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Abstract 

Injection moulding of thermoplastic materials is an industrial pro­

cess that allows complex thin walled products to be manufactered in 

one machine cycle, in large numbers and at low cost. Driven by the 

development of new polymers, the demands on the product quality are 

increasing continuously. Also, the variety of applications grows at 

the cost of conventional production techniques. In order to compen­

sate for the shortcoming of experience, numerical tools are wanted, 

in order to predict the influence of the important material param­

eters and process conditions on the final quality of the product. 

From a physical point of view, the injection moulding process is 

complex. This thesis is confined to the analysis of the filling 

stage, injecting a polymer fluid into a complex mould, with a small 

varying gap size. Due to (asymmetric) cooling of the mould, solidi­

fied layers gr~w from the walls of the cavity. The viscosity of the 

polymer depends on temperature, shear rate and pressure. The specific 

volume and other thermodynamic properties are temperature and pres­

sure dependent. 

This work includes a number of new aspects. The mathematical basis is 

formed by a general continuum approach, in which the solid-liquid 

interface is described as a discontinuity surface. The convection of 

heat in all directions is taken into account. A stable explicit flow 

front tracing technique is proposed .that can be applied for every 

arbitrary complex configuration. 

A number of numerical simulations is presented and compared with the 

experimental and numerical data from literature. The front tracing 

method supplies satisfactory results, which hold for the pressure and 

the temperature fields too. In all the results obtained, the velocity 

component in the direction of the channel height was set to zero, 

because evaluating this component was inaccurate. Another problem is 

the decreasing accuracy of the temperature calculation with increas­

ing injection times. A suggestion is made to overcome these problems. 

Nevertheless the theory presented, offers the possibility to predict 

the behaviour of polymers during the filling stage of the injection 

moulding process with improved reliability. 
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1.1 

1 GENERAL INTRODUCTION 

1.1 The increasing importance of in1ection moulding 

Injection moulding is an important industrial process for the series 

production of complex thin walled or small thermoplastic products. 

The repeated use of a mould, in which the product is formed is spe­

cific for this process. Driven by the development of new polymers 

with a superior quality, the tendency is present to manufacture very 

accurate and/or heavily loaded products by injection moulding, which 

formerly were made with other techniques. The quality requirements 

become so high that the manufacturing experience becomes inadequate, 

therefore, it is desirable now to develop numerical tools which at 

least will estimate the influence of various material properties and 

process conditions on the final quality of products. The injection 

moulding process is complex from a physical point of view. This 

investigation is confined to the analysis of the filling stage of the 

process. 

1.2 General description of the injection moulding process 

As mentioned, injection moulding is an important industrial process. 

In an extruder, the raw granulated material is heated until it 

reaches the fluid phase. After mixing, in order to obtain a homoge­

neous melt, the material is injected at high speed into the cooled 

mould. 

CLAMPING UNIT MOULD 

backflow-stop 

valve I 
EXTRUDER 

Fig. 1.2.1 The essential parts of a reciprocating screw injec­

tion moulding machine. 
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When the material is sufficiently solidified, a clamping unit opens 

the mould and the product is ejected. Fig. 1.2.1 shows the essential 

parts of a reciprocating screw injection moulding machine. 

The extruder can be considered to be a rotating screw pump. The 

polymer is melted by the frictional heat generated by the mechanical 

deformation of the material and by heater bands which are fitted 

around the cylinder of the extruder. During this plasticization 

process, the molten homogenized material is transported to the end of 

the screw, wh.ich moves slowly backwards to permit the polymer to 

accumulate. When enough material has been plasticized, the screw is 

forced forward acting as a plunger and the softened material is 

injected into the cooled mould at high speed. A valve prevents the 

backflow of the material, however, sometimes the flow resistance 

along the screw channel is sufficient for this purpose. 

After filling the mould, the full load on the screw causes the pres­

sure in the mould to rise to a maximum (compression). Some material 

can still flow into the cavity in order to compensate for shrinkage 

due to cooling (packing). When the gate seals, material can no longer 

flow into the cavity and the product cools without compensation for 

shrinkage. If the product is sufficiently solidified, the clamping 

unit opens the mould and the product is ejected. 

In summary, the following stages can be distinguished in the injec­

tion moulding process, as far as the mould is concerned: 

injection; 

packing; 

- cooling; 

- ejection. 

1.3 The polymer during the process 

A molten polymer can be considered to be a viscoelastic fluid, with 

physical properties which depend on temperature and pressure. The 

viscosity is high (100- 10,000 Pas), consequently, high injection 

pressures are required too (up to lOO Mpa). 

In spite of the severe cooling of the mould (in order to reduce the 

cycle time) it is possible to attain considerable flow lengths, this 
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can be explained by the low heat conductivity of the polymer, the 

frictional heat developed during filling (keeping the polymer at a 

reasonable high temperature), and reduced viscosity due to the high 

shear rates (shear-thinning effect). 

The cooling rates in a mould are high, especially, near the walls 

where orientated solidified layers grow, accompanied by flow induced 

stresses. Also, thermal stresses are created in these layers, because 

shrinkage is prevented. 

After the filling of the mould, the machine exerts high pressure on 

the polymer. The relaxation time increases, caused by the high pres­

sure and the decreasing temperature. If the gate is sealed no further 

compensation for volume is possible and the pressure in the mould 

falls rapidly. When the product is ejected, it is no longer supported 

by the mould and warpage and shrinkage of the product occurs, caused 

by internal stresses. At that point, the rapid cooling ceases too. 

The core of the product finally solidifies and the build up of resid­

ual stresses continues. Due to the initially rather high temperature, 

the stresses will relaxate at the same time. During its life, the 

product will be subjected to physical aging. In this period, the 

product obtains its final mechanical and thermal properties and 

dimensions. 

From the description above, it can be concluded that the injection 

moulding process is complex. The complete prediction of properties 

and dimensions of a product is not possible presently although it is 

desirable, because the demands made on moulded products are increas­

ing all the time. Within this respect has to be remarked too, that 

the lack of experimental data for the material properties is evident, 

therefore, a sucessful numerical simulation of the injection moulding 

process requires: 

- an extensive characterization of the material properties; 

well defined process conditions; 

- an efficient numerical scheme to solve the set of non-linear equa­

tions, which are derived from the balance equations, the constitu­

tive equations and the initial and boundary conditions imposed by 

the mould and the process; 

Well-defined experiments are necessary to verify the numerical model. 
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In the following Paragraph, a survey of the literature on this sub­

ject is presented. A course distinction can be made between analyti­

cal and numerical approaches. 

1.4 Literature suryey 

The history of the attempt to solve the non-linear equations that 

govern the flow of and the heat transfer in a molten thermoplastic 

material passing through narrow cavities can be traced along four 

main lines: 

- analytical solutions of an integrated form of the equation for the 

heat transport; 

- analytical approximations for the uni-directional flow, combined 

with heat transport, based on local balance equations; 

- numerical solutions of the flow and the heat transport through 

simple cavities, based on the local balance equations; 

- numerical analysis of the multi-directional flow and the heat 

transport through complex shaped cavities, based on local balance 

equations. 

These lines are characterized by the level of approximation used, to 

arrive at a set of equations that can be solved either by applied 

mathematical tools (so-called analytical solutions) or numerical 

techniques (finite difference and{or finite element approximations). 

By using an integrated form of the equation for the conservation of 

heat, information about local temperatures cannot be obtained, howev­

er, the equation of Janeschitz-Kriegl (1977, 1979) contains all the 

phenomena which are relevant to the filing of a long duct with a 

rectangular cross section. 

To arrive at that equation Janeschitz-Kriegl splitted the computa­

tional domain into two parts, a part where the heat transport by 

convection dominates and a part where the heat transport by conduc­

tion prevails. The heat generated by viscous dissipation is partly 

removed by conduction through the nearly stagnant layers on to the 

walls of the cavity. The remaining frictional heat flows to the core, 

either undercompensating for the heat flow to the walls causing the 
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core temperature to decrease (slow flow), or overcompensating the 

heat flow to the walls causing the core temperature to rise (fast 

flow). Despite of the complex heat transfer problem, the core of the 

flow can be treated nearly isothermally. Then, the heat transfer 

problem can be solved with a standard Leveque approximation 

(Schlichting, 1982). 

It appears that this approximation can be extended to include the so­

called "power law" liquids. (Valstar and Beek, 1963; Bird, Armstrong 

and Hassager, 1987). In order to get the correct boundary conditions 

at the flow front, the "fountain flow" concept 1s used. This concept 

gives a rough approximation of the two-dimensional flow at the flow 

front, and showing that material flowing along the centre line flows 

to the wall (Tadmor, 1974). With the aid of this theory, it is pos­

sible to predict the shape of the solidified layer at the end of the 

filling stage. This has been confirmed by experiments done by Wales, 

Van Leeuwen and Van der Vijgh (1973), also see Wales (1976) and 

Janeschitz-Kriegl (1983). 

Within this respect also the work in the same field of White (1975), 

Dietz, White and Clark (1978) and White and Dietz (1979) is relevant. 

Starting with the full equations for the conservation of mass, momen­

tum and energy in a liquid, flowing uni-directionally through a 

narrow slit, Pearson and Richardson describe a computational method 

based on precise examination of the type of flow and combined heat 

transfer problem that occurs at distinct places in the mould (1977, 

1983, 1985, 1986). The flow and the heat transfer problems are cate­

gorized by dimensionless numbers such as: Re, Na (Gr), Br, Pe (Gz). 

Each type of flow and associated heat transfer problem is governed by 

a set of equations containing only the most important terms, allowing 

in a number of cases to arrive at analytical closed form solutions. 

In this respect, attention should be paid to the analogous analysis 

in the papers of Martin (1967), Ockendon and Ockendon (1977), 

Ockendon (1979). Richardson, Pearson and Pearson (1980) described a 

computer program containing all the solutions previously mentioned, 

that can serve as a management tool for combining the outcomes in 

order to simulate flow during the filling of complex moulds. To do 
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so, the geometry of the mould has to be split into a number of stan­

dard conformations such as channels with either a circular, a square 

or a rectangular cross-section. Moreover, a distinction has been made 

between uni-directional parallel flow and uni-directional radial 

flow. 

The method proposed by Richardson, Pearson and Pearson has as a major 

disadvantage, that it is difficult to choose the type of solution in 

regions where the windows defined by the ranges of the dimensionless 

numbers coincide or overlap. It is even difficult to define the exact 

values of the dimensionless numbers where the solution changes type. 

The advantage of the method is that even for complicated moulds, 

filling can be simulated in a reasonably short calculation time. 

In order to avoid the problem of looking for the right type of solu­

tion, it is more convenient to solve the set of equations containing 

all relevant terms. This, of course, is at the expense of increased 

computational time. In that case, methods are applied in adapted form 

of the thin film theory, otherwise referred to as the lubrication 

theory or Hele-Shaw theory (Richardson, 1972; Schmidt, 1976; 

Schlichting, 1982). For uni-directional flow in simple cavities 

(parallel and radial flow), the position of the flow front and, 

consequently, the computational domain is completely known as a 

function of the time. Because this domain has a simple shape it 

appeared most convenient to solve the set of non-linear equations by 

means of the finite difference method. 

For parallel flow, Tadmor (1974), Williams and Lord {1975) and Lord 

and Williams (1975) gave results based on the analytical solution of 

the momentum equation and a solution of the energy equation by means 

of a finite difference scheme. This method is improved by Van 

Wijngaarden, Dijksman and Wesseling (1982) by taking into account the 

transport of heat by convection in the direction of the channel 

height. They used, as a starting point, the approximated energy 

equation derived by Pearson (1977). Sitters and Dijksman (1986) and 

Flamsn and Dijksman (1986) also considered radial and conical flow 

(either with respect to a cylindrical coordinate system or to a 

toroidal coordinate system (Dijksman and Savenije, 1985)). The only 
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difference between parallel flow and the other flow types included in 

the approximation, is that the average flow velocity is a function of 

the coordinate in the direction of the flow, see also Laurencena and 

Williams (1974) and Stevenson, Galskoy, Wang, Shen and Reber (1977). 

When a multi-directional flow is considered, the complicating factors 

are: determining the flow front as a function of time and the veloc­

ity distribution in the computational domain. As soon as the flow 

field is known locally, the energy equation can be solved with nume­

rical techniques. 

Some pioneering papers in this field are those of Hieber and Shen 

(1980), Hieber, Socha, Shen, Wang and Isayev (1983) and Shen (1986). 

In these papers, all the basics concerning the derivation of the 

field equation and finite element formulation for the pressure, the 

propagation of the flow front and the determination of the tempera­

ture field, including all relevant non-linearities, are present. 

Since the computational domain expands as a function of the injection 

time, the finite element mesh covering the fluid on the midplane of 

the cavity has to be adapted at the same time. Together with the 

solution of the pressure and the local velocity and temperature 

field, this may require excessive computer time (Couniot, Crochet, 

1986; Vanderschuren, Dupret, 1986; Iizuka, Gotoh, Miyamoto, Kubo, 

Osaka, Sahara, 1986; Latrobe, De la Lande, Bung, preprint). 

Modelling the flow of a molten polymer through a complicated cavity 

may give rise to numerical instabilities (Hieber and Shen, 1980). 

Pearson and Shah (1973), Pearson, Shah and Vieira (1973), Shah and 

Pearson (1974) and Mhaskar, Shah and Pearson (1977) showed that 

physical instabilities may occur too, during the non-isothermal flow 

of a shear thinning liquid in a narrow cavity, even for parallel 

flow. 

1.5 Scope and framework of this thesis 

The scope of this thesis is restricted to the injection of a polymer 

into a complex three-dimensional cavity, with a small but varying gap 

size. The viscosity of the polymer depends on temperature, shear rate 
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and pressure. Solidification of the polymer against the cooled walls 

of the mould is taken into account. The solidification temperature is 

pressure dependent and asymmetrical cooling is allowed. The specific 

volume and the thermodynamic properties are temperature and pressure 

dependent. For these properties, curve fits and/or tabulated ex­

perimental data can be used. 

This research can be considered as an extension of the work of Hieber 

and Shen (1980): solidification of polymer against the walls of the 

mould, which can be cooled asymmetrically, is taken into account; a 

free choice of the viscosity model is possible; the density of the 

polymer is pressure and temperature dependent; material convection in 

the direction of the channel height is taken into account. 

In Chapter 2, balance equations for mass, momentum and energy are 

derived for a material volume which is cut into two parts by a dis­

continuity surface. The reason for this approach is that the solid­

liquid interface can be regarded as such a surface, in principle 

where, all quantities can change discontinuously. With the second law 

of thermodynamics and the choice of a set of independent thermodynam­

ical variables, a frame is constructed for selecting the constitutive 

equations. 

In Chapter 3, the equations are simplified by combining geometrical 

considerations with knowledge of the flow and temperature development 

and distribution (thin film approximation). 

In Chapter 4, attention is paid to the mechanical and thermodynamical 

behaviours of polymers in general. Also, the adaptation of the mate­

rial curves, to make them suitable for numerical implementation, is 

discussed. 

In Chapter 5, the numerical process based on a mixed finite element/ 

finite difference method, is worked out. Within the thin film ap­

proximation the pressure appears to be independent of the coordinate 

in the direction of the channel height. Therefore, it is sufficient 

to evaluate the pressure at the midplane of the mould. This is done 

with a finite element procedure in order to prevent problems due to 

the complexity of the geometry of the midplane. The velocities and 

the temperatures remain three-dimensional essentially and are solved 
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with a finite difference scheme. The finite difference grid lines are 

applied in the direction of the channel height at the vertices of the 

elements. The finite element mesh is spatially fixed and contains the 

whole midplane of the cavity. The flow front moves through this fixed 

mesh. 

