

Language-based access control approach for component-
based software applications
Citation for published version (APA):
Su, R., Lukkien, J. J., & Chaudron, M. R. V. (2007). Language-based access control approach for component-
based software applications. IET Software, 1(5), 206-216. https://doi.org/10.1049/iet-sen:20070026

DOI:
10.1049/iet-sen:20070026

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1049/iet-sen:20070026
https://doi.org/10.1049/iet-sen:20070026
https://research.tue.nl/en/publications/fda5f0c8-ddf6-48ad-a056-9b83e642f974

Language-based access control approach for
component-based software applications

R. Su, J.J. Lukkien and M.R.V. Chaudron

Abstract: Security in component-based software applications is studied by looking at information
leakage from one component to another through operation calls. Components and security speci-
fications about confidentiality as regular languages are modelled. Then a systematic way is pro-
vided to synthesise an access control mechanism, which not only guarantees all specifications to
be obeyed, but also allows each user to attain maximum permissive behaviours.
1 Introduction

A component-based application consists of a collection of
components, which are prefabricated as off-the-shelf pro-
ducts. One of the main problems in component-based soft-
ware engineering (CBSE) is how to guarantee a system that
is assembled from third-party components complies with its
specifications. As far as the access control is concerned, a
commonly used specification is about the unattainability
of some information in one component to other
unauthorised component. To comply with that specification,
an access control mechanism is needed. In this paper we
adopt the component-based framework introduced in the
Robocop [1] and Space4U [2] projects.
In computer security, ‘access control’ is the ability to

permit or deny the use of an object (a passive entity, such
as a system or file) by a subject (an active entity, such as
an individual or process). Access control systems provide
the essential services of identification and authentication,
authorisation and accountability, where identification and
authentication determine the true identity of a subject that
requests access authorisation determines what an authenti-
cated subject can do and accountability identifies what a
user or a process did. In this paper, we consider only the
authorisation issue and leave identification/authentification
and accountability to techniques in the literature, for
example, we can use a password, a personal identification
number (PIN) or even more extreme ways such as finger-
print, voice, retina or iris characteristics to do identification
and authentication, and use audit records to handle account-
ability. Authorisation defines a user’s rights and per-
missions on a system. Authorisation techniques are
usually categorised into the following classes: (1) discre-
tionary access control (DAC), including techniques such
as access control lists [3, 4] and type-based access control
[5–7], where the owner of a resource decides who is
allowed access to the resource and what privileges they
have; (2) mandatory access control (MAC), including tech-
niques such as rule-based access control [8, 9] and lattice-

The Institution of Engineering and Technology 2007

doi:10.1049/iet-sen:20070026

Paper first received 7th March and in revised form 23rd June 2007

The authors are with System Architecture and Networking Group (SAN),
Department of Mathematics and Computer Science, Eindhoven University of
Technology, 5600 MB Eindhoven, PO Box 513, The Netherlands

E-mail: r.su@tue.nl
206
based access control [10, 11], where it is the system, not
the owner, who decides rights and permissions; and (3) role-
based access control (RBAC) [12, 13], where a user may be
assigned different rights and permissions attached to a
specific role.
In a component-based framework, each component may

be bought from a third party, thus, in general we have no
knowledge about how each component behaves, except
for operation calls in and out of a component via specified
interfaces. In this paper, we consider only information
leakage through predefined operation calls. We believe
that those mentioned techniques in the literature have the
following drawbacks. First, the assignment of rights and
access privileges (ARP) to users is purely heuristic and
there is no formal way to tell which ARP is better, if
there exists more than one ARP. Secondly, the concept of
information flow depends on an existing ARP. If the infor-
mation flow does not satisfy all specifications, then the user
needs to pick another ARP and repeats the same verification
process. Although the process terminates eventually, the
duration may be very long because in the worst case it is
likely that all possible ARPs are used before the right one
is found. In this paper, we define an information flow as
one possible sequence of operation calls that can take
place in the system. Thus, whenever the system is given,
all possible information flows in the system are also fixed.
Therefore, the designer’s job is to block some flows that
may violate specifications. There is a unique way to do
that when we impose an optimality criterion, saying that
the system under the access control should attain the
maximum permissiveness. This criterion guides us to
decide which flow should be blocked and how. The
approach described in this paper is language based, where
a ‘language’ refers to a free monoid over an alphabet
under string concatenation. This makes it different from
some other language-based approaches discursed in [14–
16], ‘languages’ in these papers either refer to programming
languages tailored specifically for an application domain or
a logic representation system that allows descriptions of
security specifications and effective processing of them.
The language representation discussed in this paper is
similar to those in papers about formal models of access
control, [17–19], where security automata or transition dia-
grams for usage control are used to describe security speci-
fications and policies. From access control point of view,
security policies are essentially control policies used in
this paper, which must be obeyed by the access control
IET Softw., 2007, 1, (5), pp. 206–216

