distributed with parameter 0, so that tLe({Dr}) = 
0= 1-tLe({Dd). From Example 5 {2} it follows that (1,D1,D2) is a weak derivative 
of Xe· Indeed, we obtain 

:OE[g(Xe)] = :0 (g(D1)e + g(D2)(1 - 0)) 

=g(D1) - g(D2) . 

4 Weak Differentiation of Random Matrices 

(14) 

This section provides an introduction to the theory of weak differentiation of random 
matrices. For supplementary material we refer to [10]. 

4.1 
A IxJ 

The Space IR€ 

In the previous section we developed the theory of weak differentiation of measures on gen­
eral separable metric spaces. The aim of our analysis is to study (max) + )-linear stochastic 
systems. In particular, we are interested in (max,+ )-linear models of stochastic networks 
such as queueing systems, see Section 2.2. These models have in common that the entries of 
the corresponding transitions matrices are either non-negative or equal to -00. Therefore, 
we can restrict our analysis to the semiring 

IRmax = (IRf = [0,00) U {-oo}, EEl = max, ® = +, E = -00, e = 0) . 

The structure (IRf) EEl, E) is a monoid and with quasi norm2 

Ilxll := IIxillR. = max (_1_, x + 1) 
x+1 

This quasi norm is extended to ffi: X
[ by 

2If we set d(x, y) = emax(x,y) - emin( x ,y), then d(-, ·) is a metric on IRE) and we obtain a quasi norm from 
IIxll = d(x, f). However, one of the key assumptions of our analysis is that IIxW is integrable and hence 
taking Ilxll = eX imposes a severe restriction. 
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A JxI 
for A E IRE . Furthermore, we introduce a metric 

dCA, B) := dCA, B)ffiJX [ = IIIAII - IIBIII, 
f 

AJxI AJxI 
for A, B E IRE . In particular, the space (IRE ,d) is a separable metric space. The fol-
lowing lemma shows that each continuous mapping from [0, oo)J to IR can be continuously 

A J 
extended to IRE . 

A JxI 
Lemma 2 Let g E Ck([O, oo)JXI) and define 9 : IRE -+ IR, such that g(x) = g(x) for all 

A JxI 
X E [O,oo)JXI and zero otherwise, then 9 E Ck(IR

E 
). 

Proof: For the sake of simplicity, we consider only the one-dimensional case. Let 
x(n) E IRE be a sequence, such that limn---+oo d(x(n), x) = ° for x E IRE. If x =j:. E, then for 
all 6 > ° an No exists, such that for all n 2: No 

d(x(n),x)=lllx(n)II-llxlll 

=Imax (x(n~ + l' x(n) + 1) - (x + 1)1 
<6. 

Hence, if 6 is to be small enough, x(n) =j:. E and d(x(n), x) = Ix(n) - xl for all n 2: No. 
Continuity of g on [0, (0) therefore implies continuity of 9 in x. 

Now let x = E. Convergence of x(n) towards E implies that for sufficiently small 6 an 
No exists, such that for all n 2: No 

d(x(n), E) = Ilx(n)11 < 6. (15) 

On the other hand, y i= E implies Ilyll 2: 1. Hence, equation (15) implies x(n) = E for all 
n 2: No· This implies continuity of 9 in E. 0 

A JxI 
Higher order weak differentiation of random variables in IRE is defined in Definition 

2. The following example illustrates the application of Definition 2 to random matrices. 

Example 7 

1. Consider the queueing system in Example 1. Suppose that service times at station 
j are exponentially distributed with mean e. In accordance with Example 5 (1), 
CJj(e,k) is (X) times weakly differentiable on e = (0,00) with respect to Ck(IRE). 

Let (c(n), CJ)n,+l)(e, k), CJ)n,-l)(e, k)) be a nth order weak derivative of CJj(e, k). Let 

A(n,+l)(k) be the matrix obtained from A(k) by replacing all occurrence of CJj(e, k) 
by CJ)n,+l)(e, k) and A(n,-l)(k) the matrix obtained from A(k) by replacing all oc-

currence of CJj(e, k) by CJt,-l)(e, k). Lemma 1 implies that A(k) is 00 times weakly 

differentiable on e on C1(IR:
XJ

) for alll, and the nth weak derivative of A(k) is given 
by 
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~ J x I ~ JxI 
2. Let Ao E ffi.

