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Abstract

A new simultaneous autofocus and two-fold astigmatism correction method is proposed for High
Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM). The
method makes use of a modification of an image variance, which has already been used before as
an image quality measure for different types of microscopy. In this paper we describe numerical
simulations based on a classical HAADF-STEM linear image formation model showing that
the modified variance reaches it’s maximum for Scherzer focus and zero astigmatism. In order
to find this maximum in a three-parameter space we employ the well-known Nelder-Mead
simplex optimization algorithm. The method is implemented and tested on a FEI Tecnai F20.
It successfully finds the optimal defocus and zero astigmatism with the time and accuracy,
compared with the human operator. The method is iterative, and finding the optimal defocus
and zero astigmatism requires obtaining typically 20-50 images.

1 Introduction

High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM)
is a powerful material science research tool. Nowadays HAADF-STEM still requires an expert
operator in order to obtain in-focus and astigmatism-free images manually. Both the defocus
and the two-fold astigmatism have to be adjusted regularly during the image obtaining pro-
cess. The possible reasons are for instance the instabilities of the electron microscope and the
magnetic nature of some samples. For the next HAADF-STEM instrument generations the
manual operation has to be automated. One of the reasons is that for some applications the
high level of repetition severely strains the required concentration. Therefore, a robust and
reliable simultaneous autofocus and two-fold astigmatism correction algorithm is a necessary
tool for HAADF-STEM automation.

The problem of autofocus and two-fold astigmatism correction has been addressed before
for different types of microscopy. The autofocus techniques were investigated for fluorescent
light microscopy [11] and non-fluorescence light microscopy [8]. For fluorescent light microscopy
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it has been shown experimentally [11] that out of a large number of image quality measures,
image variance was the better. However, the astigmatism is not considered in [11, 8], because
it is not important for light microscopy nowadays. Few methods for simultaneous autofocus
and astigmatism correction for scanning electron microscopy were proposed [6, 9]. One of
them is based on a Gaussian model for the point spread function [6], which is not accurate
enough for HAADF-STEM image formation description: Gaussian point spread function can
only describe defocus and astigmatism effects, while HAADF-STEM point spread function is
also influenced by spherical abberation. Variance-based, autocorrelation-based and Fourier
transform-based iterative autofocus techniques were implemented, tested and compared for
electron tomography [3], but astigmatism aberration was not considered. Defocus and two-
fold astigmatism in HAADF-STEM, as well as higher order aberrations, can be corrected
using Ronchigrams [12]. However, this method is not applicable for correction of defocus
and astigmatism for an arbitrary non-amorphous sample. Non-iterative methods based on
the image’s Fourier transform, where defocus and astigmatism are estimated from only two
HAADF-STEM images have been proposed [14, 1]. However, they as well as the method
described in [9], can hardly be used for situations, when the image Fourier Transform has a
limited frequency range.

For HAADF-STEM applications this paper introduces a new method for simultaneous auto-
focus and two-fold astigmatism correction. The method makes use of an image variance, which
has already been used before as an image quality measure for different types of microscopy
[6, 11, 8, 3]. We modify it in order to make it more robust against machine or sample in-
stabilities. Further, we describe numerical simulations based on a classical HAADF-STEM
linear image formation model [7, 5] extended with an extra astigmatism parameter. Numerical
simulations show that the modified variance reaches it’s maximum for Scherzer focus and zero
astigmatism for amorphous sample and ellipsoid particles for noise-free and noisy images. Also,
the behavior of a variance function further away from the ideal microscope parameters (like,
local minima and maxima in one-parameter space) coincides with the analytical observations
made before for scanning electron microscopy [6]. From the observations about the variance
maximum position and its behavior we draw the conclusions that it is important to look for
the maximum in three-parameter space at the same time. For this purpose we employ the
well-known Nelder-Mead Simplex optimization algorithm. Based thereon, we show numerically
and experimentally that the algorithm converges to the optimal image of a general sample in
typically 20-50 function evaluations (depending on a first given image and the algorithm’s input
parameters), where a function evaluation means obtaining a single image with the HAADF-
STEM.

