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Desynchronisability of (partial) closed loop systems

Harsh Beohar Pieter Cuijpers∗

Abstract

The task of implementing a supervisory controller is non-trivial, even though there
are different theories that allow automatic synthesis of these controllers in the form of
automata. One of the reasons for this discord is due to the asynchronous interaction
between a plant and its controller in implementations, whereas the existing supervisory
control theories assume synchronous interaction. As a consequence the implementation
suffers from the so-called inexact synchronisation problem. In this paper we address the
issue of inexact synchronisation in a process algebraic setting, by solving a more general
problem of refinement. We construct an asynchronous closed loop system by introducing
a communication medium in a given synchronous closed loop system. Our goal is to
find sufficient conditions under which a synchronous closed loop system is branching
bisimilar to its corresponding asynchronous closed loop system. Furthermore, we extend
our results to a class of synchronous closed loop systems called partial synchronous closed
loop systems, whose alphabet contains external actions of both the plant and its controller
that do not result in interaction.

1 Introduction

The task of implementing a supervisory controller is non-trivial, even though there are differ-
ent theories that allow automatic synthesis of these controllers in the form of automata. One
of the reasons for this discord is due to the asynchronous interaction between a plant and its
controller in implementations, whereas the existing supervisory control theories assume syn-
chronous interaction. We elaborate on this mismatch by first introducing some terminology
that is often used in supervisory control theory [15].

Supervisory control theory provides an automatic synthesis of a supervisor that controls
a plant in such a way that a corresponding requirement (legal behaviour) is achieved. In
supervisory control theory terminology,

• the model that is to be controlled is known as the plant,

• the model that specifies the requirement is known as the specification,

• the model that forces the plant to meet the specification by interacting with it is known
as the supervisor or the controller.

• the interaction between a plant and its supervisor is known as closed-loop behavior.
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The closed loop behaviour in supervisory control theory is realized by synchronous parallel
composition. Informally, it allows a plant and a supervisor to synchronise on common events
while other events can happen independently.

One of the main drawbacks while implementing the interaction between a plant and its su-
pervisor, synthesised by supervisory control theory, is inexact synchronization [8]. In practical
industrial applications, the interaction between a plant and its supervisor is not synchronous
but rather asynchronous. Due to the synchronous parallel composition used in supervisory
control theory, the interaction between a plant and its supervisor is strict. By strict, we mean
that either the plant or the supervisor has to wait for the other party while synchronising.
To overcome this problem we study asynchronous communication between a plant and its
supervisor where communications are delayed in buffers.

Balemi was the first to consider the inexact synchronisation problem, and the solutions
given in his PhD thesis [3] were in the domain of automata theory. In [3], an input-output
interpretation was given between a plant and its supervisor and a special delay operator
was introduced to model the delay in communication between the plant and the supervisor.
Moreover, for this setup the existence of a supervisor in the presence of delays was also shown
in [3]. It was required that the output actions from a plant can occur asynchronously, while
the output actions from a supervisor must occur synchronously [20]. In [20] this requirement
was relaxed. Furthermore, necessary and sufficient conditions were also provided for the
existence of a controller under bounded delay between a plant and its supervisor.

The solutions provided in [3, 20] construct a new supervisor under the presence of bounded
delay, which is a computationally expensive procedure. To circumvent this, we present suf-
ficient conditions on a synchronous closed loop system under which the asynchronous closed
loop system constructed from it is a refinement of the given synchronous closed loop system.
Moreover, the technique developed in this paper is independent of the size of the buffers used.
However, we do not analyse the computational complexities associated with the sufficient
conditions presented in this paper.

In this paper, we reformulate the inexact synchronisation problem as a problem of refine-
ment in the process algebra TCP [2]. The synchronous closed loop system can be considered
to be a specification with the asynchronous closed loop system as its implementation. If the
given synchronous closed loop system and its corresponding asynchronous closed loop sys-
tem are branching bisimilar [17], then the asynchronous closed loop system is said to be a
refinement of its corresponding synchronous closed loop system. Note that we do not com-
pute an additional supervisor under the presence of delays, but we assume a given plant and
its supervisor. Thus, we solve a refinement problem instead of solving a control synthesis
problem.

In the past, the idea of solving a refinement problem was studied [9, 11, 12], but different
setups compared to the current paper were used in these studies. These studies were motivated
by the so-called “Foam-rubber wrapper” principle [16], borrowed from the field of delay
insensitive circuits. Mathematically, it states that “a process and the same process connected
with buffers are equivalent”. In [9], the foam-rubber wrapper principle was also studied in
the context of the parallel composition and it was shown that an extra condition is required
to preserve this principle. In brief, we have a different architecture for the asynchronous
closed loop system in this paper and we study the components in the asynchronous closed
loop system conjointly, in order to capture desynchronisability.

We extend our previous result [6] to a class of synchronous closed loop systems called
partial synchronous closed loop systems, whose alphabet contains external actions of both
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Figure 1: Asynchronous closed loop system in practice.

the plant and its supervisor that do not result in interaction. This makes it possible to
desynchronise a synchronous closed loop system present in a decentralised or hierarchical
architecture [19] by decomposing the given synchronous closed loop system into a number of
partial synchronous closed loop systems and by verifying each of the individual partial closed
loop systems. However, more research is required to achieve this compositional result for a
desynchronisable closed loop system.

1.1 Architecture

This paper and the companion paper [6] are the results of the pre-study carried out in [7],
where four construction methods are proposed to construct an asynchronous closed loop sys-
tem from its corresponding synchronous one. In this subsection, we introduce the architecture
of an asynchronous closed loop system, discuss the reasonability of using a bag as a buffer
and describe one of the abstraction schemes that will be used throughout this paper. We
elucidate on these points in the following paragraphs.

An asynchronous closed loop system can be constructed by introducing a buffer between a
plant and its supervisor in order to decouple the synchronisation of events between the two. In
practice, the buffering mechanism is realised by the interactions of different layers (also known
as protocol stack) as shown in Figure 1. In theory, various authors [9, 11, 13] have abstracted
from the interaction of different layers by using data structures based on a particular level of
abstraction. For example, to model delay insensitive (DI) circuits, which are at a lower level
of abstraction (physical layer), wires are used as a buffering mechanism [12]. On the other
hand, to model data flow networks which are at a higher level of abstraction (in comparison
to DI circuits), queues are used as a buffering mechanism [11]. In this paper, we are interested
in studying the asynchronous interaction in a closed loop system at an even higher level of
abstraction by having a unique queue for every message. Thus, a queue stores only one type
of unique message and all queues are allowed to run concurrently without interacting with
one another. Such interleaving queues are equivalent to a bag modulo strong bisimulation.
Hence, we use a bag as the buffering mechanism in this paper.

It is obvious that when introducing the bag as a buffer, the asynchronous closed loop
system contains interactions that are not present in the synchronous closed loop system.
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(a) Construction method M1. (b) Construction method M2.

(c) Construction method M3. (d) Construction method M4.

Figure 2: Different ways to construct an asynchronous closed loop system.

However, to compare these two closed loop systems by a branching bisimulation relation
[17], it is necessary to hide some interactions or to define a suitable abstraction scheme. In
principle, a synchronous closed loop system can be converted into an asynchronous closed
loop system by introducing bags with the following abstraction schemes:

M1. by introducing bags between a plant and its supervisor such that the interaction between
plant and bag is hidden (see Figure 2(a)).

M2. by introducing bags between a plant and its supervisor such that the interaction between
supervisor and bag is hidden (see Figure 2(b)).

M3. by introducing bags between a plant and its supervisor such that the communication
among the input actions of both plant and supervisor with bags are hidden (see Fig-
ure 2(c)).

M4. by introducing bags between a plant and its supervisor such that the communication
among the output actions of both plant and supervisor with bags are hidden (see Fig-
ure 2(d)).

In Figure 2, thick lines are used to show the visible interaction and thin lines are used to
show the invisible interaction. The notation !a means ‘send action a’ and ?a means ‘receive
action a’. In this paper, we develop the theory for the construction method M1 (see Section 4
for the rationale behind this choice) and leave other construction methods as open for future
study. Moreover, the techniques presented in this paper are restricted to reactive systems (so,
we do not consider termination).
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1.2 Outline

The remainder of this paper is organized as follows. In Section 2, we start our exposition by
defining the overall background required for this paper. Section 3 provides a brief introduc-
tion to supervisory control theory with respect to our setup. In Section 4, the construction
method M1 is defined formally with its abstraction scheme. In Section 5, we give the formal
definition of a desynchronisable closed loop system with the conditions that are sufficient for
desynchronisability. In Section 6, we extend our results for partial synchronous closed loop
system. In Section 7 we discuss in the context of synchronous closed loop systems whether
some of the sufficient conditions can be any further weakened. Finally, the conclusions are
presented in Section 8 with some directions for future research.

2 Background

In this section, we define the basic notations and definitions that will be used throughout this
paper. Let Act be a set of action names. We use the symbols a, b, c, . . . to range over the set
Act . Then we define the following actions for an action label a ∈ Act ,

• !a: send action labeled a.

• ?a: receive action labeled a.

• ‽a: communication of action labeled a.

Let A denote the set of all actions label defined in the following way

A = {!a, ?a, ‽a}a∈Act .

The variables x, y, z, . . . are used to denote elements from set A when the information about
the type of action is irrelevant. The set of all process terms (denoted by P) is then defined by
the grammar in Table 1. The constant 0 is a process term that cannot perform any action
is called an inaction process term. A unary operator x. for each action x ∈ A is introduced
in the TCP syntax, denoting an action prefix. Intuitively, the process term x.p performs
the action x and then behaves as the process term p. The binary operator + denotes the
alternative composition or choice between any two process terms. The encapsulation operator
∂H( ), blocks execution of actions from H while enduring the execution of other actions from
the set A \H. The abstraction operator τI( ) renames the actions in the set I to the silent
step τ , and leaves other actions unchanged. Note that the silent step τ 6∈ A.

In the remainder of this paper, we assume that the symbols P,R, S, p, p′, s, s′ . . . range
over the set P. We fix the capital letters P,R, S for process terms associated with supervisory
control theory. Note that we also use the renaming operator ρ from TCP algebra for technical
reasons, but not for modeling purposes. The empty process 1 is not defined because we are
only interested in modeling reactive systems. The notation R denotes a recursion definition
by a set of pairs {X0 = t0, . . . , Xm = tm} where Xi denotes a recursion variable and ti the
process term defining it. The parallel composition operator is parameterized with a partial
communication function γ : A×A→ A such that

∀a ∈ Act .[γ(?a, !a) = γ(!a, ?a) = ‽a] .

The semantic domain of the process terms is a transition system (see [2] for details), which
is achieved by the so-called SOS rules [14].
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P ::= 0 inaction
| x.P action prefix, where x ∈ A ∪ {τ}
| P + P alternative composition
| P ‖γ P parallel composition

| ∂H(P) action encapsulation, where H ⊆ A
| τI(P) abstraction (hiding of actions), where I ⊆ A
| R recursive definition

Table 1: Syntax of TCP [2].

x.p
x−→ p

(1)
p

x−→ p′

p+ q
x−→ p′

q + p
x−→ p′

(2)

p
x−→ p′

p ‖γ q
x−→ p′ ‖γ q

q ‖γ p
x−→ q ‖γ p

′

(3)
p

x−→ p′, q
x′−→ q′, γ(x, x′) = x′′

p ‖γ q
x′′−→ p′ ‖γ q

′
(4)

p
x−→ p′, x 6∈ H

∂H(p)
x−→ ∂H(p′)

(5)
p

x−→ p′, x 6∈ I
τI(p)

x−→ τI(p)
(6)

p
x−→ p′, x ∈ I

τI(p)
τ−→ τI(p)

(7)

t0
x−→ p,X0 = t0

X0
x−→ p

(8)
p

x−→ p′, f : A→ A

ρf (p)
f(x)−−→ ρf (p′)

(9)

Table 2: Operational semantics for a fragment of TCP, where x ∈ A ∪ {τ}.

Definition 1. A transition system over a set of actions A is a set Q of states, equipped with
a transition relation →⊆ Q× (A ∪ {τ})×Q. The action τ 6∈ A denotes the invisible action.
In the semantics of TCP, Q is usually taken to be the set of process terms, i.e., Q = P, and
the initial state of a process is defined as the process term itself.

For the sake of completeness, we give the SOS rules of the operators used here in the
Table 2.

Definition 2. The alphabet of a process term p, written as α(p), is the set of atomic actions
that it can perform. It is defined in the following way

α(p) = {x | p x−→ p′} ∪
⋃
p
x−→p′

α(p′),

α(p) = ∅ if @p′, x.[p x−→ p′].

As mentioned in the introduction, we use branching bisimulation to relate a synchronous
closed loop system with its corresponding asynchronous closed loop system in which τ actions

6



are present. The presence of τ actions in an asynchronous closed loop system will become
evident in Section 4. We write the transitive closure of the transition relation → as �. The
notation q

w
−−−� q′ for some w ∈ A∗ is inductively defined in the following way,

q
w
−−−� q′ , q

ε−→ q if w = ε,

q
x.w
−−−−� q′ , ∃q′′.[q x−→ q′′ ∧ q′′

w
−−−� q′].

The symbol ≡ is used to denote syntactical equivalence between process terms. The shorthand

notation q
τ∗

−−−� q′ is defined as iff there is n ≥ 0 and q0, . . . , qn ∈ Q such that q ≡ q0
τ−→

. . .
τ−→ qn ≡ q′.

Definition 3. A binary relation Φ ⊆ Q×Q is called a branching bisimulation relation [2, 17]
iff:

• ∀q, q1, q′, x ∈ A.
[
(q, q′) ∈ Φ∧q x−→ q1 ⇒ ∃q′1, q′2.

[
q′

τ∗

−−−� q′1
x−→ q′2∧(q, q′1) ∈ Φ∧(q1, q

′
2) ∈

Φ
]]

.

• ∀q, q1, q′.
[
(q, q′) ∈ Φ ∧ q τ−→ q1 ⇒ (q1, q

′) ∈ Φ ∨ ∃q′1, q′2.
[
q′

τ∗

−−−� q′1
τ−→ q′2 ∧ (q, q′1) ∈

Φ ∧ (q1, q
′
2) ∈ Φ

]]
.

• ∀q, q′, q′1, x ∈ A.
[
(q, q′) ∈ Φ∧q′ x−→ q′1 ⇒ ∃q1, q2.

[
q

τ∗

−−−� q1
x−→ q2∧(q1, q

′) ∈ Φ∧(q2, q
′
1) ∈

Φ
]]

.

• ∀q, q′, q′1.
[
(q, q′) ∈ Φ ∧ q′ τ−→ q′1 ⇒ (q, q′1) ∈ Φ ∨ ∃q1, q2.

[
q

τ∗

−−−� q1
τ−→ q2 ∧ (q1, q

′) ∈

Φ ∧ (q2, q
′
1) ∈ Φ

]]
.

Let q, q′ ∈ Q be the initial states of processes p, p′ ∈ P, respectively. Two processes p and p′ are
said to be branching bisimilar (denoted as p ↔b p

′) iff there exists a branching bisimulation
relation Φ such that their initial states q, q′ are related, i.e. (q, q′) ∈ Φ.

Note that in the absence of τ actions, branching bisimulation coincides with strong bisim-
ulation. The phenomena of the occurrences of redundant silent steps can be formulated by
the following notion of τ -inertness [10].

Definition 4. Let p ∈ P be an arbitrary process term. A process p is said to be τ -inert with
respect to ↔b iff for all states q of the transition system (generated by operational rules) of p
it holds that q

τ−→ q′ ⇒ q ↔b q
′ where, q′ ∈ Q.

The essence of the above definition is that an inert τ action does not affect the future
choices of a process modulo branching bisimulation. In Section 5, we also show that an
asynchronous closed loop system constructed from a synchronous closed loop system satisfying
Definitions 10, 11, and 12 is always τ -inert with respect to ↔b.

7



3 Supervisory control theory

In this section, we give a brief introduction to supervisory control theory and define its
fundamental entities in our setup. The basic entity (a plant, or a supervisor, or a requirement)
in the supervisory control theory is deterministic. Furthermore, the proofs of main Theorems 1
and 2 requires the fact that a given synchronous closed loop system is also deterministic.
Therefore, we now introduce the term deterministic process.

Definition 5. A process p ∈ P is called a deterministic process iff for all states q of the
transition system (generated by the operational rules) of p and for all x ∈ A ∪ {τ} it holds
that q

x−→ q1 ∧ q
x−→ q2 ⇒ q1 ≡ q2 where, q1, q2 ∈ Q.

In supervisory control theory, plants and supervisors are allowed to perform events that
are divided into two disjoint subsets: controllable and uncontrollable events. The idea behind
this partition is that the supervisor can enable or disable controllable events so that the
closed loop behavior is equivalent to the requirement. The supervisor can observe but cannot
influence uncontrollable events. In this paper, we follow the input-output interpretation [3]
between a plant and its supervisor, wherein the uncontrollable events are outputs from a
plant to a supervisor and the controllable events are outputs from a supervisor to a plant.
Thus, processes that model plants or supervisors must have distinct (because of the above
partition) input and output actions in its alphabet. Such processes are called input-output
processes.

Definition 6. The set of input actions for an arbitrary process p ∈ P is denoted by α?(p) and
is defined as α?(p) , {a |?a ∈ α(p)}. Similarly, the set of output actions (denoted by α!(p))
is defined as α!(p) , {a |!a ∈ α(p)}. A process p is called an input-output process iff

α?(p) ∩ α!(p) = ∅ ∧ α(p) ∩ I = ∅ ∧ τ 6∈ α(p)

where, I = {‽a | a ∈ Act}.

The condition α(p) ∩ I = ∅ ensures that an input-output process does not contain com-
municated actions in its alphabet. This is because bags are introduced to buffer both input
and output events of an input-output process p ∈ P. So if communicated actions are allowed
in the specification of the process p then, the information whether the action ‽a is an input
or an output action of the process p is unknown.

We now define the three basic entities in the supervisory control theory in our setup. A
plant P ∈ P is a deterministic input-output process. Similarly, a supervisor is a deterministic
input-output process. A requirement is a process specifying the legal interaction that should
occur while the plant and its supervisor are interacting such that a required task (for which
the supervisor is synthesised) is completed. Thus, a requirement is a deterministic process
R ∈ P such that

α(R) ∩H = ∅ ∧ τ 6∈ α(R)

where, H = {!a, ?a | a ∈ Act}. This condition ensures that a requirement process only
contains communicated actions in its alphabet.

Now, we can state the control problem as follows: given a plant P and a requirement R,
find a supervisor S such that

∂H(P ‖γ S)↔b R.
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In this paper, we are not interested in how this supervisor is computed and rather assume
that we are provided with a solution to the above equation. The goal of this paper is then to
find certain conditions on the given synchronous closed loop system such that it is desynchro-
nisable. Note that in supervisory control theory the control problem is based on language
equivalence, but branching bisimilarity coincides with language equivalence in the presence of
determinism and in the absence of τ actions. However, we use branching bisimulation because
the asynchronous closed loop systems as constructed in the next section are always nonde-
terministic. In brief, this cause of nondeterminism is due to the abstraction of interactions
between a plant and the buffer.

4 From synchrony to asynchrony

The aim of this section is to extend our setup in accordance with the architecture of Sub-
section 1.1, to model asynchronous communication by introducing two bags between a given
plant and its supervisor; one bag that contains input actions of P and another one that
contains output actions of P . But, to define a bag we need to define a multiset and some
operations over multisets.

A multiset ξ over the set of communicated actions I ′ ⊂ I is a tuple (I ′, κ) where κ : I ′ → N
is the corresponding multiplicity function. We write the empty multiset as ε, which is defined
as (∅, κ0), where κ0 : ∅ → 0 is the zero function.

Definition 7. Let ξ = (I ′, κ) be a multiset over the set I.

• The predicate ∈′ is used to denote an element that belongs to a multiset. It is defined
as ‽a ∈′ ξ , ‽a ∈ I ′ ∧ κ(‽a) > 0.

• The operator ⊕ is used to denote an addition of an element to a multiset. It is defined
as ξ ⊕ ‽a , (I1, κ1) where,

I1 =

{
I ′, if ‽a ∈ I ′
I ′ ∪ {‽a}, if ‽a 6∈ I ′ , κ1(x) =


κ(‽a) + 1, if x = ‽a ∧ ‽a ∈ I ′
1, if x = ‽a ∧ ‽a 6∈ I ′
κ(x) if x 6= ‽a ∧ x ∈ I ′

.

• The operator 	 is used to denote a removal of an element from a multiset. It is defined
as ξ 	 ‽a , (I1, κ1) where,

I1 =

{
I ′, κ(‽a) > 1
I ′ \ {‽a}, κ(‽a) = 1

, κ1(x) =

{
κ(‽a)− 1, if x = ‽a ∧ κ(‽a) > 0
κ(x), if x 6= ‽a ∧ x ∈ I ′ .

For each x ∈ A we define an auxiliary element x̂. Let Â denote the set of new elements of
the form x̂. Similarly we assume that there exists auxiliary hidden and blocking sets Î and
Ĥ, respectively.

Definition 8. (Bag). Let n > 0 be a natural number representing the size of a bag process.
Let ε denote the empty multiset and ξ denote a multiset of communicated actions (i.e. the
actions that are decorated with the symbol ‽). Then a bounded bag process over a set of
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action labels A1 ⊆ Act of size n is defined in the following way.

Bn
A1

(ε) =
∑

?a∈A1

?â.Bn
A1

(ε⊕ ‽a) for every n > 0 ,

Bn
A1

(ξ) =
∑
‽a∈′ξ

!â.Bn
A1

(ξ 	 ‽a) +
∑
b∈A1

?b̂.Bn
A1

(ξ ⊕ ‽b)

if |ξ| < n,

Bn
A1

(ξ) =
∑
‽a∈′ξ

!â.Bn
A1

(ξ 	 ‽a) if |ξ| = n .