E 
be Bernoulli distributed over {D1, Dd C ffi.E • In accordance with 

Example 6 (2), the first-order weak derivative of Ao is (1, D 1 , D 2 ) whereas all higher­
order weak derivatives are not significant 

We call A E ffi.; XI integrable3 if E[ IIAII] < 00. 

4.2 The Extended Space M I x J 

Weak derivatives of random matrices are described by triples. Weak differentiation of more 
complex expressions, however, like, for example, n-fold products of random matrices, will 
involve working with finite sequences of these triples. 

In order to be able to weakly differentiate a general (max,+ )-linear expression, we 

embed R~XJ into a richer object space, called MIXl, where M lxJ is the set of all finite 

sequences of triples (c, A, B), with c E ffi. and A, B E R:XJ . A generic element 0: E MI X] 

is therefore given by 

where nO. < 00 is called the length of 0: . If 0: is of length one, that is, nO. = 1, we call 
it elementary. Observe that the weak derivative (CA , A (+1), A (-1)) of a matrix A is an 
elementary element of MI x ]. 

On AII x ] we introduce the binary operation "+" as concatenation of strings. For ex­
ample, let 0: E MI x ] be given by 

with O:i elementary, then 

More generally, for 0:, (3 E MI XJ , application of the "+" operator yields 

no< n{3 

= L O:i + L (3j . (16) 
i=1 j=1 

3The standard way of defining the integrability of a matrix A is as follows : A is called integrable if 
(a) P(Ai j = f) E {O, I}, called the fixed support condition, and (b) E[lAijl] < 00 for all non-f entries. 
However, this definition is more restrictive. 
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and for a = (c'\AQ , BQ) E MI X}, {3 = (cf3, Af3 ,Bf3 ) E M} x K we define 

a @ {3 = (cQ· cf3 , A Q @ Af3, BQ @ Bf3 ) , 

where x . y denotes the conventional multiplication in IR. These definitions are extended 
to general a, {3 as follows. The EB-sum is given by 

n", n{3 

a EB {3 = L L ai EB {3j , 
i=l j=l 

for a, {3 E MI X}, that is, a EB {3 is the concatenation of all elementary EB-sums, which 
implies nQtBf3 = nQ . nf3 . For the @-product we set 

n", n{3 

a @ {3 = L L ai @ {3j , 
i=l j=l 

for a E MI x } and {3 E M}XK, that is, a @ {3 is the concatenation of all elementary @­

products, which implies nQ0f3 = nQ . nf3. In particular, for a E MI x } and x E M} := M}xl 

the matrix-vector product a @ x is defined . 
Set fJ x} = (1 , [(1, J), [(1, J)) , where £(1, J) is the (I x J)-dimensional matrix with 

all entries equal to E. Then [I x ) is the neutral element of EB in MI x } . The element [Ix} 

is unique in the sense that for all a E MI x }: nQtB£[ XJ = nQ • Furthermore, set E}x} = 

(1 , E(J, J), E(J, J)), where E(J, J) is a (Jx J)-dimensional matrix with all diagonal entries 
equal to e and elsewhere E. Then, E)x} is the neutral element of @ in M} x }. In particular, 
E}x} is unique in the sense that for all a E lV!} x }: n

Q
0 EJ x J = nQ • 

We define scalar multiplication as follows. For r E IR and elementary a = (c , A, B) E 

MIx} we set r · a = (r . c, A, B). For a = (al,'" ,anJ E MI x ) we set 
n", 

r· a = Lr. ai. (17) 
i=l 

~ I x } 
We embed IRe into MIx} via a monomorphism T given by 

AT := T(A) = (1, A, A) , 
~ I x } ~ I x J 

for A E IRe . We now define the T-image of a function 9 : IRe -1- IR as follows. For 
a = ((CI' AI, B I ), . . . ,(cn"" An"" BnJ) E MI x } we set 

nO. 

gT(a) = LCi(g(Ai ) - g(Bi)) . (18) 
i =l 

The mapping gT(.) is called the T-projection of a with respect to 9 onto IRu {-oo}, or the 
(T , g) projection for short. For ease of notation, we suppress the superscript T where this 
causes no confusion and write g(.) instead of gT(.). 