mechanism. But, in those papers, it is assumed that the pol-
icies are given a priori, thus their main problem is how to
implement the policies or represent them with extensive
expressivity. In this paper we focus on how to systemati-
cally generate those policies. Therefore, the main objective
of this paper is fundamentally different from that in papers
mentioned above, making the corresponding analysis
approaches different as well. In short, we believe that the
problem and the corresponding approach proposed in this
paper can serve as a complementary part for those existing
techniques in the sense that, using our approach, we can
compute security policies for a component-based software
application, then utilise the existing techniques to
implement those policies. We can see this later in the paper.
This paper is organised as follows. Section 2 describes

language-based dynamic models and their composition.
Then, a language-based approach is provided in section 3
to formulate specifications. Section 4 presents a formal
way to synthesise an access control mechanism with
maximum permissiveness. Section 5 gives a way of imple-
menting the control mechanism. Conclusions are drawn in
Section 6.

2 Language-based dynamic models

In the Robocop [1] and Space4U [2] framework, a com-
ponent, c, is a collection of services, Sc, where each
service, s [Sc, consists of a family of interfaces, Is. An
interface i [Is in our framework consists of a list of oper-
ations, Oi. A ‘requires’ interface needs operations from
other service instances, and a ‘provides’ interface gives
operations to other service instance. A service s1 binds s2
on an interface i, when i is a requires interface in s1 and a
provides interface in s2. Each operation o [Oi consists of
(1) a set o.P of input variables (or input arguments),
where for each p [o:P, its domain is denoted by p.D
(thus implicitly the input type is also defined); (2) a set
o.R of return variables (or return arguments), where each
r [o:R has a domain r.D; (3) a behavior model describing
in which order the operation o calls operations provided by
other interfaces (not necessarily in the same service). The
behaviour model can be a finite-state automaton (FSA), a
sequence diagram or a process algebra. In a runtime
environment, each service may instantiate multiple service
instances, which binds with other instances to fulfil a task.
In this paper, we consider only service instances, unless
specified otherwise. A system consists of a collection of
bounded service instances. As an illustration, a service
instance specification may look as follows:

Example 1
1. service instance s
2. requires i1
3. operation a
4. a:P ¼ {a1}
5. a1:D ¼ {1, 2, . . . , 5}
6. a.R ¼ 1
7. requires i2
8. operation b
9. b.P ¼ fb1g
10. b1.D ¼ f1, 2,. . .,10g
11. b.R ¼ 1
12. provides i3f
13. operation o
14. o.P ¼ fp1, p2g
15. p1.D ¼ f1, 2,. . ., 10g
IET Softw., Vol. 1, No. 5, October 2007
16. p2.D ¼ fxj0 � x � 10g
17. o.R ¼ fr1g
18. r1.D ¼ ftrue, falseg
19. behavior:
20. i1.a;
21. i2.bg

From the above specification we can see that the service
instance s has three interfaces: two requires interfaces i1, i2,
and one provides interface i3. Interface i3 has one operation
o, which has two input parameters p1 and p2, where the
domain of p1 is a discrete-value set and the domain of p2
is a continuous-value set. The operation o returns a
Boolean value. The behaviour model says that within the
execution of o, the operation a of i1 is called first followed
by the operation b of i2. Similarly, the descriptions of two
requires interfaces can be interpreted. We can see that oper-
ations i1.a and i2.b have no return values. Since i3.o has no
interest about how i1.a and i2.b are executed, except for
their return values, there is no behaviour model in the
descriptions of i1.a and i2.b. The specification says that
whenever the operation i1.a is called within s, a value is
assigned to the input variable a1 first, which is then fed to
i1.a. In other words, a1.D stands for all values in s than
may be assigned as an input value for the operation call
i1.a. A similar situation applies to i2.b.
Each service can have many different instances. Let S be

the collection of all service instances in a target system.
From now on we focus only on service instances. For a
slight abuse of notations, we also use s to denote a service
instance, which is associated with a instance specification
derived from the corresponding service specification. For
each instance s [S, we can derive a collection of oper-
ations from the instance specification