The above definition is bounded with variable n which not only helps in modeling a realistic
asynchronous implementation (as they contain buffers with finite memory). In contrast, it
also helps in modeling an asynchronous implementation that have buffers of infinite size, i.e.,
when n =∞.

Next we formally define an abstraction scheme that implements the construction method
M1. Informally, it decorates the interaction between a plant and the two interleaving bags with
the symbol ,̂ indicating such interactions are to be made hidden. We write the asynchronous
closed loop system as τÎ(∂H∪Ĥ(P ‖γ′ Bm,n[ε, ε] ‖γ′ S)) (for some m,n > 0) constructed from
its corresponding synchronous closed loop system ∂H(P ‖γ S) where,

• The notation Bm,n[µ, ν] represents two empty interleaving bags and is defined in the
following way,

Bm,n[µ, ν] , Bm
A1

(µ) ‖ Bn
A2

(ν)

where, A1 = α?(P ), A2 = α!(P ) and m > 0 (n > 0) denotes the size of bag associated
with input (output) actions of the plant P . Furthermore, the sets A1 and A2 denote
the set of input and output action labels of the plant P , respectively.

• γ′ :
(
A ∪ Â

)
×
(
A ∪ Â

)
→
(
A ∪ Â

)
is the modified communication function (or the

abstraction scheme for method M1) defined in following way,

γ′(!a, ?â) =

{
‽â if !a ∈ α!(P )

‽a if !a ∈ α!(S)
γ′(!â, ?a) =

{
‽â if ?a ∈ α?(P )

‽a if ?a ∈ α?(S)
.

Intuitively, the communication function γ′ with the operators τÎ , ∂H∪Ĥ ensures the
interactions between the plant and the bag are invisible while the interactions between
the supervisor and the bag are visible.

The rationale behind the choice of M1 is based on the observation that a transition system
generated by a supervisor S is isomorphic to the corresponding synchronous closed loop
system ∂H(P ‖γ S), modulo the difference in the type of action labels [7]. This is because
in the synthesis of supervisors no transitions are introduced that a plant cannot execute.
Moreover, the action labels in S will be decorated as either an input action (?) or an output
action (!) while in ∂H(P ‖γ S) the same label will be decorated as a communicated action
(‽). Formally, this fact is equivalent to

ρf (S)↔ ∂H(P ‖γ S)
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where, ρ is the renaming operator from TCP [2] and f : A → A is a function that renames
an input/output action to a communicated action, i.e., ∀?a, !a ∈ A.[f(!a) = f(?a) = ‽a]. As
a consequence, when one introduces bags and abstracts from the interaction between plant
and bags, the supervisor model remains unaffected. While in other abstraction schemes (M2,
M3 and M4) the above fact does not hold. Thus, it is easier to study abstraction scheme M1
than other schemes.

5 Desynchronisable closed loop system

In the previous section, we have shown how to construct an asynchronous closed loop system
from a given synchronous closed loop system. In general, the newly constructed asynchronous
closed loop system will not be branching bisimilar to the given synchronous closed loop system.
To this end, we introduce a special class of synchronous closed loop systems called desyn-
chronisable closed loop systems that are always branching bisimilar to their corresponding
asynchronous closed loop system. We then present sufficient conditions for desynchronisabil-
ity.

Definition 9. Let ∂H(P ‖γ S) be a synchronous closed loop system and let m,n be any two
nonzero natural numbers. Then, ∂H(P ‖γ S) is said to be desynchronisable with input and
output buffers of size n and m (or in short desynchronisable closed loop system), respectively,
if

∂H(P ‖γ S) ↔b τÎ(∂H∪Ĥ(P ‖γ′ B
m,n[ε, ε] ‖γ′ S)) .

We now present three sufficient conditions for desynchronisability with buffers of arbitrary
size. The objective of these conditions is the following. The conditions given in Definition 10
and Definition 11 prevent an asynchronous closed loop system from getting deadlocked. The
condition in Definition 12 ensures that the silent steps introduced by the abstraction scheme
are inert.

Definition 10. Let ∂H(P ‖γ S) be a synchronous closed loop system. Then, ∂H(P ‖γ S) is
called well posed if there exists a binary relation W ⊆ P × P such that (P, S) ∈ W and the
following conditions are satisfied:

• ∀ !a, p, p′, s.[(p, s) ∈W ∧ p !a−→ p′ ⇒ ∃s′.[s ?a−→ s′ ∧ (p′, s′) ∈W ]] , and

• ∀ !a, p, s, s′.[(p, s) ∈W ∧ s !a−→ s′ ⇒ ∃p′.[p ?a−→ p′ ∧ (p′, s′) ∈W ]] .

In other words, if a plant (supervisor) is able to send an output label !a then the supervisor
(plant) is able to receive the input label ?a.

We now partition the set I into two disjoint non-empty subsets I?P , I
!
P with respect to a

plant process P as:

• I?P , {‽a | ‽a ∈ I ∧ a ∈ α?(P )}.

• I !P , {‽a | ‽a ∈ I ∧ a ∈ α!(P )}.
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Figure 3: Diamond property.

Definition 11. Let µ ∈ I?P
∗

and ν ∈ I !P
∗

be sequences in I?P and I !P , respectively. Let p ∈ P
be an arbitrary process. We define the set of reachable states of p in the following way,

Reach(p) = {p′ | ∃w ∈ A∗.[p
w
−−−� p′]} .

By the semantics of TCP we know that if the initial state of a process has the form ∂H( ‖γ )
then, all the reachable states will also be of the same structure. A synchronous closed loop
system ∂H(P ‖γ S) is said to satisfy the reordering property iff both the following conditions
are satisfied,

• ∀p′, p2, s′, ∂H(p1 ‖γ s1) ∈ Reach(∂H(P ‖γ S)), ‽a ∈ I?P .[
∂H(p1 ‖γ s1)

µ.‽a
−−−−� ∂H(p′ ‖γ s

′) ∧ p1
?a−→ p2 ⇒

∃s2.[∂H(p1 ‖γ s1)
‽a−→ ∂H(p2 ‖γ s2)]

]
• ∀p′, s′, s2, ∂H(p1 ‖γ s1) ∈ Reach(∂H(P ‖γ S)), ‽a ∈ I !P .[

∂H(p1 ‖γ s1)
ν.‽a
−−−−� ∂H(p′ ‖γ s

′) ∧ s1
?a−→ s2 ⇒

∃p2.[∂H(p1 ‖γ s1)
‽a−→ ∂H(p2 ‖γ s2)]

]
.

Definition 12. Let q ∈ P be an arbitrary process. Then, q is said to satisfy the diamond
property iff the following condition hold (see Figure 3)

• ∀x, y, q1, q2.
[
q
x−→ q1 ∧ q

y−→ q2 ∧ x 6= y ⇒ ∃q3.[q1
y−→ q3 ∧ q2

x−→ q3]
]
.

A process p is said to satisfy the diamond property iff for all reachable states p′ from p satisfy
the diamond property.

For a reader familiar with the concepts of true concurrency [18], the conditions given in
Definition 5, 11 and 12 are similar to the axioms of asynchronous transition system. The
formulation of these axioms is based on the definition of an independence relation, which is
an irreflexive and symmetric relation on the set of actions A. However, the techniques for
desynchronisability for such models are not investigated here, although it will be worthwhile
to examine this research direction in the future. Note that in our approach we do not need
an additional notion of the independence relation.

Next, we present the following main results of this paper.

• If an arbitrary synchronous closed loop system satisfies the conditions in Definitions 10,
11 and 12 then, it is a desynchronisable with buffers of arbitrary size.
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• The transition system generated by an asynchronous closed loop system constructed
from a synchronous closed loop system satisfying the conditions in Definitions 10, 11
and 12 is always τ -inert with respect to ↔b.

To prove the above statements, we first fix some notations and then prove some lemmas,
which are necessary for the proof of main theorem.

We denote the contents of an arbitrary bag by the symbols ξ, ξ′, i.e., ξ, ξ′ are of the form
(I0, κ0) and (I1, κ1) respectively, where I0, I1 ⊆ I. The contents of the bag attached to input
actions of P is denoted by µ, i.e., µ is of the form (Iµ, κµ) where Iµ ⊆ I?P . Similarly the
contents of the bag attached to output actions of P is denoted by ν, i.e., ν is of the form
(Iν , κν) where Iν ⊆ I !P . For an arbitrary multiset ξ, we define a sequence (denoted as ~ξ) over
ξ as,

~ξ ,< x1.x2. · · · >

such that #(xi, ~ξ) = κ(xi), where # is a function that returns the maximum number of
occurrences of xi in ~ξ for some i > 0. For example consider a multiset ξ = {‽a, ‽a, ‽b, ‽b}.
Then a possible sequence ~ξ over the given ξ can be of the form < ‽a. ‽ b. ‽ a. ‽ b >. Let
fi : I∗ → H∗ be the function defined as fi(‽a.~ξ) =?a.fi(~ξ). Similarly, let fo : I∗ → H∗ be the
function defined as fo(‽a.~ξ) =!a.fo(~ξ).

Proposition 1. Given a trace ∂H(P ‖γ S)
~µ
−−−� ∂H(p1 ‖γ s1), we find using the above func-

tion fi and semantics of ‖γ that P
fi(~µ)
−−−−−� p1 ∧ S

fo(~µ)
−−−−−� s1.

Proposition 2. Similarly, given a trace ∂H(P ‖γ S)
~ν
−−−� ∂H(p1 ‖γ s1), we conclude that

P
fo(~ν)
−−−−−� p1 ∧ S

fi(~ν)
−−−−−� s1.

The following lemma is a generalisation of Definition 12. It states that if two different
states q1, q2 are reachable from a state q0, then there exists a state q3 reachable from q1 and
q2 such that, the trace between q0, q1 and the trace between q0, q2 commute.

Lemma 1 (Generalised diamond property). Let ∂H(P ‖γ S) be an arbitrary synchronous

closed loop system satisfying the conditions in Definitions 10, 11 and 12. If ∂H(P ‖γ S)
~ξ
−−�

∂H(p1 ‖γ s1) ∧ ∂H(P ‖γ S)
~ξ′

−−−� ∂H(p2 ‖γ s2) then,

∃p3, s3.[∂H(p1 ‖γ s1)
~ξ′

−−−� ∂H(p3 ‖γ s3) ∧ ∂H(p2 ‖γ s2)
~ξ
−−� ∂H(p3 ‖γ s3)].

The following Lemmas 2, 3 are the results (See [5] for the proofs) obtained by direct instan-
tiation of reordering property (Definition 11) and generalised diamond property (Lemma 1).

Lemma 2. Let ∂H(P ‖γ S) be a synchronous closed loop system satisfying the conditions in

Definitions 10, 11 and 12. Suppose ‽a ∈ I?P ∧ ∂H(P ‖γ S)
~µ.‽a
−−−−� ∂H(p2 ‖γ s2) ∧ P

?a−→ p1
then,

∃s1.
[
∂H(P ‖γ S)

‽a−→ ∂H(p1 ‖γ s1)
~µ
−−−� ∂H(p2 ‖γ s2)

]
.
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Proof. It is given that ∂H(P ‖γ S) satisfies the conditions in Definitions 10, 11 and 12 with

‽a ∈ I?P ∧ ∂H(P ‖γ S)
~µ.‽a
−−−−� ∂H(p2 ‖γ s2) ∧ P

?a−→ p1. Then by reordering property (Defini-
tion 11) we get,

∃s1.[∂H(P ‖γ S)
‽a−→ ∂H(p1 ‖γ s1)] .

By the given transitions ∂H(P ‖γ S)
~µ.‽a
−−−−� ∂H(p2 ‖γ s2) we infer that,

∃p′1, s′1.[∂H(P ‖γ S)
~µ
−−−� ∂H(p′1 ‖γ s

′
1)

‽a−→ ∂H(p2 ‖γ s2)] .

Applying generalised diamond property (Lemma 1) at the state ∂H(P ‖γ S) we get,

∂H(p1 ‖γ s1)
~µ
−−−� ∂H(p2 ‖γ s2) .

Hence, the desired result is achieved.

Lemma 3. Let ∂H(P ‖γ S) be a synchronous closed loop system satisfying the conditions in

Definitions 10, 11 and 12. Suppose ‽a ∈ I !P ∧ ∂H(P ‖γ S)
~ν.‽a
−−−−� ∂H(p3 ‖γ s3) ∧ S

?a−→ s1
then,

∃p1.
[
∂H(P ‖γ S)

‽a−→ ∂H(p1 ‖γ s1)
~ν
−−−� ∂H(p3 ‖γ s3)

]
.

Proof. Similar as the proof of Lemma 2.

We now pose the main theorem of this paper which proves the following statement. If the
given synchronous closed system satisfies the conditions in Definition 10, 11 and 12, then it
is desynchronisable independent of the size of the buffers introduced between the given plant
and its supervisor.

Theorem 1. Let ∂H(P ‖γ S) be an arbitrary synchronous closed loop system satisfying the
conditions in Definitions 10, 11 and 12. Then for any m,n > 0 we have,

∂H(P ‖γ S) ↔b τÎ(∂H∪Ĥ(P ‖γ′ B
m,n[ε, ε] ‖γ′ S)).

Proof. Appendix A

In hindsight, what we have actually proven is that all τ actions generated by the abstrac-
tion scheme are τ -inert with respect to ↔b . The following corollary states this fact.

Corollary 1. Let qc be a process of the form ∂H(P ‖γ S). And let qa be an asynchronous
closed loop system of the form τÎ(∂H∪Ĥ(P ‖γ′ Bm,n[ε, ε] ‖γ′ S)) such that (qc, qa) ∈ Φ. Then,

∀qc, qa, q′a.
[
(qc, qa) ∈ Φ ∧ qa

τ−→ q′a ⇒ qa ↔b q
′
a

]
.
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Figure 4: A partial closed loop system.

6 Desynchronisation of partial closed loop systems

In the previous section, we showed that the well posedness, reordering and diamond properties
are sufficient conditions under which a synchronous closed loop system is desynchronisable.
In this section, we extend the desynchronisability result to a class of synchronous closed loop
systems whose alphabet contains communicated actions with certain send/recieve actions
from a plant and its supervisor. Such closed loop systems are called partial closed loop
systems and Figure 4 shows the context diagram of a partial closed loop system.

To carry out similar work as in Section 5, we first modify the definitions of a plant, a
supervisor, and a requirement in order to construct a partial closed loop system. Secondly,
we extend the definitions of aforementioned sufficient conditions in a conservative way. We
assume that for an input-output process p ∈ P we are given with a set of external actions
α(p) ⊆ H.

Definition 13. A plant (supervisor) P ∈ P (S ∈ P) is an input-output and deterministic
process such that the set of external actions are nonempty, i.e., α(P ) 6= ∅. Define the modified
blocking set,

H(P, S) = {�a | �a 6∈ α(P ) ∧�a 6∈ α(S) ∧� ∈ {!, ?}}.
A requirement R ∈ P for a partial closed loop system ∂H(P,S)(P ‖γ S) is a deterministic
process such that,

α(R) ∩H(P, S) = ∅ ∧ τ 6∈ α(R).

Furthermore, the control equation in this new setting is the following.

∂H(P,S)(P ‖γ S) ↔b R.

The above modifications results in the following change of the definition of the communi-
cation function γ′ which implements the abstraction scheme M1. We write the asynchronous
closed loop system as

τÎ(∂H(P,S)∪Ĥ(P,S)(P ‖γ′ B
m,n(ε, ε) ‖γ′ S))

(for somem,n > 0), constructed from a partial synchronous closed loop system ∂H(P,S)(P ‖γ S)
with,

γ′(!a, ?â) =

{
‽â if !a ∈ α!(P ) ∧ !a ∈ H(P, S)

‽a if !a ∈ α!(S) ∧ !a ∈ H(P, S)
,

γ′(!â, ?a) =

{
‽â if ?a ∈ α?(P ) ∧ ?a ∈ H(P, S)

‽a if ?a ∈ α?(S) ∧ ?a ∈ H(P, S)
.

15



Informally, the above definition of communication function γ′ not only implements the
abstraction scheme M1, but it also restricts the communication of external actions of both
the plant and the supervisor with the bag.

6.1 Modified sufficient conditions

In this section, we extend the well posedness, the reordering and the diamond property
in a conservative way. Furthermore, we introduce an additional property, called fair-noise
property, that ensures the presence of external actions of plant is safe. The intuition of these
conditions will be explain alongside with their respective formal definitions.

Notation. We write a partial synchronous closed loop system ∂H(P,S)(P ‖γ S) as ∂�(P ‖γ S)

and the corresponding partial asynchronous closed loop system as ∇̂(P ‖γ′ Bm,n[ε, ε] ‖γ′ S).

Definition 14. Let ∂�(P ‖γ S) be a partial synchronous closed loop system. Then, ∂�(P ‖γ S)
is called well posed if there exists a binary relation W ⊆ P× P such that (P, S) ∈W and the
following conditions are satisfied:

1. ∀p,p′,s.[(p, s) ∈W ∧ p
!a−→ p′∧!a 6∈ α(p)⇒ ∃s′.[s ?a−→ s′ ∧ (p′, s′) ∈W ]],

2. ∀p,p′,s.[(p, s) ∈W ∧ p
x−→ p′ ∧ x ∈ α(p)⇒ (p′, s) ∈W ],

3. ∀p,s,s′ .[(p, s) ∈W ∧ s
!a−→ s′∧!a 6∈ α(s)⇒ ∃p′.[p ?a−→ p′ ∧ (p′, s′) ∈W ]],

4. ∀p,s,s′ .[(p, s) ∈W ∧ s
x−→ s′ ∧ x ∈ α(s)⇒ (p, s′) ∈W ].

The conditions 1,3 in the above definition are the usual conditions (See Definition 10) of
well posedness property. However, the conditions 2,4 ensures that an external step �

x−→ �′
performed at a receiver’s state (either plant’s state or supervisor’s state, i.e., � ∈ {p, s}) do
not alter the set of input actions enabled at the state � and thus remain well-posed.

As already mentioned, the above well posedness property was designed to prevent a partial
asynchronous closed loop system from getting deadlocked. Unfortunately, the well posedness
property alone is not sufficient for this purpose. The following example illustrates this fact.

Example 1. Let x ∈ α(S) and consider the following equations describing incomplete be-
haviour of a plant and a supervisor.

p =?a.0+?b.p1 s =!b.s1, s1 = x.s2

p1 =?a.p2, p2 =!c.p s2 =!a.s3, s3 =?c.s

The Figures 5(a) and 5(b) shows the transition system of ∂�(p ‖γ s) and ∇̂(p ‖γ′ Bm,n[ε, ε] ‖γ′ s),
respectively. Note, that the partial synchronous closed loop system ∂�(p ‖γ s) is deadlock free;

however, the asynchronous closed loop system ∇̂(p ‖γ′ Bm,n[ε, ε] ‖γ′ s) contains the following
deadlock trace < ‽b.x. ‽ a.τ >.

Thus, the following reordering property is designed to eliminate such scenarios.
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∂�(p ‖γ s)

∂�(p1 ‖γ s1)

∂�(p1 ‖γ s2)

∂�(p2 ‖γ s3)

‽b

x

‽a

‽c

(a) Transition system
of ∂�(p ‖γ s).

∇̂(p ‖γ′ Bm,n[ε, ε] ‖γ′ s)

∇̂(p ‖γ′ Bm,n[{‽b}, ε] ‖γ′ s1)

∇̂(p1 ‖γ′ Bm,n[ε, ε] ‖γ′ s1)∇̂(p ‖γ′ Bm,n[{‽b}, ε] ‖γ′ s2)

∇̂(p1 ‖γ′ Bm,n[ε, ε] ‖γ′ s2)

∇̂(p ‖γ′ Bm,n[{‽b, ‽a}, ε] ‖γ′ s)

∇̂(p1 ‖γ′ Bm,n[{‽a}, ε] ‖γ′ s)∇̂(0 ‖γ′ Bm,n[{‽b}, ε] ‖γ′ s)

‽b

x
τ

x
‽a

τ

‽a
τ

τ

(b) Partial transition system of ∇̂(p ‖γ′ B
m,n[ε, ε] ‖γ′ s) showing the deadlock at the

state ∇̂(0 ‖γ′ B
m,n[{‽b}, ε] ‖γ′ s).

Figure 5: Example 1.
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Definition 15. Let ~µ ∈ (I?P ∪ α(S))∗ and ~ν ∈ (I !P ∪ α(P ))∗ be sequences in I?P and I !P ,
respectively. Let p ∈ P be an arbitrary process and let q ∈ Q be its initial state. A partial
synchronous closed loop system ∂�(P ‖γ S) is said to satisfy the reordering property iff both
the following conditions are satisfied,

• ∀p′, p2, s′, ∂�(p1 ‖γ s1) ∈ Reach(∂�(P ‖γ S)), ‽a ∈ I?P .[
∂�(p1 ‖γ s1)

~µ.‽a
−−−−� ∂�(p

′ ‖γ s
′) ∧ p1

?a−→ p2 ⇒

∃s2.[∂�(p1 ‖γ s1)
‽a−→ ∂�(p2 ‖γ s2)]

]
• ∀p′, s′, s2, ∂�(p1 ‖γ s1) ∈ Reach(∂�(P ‖γ S)), ‽a ∈ I !P .[

∂�(p1 ‖γ s1)
~ν.‽a
−−−−� ∂�(p

′ ‖γ s
′) ∧ s1

?a−→ s2 ⇒

∃p2.[∂�(p1 ‖γ s1)
‽a−→ ∂�(p2 ‖γ s2)]

]
.

In the new setting, the diamond property (Definition 16) has the same objective that the
silent steps generated by the abstraction scheme are τ -inert.