The problem is solved in a number of time increments. After each time 

step, the new position of the flow front is calculated. At the flow 

front, the mesh is adapted in such a manner that a proper mesh re­

sults. All the relevant equations are solved iteratively. After 

convergence, a new time increment is made and the iteration cycle can 

be repeated. 

In Chapter 6, predictions of the flow fronts are compared with the 

experimental results for a Newtonian fluid, between two parallel 

plates. A number of simulations of injection in a centre gated disk 

are carried out in order to investigate the influence of various 

parameters. The injection of a strip is simulated and the results are 

compared with the experimental and numerical results from literature. 

Finally, filling a three-dimensional cavity with varying channel 

height is simulated under realistic conditions. The predicted flow 

fronts are compared to short shots made into an experimental mould of 

similar dimensions. 

Chapter 7 lists a number of problems which will have to be solved in 

the future. Recommendations are made for the continuation of this 

research. 
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2 FUNDAMENTAL EQUATIONS 

2.1 Introduction 

A heat conducting viscous fluid is considered as a continuum. The aim 

is to predict, during a certain process, the density p, the velocity 

~ and the absolute temperature T in the fluid. For this purpose the 

balance equations of mechanics and thermodynamics have to be solved, 

after completion with constitutive equations, boundary and initial 

conditions. 

If solidification of the fluid occurs, the solid-liquid interface can 

be described as a surface where, in principle, all quantities can 

change discontinuously. Such a surface will be called a discontinuity 

surface. Therefore, the jump relations at the discontinuity surface 

with respect to the mechanics and the thermodynamics are important 

too. The material in the solid phase will be regarded as a fluid with 

a very high viscosity. 

Because the use of discontinuity surfaces is not very common, the 

local balance equations and jump relations will be derived with the 

transport theorem for a material volume discussed in Appendix 1. Also 

see Malvern (1969), Becker and Bttrger (1975) and MUller (1985). 
~ 

A material volume V(t), with surface A(t) and unit outward normal n, 

is cut into two parts y&(t) and Vb(t), by a discontinuity surface 
~ a b 

Ad(t) with unit normal nd pointing from V (t) into V (t) (Fig.2.1.1). 

This discontinuity surface divides the surface A(t) into two parts 

Aa(t) and Ab(t), such that the closure of V4 (t) and Vb(t) is given by 
a b the union of A (t) and Ad(t) and the union of A (t) and Ad(t), re-

spectively. 

~ 

n 

Fig. 2.1.1 Material volume, cut by a discontinuity surface. 
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A scalar or vector quantity ~(i,t) is considered, which is continuous 

and sufficiently differentiable in Va(t) and Vb(t) and changes dis­
d~ continuously at Ad(t). The time derivative dt of the integral 

~ = J~dV can be written as (see Al.ll) 
V 

(2.1.1) 

Here, the bracket notation [<P(~d- ;)]d with subscript d represents 
b ~ ~b a ~ ~a 

the difference+ (ud- v) ~ (ud- v ); this bracket notation will 

henceforth be used to indicate the jump in value of other quantities 

too. With ~. the material time derivative of <P is indicated. 

Further, the material velocity;, the not material bounded velocity 

~d of the discontinuity surface, as well as, the gradient operator V 
are introduced. The velocity ; of a certain particle is t~e material 

time derivative of its position i defined according: ; = i. The 

velocity ~d of the discontinuity surface is not uniquely defined. The 

normal component ~d.~d however, which is relevant in (2.1.1), is a 

meaningful quantity. 

After the balance equations, the entropy inequality resulting in the 

local Clausius Duhem inequality will be discussed. This inequality 

will be used in the next Paragraph, where the constitutive relations 

for the Cauchy stress tensor e, the heat flux vector q and the inter­

nal energy < are considered. Finally, the boundary and initial condi­

tions will be considered in a very global manner. 

2.2 Conservation of mass 

The global equation for conservation of mass states that the mass in 

a material volume V does not change with time. In the case that V is 

cut into two parts by a discontinuity surface the balance equation 

reads 

0 (2.2.1) 
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where p is the mass density. Using the transport theorem (2.1.1) it 

follows that 

(2.2.2) 

The equation above is valid for every VS and Vb. Therefore, both 

integrands have to be equal to zero. This results in the local con­

tinuity equation and its jump relation 

-+-+ 
p + p'il•v 0 (2.2.3) 

(2.2.4) 

2.3 Conservation of momentum 

The global equation for conservation of momentum states that the rate 

of change of momentum for a material volume is equal to the resulting 

force of the applied external loads. The balance equation in the case 

that V is cut into two parts by a discontinuity surface reads 

~t ( f p:;dV) = f pfdV + f tdA 
Va+Vb Va+Vb Aa+Ab 

(2.3.1) 

Here, f is the specific external body force and t the external sur­

face load. Using the proposition of Cauehy, t can be replaced by ~·~~ 
where e is the Cauchy stress tensor and ~ the unit outward normal on 

Aa or Ab. Application of the transport theorem (2.1.1) and the theo­

rem of Gauss leads using relation (2.2.3) to 

pf - V•ec)dV -Af[p;(~d- ;) + u]d.~ddA = 0 
d 

(2.3.2) 

Requiring validity for every Va and Vb, the relation above is equiv­

alent to the local balance of momentum and its jump relation 

-+ 
pv -

-+ c .... 
V•e = 0 (2.3.3) 
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(2.3.4) 

2.4 Conservation of moment of mgmentum 

The global equation for conservation of moment of momentum states 

that the rate of change of moment of momentum of a material volume is 

equal to the resulting moments of the applied external loads. Volume 

and surface torques are not taken into account and therefore the 

balance equation can be written as 

(2.4.1) 

Again t can be replaced by u•~. Applying the transport theorem 

(2.1.1), the theorem of Gauss and performing some mathematical manip­

ulations, with relation (2.2.3), (2.3.3) and (2.3.4) leads to 

J (u - uc)dV • 0 
Va+Vb 

(2.4.2) 

Since this must hold for every Va and Vb,this relation is equivalent 

to the local equation of moment of momentum according to 

c 
tJ = " (2.4.3) 

In this case, no relation for the discontinuity surface remains. 

2.5 Conservation of energy (first law of thermgdynamics) 

The global equation for conservation of energy or the first law of 

thermodynamics states that the rate of change of the internal and 

kinetic energy of a material volume is equal to the mechanical power 

performed by the external loads and the supplied heat per unit of 

time. The formula reads 



2.5 

I pf•;dV + I t•;dA + I prdV + I gdA (2.5.1) 
Va+Vb Aa+Ab Va+Vb Aa+Ab 

where £ is the specific internal energy, r is the specific radiation 

density absorbed by the body and g is the surface heat flux into the 

volume. The heat flux g can be replaced by .q.~, where q is the heat 

flux vector. If q and~ have opposite signs, heat will flow into the 

volume. In (2.5.1) 7 t.; can be replaced by (uc•;).~. Application of 

the transport theorem (2.1.1) and the theorem of Gauss with relations 

(2.2.3), (2.3.3) and (2.4.3) leads to 

f (p~ - pr - q:D + V•q)dV + 
Va+Vb 

(2.5.2) 

where the deformation rate tensor D is the symmetric part of the 

velocity gradient tensor v;, Again, this equation is valid for every 

Va and Vb and, therefore, equivalent to the local equation of energy 

and its jump relation 

p£ - pr - q:D + V•q 0 in Va and Vb (2.5.3) 

(2.5.4) 

2.6 Entropy inequality (second law of thermodynamics) 

The second law of thermodynamics states that, in every thermo-mechan­

ical process, the internal entropy production I in a material volume 

is equal to or greater than zero. The entropy production I equals the 

rate of change of the entropy of the volume, decreased by the heat 

supplied per time and divided by the absolute temperature T 
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(2.6.1) 

where s is the entropy density. This equation is known as the global 

Clausius Duhem inequality. Application of the transport theorem 

(2.1.1) and the theorem of Gauss with relations (2.2.3) and (2.5.3) 

leads to 

(2.6.2) 

With this inequality valid for every Va and Vb, follows the local 

entropy inequality (local Clausius Duhem inequality) and its jump 

relation 

pTs - p~ + e:D g•VT > 0 T = 
. in~ and Vb (2.6.3) 

(2.6.4) 

2.7 Constitutive equations 

In this Paragraph, the constitutive equations for .,. and q, and the 

elimination of ; from the energy equation, as well as, the relations 

at the solid-liquid interface will be discussed. The polymer will be 

described as a compressible heat conducting viscous fluid (Muller, 

1985). Such a fluid can be characterized by the following set of 

independent variables p, L, T and VT, where L is the velocity gradi­

ent tensor v;, Using the local continuity equation, the independent 

variable L can be replaced by the independent variables p and Ld 

with Ld the deviatoric part of L. 
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~!~~~!~~-~~~~-!~~9~~!!~~ 
A process with a fluid characterized by these independent variables 

has to be thermodynamically admissable. Therefore, the local Clausius 

Duhem inequality (2.6.3) has to be satisfied. 

It appears to be advantageous, to use the specific free energy f 

instead of the specific internal energy e. The specific free energy 

is defined as 

f e - Ts (2.7.1) 

Due to the principle of equipresence, e as well as s are functions of 

the above mentioned set independent variables. Therefore, the specif­

ic free energy can be written as 

f 
• d -+ 

f(p,p,O:. ,T,VT) (2.7.2) 

Using u:D = (p/p)p + ud:O:.d, where ud is the deviatoric part of u and 

p = -tr(u)/3, (2.7.1) and (2.7.2) the local Clausius Duhem inequality 

transforms into 

1 8f 2 • 8f •• P<P - apP )p - p(--)p 
8p 

8f -1 d d 1-+ ... 
- p(-)•(VT) + u :L - Tq•VT;;:: 0 

avT 
(2.7.3) 

•• • d -+. • 
In this expression p , 0:. , VT and T can be varied independently, 

therefore, the coefficients of these quantities have to be zero 

8f 
0 QL 0 

8f ... 
(2.7.4) 

ao:.d 
-= 0 

8p ... an 

s = -
af (2.7.5) aT 

From (2.7.4), (2.7.5) and (2.7.1) it follows that f and e are func­

tions of the independent variables p and T only, i.e. 

f f(p,T) e = e(p,T) (2.7.6) 
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Relation (2.7.3) reduces to 

!(p Qf 2 • + Md .. Ld - 1~ ~ P - apP )p v ;_rq'v'T ~ o (2.7.7) 

9~~~~!~~~!!~-~9~~!?~~-~~:-~-~~~-9 
The relation above can be simplified by using the following def~i-

tions 

• d ... • d ... 
p = p(p,p,L ,T,VT) = p0(p,T) + p1(p,p,L ,T,VT) (2.7.8) 

(2.7.9) 

where p
0 

is called the thermodynamical pressure, depending on dehsity 

and temperature only. With the principle of equipresence, the Gauchy 

stress tensor 111 - -p[ + 111d can be written as 

e • d -+ 
~- - p0 (p,T)l + 111 (p,p,L ,T,VT) (2.7.10) 

where ~e is called the extra stress tensor. Using the relations 

(2.7.8). (2.7.9) and (2.7.10), the local Glausius Duhem inequality 

reduces further to 

(2.7.11) 

The constitutive equations for ~e and q have to obey the principle of 

objectivity. Therefore, Ld has to be replaced by its symmetric part, 

the objective tensor Dd. The temperature gradient VT is objective. 

For 111e and q follows 

e e • d ~ 
~ = 111 (p,p,D ,T,VT) (2.7.12) 

In fact, no further conclusions can be drawn from (2.7.11) and 

(2.7.12)~ Therefore, constitutive laws for ,e and q will be proposed 

and checked afterwards with respect to (2.7.11). Isotropic constitu­

tive relations will be chosen of the following type 
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(2.7.13) 

(2.7.14) 

Fluids that behave according to relation (2.7.13) will be called 

"generalized Newtonian fluids". The coefficients p. and 11 represent 

the bulk and shear viscosity, being a function of p, p, T and the 
d d 1 d d second and third invariant of D , defined by I 2(D ) = - 2tr(D •0 ) 

and I 3(Dd) = ~tr(Dd•Dd•Dd), respectively. Equation (2.7.14) is known 

as Fourier•s law. The heat conductivity A is a function of p, p, T, 
d d I 2(D ) and I 3(D ) too. From the local Clausius Duhem inequality 

(2.7.11) it follows. with the assumption that both ~e:D and -Q·VT/T 

are non-negative, that the coefficients p., 11 and A have to be greater 

than or equal to zero. 

~!~!~~~!~~-~!_;_!~~-~~~-!~:~!-~~~~ll-~9~~!!~~ 
According to (2.7.6), the specific internal energy< is only a func-

tion of p and T. Combining this with (2.2.3), (2.5.3) and (2.7.10) it 

follows that 

c = 
V 

(2.7.15) 

The quantity cv is the specific heat capacity at constant density. 

Assuming that the relation for p0- p0(p,T) is invertible, p0 and T 

can he considered as independent variables too, resulting in 

c = 
p 

(2.7.16) 
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The quantity cp is the specific heat capacity at constant thermody­

namical pressure and is defined according to 

(2.7.17) 

where h is the specific enthalpy. The derivation of the expressions 

above can be found in Appendix 2. 

The energy equation according to (2.7.16) will be applied further on, 

because in that case, if p0- p, experimental values for cp can be 

used. 

;!!~~!~~-~~-~~!-~~!!~:!!~;~-!~~!~!!~! 
Four relations at the solid-liquid interface are required, in order 

to complete the set of equations. The jump in the specific internal 

energy e equals the specific phase transition heat r of the polymer. 

The tangential velocities on both sides of this interface are equal. 

Further, it will be assumed that the temperature is continuous across 

the solid-liquid interface. This temperature equals the solidifica­

tion temperature T , which is the glass transition temperature for . s . . . 
amorphous polymers and the crystallization temperature for semi-

crystalline polymers. The relations _are 

T - T - 0 s 

(2.7.18) 

(2.7.19) 

(2.7.20) 

(2.7.21) 

The effect of undercooling, which often occurs with semi-crystalline 

polymers, is not taken into account. In that case, (2.7.21) has to be 

replaced by a more complicated constitutive equation which couples 

the normal velocity of the solid-liquid interface to the growth rate 

of the crystals (Janeschitz-Kriegl, Krobath, Roth, Schausberger, 

1983; Eder, Janeschitz-Kriegl, 1984; Janeschitz-Kriegl, Eder, 
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Krobatb, Liedauer, 1987: Janeachitz-kriegl, Wimberger-Friedl, 

Krobath, Liedauer, 1987). 

From the discontinuity relation with respect to the entropy ine­

quality (2.6.4), it follows, as only result, that the jump in entropy 

[s}d and the transition heat r have opposite signs. 

2.8 Recapitulation 

In the volumes Va and Vb, the balance equations (2.2.3), (2.3.3), 

(2.4.3) and (2.7.16) and the constitutive equations (2.7.10), 

(2.7.13) and (2.7.14) are valid, i.e. 

p + ptr(ID) = 0 

where 

c 
16 - 1/1 

(2.8.1) 

(2.8.2) 

(2.8.3) 

(2.8.4) 

(2.8.5) 

(2.8.6) 

(2.8.7) 

(2.8.8) 

(2.8.9) 

(2.8.10) 

Equation (2.7.16) has been chosen instead of (2.7.15), because, if 

p0- p, experimental data are available for cp. The density p in this 
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case is a dependent variable of p0 and T. Therefore, in equations 

(2.8.6),(2.8.7) and (2.8.8), p has been replaced by p0 . 
... ... 