Section 2 of this paper gives an overview of the classical linear model of image formation
in HAADF-STEM. This model is extended in a way that the problem of simultaneous autofo-
cus and astigmatism correction becomes a three parameter problem (one parameter is defocus
and the two other parameters are x-astigmatism and y-astigmatism), which corresponds to
the real-world situation. Section 3 describes the image variance and its modification. Section
4 describes the numerical experiment based on the linear image formation model from Sec-
tion 2 and realistic physical values. We show that the modified variance reaches it’s optimum
for the simulated images of amorphous sample and elliptic particles for ideal HAADF-STEM
parameters (Scherzer focus and zero astigmatism). Section 5 gives a brief overview of the
Nelder-Mead simplex method for the three-parameter optimization. Section 6 describes the
implemented automated application. The chosen experimental samples are difficult for analyz-
ing with Fourier-based methods. The variances of the sample’s images are optimized with the
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Nelder-Mead simplex method. It successfully finds the optimal defocus and zero astigmatism
with the time and accuracy, compared with the human operator.

2 HAADF-STEM linear image formation model

A detailed explanation of the HAADF-STEM image formation can be found in [7]. Here we
provide only a short overview. Let f(x,p) be a HAADF-STEM image, where x = (x, y) ∈ X
are the spatial coordinates and

pT = (d, Cb, Cc) (1)

is a vector of defocus and two-fold astigmatism HAADF-STEM parameters. We consider a
linear image formation model

f(x,p) = ψ0(x) ∗ h(x,p) + ε(x) (2)

where ∗ denotes convolution, ψ0(x) is the object function, ε(x) is noise, and h(x,p) is the
intensity of the probe function, such that∫∫

X

h(x,p)dx = 1. (3)

In the Fourier space (2) becomes

F (u,p) = Ψ0(u)H(u,p) + ε(u), (4)

where u = (u, v) are the frequency coordinates and F,Ψ0, H, ε are the Fourier transforms of
f, ψ0, h, ε.

The wave function that enters the specimen is given in frequency space by assuming a fully
coherent point source of electrons in the far field

G(u,p) = A(u)e−iχ(u,p). (5)

Here the aperture function A(u) is

A(u) =

{
1, if |u| ≤ q0

0, elswise,
(6)

and the wave aberration function χ(u,p) is defined as in [7]

χ(u,p) = πλ|u|2(d+
1

2
λ2|u|2Cs + Ca cos(2(φ− φa))), where φ = arctan(

v

u
), (7)

λ, d, Cs, Ca, φa represent the wavelength, the defocus, the spherical aberration, the two-fold
astigmatism amplitude and the two-fold astigmatism rotation angle respectively. The aperture
radius q0 in (6) controls the convergence semi angle α0 of the beam by

q0 =
α0

λ
. (8)

The point spread function is the intensity of the scanning probe, that is the inverse Fourier
transform of the wave function (5) [7]:

h(x,p) = C
∣∣F−1[G]

∣∣2, (9)
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where C is a normalization constant, such that (9) satisfies (3).
In (7) the problem of automated defocus and two-fold astigmatism adjustment is a two-

dimensional problem. We are adjusting two variables d and Ca in order to get the best image
quality. The other two-fold astigmatism variable in (7) φa represents the point spread function
rotation. It does not influence the image quality: When Ca is equal to 0, the φa value are
irrelevant. However, in real HAADF-STEM φa can not be adjusted. It is a constant value
φ = φa0 that depends on machine calibration, magnification and other parameters. The two-
fold astigmatism in HAADF-STEM is adjusted by changing the values of the x-stigmator and
the y-stigmator, based on the quadrupole lenses [13]. We modify (7) according to the real world
HAADF-STEM situation

χ(u,p) = πλ|u|2(d+
1

2
λ2|u|2Cs + Cb cos(2(φ− φa0)) + Cc sin(2(φ− φa0))). (10)

The equivalence of (7) and (10) is shown in Appendix.
The Scherzer conditions for incoherent image formation are defined in [7] as

q0 :=
1

λ
(
6λ

Cs
)

1
4 , (11)

d0 := −(1.5Csλ)1/2. (12)

Then the ideal machine parameters are

pT = pT0 := (d0, Cb0 , Cc0) = (d0, 0, 0). (13)

3 Variance as an image quality measure

We define the mean value of the image f(x,p) as

f̄(p) :=

∫∫
X
f(x,p)dx∫∫

X
dx

. (14)

The image variance is defined as

s̃[f(x,p)] :=

∫∫
X

∣∣f(x,p)− f̄(p)
∣∣2dx. (15)

The image variance has been used before as an image quality measure for autofocus for different
types of microscopy [11, 8, 3]. The use of variance is heuristic in nature. It is based on the
assumption that an in-focus image has higher contrast then a defocused one. For fluorescent
light microscopy it has been shown experimentally [11] that out of a large number of image
quality measures, image variance was the better.