Definition 16. Let q ∈ P be an arbitrary process. Then, q is said to satisfy the diamond
property iff the following condition holds

• ∀x, y, q1, q2.
[
q
x−→ q1 ∧ q

y−→ q2 ∧ x 6= y ⇒ ∃q3.[q1
y−→ q3 ∧ q2

x−→ q3]
]
.

A process p is said to satisfy the diamond property iff for all reachable states p′ from p satisfy
the diamond property.

We have extended the old sufficient conditions in the setting of partial closed loop sys-
tems and expect the desynchronisability result to hold via a branching bisimulation relation
Φ̂ similar to the one used in the proof of Theorem 1. The idea behind the design of the
relation Φ̂ should be to relate a state ∂�(p ‖γ s) in a partial synchronous closed loop system

to those states ∇̂(p′ ‖γ′ Bm,n[µ, ν] ‖γ′ s) in an asynchronous closed loop system that contain
the same supervisor state s. This is due to the abstraction scheme used to construct an
partial asynchronous closed loop system from a given partial synchronous closed loop sys-
tem. Unfortunately, there are certain scenarios (explained in the following paragraph) due
to the external step made by plant, which causes more behaviour in an asynchronous closed
loop system that will not be present in the corresponding synchronous closed loop system.
However, if a partial closed loop system contains only the external actions of the supervisor
(i.e. no external actions of the plant) in its alphabet then the above modified conditions are
sufficient for desynchronisability.

Next we explore the scenarios in which the external step made by a plant in a partial
closed loop system obstructs its desynchronisability.

Example 2. Consider the behaviour of a synchronous closed loop system specified by the
following equations

∂�(p ‖γ s) = ‽a.∂�(p1 ‖γ s1), ∂�(p1 ‖γ s1) = x.∂�(p2 ‖γ s1)
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∇̂(p ‖γ′ Bm,n[ε, ε] ‖γ′ s)

∇̂(p1 ‖γ′ Bm,n[ε, {‽a}] ‖γ′ s) ∇̂(p1 ‖γ′ Bm,n[ε, ε] ‖γ′ s1)

∇̂(p2 ‖γ′ Bm,n[ε, {‽a}] ‖γ′ s) ∇̂(p2 ‖γ′ Bm,n[ε, ε] ‖γ′ s1)

τ

x

‽a

x

‽a

Figure 6: Transition system of ∇̂(p ‖γ′ Bm,n[ε, ε] ‖γ′ s) in the Example 2.

where ‽a ∈ I !P , x ∈ α(P ). The transition system generated by the asynchronous closed loop
system is shown in Figure 6. Immediately, we observe the trace < τ.x. ‽ a > from the state
∇̂(p ‖γ′ Bm,n[ε, ε] ‖γ′ s) and thus disallowing the states ∂�(p ‖γ s), ∇̂(p1 ‖γ′ Bm,n[ε, {‽a}] ‖γ′ s)
to be related by a branching bisimulation relation Φ̂. Moreover, it contradicts our intuition
about Φ̂ that “a state ∂�(p ‖γ s) in a partial synchronous closed loop system to those states
in an asynchronous closed loop system that contain the same supervisor state s”. To rectify
this, we require that the state ∂�(p ‖γ s) must contain the trace < x. ‽ a > reachable to the
state ∂�(p2 ‖γ s1).

Intuitively, we require that a plant must treat its output action ‽a ∈ I !P to supervisor
and a command x ∈ α(P ) by or to an external process in a ‘fair’ way. This is formalised by
“fair-noise” property (See Definition 17); note an execution of external step by a plant can
be considered as a noise from the viewpoint of the supervisor and hence the name fair-noise.

Definition 17. Let ‽a ∈ I !P and x ∈ α(P ). A plant P is said to satisfy the fair-noise property
in a partial synchronous closed loop system ∂�(P ‖γ S) iff the following condition holds.

∀∂�(p1 ‖γ s1) ∈ Reach(∂�(P ‖γ S)).
[
∂�(p1 ‖γ s1)

‽a.x
−−−−� ∂�(p2 ‖γ s2)

⇒ ∃p′1 .
[
∂�(p1 ‖γ s1)

x−→ ∂�(p
′
1 ‖γ s1)

]]
.

Lemma 4. Let ~ν ∈ I !P
∗
, x ∈ α(P ) and ∂�(p1 ‖γ s1) satisfies the fair-noise property (Def-

inition 17) and the diamond property (Definition 16). If ∂�(p1 ‖γ s1)
~ν.x
−−−−� ∂�(p2 ‖γ s2)

then,

∃p′1.[∂�(p′1 ‖γ s1)
x.~ν
−−−−� ∂�(p2 ‖γ s2)].

Proof. Straightforward, by induction on ~ν.

Proposition 3. Let ~ν ∈ I !P
∗
, ~σ ∈ α(P )∗ and suppose ∂�(p ‖γ s) satisfies the fair-noise

property (Definition 17) and the diamond property (Definition 16). If ∂�(p ‖γ s)
~ν.~σ
−−−−�

∂�(p1 ‖γ s1) then,

∃p′, s′.
[
∂�(p ‖γ s)

~σ
−−−� ∂�(p

′ ‖γ s
′)

~ν
−−−� ∂�(p1 ‖γ s1)

]
.
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Lemma 5. Let ∂H(P ‖γ S) be an arbitrary synchronous closed loop system satisfying the con-

ditions in Definitions 14, 15, 16 and 17. If ∂H(P ‖γ S)
~ξ
−−� ∂H(p1 ‖γ s1) ∧ ∂H(P ‖γ S)

~ξ′

−−−�
∂H(p2 ‖γ s2) then,

∃p3, s3.[∂H(p1 ‖γ s1)
~ξ′

−−−� ∂H(p3 ‖γ s3) ∧ ∂H(p2 ‖γ s2)
~ξ
−−� ∂H(p3 ‖γ s3)].

Lemma 6. Let ∂�(p1 ‖γ s1) be a partial synchronous closed loop system satisfying the well
posedness (Definition 14), reordering property (Definition 15) and the diamond property (Defi-

nition 16). Suppose ‽a ∈ I?P , ~σ ∈ (α(P ) ∪ α(S))∗ such that ∂�(p1 ‖γ s1)
~σ
−−−� ∂�(p2 ‖γ s2)

‽a−→
∂�(p3 ‖γ s3). Then,

∃p′3, s′3.[∂�(p1 ‖γ s1)
‽a−→ ∂�(p

′
3 ‖γ s

′
3)

~σ
−−−� ∂�(p3 ‖γ s3)].

Proof. We prove it by structural induction on ~σ.

• Base case. In this case, ~σ = ε, or ~σ = x, x ∈ α(P ), or ~σ = x, x ∈ α(S). When ~σ = ε the
proof is trivial.

1. When ~σ = x, x ∈ α(P ). Then we have,

∂�(p1 ‖γ s1)
x−→ ∂�(p2 ‖γ s2)

‽a−→ ∂�(p3 ‖γ s3)

with s1 = s2 due to semantics of ‖γ and x ∈ α(P ). Furthermore, from the semantics

of ‖γ and the fact ‽a ∈ I?P we get p2
?a−→ p3 ∧ s1

!a−→ s3. So by using the extended
well posedness (Definition 14) we get,

∃p′3.[∂�(p1 ‖γ s1)
‽a−→ ∂�(p

′
3 ‖γ s3)].

And by the Lemma 5 we get the desired result,

∂�(p1 ‖γ s1)
‽a−→ ∂�(p

′
3 ‖γ s3)]

x−→ ∂�(p3 ‖γ s3).

2. When ~σ = x, x ∈ α(S). Then we have,

∂�(p1 ‖γ s1)
x−→ ∂�(p2 ‖γ s2)

‽a−→ ∂�(p3 ‖γ s3)

with p1 = p2 due to semantics of ‖γ and x ∈ α(S). Furthermore, from the semantics

of ‖γ and the fact ‽a ∈ I?P we get p1
?a−→ p3 ∧ s1

!a−→ s3. But from the Definition 15
we get,

∃p′3, s′3.[∂�(p1 ‖γ s1)
‽a−→ ∂�(p

′
3 ‖γ s

′
3)].

Again by Lemma 5 we get,

∂�(p1 ‖γ s1)
‽a−→ ∂�(p

′
3 ‖γ s

′
3)

x−→ ∂�(p3 ‖γ s3).

20



• Inductive case. Let ~σ = x.~σ′ and assume the transition ∂�(p1 ‖γ s1)
x−→ ∂�(p

′
1 ‖γ s′1)

~σ′

−−−�
∂�(p2 ‖γ s2)

‽a−→ ∂�(p3 ‖γ s3). By induction hypothesis we have,

∃p′3, s′3.[∂�(p′1 ‖γ s
′
1)

‽a−→ ∂�(p
′
3 ‖γ s

′
3)

~σ′

−−−� ∂�(p3 ‖γ s3)].

We identify two cases based on the external action x performed either by the plant (P )
or the supervisor (S).

1. x ∈ α(P ). Then by semantics of ‖γ we know that s1 = s′1. Furthermore, from the

induction hypothesis, ‽a ∈ I?P and the semantics of ‖γ we get, p′1
?a−→ p′3 ∧ s′1

!a−→ s′3.
By applying well posedness (Definition 14) at the state ∂�(p1 ‖γ s′1) we get,

∃p′′1.[∂�(p1 ‖γ s
′
1)

‽a−→ ∂�(p
′′
1 ‖γ s

′
3)].

Applying the Lemma 5 we get the desired result,

∂�(p1 ‖γ s
′
1)

‽a−→ ∂�(p
′′
1 ‖γ s

′
3)

x−→ ∂�(p
′
3 ‖γ s

′
3).

2. x ∈ α(P ). Then by semantics of ‖γ we know that p1 = p′1. Furthermore, from the

induction hypothesis, ‽a ∈ I?P and the semantics of ‖γ we get, p′1
?a−→ p′3 ∧ s′1

!a−→

s′3. Using Definition 15 with the transitions ∂�(p
′
1 ‖γ s1)

x.‽a
−−−−� ∂�(p

′
3 ‖γ s′3) and

p′1
?a−→ p′3 we get,

∃p′′1, s′′1.[∂�(p′1 ‖γ s1)
‽a−→ ∂�(p

′′
1 ‖γ s

′′
1)].

Applying the Lemma 5 we get the desired result,

∂�(p
′
1 ‖γ s1)

‽a−→ ∂�(p
′′
1 ‖γ s

′′
1)

x−→ ∂�(p
′
3 ‖γ s

′
3).

Lemma 7. Let ∂�(p1 ‖γ s1) be a partial synchronous closed loop system satisfying the well
posedness (Definition 14), reordering property (Definition 15) and the diamond property (Defi-

nition 16). Suppose ‽a ∈ I !P , ~σ ∈ (α(P ) ∪ α(S))∗ such that ∂�(p1 ‖γ s1)
~σ
−−−� ∂�(p2 ‖γ s2)

‽a−→
∂�(p3 ‖γ s3). Then,

∃p′3, s′3.[∂�(p1 ‖γ s1)
‽a−→ ∂�(p

′
3 ‖γ s

′
3)

~σ
−−−� ∂�(p3 ‖γ s3)].

Proof. Similar to the proof of Lemma 6.

Next we pose the following main result of this section: “If a partial synchronous closed
loop system satisfies the condition of Definition 14, 15, 16 and 17 then it is desynchronisable”.

Theorem 2. Let ∂�(P ‖γ S) be an arbitrary partial synchronous closed loop system satisfying
the conditions in Definitions 14, 15,16 and 17. Then for any m,n > 0 we have,

∂�(P ‖γ S) ↔b ∇̂(P ‖γ′ B
m,n[ε, ε] ‖γ′ S).

Proof. Appendix B.
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7 Discussion

In this section, we discuss in the context of desynchronisable closed loop system (Section 5)
whether the reordering property (Definition 11) and the diamond property (Definition 12)
presented here can be further weakened while desynchronising. The choice of these properties
is motivated by the fact that these conditions seems more restrictive than well posedness
property.

Informally, the reordering property states that every reachable state from an initial state
in a synchronous closed loop system satisfy the following condition. If a receiver (either plant
or supervisor) is able to receive an input ?a and a sender is able to send a sequence of outputs
fo(µ).!a (µ ∈ I?P

∗
) then, the sender must send the output !a before the sequences of outputs

fo(µ)1. To circumvent such a stringent condition, one may design a synchronous closed loop
system that allows a sender to progress with an output action if the sender has received the
acknowledgements of previously send output actions and thus, implicitly creating a locking
mechanism.

Example 3. Consider the behaviour of a plant p and a supervisor s specified by the following
set of equations.

p =?a.p1, p1 =!b.p2, p2 =?c.p
s =!a.s1, s1 =?b.s2, s2 =!c.s

To observe the effect of locking mechanism lets consider the initial state of the asynchronous
closed loop system, τÎ(∂H∪Ĥ(p ‖γ′ Bm,n[ε, ε] ‖γ′ s)). The supervisor performs the output !a
and transforms to the state s1. Thus, we infer the following transition by the asynchronous
closed loop system.

τÎ(∂H∪Ĥ(p ‖γ′ B
m,n[ε, ε] ‖γ′ s))

‽a−→ τÎ(∂H∪Ĥ(p ‖γ′ B
m,n[{‽a}, ε] ‖γ′ s1))

Note the supervisor in the state s1 can only wait for the input action ?b and the plant in the
state p can only receive the input action ?a. Thus, the plant in the state τÎ(∂H∪Ĥ(p ‖γ′ Bm,n[{‽a}, ε] ‖γ′ s1))
can only remove the content from its input bag. A similar phenomenon can be observed in
the other states of the asynchronous closed loop system. Moreover, it can be verified that the
synchronous closed loop system ∂H(p ‖γ s) is desynchronisable.

Note that from the above example it is clear that a locking mechanism can be implicitly
built-in a synchronous closed loop system in order to avoid the reordering property. However,
upon inspection it can be concluded that the reordering property is vacuously satisfied in the
above example. This also suggests that the reordering property can be a suitable candidate
for the necessary conditions for desynchronisability.

In comparison to the reordering property, the diamond property property can be fur-
ther weakened. We give an example where a synchronous closed loop system satisfying well
posedness and reordering properties is still desynchronisable.

Example 4. Consider the behaviour of a plant and a supervisor specified by the following set
of equations:

p =?a.p1+?c.p2,
p1 =!b.p, p2 =!d.p

s =!a.s1+!c.s2,
s1 =?b.s, s2 =?d.s

.

The transition system of the synchronous and asynchronous closed loop system is depicted
in Figure 7. Clearly, the two transition system are branching bisimilar.

1Recall the definition of the function fo from Page 13.
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∂H(p ‖γ s)

∂H(p1 ‖γ s1) ∂H(p2 ‖γ s2)

∇(p ‖γ′ Bm,n[ε, ε] ‖γ′ s)

∇(p ‖γ′ Bm,n[{‽a}, ε] ‖γ′ s1) ∇(p ‖γ′ Bm,n[{‽c}, ε] ‖γ′ s2)

∇(p1 ‖γ′ Bm,n[ε, ε] ‖γ′ s1) ∇(p2 ‖γ′ Bm,n[ε, ε] ‖γ′ s2)

∇(p ‖γ′ Bm,n[ε, {‽b}] ‖γ′ s1) ∇(p ‖γ′ Bm,n[ε, {‽d}] ‖γ′ s2)

‽a ‽c

‽b ‽d

‽a
‽c

τ τ

τ τ

‽b ‽d

Figure 7: Example 4, ∇( ) = τI∪Î(∂H∪Ĥ( )).

Thus, we anticipate that the diamond property (Definition 12) can be further weakened.
In particular, if the actions ‽a, ‽b ∈ I?P are enabled at a state q then it may not be necessary
for the traces ‽a.‽b and ‽b.‽a to commute. Furthermore, we conjecture that if a synchronous
closed loop system satisfies the well posedness property (Definition 10), the reordering prop-
erty (Definition 11), and the weaker form of diamond property, then it is desynchronisable.

8 Conclusions and future work

The goal of this paper was to check for desynchronisability of a synchronous closed loop system
without building the corresponding asynchronous system. We presented sufficient conditions
for desynchronisability in a process algebraic setting and showed that an asynchronous imple-
mentation using bags (of arbitrary size) is a refinement of the synchronous closed loop system
satisfying these conditions. Moreover, we generalise this result for partial closed loop systems
whose alphabets may contain the input/output actions from the plant and its supervisor in
addition to the communicated actions.

The prominent features of our work can be summarised in the following main points:

• We solve a refinement problem instead of a supervisory control problem, and do not
compute a new supervisor in the presence of buffers, as done in [3, 20]. Our approach
is intended to be computationally cheaper than the one developed in [3, 20], however
this conjecture needs to be verified by analysing the complexities associated with the
conditions presented here. In particular, we conjecture that supervisory control theory
always results in synchronous closed loop systems, which are well-posed (Definition 10),
but the other conditions, (Definition 11 and Definition 12), are not likely to be attained
so easily.

• We present our conditions for desynchronisability over the components of a synchronous
closed loop system conjointly, in contrast with [9], where the check for the foam rubber
wrapper principle on the two components was applied separately. Note the sender
domination property from [9] is equivalent to the well posed condition (Definition 10).
However, the two approaches are incomparable because in [9] the construction method
M3 was studied while in this paper the construction method M1 is studied.

• We use branching bisimulation equivalence instead of the failure equivalence that was
adopted in [9]. As a consequence our techniques are applicable to all the weak equiva-
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P S1S2

Figure 8: A synchronous closed loop system in a decentralised architecture [19].

lences in the ‘van Glabbeek spectrum’ [17] (including failure equivalence). The branch-
ing bisimulation is the preferred equivalence in TCP process algebra under the presence
of τ action [2]. Furthermore, the conditions (well posedness and diamond property)
given here are similar to the ones mentioned in [9], where sufficient conditions for desyn-
chronisability was given modulo failure equivalence. Thus, we conjecture that achieving
desynchronisability for weaker equivalences will not lead to weaker sufficient conditions.

A question that was not treated in this paper, is whether the conditions we posed are in
fact reasonable for industrial applications. This may become clear in the near future, when
we study the case studies involved with supervisory control theory in the context of the MUL-
TIFORM project [1] with the language CIF [4]. The authors of CIF are currently developing
techniques that will incorporate supervisory control theory and model based engineering into
a single framework, thus making it suitable for the design of industrial applications. In par-
ticular, the elevator case study and the toy example, which were desynchronisable in [7] using
the construction method M1, satisfy our conditions.

The issue of compositionality for desynchronisable closed loop system is also not answered
completely, although initial results in this directions are presented here, i.e, the desynchro-
nisability of partial synchronous closed loop systems. Consider the synchronous closed loop
system ∂H(P ‖γ S1 ‖γ S2) in a decentralised architecture, which can be further decomposed
into two partial synchronous closed loop systems as shown in Figure 8. Next, these individual
partial synchronous closed loop systems can be verified for desynchronisability by inspecting
the sufficient conditions on them. However, to conclude the overall desynchronisable closed
loop system (i.e. ∂H(P ‖γ S1 ‖γ S2)) is desynchronisable, more research is required.

Lastly, the research performed in this paper can of course be repeated for different archi-
tectures. One might study whether wires or queues can be used instead of bags, or study
different abstraction schemes, or try to study the conditions for desynchronisability by focus-
ing on other notions of weak equivalences.
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A Proof of Theorem 1

Proof. Let p, p′, s be free process variables. Let µ, ν be two free variables representing the
contents of an input and an output bag of P , respectively. For brevity we write τÎ(∂H∪Ĥ( ))
as ∇( ). Then, define a relation Φ as follows.

Φ , {(∂H(p ‖γ s),∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)) |(
p′ = p ∧ µ = ε ∧ ν = ε

)∨
[C1](

µ = ε ∧ ∃s′.[∂H(p ‖γ s)
~ν
−−−� ∂H(p′ ‖γ s

′)]
)∨

[C2](
ν = ε ∧ ∃s′.[∂H(p′ ‖γ s

′)
~µ
−−−� ∂H(p ‖γ s)]

)∨
[C3](

∃p′′, s′, s′′.[∂H(p′ ‖γ s
′)

~ν
�−−− ∂H(p′′ ‖γ s

′′)
~µ
−−−� ∂H(p ‖γ s)]

)∨
[C4](

∃p′′, s′, s′′.[∂H(p ‖γ s)
~ν
−−−� ∂H(p′′ ‖γ s

′′)
~µ
�−−− ∂H(p′ ‖γ s

′)]
)
}. [C5]

The proof of the theorem is based on showing that Φ is a witnessing branching bisimulation
relation. The intuition behind the definition of Φ is following. A state ∂H(p ‖γ s) in a
synchronous closed loop system is related to those states in an asynchronous closed loop
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∂H(p ‖γ s) τÎ(∂H∪Ĥ(p′ ‖γ′ Bm,n[ε, ε] ‖γ′ s)) τÎ(∂H∪Ĥ(p′ ‖γ′ Bm,n[µ, ν] ‖γ′ s))

τÎ(∂H∪Ĥ(p′ ‖γ′ Bm,n[µ, ε] ‖γ′ s))

τÎ(∂H∪Ĥ(p′ ‖γ′ Bm,n[ε, ν] ‖γ′ s))

C1

C2

C3

C4 and C5

τ∗
τ∗

τ∗
τ∗

Figure 9: Illustration of relation Φ.

system which contain the same supervisor state s. The Φ relation between two states is
indicated by dotted lines in Figure 9.

Let qc, qa be the initial states of the processes ∂H(p ‖γ s) and ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s),
respectively. From the definition of branching bisimilarity we need to show the following four
transfer conditions:

1. ∀‽a, qc, q′c, qa.[qc
‽a−→ q′c∧(qc, qa) ∈ Φ⇒ ∃q′a, q′′a .[qa

τ∗

−−−� q′a
‽a−→ q′′a∧(qc, q

′
a), (q

′
c, q
′′
a) ∈ Φ]].