The unknowns in these relations are v, a, q, p0 , T, p, ~. A, cp and 

p. The number of unknowns (22) is equal to the total number of equa­

tions. 

The jump relations (2.2.4), (2.3.4) and (2.5.4) on Ad can be rear­

ranged in a more appropriate form (Appendix 3) according to 

(2.8.11) 

(2.8.12) 

(2.8.13) 

The relations (2.7.18) - (2.7.21) on the solid-liquid interface are 

b .,a + r - 0 (2.8.14) e -

.. b -tb -+ ... ta -+-a....,.... 0 (2.8.15) (v - v •ndnd) - V - v •ndnd) -

Tb- Ta - 0 (2.8.16) 

T - T - 0 on Ad (2.8.17) s 

The total number of equations (2.8.11) - (2.8.17) is 11, 10 transi-
... -+ 

tion relations are required for v, u•nd' e, q•nd' p0 and T (the 

unknown p has been replaced by p0 and T) . An extra unknown is the 

normal velocity ~d.nd of the discontinuity surface. 

With sufficient initial and boundary conditions the solution of the 

problem can be determined in principle. These conditions at this 

stage will be discussed in a rather global manner. A detailed de­

scription of the conditions follows later. Three types of boundaries 

can be distinguished: the injection area(s), the walls of the mould 
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in contact with the polymer and the flow front. The following bound­

ary conditions have to be prescribed! 

-at the injection area(s), the temperature of the injected material, 

as well as, the surface stress or the velocity; 

-at the cooled walls, the temperature, or the heat flux and the 

velocity (no-slip); 

-at the flow front, the heat flux and the surface stress. 

Due to the non-linearity of the equations, the problem will be solved 

in a number of time steps. The results from the previous time step 

will be used as initial conditions. The first time step when the 

mould is almost empty, a fair estimation of the initial conditions 

can be made. In principle, the balance equations with jump relations, 

constitutive equations, boundary and initial conditions can be solved 

for a certain injection moulding problem. 
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3 THIN FILM APPROXIMATION 

3.1 Introduction 

In this Chapter, geometrical considerations are combined with flow 

and temperature assumptions and used to simplify the governing equa­

tions. The result of this procedure is called the thin film or lubri­

cation approximation (Richardson, 1972; Schmidt, 1976; Schlichting, 

1982). The point of departure is the complete set of equations men­

tioned in Paragraph 2.8. 

_,_. _.1~--- ~fluid phase 

......,..--midplane 

- ~ r;d 
Fig. 3.1.1 The solid-liquid interfaces. 

In the jump relations, however, the superscripts b and a are replaced 

by s and f, respectively, denoting the solid and the fluid phases. 

The unit normal vector at the solid-liquid interface points from the 

liquid into the solid phase (Fig. 3.1.1). 

In Paragraph 3.2 the characteristics of the geometry, the velocity 

and the temperature fields are discussed. In Paragraph 3.3, the 

governing equations for the liquid, as well as, the solid phase 

including the jump relations, are simplified using the assumptions 

made in Paragraph 3.2. 

Within this approximation, the most important deductions are given 

below. 

-In the momentum equation, the inertial and gra~i~ forces can be_ 

neglected with respect to the viscous forces (Re<< 1 and Re<< Fr). 
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-The coordinate in the direction of the channel height is not rele­

vant in the remaining part of the momentum equation. 

-In the solid phase no constitutive equation for q is used, because 

the shear stress distribution can be calculated directly, from the 

momentum equation. 

·In the core of the flow the velocities are high and the heat trans· 

port takes place mainly by convection (Pe >> 1). Close to the wall 

the velocities are low and the heat conduction to that wall domi­

nates. In order to get a uniform description for the whole region, 

the heat convection, as well as, the heat conduction perpendicular 

to the wall, are taken into account. 

3.2 Characteristics of tbe geometry. the velocity field and the 

temperature field 

~~~l!:~~=l 
The cavity is a three-dimensional weakly, curved channel. At the ... 
midplane of the channel, a unit normal e can be defined. In the 

-+ z 
direction of ez' a distance measuring coordinate z is chosen, which 

equals zero at the midplane. 

velocity temperature 

Fig. 3.2.1 Geometry, velocity field and temperature field. 

• -+ -+* 
An arbitrary vector a can be decomposed into a tangent vector a , 

perpendicular to ; 1 and a normal vector 8 ; in the direction of e z z z z 
The tangent vector is defined by 

-+* .... ""* a • a .. a e z z 
...... 

a =t a•e z z (3.2.1) 

->* Similarly the (midplane) gradient operator V can be defined as 
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(3.2.2) 

where V is the usual gradient operator. It is assumed that v* is 

independent of the z coordinate, which only holds for weakly curved 

midplanes. As a result for tr(D) follows 

tr(D) (3.2.3) 

The dimension of the channel in the z direction is small compared 

with the dimensions of the midplane. Further, the channel height is 

assumed to be a weakly varying function of the coordinates in the 

midplane (Fig. 3.2.1). This will be valid for the thickness of the 

solidified layers against the cooled walls too. Therefore, the unit 

normals ~d at the solid-liquid interfaces, with a good approximation, 

can be written as 

~ 

e z 

for the upper and the lower interface, respectively. 

y~~~~!~I-~!~~~-~~~-~~~p~:~~~=~-~!~~~-!~-~~~-~~~!~-~~~!~ 

(3.2.4) 

Due to the shape of the cavity and the no-slip condition at the walls 

the velocity gradients in the z direction are very large, compared to 

the gradients parallel to the midplane. Also, the z component of the 

velocity is small, compared to the component in the flow direction. 

Therefore, the deviatoric part Dd of the deformation rate tensor can 

be approximated by 

(3.2.5) 

Also holds 

(3«2.6) 
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Combining (3.2.5) with the constitutive equation (2.8.4) it can be 

seen that the stress tensor 2~Dd- qe- ptr(D)l can be interpretated as 

a shear stress tensor. 

Due to the severe cooling of the mould, combined with a huge heat 

convection in the flow direction (Pe >> 1), the temperature gradients 

in the z direction are very large, compared to the gradients parallel 

to the midplane. Furthermore, the temperature gradient vector can be 

approximated by 

(3.2.7) 

Y!t~~!~r_!!!;~-~~~-~=~e=:~~~:!_!!!;~-!~-~~=-!~;!~-~~~~~ 
The density p is not constant and hence p • -p(V•:;;) will be unequal 

to zero. Therefore, a material velocity has to be present in the 

solid region. Assuming that this velocity has a component in the ... 
direction of nd only, using (3.2.4) it can be written as 

... ... 
V • V e z z (3.2.8) 

This velocity component is important in the jump relations,with 

respect to the solid-liquid interface. 

For the temperature gradient vector the approximation (3.2.7) is 

valid again 

(3.2.9) 

3.3 Simplification of the governing equations 

~~~~!~~!!!_!S~~!~~! 
The bulk viscosity p and the shear viscosity q are of the same order 

of magnitude. Therefore, in the constitutive equation (2.8.4), be­

cause of relation (3.2.6), the term ptr(D)I can be neglected with 

respect to the term 2~Dd. The constitutive relation for u in the 

fluid phase reduces to 

q pl + qe (3.3.1) 
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with Cd according to (3.2.5). Here is used already that now the 
1 hydrostatic pressure p - -3tr(e) and the thermodynamical pressure p0 

are equal 

P - Po (3.3.2) 

In the solid phase, no constitutive equation for e is used. Later 

will be shown that employing extra assumptions, the shear stresses 

directly can be determined from the momentum equation. 

The constitutive relation (2.8.5) for q in the solid as well as the 

liquid domains, using (3.2.7) or (3.2.9), reduces to 

(3.3.3) 

~~~~~~!_!~~~;~~~-!~-~~!_!~~!?_~~~~! 
The continuity equation (2.8.1) transforms, with (3.2.3), into 

*-'* avz • 
V•v + --- - e az p 

(3.3.4) 

From estimations it is known that the very high viscosity of the 

polymer make the inertial and gravity forces negligible with respect 

to the viscous forces (Re<< 1 and Re<< Pr). The momentum equation 

(2.8.2) reduces to 

- d ,..d ... V p + .l!n:j; - -,r.,.. + ££,e 
oz z oz z (3.3.5) 

To elaborate this equation, the constitutive relation for ,.. (3.3.1) 

will be substituted 

(3.3.6) 

With Dd according to (3.2.5) this result can be rewritten as 

(3.3.7) 
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(Jz. 
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(3.3.8) 

Substituting the constitutive equation (3.3.1) for ue and (3.3.3) for 

q in the energy equation (2.8.3), and neglecting the radiation den­

sity, produces 

(3.3.9) 

where the shear rate ; has been defined by 

(3.3.10) 

Substitution of the relation for Dd (3.2.5) in this equation leads to 

. 
"' -

~~~~~~~-!9~~!~~!.!~-~~!.!~~!~-~~~!! 
The continuity equation, using (3.2.8), can be written as 

EJv 
--A - - e 
ilz p 

(3.3.11) 

(3.3.12) 

From equation (3.3.8), it follows that in the fluid domain the pres­

sure is independent of the z coordinste. It will be assumed that, in 

the solidified layer, the pressure in the z direction is constant 

too, Le. 

Qn- 0 
ilz 

(3.3.13) 

In the energy equation, the term ue:D is neglected, since the energy· 

dissipation due to mechanical deformation is very small in the solid 
-+ 

phase. With the constitutive equation for q, the energy equation, 

neglecting the radiation term, becomes 

(3.3.14) 
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-!'!1!1~-=~~!~~'?~!! 
The jump relation for the continuity equation (2.8.11), using (3.2.4) 

becomes 

(3.3.15) 

where uz and vz are the components of ~d and~ in the z direction, 

respectively. Substituting the relation (2.8.15) in the jump relation 

for the momentum equation (2.8.12), and using (2.8.11) leads to 

(3.3.16) 

... ... 
From the equaion above it can be concluded, that nd•6•nd is discon-

tinuous. However, under practical circumstances, the absolute value 
-+ s -+ -+ f -+ 10 

of nd•6 •nd or nd•6 •nd is more than a factor 10 larger than the 

discontinuity in the stress. Therefore, with a very good approxima­

tion, using (3.2.4), the jump relation for the momentum equation 

simplifies to 

(3.3.17) 

The jump relation for the energy equation (2.8.13) with the aid of 

(2.8.11), (3.3.17), the constitutive relations for 6 (3.3.1) and q 
(3.3.3), and the relations for the discontinuity surface according 