Os :¼
[
i[Is

Oi

and a collection of variables

Vs :¼
[
o[Os

[o:P< o:R]

We assume that two different service instances do not
have any variable in common, namely

(8s, s0 [S)s = s
0
) Vs > Vs0 ¼ 1

Let

V :¼
[
s[S

Vs and O :¼
[
s[S

Os

be the collection of all variables and the collection of all
operations, respectively, in the system.
As an illustration, consider a simplified poker game, where

there are two poker players, P1 and P2, who can check their
respective individual scores by calling an operation Check–
Score of the Game Manager (GM). Those scores are stored
separately at a memory location Data Storage (DS) which
can be accessed by GM through an operation call
Data-Retrieval. The system is depicted in Fig. 1, we have
the following service instance specification for GM:

1. requires interface DM
2. operation Data-Retrieval
3. Data-Retrieval.P ¼ fPlayerIDg
4. PlayerID.D ¼ fP1, P2g
5. Data-Retrieval.R ¼ fPlayerScoreg
6. PlayerScore.D ¼ f0, 1, . . . , 100g
207

7. provides interface IPlay
8. operation Check-Score
9. Check-Score.P ¼ fPlayerIDg
10. PlayerID.D ¼ fP1, P2g
11. Check-Score.R ¼ fPlayerScoreg
12. PlayerScore.D ¼ f0, 1, . . . , 100g
13. behaviour:
14. DM.Data-Retrieval

Note that GM has no interest about how Data-Retrieval is
executed. Therefore the behaviour model of Data-Retrieval
is not provided in the specification of GM. The similar situ-
ation occurs in the specifications for P1 and P2, described as
follows. It is worth to emphasise that unprovided behaviour
is different from empty behaviour because the latter says
that there is no internal calls.

The service instance specification for P1 is:

1. requires interface IPlay
2. operation Check-Score
3. Check-Score.P ¼ fP1IDg
4. P1ID.D ¼ fP1, P2g
5. Check-Score.R ¼ fP1Scoreg
6. P1Score.D ¼ f0, 1, . . . , 100g

The service instance specification for P2 is

1. requires interface IPlay
2. operation Check-Score
3. Check-Score.P ¼ fP2IDg
4. P2ID.D ¼ fP1, P2g
5. Check-Score.R ¼ fP2Scoreg
6. P2Score.D ¼ f0, 1, . . . , 100g

The service instance specification for DS is

1. provides interface DM
2. operation Data-Retrieval
3. Data-Retrieval.P ¼ fPIDg
4. PID.D ¼ fP1, P2g
5. Data-Retrieval.R ¼ fPlData, P2Datag
6. P1Data.D ¼ f0, 1, . . . , 100g
7. P2Data.D ¼ f0, 1, . . . , 100g
8. behavior: empty

From those instance specifications we get the following:

VGM ¼ fPlayerID, PlayerScoreg
VP1 ¼ fP1ID, P1Scoreg
VP2 ¼ fP2ID, P2Scoreg
VDS ¼ fPID, P1Data, P2Datag

Fig. 1 Simple poker game system
208
V ¼ VGM < VP1 < VP2 < VDS
O ¼ fCheck-Score, Data-Retrievalg

The information flows in the poker game are depicted in
Fig. 2, where flows with the same type of arrow-headed
lines belong to one operation call. From Fig. 2 we can
see that Player 1 (P1) has (at least) two blocks of data:
one is associated with the variable P1ID and the other
with the variable P1Score. A value of P1ID can be
assigned to the variable PlayerID in GM through the oper-
ation call Check-Score. The value of the return argument
PlayerScore of Check-Score in GM is assigned to the vari-
able P1Score in P1, which completes the operation call
Check-Score. The information flow between P2 and GM
is interpreted in the same way. The flow between GM
and DS is a little bit complicated in the sense that the
value of the return argument of the operation call
Data-Retrieval in DS conditionally depends on the value
of the input argument PID of Data-Retrieval in DS. If
PID ¼ P1, then the value of the argument P1Data in DS
is assigned to PlayerScore in GM; otherwise, the value
of P2Data in DS is assigned to PlayerScore in GM. The
diagram suggests that, if there is no access control mech-
anism, then it is possible for Player 1 to obtain scores of
Player 2 by simply assigning the value P2 from P1ID to
PlayerScore. Apparently, this kind of flow violates the
requirement of confidentiality, thus, should not be
allowed. In the following part of this paper, we will
propose a systematic way to find all such ‘bad’ flows
and to develop an access control mechanism to block
them. To that end, we first formalise the concept of
assignments.