2. ∀qc, q′c, qa.[qc
τ−→ q′c ∧ (qc, qa) ∈ Φ ⇒ (q′c, qa) ∈ Φ ∨ ∃q′a, q′′a .[qa

τ∗

−−−� q′a
τ−→ q′′a ∧

(qc, q
′
a), (q

′
c, q
′′
a) ∈ Φ]].

3. ∀qc, qa, q′a.[qa
τ−→ q′a∧(qc, qa) ∈ Φ⇒ (q′a, qc) ∈ Φ∨∃q′c, q′′c .[qc

τ∗−→ q′c
τ−→ q′′c∧(q′c, qa), (q

′′
c , q
′
a) ∈

Φ]].

4. ∀ ‽ a, qc, qa, q′a.[qa
‽a−→ q′a ∧ (qc, qa) ∈ Φ⇒ ∃q′c, q′′c .[qc

τ∗−→ q′c
‽a−→ q′′c ∧ (q′c, qa), (q

′′
c , q
′
a) ∈ Φ]].

Since the synchronous closed loop system does not contain τ actions in it alphabet, there
are following three effects on the above transfer conditions.

• The above condition 2 will be vacuously satisfied.

• The condition 3 will be reduced to the simpler form,

∀qc, qa, q′a.
[
qa

τ−→ q′a ∧ (qc, qa) ∈ Φ⇒ (qc, q
′
a) ∈ Φ

]
.

• And similarly condition 4 will be reduced to:

∀ ‽ a, qc, qa, q′a.[qa
‽a−→ q′a ∧ (qc, qa) ∈ Φ⇒ ∃q′c.[qc

‽a−→ q′c ∧ (q′c, q
′
a) ∈ Φ]].

But to show that these conditions hold, we need to know whether an action label ‽a occurring
in each condition is either an input or output action with respect to P , i.e. ‽a ∈ I?P or ‽a ∈ I !P
(see the partition of the set I in Page 11).
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Thus, we get six transfer conditions in total which are shown in Table 3. Furthermore,
for each case we apply case distinction based on the structure of µ and ν. In each subcase we
use C1,C2,C3,C4, and C5 (the conditions from the definition of Φ) to determine the relation
between free process variable p, p′ and then prove the conclusion as shown in Table 3. The
notation τ = τ‽a(‽a) is used to denote that the τ action is a result of abstraction of the
communicated action ‽a.

Table 3: Proof structure of Theorem 1.
Case No. Hypothesis Conclusion

T1 qc
‽a−→ q′c ∧ (qc, qa) ∈ Φ ∧ ‽a ∈ I?P . ∃q′a, q′′a .[qa

τ∗

−−−� q′a
‽a−→ q′′a ∧ (qc, q

′
a), (q

′
c, q
′′
a) ∈ Φ.]

T2 qc
‽a−→ q′c ∧ (qc, qa) ∈ Φ ∧ ‽a ∈ I !P . ∃q′a, q′′a .[qa

τ∗

−−−� q′a
‽a−→ q′′a ∧ (qc, q

′
a), (q

′
c, q
′′
a) ∈ Φ.]

T3 qa
τ−→ q′a ∧ (qc, qa) ∈ Φ ∧ τ = τ‽a(‽a) ∧ ‽a ∈ I?P . (qc, q

′
a) ∈ Φ.

T4 qa
τ−→ q′a ∧ (qc, qa) ∈ Φ ∧ τ = τ‽a(‽a) ∧ ‽a ∈ I !P . (qc, q

′
a) ∈ Φ.

T5 qa
‽a−→ q′a ∧ (qc, qa) ∈ Φ ∧ ‽a ∈ I?P . ∃q′c.[qc

‽a−→ q′c ∧ (q′c, q
′
a) ∈ Φ.]

T6 qa
‽a−→ q′a ∧ (qc, qa) ∈ Φ ∧ ‽a ∈ I !P . ∃q′c.[qc

‽a−→ q′c ∧ (q′c, q
′
a) ∈ Φ.]

Using the above ideas, we now show that the relation Φ is a branching bisimulation
relation.

T1. Let qc
‽a−→ q′c ∧ (qc, qa) ∈ Φ ∧ ‽a ∈ I?P . Then from the construction of Φ we know that,

qc ≡ ∂H(p ‖γ s),
qa ≡ ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s).

Furthermore, from the semantics of ‖γ we know that,

q′c ≡ ∂H(p1 ‖γ s1).

Thus, the given transition qc
‽a−→ q′c will be of the form ∂H(p ‖γ s)

‽a−→ ∂H(p1 ‖γ s1).
From the SOS rule of ‖γ , and from the assumption ‽a ∈ I?P we infer that,

p
?a−→ p1 ∧ s

!a−→ s1. (1)

Before showing that the state qa can perform action ‽a, we need to retrieve the rela-
tion between process terms ∂H(p ‖γ s) and ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s) from the conditions
C1,C2,C3,C4, and C5. We apply case distinction based on the structure of µ and ν.

(a) when µ = ε ∧ ν = ε. Then the state qa is of the form ∇(p′ ‖γ′ B[ε, ε] ‖γ′ s).
Note that the states qc, qa can be Φ-related only by C1 because of the assumption

µ = ε ∧ ν = ε. Thus, p′ = p. Moreover from the transition s
!a−→ s1 in Equation 1,

we infer that

∇(p ‖γ′ B[ε, ε] ‖γ′ s)
‽a−→ ∇(p ‖γ′ B[ε⊕ ‽a, ε] ‖γ′ s1).

Substituting p = p1, s = s1, s
′ = s, p′ = p, ν = ε and µ = {‽a} in C3 and from the

transition ∂H(p ‖γ s)
‽a−→ ∂H(p1 ‖γ s1) we infer that,(

∂H(p1 ‖γ s1),∇(p ‖γ′ B[ε⊕ ‽a, ε] ‖γ′ s1)
)
∈ Φ.
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(b) when µ 6= ε ∧ ν = ε. Similar as Subcase T1.d.

(c) when µ = ε ∧ ν 6= ε. Similar as Subcase T1.d.

(d) when µ 6= ε ∧ ν 6= ε. Then the state qa is of the form ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s).
Note that the states qc and qa can be Φ-related either by C4 or C5 because of the
assumption that µ 6= ε ∧ ν 6= ε. Thus we get following two cases.

i. Either (qc, qa) ∈ Φ by C4. Then using the definition of Φ we get,

∃p′′, s′, s′′.[∂H(p′ ‖γ s
′)

~ν
�−−− ∂H(p′′ ‖γ s

′′)
~µ
−−−� ∂H(p ‖γ s)].

Moreover from the transition s
!a−→ s1 in Equation 1 (Page 28) we infer that,

∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)
‽a−→ ∇(p′ ‖γ′ B[µ⊕ ‽a, ν] ‖γ′ s1).

Recall the given transitions ∂H(p′′ ‖γ s′′)
~µ
−−−� ∂H(p ‖γ s) and ∂H(p ‖γ s)

‽a−→
∂H(p1 ‖γ s1). This implies that,

∂H(p′′ ‖γ s
′′)

~µ.‽a
−−−−� ∂H(p1 ‖γ s1).

Note that the sequence ~µ. ‽ a is a sequence over the multiset µ ⊕ ‽a. Now
substitute p′′ = p′′, s′′ = s′′, p′ = p′, s′ = s′, p = p1, s = s1, ν = ν, and µ =

µ ⊕ ‽a in C4 and from the transitions ∂H(p′ ‖γ s′)
~ν
�−−− ∂H(p′′ ‖γ s′′)

~µ.‽a
−−−−�

∂H(p1 ‖γ s1) we infer that,(
∂H(p1 ‖γ s1),∇(p′ ‖γ′ B[µ⊕ ‽a, ν] ‖γ′ s1)

)
∈ Φ.

ii. Or (qc, qa) ∈ Φ by C5. Then using the definition of Φ we get,

∃p′′, s′, s′′.[∂H(p ‖γ s)
~ν
−−−� ∂H(p′′ ‖γ s

′′)
~µ
�−−− ∂H(p′ ‖γ s

′)].

Using the transition s
!a−→ s1 from Equation 1 we get,

∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)
‽a−→ ∇(p′ ‖γ′ B[µ⊕ ‽a, ν] ‖γ′ s1).

Now we need to show that the state ∇(p′ ‖γ′ B[µ⊕ ‽a, µ] ‖γ′ s1) is Φ-related

to the state ∂H(p1 ‖γ s1). From the hypothesis we have ∂H(p′′ ‖γ s′′)
~ν
�−−−

∂H(p ‖γ s)
‽a
−−−� ∂H(p1 ‖γ s1). Then, applying generalised diamond property

(Lemma 1) we get,

∃p′1, s′1.[∂H(p′′ ‖γ s
′′)

‽a−→ ∂H(p′1 ‖γ s
′
1) ∧ ∂H(p1 ‖γ s1)

~ν
−−−� ∂H(p′1 ‖γ s

′
1)].

Recall the given transition ∂H(p′ ‖γ s′)
~µ
−−−� ∂H(p′′ ‖γ s′′). Then from transi-

tivity of transition relation → we get,

∂H(p′ ‖γ s
′)

~µ.‽a
−−−−� ∂H(p′1 ‖γ s

′
1).
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Substituting µ = µ ⊕ ‽a, ν = ν, p′ = p′, s′ = s′, p′′ = p′1, s
′′ = s′1, p = p1, s =

s1 in C5 and from the transitions ∂H(p1 ‖γ s1)
~ν
−−−� ∂H(p′1 ‖γ s′1)

~µ.‽a
�−−−−

∂H(p′ ‖γ s′) we infer that,(
∂H(p1 ‖γ s1),∇(p′ ‖γ′ B[µ⊕ ‽a, ν] ‖γ′ s1)

)
∈ Φ.

T2. Let qc
‽a−→ q′c ∧ (qc, qa) ∈ Φ ∧ ‽a ∈ I !P . Then from the construction of Φ we know that,

qc ≡ ∂H(p ‖γ s),
qa ≡ ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s).

Furthermore, from the semantics of ‖γ we know that,

q′c ≡ ∂H(p1 ‖γ s1).

Thus the given transition qc
‽a−→ q′c will be of the form ∂H(p ‖γ s)

‽a−→ ∂H(p1 ‖γ s1).
From the SOS rule of ‖γ and from the assumption that ‽a ∈ I !P we infer that,

p
!a−→ p1 ∧ s

?a−→ s1. (2)

Before showing that the state qa can perform action ‽a, we need to retrieve the re-
lation between process terms ∂H(p ‖γ s) and ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s) using conditions
C1,C2,C3,C4, and C5. So apply case distinction based on the structure of µ and ν.

(a) when µ = ε and ν = ε. Then the state qa is of the form ∇(p′ ‖γ′ B[ε, ε] ‖γ′ s).
Note the states qc, and qa can be Φ-related only by C1 because of the assumption

µ = ε and ν = ε. Thus, p′ = p. From the transition p
!a−→ p1 in Equation 2 we infer

that,
∇(p ‖γ′ B[ε, ε] ‖γ′ s)

τ−→ ∇(p1 ‖γ′ B[ε, {‽a}] ‖γ′ s).

Using C2 and from the given transition ∂H(p ‖γ s)
‽a−→ ∂H(p1 ‖γ s1) we get,(

∂H(p ‖γ s),∇(p1 ‖γ′ B[ε, {‽a}] ‖γ′ s)
)
∈ Φ.

Moreover from the transition s
?a−→ s1 (Equation 2,Page 30) we know that,

∇(p1 ‖γ′ B[ε, {‽a}] ‖γ′ s)
‽a−→ ∇(p1 ‖γ′ B[ε, ε] ‖γ′ s1).

Substituting p = p1, µ = ε, and ν = ε in C1 we get,(
∂H(p1 ‖γ s1),∇(p1 ‖γ′ B[ε, ε] ‖γ′ s1)

)
∈ Φ.

(b) when µ = ε and ν 6= ε. Similar as Subcase T2.d.

(c) when µ 6= ε and ν = ε. Similar as Subcase T2.d.

(d) when µ 6= ε and ν 6= ε. Then the state qa is of the form ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s).
Note that the states qc and qa can be Φ-related either by C4 or C5 because of the
assumption that µ 6= ε and ν 6= ε. Thus, we get following two cases:
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∂H(p′′ ‖γ s′′)

∂H(p′ ‖γ s′)

∂H(p ‖γ s)

∂H(p′1 ‖γ s′1)
∂H(p1 ‖γ s1)

∂H(p′2 ‖γ s′2)

∂H(p2 ‖γ s2)

~ν

~µ

~ν1

‽a

‽a

~ν2

~ν1~µ

Figure 10: Proof in Subcase C2.d.A.

i. Either (qc, qa) ∈ Φ by C4. Then, ∃p′′, s′, s′′.[∂H(p′ ‖γ s′)
~ν
�−−− ∂H(p′′ ‖γ s′′)

~µ
−−−�

∂H(p ‖γ s)]. By applying generalised diamond property (Lemma 1) at state
∂H(p′′ ‖γ s′′) we get,

∃p2, s2.[∂H(p′ ‖γ s
′)

~µ
−−−� ∂H(p2 ‖γ s2)

~ν
�−−− ∂H(p ‖γ s).] (3)

The state qa can perform action ‽a only if ‽a ∈′ ν. Otherwise the plant
component p′ in state qa will have to increase the content ν output bag ‽a.
Thus, we have following two possibilities:

A. Either ‽a ∈′ ν. Then there exists p′1, s
′
1, p
′
2, s
′
2 such that the transition

∂H(p ‖γ s)
~ν
−−−� ∂H(p2 ‖γ s2) derived in the Equation 3 will be of the

following form (see Figure 10),

∂H(p ‖γ s)
~ν1−−−� ∂H(p′1 ‖γ s

′
1)

‽a−→ ∂H(p′2 ‖γ s
′
2)

~ν2−−−� ∂H(p2 ‖γ s2)] (4)

with ~ν1. ‽ a.~ν2 being a sequence over the multiset ~ν. But, the transition

∂H(p ‖γ s)
‽a−→ ∂H(p1 ‖γ s1) is given. So, applying generalised diamond

property (Lemma 1) at the state ∂H(p ‖γ s) we get ,

∃p′′2, s′′2.[∂H(p′1 ‖γ s
′
1)

‽a−→ ∂H(p′′2 ‖γ s
′′
2)

~ν1
�−−− ∂H(p1 ‖γ s1)].

But we know that there exists the following transition,

∂H(p′1 ‖γ s
′
1)

‽a−→ ∂H(p′2 ‖γ s
′
2).
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And since synchronous closed loop systems are deterministic we can con-
clude that,

p′2 ↔b p
′′
2 ∧ p′2 ↔b s

′′
2.

Using the transition ∂H(p′2 ‖γ s′2)
~ν2−−−� ∂H(p2 ‖γ s2) derived in Equation 4

and from the above transition we get,

∂H(p1 ‖γ s1)
~ν1.~ν2−−−−−� ∂H(p2 ‖γ s2). (5)

Now using the above derived facts in the state ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s).
From the transition s

?a−→ s1 (Equation 2, Page 30) and the assumption
‽a ∈′ ν we get,

∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)
‽a−→ ∇(p′ ‖γ′ B[µ, ν 	 ‽a] ‖γ′ s1).

Note that ~ν1.~ν2 is a sequence over the multiset ν 	 ‽a. Substituting p =
p1, s = s1, p

′′ = p2, s
′′ = s2, p

′ = p′, s′ = s′, µ = µ, ν = ν 	 ‽a in C5 and
from the following transitions,

∂H(p1 ‖γ s1)
~ν1.~ν2−−−−−� ∂H(p2 ‖γ s2)

~µ
�−−− ∂H(p′ ‖γ s

′) (Equations 3 and 5).

we infer that,(
∂H(p1 ‖γ s1),∇(p′ ‖γ′ B[µ, ν 	 ‽a] ‖γ′ s1)

)
∈ Φ.

B. Or ‽a 6∈′ ν. From Equation 3 (Page 31) we have the transition ∂H(p ‖γ s)
~ν
−−−�

∂H(p2 ‖γ s2) and the transition ∂H(p ‖γ s)
‽a−→ ∂H(p1 ‖γ s1) is given. So

applying the generalised diamond property (Lemma 1) at the state ∂H(p ‖γ s)
we get (See Figure 11),

∃p′2, s′2.[∂H(p1 ‖γ s1)
~ν
−−−� ∂H(p′2 ‖γ s

′
2) ∧ ∂H(p2 ‖γ s2)

‽a−→ ∂H(p′2 ‖γ s
′
2)].

Using the above derived transition ∂H(p2 ‖γ s2)
‽a−→ ∂H(p′2 ‖γ s′2) and the

fact that ‽a ∈ I !P we get,

p2
!a−→ p′2 (SOS rule of ‖γ .) (6)

From the Equation 3 (Page 31) we have the transition ∂H(p′ ‖γ s′)
~µ
−−−�

∂H(p2 ‖γ s2) and from hypothesis we have(
∂H(p ‖γ s),∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)

)
∈ Φ.

By applying result of Proposition 1 in the transition ∂H(p′ ‖γ s′)
~µ
−−−�

∂H(p2 ‖γ s2) we infer that,

p′
fi(~µ)
−−−−−� p2 (SOS rule of ‖γ).
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∂H(p′′ ‖γ s′′)

∂H(p′ ‖γ s′)

∂H(p ‖γ s)

∂H(p2 ‖γ s2)

∂H(p1 ‖γ s1)

∂H(p′2 ‖γ s′2)

~ν

~µ

~µ ~ν

‽a

‽a ~ν

Figure 11: Proof in Subcase C2.d.B.

Furthermore using the above fact at state ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s) we get,

∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)
τ∗

−−−� ∇(p2 ‖γ′ B[ε, ν] ‖γ′ s).

In addition from the transition p2
!a−→ p′2 (Equation 6, page 32) we infer,

∇(p2 ‖γ′ B[ε, ν] ‖γ′ s)
τ−→ ∇(p′2 ‖γ′ B[ε, ν ⊕ ‽a] ‖γ′ s).

Then from C2 and the transition ∂H(p ‖γ s)
~ν.‽a
−−−−� ∂H(p′2 ‖γ s′2) we get,(

∂H(p ‖γ s),∇(p′2 ‖γ′ B[ε, ν ⊕ ‽a] ‖γ′ s)
)
∈ Φ.

And from the transition s
?a−→ s1 derived in Equation 2 (Page 30) we get,

∇(p′2 ‖γ′ B[ε, ν ⊕ ‽a] ‖γ′ s)
‽a−→ ∇(p′2 ‖γ′ B[ε, ν] ‖γ′ s1).

Substituting p = p1, s = s1, p
′ = p′2, s

′ = s′2, µ = ε, ν = ν in C2 and from

the transition ∂H(p1 ‖γ s1)
~ν
−−−� ∂H(p′2 ‖γ s′2) we infer that,(

∂H(p1 ‖γ s1),∇(p′2 ‖γ′ B[ε, ν] ‖γ′ s1)
)
∈ Φ.

ii. Or (qc, qa) ∈ Φ by C5. Then ∃p′′, s′, s′′.[∂H(p ‖γ s)
~ν
−−−� ∂H(p′′ ‖γ s′′)

~µ
�−−−

∂H(p′ ‖γ s′)]. Again there are two possibilities:

33



∂H(p ‖γ s)

∂H(p′1 ‖γ s′1) ∂H(p1 ‖γ s1)

∂H(p′2 ‖γ s′2)

∂H(p′′ ‖γ s′′)

∂H(p′ ‖γ s′)

~ν1

‽a

‽a

~ν1

~ν2

~µ

Figure 12: Proof in Subcase C2.e.ii.

A. Either ‽a ∈′ ν. Then there exists p′1, s
′
1, p
′
2, s
′
2 such that the transition

∂H(p ‖γ s)
~ν
−−−� ∂H(p′′ ‖γ s′′) will be of the following form (see Figure 12),

∂H(p ‖γ s)
~ν1−−−� ∂H(p′1 ‖γ s

′
1)

‽a−→ ∂H(p′2 ‖γ s
′
2)

~ν2−−−� ∂H(p′′ ‖γ s
′′)]

with ~ν1. ‽ a.~ν2 being a sequence over the multiset ~ν. But the transition

∂H(p ‖γ s)
‽a−→ ∂H(p1 ‖γ s1) is given. So applying generalised diamond

property (See Figure 12) at state ∂H(p ‖γ s) we get,

∂H(p1 ‖γ s1)
~ν1−−−� ∂H(p′2 ‖γ s

′
2).

Recall that ∂H(p′2 ‖γ s′2)
~ν2−−−� ∂H(p′′ ‖γ s′′), so we have

∂H(p1 ‖γ s1)
~ν1.~ν2−−−−−� ∂H(p′′ ‖γ s

′′).

Using the above derived facts in asynchronous transition system at state

∇(p′ ‖γ′ B[µ, ν] ‖γ′ s). From the transition s
?a−→ s1 derived in Equation 2

(Page 30) we get,

∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)
‽a−→ ∇(p′ ‖γ′ B[µ, ν 	 ‽a] ‖γ′ s1).