The definition of addition and scalar multiplication are tailored to making the extension 

of any real-valued function on IR~X} to M IxJ "linear", as the following lemma shows (see 
[10] for a proof). 
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~ JxI 
Lemma 3 For Q', (3 E AIl x J and co:, Cf3 E IR, it holds true that for all 9 E IRf -+ IR€ 

~J x J ~JxJ 

Remark 1 For A E IR
f 

,the r-projection with respect to any 9 : IRf -+ IR€ yields 
gT(r(A)) = O. However, we can recover 9 via the r-projection with respect to 9 through 
a linear transformation. More precisely, let 1f

JxJ = (1, E(J, J), £(J, J)) E M JxJ , then 
1f

JxJ 0 r(A) = (1, A, £(J, J)) and we obtain 

VA E ffi: XJ
: gT(1f JXJ 0 r(A)) = g(A) , 

where we have assumed that g(£(J, J)) = 0, cf. Lemma 2. 

Unfortunately, the structure M JxJ = (MJXJ, EEl, 0 , +, E JXJ, £JXJ) has very poor alge­
braic properties. For example, the operation EEl fails to be commutative in M lxJ . However, 
in what follows we will show that most of these properties can be recovered in a "weak" 
sense. 

On M IXJ , the equation A = B means that, element wise , A is equal to B. We call this 
~ IxJ 

the strong equality on M l xJ. Let 1) be a set of mappings IR€ -+ IRe We now say that 
A, B E A1 are equal in the weak sense with respect to V if and only if 

Vg E V : E[g(A)] = E[g(B)] . 

From now on we write A =v B to express that A and B are equal in the weak sense. For 

our analysis we work with maps in Ck(ffi: XI
). Therefore, we adopt the convention that , 

for A, BE MIXJ, in what follows A == B has to be interpreted as A ==Ck(JR; XI) B. 
Obviously, strong equality implies weak equality. However, since we are only interested 

in results of the type "Vg E Ck(ffi: XI
) : E[g( ... )] = E[g( . . . )]", it is sufficient to work 

with the weak equality on M l xJ. 
We now say that the binary operator f is weakly commutative on M lxJ if Af B == BfA, 

for all A , B E M IXJ , and define weak distributivity, weak associativity a.sJ. in the same 
way. We obtain the following rules of weak computation in M lxJ : the binary operations 
EEl, 0 and "+" are weakly associative, moreover, EEl and "+" are weakly commutative as 
well; furthermore, EEl and 0 are weakly left (and right) distributive with respect to "+", 
see [10]. 

4.3 Weak Differentiation in MIx] 

In this section we develop our calculus of weak differentiation. We begin with the formal 
definition of weak differentiability of a random matrix. 
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Definition 3 For A E IR~XJ, we call A(n) E M IxJ the nth weak derivative of A if for all 
A IxJ 

9 E Ck(IRf ) 

dde:E[g(A)J=E[g(A(n»)]. 

In case the left-hand side equals zero for all g, we set A(n) = (0, A, A) and we call the nth 
weak derivative of A not significant, whereas it is called significant otherwise. In order to 
simplify the notation, we write AI for A(1). 

Example 8 Consider the Bernoulli case in Example 6 (2). For this system, only the first 

weak derivative is significant. More precisely, we obtain A~n) = (1, D 1 , D 2 ) for n = 1 and 
(n) A JxI 

AO = (0, A o, Ao) for n > 1 as weak derivative of A , cf. Example 7 (2). Let 9 E Ck(IRf ), 

taking the (7, g)-projection of A(n) yields 

and therefore recovers equation (14). 

n=1 
n> 1, 

In the remainder of this section, we illustrate our formalism by presenting some use­
ful results about the (first order) weak differentiation of finite EEl-sums or ®-products of 
random matrices. 

A JxJ 
Theorem 1 Let A( i) E IR

f 
(0 ~ i ~ k) be mutually independent and weakly differen-

tiable, then 
k k j-1 

L Q9 A(i) ® A(j)' ® Q9A(i) , 
j=Oi=j+l i=O 

a similar result holds for the k-fold EEl-sum. 