Definition 1: An assignment is a three-tuple [v.x, o, v0],
where v, v0 [V, x # v.D and o [O.
In the above definition, the three-tuple [v.x, o, v0] denotes

the assignment of any value of xto the variable v0 through
the operation call o. If x is a singleton, say fag, then we
simply use v.a to denote v.fag. For example, we have the
following assignments between P1 and GM:

[P1ID.P1, Check-Score, PlayerID] and

[P1ID.P2, Check-Score, PlayerID]

which says that the value P1 (or P2) of the variable P1ID (or
P2ID) is assigned to the variable PlayerID which is the input
argument of the operation call Check-Score. Between GM

Fig. 2 Information flows in the poker game
IET Softw., Vol. 1, No. 5, October 2007

and DS we have

[PlayerID.P1, Data-Retrieval, PID] and

[P1Data.{1, . . . , 30}, Data-Retrieval, PlayerScore]

which says that the value P1 of the variable PlayerID is
assigned to the variable PID through the operation call
Data-Retrieval, and any value among f1, . . . , 30g of the
variable P1Data (i.e. the score of P1) can be assigned to
the variable PlayerScore through (the return of) the oper-
ation call Data-Retrieval. For notation brevity we will use
CS to denote Check-Score and DR for Data-Retrieval. In
the term v.x, if x ¼ D then we simply use v:] instead of
using v.D, which is only for denoting the domain of v. For
any two assignments [v:x, o, v0] and [v:x0, o0, v00], we
assume that either x ¼ x0 or x> x0 ¼ 1. This assumption
will be used in access control to make sure that the disable-
ment of one assignment will not affect executions of other
assignments. The concept of disablement will be explained
in the following sections.
Let iass,s be the set of all possible assignments associated

with the service instance s, and A�
ass,s the Kleene star

(or Kleene closure) of Aass,s, that is A�
ass,s is the set of all

finite strings, consisting of assignments from Aass,s. Each
finite string is also called a path. Let Aass :¼ <s[SAass,s

be the overall set of assignments. We assume that Aass is
finite.

Definition 2: An atomic action in a service instance s is a
finite sequence in A�

ass,s.

An atomic action denotes a sequence of assignments that
must be finished completely whenever the first assignment is
executed. Therefore if some relevant assignment of this
sequence fails (owing to errors) or is disallowed by a
control mechanism that monitors and manages the execution
of the service instance s, then the entire sequence should be
abandoned. For example, assigning input arguments of an
operation call can be modelled as an atomic action because
we can never leave any input argument unassigned when
we make the call. If we make a mistake on one assignment,
then we need to abandon the current call (i.e. discard all pre-
vious assignments) and make a new call. In the above poker
game example, each atomic action is simply an assignment.
Let Aact,s # A�

ass,s be the set of all atomic actions that can
actually happen in s. We assume that Aact,s is finite. Let
Aact :¼ <s[SAact,s be the set of all atomic actions for the
system.

Definition 3: A dynamic model of a service instance s is a
subset of A�

act,s.

A dynamic model describes all possible sequential beha-
viours of a specific local service instance. For the appli-
cation purpose, a dynamic model is usually considered as
a regular sublanguage of A�

act,s. As an illustration, the
IET Softw., Vol. 1, No. 5, October 2007
dynamic model of P1 is

LP1: ¼ (([P1ID.P1, CS, PlayerID]

þ [P1ID.P2, CS, PlayerID])

[PlayerScore:], CS, P1Score])�

which says that P1 repetitively calls the operation CS, in the
sense that it passes an ID (either the value P1ID.P1 or
P1ID.P2) to the input argument PlayerID of CS, then
waits for the return value PlayerScore of CS (to be assigned
to P1Score). Similarly, the dynamic model of P2 is
described as follows