Note that ~ν1.~ν2 is a sequence over the multiset ν 	 ‽a. By substituting
p = p1, s = s1, p

′ = p′, s′ = s′, p′′ = p′′, s′′ = s′′, ν = ν 	 ‽a, µ = µ in C5
and from the transitions

∂H(p1 ‖γ s1)
~ν1.~ν2−−−−−� ∂H(p′′ ‖γ s

′′)
~µ
�−−− ∂H(p′ ‖γ s

′)

we infer that,(
∂H(p1 ‖γ s1),∇(p′ ‖γ′ B[µ, ν 	 ‽a] ‖γ′ s1)

)
∈ Φ.
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B. Or ‽a 6∈′ ν. Then from hypothesis we have,

∂H(p1 ‖γ s1)
‽a←− ∂H(p ‖γ s)

~ν
−−−� ∂H(p′′ ‖γ s

′′)

So by applying generalised diamond property (Lemma 1) at state ∂H(p ‖γ s)
we get,

∃p′1, s′1.[∂H(p′′ ‖γ s
′′)

‽a−→ ∂H(p′1 ‖γ s
′
1)

~ν
�−−− ∂H(p1 ‖γ s1)]

which further implies that,

p′′
!a−→ p′1 (from SOS rule of ‖γ and ‽ a ∈ I !P ). (7)

Furthermore, from the hypothesis we have the transition ∂H(p′ ‖γ s′)
~µ
−−−�

∂H(p′′ ‖γ s′′) and
(
∂H(p ‖γ s),∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)

)
∈ Φ. By applying

result of Proposition 1 in the above transition ∂H(p′ ‖γ s′)
~µ
−−−� ∂H(p′′ ‖γ s′′)

we get p′
fi(µ)
−−−−−� p′′. Thus,

∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)
τ∗

−−−� ∇(p′′ ‖γ′ B[ε, ν] ‖γ′ s).

From Equation 7 we get,

∇(p′′ ‖γ′ B[ε, ν] ‖γ′ s)
τ−→ ∇(p′1 ‖γ′ B[ε, ν ⊕ ‽a] ‖γ′ s).

Using C2 and the transition ∂H(p ‖γ s)
~ν.‽a
−−−−� ∂H(p′1 ‖γ s′1) we infer that,(

∂H(p ‖γ s),∇(p′1 ‖γ′ B[ε, ν ⊕ ‽a] ‖γ′ s)
)
∈ Φ.

And from the transition s
?a−→ s1 derived in Equation 2 (Page 30) we get,

∇(p′1 ‖γ′ B[ε, ν ⊕ ‽a] ‖γ′ s)
‽a−→ ∇(p′1 ‖γ′ B[ε, ν] ‖γ′ s1).

By substituting p = p1, s = s1, p
′ = p′1, s

′ = s′1, ν = ν, µ = ε in C2 and

from the transition ∂H(p1 ‖γ s1)
~ν
−−−� ∂H(p′1 ‖γ s′1) we infer that,(

∂H(p1 ‖γ s1),∇(p′1 ‖γ′ B[ε, ν] ‖γ′ s1)
)
∈ Φ.

T3. Let qa
τ−→ q′a ∧ (qc, qa) ∈ Φ ∧ τ = τ‽a(‽a) ∧ ‽a ∈ I?P . Then from the construction of Φ

relation we know that,

qa ≡ ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s),
qc ≡ ∂H(p ‖γ s).

From the transition qa
τ−→ q′a and the abstraction of action ‽a ∈ I?P , i.e. τ = τ‽a(‽a) we

know that ‽a ∈′ µ. Furthermore from the semantics of ‖γ′ and consumption of action
‽a by plant we infer that,

q′a ≡ ∇(p′1 ‖γ′ B[µ	 ‽a, ν] ‖γ′ s).
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Then the transition qa
τ−→ q′a will be of the form ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)

τ−→ ∇(p′1 ‖γ′
B[µ	 ‽a, ν] ‖γ′ s). And from the SOS rule of ‖γ′ and the assumption that ‽a ∈ I?P , we
get,

p′
?a−→ p′1. (8)

Before showing that the state qc is Φ-related to q′a, we need to retrieve the relation
between free process variables ∂H(p ‖γ s) and ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s) using conditions
from the definition of Φ. So applying case distinction on the structure of µ and ν we
get following cases.

(a) when µ = {‽a} and ν = ε. Then the transition qa
τ−→ q′a will be of the form

∇(p′ ‖γ′ B[{‽a}, ε] ‖γ′ s)
τ−→ ∇(p′1 ‖γ′ B[ε, ε] ‖γ′ s). Since the input bag contains a

single element ‽a, so we know that,

∃s′.[∇(p′ ‖γ′ B[ε, ε] ‖γ′ s
′)

‽a−→ ∇(p′ ‖γ′ B[{‽a}, ε] ‖γ′ s)]

which further implies that,

s′
!a−→ s (SOS rule of ‖γ′ .)

Moreover from the transition p′
?a−→ p′1 (Equation 8) and above transition we get,

∂H(p′ ‖γ s
′)

‽a−→ ∂H(p′1 ‖γ s).

Thus from the condition C3 and the above transition we infer that,(
∂H(p′1 ‖γ s),∇(p′ ‖γ′ B[{‽a}, ε] ‖γ′ s)

)
∈ Φ.

And finally from C1 we conclude that,(
∂H(p′1 ‖γ s),∇(p′1 ‖γ′ B[ε, ε] ‖γ′ s)

)
∈ Φ.

(b) when µ = {‽a} and ν 6= ε. Similar as case T3.d.

(c) when ‽a ∈′ µ and ν = ε. Similar as case T3.d.

(d) when ‽a ∈′ µ and ν 6= ε. Then the transition qa
τ−→ q′a will be of the form

∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)
τ−→ ∇(p′1 ‖γ′ B[µ	 ‽a, ν] ‖γ′ s). Note that the states qc and

qa can be Φ-related either by C4 or C5.

i. Either (qc, qa) ∈ Φ by C4. Then, ∃p′′, s′, s′′.[∂H(p′ ‖γ s′)
~ν
�−−− ∂H(p′′ ‖γ s′′)

~µ
−−−�

∂H(p ‖γ s)]. Applying generalised diamond property (Lemma 1) at state ∂H(p′′ ‖γ s′′)
we get,

∃p2, s2.[∂H(p′ ‖γ s
′)

~µ
−−−� ∂H(p2 ‖γ s2)

~ν
�−−− ∂H(p ‖γ s)].

Then there exists p′′1, s
′′
1, p
′′
2, s
′′
2 such that the above transition ∂H(p′ ‖γ s′)

~µ
−−−�

∂H(p2 ‖γ s2) will be of the following form,

∂H(p′ ‖γ s
′)

~µ1−−−� ∂H(p′′1 ‖γ s
′′
1)

‽a−→ ∂H(p′′2 ‖γ s
′′
2)

~µ2−−−� ∂H(p2 ‖γ s2)
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∂H(p′1 ‖γ s′1) ∂H(p′′1 ‖γ s′′1)
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‽a
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Figure 13: Proof in Subcase C3.d.i.

with ~µ1. ‽ a.~µ2 being a sequence over the multiset µ. Thus we have,

∂H(p′ ‖γ s
′)

~µ1.‽a−−−−−� ∂H(p′′2 ‖γ s
′′
2).

But, the transition p′
?a−→ p′1 (Equation 8, Page 36) is given, and from the

result of Lemma 2 we know that (see Figure 13),

∃s′1.[∂H(p′ ‖γ s
′)

‽a−→ ∂H(p′1 ‖γ s
′
1)

~µ1−−−� ∂H(p′′2 ‖γ s
′′
2)].

Hence,

∂H(p′1 ‖γ s
′
1)

~µ1.~µ2−−−−−� ∂H(p2 ‖γ s2).

Applying the above derived facts in the asynchronous closed loop system at
state ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s) such that,(

∂H(p ‖γ s),∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)
)
∈ Φ.

Moreover from the transition p′
?a−→ p′1 (Equation 8, Page 36) we get,

∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)
τ−→ ∇(p′1 ‖γ′ B[µ	 ‽a, ν] ‖γ′ s).

Note that ~µ1.~µ2 is a sequence over the multiset µ 	 ‽a. By substituting p =
p, s = s, p′′ = p2, s

′′ = s2, p
′ = p′1, s

′ = s′1, µ = µ	‽a, ν = ν in C5 and from the

transitions ∂H(p′1 ‖γ s′1)
~µ1.~µ2−−−−−� ∂H(p2 ‖γ s2)

~ν
�−−− ∂H(p ‖γ s) we infer that,(

∂H(p ‖γ s),∇(p′1 ‖γ′ B[µ	 ‽a, ν] ‖γ′ s)
)
∈ Φ.

ii. Or (qc, qa) ∈ Φ by C5. Then

∃p′′, s′, s′′.[∂H(p ‖γ s)
~ν
−−−� ∂H(p′′ ‖γ s

′′)
~µ
�−−− ∂H(p′ ‖γ s

′)].
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Moreover there exists p′′1, s
′′
1, p
′′
2, s
′′
2 such that the above given transition ∂H(p′ ‖γ s′)

~µ
−−−�

∂H(p′′ ‖γ s′′) is of the following form,

∂H(p′ ‖γ s
′)

~µ1−−−� ∂H(p′′1 ‖γ s
′′
1)

‽a−→ ∂H(p′′2 ‖γ s
′′
2)

~µ2−−−� ∂H(p′′ ‖γ s
′′)

with ~µ1. ‽ a.~µ2 being a sequence over the multiset µ. Thus we have,

∂H(p′ ‖γ s
′)

~µ1.‽a−−−−−� ∂H(p′′2 ‖γ s
′′
2).

Using the transition p′
?a−→ p′1 (Equation 8 in Page 36), and from the result of

Lemma 2 we know that,

∃s′1.[∂H(p′ ‖γ s
′)

‽a−→ ∂H(p′1 ‖γ s
′
1)

~µ1−−−� ∂H(p′′2 ‖γ s
′′
2)].

Hence,

∂H(p′1 ‖γ s
′
1)

~µ1.~µ2−−−−−� ∂H(p′′ ‖γ s
′′).

Applying the above derived facts in the asynchronous closed loop system at
state ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s) such that,(

∂H(p ‖γ s),∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)
)
∈ Φ (hypothesis.)

Again from the transition p′
?a−→ p′1 (Equation 8, Page 36) we infer that,

∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)
τ−→ ∇(p′1 ‖γ′ B[µ	 ‽a, ν] ‖γ′ s).

Note that ~µ1.~µ2 is a sequence over the multiset µ 	 ‽a. By substituting p =
p, s = s, p′′ = p′′, s′′ = s′′, p′ = p′1, s

′ = s′1, µ = µ	‽a, ν = ν in C5 and from the

transitions ∂H(p′1 ‖γ s′1)
~µ1.~µ2−−−−−� ∂H(p′′ ‖γ s′′)

~ν
�−−− ∂H(p ‖γ s) we infer that,(

∂H(p ‖γ s),∇(p′1 ‖γ′ B[µ	 ‽a, ν] ‖γ′ s)
)
∈ Φ.

T4. Let qa
τ−→ q′a ∧ (qc, qa) ∈ Φ ∧ τ = τ‽a(‽a) ∧ ‽a ∈ I !P . Then from the construction of Φ

relation we know that,

qa ≡ ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s),
qc ≡ ∂H(p ‖γ s).

The transition qa
τ−→ q′a with ‽a ∈ I !P implies that plant is increasing the contents of its

output bag content ν by ‽a. Thus from the semantics of ‖γ′ we know that,

q′a ≡ ∇(p′1 ‖γ′ B[µ, ν ⊕ ‽a] ‖γ′ s).

Then the transition qa
τ−→ q′a will be of the form ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)

τ−→ ∇(p′1 ‖γ′
B[µ, ν ⊕ ‽a] ‖γ′ s). Furthermore from the SOS rule of ‖γ′ and the assumption that

‽a ∈ I !P we know that,

p′
!a−→ p′1. (9)
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Before showing that the state qc is Φ-related to q′a, we need to retrieve the relation
between free process variables ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s) and ∂H(p ‖γ s) using conditions
given in the definition of Φ. So applying case distinction on the structure of µ and ν we
get following cases.

(a) when µ = ε and ν = ε. Then the states qc, qa can be Φ-related only by C1, because
of the assumption that µ = ε and ν = ε. Thus, p′ = p and by hypothesis we have,(

∂H(p ‖γ s),∇(p ‖γ′ B[ε, ε] ‖γ′ s)
)
∈ Φ.

Moreover from the transition p
!a−→ p′1 (in Equation 9) we get,

∇(p ‖γ′ B[ε, ε] ‖γ′ s)
τ−→ ∇(p′1 ‖γ′ B[ε, {‽a}] ‖γ′ s).

Also from the condition of well posedness we know that,

∃s1.[s
?a−→ s1].

And from SOS rule of ‖γ , Equation 9, and the above equation we infer that,

∂H(p ‖γ s)
‽a−→ ∂H(p′1 ‖γ s1).

Substituting p′ = p′1, s
′ = s1, p = p, s = s, ν = {‽a}, µ = ε in C2 and from the

above transition ∂H(p ‖γ s)
‽a−→ ∂H(p′1 ‖γ s1) we infer that,(

∂H(p ‖γ s),∇(p′1 ‖γ′ B[ε, {‽a}] ‖γ′ s)
)
∈ Φ.

(b) when µ = ε and ν 6= ε. Similar as Case T4.d.

(c) when µ 6= ε and ν = ε. Similar as Case T4.d.

(d) when µ 6= ε and ν 6= ε. Then the transition qa
τ−→ q′a is of the form ∇(p′ ‖γ′

B[µ, ν] ‖γ′ s)
τ−→ ∇(p′1 ‖γ′ B[µ, ν ⊕ ‽a] ‖γ′ s). Note that the states qc, qa can be

Φ-related either by C4 or C5.

i. Either (qc, qa) ∈ Φ by C4. Then, ∃p′′, s′, s′′.[∂H(p′ ‖γ s′)
~ν
�−−− ∂H(p′′ ‖γ s′′)

~µ
−−−�

∂H(p ‖γ s)]. From the transition p′
!a−→ p′1 (Equation 9) and applying well

posedness condition at state ∂H(p′ ‖γ s′) we get,

∃s′1.[s′
?a−→ s′1] (well posedness condition.)

And using SOS rule of ‖γ we get,

∂H(p′ ‖γ s
′)

‽a−→ ∂H(p′1 ‖γ s
′
1). (10)

Recall the given transition ∂H(p′′ ‖γ s′′)
~ν
−−−� ∂H(p′ ‖γ s′), and from the above

transition we infer that,

∂H(p′′ ‖γ s
′′)

~ν.‽a
−−−−� ∂H(p′1 ‖γ s

′
1).
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Note that ~ν. ‽ a is a sequence over the multiset ν ⊕ ‽a. Substituting p′′ =
p′′, s′′ = s′′, p′ = p′1, s

′ = s′1, p = p, s = s, µ = µ, ν = ν ⊕ ‽a in C4 and from the

transitions ∂H(p′1 ‖γ s′1)
~ν.‽a
�−−−− ∂H(p′′ ‖γ s′′)

~µ
−−−� ∂H(p ‖γ s) we infer that,(

∂H(p ‖γ s),∇(p′1 ‖γ′ B[µ, ν ⊕ ‽a] ‖γ′ s)
)
∈ Φ.

ii. Or (qc, qa) ∈ Φ by C5. Then,

∃p′′, s′, s′′.[∂H(p ‖γ s)
~ν
−−−� ∂H(p′′ ‖γ s

′′)
~µ
�−−− ∂H(p′ ‖γ s

′)].

Using the same reasoning as in the previous subcase we can derive the Equa-
tion 10 i.e.,

∂H(p′ ‖γ s
′)

‽a−→ ∂H(p′1 ‖γ s
′
1).

Recall from the hypothesis we have the transition ∂H(p′ ‖γ s′)
~µ
−−−� ∂H(p′′ ‖γ s′′).

So applying generalised diamond property (Lemma 1) at state ∂H(p′ ‖γ s′) we
get,

∃p2, s2.[∂H(p′1 ‖γ s
′
1)

~µ
−−−� ∂H(p2 ‖γ s2)

‽a←− ∂H(p′′ ‖γ s
′′)].

Also from the hypothesis we have the transition ∂H(p ‖γ s)
~ν
−−−� ∂H(p′′ ‖γ s′′),

and from transitivity of the transition relation we get,

∂H(p ‖γ s)
~ν.‽a
−−−−� ∂H(p2 ‖γ s2).

Note that ~ν. ‽ a is a sequence over the multiset ν ⊕ ‽a. Now substituting
p = p, s = s, p′ = p′1, s

′ = s′1, p
′′ = p′′, s′′ = s′′, µ = µ, ν = ν ⊕ ‽a in C5

and from the transitions ∂H(p ‖γ s)
~ν.‽a
−−−−� ∂H(p2 ‖γ s2)

~µ
�−−− ∂H(p′1 ‖γ s′1)

we infer that, (
∂H(p ‖γ s),∇(p′1 ‖γ′ B[µ, ν ⊕ ‽a] ‖γ′ s)

)
∈ Φ.

T5. Let qa
‽a−→ q′a∧ (qc, qa) ∈ Φ∧‽a ∈ I?P . Then from the construction of Φ relation we know

that,

qa ≡ ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s),
qc ≡ ∂H(p ‖γ s).

From the transition qa
‽a−→ q′a we know that the supervisor component s in the state

qa will increase the queue content µ by performing action ‽a. Furthermore, from the
semantics of ‖γ′ we know that,

q′a ≡ ∇(p′ ‖γ′ B[µ⊕ ‽a, ν] ‖γ′ s1).

Then the transition qa
‽a−→ q′a will be of the form ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)

‽a−→ ∇(p′ ‖γ′
B[µ ⊕ ‽a, ν] ‖γ′ s1). Thus, from the semantics of ‖γ′ and the assumption that ‽a ∈ I?P
we know that,

s
!a−→ s1. (11)
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Before we show that the state qc perform the action ‽a we need to retrieve the relation
between free process variables ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s) and ∂H(p ‖γ s). So applying case
distinction on the structure of µ and ν.

(a) when µ = ε and ν = ε. Then from C1 we have p′ = p and the transition qa
‽a−→ q′a

is of the form ∇(p ‖γ′ B[ε, ε] ‖γ′ s)
‽a−→ ∇(p ‖γ′ B[{‽a}, ε] ‖γ′ s1). Moreover from

the transition s
!a−→ s1 (Equation 11) and by the condition of well posedness we

know that,

∃p1.[p
?a−→ p1] (well posedness condition.)

And using SOS rule of ‖γ we get,

∂H(p ‖γ s)
‽a−→ ∂H(p1 ‖γ s1).

From the above transition and condition C3 we infer that,(
∂H(p1 ‖γ s1),∇(p ‖γ′ B[{‽a}, ε] ‖γ′ s1)

)
∈ Φ.

(b) when µ = ε and ν 6= ε. Similar as Case T5.d.

(c) when µ 6= ε and ν = ε. Similar as Case T5.d.

(d) when µ 6= ε and ν 6= ε. Note that the states qc, qa can be Φ-related either by C4
or C5.

i. Either (qc, qa) ∈ Φ by C4. Then, ∃p′′, s′, s′′.[∂H(p′ ‖γ s′)
~ν
�−−− ∂H(p′′ ‖γ s′′)

~µ
−−−�

∂H(p ‖γ s)]. And from the transition s
!a−→ s1 (Equation 11, Page 40),

∃p1.[p
?a−→ p1] (Well posedness condition.).

Using SOS rule of ‖γ we get,

∂H(p ‖γ s)
‽a−→ ∂H(p1 ‖γ s1). (12)

Recall that the transition ∂H(p′′ ‖γ s′′)
~µ
−−−� ∂H(p ‖γ s) is given. Thus,

∂H(p′′ ‖γ s
′′)

~µ.‽a
−−−−� ∂H(p1 ‖γ s1).

Note that ~µ. ‽ a is a sequence over the multiset µ ⊕ ‽a. Substituting p′′ =
p, s′′ = s′′, s′ = s′, s′ = s′, p = p1, s = s1, µ = µ⊕ ‽a, ν = ν in C4 and from the

transitions ∂H(p′ ‖γ s′)
~ν
�−−− ∂H(p′′ ‖γ s′′)

~µ.‽a
−−−−� ∂H(p1 ‖γ s1) we infer that,(

∂H(p1 ‖γ s1),∇(p′ ‖γ′ B[µ⊕ ‽a, ν] ‖γ′ s1)
)
∈ Φ.
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ii. Or (qc, qa) ∈ Φ by C5. Then,

∃p′′, s′, s′′.[∂H(p ‖γ s)
~ν
−−−� ∂H(p′′ ‖γ s

′′)
~µ
�−−− ∂H(p′ ‖γ s

′)].

Note that using the same reasoning as in the above subcase we can derive
Equation 12, i.e.

∃p1.[∂H(p ‖γ s)
‽a−→ ∂H(p1 ‖γ s1)].

Now recall the transition ∂H(p ‖γ s)
~ν
−−−� ∂H(p′′ ‖γ s′′) from the hypothesis

and by applying generalised diamond property (Lemma 1) at state ∂H(p ‖γ s)
we get,

∃p2, s2.[∂H(p′′ ‖γ s
′′)

‽a−→ ∂H(p2 ‖γ s2)
~ν
�−−− ∂H(p1 ‖γ s1)].

Furthermore, from the hypothesis we have the transition ∂H(p′ ‖γ s′)
~µ
−−−�

∂H(p′′ ‖γ s′′) and by combining with the transition ∂H(p′′ ‖γ s′′)
‽a−→ ∂H(p2 ‖γ s2)

we get,

∂H(p′ ‖γ s
′)

~µ.‽a
−−−−� ∂H(p2 ‖γ s2).

Note that ~µ. ‽ a is a sequence over the multiset µ ⊕ ‽a. Substituting p =
p1, s = s1, p

′′ = p2, s
′′ = s2, p

′ = p′, s′ = s′, µ = µ ⊕ ‽a, ν = ν in C5 and from

the transitions ∂H(p1 ‖γ s1)
~ν
−−−� ∂H(p2 ‖γ s2)

~µ.‽a
�−−−− ∂H(p′ ‖γ s′) we infer

that, (
∂H(p1 ‖γ s1),∇(p′ ‖γ′ B[µ⊕ ‽a, ν] ‖γ′ s1)

)
∈ Φ.

T6. Let qa
‽a−→ q′a∧ (qc, qa) ∈ Φ∧‽a ∈ I !P . Then from the construction of Φ relation we know

that,

qa ≡ ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s),
qc ≡ ∂H(p ‖γ s).