Proof: We prove only the first part of the theorem since the proof of the second part 
is found by following the same line of argument. 

We give a proof by induction. We first give proof for k = 1. Set h(x, y) = x ® y and 
A J x J 

note that Ilh(x,y)11 = Ilx ® yll ~ Ilxll + Ilyll· Let 9 E Ck(IRf ); applying Lemma 1 (2) 
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yields 

:eE[g(A(l) @ A(2))] 

= :eE[g(h(A(l), A(2)))] 

= (CA(I) + CA(2)) 

( E [ CA(I) g(h(A(+I)(1),A(2))) + CA(2) 9(h(A(1),A(+I)(2)))] 
CA(I) + CA(2) CA(I) + CA(2) 

_ E [ CA(I) g(h(A(-I)(1),A(2))) + CA(2) 9(h(A(1),A(-I)(2)))]) 
CA(I) + CA(2) CA(I) + CA(2) 

= E [CA(I)9(h(A(+I)(1),A(2))) - CA(l) g(h(A(-l)(l), A(2)))] 

+ E [CA(2)9( h(A(l), A(+1)(2))) - CA(2)g( h(A(l), A(-1)(2)))] 

= E [g ((CA(l) ' A(+l)(l) @ A(2) , A(-I)(l) @ A(2)))] 

+ E [g( (CA(2) , A(l) @ A(+1)(2), A(l) @ A(-1)(2)))] 

= E[ g( A'(l) @ A(2) + A(l) @ A'(2))]' 

and therefore proves the theorem for k = 1. 
Suppose the statement of the theorem holds true for k, then it follows from the rules 

of weak computation 

(~A(i)) '0= ( A(k + 1) Ell $, A(i)), 

o=A(k+1)'EIl$,A(i) + A(k+1) Ell ($,A(i)), 

k k k j-I 

=:A(k + 1)' E9 EB A(i) + L EB A(i) E9 A(j)' E9 EB A(i) 
i=O j=Oi=j+l i=O 

k+1 k+1 j-I 

=: L EB A(i) E9 A(j)' E9 EB A(i) . 
j=Oi=j+l i=O 

o 

Example 9 Consider the situation in Example 8. Let A(k) (k = 1,2) be i.i.d. random 
matrices Bernoulli distributed over {DI' D2}. For the weak derivative of A(k) we obtain 
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Theorem 1 now implies 

(A(I) ® A(2))'=A(I)' ® A(2) + A(I) ® A(2)' 

=(1, D1 , D2 ) ® (1, A(2), A(2)) + (1, A(I) , A(I)) ® (1, D1 , D2 ) 

=(1, Dl ® A(2) , D2 ® A(2)) + (1, A(I) ® D1, A(I) ® D2) 

=((1, A(I) ® D1 , A(I) ® D2 ) , (1, Dl ® A(2), D2 ® A(2))) . 

Applying the (T, g) -projection yields 

:OE [g (A(I) @ A(2)) ]=E [g ((A(I) ® A(2))')] 

=E [g(A(I) ® Dd + g(Dl ® A(2)) 

- g(A(I) ® D2 ) - g(D2 ® A(2))] . 

The above formula can be rephrased by saying that the derivative of E[g(A(I) @ A(2))] 
can be obtained from the difference between two experiments. For the first experiment, we 
consider all possible combinations of replacing the nominal matrix A( k) by D 1 , the positive 
part of the weak derivative of A( k) . For the second experiment, we consider all possible 
combinations of replacing the nominal matrix A(k) by D2 , the negative part of the weak 
derivative of A(k). 

4.4 Higher-Order Weak Differentiation 

In this section we develop our calculus of higher- order weak differentiation. As a first result, 
we show in the next lemma that the weak derivative of a sum equals the sum of the weak 
derivative of its components. 

Lemma 4 If A, B E ffi:X! are stochastically independent and weakly differentiable, then 

(A + B)' == A' + B'. 