LP2:¼(([P2ID.P1,CS, PlayerID]þ[P2ID.P2,CS, PlayerID])

[PlayerScore:],CS, P2Score])�

The dynamic model of GM is depicted in Fig. 3, where
state with the symbol $ denotes that it is not only the
initial state but also a final state. Each path that starts with
the initial state and ends at a final state is called recognisable
by the automaton. In Fig. 3, there is only one final state. The
model says that GM repetitively waits for the operation call
CS from either P1 or P2, then makes the call DR to obtain a
score from DS and returns the score to the original caller
through CS.
In this paper, we focus on centralised access control syn-

thesis. For that sake we need a centralised system model,
which can be obtained from composition of dynamic
models of local service instances by using synchronous
product, which is introduced as follows. Let S be an alpha-
bet and S

0 # S. We define the natural projection
P: S

�
! S

0�
as follows

P(e) ¼ e (1)

(8s [S) P(s) ¼
s if s [S

0

e if s [S
0

(
(2)

(8t [S
�
, s [S) P(ts) ¼ P(t)P(s) (3)

If B # S�, then P(B) U fP(t)jt [Bg. We use 2S
0�

to
denote the power set of S0�, that is, the collection of all
subsets of S0�. The inverse image function of P is P21:
2S

0�

! 2S
�

, defined by

(8W [2S
0�

) P�1(W) :¼ {t [S
�
jP(t) [W}

In case W ¼ ft0g, a singleton, we write P21 (t0) for P21

(ft0g).
Let S1, S2 be two alphabets and S :¼ S1 < S2, and

P1: S
�
! S

�

1 and P2: S
�
! S

�

2 be the natural projections.
Then for a pair of languages L1 # S

�

1 and L2 # S
�

2, the syn-
chronous product of L1 and L2 is L1jjL2 :¼ P�1

1 (L1)>
P�1
2 (L2). In other words

L1kL2 ¼ {t [S
�
jP1(t) [L1 & P2(t) [L2}
Fig. 3 Dynamic model of the game manager
209

It has been shown that k is commutative and associative
[20]. Therefore, for a family of alphabets {Siji [I} and a
set of languages {Li # S

�
ji [I}, where I is an index set,

the I-fold synchronous product ki[ILi is well defined.
In the poker game example, Aact,P1, Aact,P2 and Aact,GM are

alphabets. The synchronous product L ¼ LP1kLP2kLGM ¼

LGM. Note that each atomic action is a finite sequence of
assignments. Synchronous product of two atomic actions
is essentially a composition of underlying atomic assign-
ments. Given two languages L1 # A�

act,1 # A�
ass,1 and

L2 # A�
act,2 # A�

ass,2, if we do not impose any restriction
on Aact,1 and Aact,2, then it is likely that composition of
atomic actions may not be consistent with what really
happens on composition of atomic assignments. For
example, suppose we have two atomic actions

a1 ¼ [v1, o1, v
0
1][v2, o2, v

0
2] [Aact,1 # A

�
ass,1

a2 ¼ [v1, o1, v
0
1][v3, o3, v

0
3] [Aact,2 # A�

ass,2

where Aass,1 > Aass,2 ¼ f[v1, o1, v1
0]g. Because a1 = a2, by

the definition of synchronous product over Aact,1 and Aact,2,
we have the following result

{a1}k{a2} ¼ {a1a2 ¼ [v1, o1, v
0
1][v2, o2, v

0
2][v1, o1, v

0
1]

[v3, o3, v
0
3], a2a1 ¼ [v1, o1, v

0
1][v3, o3, v

0
3]

[v1, o1, v
0
1][v2, o2, v

0
2]}

Unfortunately, this result does not correctly reflect what
happens in the system because the assignment [v1, o1, v

0
1]

must be executed simultaneously in both a1 and a2. On
the other hand, if we compute synchronous product of a1
and a2 over Aass,1 and Aass,2, then we end up with two
finite strings [v1, o1, v