It has been proved that the variance of an image reaches its maximum for the ideal defocus
and astigmatism parameter in scanning electron microscopy under the following assumptions
[6]: 1) Noise-free image formation, i.e. ε(x) = 0 in (2); 2) a normalized image, such that
f̄(p) = 0; 3) |Ψ0(u)|2 = const; 4) a gaussian shape of the point spread function. It was shown
that under the listed assumptions the variance (15) is inversely proportional to the Gaussian
widths a and b

s̃[f(x,p)] =
|Ψ0|2

4πab
, (16)
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therefore a minimum beam width corresponds to the maximal variance. The above assumptions
can not be accurately applicable to the HAADF-STEM images: real world images are always
noisy, the power spectrum of the object function is never a constant, and the Gaussian function
is inaccurate description of a HAADF-STEM point spread function, for instance, due to the
presence of spherical abberation. In the next section we will show numerically that the variance
reaches its maximum in three-parameter space (1) for ideal parameters (13) for simulated
HAADF-STEM images.

Due to the linear image formation model (2)-(3), the total image intensity of a particular
sample is expected to be constant independent on machine parameters p. However, due to
instabilities, such as sample charge due to the collected electrons, this is not always true, i.e.

f̄(p) 6= const ∀p. (17)

In order to avoid the instabilities to influence the variance as an image quality measure, we
introduce the modified image variance with the normalized image intensity:

s[f(x,p)] :=
1

(f̄p)2

∫∫
X

∣∣f(x,p)− f̄(p)
∣∣2dx. (18)

For the remainder of this paper we refer to (20) as variance. In HAADF-STEM we deal with
discrete images that can be represented by matrices

F(p) := ((fi,j(p))Ni=1)Mj=1. (19)

After the variance discretization, which is explained in Appendix, we obtain:

s[F] =
1

f̄ 2NM

∑
i,j

(fi,j − f̄)2. (20)

The definition (20) coincides with [11, 3] with the coefficient 1
f̄2 in front as the only difference,

which is our contribution.

4 Numerical experiments

4.1 Description

The goal of these numerical experiments is to show that for a given object function the image
variance (20) reaches it’s maximum in a three parameter space for Scherzer focus and zero
astigmatism (13). Figure 1 shows the modeled object functions of the amorphous sample
and ellipsoid particles samples and their Fourier transforms. We model the amorphous object
function as a random variable drawn from a Poisson distribution with expected value γ. Thus,
the probability, that the object pixel fi,j = k is

p(k, γ) :=
γke−γ

k!
. (21)

We set γ = 10, in order to obtain on average 10 counts per pixel, which is usually the case in
the real world situation. The amorphous object function Fourier transform has a circle shape,
while the ellipsoid particles object function Fourier transform has elliptic shape. This shape

5



2 nm 2 nm

Figure 1: On top: Object functions modeled as amorphous sample and ellipsoid particles
samples. On bottom: Their Fourier transforms.

Table 1: Parameters used for numerical calculations.
Cs E λ q0 d0 α0 ∆d ∆Cb ∆Cc

1.07 mm 300 keV 1.9× 10−2 nm 5.3 nm -55.2 nm 10.2 mrad 9.2 nm 9.2 nm 9.2 nm

is a result of the oval particles that are oriented along the x-axis. This type of sample could
cause difficulties for the Fourier transform-based correction algorithms, because in general we
expect elliptic shape of Fourier transform in the case of astigmatism. The size of both images
is 100× 100 pixels. We assume the pixel width and height for both samples

δ1 = 0.1 nm. (22)

We use the physical model described in Section 2 in order to get a simulated HAADF-STEM
experimental image. The convolution is carried out in Fourier space, see (4). The noise ε(x) in
(2) is simulated as a poisson distribution (21).