A Jx! 
Proof: For all 9 E Ck(IR{ ) we obtain 

d 
dOE[g((A + B))] (a) :OE[g(A) + g(B)] 

d d 
= dOE[g(A)] + dOE[g(B)] 

= E[g(A')] + E[g(B')] 

(~ E[g(A' + B')] , 

where (a) marks the use of the linearity of 9 over M J X!, see Lemma 3.0 
We now establish the Leibniz rule for higher-order weak differentiation. 
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Lemma 5 (Leihniz rule) Let {A(k)} be an i.i. d. sequence ofn times weakly differentiable 
matrices, then 

( ( 

m ) (I,i) 
~ n! ~ (I) IV\ ( 
L lo!l1! ... lm! L C, 1.6' A k) 

IE.c(m+1,n) iEI(m,l) k=O 

with 
n 

c(/o, ... I",) = II C(/k) , 

k=O 
m 

Q9 A(lk ,id(k) 

k=O 
and 

(

m ) (/ ,i-) m 

~ A(k) = ~ A(/k,i;)(k) , 

where A(O,O)(k) = A(k). A similar formula can be obtained for the nth weak derivative of 
AEB B. 

Proof: We give a proof by induction. For m = 1, the proof follows from Lemma 1. 
Suppose that the statement of the lemma holds for m - 1. Set 

m 

Bo = Q9 Ao(k) , 
k=1 

then the induction hypothesis implies that Bo is n times weakly differentiable. Hence, the 
nth weak derivative of Ao(O) 0 Bo exists and equals 

(Ao(O) 0 Bo)(n) 

~ ~ ~ (c(/o)c(lll A(lo,io)(k) 0 B(ll,il ) A(lo ,io)(k) 0 B(/l ,i1)) 
L l Il I L B , 0 0' 0 0 

(lo,ll)E.c(2,n) 0· 1· (io,il)EI(2,l) 

L lo~l!1! L (c(/o) , A~lo,io)(k), A~lo,io)(k)) 
(/O,ll)EL(2,n) (io,illEI(2,l) 

(19) 

The term on the right-hand side of the above formula represents the l~h weak derivative of 
Bo· More precisely, for i1 = +1 we obtain 

B (ll) = ((Ill B(ll.it) B(ll,i1)) 
e - cB '0 '0 
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and for il = -1 

B (lll = ((11) B(ll,i1) B(h ,i 1») 
o - CB ' 0 '0 . 

For il = 0, which is equivalent to 11 = 0, we obtain 

(0) _ ( ) Bo = 1 , Bo ,Bo . 

Combining the above formulae we obtain 

io, ... ,i>7lE{ -1,0,+1} 
TI i k=il , ik=o¢}lk=o 

Inserting the right-hand side of the above formula in (19) and elaborating on the weak 
distributivity of ® over +, yields 

Rearranging the sums then concludes the proof of the lemma. 0 
With the help of the Leibniz rule we can explicitly calculate higher-order weak deriva­

tives. In particular, applying the (T, g)-projection to higher-order weak derivatives yields 
unbiased estimators for higher-order derivatives, see [10] for more details. 

5 Analyticity 

In this section, we prove our main results on the analyticity of EB-sums and ®-products in 
the (max,+ )-algebra. 

We begin this section by giving a formal definition of weak analyticity of a random 
matrix. 

~ JxI ~JxI 
Definition 4 We call Ao E IRE weakly analytical on e with respect to Ck(IRf ) if 

~ J x I 
• all higher-order weak derivatives of Ao exist on e with respect to Ck(IRf ), and 
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• there exists a measure v E M 1(ffi:
X
!) , such that the v-density of Ao, say fo, is 

analytical on e (that is, for all eo E e there exists an interval Doo ' with eo E Doo ' 
such that the Taylor series of fo(x) developed at eo converges v-almost surely to 
fo(x)) , and in addition to that 

• for all eo E e, there exists f?o(x) such that the v-density of Ao satisfies for all e E Doo 

with J IlxW ffo(x) v(dx) < 00 . 

A J X! A JX! 
Lemma 6 If Ao E IR£ is weakly analytical on e with respect to Ck(IR€ ), E[g(Ao)] is 

analytical on e for all Ck(ffi:
X
!). Furthermore, if, for eo E e, the domain of convergence 

of the Taylor series of Ao is Doo ' then the domain of convergence of the Taylor series of 
E[g(Ao)] is also Doo. 