(2.8.14) and (2.8.15) reduces to 

(3.3.18) 

~~~~=-~~=~~!!-~!!!~:;~~~!'?~.'?!~=-~~~-~~~~~~-~~;~~~ 
From the expressions for the momentum equations (3.3.8) and (3.3.13) 

and the jump relation (3.3.17), it can be concluded, that the pres­

sure is constant over the full channel height. Once the pressure 

distribution is known (solution of 3.3.7), the shear stress distribu­

tion can be calculated from the momentum equation (3.3.5) if V~6d is 

neglected. 
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::::::~~-sc)lild region 

p2 -fluid region 
---~1--·--

Fig. 3.3.1 Shear stress distribution. 

The shear stress appears to be a linear function of the z coordinate. 

This, can be deduced from the equilibrium of forces on a slab of 

material parallel to the midplane too. 

3.4 Recapitulation 

The state of the polymer in the mould is completely determined, if 

the velocity, pressure and temperature fields, as well as, the veloc­

ity of the solid-liquid interfaces are known. 
-+* The nine unknowns in the fluid phase are v, vz, p, T, ~. A, cp and p. 

The nine equations available are (3.3.4), (3.3.7) - (3.3.9) and 

(2.8.7) - (2.8.10). 

In the solid phase, the following six unknowns have to be determined 

vz' p, T, A, cp and p. The six equations available are given in 

(3.3.12) - (3.3.14) and (2.8.8) - (2.8.10). 

The unknown at the discontinuity surface is the velocity u . Further-
"'* z more 6 transition relations are required for v , vz, p, BT/Bz and T 

(the unknown p has been replaced by p and T). The 7 available equa­

tions are (3.3.15), (3.3.17) (only necessary is: (t!s._ 

ps- pf= 0), (3.3.18), (2.8.15) and (2.8.15) . 
... * 

f ...... 
t! ):ezez= 

The velocity v in the solid phase is equal to zero, because of 

relation (3.2.8) and, therefore, does not belong to the unknowns. 

With the initial and boundary conditions, the problem can be solved 

in principle. A detailed specification of these conditions will be 

given later. 
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4 MATERIAL BEIIAYIOYR 

4.1 Introduction 

In this Chapter, the material properties are discussed as functions 

of the relevant variables. In the Paragraphs 4.2-4.5, the shear 

viscosity ~. the mass density p, the heat conduction coefficient A 

and the heat capacity cp are characterized, respectively. Also, 

attention will be paid to the determination of the solidification 

temperature Ts and the specific transition heat r. The volume vis­

cosity ~ is not important anymore within the thin film approximation. 

According to the thermodynamic approach of Chapter 2, the choice is 

a viscous, compressible, heat conducting fluid. Further, it is as­

sumed that the material behaves isotropically from mechanical and 

thermal points of view. Therefore, theoretically, a number of impor­

tant effects will be excluded. Some of these effects are: elastic 

stresses, orientation and birefringence, anisotropic heat conduc­

tivity, mass density dependent on the temperature history (free 

volume). Of course, it is possible to deal with a number of these 

effects in the computer program, however, with the consequence, it 

does not fit in the thermodynamic framework chosen in Chapter 2. 

Further can be remarked that the lack of experimental data is evi­

dent. For example, bearly no information about p-v-T diagrams, mea­

sured at high cooling rates, and about the pressure dependence of the 

thermodynamic properties is available. Also the influence of the 

orientation on the heat conduction coefficient asks for more investi­

gation. 

4.2 Shear viscosity 

The dependence of shear viscosity (further, referred to as viscosity) 

on shear rate (second invariant of D) and temperature is important. 

Also, the effect of the pressure is considerable. The dependence on p 

and third invariant of D will be neglected. Fig. 4.2.1 shows what can 

be expected globally, for a constant pressure Pr· 
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temperature 

4.2 

-; 
Fig. 4.2.1 Shear viscosity as a function of shear rate and 

temperature. 

At low shear rates, the polymer behaves like a Newtonian fluid. At 

higher shear rates, most polymers show a large decrease in viscosity, 

the so-called shear-thinning effect. This experimental observation is 

explained, as a ,result from the orientation of the molecules in the 

direction of the flow. When the orientation is completed no further 

shear-thinning is possible and the Newtonian behaviour returns. This 

last part of the viscosity function is of no interest for the injec­

tion moulding process. 

The data that is available concerning the shear rate dependence of 

viscosity, covers the whole injection moulding field. However, there 

is a lack of data about the temperature dependence, near the solidi­

fication temperature. Therefore, an extrapolation has to be made. At 

low shear rates and at constant pressure, viscosity as a function of 

the temperature, can be often approximated by the Arrhenius equation 

11 - B exp(A/T) A and B are constants (4.2.1) 

An improved relation, to describe the dependence on temperature more 

accurately, is the so-called WLF equation. In literature an extensive 

treatise can be found (Ferry, 1980). Data for the pressure dependence 

of viscosity are rather scarce (Cogswell, 1981). In most cases, it is 
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sufficient to enlarge the viscosity by a factor which depends on the 

pressure, i.e. 

~(p,T,7) (4.2.2) 

where pr is a reference pressure. 

It can be stated that the computer program which is developed can 

deal with the tabulated experimental viscosity data, completed with 

the temperature and pressure extrapolations. Nevertheless, curve fits 

such as the power law and the Carreau model can be used too. Examples 

of a five-parameter Carreau model and a three-parameter power law 

model, respectively, are given by 

(4.2.3) 

(4.2.4) 

where n is called the power law exponent; A1 , B1, A2 and B2 are 

constants. It is noted that in these relations ~ is not a function of 

the pressure p. 

4.3 Mass density or specific volume 

The specific volume v = 1/p as a function of the pressure p and the 

temperature T is usually represented in the p-v-T diagram. such 

diagrams are available for low cooling rates (2-8 K/s). The behaviour 

of amorphous and semi-crystalline polymers is quite different 

(Fig. 4.3.1). If an amorphous polymer is cooled from the liquid 

phase, the specific volume will reduce more of less linearly with 

temperature. After a transition region the solid (glass) phase is 

reached and linearity returns, however, with different slope. The 

temperature at the intersection of the two tangent lines to the 

curves in the solid and the liquid phase, is called the glass transi­

tion temperature. Semi-crystalline polymers-have a specific crystal­

lization temperature Tc. In the liquid phase the behaviour is almost 

linear. 
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amorphous semi-crystalline 

--t>T 

Fig. 4.3.1 p-v-T diagrams for amorphous and semi-crystalline 

polymers, at low cooling rates. 

At the crystallization temperature, a sudden reduction of the specif­

ic volume occurs, resulting from the higher packing density in the 

crystallized regions. 

At high cooling rates, like those of the injection moulding process, 

the behaviour is quite different (Fig. 4.3.2). 

increasing j increasing 

t 

amorphous semi-crystalline 

Fig. 4.3.2 Diagrams for amorphous and semi-crystalline polymers 

at different cooling rates, for a constant pressure. 
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The specific volume, due to the frozen free volume, will be higher 

for increasing cooling rates. As a consequence the glass transition 

temperature for amorphous polymers will shift to a higher temperature 

(Ferry, 1980). The crystallization temperature for semi-crystalline 

polymers shifts to a lower temperature (undercooling) or even may 

vanish completely. 

Data for the specific volume as a function of the cooling rate are 

very scarce or not available at all. 

The effect of cooling rate, or more general, the temperature history 

is not incorporated in the thermodynamical model of Chapter 2. Within 

this approach, the mass density only can be a function of the pres­

sure and temperature (2.7.16). Therefore the relevant p-v-T diagrams 

have to be applied, which are valid for a cooling rate which is 

representative for the injection moulding process. 

In Fig. 4.3.3, some possible curves which can be provided to the 

computer program, have been drawn. 

V 

t 
increasing 

amorphous semi-crystalline 

-T 

Fig. 4.3.3 p-v-T diagrams for amorphous and semi-crystalline 

polymers, suitable to take into account. 

From now on, the glass transition temperature Tg and the crystal­

lization temperature Tc will be referred to as Ts (solidification 

temperature). From the p-v-T diagram, it can be deduced that the 
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solidification temperature is approximately a linear function of 

pressure. 

If v decreases suddenly during the cooling process, which occurs at 

Ts for semi-crystalline polymers, it is advisable to introduce a jump 

in v at Ts. With a discontinuity surface between the solid and the 

liquid region, this jump can be handled effectively. 

4.4 Heat conduction coefficient 

The heat conduction of a polymer molecule in the direction of the 

backbone differs from the heat conduction perpendicular to that 

direction, in general. If a certain amount of flow induced orienta­

tion is present in the polymer, the effective heat conduction coeffi­

cient A will be dependent on the direction of the flow. 

During the injection moulding process, a definite strong orientation 

can be induced in the polymer, more or less. parallel to the midplane 

of the mould. In the mathematical model, presented in Chapter 2, an 

isotropic constitutive relation for q has been postulated. Conse­

quently, the heat conduction is governed by scalar quantity (A), 

which i~ independent of direction. 

Within the lubrication approximation, the heat conduction is accepted 

to take place perpendicular to the midplane of the mould. Therefore, 

the heat conduction coefficient perpendicular to the midplane, i.e. 

perpendicular to the direction of the orientation will be chosen. 

Apart from that, experimental data for A as function of the orienta­

tion are very scarce {Knappe, 1976), 

Further, it will be assumed that despite (2.8.8), the function A, 

used in actual calculations, depends on the pressure and temperature 

only. However, only data measured under atmospheric conditions are 

available. Fig. 4.4.1 shows a possible curve for A perpendicular to 

the direction of the orientation versus T measured under atmospheric 

conditions. To approximate the influence of the pressure it is noted 

that, at higher pressures the solidification temperature Ts in­

creases. In order to obtain a curve for A at higher pressures, the 

same temperature shift will be applied to the complete curve shown in 

Fig. 4.4.1. 
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Ts --l>T 

Fig. 4.4.1 Heat conduction coefficient A as a function of 

temperature 

4.5 Heat capacity at constant pressure and transition heat 

In general, the heat capacity cp will be measured with a differential 

scanning calorimeter (DSC). These measurements usually take place 

under atmospheric conditions and for low cooling rates. In Fig. 4.5.1 

two measurements of the same sample are shown. Heating supplies the 

endothermal curve and cooling the exothermal one. For the injection 

moulding process the exothermal curve is of interest. 

arbitrary 
units 

t 

Fig. 4.5.1 Measurements for cp with a differential scanning 

calorimeter. 
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Fig. 4.5.2 Heat capacity for amorphous and semi-crystalline 

polymers. 

Possible curves of cp versus T for amorphous as well as semi-crystal­

line polymers are drawn in Fig. 4.5.2. 

In a substantial part of the temperature range of interest, an impor­

tant contribution to cp is delivered by the phase transition. For 

semi-crystalline polymers, the value of cp changes rapidly with 

varying T near the crystallization temperature, because at this 

temperature, most of the crystallization occurs. 

The heat capacity cp will be a function of the cooling rate too, for 

instance, because of the shift of the glass transition temperature 

and the crystallization temperature (Fig. 4.3.2). Also, the shape of 

the curve will change: if a semi-crystalline polymer is cooled at 

such a speed, the crystallization temperature vanishes, the peak in 

cp diminishes. The effects of the cooling rate mentioned are not 

incorporated in the thermodynamic model of Chapter 2. Only the pres­

sure and temperature dependence of cp (2.8.9) can be taken into 

account. Therefore, those cp curves have to be applied, that belong 

to a cooling rate which is characteristic for the injection moulding 

process. 
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The pressure dependence of cp will be calculated completely analo­

gously to the pressure dependence of \ as discussed in Paragraph 4.4. 

If the slope of the curve, representing cp as a function of T, 

reaches high values (semi-crystalline polymers), a moderating proce­

dure is applied (Fig. 4.5.3). 

c 
p 

I 

T s 
-----t:> T 

Fig. 4.5.3 Adaptation of the cp curve, suitable to take into 

account. 

The shaded part can be related to the transition heat, r = ef- s 
e ' 

which is released instantaneously at the solidification temperature 

Ts (Stefan formulation: Carslaw and Jaeger, 1959; Hill, 1987). From 

relation (2.7.15) it can be derived, that the infinitesimal change in 

specific internal energy de, equals cvdT, at constant density. Assum­

ing that there is no difference between cp and also cv (A2.11), for 

the original and the adapted curves, respectively, within a good 

approximation can be derived 

* r - J(c - cp)dT 
T p 

(4.5.1) 

* where cp and cp indicate the original and adapted curves, respective-

ly. The transition heat is equal to the shaded area in Fig. 4.5.3. 
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5 NUMERICAL PROCEDURE 

5.1 Introduction 

In this chapter the numerical solution of the equations, resulting 

after the thin film approximation of Chapter 3, will be discussed. 

The relevant balance equations derived, will be repeated first. 

In the fluid phase 

with 

In the solid phase 

av 
~ 
az 

QR 0 az -

2. 
p 

12. 
p 

On the solid-liquid interface 

(5.1.1) 

(5.1.2) 

(5.1.3) 

(5.1.4) 

(5.1.5) 

(5.1.6) 

(5.1. 7) 

(5.1.8) 

(5.1.9) 

(5.1.10) 
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The problem is transient due to the time dependent domain occupied by 

the material and the energy equations (5.1.3) and (5.1.7). Further, 

it is non-linear, mainly because of the complex dependence of the 

viscosity upon temperature and shear rate. The problem is three­

dimensional with respect to the continuity and the energy equation. 

The pressure, however, is independent of the z coordinate. The flow 

front is assumed to be flat in the z direction and, consequently, the 

position is not a function of the z coordinate. 

Analogous to Rieber and Shen (1980), a finite element/finite dif­

ference method is applied in Which the quantities with respect to the 

coordinates of the midplane are discretized in terms of finite ele· 

ments, while a finite difference procedure is chosen to describe the 

variations in the z direction and in time. This formulation is par­

ticularly suitable for handling cavities with very complex three­

dimensional forms. 

For general literature about the finite element and the finite dif­

ference techniques see: Bathe and Wilson (1976); Ziekiewicz (1977); 

Lapidus and Pinder (1982). 

The finite element mesh is spatially fixed (Eulerian description) and 

covers the whole midplane of the cavity. The finite difference grid 

in z direction is fitted at every vertex covering the fluid and the 

two solidified layers against the cooled walls. In the fluid a 

Gaussian grid point distribution will be chosen, with the advantage 

that integrals over the entire fluid phase can be evaluated accurate­

ly. Further, the point density increases towards the solidified 

layers where considerable·gradients appear. 

In Fig. 5.1.1, a finite element is sketched with the finite dif­

ference grids fitted at the vertices. In order to visualize the grid 

point distributions properly the figure is elongated in the z direc­

tion. 

The problem is solved in a number of time steps. After each time 

step, the new position of the flow front is calculated. On the sides 

of the elements which are intersected by the flow front temporary 

nodes will be created and the covered part of the intersected ele­

ments divided into one or more sub-elements, in such a manner that a 

proper mesh is obtained for the whole actual domain. 
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midplane 

fluid phase 

cooled wall 

Fig. 5.1.1 Grid point distributions at the vertices of a finite 

element. 

An iteration process will be started in which all the relevant equa­

tions are solved successively. As a first estimation of the important 

quantities, the values calculated for the previous point of time will 

be chosen. For the values of the quantities in the grid points of the 

nodes which just have entered the fluid, an appropriate estimation 

will be made. 

The iteration process globally is composed of the steps given below. 

1) Solution of an adapted form of the momentum equation in the fluid 

phase, this will result in a new estimation for the pressure p and 

the velocity;* (Paragraph 5.3). Subsequently the viscosity q and 

the mass density p are' updated. 

2) Solution of the continuity equation in the solid and the liquid 

domains. This will result in a new estimate of the velocity com­

ponent vz (Paragraph 5.4). 

3) Updating of the thermal conductivity A and thermal capacity cp. 

Solution of the energy equations in both the solid and liquid 

phases, in order to get the new temperature distribution 

(Paragraph 5.5). 

4) Calculation of the new positions of the solid-liquid interfaces 

using the jump relation with respect to energy (5.1.10) 

(Paragraph 5.6). 
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5) Convergence check with respect to pressure, temperature and posi­

tions of the solidified layers. If necessary, the steps 1 until 5 

will be repeated. 

After convergence, a new time step will be made and the whole pr.ocess 

repeated. 

5.2 Propagation of the flow front 

The midplane of the cavity is divided into spatially fixed finite 

elements. The flow front moves through the mesh. At the intersected 

element edges, temporary nodes are created. Connection of the ad­

jacent temporary nodes by straight lines, delivers the new approxima­

tion of the flow front. The sections of the partly filled elements 

which are in the fluid will be divided into three node sub-elements. 

Fig. 5.2.1 shows some examples of the sub-divisions for meshes with 

three and six node triangles and four and eight node quadrilaterals. 

• temporary nodes 

0 e fixed nodes 

• e contributing nodes 

=flow front 

Fig. 5.2.1 sub-divisions into three node elements. 

Considering the fixed mesh, only the nodes in the fluid contribute to 

the finite element formulation. Fig. 5.2.2 shows that an element may 

be intersected by more than one flow front. 

Fig. 5.2.2 Elements with several flow fronts. 
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The complete flow front consists of a number of connected edges of 

sub-elements. The velocity of the flow front is made equal to the 
~* average velocity va in the connected sub-element. This velocity is 

perpendicular to the flow front (Paragraph 5.3). 
~* During a time increment At the displacement 8x of each line segment 

of the flow front will be determined, using an explicit Euler in­

tegration scheme 

t~· ~* - I V dt - V (t - At)At 
t-At a a 

(5.2.1) 

Applying (5.2.1) at every line segment separately, leads to results 

which are unsuitable for use, because the new flow front will be 

discontinuous, due to discretization errors. Moreover, if the mid­

plane is curved, it will not coincide with the plane. 

For plane geometries with convex contours, the method proposed by 

Bonnerot and Jamet (1977) can be applied successfully, in order to 

get a continuous flow front. In general however, different techniques 

are required. Therefore, the following method has been developed. 

Every point of the segmented flow front can be regarded as a source, 

covering an area on the midplane. The boundary of this area will have 

such a form, the shortest distance from each point of the boundary to 
~* the source, measured along the midplane, will equal lAx I· The inter· 

sections of the total envelope of all these boundaries with the 

element edges will supply the new temporary nodes, then, the new flow 

front can be constructed. 

Fig. 5.2.3 Construction of the flow front. 

front 

envelope 

flow front 
i 
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Fig. 5.2.3, shows the construction of a flow front in two elements in 

the case, the midplane is not curved (the boundary of the area cov­

ered by a source reduces to a circle then). An advantage of this 

method is that geometries with a concave contour can be dealt with 

easily. Also, dividing the flow front by a partition of the cavity 

causes no problems at all (Fig. 5.2.4). 

Fig. 5.2.4 Flow fronts in a complex geometry. 

It has to be noted that the method above, based on an explicit Euler 

scheme, for all the numerical simulations carried out produced a flow 

front without the development of oscillations. Therefore, contrairy 

to the results of Hieber and Shen (1980), no predictor corrector 

method has to be used to obtain stability. 

It is quite clear that the conservation of mass is violated by this 

procedure. Therefore, a general correction will be carried out. For 

that purpose several methods can be used. It would have been possible 

to determine the new position of the flow front iteratively, keeping 

the time steps constant. However, the simpler method is chosen for, 

adapting the time steps, in such a way that, combined with the pre­

dicted flow fronts, global conservation of mass is satisfied. Mostly, 

the initial value of the time step is chosen in such a way that, the 

distance between two successive flow fronts does not exceed a certain 

predefined value. 
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5.3 Momentum equation 

In this Paragraph, a method is presented for determining the pressure 
->* distribution p and the velocity distribution v of the fluid in the 

filled part of the mould. For this purpose, with respect to the 

midplane, a semi two-dimensional pressure problem can be formulated. 
-+* If the pressure distribution is known the velocity v as a function 

of the z coordinate can be calculated, with an integration procedure 

in the z direction. 

!~~~iE~~!~-~~-~~~-~~~~~~-~~~!~~-!!~~-~~!P~=~-~~-~~~-~-~!~~=~!~~ 
Since the pressure does not depend on the z coordinate, the first 

relation of (5.1.2) can be integrated with respect to this coordinate 

in order to produce 

->* -+ 
ilL z->* c 
az ~V p + ., 

where 
-+ 
C is a yet undetermined vector, 

The domain of the fluid phase in the 

two solidified layers, a z ~a+ . 
... * 

(5.3.1) 

that does not depend on z. 

z direction is bounded by the 

The velocity v as a function of z can be found by integrating 

(5.3.1) from a- to z, yielding 

z ""'* ;;.*_ f ilY...dz 
az (5.3.2) 

where, it is used, that on the solid-liquid interface z - a , holds 

;;.*_ 0. For.z =a+,;;.* is also zero. Using this boundary condition, 

for C can be derived 

+ + ... 
c - -

o:z ... * 0 1 f -dz)V p/ f -dz ., - ., (5.3.3) 

a 

The integrals in the relation above appear frequently. Therefore, the 

following brief notations are introduced 
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From these definitions, the vector C can be written as 

and substituting it in (5.3.2) gives 

""* V= 

(5.3.4) 

(5.3.5) 

(5.3.6) 

If an estimation of the pressure and viscosity distributions, as well 

as, the positions of the solidified layers are known, relation 

(5.3.6) can be used to calculate the velocity parallel to the mid­

plane. Integrating~* over the entire channel height delivers the 

following relation that will be used later 

(5.3.7) 

where 

(5.3.8) 

If the problem is symmetrical with respect to the midplane, easily 

can be proved that J 1= 0. In that case the relations (5.3.6) and 

(5.3.8) can be simplified. 

!~~!~~!~~-~!-~~~-~=~~~~=~-~=~~!~~ 
In order to obtain an approximation for the pressure, as a starting 

point,the weighted residuals formulation of the continuity equation 

(5.1.1) is chosen 
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av • 
fw<v~~*+ --A+ ~)dV- o 

V oz p 
(5.3.9) 

with V the liquid polymer volume injected into the mould. Requiring 

(5.3.9) to hold for every (piecewise continuous) function w, is 

equivalent with the requirement that (5.1.1) is satisfied. 

The weighting function w is taken to be independent of the z coordi­

nate. 

Since a flat flow front in z direction is assumed, the integral over 

the volume V can be decomposed into a surface integral with respect 

to the covered area A of the midplane and a line integral from z • a 

to z = a+. Since V* and w are independent of z and;*_ 0 for z =a~ 
and z -a+, (5.3.9) transforms into 

+ + * a. * "' (Jv fwV• ( f ; dz)dA + Jw( J ~dz)dA + 
A A vz 

+ a • 
+ Jw( J edz)dA - 0 

A p 
(5.3.10) 

0< 

Using relation (5.3.7), it can be seen that 

+ "' . 
V (a-)]dA + Jw( J edz)dA (5.3.11) 

z A - P 

"' 
Integration by parts of (5.3.11), with the theorem of Gauss, leads to 

a weak form suitable for discretization with piecewise differentiable 

fields for p 

+ "' . - Jw< f edz)dA 
A P 

a 

(5.3.12) 
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~ 

where B is the boundary of the surfaee A and n the unit outward 

normal at A. Along the full boundary length (the distinct parts are 

indicated in Fig. 5.3.1), the boundary conditions have to be pre­

scribed. These conditions are of the Dirichlet or Neumann type. 

~1 