0
1][v2, o2, v

0
2][v3, o3, v

0
3] and

[v1, o1, v
0
1][v3, o3, v

0
3][v2, o2, v

0
2], and none of them is an

atomic action. Thus, we have encountered inconsistency
between composition of atomic actions and assignments.
To avoid this inconsistency, we make the following
assumptions. Given an atomic action a [Aact # A�

ass, we
use S(a) # Aass to denote all assignments that appear in a.
The assumption says that for any two atomic actions
a [Aact,s # A�

ass,s and a0 [Aact,s0 # A�
ass,s0 , either a ¼ a0 or

S(a)> S(a0) ¼ 1. In other words, two atomic actions are
either the same or share no assignments. It turns out that
this assumption is only a mild one in the component-based
framework. The reason is as follows. Considering that each
atomic action is about assignments of either input argu-
ments or return arguments of an operation call, if two
atomic actions share a few assignments, then they must
share the rest of assignments of (input or return) arguments.
Thus, in general, this assumption is rather easy to be satis-
fied for most (if not all) component-based software
applications.

3 Security specifications

Given a system dynamic model, a security specification
describes what behaviours are allowed or disallowed in
the system. In this paper, such behaviours are modelled as
languages.

Definition 4: A language-based security specification is a
subset of A�

act.

Moreover, we focus on specifications about disallowed
behaviours, namely strings that should be prevented from
happening in the system. For that purpose, we introduce
210
the following concept to model ‘bad’ information flows in
the proposed language-based framework.

Definition 5: Given two variables v, v0 [V and x # v.D, we
say v.x is retrievable by v0 within a model L # A�

act if there
exists a path t ¼ [v1:x1, o1, v

0
1] � � � [vn:xn, on, v

0
n] [L such

that

1. (9r1, r2, . . . , rm:1 � r1 , r2 , � � � , rm � n)vr1 ¼ v^
x # xr1 ^ v0rm ¼ v0

2. (8k: 1 � k � m� 1)v0rk ¼ vrkþ1
^ xrk # xrkþ1

3. (8k: 1 � k � m� 1)(8i: rk , i , rkþ1)[vi:xi, oi, v
0
i] ¼

[vrk :xrk , ork , v
0
rk
] _ v0i = v0rk

The path t is called a path of threat from v.x to v0.
The first condition says that along the path t there exists a

subsequence of assignments which starts with v.x and ends
at v0. The second condition says that, along that sequence of
assignments any value of x can be passed to v0 through
assignments. The last condition says that between every
two consecutive assignments in that sequence, say
[vrk :xrk , ork , v

0
rk
] and [vrkþ1

:xrkþ1
, orkþ1

, v0rkþ1
], there is no

other assignment along t that can change the value of vrk
before it is passed to vrkþ1

(otherwise, values of x will get
lost before they reach v0).
As an illustration, let the synchronous product

L :¼ LP1kLP2kLGM be the model of the poker game. One
possible security specification in the poker game is that
there is no ‘peeking’ between two players, that is

1. L contains no path of threat from P1Data.] to P2Score.
2. L contains no path of threat from P2Data.] to P1Score.

It is not difficult to see that there is one path of threat from
P1Data.] to P2Score, which is

t1 ¼ [P2ID.P1, CS, PlayerID][PlayerID:], DR, PID]

[P1Data:], DR, PlayerScore]

[PlayerScore:], CS, P2Score]

and one path of threat from P2Data.] to P1Score, which is

t2 ¼ [P1ID.P2, CS, PlayerID][PlayerID:], DR, PID]

[P2Data:], DR, PlayerScore]

[PlayerScore:], CS, P1Score]

We can further show that the set of all paths of threat in
the poker game is L(t1þ t2)L.
Given the collections {Aass,sjs [S}, {Aact,s # A�

ass,sjs [
S} and {Ls # A�

act,sjs [S}, it may be convenient for a
user to specify only a two-tuple (v.x,v 0), saying that v.x is
not retrievable by v0. Then, we need an automatic procedure
to compute a collection LE (v.x,v0) of all paths of threat in
the system L :¼ jjs[SLs. For that sake, we provide the fol-
lowing algorithm:

1. Let Aass :¼ <s[SAass,s.
2. Construct all paths m ¼ [v1:x1, o1, v

0
1] � � � [vm:xn, om, v

0
m]