Proof: Let Ao have v-density !e. For 9 E Ck(ffi:
X
!), 00 times weak differentiability 

of Ao implies for all n 

Weak analyticity of Ao implies that for every eo E e a neighbourhood Doo exists, such that 
for all m and all eo E Doo 

A Jx! 
for all x E IR€ . The expression on the right-hand side of the above formula is v-
integrable, therefore, the dominated convergence theorem applies and we obtain 

J 
(Xl 1 dn 

= g(x) L n! denfo(x)(e - eor v(dx) 
n=O 

= J g(x)fo(x) v(dx) 

= E[g(Ao)] ) 

for all e E DoO ) where the last but one equality follows from the analyticity of fo(x). 0 
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Example 10 We now establish sufficient conditions for the weak analyticity of some in­
teresting classes of random variables. 

1. Let Ao be exponentially distributed with Lebesgue density fo(x) = 0 exp( -0 x) and let 
8 = (0, (0). From Example 5 (1) it follows that Ao is 00 times weakly differentiable at 
any 0 E (0, (0). Furthermore, fo(x) is analytical on (0, (0). In particular, the domain 
of convergence of the Taylor series of fe(x) developed at any 00 E e is (0,00). For 
00 E (0, (0), set Doo(8) = [8,200 - 8] for 00 > 8 > 0, then for all x E [0, (0) 

<Xl 1 d
n 

I L - - fo(x)(O - oot 
n=O n! dOn 0=00 

<Xl 1 
~ L(Ooxn + nxn- l

) e-oox ,10 - Ooln 
n. n=O 

= e-OOX(Oo + (00 _ 8))e(00-6)x 

= (00+ (00-8))e- 6x 

=: f$(x) . 

Since all higher moments of the exponential distribution exist, we conclude that 
IlxWft(x) is Lebesgue integrable. Hence, the Taylor series of E[g(Ao)] developed at 
00 has domain of convergence Doo(8) for all 00 E (0, (0), with ° < 8 < 00, 

A Jx[ 
2. Let Ao be Bernoulli distributed on X = {Xl, X2} C IRf • Then J-lo is 00 times 

weakly differentiable and the derivative of the density of J-lo with respect to a uniform 
distribution is uniformly bounded in 0 by one. Therefore, Ao is weakly analytical on 

A Jx[ 
[0,1] on Ck(IRE ). 

The following corollary establishes an immediate consequence of the definition of weak 
analyticity, which is useful in many practical situations for deciding whether a (max,+)-

A A Jx[ 
linear system is analytical or not. We call Xl, ... , Xm E IRE the input of A E IR

f 
when 

the entries of A are measurable mappings of (Xl,." , Xm). For example, the input of the 
transition matrix A(k) of a J-dimensional (max,+ )-linear stochastic system, as described 
in Section 2, is the vector of service times ((Jj(k) : j ~ J). 

qorollary 1 Let the matrix Ao E ffi: X
[ depend on 0 only through an input variable Xo E 

IRf and let Xo be stochastically independent of all other input variables of Ao. If Xo is 

weakly analytical on e with respect to Ck(ffi: X
[), then Ao is weakly analytical on e with 

A Jx[ 
respect to Ck(IRE ) and the domains of convergence of the Taylor series coincide. 

The following theorem shows that weak analyticity is preserved under finite multipli­
cation or addition. 
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~ JxJ 
Theorem 2 If A, B E IRE are stochastically independent and weakly analytical on 8, 
then A ® B and A EEl B are weakly analytical on 8. In particular, if, for Bo E 8, the Taylor 
series of A has domain of convergence D~ and the Taylor series of B Dfo, then the domain 
of convergence of the Taylor series of A EEl B, respectively A ® B, is D~ n Dfo· 

Proof: We only give proof of the first part of the theorem. The Leibniz rule of weak 
differentiation, Lemma 5, implies that all higher order weak derivatives of A ® B exist. Let 
fo(x) denote the v-density of Ao and ho(Y) an p,-density of Bo. The product of analytical 
mappings is analytical, therefore, fo(x)ho(Y) is analytical on 8. More precisely, let the 
Taylor series of fo(x) developed at Bo have domain of convergence Dto and the Taylor series 
of ho(x) developed at Bo domain of convergence D~o' Then fo(x)ho(x) can be developed in 

Taylor series at Bo with a domain of convergence which is at least Doo = Dto n D~o' 
To prove the theorem it suffices to show that for all Bo E 8 an interval Doo ' with 

Bo E Doo ' and a mapping M!?(x, y) exist such that for all B E Doo 

~JxJ ~JxJ 

V(x, y) E IRE X IRE 

with 

J Ilx ® yWMfa(x, y) v x p,(dx, dy) < 00. 