~~~ 
injection 

Fig. 5.3.1 Boundary A. 

The polymer is injeeted through the edges Bi, the parts of the bound-
s 

ary B~ represent the flow front and the parts B~ are in contact with 

the mould. 

At the flow front the pressure, is assumed to be negligible 

p - 0 on s! (i- 1,2, .. ) (5.3.13) 

No fluid can penetrate through the wall of the mould, thus, ;*.~k= 0. 
m 

Therefore, with relation (5.3.6) follows 

on Bk (k = 1,2, .. ) 
m (5.3.14) 

With the introduction of the boundary flux (per unit of length) 

(5.3.15) 

from (5.3.12), can be derived that 
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Jsv*w·v*pdA-}.; 
A i 

(5.3.16) 

Relation (5.3.16) is non-linear with respect to p, because several of 

the quantities appearing in this equation are non-linear functions of 

p. The pressure p will be solved iteratively, using a Picard scheme, 

where S and the righthand side are evaluated from the results of the 

previous iteration cycle. 

Discretization 

Equation (5.3.16) will be elaborated by the finite element method, in 

order to determine an approximation for p. On the surface A the 

pressure field will be discretized, therefore A is divided into 

elements (including the sub-divisions of the elements intersected by 

the flow front). The total number of nodes in A, where the pressure 

has to be evaluated, is equal to N. The column of nodal pressures is 

indicated by 

pn (n = 1,2, .. ,N) or (5.3.17) 

The pressure at all the other points of A can be obtained by inter­

polation according to 

or (5.3.18) 

where the interpolation functions ~n obey the usual requirements. 

From now on, the short notation with the tilde in order to indicate a 

column will be used. 
...* For the gradient of the pressure V p it follows that 

-+* -"'* T 
Vp=Vtf (5.3.19) 
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According to the method of Galerkin the weighting function w is 

discretized in the same manner as the pressure 

(5.3.20) 

Substituting of (5.3.18), (5.3.19) and (5.3.20) the weighted residu­

als equation (5.3.16) becomes 

+ 

!T Jt[vz{a+) ~ vz(a-)]dA - !T Jt< fa ~dz)dA 
A A P 

(5.3.21) 

a 

The injection areas will be modelled with a number of point sources 

located at the nodes. A film injection is replaced by a number of 

adjoining point sources. The sum of the integrals over the injection 

boundaries Bi in (5.3.21) can be replaced by a column Q, where the 
s -

associated injected volume fluxes are substituted, at the places 

corresponding to the positions of the "injection" nodes. All the 

other values of that column are zero. 

Requiring that (5.3.21) is satisfied for every admissible column w 

results in 

!£ = g + ~ • V - U (5.3.22) 

where 

(5.3.23) 

(5.3.24) 

(5.3.25) 



5.13 

+ Q • 

U = If< f .11.dz)dA 
A P 

(5.3.26} 

Q 

How, the quantities v and pfp are obtained will be discussed later. z 
The column E contains a number of zeros, related to the nodes at the 

flow front, see (5.3.13). The corresponding components of~· however, 

have an unknown value at these positions, While the rest of the 

column R is empty. This knowledge can be used for partitioning 

(5.3.22), which results in a standard symmetrical linear system of 

equations, where, the column ! is not incorporated anymore. Using an 

ordinary procedure for the solution (Bathe and Wilson, 1976) a new 

estimation for the pressure distribution can be calculated . 

... * From (5.3.6), it is clear that the velocity v and the pressure 

gradient v*p have the same direction. The vector v*p is independent 

of z and can be evaluated in the elements. The magnitude 1;*1 of the 

velocity will be calculated on the grid lines connected to the ver­

tices of the elements with 

zl 
I f -(z 

- '11 
(5.3.27) 

Q 

The shear rate 7 can be derived from;* using (5.1.4), (5.3.1) and 

(5.3.5) it follows 

(5.3.28) 

.. * As mentioned IV PI can be evaluated in every element. In general it 

will not be continuous across the element boundaries. For a par­

ticular node, 1v*p1 will be calculated, from the information of the 
-+* elements containing that node, evaluating IV PI at the centroid of 

each element and averaging the weighted contribution of the elements. 

The choice of a weighting factor is rather arbitrary (for example the 
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weighting factor may be proportional to the angle subtended at the 

particular node, inversely proportional to the distance from the 

given node to the centroid of the element, etc ). 

The term (z - J1!J0)/~ which appears in (5.3.27) and (5.3.28) will be 

evaluated from the results of the previous iteration cycle. 

With the new values of the pressure and the shear rate, the de~ity p 

• p(p,T) in the solid and the fluid domain, as well as, the viscosity 

~ = ~(j,T,p) in the fluid phase can be updated, the temperature' 

values from the previous iteration cycle being used. 

Finally, new values for the integrals J 0 , J 1 and J 2 according to 

(5.3.4) and (5.3.8) are determined. 

5.4 Continuity equation 

In this Paragraph, the continuity equations for the fluid and the 

solidified layers will be solved, offering a new estimation for the 

velocity component vz at every grid point. 

For the positions a+ and a- of the solid-liquid interface, the values 

of the previous iteration cycle will be taken and the updated values 
~* will be used, for p and lv I· 

~~!!~-~~~! 
In the solidified layers, distributions with equidistant grid points 

are defined on every grid line in such a manner that the distance 

between two adjacent points does not exceed a predefined value. 

Consequently, the number of grid points will increase when the solid­

ified layers grow. 

Using the definition of the material time derivative the continuity 

equation according to (5.1.5) can be transformed to 

av 
~+~= b az az z at (5.4.1) 

Where opj8t is the spatial time derivative of p. This equation will 

be solved numerically, using a stable backwards difference scheme, of 

which several computational molecules are displayed in Fig. 5.4.1, 

for the solidified layer with-~~ z <a (Lapidus and Pinder, 1982). 
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z = 0-(t)------------------

solid-liquid 

layer L 
i z = mt-Llt 

j * i-1 Llt 
i 

j-1 interface solidified 
i-1 

layer 
z = -h/2 

~ ~ 

t-Llt mould t mould t 

a b 

Fig. 5.4.1 Computational molecules in the solidified layer. 

The spatial time derivative of p will be approximated by a backwards 

difference scheme. The difference between the value of p at a grid 

point i for the present time t and p at the same spatial location for 

* * time t-Llt has to be determined. The time interval Llt is equal to or 

* less than the time step Llt (Fig. 5.4.1). The value p for time t-Llt , 

* in the case Llt = Llt, can be found by interpolating between the values 

in the gridpoints j-1 and j. If a solidified layer is inserted, the 

interpolation between the values at the grid points mt-Llt and mt can 

be made (the velocity of the solid-liquid interface is assumed 

constant during Llt). 

If, at time t-Llt, the fluid has not reached the grid line, this 

* procedure need to be adapted. At time t , the grid line enters the 

fluid, it will be assumed that the thickness of the solidified layer 

* is equal to zero (Fig. 5.4.lb). The value of pat time t-Llt can be 

found by interpolating at the solid-liquid interface. 

The derivatives with respect to z will be approximated from the 

values of the related quantities at the grid points i-1 and i. 

With the condition that vz equals zero at the wall, z = -h/2, the 

discretized equation (5.4.1) can be solved fori= 2,3, .. ,mt' 

successively, resulting in a new estimate for the velocity v . 
+ z 

For the solidified layer for z = <> the calculations can be performed 

analogously. 
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f - f + In order to determine the values of vz(a ) and vz(a ) as boundary 

conditions for the continuity equation in the fluid phase, the jump 

relation according to (5.1.8) has to be solved for both the solid­

liquid interfaces. For the quantities ps, pf and vs the during the 
z 

iteration cycle, updated values will be chosen, where v8 is the z 
solution of (5.4.1) at the grid point on the interface. The velocity 

component uz of the solid-liquid interface is calculated in the 

previous iteration cycle. In order to specify the jump in certain 

quantities on the solid-liquid interface, two coinciding grid points 

are defined, both in the fluid and the liquid. 

!'!'!!~-I!~~~~ 
In the fluid phase, a Gaussian grid point distribution is defined, 

with the same number of points and two extra points at the solid­

liquid interfaces, on every grid line. 

The continuity equation for the fluid according to (5.1.1), with the 

material time derivative p as an addition of the spatial time deriva­

tive and the convective part, reads 

f)v 
___A 

ilz 

L 

s-lls 

fluid layer 

solidified 

mould s 

z; 0 
midplane 

(5.4.2) 

---z a- (t-b.t) 

K A solid-liquid 
t-wt interface 

s 

Fig. 5.4.2 Computational molecules in the fluid layer. 
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This equation will be solved using a stable backwards implicit finite 

difference scheme, of which two possible computational molecules are 

displayed in Fig. 5.4.2. 

The spatial time derivative of p will be approximated in the same 

manner as for the solidified layers. 

For the grid lines that have entered the fluid during this time step, 

* an estimation of p as a function of z, at the entrance time t has to 

be made. In Appendix 4 it is explained, how this goal can be achieved 

with a simple fountain flow model. 

The derivatives with respect to z will be approximated with a central 

difference scheme, using the values of the related quantities at the 

grid points i-1, i and i+l. 

The terms v~p and v~;* will be evaluated in the direction of the 

flow, based on a backwards difference scheme, using the interpolated 

values between the grid points k-1 and k on grid line L which is 

situated up-stream at a distance As from the grid line K. In order to 

find the position of the grid line L, starting from grid line K, the 

up-stream flow path through one of the connected elements will be 

constructed, using the direction of the flow in that specific element 

(Fig. 5.4.3a). Grid line L will be defined at the intersection of the 

flow path with the opposite element edge. The values of the desired 

quantities at the grid points of the line L can be found by linearly 

interpolating between the values of the corresponding grid points of 

the grid lines M and N. 

Fig. 5.4.3 The up-stream flow paths. 

In Fig. 5.4.3b, is indicated that in several cases a flow path along 

an element edge can be assumed reasonable. 
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Usually, only one up-stream flow path will be found. In cases where 

there are two or more possible flow paths, the relevant values will 

be calculated at all the grid points, for every flow path, and these 

values will be averaged afterwards. 

The discretized form of equation (5.4.2) is of the first order, 

however, it has two boundary conditions at the solid-liquid inter­

faces. In order to satisfy both of these conditions, a least square 

method is applied. This method produces a linear tridiagonal system 

of equations which can be solved with a standard technique (Lapidus 

and Pinder, 1982) providing a new approximation of vz in the fluid 

domain. 