From the transition qa
‽a−→ q′a we know that the supervisor component s in the state

qa will decrease the bag content ν by performing action ‽a. So assume that ‽a ∈′ ν.
Moreover from the semantics of ‖γ′ we know that,

q′a ≡ ∇(p′ ‖γ′ B[µ, ν 	 ‽a] ‖γ′ s1).

Then transition qa
‽a−→ q′a is of the form ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s)

‽a−→ ∇(p′ ‖γ′ B[µ, ν 	
‽a] ‖γ′ s1). Using the assumption that ‽a ∈ I !P , the above transition implies that,

s
?a−→ s1. (13)

Before we show that the state qc perform the action ‽a we need to retrieve the relation
between free process variables ∇(p′ ‖γ′ B[µ, ν] ‖γ′ s) and ∂H(p ‖γ s). So by applying
case distinction on the structure of µ and ν we get following cases.
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(a) when µ = ε and ν = {‽a}. Then the state qa is of the form∇(p′ ‖γ′ B[ε, {‽a}] ‖γ′ s)
and the transition qa

τ−→ q′a will be of the form

∇(p′ ‖γ′ B[ε, {‽a}] ‖γ′ s)
‽a−→ ∇(p′ ‖γ′ B[ε, ε] ‖γ′ s1).

Moreover (qc, qa) can be Φ-related only by condition C2 because of the assumption
µ = ε and ν = {‽a}. Thus we have the following transition,

∂H(p ‖γ s)
‽a−→ ∂H(p′ ‖γ s1).

And from condition C1 we know that,(
∂H(p′ ‖γ s1),∇(p′ ‖γ′ B[ε, ε] ‖γ′ s1)

)
∈ Φ.

(b) when µ = ε and ‽a ∈′ ν. Similar as Case T6.d.

(c) when µ 6= ε and ν = {‽a}. Similar as Case T6.d.

(d) when µ 6= ε and ‽a ∈′ ν. Note that the states qc, qa can be Φ-related either by C4
or C5. So we get following two cases.

i. Either (qc, qa) ∈ Φ by C4. Then, ∃p′′, s′, s′′.[∂H(p′ ‖γ s′)
~ν
�−−− ∂H(p′′ ‖γ s′′)

~µ
−−−�

∂H(p ‖γ s)]. By applying generalised diamond property (Lemma 1) at state
∂H(p′′ ‖γ s′′) we get,

∃p2, s2.[∂H(p′ ‖γ s
′)

~µ
−−−� ∂H(p2 ‖γ s2)

~ν
�−−− ∂H(p ‖γ s)].

Then there exists p′1, s
′
1, p
′
2, s
′
2 such that the transition ∂H(p ‖γ s)

~ν
−−−� ∂H(p2 ‖γ s2)

will be of the following form,

∂H(p ‖γ s)
~ν1−−−� ∂H(p′1 ‖γ s

′
1)

‽a−→ ∂H(p′2 ‖γ s
′
2)

~ν2−−−� ∂H(p2 ‖γ s2)

such that ~ν1. ‽ a.~ν2 is a sequence over the multiset ν. By applying result of

Lemma 3 on the transitions ∂H(p ‖γ s)
ν1.‽a−−−−−� ∂H(p′2 ‖γ s′2) and s

?a−→ s1
(Equation 13) we know that,

∃p1.[∂H(p ‖γ s)
‽a−→ ∂H(p1 ‖γ s1)

~ν1−−−� ∂H(p′2 ‖γ s
′
2)].

Thus,

∂H(p ‖γ s)
‽a−→ ∂H(p1 ‖γ s1).

Now we need to show that state ∂H(p1 ‖γ s1) is Φ-related to q′a. Recall that

∂H(p′2 ‖γ s′2)
~ν2−−−� ∂H(p2 ‖γ s2), and from above derived transition ∂H(p1 ‖γ s1)

~ν1−−−�
∂H(p′2 ‖γ s′2) we have,

∂H(p1 ‖γ s1)
~ν1.~ν2−−−−−� ∂H(p2 ‖γ s2).

Note that ~ν1.~ν2 is a sequence over the multiset ν 	 ‽a. Substituting p′′ =
p2, s

′′ = s2, p
′ = p′, s′ = s′, p = p1, s = s1, µ = µ, ν = ν 	 ‽a in C5 and from

the transitions ∂H(p′ ‖γ s′)
~µ
−−−� ∂H(p2 ‖γ s2)

~ν1.~ν2
�−−−−− ∂H(p1 ‖γ S1) we infer

that, (
∂H(p1 ‖γ s1),∇(p′ ‖γ′ B[µ, ν 	 ‽a] ‖γ′ s1)

)
∈ Φ.
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ii. Or (qc, qa) ∈ Φ by C5. Then,

∃p′′, s′, s′′.[∂H(p ‖γ s)
~ν
−−−� ∂H(p′′ ‖γ s

′′)
~µ
�−−− ∂H(p′ ‖γ s

′)].

Then there exists p′1, s
′
1, p
′
2, s
′
2 such that the transition ∂H(p ‖γ s)

~ν
−−−� ∂H(p′′ ‖γ s′′)

will be of the following form,

∂H(p′′ ‖γ s)
~ν1−−−� ∂H(p′1 ‖γ s

′
1)

‽a−→ ∂H(p′2 ‖γ s
′
2)

~ν2−−−� ∂H(p′′ ‖γ s
′′)

such that ~ν1.‽a.~ν2 is a sequence over the multiset ν. By result of Lemma 3 and

the transitions ∂H(p ‖γ s)
~ν1.‽a−−−−−� ∂H(p′2 ‖γ s′2) and s

?a−→ s1 (Equation 13) we
know that,

∃p1.[∂H(p ‖γ Xs)
‽a−→ ∂H(p1 ‖γ s1)

~ν1−−−� ∂H(p′2 ‖γ s
′
2)]

Now we need to show that the state ∂H(p1 ‖γ s1) is Φ-related to q′a. Re-

call that ∂H(p′2 ‖γ s′2)
~ν2−−−� ∂H(p′′ ‖γ s′′), and from above derived transition

∂H(p1 ‖γ s1)
~ν1−−−� ∂H(p′2 ‖γ s′2) we have,

∂H(p1 ‖γ s1)
~ν1.~ν2−−−−−� ∂H(p′ ‖γ s

′).

Note that ~ν1.~ν2 is a sequence over the multiset ν 	 ‽a. Substituting p′′ =
p′′, s′′ = s′′, p′ = p′, s′ = s′, p = p1, s = s1, µ = µ, ν = ν	‽a in C5 and from the

transitions ∂H(p′ ‖γ s′)
~µ−→ ∂H(p′′ ‖γ s′′)

~ν1.~ν2
�−−−−− ∂H(p1 ‖γ s1) we infer that,(

∂H(p1 ‖γ s1),∇(p′ ‖γ′ B[µ, ν 	 ‽a] ‖γ′ s1)
)
∈ Φ.

B Proof Of Theorem 2

Proof. Let p, p′, s be free process variables. Let µ, ν be two free variables representing the
contents of an input and output bag of P , respectively. Recall the relation Φ defined in the
proof of Theorem 1 and define a relation Φ̂ as follows,

Φ̂ , Φ
⋃ {

(∂�(p ‖γ s), ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s))

∣∣
∃s1, ~σ ∈ α(S)∗.

[ (
∂�(p ‖γ s1), ∇̂(p′ ‖γ′ B

m,n[µ, ν] ‖γ′ s1)
)
∈ Φ∧

∂�(p ‖γ s1)
~σ
−−−� ∂�(p ‖γ s)

] ∨
(C6)

∃p1, p′1, s1, s′, ~σ ∈ α(P )∗.
[ (
∂�(p1 ‖γ s), ∇̂(p′1 ‖γ′ B

m,n[µ, ν] ‖γ′ s)
)
∈ Φ∧

∂�(p
′
1 ‖γ s

′)
~σ
−−−� ∂�(p

′ ‖γ s
′) ∧ ∂�(p1 ‖γ s)

~σ
−−−� ∂�(p ‖γ s)

]}
. (C7)

Next we need to show that Φ is a witnessing branching bisimulation relation. Let qc, qa
denote the following processes ∂�(p ‖γ s) and ∇̂(p ‖γ′ Bm,n[µ, ν] ‖γ′ s), respectively. We get
10 transfer conditions in total (shown in Table 4) based on similar reasoning used to get the
Table 3 (Page 28) in the proof of Theorem 1.
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Table 4: Proof structure of Theorem 2.
Case No. Hypothesis

S1
qc

‽a−→ q̄c ∧ (qc, qa) ∈ Φ ∧ ‽a ∈ I?P ⇒

∃q′a, q′′a .[qa
τ∗

−−−� q′a
‽a−→ q′′a ∧ (qc, q

′
a), (q

′
c, q
′′
a) ∈ Φ.]

S2
qc

‽a−→ q′c ∧ (qc, qa) ∈ Φ ∧ ‽a ∈ I !P ⇒

∃q′a, q′′a .[qa
τ∗

−−−� q′a
‽a−→ q′′a ∧ (qc, q

′
a), (q

′
c, q
′′
a) ∈ Φ.]

S3
qc

x−→ q′c ∧ (qc, qa) ∈ Φ ∧ x ∈ α(P )⇒

∃q′a, q′′a .[qa
τ∗

−−−� q′a
x−→ q′′a ∧ (qc, q

′
a), (q

′
c, q
′′
a) ∈ Φ.]

S4
qc

x−→ q′c ∧ (qc, qa) ∈ Φ ∧ x ∈ α(S)⇒

∃q′a, q′′a .[qa
τ∗

−−−� q′a
x−→ q′′a ∧ (qc, q

′
a), (q

′
c, q
′′
a) ∈ Φ.]

S5 qa
τ−→ q′a ∧ (qc, qa) ∈ Φ ∧ τ = τ‽a(‽a) ∧ ‽a ∈ I?P ⇒ (qc, q

′
a) ∈ Φ.

S6 qa
τ−→ q′a ∧ (qc, qa) ∈ Φ ∧ τ = τ‽a(‽a) ∧ ‽a ∈ I !P ⇒ (qc, q

′
a) ∈ Φ.

S7 qa
‽a−→ q′a ∧ (qc, qa) ∈ Φ ∧ ‽a ∈ I?P ⇒ ∃q′c.[qc

‽a−→ q′c ∧ (q′c, q
′
a) ∈ Φ.]

S8 qa
‽a−→ q′a ∧ (qc, qa) ∈ Φ ∧ ‽a ∈ I !P ⇒ ∃q′c.[qc

‽a−→ q′c ∧ (q′c, q
′
a) ∈ Φ.]

S9 qa
x−→ q′a ∧ (qc, qa) ∈ Φ ∧ x ∈ α(P )⇒ ∃q′c.[qc

x−→ q′c ∧ (q′c, q
′
a) ∈ Φ.]

S10 qa
x−→ q′a ∧ (qc, qa) ∈ Φ ∧ x ∈ α(S)⇒ ∃q′c.[qc

x−→ q′c ∧ (q′c, q
′
a) ∈ Φ.]

S1 Let qc
‽a−→ q′c ∧ (qc, qa) ∈ Φ̂ ∧ ‽a ∈ I?P . From construction of Φ̂ we know that,

qc ≡ ∂�(p ‖γ s),

qa ≡ ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ S).

Furthermore, from the semantics of ‖γ and ‽a ∈ I?P we know that,

q′c ≡ ∂�(p̄ ‖γ s̄) ∧ p
?a−→ p̄ ∧ s !a−→ s̄. (14)

Before showing that the state qa can perform action ‽a, we need to retrieve the rela-
tion between process terms ∂�(p ‖γ s), ∇̂(p′ ‖γ′ Bm,n[µ, ν] ‖γ′ s) from the Conditions Ci
where, i ∈ [1, 7]. We apply case distinction based on the structure of µ and ν.

1. when µ, ν = ε.

2. when µ, ν 6= ε. Then the states qc, qa can be related by the condition C4, or C5,
or C6, or C7. The case under conditions C4 and C5 is already proven in [5]. Here
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we give the proof of the remaining cases. Note that from Equation 14 we have,

∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s)

‽a−→ ∇̂(p′ ‖γ′ B
m,n[µ⊕ ‽a, ν] ‖γ′ s̄).

In the upcoming cases we will show how to relate the states ∇̂(p′ ‖γ′ Bm,n[µ⊕ ‽a, ν] ‖γ′ s̄)
and ∂�(p̄ ‖γ s̄).

(a) Either (qc, qa) ∈ Φ̂ due to C6. Then,

∃s1, σ ∈ α(S)∗.

[(
q1c , q

1
a

)
∈ Φ ∧ q1c

~σ
−−−� qc

]
(15)

where,
q1c = ∂�(p ‖γ s1), q

1
a = ∇̂(p′ ‖γ′ B

m,n[µ, ν] ‖γ′ s1).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Then,

∃p′′, s′′, s′.[∂�(p′ ‖γ s
′)

~ν
�−−− ∂�(p′′ ‖γ s

′′)
~µ
−−−� ∂�(p ‖γ s1)].

From Equation (14),(15) we know that, ∂�(p ‖γ s)
‽a−→ ∂�(p̄ ‖γ s̄) and

∂�(p ‖γ s1)
~σ
−−−� ∂�(p ‖γ s), respectively. And by Lemma 6 we get,

∃s̄1.[∂�(p ‖γ s1)
‽a−→ ∂�(p̄ ‖γ s̄1)

~σ
−−−� ∂�(p̄ ‖γ s̄)].

Thus, ∂�(p
′′ ‖γ s′′)

~µ.‽a
−−−−� ∂�(p̄ ‖γ s̄1). And from C4 we get,(

∂�(p̄ ‖γ s̄1), ∇̂(p′ ‖γ′ B
m,n[µ⊕ ‽a, ν] ‖γ′ s̄1)

)
∈ Φ. (16)

Finally, using the Equation 16, the transition ∂�(p̄ ‖γ s̄1)
σ
−−−� ∂�(p̄ ‖γ s̄)

and the Condition C6 we conclude that,(
∂�(p̄ ‖γ s̄), ∇̂(p′ ‖γ′ B

m,n[µ⊕ ‽a, ν] ‖γ′ s̄)
)
∈ Φ̂.

ii. Or (q1c , q
1
a) ∈ Φ due to C5. Then,

∃p′′, s′′, s′.[∂�(p ‖γ s1)
~ν
−−−� ∂�(p

′′ ‖γ s
′′)

~µ
�−−− ∂�(p′ ‖γ s

′)].

Applying the result of Lemma 6 on the transitions in ∂�(p ‖γ s)
‽a−→ ∂�(p̄ ‖γ s̄)

(hypothesis), ∂�(p ‖γ s1)
~σ
−−−� ∂�(p ‖γ s) (Equation (15)) we get,

∃s̄1.[∂�(p ‖γ s1)
‽a−→ ∂�(p̄ ‖γ s̄1)

~σ
−−−� ∂�(p̄ ‖γ s̄)].

Applying the result of Lemma 5 on the transitions ∂�(p ‖γ s1)
~ν
−−−� ∂�(p

′′ ‖γ s′′)
and ∂�(p ‖γ s1)

‽a−→ ∂�(p̄ ‖γ s̄1) we get,

∃p2, s2.[∂�(p′′ ‖γ s
′′)

‽a−→ ∂�(p2 ‖γ s2)
~ν
�−−− ∂�(p̄ ‖γ s̄1)].
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Thus, from C5 we get,(
∂�(p̄ ‖γ s̄1), ∇̂(p′ ‖γ′ B

m,n[µ⊕ ‽a, ν] ‖γ′ s̄1)
)
∈ Φ. (17)

Finally, from the Equation (17), the transition ∂�(p̄ ‖γ s̄1)
~σ
−−−� ∂�(p̄ ‖γ s̄)

and by the Condition C6 we get,(
∂�(p̄ ‖γ s̄), ∇̂(p′ ‖γ′ B

m,n[µ⊕ ‽a, ν] ‖γ′ s̄)
)
∈ Φ̂.

(b) Or (qc, qa) ∈ Φ̂ due to C7. Similar to the above case.

S2 Let qc
‽a−→ q′c ∧ (qc, qa) ∈ Φ ∧ ‽a ∈ I !P . From construction of Φ we know that,

qc ≡ ∂�(p ‖γ s),

qa ≡ ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ S).

Furthermore, from the semantics of ‖γ and ‽a ∈ I !P we know that,

q′c ≡ ∂�(p̄ ‖γ s̄) ∧ p
!a−→ p̄ ∧ s ?a−→ s̄. (18)

Before showing that the state qa can perform action ‽a, we need to retrieve the rela-
tion between process terms ∂�(p ‖γ s), ∇̂(p′ ‖γ′ Bm,n[µ, ν] ‖γ′ s) from the Conditions Ci
where, i ∈ [1, 7]. We apply case distinction based on the structure of µ and ν.

1. When µ, ν = ε.

2. When µ, ν 6= ε. Then the states qc, qa can be related by the condition C4, or C5, or
C6, or C7. The case under conditions C4 and C5 is already proven in [5]. Here we
give the proof of the remaining cases. Note that the state qa can perform action ‽a
only if ‽a ∈′ ν. Otherwise the plant component p′ in state qa will have to increase
the content ν of output bag by ‽a. In the following we assume that ‽a 6∈′ ν; the
proof for the other case when ‽a ∈′ ν can be constructed similarly.

(a) Either (qc, qa) ∈ Φ due to C6. Then,

∃s1, σ ∈ α(S)∗.

[(
q1c , q

1
a

)
∈ Φ ∧ q1c

~σ
−−−� qc

]
(19)

where,
q1c = ∂�(p ‖γ s1), q

1
a = ∇̂(p′ ‖γ′ B

m,n[µ, ν] ‖γ′ s1).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Then,

∃p′′, s′′, s′.[∂�(p′ ‖γ s
′)

~ν
�−−− ∂�(p′′ ‖γ s

′′)
~µ
−−−� ∂�(p ‖γ s1)].

And by Lemma 5 we get,

∃p2, s2.[∂�(p′ ‖γ s
′)

~µ
−−−� ∂�(p2 ‖γ s2)

~ν
�−−− ∂�(p ‖γ s1)].
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∂�(p
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2 ‖γ s′2)

∂�(p̄ ‖γ s̄)∂�(p̄ ‖γ s̄1)

~ν

~µ

~µ

~ν
‽a

~σ

‽a

‽a ~ν

~σ

Figure 14: Proof in Subcase S2-2-a-i

And by applying Lemma 7 on the transitions qc
‽a−→ q′c and ∂�(p ‖γ s1)

~σ
−−−�

∂�(p ‖γ s) (Equation (19)) we get,

∃p̄, s̄1.[∂�(p ‖γ s1)
‽a−→ ∂�(p̄ ‖γ s̄1)

~σ
−−−� ∂�(p̄ ‖γ s̄)].

Again applying Lemma 5 on the transitions ∂�(p ‖γ s1)
~ν
−−−� ∂�(p2 ‖γ s2)

and ∂�(p ‖γ s1)
‽a−→ ∂�(p̄ ‖γ s̄1) we get (See Figure 14),

∃p′2, s′2.[∂�(p2 ‖γ s2)
‽a−→ ∂�(p

′
2 ‖γ s

′
2)

~ν
�−−− ∂�(s̄ ‖γ s̄1)].

From the transition ∂�(p
′ ‖γ s′)

~µ
−−−� ∂�(p2 ‖γ s2) and the semantics of ‖γ

we infer that, p′
fi(~µ)
−−−−−� p2. Thus,

∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s)

τ∗

−−−� ∇̂(p2 ‖γ′ B
m,n[ε, ν] ‖γ′ s).

From the Condition C2 and the transition ∂�(p ‖γ s1)
~ν
−−−� ∂�(p2 ‖γ s2)

we get, (
∂�(p ‖γ s1), ∇̂(p2 ‖γ′ B

m,n[ε, ν] ‖γ′ s1)
)
∈ Φ. (20)

From the transition ∂�(p ‖γ s1)
~σ
−−−� ∂�(p ‖γ s), the Equation (20) and the

Condition C6 with µ = ε we get,(
∂�(p ‖γ s), ∇̂(p2 ‖γ′ B

m,n[ε, ν] ‖γ′ s)
)
∈ Φ̂.

Furthermore, from the transition ∂�(p2 ‖γ s2)
‽a−→ ∂�(p

′
2 ‖γ s′2) and the

semantics of ‖γ we get,

∇̂(p2 ‖γ′ B
m,n[ε, ν] ‖γ′ s)

τ−→ ∇̂(p′2 ‖γ′ B
m,n[ε, ν ⊕ ‽a] ‖γ′ s).
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From the Condition C2 and the transition ∂�(p ‖γ s1)
~ν.‽a
−−−−� ∂�(p

′
2 ‖γ s′2)

we get, (
∂�(p ‖γ s1), ∇̂(p′2 ‖γ′ B

m,n[ε, ν ⊕ ‽a] ‖γ′ s1)
)
∈ Φ.

Using the above fact, the transition ∂�(p ‖γ s1)
~σ
−−−� ∂�(p ‖γ s) and the

Condition C6 with µ = ε we have,(
∂�(p ‖γ s), ∇̂(p′2 ‖γ′ B

m,n[ε, ν ⊕ ‽a] ‖γ′ s)
)
∈ Φ.

Using the transition s
?a−→ s̄ (Equation (18)) and the semantics of ‖γ′ we

get,

∇̂(p′2 ‖γ′ B
m,n[ε, ν ⊕ ‽a] ‖γ′ s)

‽a−→ ∇̂(p′2 ‖γ′ B
m,n[ε, ν] ‖γ′ s̄).

Applying the condition C2 with the transition ∂�(p̄ ‖γ s̄1)
~ν
−−−� ∂�(p

′
2 ‖γ s′2)

we get, (
∂�(p̄ ‖γ s̄1), ∇̂(p′2 ‖γ′ B

m,n[ε, ν] ‖γ′ s̄1)
)
∈ Φ.