Let fPo and hfo denote the corresponding bounds of fo, respectively ho. By calculation, 

<Xl 1 1 I d
n 

d
k 

I 
= L L n! k! dBnfo(x) dBkho(y)(B - BotH 

m=Ok+n=m 

<Xl <Xl 1 1 I d
n 

II d
k 

I = L L n! k! dBnfo(x)(B - Bot dBkho(y)(B - BO)k 
n=O k=O 

= ffa (x) hfo (y) 
=: Mfa (x, y) . 
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Note that Ilx @yll ::; Ilxll + Ilyll , and so it follows that di 2: 0 for 0::; i ::; k exist such that 

J Ilx @ yllk Mfo(x, y) f-t x v(dx, dy) 

k 

= L di J Ilxllk-illyW ffo(x) h~(y) f-t x v(dx, dy) 
i=O 

k 

= ~di (J IIX!I'-if.';(X)!'(dX)) (J IIYlI'hf,(X)V(dX)) < 00, 

where the last equation follows from Fubini's theorem and the finiteness of the product 
form the weak analyticity of A and B, respectively. 0 

Theorem 2 provides the means to solve the fixed time horizon problem as was said in 
Section 2.3. 

A JxJ A J 
Corollary 2 If Ao(k) E IRf and Bo(k) E IRf (0::; k) are two i.i.d. sequences of random 
matrices which are weakly analytical on e, then 

xo(k + 1) = Ao(k) @ xo(k) EB Bo(k) , k 2: 0, 

with xo(O) = Xo is weakly analytical on e for all k. Moreover, E[g(xo(k + 1)] is analytical 
A J 

on e for all g E Cm(IRf)' 
If, for eo E e, Ao(O) has domain of convergence D:a and Bo(O) has domain of conver­

gence Dfo, then x( k + 1) has domain of convergence D:a n Dfo . 

Proof: Analyticity of xo(k + 1) follows from Theorem 2 via induction with respect to 
k; whereas analyticity of E[g(xo(k + 1)] is an immediate consequence of Lemma 6. 0 

Example 11 

1. Consider the situation of Example 7 (1). In accordance with Example 10 (1), the 
transition matrix Ao(k) is analytical on (0,00). Therefore, xo(k + 1), with xo(k + 1) = 

A J 
Ao(k) @ xo(k) for k 2: 0, is analytical on (0, (0) and for g E Cm(IRf) the term 
E[g(xo(k + 1))] can be developed at any eo E (0, (0) into a Taylor series which has 
Doo(b), with eo > b > 0, as domain of convergence. 

2. In the Bernoulli case, Ao(i) is weakly analytical on [0,1] for i E IN. Hence, 

is analytical on e for all g E Ck(ffi:) and all Xo E ffi:. The domain of convergence 
of the Taylor series is [0,1]. Since only the first-order weak derivative of Ao( i) zs 
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significant, the n-order weak derivative of the k-fold product of Ae( i) reads 

( 

k ) (n) 

'1Pa Ae(i) 

n! L (I, (0 Ae(k)) (I ,i) , (0 Ae(k)) (I 'i)) 

1=(10 , ... ,lk)E{O,l}n iEI(m+l,l) k=O k=O 

L;lk=n 

When we develop the Taylor series at zero, we obtain Ao(k) = D2 and, for example, 
the first-order derivative of g(®:=o Ao(k) 0 xo) is given by 

m 

= L 9 (D~-j 0 Dl ® D~ 0 xo) - (m + l)g (D;n+l ® xo) , 
j=O 

whereas the second-order derivative equals 

m 

-2m I: 9 (D~-(j+l) 0 Dl 0 D~ 0 Xo) 
j=O 

6 Analyticity of Waiting Times 

In this section we consider open (max,+ )-linear systems, like the one in Example 1; we 
use the notation introduced in Section 2.2. Put another way, we consider (max,+ )-linear 
recursions of the type 

x(k + 1) = A(k) 0 x(k) ffi B(k), k 2: 0, (20) 