Table 1 describes the parameter values used in the computations. Realistic values for the
spherical aberration Cs and the electron voltage E are taken. The wavelength λ is computed
through the electron voltage E [5]. Scherzer values α0, q0, d0 are computed from (8),(11) and
(12). The tolerable defocus error is defined as [3]

de =

√
(
w

2
)2 + (

t

2
)2,

where t is the specimen thickness and w is the depth of field defined in [2] as

w :=
λ

α2
0

.

Table 2: Parameter range used for numerical calculations.
Nd NCa NCb

dmin dmax Cbmin
Cbmax Ccmin

Ccmax

40 steps 20 steps 20 steps -239.2 nm +128.8 nm -92 nm +92 nm -92 nm 92 nm
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We take the defocus step ∆d as the lower bound set by the depth of field

∆d =
λ

4α2
0

. (23)

Parameters Cb and Cc in (10) indicate the distance between the two focal points in the case of
astigmatism. Thus, we can set the astigmatism tolerance equal to the defocus tolerance:

∆Cb = ∆Cc = ∆d. (24)

We vary the parameters d, Cb and Cc in order to show numerically that the variance reaches its
maxima for ideal parameters p0. The numerical computations are performed for Nd defocus d
steps of around the Scherzer focus d0, NCb

steps of Cb around Cb0 and NCc steps of Cc around
Cc0 , i.e. the parameter domain Ω is

Ω = [dmin, dmax]× [Cbmin
, Cbmax ]× [Ccmin

, Ccmax ], where

dmin := d0 −
Nd

2
∆d, dmax := d0 +

Nd

2
∆d,

Cbmin
:= Cb0 −

NCb

2
∆Cb, Cbmax := Cb0 +

NCb

2
∆Cb,

Ccmin
:= Cc0 −

NCc

2
∆Cc, Ccmax := Cc0 +

NCc

2
∆Cc.

The actual used values are shown in Table 2.

4.2 Results of the numerical experiment

In total four numerical experiments, based on amorphous sample without noise, amorphous
sample with noise, ellipsoid particles without noise, ellipsoid particles with noise, were car-
ried out. We have shown numerically that the variance function reaches it’s maximum in
3-parameter space (1) for ideal microscope parameters (13) in all the four cases.

Figure 2 shows the results of numerical computations for the pixel width (22) for simulated
ellipsoid particles sample without noise and with high level of noise (signal-to-noise ratio is
equal to 3). The figure shows the variance functions in the space of parameters d and Cb for
a fixed Cc = Cc0 . We can clearly see that when noise is added to the images, the variance
function becomes noisy as well: It has a lot of local optima, especially further away from the
main peak. A similar shape of the variance function was obtained for the amorphous sample.

It is important to note that the variance has a local minimum at Scherzer focus for constant
astigmatism value of Cb � Cb0 . We can see this phenomenon in Figure 3. For Cb = 0 nm,
variance has its maximum at Scherzer focus. However, for Cb = −92 nm variance has a local
minimum close to Scherzer focus and two maxima on the left and the right. This local minimum
is not a minimum any more, when we look at the problem in two-parameter space, like in Figure
2, or three-parameter space. This also corresponds to the analytical observations made before
in [6]. The positions of the two local maxima are not exactly symmetric. Their nature has
to deal with the nature of the object function geometry. Similar observations were made by
examining the shapes of the variance in two dimensions far away from the ideal parameters:
the function has local optima, which are not optima any more in three-parameter space. From
the facts that the variance reaches its maximum at Scherzer focus and zero astigmatism, and
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Figure 2: From left to right, from top to bottom: The simulated image of ellipsoid particles
sample for Scherzer focus and zero astigmatism, the same image influenced by noise, variance
of simulated images of ellipsoid particles sample without noise, variance of simulated images of
ellipsoid particles sample with noise.

from the fact of existence of the local maxima with unpredictable behavior in lower dimensions
space we draw the conclusion that it is important to optimize over the three parameters (1) at
the same time.