Finally, by the above equation, the transition ∂�(p̄ ‖γ s̄1)
~σ
−−−� ∂�(p̄ ‖γ s̄)

and the Condition C6 with µ = ε we conclude that,(
∂�(p̄ ‖γ s̄), ∇̂(p′2 ‖γ′ B

m,n[ε, ν] ‖γ′ s̄)
)
∈ Φ̂.

ii. Or (qc, qa) ∈ Φ due to C5. Similar to the previous case.

(b) Or (qc, qa) ∈ Φ due to C7. Similar to the previous case.

S3 Let qc
x−→ q′c ∧ (qc, qa) ∈ Φ̂ ∧ x ∈ α(P ). From construction of Φ̂ we know that,

qc ≡ ∂�(p ‖γ s),

qa ≡ ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ S).

Furthermore, from the semantics of ‖γ and x ∈ α(P ) we know that,

q′c ≡ ∂�(p̄ ‖γ s) ∧ p
x−→ p̄. (21)

Before showing that the state qa can perform action x, we need to retrieve the rela-
tion between process terms ∂�(p ‖γ s), ∇̂(p′ ‖γ′ Bm,n[µ, ν] ‖γ′ s) from the Conditions Ci
where, i ∈ [1, 7]. We apply case distinction based on the structure of µ and ν.

1. When µ, ν = ε.

2. When µ, ν 6= ε. Then the states qc, qa can be related by the condition C4, or C5,
or C6, or C7. The case under conditions C4 and C5 are special cases of C6 and
C7. Here we prove the cases C6 and C7 only.
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Figure 15: Proof in Subcase S3-2-a-i.

(a) Either (qc, qa) ∈ Φ̂ due to C6. Then,

∃s1, σ ∈ α(S)∗.

[(
q1c , q

1
a

)
∈ Φ ∧ q1c

~σ
−−−� qc

]
where,

q1c = ∂�(p ‖γ s1), q
1
a = ∇̂(p′ ‖γ′ B

m,n[µ, ν] ‖γ′ s1).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Then,

∃p′′, s′′, s′.[∂�(p′ ‖γ s
′)

~ν
�−−− ∂�(p′′ ‖γ s

′′)
~µ
−−−� ∂�(p ‖γ s1)].

From Equation (21) and semantics of ‖γ we get, ∂�(p ‖γ s1)
x−→ ∂�(p̄ ‖γ s1).

Applying Lemma 5 at the state ∂�(p ‖γ s1) we get (See Figure 15),

∂�(p̄ ‖γ s1)
~σ
−−−� ∂�(p̄ ‖γ s).

Again applying Lemma 5 but at the state ∂�(p
′′ ‖γ s′′) we get (See Fig-

ure 15),

∃p2, s2.[∂�(p′ ‖γ s
′)

~µ
−−−� ∂�(p2 ‖γ s2)

~ν
�−−− ∂�(p ‖γ s1)].

Again applying Lemma 5 but at the state ∂�(p ‖γ s1) we get (See Fig-
ure 15),

∃p̄2.[∂�(p2 ‖γ s2)
x−→ ∂�(p̄2 ‖γ s2)

~ν
�−−− ∂�(p̄ ‖γ s1)].

From the transition ∂�(p
′ ‖γ s′)

~µ
−−−� ∂�(p2 ‖γ s2) and the semantics of ‖γ

we get p′
fi(~µ)
−−−−−� p2. Now applying this fact at the state qa we get,

∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s)

τ∗

−−−� ∇̂(p2 ‖γ′ B
m,n[ε, ν] ‖γ′ s).
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And from the transition ∂�(p ‖γ s1)
~ν
−−−� ∂�(p2 ‖γ s2) and the Condition

C2 we get, (
∂�(p ‖γ s1), ∇̂(p2 ‖γ′ B

m,n[ε, ν] ‖γ′ s1)
)
∈ Φ.

Using the above fact, the transition ∂�(p ‖γ s1)
~σ
−−−� ∂�(p ‖γ s) and the

Condition 6 with µ = ε we get,(
∂�(p ‖γ s), ∇̂(p2 ‖γ′ B

m,n[ε, ν] ‖γ′ s)
)
∈ Φ̂.

Moreover, from the transition ∂�(p2 ‖γ s2)
x−→ ∂�(p̄2 ‖γ s2) and the se-

mantics of ‖γ we get, p2
x−→ p̄2. Thus, applying this fact at the state

∇̂(p2 ‖γ′ Bm,n[ε, ν] ‖γ′ s1) we get,

∇̂(p2 ‖γ′ B
m,n[ε, ν] ‖γ′ s1)

x−→ ∇̂(p̄2 ‖γ′ B
m,n[ε, ν] ‖γ′ s1).

And from C2 with the transition ∂�(p̄ ‖γ s1)
~ν
−−−� ∂�(p̄2 ‖γ s2) we get,(

∂�(p̄ ‖γ s1), ∇̂(p̄2 ‖γ′ B
m,n[ε, ν] ‖γ′ s1)

)
∈ Φ.

Finally from the above fact, the transition ∂�(p̄ ‖γ s1)
σ
−−−� ∂�(p̄ ‖γ s) and

the Condition C6 we get,(
∂�(p̄ ‖γ s), ∇̂(p̄2 ‖γ′ B

m,n[ε, ν] ‖γ′ s)
)
∈ Φ̂.

ii. Or (q1c , q
1
a) ∈ Φ due to C5. Similar as previous subcase.

(b) Or (qc, qa) ∈ Φ̂ due to C7. Then,

∃p1, p′1, s1, s′, ~σ ∈ α(P )∗.
[ (
q1c , q

1
a

)
∈ Φ ∧ ∂�(p′1 ‖γ s

′)
~σ
−−−� ∂�(p

′ ‖γ s
′)

∧ ∂�(p1 ‖γ s)
~σ
−−−� ∂�(p ‖γ s)

]
(22)

where,
q1c = ∂�(p1 ‖γ s), q

1
a = ∇̂(p′1 ‖γ′ B

m,n[µ, ν] ‖γ′ s).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Then,

∃p′′, s′′.[∂�(p′1 ‖γ s
′)

~ν
�−−− ∂�(p′′ ‖γ s

′′)
~µ
−−−� ∂�(p1 ‖γ s)].

Applying Lemma 5 at the state ∂�(p
′′ ‖γ s′′) we get (See Figure 16),

∃p2, s2.[∂�(p′1 ‖γ s
′)

~µ
−−−� ∂�(p2 ‖γ s2)

~ν
�−−− ∂�(p1 ‖γ s)].
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Figure 16: Proof in Subcase S3-2-b-i.

Now applying Lemma 5 at the state ∂�(p
′
1 ‖γ s′) we get,

∃p3.[∂�(p2 ‖γ s2)
~σ
−−−� ∂�(p3 ‖γ s2)

~µ
�−−− ∂�(p′ ‖γ s)].

Again applying Lemma 5, but at the state ∂�(p1 ‖γ s) we get, ∂�(p ‖γ s)
~ν
−−−�

∂�(p3 ‖γ s2). Again applying Lemma 5, but at the state ∂�(p ‖γ s) we get,

∃p̄3.[∂�(p3 ‖γ s2)
x−→ ∂�(p̄3 ‖γ s2)

~ν
�−−− ∂�(p̄ ‖γ s)].

Using the derived transition ∂�(p
′ ‖γ s′)

~µ
−−−� ∂�(p3 ‖γ s2) and the seman-

tics of ‖γ we get, p′
fi(~µ)
−−−−−� p3. Using this fact at the state qa we get,

∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s)

τ∗

−−−� ∇̂(p3 ‖γ′ B
m,n[ε, ν] ‖γ′ s).

And from the Condition C2 with the transition ∂�(p ‖γ s)
~ν
−−−� ∂�(p3 ‖γ s2)

(See Figure 16) we get,(
∂�(p ‖γ s), ∇̂(p3 ‖γ′ B

m,n[ε, ν] ‖γ′ s)
)
∈ Φ.

From the derived transition ∂�(p3 ‖γ s2)
x−→ ∂�(p̄3 ‖γ s2) (See Figure 16)

and the semantics of ‖γ we get, p3
x−→ p̄3. Thus,

∇̂(p3 ‖γ′ B
m,n[ε, ν] ‖γ′ s)

x−→ ∇̂(p̄3 ‖γ′ B
m,n[ε, ν] ‖γ′ s).

Finally, by the transition ∂�(p̄ ‖γ s)
~ν
−−−� ∂�(p̄3 ‖γ s2), and the Condition

C2 we get, (
∂�(p̄ ‖γ s), ∇̂(p̄3 ‖γ′ B

m,n[ε, ν] ‖γ′ s)
)
∈ Φ̂.
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∂�(p
′ ‖γ s′)

∂�(p2 ‖γ s′′)
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Figure 17: Proof in Subcase S3-2-b-ii.

ii. Or (q1c , q
1
a) ∈ Φ due to C5. Then,

∃p′′, s′′.[∂�(p1 ‖γ s)
~ν
−−−� ∂�(p

′′ ‖γ s
′′)

~µ
�−−− ∂�(p′1 ‖γ s

′).

Applying Lemma 5 at the state ∂�(p1 ‖γ s) we get (See Figure 17),

∃p2.[∂�(p ‖γ s)
~ν
−−−� ∂�(p2 ‖γ s

′′)
~σ
�−−− ∂�(p′′ ‖γ s

′′)].

Again applying Lemma 5, but at the state ∂�(p ‖γ s) we get (See Fig-
ure 17),

∃p̄2.[∂�(p2 ‖γ s
′′)

x−→ ∂�(p̄2 ‖γ s
′′)

~ν
�−−− ∂�(p̄ ‖γ s)].

And applying Lemma 5 at the state ∂�(p
′
1 ‖γ s′) we get (See Figure 17),

∂�(p
′ ‖γ s′)

~µ
−−−� ∂�(p2 ‖γ s′′). Thus, from the semantics of ‖γ we have

p′
fi(~µ)
−−−−−� p2. Hence,

∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s)

τ∗

−−−� ∇̂(p2 ‖γ′ B
m,n[ε, ν] ‖γ′ s).

From the transition ∂�(p ‖γ s)
~ν
−−−� ∂�(p2 ‖γ s′′) and the Condition C2 we

get, (
∂�(p ‖γ s), ∇̂(p2 ‖γ′ B

m,n[ε, ν] ‖γ′ s)
)
∈ Φ.

Now from the transition ∂�(p2 ‖γ s′′)
x−→ ∂�(p̄2 ‖γ s′′) and the semantics of

‖γ we have p2
x−→ p̄2. Thus,

∇̂(p2 ‖γ′ B
m,n[ε, ν] ‖γ′ s)

x−→ ∇̂(p̄2 ‖γ′ B
m,n[ε, ν] ‖γ′ s).
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Finally, from the transition ∂�(p̄ ‖γ s)
~ν
−−−� ∂�(p̄2 ‖γ s) and the Condition

C2 we get, (
∂�(p̄ ‖γ s), ∇̂(p̄2 ‖γ′ B

m,n[ε, ν] ‖γ′ s)
)
∈ Φ̂.

S4 Let qc
x−→ q′c ∧ (qc, qa) ∈ Φ̂ ∧ x ∈ α(S). From construction of Φ̂ we know that,

qc ≡ ∂�(p ‖γ s),

qa ≡ ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s).

Furthermore, from the semantics of ‖γ and x ∈ α(S) we know that,

q′c ≡ ∂�(p ‖γ s̄) ∧ s
x−→ s̄. (23)

Before showing that the state qa can perform action x, we need to retrieve the rela-
tion between process terms ∂�(p ‖γ s), ∇̂(p′ ‖γ′ Bm,n[µ, ν] ‖γ′ s) from the Conditions Ci
where, i ∈ [1, 7]. We apply case distinction based on the structure of µ and ν.

1. When µ, ν = ε.

2. When µ, ν 6= ε. Then the states qc, qa can be related by the condition C4, or C5, or
C6, or C7. The case under conditions C4 and C5 are special cases under conditions
C6 and C7, respectively. Here we give the proof of the remaining cases.

(a) Either (qc, qa) ∈ Φ̂ due to C6. Trivial.

(b) Or (qc, qa) ∈ Φ̂ due to C7. Then,

∃p1, p′1, s1, s′, ~σ ∈ α(P )∗.
[ (
q1c , q

1
a

)
∈ Φ ∧ ∂�(p′1 ‖γ s

′)
~σ
−−−� ∂�(p

′ ‖γ s
′)

∧ ∂�(p1 ‖γ s)
~σ
−−−� ∂�(p ‖γ s)

]
(24)

where,
q1c = ∂�(p1 ‖γ s), q

1
a = ∇̂(p′1 ‖γ′ B

m,n[µ, ν] ‖γ′ s).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Then,

∃p′′, s′′.[∂�(p′1 ‖γ s
′)

~ν
�−−− ∂�(p′′ ‖γ s

′′)
~µ
−−−� ∂�(p1 ‖γ s)].

Applying Lemma 5 at the state ∂�(p
′′ ‖γ s′′) we get (See Figure 18),

∃p2, s2.[∂�(p1 ‖γ s)
~ν
−−−� ∂�(p2 ‖γ s2)

~µ
�−−− ∂�(p′1 ‖γ s

′)].

Again applying Lemma 5, but at the state ∂�(p
′
1 ‖γ s′) we get (See Fig-

ure 18),

∃p3.[∂�(p2 ‖γ s2)
~σ
−−−� ∂�(p3 ‖γ s2)

~µ
�−−− ∂�(p′ ‖γ s

′)].
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Figure 18: Proof in Subcase S4-2-b-i.

Applying Lemma 5 at the state ∂�(p1 ‖γ s) we get (See Figure 18), ∂�(p ‖γ s)
~ν
−−−�

∂�(p3 ‖γ s2). Recall from the Equation (23) the transition s
x−→ s̄ and thus

we get,

∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s)

x−→ ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s̄).

Using the transitions ∂�(p
′ ‖γ s′)

~σ
−−−� ∂�(p3 ‖γ s2)

~ν
�−−− ∂�(p ‖γ s) and

the Condition C5 we get,(
∂�(p ‖γ s), ∇̂(p′ ‖γ′ B

m,n[µ, ν] ‖γ′ s)
)
∈ Φ.

Finally, from the transition ∂�(p ‖γ s)
x−→ ∂�(p ‖γ s̄) and the Condition C6

we get, (
∂�(p ‖γ s̄), ∇̂(p′ ‖γ′ B

m,n[µ, ν] ‖γ′ s̄)
)
∈ Φ̂.

ii. Or (q1c , q
1
a) ∈ Φ due to C5. Similar to the above case.

S5 Let qa
τ−→ q′a ∧ (qc, qa) ∈ Φ̂ ∧ τ = τ‽a(‽a) ∧ ‽a ∈ I?P . From construction of Φ̂ we know

that,

qc ≡ ∂�(p ‖γ s),

qa ≡ ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s).

Furthermore, from the semantics of ‖γ′ and ‽a ∈ I?P we know that,

‽a ∈ µ ∧ q′a ≡ ∇̂(p̄1 ‖γ′ B
m,n[µ	 ‽a, ν] ‖γ′ s) ∧ p

′ ?a−→ p̄1. (25)

Now, we retrieve the relation between process terms ∂�(p ‖γ s), ∇̂(p′ ‖γ′ Bm,n[µ, ν] ‖γ′ s)
from the Conditions Ci where, i ∈ [1, 7]. We apply case distinction based on the
structure of µ and ν.

1. When µ, ν = ε.
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∂�(p
′ ‖γ s′)

∂�(p̄1 ‖γ s̄1′) ∂�(p
′
1 ‖γ s′1)
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′
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‽a
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Figure 19: Proof in Subcase S5-2-a-i.

2. When µ, ν 6= ε. Then the states qc, qa can be related by the condition C4, or C5,
or C6, or C7. The case under conditions C4 and C5 is already proven in [5]. Here
we give the proof of the remaining cases.

(a) Either (qc, qa) ∈ Φ̂ due to C6. Then,

∃s1, σ ∈ α(S)∗.

[(
q1c , q

1
a

)
∈ Φ ∧ q1c

~σ
−−−� qc

]
where,

q1c = ∂�(p ‖γ s1), q
1
a = ∇̂(p′ ‖γ′ B

m,n[µ, ν] ‖γ′ s1).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Then,

∃p′′, s′′, s′.[∂�(p′ ‖γ s
′)

~ν
�−−− ∂�(p′′ ‖γ s

′′)
~µ
−−−� ∂�(p ‖γ s1)].

Applying Lemma 5 at the state ∂�(p
′′ ‖γ s′′) we get,

∃p2, s2.[∂�(p′ ‖γ s
′)

~µ
−−−� ∂�(p2 ‖γ s2)

~ν
�−−− ∂�(p ‖γ s1)].

From Equation (25) we know that ‽a ∈ µ which further implies that ‽a ∈
~µ. Suppose ~µ = ~µ1. ‽ a.~µ2 for some ~µ1, ~µ2 ∈ I?P

∗
. Thus the transition

∂�(p
′ ‖γ s′)

~µ
−−−� ∂�(p2 ‖γ s2) will be of the following form (See Figure 19),

∃p′1, s′1, p′2, s′2.[∂�(p′ ‖γ s
′)

~µ1−−−� ∂�(p
′
1 ‖γ s

′
1)

‽a−→ ∂�(p
′
2 ‖γ s

′
2)

~µ2−−−� ∂�(p2 ‖γ s2)].

Furthermore, we have ∂�(p
′ ‖γ s′)

~µ1.‽a−−−−−� ∂�(p
′
2 ‖γ s′2) and p′

?a−→ p̄1. But
from Definition 15 we know that,

∃s̄1′.[∂�(p′ ‖γ s
′)

‽a−→ ∂�(p̄1 ‖γ s̄1
′)].
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Using the Lemma 5 and the transition ∂�(p
′
2 ‖γ s′2)

~µ2−−−� ∂�(p2 ‖γ s2) we
get (See Figure 19),

∂�(p̄1 ‖γ s̄1
′)

~µ1.~µ2−−−−−� ∂�(p2 ‖γ s2).

From the transitions ∂�(p̄1 ‖γ s̄1′)
~µ1.~µ2−−−−−� ∂�(p2 ‖γ s2)

~ν
�−−− ∂�(p ‖γ s1)

and the Condition C5 we have,(
∂�(p ‖γ s1), ∇̂(p̄1 ‖γ′ B

m,n[µ	 ‽a, ν] ‖γ′ s1)
)
∈ Φ.

Finally from the transition ∂�(p ‖γ s1)
~σ
−−−� ∂�(p ‖γ s) and the Condition

C6 we conclude that,(
∂�(p ‖γ s), ∇̂(p̄1 ‖γ′ B

m,n[µ	 ‽a, ν] ‖γ′ s)
)
∈ Φ̂.

ii. Or (q1c , q
1
a) ∈ Φ due to C5. Similar to the previous case.

(b) Or (qc, qa) ∈ Φ̂ due to C7. Then,

∃p1, p′1, s1, s′, ~σ ∈ α(P )∗.
[ (
q1c , q

1
a

)
∈ Φ ∧ ∂�(p′1 ‖γ s

′)
~σ
−−−� ∂�(p

′ ‖γ s
′)

∧ ∂�(p1 ‖γ s)
~σ
−−−� ∂�(p ‖γ s)

]
(26)

where,
q1c = ∂�(p1 ‖γ s), q

1
a = ∇̂(p′1 ‖γ′ B

m,n[µ, ν] ‖γ′ s).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Then,

∃p′′, s′′.[∂�(p′1 ‖γ s
′)

~ν
�−−− ∂�(p′′ ‖γ s

′′)
~µ
−−−� ∂�(p1 ‖γ s)].

Applying Lemma 5 at the state ∂�(p
′′ ‖γ s′′) we get (See Figure 20),

∃p2, s2.[∂�(p′1 ‖γ s
′)

~µ
−−−� ∂�(p2 ‖γ s2)

~ν
�−−− ∂�(p1 ‖γ s)].

Now applying Lemma 5 at the state ∂�(p
′
1 ‖γ s′) we get (See Figure 20),

∃p′2.[∂�(p′ ‖γ s
′)

~µ
−−−� ∂�(p

′
2 ‖γ s2)

~σ
�−−− ∂�(p2 ‖γ s2)].

Again applying Lemma 5 but at the state ∂�(p1 ‖γ s) we get (See Fig-
ure 20),

∂�(p ‖γ s)
~ν
−−−� ∂�(p

′
2 ‖γ s2). (27)

Consider the transition ∂�(p
′ ‖γ s′)

~µ
−−−� ∂�(p

′
2 ‖γ s2), the fact ‽a ∈ ~µ

(Equation (25)) we get (See Figure 20),

∂�(p
′ ‖γ s

′)
~µ1−−−� ∂�(p

′′
1 ‖γ s

′′
1)

‽a−→ ∂�(p
′′
2 ‖γ s

′′
2)

~µ2−−−� ∂�(p
′
2 ‖γ s2).
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Figure 20: Proof in Subcase S5-2-b-i.

Thus we have ∂�(p
′ ‖γ s′)

~µ1.‽a−−−−−� ∂�(p
′′
2 ‖γ s′′2). But by Equation (25) we

know that p′
?a−→ p̄1 and further applying the Definition 15 we get,

∃s̄1′.[∂�(p′ ‖γ s
′)

‽a−→ ∂�(p̄1 ‖γ s̄1
′)].

Furthermore, applying Lemma 5 at the state ∂�(p
′ ‖γ s′) we get,

∂�(p̄1 ‖γ s̄1
′)

~µ1.~µ2−−−−−� ∂�(p
′
2 ‖γ s2).

Finally from the above transition, and the transition ∂�(p
′
2 ‖γ s2)

~ν
�−−−

∂�(p ‖γ s) and the Condition C5 we get,(
∂�(p ‖γ s), ∇̂(p̄1 ‖γ′ B

m,n[µ	 ‽a, ν] ‖γ′ s)
)
∈ Φ̂.

ii. Or (q1c , q
1
a) ∈ Φ due to C5. Similar as the previous case.