5.5 Energy equation 

In this Paragraph, the solution of the energy equation in the fluid, 

as well as in the solid layers, will be discussed. For the positions 

~+ and~- of the solid-liquid interfaces, the values of the previous 

iteration cycle will be chosen. For A and cp' new values will be 

calculated using the updated p and the temperatures from the previous 

iteration cycle. 

~~~~~~~~~~~~-!~-~~!!~-~~~-!!~~~-~~~~ 
The energy equations in both the fluid and solid domains are given in 

(5.1.3) and (5.1.7), respectively. Apart from the viscous dissipation 

term q~2 , these equations are identical. 

The material time derivative of the temperature can be decomposed 

into a spatial and a convective part according to 

(5.5.1) 

In the solid phase, the last term of (5.5.1) will disappear. The 

spatial time derivative &T/8t will be handled in the same manner as 

&pj8t in the previous Paragraph, including an estimate of the tem­

perature distribution according to Appendix 4, for the grid lines 

that enter the fluid during this step. The derivative &T/Bz will be 

discretized implicitly by a central difference scheme. The most 
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crucial point appears to be the evaluation of the convective term 
.... * .... * v•V T. Numerical experiments have shown that, in order to obtain any 

stable solution, this term has to be approximated with a backwards 

difference scheme (Hieber and Shen (1980) also mentioned this). The 

numerical scheme can be applied successfully, with the computational 

molecules as discussed in Paragraph 5.4. 

The conduction term of the energy equation can be written as 

(5.5.2) 

Also, in this case, the derivatives that appear will be approximated 

implicitly with a central difference scheme. 

The viscous dissipation term, which occurs only in the fluid, will be 

evaluated implicitly too. 

The last term in the energy equation reads T(8p/8T) pfp with 
p 

• .i!R -+*-+* 
P - at + v•V P (5.5.3) 

where, p is not a function of the z coordinate. The approximation of . 
p will be performed in the way described above. The term (8p/8T)p is 

a material property which can be evaluated simply. 

for every grid line in the liquid, as well as the solid phases, three 

tridiagonal matrix equations can be derived. With the prescribed wall 

temperatures and the estimated solidification temperatures, these 

matrix equations can be solved, producing a new temperature distribu­

tion. 

5.6 Positions of the solid-liquid interfaces 

The positions of the solid-liquid interfaces will be calculated 

directly from the jump relation with respect to energy (5.1.10). The 

velocity component uz of the solid-liquid interfaces can be approxi­

mated by a backwards difference scheme. For the solid-liquid inter­

face belonging to z - a it follows that 
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Substituting (5.6.1) in (5.1.10) leads to 

a (t) - a (t - ht) 
ht 

where, F(a (t)) is used as an abbreviation for 

F(a-(t)) 

(5.6.1) 

(5.6.2) 

(5.6.3) 

Solution of a-(t) from (5.6.2) is difficult, because a small change 

in a (t) affects this function tremendously. Numerical calculations 

have shown that the function F(a-(t)) has the profile as shown in 

Fig. 5.6.1. 

a-(t) 

to be determined 

o:-(t) - -h/2 

Fig. 5.6.1 Curve of the function F. 

The character of the curve invites to choose for a bisection method 

for the solution of a-(t). The convergence rate appears satisfactory. 

For all the quantities in (5.6.3), the during this iteration cycle 

updated values are taken. The derivatives with respect to z are 

evaluated with three point approximations. 

The position of the solid-liquid interface for z - o:+ is calculated 

analogously. 
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5.7 lecapitulation 

The essential part of the numerical process, generally seen, has been 

presented in the next flow diagram. This diagram contains all the 

steps discussed earlier in this Chapter. A brief description of the 

steps, which are indicated by the numbers in the diagram, is in­

cluded. 

I Input data r 1 

J 
!New increment and calculation time stepf 2 

ICalcu~ation propagation flow front(s)l 3 

J, 
!Estimation of the values of the relevant quantities! 4 

,I Solution of the system of equations with respect top I 
il Calculation of v*p in the elements and fV*pf in the nodes 

5 

A B 

J, 
!calculation of;:, 7. ~. 

"" I Adaptation of the time step I 7 

~ 

I 
Calculation of the up-stream flow paths and the 1 

8 
values in the grid points to evaluate the derivatives! 

J, 
!Calculation of the spatial time derivati~sl 9 

J, 
jCalculation of the velocity vzJ 10 
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Calculation 

no 

1) Input of geometric data, the process parameters and material 

properties. 

2) Two alternatives are available. Either the maximum distance the 

flow front advances is chosen, or the time increment. In the 

first case, the time increment will be calculated from the maxi­

mum velocity at the flow front and the prescribed propagation of 

the flow front. 

3) Calculation of the propagation of the flow front as discussed in 

Paragraph 5.2. 

4) At the start of the iteration process, first estimations of the 

values of the important quantities are needed. For grid lines in 

the fluid for more than one time step, the values of the previous 

time will be taken. When the grid line has just entered the 

fluid, t~e values at the previous time of a grid line, situated 

up-stream, will be copied. 

5) The system of equations is formed by ~ssembling the contributions 

of the individual elements. The system is solved in order to get 

a new approximation for the pressure field. Calculation of v*p in 
4* the centroid of each element, as well as, IV PI in the nodes by a 

weighted average over the connected elements, see Paragraph 5.3. 
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~ 
6) Calculation of the velocity vf in the direction of the flow and 

the shear rate 7. at all the grid points in the fluid. Updating 

of the viscosity q and the mass density p. Further, new evalua­

tions of the integrals J 0 , J 1 and J 2 will be made for every grid 

line in the fluid. 

7) The total mass in the cavity will be calculated from the included 

volume and the approximated mass density of the polymer. Knowing 

the total mass in the cavity at the previous time, allows an 

adjustment of the time step to be determined, using the pre­

scribed volume fluxes and the approximated mass densities at the 

injection points. 

8) In order to evaluate the derivatives in the direction of the 

flow: v*p, v~*, v*T and V*p, the up-stream flow paths starting 

from every mode will be calculated. If an element edge is inter­

sected a provisional grid line is created. All the values of the 

important quantities at every grid point are calculated by linear 

interpolation between the values· at the corresponding grid points 

of the grid lines at the end of the relevant edge 

(Paragraph 5.4). 

9) Calculation of the spatial time derivatives 8pj8t and 8T/8t at 

all the grid points, using the approximated value of the time 

step and the values of p and T at the previous time 

(Paragraph 5.4). If a grid line was not in the fluid at the 

previous time, an approximation of the mass density and the 

temperature will be made at the time that the grid line enters 

the fluid (Appendix 4). The maximum time interval then equals the 

time when the grid line enters the fluid subtracted from the 

present time. 

10) Solution of the continuity equation, for the solid layer, at the 

solid-liquid interface and for the fluid layer, resulting in a 

new approximation for the velocity component vz (Paragraph 5.4). 

11) Solution of the energy equations for the solid and liquid layers, 

producing a new approximation of the temperature distribution 

(Paragraph 5.5). 

12) Calculation of the new position for the solid-liquid interfaces 

on all the grid lines (Paragraph 5.6). 
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13) Convergence check with respect to the pressure, position of the 

solidified layers and temperature in the core of the flow. 

14) when the cavity is not filled yet a new increment will be made. 

Numerical experiments have shown that the velocity component vz 

cannot be evaluated accurately enough. The inaccuracy of v probably 
~*~* z can be explained from the poor approximation of V•v in (5.4.2) 

which, according to (5.3.6), is proportional to ~*p. The discre­

tization chosen for p is unsuitable for delivering a reliable estima· 

tion for this term. Applying a higher order element (parabolic in­

stead of linear) will not reduce the problem, because v*p remains 

discontinuous across the element sides. This leads to the suggestion 
~* that an element has to be formulated, with at least V p continuity 

across the element edges. 
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6 NUMERICAL SIKULATIQNS 

6.1 Introduction 

In this Chapter, the results of numerical simulations are presented 

and evaluated. In Paragraph 6.2, the flow fronts predicted will be 

compared with the experimental results, by injecting a Newtonian 

fluid between two parallel plates under isothermal conditions. 

The faragraphs 6.3 - 6.5 give the results of numerical simulations 

for the injection of non-Newtonian fluids under non-isothermal condi­

tions. 

In Paragraph 6.3, attention is focussed on the injection of a centre 

gated disk, in order to investigate the influence of various material 

parameters. Also, the accuracy in approximating the temperature 

distribution is evaluated for low injection velocities. 

In Paragraph 6.4, the filling of a rectangular mould is calculated. 

The results are compared with experimental and numerical data from 

literature. 

Finally, the injection ,into a three-dimensional cavity with sudden 

varying heights is simulated. The predicted flow fronts are compared 

to short shots made into an experimental mould with the same dimen­

sions. 

It should be noted that in all the simulations carried out, the 

velocity component vz in the direction of the channel height was not 

taken into account, because this velocity component cannot be deter­

mined accurately enough, as mentioned at the end of Chapter 5. 

6.2 verification of the flow front propagation. for an isothermal 

Newtonian flow in a complex flat geometry 

In order to evaluate the numerical method for calculating a new 

location of the flow front (Paragraph 5.2}, some simple experimental 

simulations with a model fluid were carried out. Basically, the 

experimental set-up consists of two parallel transparent flat plates, 

between which a fluid with a Newtonian behaviour can be injected. The 

desired contour of the cavity is composed of interchangeable strips 
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between the two plates. The fluid is injected at a constant rate into 

the cavity, through one or more holes in one of the plates. For the 

experiments, glycerol was used which had a viscosity of 1.13 Pas. The 

cavity was kept horizontal, in order to reduce to a minimum the 

influence of gravity on the fluid. The fluid was injected at such a 

low speed that inertial forces could be neglected with respect to the 

viscous forces. The propagation of the flow front during the injec­

tion process was recorded on a video tape. 

The cavity in Fig. 6.2.1 is chosen for investigating flow around 

sharp corners and division of flow. The channel height of the cavity 

is equal to 1.5 mm. A suitable element mesh is shown. 

102 mm 

Fig. 6.2.1 Mesh of a cavity with shar~ corners. 

The experimental and numerical results, when the fluid is injected 

through a single gate (with a volume flux of 10-7 m3/s) are presented 

in Fig. 6.2.2. The numerical analysis is performed in 63 incremental 

time steps. After every increment the position of the flow front is 

drawn. The experimental results are indicated by the heavy solid 

lines. The computed flow fronts, of which the injection time cor­

responds to the experimentally determined flow fronts are marked by 

dots. 
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Fig. 6.2.2 Experimentally and numerically obtained flow fronts 

in a geometry with a concave contour. 

It should be noted that, for the experiments with glycerol (different 

from polymers) the surface tension had an influence on the flow near 

the boundaries, especially, if the radius of the flow front was 

small. 

Fig. 6.2.3 Mesh of a cavity with a circular insert. 
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Particularly this occured with flow around corners. In order to 

reduce this effect, the cavity had to be wetted with glycerol before 

the experiment started. 

Another experiment was carried out, using a cavity of 100xl00xl.5 mm 

with a circular insert. Fig. 6.2.3 shows the finite element mesh. 

Fig. 6.2.4 Flow fronts and weld line for one injection point. 

68.5 s 
1..1-'-~~W.IP'"""'' 6 6 . 3 s 

57.1 s 

Fig. 6.2.5 Flow fronts and weld lines for two injection points. 
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The experimental and numerical results, with one and two injection 

points, are given by Fig. 6.2.4 and Fig. 6.2.5, respectively. The 

volume flux for every injection point was equal to 10-7 m3js. The 

flow fronts are drawn after each increment. The numerically obtained 

flow fronts which correspond to the experimentally determined ones 

are indicated by dots again. The dashed curves represent the weld 

lines for the experimental cases. 

Finally, filling of a rectangular cavity (158x38x0.35 mm) is simu­

lated, containing two rectangular areas with a reduced gap of 0.2 mm 

(Fig. 6.2.6). 

Fig. 6.2.6 Mesh of a cavity with sudden variations in height. 

Krueger and Tadmor (1980) also used this configuration for their 

experiments. One of their experiments involved determination of the 

flow front when injecting corn syrup (Newtonian fluid), under iso­

thermal conditions. Fig. 6.2.7 shows the result of this experiment 

along with the numerically obtained flow fronts (drawn after every 

increment). No indication of the injection time was available. 

Fig. 6.2.7 Experimentally (Krueger and Tadmor, 1980) and 

numerically obtained flow fronts. 

Within the thin film theory, full slip occurs along the boundaries of 

the cavity. In the experimental situation the no-slip condition is 
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imposed instead. The influence of this approximation on the progress 

of the flow front could not be investigated properly, because as 

stated before, the surface tension played a role too. 

However, from the results above, it can be concluded that, in the 

case of an isothermal Newtonian flow, determination of the flow 

fronts and weld lines for various cavities can be performed satisfac­

torily. 

6.3 Examination of the influence of material parameters on tbe I 

injection pressure and maximum solidified layer thickness. as 

well as. the accuracy of the temperature approximation 

A number of calculations are carried out, to simulate the filling of 

a centre gated disk, size ~200x2 mm, in order to investigate the 

influence of some material properties on the pressure at the gate and 

the maximum thickness of the solidified layer. Also, the accuracy of 

estimating the temperature is examined. 

gate~~~~--~--~~~~~~--~--~~ 

Fig. 6.3.1 Finite element mesh of a quarter disk. 

The mesh, with three node elements that is used for all of the 

simulations is shown in Fig. 6.3.1. 
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!~~!~~~=~-~~-~~~~~!~!-~~~~~~~!~~ 
For the simulations, the viscosity is described by the Carreau model 

according to (4.2.3), i.e. 

(6.3.1) 

The specific volume v as a function of the pressure p and the tem­

perature T is approximated by 

(6.3.2) 

The solidification temperature Ts as a function of the pressure p 

reads 

T = T + c(p - po) s 0 
(6.3.3) 

Al 1.444*104 K 

Bl = 6.845*10- 9 Pas 

A2 = 1. 312*104 K 

B2 5.050*10-13 
1/s 

n - 0.1 0.4 

V 10- 3 m3jkg 
0 

p = 0 Pa 
0 

T 418 K 
0 

-1. 5*10-12 0.0*10-12 m3/(kgPa) a = 

b 0.0*10- 6 1.5*10-6 m3/(kgK) 

c 0.0*10-6 0.9*10-6 
K/Pa 

>. 0.1 0.3 Jj(smK) 

c 2000 Jjkg p 
r 2250 Jjkg 

Table 6.3.1 Physical properties of the model fluid. 
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The material parameters of (6.3.1), (6.3.2) and (6.3.3) and the 

remaining physical properties (all based on Makrolon 6560) are listed 

in Table 6.3.1. It is assumed that p, T and; are expressed in Pa, K 