It is also important for practical reasons to optimize in a reasonable amount of function
evaluations, e.g. the sample can be destroyed by the electron beam. Also, obtaining the
necessary number of images is the main time limiting factor for the algorithm. It is important
that we do not have any analytical derivative information is available. We could compute the
derivatives from finite differences, but this would dramatically increase the amount of function
evaluations. Thus, we will use a derivative free optimization method described in the next
section.
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Figure 3: Ellipsoid particles sample variance for different astigmatism values. For Cb = 0 nm,
variance has its maximum at Scherzer focus. However, for Cb = −92 nm variance has a local
minimum for Scherzer focus and two maxima on the left and the right.
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Table 3: HAADF-STEM parameters during the experiment.
Carbon cross grating specimen Gold-particle

Electron voltage 200 keV 200 keV
Pixel size [5 . . . 20] nm [0.5 . . . 2] nm

Dwell time [1 . . . 71.7] µs [5 . . . 50] µs
Camera length 200 mm 200 mm

Spot size 7 7
Image size 512x512 px 512x512 px

Image pixel depth 16 bit 16 bit

5 The Nelder-Mead simplex method

The Nelder-Mead simplex method is designed to find a local optimum of a function. It makes
no assumptions about the shape of the function and does not use derivative information. A
detailed description of the Nelder-Mead simplex method for n dimensions can be found in
[10, 4]. In this paper we just give a short overview.

The simplex is a geometrical object in n dimensions that consists of n+1 points. In the case
of defocus and two-fold astigmatism correction n = 3, and the simplex is a tetrahedron. The
Nelder-Mead simplex method must be started with n + 1 points, defining the initial simplex.
Let the initial value of the HAADF-STEM defocus and astigmatism parameters be (d0, C0

b , C
0
c ).

Then the other three points of the initial simplex are (d0 + ∆d0, C0
b , C

0
c ), (d0, C0

b + ∆C0
b , C

0
c ),

(d0, C0
b , C

0
c + ∆C0

c ), where
∆pT := (∆d0,∆C0

b ,∆C
0
c ) (25)

is the input parameter for the optimization.
On every iteration the Nelder-Mead simplex method evaluates the function for a finite

number of points and replaces the point corresponding to the lowest variance in the simplex,
with a new point, corresponding to a higher variance. The algorithm stops, according to the
input tolerance parameters

stol, ptol ∈ R, when (26)

||s(p(1))− s(p(2))|| < stol, and ||p(1) − p(2)|| < ptol,

where p(1) and p(2) are the two points of the simplex, corresponding to the highest variance. We
have to keep in mind that the defocus and stigmator values in HAADF-STEM have different
scalings. Thus, the parameter tolerance should be separated for each of the parameters and
extended to ptol ∈ R3.

The Nelder-Mead simplex method was successfully applied to the simulated images, de-
scribed in the previous section. The parameters ptol ∈ R3 and ∆p were choosen according
to the defocus step (23) and the stigmatic steps (24). In the next section we describe the
application of the Nelder-Mead simplex method to the variance of real images.

6 Application

The physical experiment was performed on a FEI Tecnai F20 STEM electron microscope
(Cs = 1.3mm). Our Java-based experimental platform (called EXPLA) consists of a core
that connects to the TEMScripting interface for FEI microscope control, and an application

9



Function evaluation 1 Function evaluation 18 Function evaluation 38

Figure 4: Experimental carbon cross grating images and the absolute values of their Fourier
transforms before, during and after correction.

Table 4: Experimental values for carbon cross grating images.
Function evaluation number 1 10 18 38

Iteration number 1 5 9 20
Variance -0.0131 -0.0412 -0.0410 -0.0465

Defocus [nm] 2190 -32.2222 -133.0453 138.461
X-stigmator [a.u.] -0.00308 0.00047556 0.00045909 -0.010065
Y-Stigmator [a.u.] -0.00499 0.0021211 -0.00087477 0.0039236

control framework. EXPLA also allows efficient and flexible computation and control from a
Matlab environment. For our experiment the variance and the Nelder-Mead Simplex method
was implemented in Matlab V7.5 (R2007b). The Nelder-Mead Simplex implementation is based
on the code available in the Matlab Optimization Toolbox V3.1.2.

Further we describe experimental results for two samples: carbon cross grating sample and
gold-particle sample.