S6 Let qa
τ−→ q′a ∧ (qc, qa) ∈ Φ̂∧ τ = τ‽a(‽a)∧ ‽a ∈ I !P . From the construction of Φ̂ we know

that,

qc ≡ ∂�(p ‖γ s),

qa ≡ ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s).

Furthermore, from the semantics of ‖γ′ and ‽a ∈ I !P we know that,

q′a ≡ ∇̂(p̄1 ‖γ′ B
m,n[µ, ν ⊕ ‽a] ‖γ′ s) ∧ p

′ !a−→ p̄1. (28)
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Now, we retrieve the relation between process terms ∂�(p ‖γ s), ∇̂(p′ ‖γ′ Bm,n[µ, ν] ‖γ′ s)
from the Conditions Ci where, i ∈ [1, 7]. We apply case distinction based on the
structure of µ and ν.

1. When µ, ν = ε.

2. When µ, ν 6= ε. Then the states qc, qa can be related by the condition C4, or C5,
or C6, or C7. The case under conditions C4 and C5 is already proven in [5]. Here
we give the proof of the remaining cases.

(a) Either (qc, qa) ∈ Φ̂ due to C6. Then,

∃s1, σ ∈ α(S)∗.

[(
q1c , q

1
a

)
∈ Φ ∧ q1c

~σ
−−−� qc

]
where,

q1c = ∂�(p ‖γ s1), q
1
a = ∇̂(p′ ‖γ′ B

m,n[µ, ν] ‖γ′ s1).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Trivial.

ii. Or (q1c , q
1
a) ∈ Φ due to C5. Then,

∃p′′, s′′, s′.[∂�(p ‖γ s1)
~ν
−−−� ∂�(p

′′ ‖γ s
′′)

~µ
�−−− ∂�(p′ ‖γ s

′)].

From Equation 28 we know that p′
!a−→ p̄1 and by Definition 14 we get,

∃s̄′.[∂�(p′ ‖γ s
′)

‽a−→ ∂�(p̄1 ‖γ s̄
′)].

Now applying Lemma 5 at the state ∂�(p
′ ‖γ s′) we get,

∃p2, s2.[∂�(p̄1 ‖γ s̄
′)

~µ
−−−� ∂�(p2 ‖γ s2)

‽a←− ∂�(p′′ ‖γ s
′′)].

Thus, from the transitions ∂�(p̄1 ‖γ s̄′)
~µ
−−−� ∂�(p2 ‖γ s2)

~ν.‽a
�−−−− ∂�(p ‖γ s1)

and the Condition C5 we get,(
∂�(p ‖γ s1), ∇̂(p̄1 ‖γ′ B

m,n[µ, ν ⊕ ‽a] ‖γ′ s1)
)
∈ Φ.

Finally, from the transition ∂�(p ‖γ s1)
~σ
−−−� ∂�(p ‖γ s) and the Condition

C6 we conclude that,(
∂�(p ‖γ s), ∇̂(p̄1 ‖γ′ B

m,n[µ, ν ⊕ ‽a] ‖γ′ s)
)
∈ Φ̂.

(b) Or (qc, qa) ∈ Φ̂ due to C7. Similar as previous subcase.

S7 Let qa
‽a−→ q′a ∧ (qc, qa) ∈ Φ̂ ∧ ‽a ∈ I?P . From the construction of Φ̂ we know that,

qc ≡ ∂�(p ‖γ s),

qa ≡ ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s).
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Furthermore, from the semantics of ‖γ′ and ‽a ∈ I?P we know that,

q′a ≡ ∇̂(p′ ‖γ′ B
m,n[µ⊕ ‽a, ν] ‖γ′ s̄) ∧ s

!a−→ s̄. (29)

Before showing that the state qa can perform action ‽a, we need to retrieve the rela-
tion between process terms ∂�(p ‖γ s), ∇̂(p′ ‖γ′ Bm,n[µ, ν] ‖γ′ s) from the Conditions Ci
where, i ∈ [1, 7]. We apply case distinction based on the structure of µ and ν.

1. When µ, ν = ε.

2. When µ, ν 6= ε. Then the states qc, qa can be related by the condition C4, or C5,
or C6, or C7. The case under conditions C4 and C5 is already proven in [5]. Here
we give the proof of the remaining cases.

(a) Either (qc, qa) ∈ Φ̂ due to C6. Then,

∃s1, σ ∈ α(S)∗.

[(
q1c , q

1
a

)
∈ Φ ∧ q1c

~σ
−−−� qc

]
where,

q1c = ∂�(p ‖γ s1), q
1
a = ∇̂(p′ ‖γ′ B

m,n[µ, ν] ‖γ′ s1).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Then,

∃p′′, s′′, s′.[∂�(p′ ‖γ s
′)

~ν
�−−− ∂�(p′′ ‖γ s

′′)
~µ
−−−� ∂�(p ‖γ s1)].

From Equation (29) we know that s
!a−→ s̄ and by well posedness (Defini-

tion 14) we infer that,

∃p̄.[∂�(p ‖γ s)
‽a−→ ∂�(p̄ ‖γ s̄)].

Applying Lemma 6 on the transition ∂�(p ‖γ s1)
~σ.‽a
−−−−� ∂�(p̄ ‖γ s̄) we get,

∃s̄1.[∂�(p ‖γ s1)
‽a−→ ∂�(p̄ ‖γ s̄1)].

And by Lemma 5 we get, ∂�(p̄ ‖γ s̄1)
~σ
−−−� ∂�(p̄ ‖γ s̄). Thus we have

∂�(p
′′ ‖γ s′′)

~µ.‽a
−−−−� ∂�(p̄ ‖γ s̄1). From the above transition, the transition

∂�(p
′′ ‖γ s′′)

~ν
−−−� ∂�(p

′ ‖γ s′) and by Condition C4 we have,(
∂�(p̄ ‖γ s̄1), ∇̂(p′ ‖γ′ B

m,n[µ⊕ ‽a, ν] ‖γ′ s̄1)
)
∈ Φ.

Finally, from the transition ∂�(p̄ ‖γ s̄1)
~σ
−−−� ∂�(p̄ ‖γ s̄) and the Condition

C6 we conclude that,(
∂�(p̄ ‖γ s̄), ∇̂(p′ ‖γ′ B

m,n[µ⊕ ‽a, ν] ‖γ′ s̄)
)
∈ Φ̂.

60



ii. Or (q1c , q
1
a) ∈ Φ due to C5. Similar to the above case.

(b) Or (qc, qa) ∈ Φ̂ due to C7. Similar to the above case.

S8 Let qa
‽a−→ q′a ∧ (qc, qa) ∈ Φ̂ ∧ ‽a ∈ I !P . From the construction of Φ̂ we know that,

qc ≡ ∂�(p ‖γ s),

qa ≡ ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s).

Furthermore, from the semantics of ‖γ′ and ‽a ∈ I !P we know that,

q′a ≡ ∇̂(p′ ‖γ′ B
m,n[µ, ν 	 ‽a] ‖γ′ s̄) ∧ s

?a−→ s̄ ∧ ‽a ∈′ ν. (30)

Before showing that the state qa can perform action ‽a, we need to retrieve the rela-
tion between process terms ∂�(p ‖γ s), ∇̂(p′ ‖γ′ Bm,n[µ, ν] ‖γ′ s) from the Conditions Ci
where, i ∈ [1, 7]. We apply case distinction based on the structure of µ and ν.

1. When µ, ν = ε.

2. When µ, ν 6= ε. Then the states qc, qa can be related by the condition C4, or C5,
or C6, or C7. The case under conditions C4 and C5 is already proven in [5]. Here
we give the proof of the remaining cases.

(a) Either (qc, qa) ∈ Φ̂ due to C6. Then,

∃s1, σ ∈ α(S)∗.

[(
q1c , q

1
a

)
∈ Φ ∧ q1c

~σ
−−−� qc

]
where,

q1c = ∂�(p ‖γ s1), q
1
a = ∇̂(p′ ‖γ′ B

m,n[µ, ν] ‖γ′ s1).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Then,

∃p′′, s′′, s′.[∂�(p′ ‖γ s
′)

~ν
�−−− ∂�(p′′ ‖γ s

′′)
~µ
−−−� ∂�(p ‖γ s1)].

By Lemma 5 we get,

∃p2, s2.[∂�(p′ ‖γ s
′)

~µ
−−−� ∂�(p2 ‖γ s2)

~ν
�−−− ∂�(p ‖γ s1)].

Again applying Lemma 5, but at the state ∂�(p ‖γ s1) we get (See Fig-
ure 21),

∃s′2.[∂�(p2 ‖γ s2)
~σ
−−−� ∂�(p2 ‖γ s

′
2)

~ν
�−−− ∂�(p ‖γ s)].

From Equation 30 we know that ‽a ∈′ ν and thus assume ~ν = ~ν1. ‽ a.~ν2
for some ~ν1, ~ν2 ∈ I !P

∗
. Hence, we know that the transition ∂�(p ‖γ s)

~ν
−−−�

∂�(p2 ‖γ s′2) is of the following form,

∃p′′1, s′′1, p′′2, s′′2.[∂�(p ‖γ s)
~ν1−−−� ∂�(p

′′
1 ‖γ s

′′
1)

‽a−→ ∂�(p
′′
2 ‖γ s

′′
2)

~ν2−−−� ∂�(p2 ‖γ s
′
2)].
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∂�(p ‖γ s1) ∂�(p ‖γ s)
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∂�(p̄ ‖γ s̄)∂�(p̄ ‖γ s̄1)
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~µ

~σ
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~ν1.~ν2

‽a

~ν1.~ν2

‽a
~σ

Figure 21: Proof in Subcase S8-2-a-i.

But, from the Definition 15 (Reordering property) and the transition s
?a−→

s̄ (Equation (30)) we get (See Figure 21),

∃p̄.[∂�(p ‖γ s)
‽a−→ ∂�(p̄ ‖γ s̄)].

Furthermore, from the transition ∂�(p ‖γ s1)
σ
−−−� ∂�(p̄ ‖γ s̄) and the Lemma 7

we get (See Figure 21),

∃s̄1.[∂�(p ‖γ s1)
‽a−→ ∂�(p̄ ‖γ s̄1)

~σ
−−−� ∂�(p̄ ‖γ s̄)].

Using the above derived facts we know that ~ν = ~ν1. ‽ a.~ν2 and there exists

the transition ∂�(p ‖γ s1)
‽a−→ ∂�(p̄ ‖γ s̄1). And by Lemma 5 we know that,

∂�(p̄ ‖γ s̄1)
~ν1.~ν2−−−−−� ∂�(p2 ‖γ s2).

And from the above transition, and the transition ∂�(p
′ ‖γ s′)

~µ
−−−� ∂�(p2 ‖γ s2)

and the condition C5 we get,(
∂�(p̄ ‖γ s̄1), ∇̂(p′ ‖γ′ B

m,n[µ, ν 	 ‽a] ‖γ′ s̄1)
)
∈ Φ.

Finally, from the transition ∂�(p̄ ‖γ s̄1)
~σ
−−−� ∂�(p̄ ‖γ s̄) and the Condition

C6 we conclude that,(
∂�(p̄ ‖γ s̄), ∇̂(p′ ‖γ′ B

m,n[µ, ν 	 ‽a] ‖γ′ s̄)
)
∈ Φ̂.

ii. Or (q1c , q
1
a) ∈ Φ due to C5. Similar to the above case.

(b) Or (qc, qa) ∈ Φ̂ due to C7. Then,

∃p1, p′1, s1, s′, ~σ ∈ α(P )∗.
[ (
q1c , q

1
a

)
∈ Φ ∧ ∂�(p′1 ‖γ s

′)
~σ
−−−� ∂�(p

′ ‖γ s
′)

∧ ∂�(p1 ‖γ s)
~σ
−−−� ∂�(p ‖γ s)

]
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Figure 22: Proof in Subcase S8-2-b-i.

where,
q1c = ∂�(p1 ‖γ s), q

1
a = ∇̂(p′1 ‖γ′ B

m,n[µ, ν] ‖γ′ s).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Then,

∃p′′, s′′.[∂�(p′1 ‖γ s
′)

~ν
�−−− ∂�(p′′ ‖γ s

′′)
~µ
−−−� ∂�(p1 ‖γ s)].

Now applying Lemma 5 we get,

∃p2, s2.[∂�(p′1 ‖γ s
′)

~µ
−−−� ∂�(p2 ‖γ s2)

~ν
�−−− ∂�(p1 ‖γ s)].

Again applying Lemma 5, but at the state ∂�(p1 ‖γ s) we get (See Fig-
ure 22),

∃p′2.[∂�(p2 ‖γ s2)
~σ
−−−� ∂�(p

′
2 ‖γ s2)

~ν
�−−− ∂�(p ‖γ s)].

Using the fact ‽a ∈′ ν and the transition s
?a−→ s̄ (Equation (30)) in the

Definition 15 we get (See Figure 22),

∃p̄.[∂�(p ‖γ s)
‽a−→ ∂�(p̄ ‖γ s̄)].

Thus we have the transitions ∂�(p1 ‖γ s)
~σ.‽a
−−−−� ∂�(p̄ ‖γ s̄) and by apply-

ing Lemma 7 we get (See Figure 22),

∃p̄1.[∂�(p1 ‖γ s)
‽a−→ ∂�(p̄1 ‖γ s̄)

~σ
−−−� ∂�(p̄ ‖γ s̄)].

Since ‽a ∈′ ν ⇒ ‽a ∈ ~ν (Equation 30), let ~ν = ~ν1. ‽ a.~ν2 for some
~ν1, ~ν2 ∈ I !P

∗
. Then, applying Lemma 5 at the state ∂�(p1 ‖γ s) we get

(See Figure 22),

∂�(p̄1 ‖γ s̄)
~ν1.~ν2−−−−−� ∂�(p2 ‖γ s2).
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And from the transitions ∂�(p
′
1 ‖γ s′)

~µ
−−−� ∂�(p2 ‖γ s2)

~ν1.~ν2
�−−−−− ∂�(p̄1 ‖γ s̄)

and the Condition C5 we get,(
∂�(p̄1 ‖γ s̄), ∇̂(p′1 ‖γ′ B

m,n[µ, ν 	 ‽a] ‖γ′ s̄)
)
∈ Φ.

Finally, by the above fact, the transitions ∂�(p̄1 ‖γ s̄)
~σ
−−−� ∂�(p̄ ‖γ s̄),

∂�(p
′
1 ‖γ s′)

~σ
−−−� ∂�(p

′ ‖γ s′) and the Condition C7 we get,(
∂�(p̄ ‖γ s̄), ∇̂(p′ ‖γ′ B

m,n[µ, ν 	 ‽a] ‖γ′ s̄)
)
∈ Φ̂.

ii. Or (q1c , q
1
a) ∈ Φ due to C5. Same as the above case.

S9 Let qa
x−→ q′a ∧ (qc, qa) ∈ Φ̂ ∧ x ∈ α(P ). From the construction of Φ̂ we know that,

qc ≡ ∂�(p ‖γ s),

qa ≡ ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s).

Furthermore, from the semantics of ‖γ′ and x ∈ α(P ) we know that,

q′a ≡ ∇̂(p′1 ‖γ′ B
m,n[µ, ν] ‖γ′ s) ∧ p

′ x−→ p′1. (31)

Before showing that the state qa can perform action x, we need to retrieve the rela-
tion between process terms ∂�(p ‖γ s), ∇̂(p′ ‖γ′ Bm,n[µ, ν] ‖γ′ s) from the Conditions Ci
where, i ∈ [1, 7]. We apply case distinction based on the structure of µ and ν.

1. When µ, ν = ε.

2. When µ, ν 6= ε. Then the states qc, qa can be related by the condition C4, or C5, or
C6, or C7. The case under conditions C4 and C5 are special cases under conditions
C6 and C7, respectively. Here we give the proof of the remaining cases.

(a) Either (qc, qa) ∈ Φ̂ due to C6. Then,

∃s1, σ ∈ α(S)∗.

[(
q1c , q

1
a

)
∈ Φ ∧ q1c

~σ
−−−� qc

]
where,

q1c = ∂�(p ‖γ s1), q
1
a = ∇̂(p′ ‖γ′ B

m,n[µ, ν] ‖γ′ s1).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Then,

∃p′′, s′′, s′.[∂�(p′ ‖γ s
′)

~ν
�−−− ∂�(p′′ ‖γ s

′′)
~µ
−−−� ∂�(p ‖γ s1)].

But from Equation 31 we have that p′
x−→ p′1 and thus by well posedness

(Definition 14) and the semantics of ‖γ we get,

∂�(p
′ ‖γ s

′)
x−→ ∂�(p

′
1 ‖γ s

′).
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Figure 23: Proof in Subcase S9-2-a-i.

Now applying the result of Lemma 4 on the transition ∂�(p
′′ ‖γ s′′)

~ν.x
−−−−�

∂�(p
′
1 ‖γ s′) we get (See Figure 23),

∃p′′1.[∂�(p′′ ‖γ s
′′)

x−→ ∂�(p
′′
1 ‖γ s

′′)
~ν
−−−� ∂�(p

′
1 ‖γ s

′)].

Now applying Lemma 5 at the state ∂�(p
′′ ‖γ s′′) we get (See Figure 23),

∃p̄.[∂�(p ‖γ s1)
x−→ ∂�(p̄ ‖γ s1)

~µ
�−−− ∂�(p′′1 ‖γ s

′′)].

Again applying Lemma 5, but at the state ∂�(p ‖γ s1) we get (See Fig-
ure 23),

∂�(p ‖γ s)
x−→ ∂�(p̄ ‖γ s)

~σ
�−−− ∂�(p̄ ‖γ s1).

And from the transitions ∂�(p
′
1 ‖γ s′)

~ν
�−−− ∂�(p

′′
1 ‖γ s′′)

~µ
−−−� ∂�(p̄ ‖γ s1)

and the Condition C4 we get,(
∂�(p̄ ‖γ s1), ∇̂(p′1 ‖γ′ B

m,n[µ, ν] ‖γ′ s1)
)
∈ Φ.

Using the above fact, the transitions ∂�(p̄ ‖γ s1)
~σ
−−−� ∂�(p̄ ‖γ s) and the

Condition C6 we conclude that,(
∂�(p̄ ‖γ s), ∇̂(p′1 ‖γ′ B

m,n[µ, ν] ‖γ′ s)
)
∈ Φ̂.

ii. Or (q1c , q
1
a) ∈ Φ due to C5. Similar to the previous case.

(b) Or (qc, qa) ∈ Φ̂ due to C7. Trivial.

S10 Let qa
x−→ q′a ∧ (qc, qa) ∈ Φ̂ ∧ x ∈ α(S). From the construction of Φ̂ we know that,

qc ≡ ∂�(p ‖γ s),

qa ≡ ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s).

Furthermore, from the semantics of ‖γ′ and x ∈ α(S) we know that,

q′a ≡ ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s̄) ∧ s

x−→ s̄. (32)

Before showing that the state qa can perform action x, we need to retrieve the rela-
tion between process terms ∂�(p ‖γ s), ∇̂(p′ ‖γ′ Bm,n[µ, ν] ‖γ′ s) from the Conditions Ci
where, i ∈ [1, 7]. We apply case distinction based on the structure of µ and ν.
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1. When µ, ν = ε.

2. When µ, ν 6= ε. Then the states qc, qa can be related by the condition C4, or C5,
or C6, or C7. The case under conditions C4 and C5 is already proven in [5]. Here
we give the proof of the remaining cases.

(a) Either (qc, qa) ∈ Φ̂ due to C6. Trivial.

(b) Or (qc, qa) ∈ Φ̂ due to C7. Then,

∃p1, p′1, s1, s′, ~σ ∈ α(P )∗.
[ (
q1c , q

1
a

)
∈ Φ ∧ ∂�(p′1 ‖γ s

′)
~σ
−−−� ∂�(p

′ ‖γ s
′)

∧ ∂�(p1 ‖γ s)
~σ
−−−� ∂�(p ‖γ s)

]
where,

q1c = ∂�(p1 ‖γ s), q
1
a = ∇̂(p′1 ‖γ′ B

m,n[µ, ν] ‖γ′ s).

Note (q1c , q
1
a) ∈ Φ and thus we get the following two cases:

i. Either (q1c , q
1
a) ∈ Φ due to C4. Then,

∃p′′, s′′.[∂�(p′1 ‖γ s
′)

~ν
�−−− ∂�(p′′ ‖γ s

′′)
~µ
−−−� ∂�(p1 ‖γ s)].

Applying Proposition 3 on the transitions ∂�(p
′′ ‖γ s′′)

~ν.~σ
−−−−� ∂�(p

′ ‖γ s′)
we get,

∃p2.[∂�(p′′ ‖γ s
′′)

~σ
−−−� ∂�(p2 ‖γ s

′′)
~ν
−−−� ∂�(p

′ ‖γ s
′)].

Now applying Lemma 5 at the state ∂�(p
′′ ‖γ s′′) we get,

∂�(p2 ‖γ s
′′)

~µ
−−−� ∂�(p ‖γ s).

Thus from the above transition, and the transition ∂�(p2 ‖γ s′′)
~ν
−−−�

∂�(p
′ ‖γ s′) and the Condition C4 we get,(

∂�(p ‖γ s), ∇̂(p′ ‖γ′ B
m,n[µ, ν] ‖γ′ s)

)
∈ Φ.

Finally, from the above fact and the transition ∂�(p ‖γ s)
x−→ ∂�(p ‖γ s̄) and

the Condition C6 we conclude that,(
∂�(p ‖γ s̄), ∇̂(p′ ‖γ′ B

m,n[µ, ν] ‖γ′ s̄)
)
∈ Φ̂.

ii. Or (q1c , q
1
a) ∈ Φ due to C5. Similar to the above case.
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