A J A JxJ 
with x(O) = Xo E IR€ , {A(k) : k 2: O} a sequence of i.i.d. matrices over IR€ and 

{B(k) : k 2: O} a sequence of i.i.d . vectors over ffi:, d . Equation (4). Provided that the 
system is initially empty, the time the kth customer arriving at the network spends in the 
system until completion of service at station j is given by 
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where 
k 

T(k) = L 0"0 (i) , 
i=l 

denotes the kth arrival epoch and O"o(k) the kth interarrival time, cf. equations (6) and (5). 
We assume that {O"o(k) : k ;:::: I} is an i.i.d. sequence independent of everything else. In 
what follows we assume that the distribution of 0"0(1) depends on a parameter 0 E 8. 

Lemma 7 With the above definitions, if A(O) and B(O) are integrable and if 0"0(1) is weakly 

analytical on 8 with respect to C1(ffi:) , then E[W(k)] is analytical on 8. 

Proof: We only give a sketch of the proof. Weak analyticity of 0"0(1) on 8 implies 
analyticity of E[0"0(1)] on 8, see Lemma 6. The sum of analytical functions is analytical 
and we obtain that E[T(k)] is analytical on 8. 

Next we show that E[x(k)] is analytical on 8. Unfortunately, the matrix A(k) and the 
vector B(k) in (20) are , in general, stochastically dependent, see Example 1, which rules 
out applying Corollary 2 for showing that E[x(k)] is analytical on 8. However, we may 

include the source into the state space and obtain a new state vector i(k) E ffi:+1
, such 

that 
i(k + 1) = A(k) 0 i (k), k;:::: 0, 

and ij(k) = xj(k) for j = 1, ... ,J, which is the inverse transformation of the one from 
(2) to (4) in Example 1. The system time of the kth customer then reads 

Wj(k) = ij(k) - T(k) . 

The input of A(k) are the service times O"j(k) for 1 :::; j :::; J and the interarrival time 
0"0 (k). Since only 0"0 (k) depends on 0, Corollary 1 implies that A( k) is weakly analytical 
on 8 and, in accordance with Lemma 6, we obtain that E[i(k)] is analytical on 8. The 
difference of analytical functions is analytical, which concludes the proof. D 

Lemma 7 applies to general renewal processes and thereby extends the result in [3], 
where analyticity of E [W (k )] is shown under the assumption that the arrival process is a 
Poisson process with intensity O. More precisely, if the arrival process is a Poisson process 
with intensity 0, then Example 10 (1) establishes weak analyticity of the interarrival times 
on (0,00). Lemma 7 applies and we obtain the analyticity of E[W(k)] on (0,00), see Lemma 
6. We conclude with the remark that, for the case of exponentially distributed interarrival 
times with rate 0, Baccelli et al. show in [3] that - under additional conditions on the 
sequences {A(k) : k ;:::: O} and {B(k) : k ;:::: O} - an analytical continuation of E[W(k)] to 
the complex plane exists which is analytical in zero. 

Summary 

We introduced the concept of (weak) analyticity of random variables and gave Taylor series 
expansions of performance functions of finite products of i.i.d. matrices over the (max,+)­
semiring. In particular, the domain of convergence of the Taylor series of such a finite 
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product is at least as large as the domain of convergence of the matrix generating the 
i.i .d. sequence. Moreover, if the matrix depends on the parameter (with respect to which 
we want to develop the Taylor series) only via a single input variable, then the domain of 
convergence of the Taylor series of the finite product is at least as large as the domain of 
convergence of the Taylor series of this input variable. Hence, analyticity of functions of 
finite products of matrices over the (max,+) semi ring can be deduced from that of a single 
matrix or even of that of a single real-valued random variable. 

The extension of these results to the study of asymptotic behaviour of (max,+) systems 
is a topic of further research. 
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