and 1/s, respectively, that with respect to (6.3.1) - (6.3.3). 

The polymer is injected at a temperature of 523 K. The walls of the 

mould are kept at a temperture of 323 K and the total injection time 

equals 1 s. 

The injection pressure and the maximum solidified layer thickness: are 

influenced by the heat conduction coefficient A, the power law ex• 

ponent n, the coefficients a and b in the expression for the specific 

volume and the coefficient c in the relation for the solidification 

temperature. These specific contributions are investigated separate­

ly. 

Fig. 6.3.2 shows the influence of the heat conduction coefficient A 

on the injection pressure and the maximum soliuified layer thickness 

at the end of the filling stage. 

80 

pressure [MPa] 

60 

/ 40 

20 
A [J/(smK)] 

0.0 0.1 0.2 0.3 

0.20 

solidified layer 

thickness [mm] 

0.15 

0.10 

0.0 0.1 

.\ [J/(smK)] 

0.2 0.3 

Fig. 6.3.2 The influence of the heat conduction coefficient .\, 

for n = 0.4, a·= 0 [m3/(kgPa)] and b- 0 [m3/(kgK)], 

and c = 0 [K/Pa]. 

In Fig. 6.3.3 the influence of the power law exponent n on the same 

quantities is displayed. 



pressure [HPa] 
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20 
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.~ 
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6.9 

0.25 

solidified layer 

thickness r-1 

0.20 

·-·---·-
0.15 

n 
I I I I 

I 0.2 0.3 0.4 0.5 
L~ I 0.2 0.3 0.4 0.5 

Fig. 6.3.3 The influence of the power law exponent n, for 

A~ 0.2 [J/(smK)], a= 0 [m3/(kgPa)], 

b • 0 [m
3/(kgK)] and c- 0 [K/Pa]. 

The dependence of the pressure and the maximum solidified layer 

thickness on the coefficients a and b is sketched in Fig. 6.3.4. 

80 

pressure [MPa) 

60 0~=---
~.:::::::::::::: --· 

40 

0.20 

solidified layer 

thickness 1-1 

0.15 

• a • 0.0} -6 3 [10 m /(kgHPa)] 
oa•-1.5 

• a • 0
'
0
}[lo-6m3/(kgMPa)J 

0.10 oa • ~1.5 

20 

0.0 
1 b [l0-6m3/(kgK)] 

I I I 
0.5 l.O 1.5 0.0 0.5 1.0 1.5 

Fig. 6.3.4 The influence of the coeffi~ients a and b, for 

A • 0.2 [Jj(smK)], n- 0.4 and c- 0 [K/Pa]. 

The influence of the coefficient c is presented in Fig. 6.3.5. 
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80 
0.25 

pressure [MPa] 

solidified layer / .. 
thickness [mm] 60 

40 ~ 
0.15 

20 
c (KjMPa] c [K/MPFl] 

0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 

Fig. 6.3.5 The influence of the coefficient c, for 

A 0.2 [J/(smK)], n = 0.4, a= 0 [m3/(kgPa)] and 

b = 0 [m3
/(kgK)], 

It can be concluded that reliable experimental data are required for 

n and especially for A. Also, the influence of the parameter b on the 

injection pressure is considerable and it is worth taking into ac­

count. The parameter c only influences the solidified layer thick-

ness. 

~=-~==~!~=r-~~=-~=~~=!~~~:=-:~!:~!~~!~ 
The injection time for the simulations described in the first part of 

this Paragraph is 1 s, in which case the core temperature decreased 

about 4K, as a function of the radius. The temperature distribution 

is rotationally symmetric within an accuracy of about 0.2 K. 

If a longer injection time is chosen, the temperature fall increases. 

In Fig. 6.3.6, two simulations, are compared filling a disk in 3 s, 

using a Newtonian fluid (a) and a Carreau fluid (b). The physical 

properties chosen are: A= 0.2 Jj(smK); n = 0.4; v =10-3m3/kg; 

Ts = 0 K (no solidification is taken into account). The remaining 

data are presented in Table 6.3.1. The viscous dissipation term in 

the energy equation is left out of both simulations. This figure 

shows the isotherms at the midplane. The temperature is a decreasing 
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function of the distance from the gate to the flow front. The dif­

ference between two adjacent contours is 1 K. 

a 

Fig. 6.3.6 Temperature distribution on the midplane at the end 

of the filing stage, for a Newtonian fluid (a) and 

for a Carreau fluid (b). 

It should be noted that the symmetry in case b is disturbed. This is 

caused by an inaccurate evaluation of the convective part ;~v*T 
(equation (5.5.l)),in the energy equation. The result could not be 

improved by a higher order approximation (three point backwards) of 
~* V T. For that reason it can be concluded that the problem probably is 

originated by the approximation of ;~which is proportional to v*p. 

according to (5.3.6). Using a finer mesh and/or a higher order 

element (parabolic instead of linear) could not reduce the problem, 

because v*p remains discontinuous across the element sides. This 

again leads to the suggestion that an element has to be formulated 
~* with at least V p continuity across the element edges. 

6.4 Non-isothermal non-Newtonian flow in a rectangular mould 

Filling of a rectangular mould is simulated, using a length, width 

and height of 300, 75 and 2 mm, respectively. The same dimensions 

were used in the experiments, by Wales, Van Leeuwen and Van der Vijgh 

(1973), the polymer was injected across the entire width of the mould 

through a line gate. The physical properties of the polystyrene used 
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. 
are listed in Table 6.4.1. T and ~ are expressed inK and 1/s, re-

spectively. 

'1 6700exp(- 0.017(T - 493));0 · 356-l Pas 

A- 0.1295 J/(smK) 

V - 0.9434*10-3 m
3
fkg 

c 1733 J/(kgK) p 
T- 373 K s 
r - 3400 J/kg 

Table 6.4.1 Physical properties of PS 678 DOW . 

. 
The viscosity '1 as a function of the shear rate ~ is described by the 

power law model. For the temperature dependence of q, an approxima­

tion of the Arrhenius equation is used. The thermodynamical proper­

ties A, p and cp, have the same constant values in the solid as in 

the liquid phases. Also, the solidification temperature Ts and the 

transition heat r are assumed to be constant. Van Wijngaarden, 

Dijksman and Wesseling (1982) also used similar material properties 

for their calculations, based on the analysis of the two-dimensional 

flow of a molten polymer. 

Filling is simulated for two different volume fluxes of 18*10-6m3;s 

and 540*10-6m3;s. The average velocity of the flow front in these 

cases is 0.12 m/s and 3.6 m/s, respectively. It should be noted that 

experimental data for only the low flow rate are available. The 

polymer is injected into the mould, at a temperature of 523 K, the 

walls of the mould are kept at a temperature of 323 K. The mould, in 

the numerical analysis, is filled at such time intervals that the 

flow front progresses in steps of approximately 6 mm. In Fig. 6.4.1, 

the finite element mesh used (three node elements) and the flow 

fronts predicted are presented, for the average velocity equal to 

0.12 m/s (a) and equal to 3.6 m/s (b). Near the gate the mesh is 

finer because, in that region, the temperature gradients in flow 

direction near the walls are relatively large. 
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Fig. 6.4.1 Finite element mesh and the flow fronts due to an 

average flow velocity of 0.12 m/s (a) and 3.6 m/s 

(b), respectively. 

50 pressure [MPa] 

20 b 

10 

distance from the gate [mm) 

0 100 200 

Fig. 6.4.2 Pressure distribution along the length axis of the 

mould, at the end of the filling stage. Measurements 

from Wales et al. (1973) for case a (e). Calcula­

tions from Van Wijgaarden et al. (1982) for cases a 

and b (solid lines). Present results for cases a (6) 

and case b (o). 
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Fig. 6.4.2 shows the pressure distribution along the length axis of 

the mould when the mould has just been filled. Every symbol (o.~) 

represents a nodal pressure. The measurements by Wales et al. and the 

numerical results of Van Wijngaarden et al., are displayed also. 

It should be noted that the experimentally obtained pressure at the 

end of the cavity distinctly exceeded zero. Probably the packing 

stage had already started. In order to make a proper comparison 

possible, the experimental pressures have to be corrected downwards 

by this amount. Furthermore, it should be mentioned that the dif­

ference between the results of Van Wijngaarden et al. and the present 

results are most pronounced for high injection velocities and is 

caused by the difference between the flow front models used. 

The thickness of the solidified layer at various times and related to 

a flow velocity of 0.12 mjs, is displayed in Fig. 6.4.3. 

0.16 

0.12 

0.08 

0.04 

0 

solidified layer thickness [mm] 

" 
100 

0 

+ 0 

V 
V 

distance from the gate 

200 

Fig. 6.4.3 Growth of the solidified layer as a function of time 

and position for case a. Calculation of Van 

Wijngaarden et al. (1982) for t = 2. 50 s (-) . 

Present results fort a 0.50 s (x), t = 1.03 s (+), 

t = 1.49 s (o), t = 2.00 s (V) and t = 2.50 s (6). 

Growth according to the penetration theory(---). 
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The calculated solidified layer thickness according to the penetra­

tion theory proposed by Janeschitz-Kriegl (1979) and Dietz and White 

(1978) is indicated too. It can be seen that the solid-liquid inter­

face according to the present theory approaches the curve obtained by 

the penetration theory which can be considered as an upper limit. The 

improvement compared with the analysis of Van Vijngaarden et al. can 

be explained with the flow front 1110del (Appendix 4). 

a 

1.0 

0.5 

0.0 

b 

1. 

0.5 

0.0 

~distance from the 

midplane [mm] temperature scale [K] 

65.6 136.7 204.8 277.1 
--t> 

~ distance from the 

midplane (mm] . 

distance from the gate [mm] 

65.6 136.7 204.8 277.1 -distance from the gate [mm] 

Fig. 6.4.4 Temperature profiles at the end of the filling 

stage. 

The temperature distribution.along the axis of the mould at the end 

of the filling stage has been drawn in Fig. 6.4.4 and indicated with 

a and b, for injection velocities of 0.12 mfs and 3.6 m/s, respec­

tively. Note that, for· the ease b the polymer is heated locally, due 

to the large contribution of the viscous dissipation during injec­

tion. The temperature peak occurs at the position of the maximum 

shear rate, of course. 
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6.5 Tbe non-isothermal filling of a complex mould with a ngn­

Newtonian fluid 

In this Paragraph, a comparison will be made between the experimental 

flow pattern in a mould and the numerical simulation, where the non­

Newtonian flow is considered under non-isothermal conditions. In the 

mould, a rectangular box is produced with a varying wall thickness. 

The flow pattern is registered for a number of short shots with ABS. 

These experiments were carried out by DSM (Kersemakers, 1987). 

q=~~=~~¥ 
The box, with a gate in the centre, has two planes of symmetry. 

Assuming that the process conditions are symmetrical with respect to 

these planes, only a fourth part of the box can be considered. Fig. 

6.5.1 shows a quarter of the geometry with its important dimensions. 

The geometry is divided into 4 sub-areas (A to D). Sub-area A has a 

constant wall thickness, but the other sub-areas have linearly vari­

able wall thicknesses. For adjacent sub-areas the thickness shows a 

discontinuity. 

Fig. 6.5.1 Quarter of the experimental mould. 
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Table 6.5.1 includes the side thicknesses (1 and 2) and at the points 

(3 to 8) of the sub-areas. 

Sub-area point/side wall thickness (mm) 

A 3.50 

B 1 2.75 

2 3.05 

c 3 2.90 

4 3.00 

5 4.20 

D 6 3.80 

7 4.20 

8 4.00 

Table 6.5.1 Wall thicknesses of the various sub-areas. 

Fig. 6.5.2 Finite element mesh. 
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~¥~!=!!_~:~~~:~!~! 
The mould is injected with ABS (Ronfalin FP 50). A curve fit for the 

experimental viscosity data (measured on a Reograph 2001 apparatus) 

can be made using the three parameter power law model according to 

(4.2.4), i.e. 

(6.5.1) 

For the specific volume the p-v-T diagram for ABS Novodur Typ PMT 

(Kenndaten: Rheologie, 1982) is used. Since ABS is an amorphous 

polymer it is quite easy to fit a curve for v as a function of p and 

T. Both in the liquid and the solid phases the following approxima­

tion is made. 

(6.5.2) 

with adjustments of the parameters a, b, c, and d in the solid and 

liquid phases separately. The solidification temperature Ts as a 

function of the pressure can. be approximat~d quite well by a straight 

line, in the pressure range which is of interest for the injection 

moulding process under consideration. 

(6.5.3) 

The proportionality factor is indicated by a. No measurements for the 

beat capacity cp as a function of the temperature T for ABS were 

available. Therefore, as a compromise the almost identical diagram 

for polystyrol was used (Kenndaten: Tbermodynamik, 1979). In the 

solid and the liquid regions the cp curve is straight but has a 

different slope. The small peak in the transition area of the curve 

is taken into account by a small amount of fusion beat r, which is 

released at T
8

. With a shift of T
8 

as a function of pressure (6.5.3), 

it can be derived that 

(6.5.4) 
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The parameters, g and h, are different for the solid and the liquid 

phases. 

The heat conduction coefficient is approximated too, by a linear 

function of the temperature. Using the same temperature shift as for 

the heat capacity cp, ~ can be written, for the entire temperature 

range, as 

(6.5.5) 

with, r and s being constants. The material parameters in the rela­

tions (6.5.1) - (6.5.5) are listed in Table 6.5.2. 

A= 4050 K 

B=4 Pas 

n = 0.375 

T = 373 K 
0 

p - 105 Pa 
0 

r - 2ooo J/kg 

Q = 5.4255*10-7 K/Pa 

fluid phase solid phase 

a = 9.78*10-4 9.78*10"4 m3Jkg 

b - -3.86*10"10 -2.78*10- 10 1/Pa 

c - 5.53*10"7 2.50*~0- 7 m3/(kgK) 

d = -4.30*10-9 -3.74*10-9 1/Pa 

g = 1.865*103 1.555*103 Jj(kgK) 

h = 3.44 4.47 J/(kgK2) 

r = l. 75*10-l 1.75*10-l Jj(smK) 

s- -1.20*10"4 -1.20*10 -4 Jj(smK2) 

Table 6.5.2 Parameters of the curve fits for the physical 

properties of ABS. 
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Process conditions ------------------
The polymer is injected at a temperature of 503 K. The walls of the 

mould are kept at a temperature of 323 K. The total injection time 

equals 2.8 s. 

Short shots versus calculated flow fronts 

Fig. 6.5.3 displays the calculated flow fronts and a number of short 

shots. 

The pressure contours are displayed in Fig. 6.5.4, the pressure is a 

decreasing function of the distance from the gate to the flow front, 

the difference between two adjacent contours equals 1.3 MPa. The 

total injection pressure is equal to 49.5 Mpa. 

Fig. 6.5.3 Numerical and experimental (heavy solid lines) flow 

fronts for the non-isothermal non-Newtonian case. 

When an isothermal simulation is carried out with a Newtonian fluid 

(in order to reduce the computational effort), the flow fronts pro­

duced are shown in Fig. 6.5.5. 

It should be noted that an isothermal Newtonian filling simulation is 

not suffficient, for an accurate approximation of the flow front. 
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Fig. 6.5.4 Calculated pressure contours for the non-isothermal 

non-Newtonian case. 

Fig. 6.5.5 Isothermal simulation with a Newtonian fluid. 
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7 CONCLUSIONS 

7.1 Discussion and recommendations 

A general continuum approach, which deals with discontinuity surfaces 

supplies not only the local balance equations, but also, the jump 

relations at the solid-liquid interfaces, which are valid irrespec­

tive of the material (amorphous or semi-crystalline polymers). There­

fore the jump relations should be regarded as a basis for describing 

all the phenomena that take place at these surfaces. 

The importance of the velocity component in the direction of the 

channel height could not be investigated, because evaluating this 

component could not be done accurately enough. This inaccuracy is 

originated by the determination of the pressure gradient in the 

vertices of the elements. It can be assumed that this is also the 

reason for the inaccurate evaluation of the decrease in temperature 

in the core of the flow, when long injection times are used. 

The pressure gradient is discontinuous across the element edges. In 

order to evaluate this quantity in a vertex node, a weighted average 

is applied over all the elements containing the vertex. Several 

weighting methods are tested (with a weighting factor proportional to 

the subtended element angle, or reversely proportional to the dis­