6.1 Carbon cross grating specimen

The first experiment was performed on the carbon cross grating sample. The first column of
Table 3 shows the HAADF-STEM parameters during the experiment. Figure 4 shows images of
this sample on different optimization iterations and the logarithmically scaled absolute values of
their Fourier transforms. The image’s Fourier transforms are influenced by the sample’s geom-
etry, which could cause difficulty for non-iterative autofocus and 2-fold astigmatism correction
procedures based on the image Fourier transform analysis. We can see, that the frequency
values in the Fourier transform on 38th evaluation have increased, comparing to 1st and 18th
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Figure 5: Modified variance, defocus, x-stigmator and y-stigmator values plotted versus function
evaluation and optimization iteration numbers.

evaluations, which also indicates the progress of optimization.
Further an example of one optimization is given in details. The initial microscope values

are shown in Table 4. The initial step to create the initial simplex ∆p (25) was chosen 500 nm
for defocus and 0.004 for both x-stigmator and y-stigmator. The total optimization procedure
took 20 iterations with 38 function evaluations in total (from 1 to 4 function evaluations for
each iteration). Every function evaluation corresponds to one image recording.

Figure 4 shows the three images that correspond to the 1st, 18th and 38th function eval-
uation. The image corresponding to the 18th function evaluation shows sufficient quality im-
provement compared to the 1st function evaluation. Also, we do not observe a large difference
between the 18th and 38th function evaluation. Only if we zoom in and observe the details
(Figure 6), we will see a difference in contrast and quality.

Figure 5 plots the variance, defocus, x-stigmator and y-stigmator values versus function
evaluation and iteration number. The 1st, 10th and 18th function evaluations are indicated
with a cross in the plots of Figure 5. The experimental values for these evaluations are shown
in Table 4. For every iteration the highest variance found thus far is chosen to plot. Although,
the maximum is achieved at 38th function evaluation, we can see from the plots in Figure 5
that the variance is stable and close to maximum already from the 18th function evaluation
in the 9th iteration. Also, the first sufficient quality image was obtained already at the 10th
function evaluation (5th iteration).

The sum processor time required for all 38 images for variance computations and estimation
of the next step of the Nelder-Mead is less then one second on a standard PC 2.2 GHz. Thus,
the main time limitation factor of the algorithm is the time necessary for image recording and
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Function evaluation 18 Function evaluation 38

Figure 6: Only fine details of zoomed-in images show the quality difference between the 18th
and the 38th function evaluations.

Function evaluation 1 Function evaluation 47

Figure 7: Experimental carbon cross grating HAADF-STEM images and the absolute values
of their Fourier transforms before and after correction. The first function evaluation image has
a high level of astigmatism.
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Function evaluation 1 Function evaluation 6 Function evaluation 17 Function evaluation 31

Figure 8: Experimental gold particle HAADF-STEM images and the absolute values of their
Fourier transforms before, during and after correction.

image transfer to the remote computer. The total time for all 38 function evaluation is 30
seconds. This time could be decreased down to approximately 15 seconds if the algorithm
will be implemented directly on the microscope. We have to take into account that the image
recording time depends on the microscope dwell time and the image dimensions in pixels. By
changing these parameters, the total time could be decreased even further.

A few more experiments for different magnifications, dwell time, initial microscopic param-
eters and initial optimization parameters were performed on the carbon cross gratingsample.
In each of the cases the algorithm converged in 30-50 function evaluations. However, images
of sufficient quality were usually obtained earlier, in 20-30 function evaluations. In order to
decrease the amount of function evaluations the accuracy of the algorithm could be adjusted
with the tolerance parameters (26). High levels of astigmatism in the beginning require more
iterations. Figure 7 shows the first image from a run with high initial astigmatism, which is
clearly seen from the stretched Fourier transform. It took 47 function evaluations until the
image was completely corrected.

6.2 Gold-particle sample

The algorithm was tested on another sample as well: A gold particle with a radius of about
20 nanometers. The second column of Table 3 shows the parameters during the experiment.
Figure 8 shows the images of four Nelder-Mead function evaluations from one of optimization
runs. The Fourier transforms of the images have a low amount of frequencies. This type of
sample would be difficult to analyze with a Fourier transform-based technique, because it is
difficult to gain information from such a Fourier transform. The algorithm converged in 31
function evaluations. The image quality on the last function evaluation is typically equal to
the image quality obtained by a human operator.

The dwell time is equal to 5 µs. We can clearly see the noise in the images, especially during
the first evaluation. The signal-to-noise ration here is estimated to be 10.
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7 Discussion

A new simultaneous defocus and two-fold astigmatism correction method for HAADF-STEM
is proposed. Though the method is automated, it requires input parameters, such as the
tolerance, used as a stopping criterion and the size of the initial simplex. These parameters
can be the same for similar samples and microscope settings. It means that the method can
already be used for automated applications from different fields, where the input parameters
can be usually easily predicted. But in order to automate the method completely the choice of
the input parameters has to be as well automated.

The working time of the method is only limited by the time required for acquiring of a
single image. The computations of variance and the Nelder-Mead do not cost time. Because
the method is iterative, and requires about 30-50 images, in general, it will take more time
then the alternative Fourier transform-based methods proposed before. However, it has one
important advantage: it works for the cases, when the images of a sample do not have a
sufficient amount of frequencies to be analyzed by the Fourier transform-based methods.

At the moment the proposed method takes time comparable to the time required by a
human operator. Further, the working time of the method can be decreased by decreasing
the input image size, subsampling the input image, decreasing the dwell time or choosing for a
faster optimization derivative-free technique, alternative to the Nelder-Mead method. However,
we have to take into account that decreasing of the dwell time will increase the level of noise
in the image.

The real-world experiments have shown that the method is robust to a reasonable amount
of noise (signal-to-noise ratio equal 10). The numerical computations have shown that the
variance function can have local optima further away from the ideal microscope parameters
due to the lower levels of noise (signal-to-noise ratio equal 2). This means that if the initial
microscopic defocus and astigmatism parameters are far away from ideal, and the size of the
initial simplex is not chosen properly (it is too small compared to the broadness of a variance
peak), and in the same time the images are too noisy, the method may fail. In general case,
when the signal-to-noise ratio is too low, one can use the noise reduction techniques, such as
median filtering, pixel averaging or others.

Our numerical computations and real-world experiments have shown that the method is
working well for the use on HAADF-STEM. Furthermore, it is based on assumptions, which
are general enough that it could be used for other types of microscopy (such as scanning electron
microscopy, etc.).

8 Conclusion

A new method for automated defocus and astigmatism correction in HAADF-STEM was dis-
cussed. The method uses a modification of image variance, which was already used before as an
image quality measure for different types of microscopy. Numerical computations based on a
HAAF-STEM classical image formation model extended with an extra astigmatism parameter
were performed. The numerical computations have shown that the variance reaches it’s maxi-
mum in a three-parameter space (defocus and two-fold astigmatism) for Scherzer focus and zero
astigmatism for amorphous sample and ellipsoid particles sample. Also, the computations have
shown that the variance has local optima in one-parameter and two-parameter spaces, which
are not the optima any more in three-parameter space. From the observations about position
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of the variance maximum and the presence of local optima in lower then three dimensions, we
have drawn the conclusion that it is important to optimize variance in the three-parameter
space at the same time. For this purpose we are using the well-known Nelder-Mead simplex
optimization algorithm is used. It proved to work both for simulated images and in a real-world
application. The proposed defocus and astigmatism correction method also works for the cases,
when alternative Fourier transform-based methods could fail. The method can be used for the
real-world HAADF-STEM applications already now. However, it has been discussed that the
method’s performance and robustness to noise could be still improved.

Appendix

Modified abberation function

We want to show that the aberration function (7) and the modified aberration function (10)
are equivalent. We will use the trigonometric sum formulas

cos(x+ y) = cos x cos y − sinx sin y, (27)

sin(x+ y) = sin x cos y + cosx sin y. (28)

We will examine only the parts of the functions (7) and (10) that are different, i.e. the last
terms that deal with two-fold astigmatism. We introduce two new functions

g1(φ) = Ca cos(2(φ− φa)), (29)

g2(φ) = Cb cos(2(φ− φa0)) + Cc sin(2(φ− φa0)). (30)

Equations (29) and (30) have to be equal for every φ. Then the functions g1(φ) and g2(φ) are
equivalent if and only if

1. ∀Ca, φa, φa0 ∈ R ∃Cb, Cc, such that g2(φ) ≡ g1(φ),

2. ∀Cb, Cc, φa0 ∈ R ∃Ca, φa, such that g1(φ) ≡ g2(φ).