tance to the centroid of the element, or proportional to the element 

area, etc.), but no method could improve the results. Also, refining 

the finite element mesh and applying a higher order element (parabol­

ic instead of linear) could not solve the problem. This leads to the 

suggestion that an element has to be formulated with, at least, 

continuity of the pressure gradient across the element sides. 

The flow front tracing technique proposed in Paragraph 5.2 appears to 

be satisfactory. The intersections o£ the flow front with the element 

edges are the only points of the flow front that are calculated. If 

the used mesh is coarse, the flow front is composed of a number of 

rather long line segments. Distinctly curved flow fronts (when two 

flow fronts have just met) cannot be traced accurately. Therefore, it 
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is desirable, to calculate for every element that is involved by the 

flow front, at least one internal point, which approximately doubles 

the total number of line segments of the flow front. 

The fountain flow model suggested in Appendix 4 is very simple, but 

it needs improvement. Therefore, the two-dimensional fountain flow 

problem (filling a rectangular duct) has to be examined numerically. 

For the isothermal case, this has been done already for different 

viscosity models (Crowet, Dierieck, 1983; Mavridis, Hrymak, 

Vlachopoulos, 1986). However, for predicting the solidified layer 

growth and temperature development in the bulk of the flow, it is 

essential to have a reliable picture of the phenomena at the flow 

front. 

Before a better analytical model for the temperature distribution can 

be developed, firstly, it is necessary to solve the non-Newtonian 

non-isothermal fountain flow problem with numerical techniques. 

The effect of undercooling occurring for semi-crystalline polymers is 

not taken into account (see Paragraph 2.7). In that case, the solidi­

fication rate depends largely on the crystal growth rate and local 

shear effects. The recent work of Janeschitz-Kriegl and coworkers 

(1983, 1984 and 1987) offers a good starting point for approaching 

this problem. 

This research work is confined to viscous flow, in spite of the 

substantial viscoelastic effects that occur in polymer melts. There­

fore, additional work with respect to these effects is desirable. A 

first step will be the computation of elastic stresses assuming that 

flow in the cavity can determined completely from the viscous forces 

only. The elasticity is added afterwards, by using the calculated 

viscous deformation in a viscoelastic model. This approximation has 

to be checked by (numerical) experiments. Finally, the full set of 

equations that govern viscoelastic flow has to be solved. However, 

for the time being, this goal is unattainable, because of the large 

computational times and the number of difficulties still to be over­

come in this field. 
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Appendix 1: Transport theorem formulations 

A three-dimensional time dependent volume V(t) is considered in 

which, a continuous and sufficiently differentiable scalar or vector 

quantity ~(x,t) can be defined (x being the position vector of a 

spatial point of the volume). 

The rate of change of the following volume integral 

~<t> - J ~<i,t)dv 
V(t) 

is defined as 

~ 
dt lim ~[ J ~(x,t + ~t)dV - f ~(x,t)dVJ 

At-+0 V(t+At) V(t) 

(ALl) 

(Al.2) 

If the time interval At approaches zero, the volume integral with 

respect to V(t+~t) can be replaced by a volume integral over V(t) and 

a surface integral over the closure A(t) of the volume. The surface 

has a unit normal vector~. which points out the volume. The normal 

velocity of the surface equals ~. Relation (Al.2) transforms into 

d~(t) 1 s -+ J -+ -+ -+ dt • lim ~[ ~(x,t + ~t)dV + ~t ~(x,t + At)u•ndA + 
~t-+0 V(t) A(t) 

- f ~(i,t)dV]­
V(t) 

- J lim ~[~(i,t + ~t) - ~<x,t)Jdv + 
V(t) At-+0 

+ f lim ~(i,t + At);•~dA 
A(t) At-+0 

(AL3) 

With the introduction of the spatial time derivative it simply fol­

lows that 

dfl(t) J ~ J ... -+ .... dt - at dV + ~(x,t)u•n dA 
V(t) A(t) 

(Al. 4) 
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Relation (Al.4) is only valid if ~(i,t) is continuous in V(t). If, in 

V(t), a time dependent surface Ad(t) is present, where ~(i,t) changes 

discontinuously (such a surface will be called a discontinuity sur­

face), the spatial time derivative of ~(i,t) does not exist evefy­

where in the volume V(t). The transport theorem (Al.4) has to be 

adjusted. The surface Ad(t) will cut volume V(t) into two parts: 
a b a b V (t) and V (t), with surfaces A (t) and Ad(t), and A (t) and Ad(t), 

" a b • -+ 
respectively. The normal velocity of A (t) and A (t) is equal to u. 

The discontinuity surface, with a unit normal ~d pointing from Va(t) 

into Vb(t), moves with the normal velocity ~d. Relation (Al.4) is 
a a separately valid for volume V (t) with surfaces, A (t) and Ad(t), and 

for volume Vb(t) with surfaces, Ab(t) and Ad(t). 

-> 
n 

Fig. Al.l Material volume, cut by a discontinuity surface . 

... 
Without further mentioning of the independent variables x and t, the 

rate of change of ~(t) can be written as 

(Al. 5) 

Where ~a and ~b are the values of ~ at the sides a and b of the 

discontinuity surface. 

Relations (Al.4) and (Al.5) are the transport theorems for not mate­

rial bounded volumes, without or with a discontinuity surface, re­

spectively. 

For material bounded volumes~ ~.~ can be replaced by;.~, -+ 
with v the 

material velocity. The transport theorem for volumes without a dis­

continuity surface reads 
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(Al.6) 

With the theorem of Gauss, this relation can be transformad to 

d~(t) - f[Qi + V·(~~)]dV 
dt vat 

(Al. 7) 

• Qi ...... 
With the definition of the material time derivative ~ = Bt + v.V~ 

(Al.7) can be rewritten as 

d~(t) J • -+ .. 

d = (~ + ~V·v)dV 
t V 

(Al.S) 

The transport theorem for material bounded volumes, with a disconti­

nuity surface, can be written according to 

(Al.9) 

With the theorem of Gauss (Al.9) this becomes 

(Al.lO) 

where the bracket notation [~(~d-~)]d with subscript d expresses 
b ~ ~b a ~ ~a 

~ (ud-v ) - ~ (ud-v ). With the introduction of the material time 

derivative of~. relation (Al.lO) can be rewritten as 

(Al.ll) 

Equations (Al.7) and (Al.S) are the transport theorems for material 

volumes, without a discontinuity surface. Equations (Al.lO) and 

(Al.ll) are the transport theorems for material volumes with a dis­

continuity surface. 
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Appendix 2: Constitutive relations for ~ 

According to (2.7.6), e = e(p,T). However, by interchanging the 

independent variable p by p0 , assuming that this relation is invert­

ible, it can be written e = e(p0 ,T). The material time derivative ~ 

can equivalently be written as 

. 
£ (A2.1) 

Before the relations above are worked out, some important quantities, 

such as the heat capacities cpand cv' the isothermal compressibility 

~T and the equation of Gibbs, will be discussed. The heat capacities 

and the isothermal compressibility are defined by 

c = 
V 

c = 
p 

~ = l(!J.JL) 
T p ap T 

0 

In the second equation, h is the specific enthalpy defined by 

(A2.2) 

(A2.3) 

The entropy sand the pressure p0 according to (2.7.5) and (2.7.9) 

are 

a£ 
s = - aT (A2.4) 

The equation of Gibbs can be obtained by differentiating the first 

and second relations of (A2.4) to p and T, respectively, i.e. 

Considering p and T as being independent variables, using f = e - Ts, 

the first relations of (A2.2) and (A2.4) and the equation of Gibbs, 

the first expression of (A2.1) can be worked out as 
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(A2.6) 

. 
If cv and p0 are known as functions of p and T, the rate of change e 

can be calculated from (A2.6). 

If p
0 

and T are the independent variables, the second relation 

(A2.1) transforms with the definition of cp and h according to (A2.2) 

and (A2.3), into 

' (Al.7) 

Relation (A2.6), with p = p(p0 ,T) can be worked out as 

. 
£ -

(A2.8) 

Substitution of the identity 

(A2.9) 

and the isothermal compressibility KT (A2.2) leads to 

. 
e = 

(A2.10) 

Comparing (A2.10) with (A2.7) supplies the following relations 

(A2.ll) 

(A2.12) 
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Using (A2.12), equation (A2.7) can be written as 

. 
e • (A2.13) 

. 
If cp and p are known as functions of p0 and T, the rate of change e 

can be calculated from (A2.13). 
2 • 

Replacing the second and third te~ in relation (A2.13) by (p
0
Jp )p 

gives a more useful relation for e 

(A2.14) 

This relation will be used. 
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Appendix 3: Reformulation of the 1ump relations 

The jump relations according (2.2.4), (2.3.4) and (2.5.4) are 

(A3.1) 

(A3.2) 

(A3. 3) 

->b ->a b... a ... where t and t are equal to _, •nd and D •nd, respectively. 

Substitution of (A3.1) in (A3.2) and (A3.3) leads to 

(A3.4) 

(A3.5) 

Combination of (A3.4) and (A3.5) gives 

(A3.6) 

The jump relations (A3.1), (A3.4) and (A3.6) are equivalent to the 

original equations and will be used, however, in (A3.4) and (A3.6), 
~ b-> a ... 
t and are replaced by -q •nd and q •nd' respectively. 
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Appendix 4 The fountain flow model 

If a grid line enters the fluid, an estimation of the distribution in 

the z directions of some important quantities (p, T) can be made, 

using a simple fountain flow model. In Fig. A4.1, the flow front 

including the solidified layers against the walls for a real situa­

tion, as well as, for the used model are presented. 

va...,_ 

layer~ 

va<>--

real situation model velocity profile 

Fig. A4.1 The flow front for a realistic situation and for the 

used model. 

In order to get a better picture of the fountain effect, the mould is 

assumed to have a velocity of va' so that the flow front remains 
->* spatially fixed. In Fig. A4.1, a possible velocity profile v has 

been drawn. Due to the no-slip conditions at the walls, material from 

the centre of the flow will be transported towards the walls. The 

particles moving with a velocity identical to the velocity of the 

flow front, will remain at the same z position. 

path of a 

V 
a 

some 

Fig. A4.2 The path of a particle. 

distribution 

before (+++++) 

after (--) 

the flow front 

has passed 

With the assumption that the volume fluxes per unit of length through 

the line segments ab and be (as indicated in Fig. A4.2) are equal, 
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the path of a particle can be calculated (the shaded parts have the 

same area). If it is accepted that the properties of a particle do 

not change during the moment the particle is influenced by the foun­

tain flow, the distributions over the channel height of certain 

quantities can be estimated. However for applications, where the 

length of the trajectory of a particle is important, the fountain 

flow model proposed here, needs adaptation. 
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Samenvatting 

Spuitgieten van thermoplastische materialen is een industrieel pro­

ces, voor het in grote aantallen en tegen geringe kosten vervaardigen 

van complexe dunwandige producten in een machine cyclus. Niet in de 

laatste plaats als gevolg van de ontwikkeling van nieuwe polymeren 

met een superieure kwaliteit, worden de eisen die aan producten ge­

steld worden steeds hoger. Ook groeit het aantal toepassingen ten 

nadele van conventionele productietechnieken. Om het gebrek aan erva­

ring in deze gebieden enigszins te compenseren is het gewenst nume­

riek gereedschap te ontwikkelen, om de invloed van de belangrijkste 

materiaalparameters en procescondities op de uiteindelijke product­

kwaliteit te kunnen voorspellen. Vanuit fysisch oogpunt gezien is het 

spuitgietproces zeer complex. Dit onderzoek beperkt zich tot het in­

jecteren van een polymere vloeistof in een complex gevormde matrijs­

holte, met varierende geringe spleethoogte. Door de (asymmetrische) 

koeling van de matrijs, zullen vanaf de wanden gestolde lagen 

groeien. De viscositeit van het polymeer is afhankelijk van de 

temperatuur, de afschuifsnelheid en de druk. Het specifiek volume en 

de overige thermodynamische grootheden zijn temperatuur- en 

drukafhankelijk. 

Dit onderzoek bevat een aantal nieuwe aspecten. De mathematische ba­

sis wordt gevormd door een algemene continuUms formulering, waarbij 

de scheiding tussen vaste stof en vloeistof wordt beschreven door een 

discontinulteitsvlak. In alle richtingen wordt warmteconvectie in 

rekening gebracht. Een stabiele expliciete methode is ontwikkeld om 

het vloeifront te bepalen in elke willekeurige complexe configuratie. 

Een aantal numerieke simulaties wordt behandeld en vergeleken met 

experimentele waarnemingen en numerieke resultaten uit de literatuur. 

De methode ter bepaling van het vloeifront werkt bevredigend. Dit 

geldt ook voor de bepaling van de druk- en het temperatuurveld. Hier­

bij dient echter opgemerkt te worden dat voor de gepresenteerde re­

sultaten, de snelheidscomponent in de richting van de kanaalhoogte 

niet verdisconteerd is. De reden hiervan is dat voor deze snelheids­

component slechts onvoldoend betrouwbare waarden berekend konden wor­

den. Een ander probleem is de afnemende kwaliteit van de resultaten 

voor het temperatuurveld bij toenemende injectietijd. Een voorstel 



wordt gedaan om deze tekortkomingen op te heffen. Desalniettemin ver­

schaft het gepresenteerde werk de mogelijkheid om het gedrag van po-. 

lymeren tijdens de injectiefase van het spuitgietproces op verbeterde 

wijze te voorspellen. 
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STELLINGEN 

behorende bij het proefschrift 

NUMERICAL SIMULATION OF INJECTION MOULDING 

van Cox Sitters 

1. De beschrijvino van het stolgedrao van semi-kristallijne 
polymeren vereist discontinuiteitsvlakken bij de (uitwerking 

van de) balanswetten. 
- Dit proefsehrift, H2. 

2. Op basis van numerieke analyses moet het mogelijk zijn een 

betere analytische benadering van de stroming aa~ het 
vloeifront af te leiden. Een isotherme oplossing voor dit 
probleem is reeds aanwezig. 
- H. Mavridis, A.N. Hrymak en J. Vlachopoulos, Polym. Eng. and 

Sei., 26 {7) {1987) 449-454. 

3. Om tot een betere numerieke oplossing van het spuitgietproces 
te komen is het vooral belangrijk om elementen te formuleren 
die continuiteit van de drukgradient waarborgen. Het toepassen 
van hooere orde elementen is minder belangrijk. 
- Dit proefschrift, HS en H6. 

4. Bet is van eminent belang een sensor te ontwikkelen, waarmee de 
temperatuurverdeling in plaats en tijd tijdens het spuitgiet­
proces vastgelegd kan worden. 

5. Hieber en Shen kunnen door een kleine aanpassing bij de nume­
rieke bepaling van de optredende drukken tijdens het spuitgiet­
proces, de convergentiesnelheid van het niet-lineaire Poisson 
probleem drastisch opvoeren. 

- C.A. lieber en s.r. Shen, J. of Non-Newt. Fluid Meeh., 1 

(1980) 1-32. 



6. Het verdient aanbeveling de klassieke bescbrijving van het 
stollingsproces van semi-kristallijne polymeren te vervangen 

door een werkwijze, waarbij de kristallisatiesnelbeid een 

functie is van de temperatuur. 
-G. Eder en H. Janescbitz-Kriegl, Polymer Bulletin, 11 (19841 

93-98. 
- H. Janeschitz-Kriegl, G. Eder, G. Krobath en S. Liedauer, J. 

of fion-Newt. Fluid Mech., 23 (19871 107-122. 

7. In tegenstelling tot de gerapporteerde bevindingen van Hieber 

en Shen werkt de in dit proefschrift gebanteerde "straight 

forward procedure" om het vloeifront te bepalen bevredigend: er 
ontwikkelt zich geen oscillerend vloeifront. 

- C.A. Hieber en S.F. Shen, J. of Non-Newt. Fluid Mech., 7 

(1980) 1-32. 

- Dit proefschrift, H5. 

8. Het heeft weinig zin door te gaan met de ontwikkeling van nume­
riek gereedschap voor de simulatie van het spuitgietproces in­

dien de experimentele bepaling van materiaaleigenschappen niet 
verbeterd en uitgebreid wordt. De computersimulaties zijn zeer 
nuttig om via "gevoeligheidsanalyses" de experimenten te 

sturen. 

- Dit proefschrift, H4 en H6.3. 

9. De door Schoofs ontwikkelde optimaliseringsmethode kan 
succesvol gebruikt worden bij het ontwerp van een "packaging" 

van IC's. 

- A.J.G. Schoofs, Dissertatie Technische Universiteit 

Eindhoven, (1987). 

10. Het is alleszins redelijk dat .studenten in de tecbnische 

wetenschappen zelf beschikken over een kleine computer. 