We rewrite (29) and (30) using the trigonometric sum (27-28)

g1(φ) = (Ca cos 2φa) cos 2φ+ (Ca sin 2φa) sin 2φ, (31)

g2(φ) = (Cb cos 2φa0 − Cc sin 2φa0) cos 2φ+ (Cb sin 2φa0 + Cc cos 2φa0) sin 2φ. (32)

The functions (31) and (32) are equivalent if and only if{
Ca cos 2φa = Cb cos 2φa0 − Cc sin 2φa0

Ca sin 2φa = Cb sin 2φa0 + Cc cos 2φa0

, (33)

If we sum the squares of the both equations (33), we get

C2
a = (Cb cos 2φa0 − Cc sin 2φa0)

2 + (Cb sin 2φa0 + Cc cos 2φa0)
2, or (34)

C2
a = C2

b + C2
c . (35)
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The angle φa can then be found according to the second equation in (33)

φa =

{
sign(Ca) arcsin(Cb sin 2φa0 + Cc cos 2φa0)/Ca, if Ca 6= 0
R, if Ca = 0

. (36)

If we multiply the first equation in (33) with cos y, the second with sin y, sum the results, and
apply further the trigonometric sum (27), we achieve

Cb = Ca cos(φa − φa0). (37)

If we multiply the first equation in (33) with sin y, the second equation in (33) we multiply
with cos y, substitute the results, and apply further the trigonometric sum 28, we achieve

Cc = Ca sin(φa − φa0). (38)

We have shown, that for all Ca, φa, φa0 , such Cb, Cc can be found with the formulas (37),
(38), that g2(φ) ≡ g1(φ). Also, for all Cb, Cc, φa0 , such Ca, φa can be found with the formulas
(35), (36), that g2(φ) ≡ g1(φ). It means that the functions (29) and (30) are equivalent, and
as a consequence the aberration function (7) and the modified aberration function (10) are
equivalent.

Variance discretization

Image domain is given as
X = [xmin, xmax]× [ymin, ymax]

We define the mean value of the image fp(x) as

f̄(p) :=

∫∫
X
f(x,p)dx∫∫

X
dx

. (39)

We introduce the modified image variance with the normalized image intensity

s[f(x,p)] :=
1

(f̄p)2

∫∫
X

∣∣f(x,p)− f̄(p)
∣∣2dx. (40)

We consider pixel discretization of the given domain

x0 = xmin < x1 < . . . < xn = xmax, δx := xi − xi−1 =
xmax − xmin

N
, (41)

y0 = ymin < y1 < . . . < ym = ymax, δy := yj − yj−1 =
ymax − ymin

M
, and (42)

In (41) and (42) δx and δy are the sizes of a single pixel in the image, or the pixel widths. In
the real world applications the pixel widths are usually equal

δ = δx = δy.

We define
fi,j(p) := f((xi, yj),p), i ∈ {0, . . . , N}, j ∈ {0, . . . ,M}. (43)
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In HAADF-STEM we deal with discrete images that can be represented by matrices

F(p) := ((fi,j(p))Ni=1)Mj=1. (44)

We approximate (39) with the Riemann sum

f̄
.
=

∑
i,j fi,jδxδy∑
i,j δxδy

=
δxδy

∑
i,j fi,j

δxδyNM
or

f̄ :=

∑
i,j fi,j

NM
. (45)

We approximate (40) with the Riemann sum

s[f(x,p)]
.
=

1

f̄

∑
i,j

δxδy
∣∣fi,j − f̄ ∣∣2 =

δxδy
f̄

∑
i,j

∣∣fi,j − f̄ ∣∣2 =

(xmax − xmin)(ymax − ymin)

f̄NM

∑
i,j

∣∣fi,j − f̄ ∣∣2. (46)

If we set (xmax − xmin)(ymax − ymin) = 1 in (46), we obtain (20)

s[F] =
1

f̄ 2NM

∑
i,j

(fi,j − f̄)2.
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