[A�
ass satisfying the following

† v1 ¼ v ^ x # x1 ^ vn ¼ v0

† (8k: 1 � k � m� 1)v0k ¼ vkþ1 ^ xk # xkþ1

Let S be the collection of those paths.
3. S obtained above can be proved to be regular, thus,
recognisable by a finite-state automaton, say
S ¼ (Y , S, j, y0, Ym), where Y is the state set, S the alpha-
bet (i.e. the collection of all assignments in S), j a (partial)
transition map, y0 the initial state and Ym # Y the marker
IET Softw., Vol. 1, No. 5, October 2007

(or final) states. Perform the following revisions on S.
At each state y [Y, let

f(y):¼ {s [Sjj(y, s) is defined}

c(y):¼ {s [Sj(9y0 [Y)j(y0, s) ¼ y}

u(y):¼ {[v̂:z, ô, v̂0][Aass�c(y)j(9[~v:w, ~o, ~v0][f(y))v̂0 ¼ ~v}

Here f(y) denotes all actions exiting from y, c(y) for
actions entering y, and u(y) for actions that may alter
values of some variables associated with actions in f(y)
(thus, violates condition (3) in Definition 5). For each
element s [u(y), we add a new transition j(y, s) ¼ y0.
Then, we selfloop all elements of Aass � f(y)� u(y) at y.
Let the resulting finite-state automaton be S

0, which gener-
ates the language W.

Proposition 1: In Step (2), the set Sis computable within a
finite number of steps.

Proof: Let

H :¼ {(v, x)}< {(m0, x0)jm0 [V ^ x0 # m0:D^

(9o0 [O, m00 [V)[m0:x0, o0, m00] [Aass}

Since, by assumption, Aass is finite, the set H is also finite.
We construct a directed graph Gr ¼ (Ver,Edg), where
Ver # H denotes the vertex set of Gr and
Edg # Ver � Ver the edge set of Gr, such that the follow-
ing condition holds:

(a) The root node of Gr is (v, x).
(b) ([m0, x0], [m00, x00]) [Edg iff there is an assignment
[m0:x̂0, o0, m00] [Aass with x0 # x̂0 # x00.
(c) Gr is the largest graph satisfying (a) and (b).

Since Ver is finite, the edge set Edg is also finite. Thus,
the directed graph Gr must be a finite graph, which can be
constructed within a finite number of steps. Let

g: Edg ! 2Aass : ([m0, x0], [m00, x00]) 7! g([m0, x0], [m00, x00])

:¼ {[m0:x̂0, o0, m00] [Aassjx
0 # x̂0 # x00}

be a mapping which labels each edge of Gr with a collection
of assignments that satisfy condition (b). Given a directed
path [v1, x1][v2, x2] � � � [vm, xm] in Gr let

l([v1, x1] � � � [vm, xm]) :¼ g([v1, x1], [v2, x2])g

([v2, x2], [v3, x3]) � � � g([vm�1, xm�1], [vm, xm])

denote all sequences of atomic assignments that associate
with the directed path, where

g([v1, x1], [v2, x2])g([v2, x2], [v3, x3]) � � �

g([vm�1, xm�1], [vm, xm])

denotes concatenation of sets g([v1, x1], [v2, x2]), g([v2, x2],
[v3, x3]), . . . , g([vm�1, xm�1], [vm, xm]). Letf be the set of all
directed paths inGr,which startwith (v, x) and end at (v0, x0) for
some x0 # v0:D. We can see that f can be encoded as a sub-
graph Gr0 ¼ (Ver0, Edg0) of Gr, which is finite. Attach to
each edge of Gr0 the corresponding label. Then, we can see
that S ¼ <p[Fl(p). Thus, the proposition follows. A

From the proof of Proposition 1 we can see that the result-
ing directed subgraph Gr0 associated with labels on its edges
is a finite state machine, whose state set is simply the vertex
set Ver0 of Gr0, its alphabet is <e[Edgg(e) and its (partial)
IET Softw., Vol. 1, No. 5, October 2007
transitions are the following three-tuples[
([m0,x0],[m00,x00])[Edg0

{[m0, x0]}� g([m0, x0], [m00, x00])� {[m00, x00]}

Thus, S is regular. We now have the following result.

Proposition 2: Let (v.x, v0), L and W be the same as above.
Then, LE(v:x, v

0) ¼ L>W .

Proof: On the basis of the description of the algorithm and
Proposition 1 we can see that LE(v:x, v

0) # L>W . Thus,
we only need to show that L>W # LE(v:x, v

0). Let

t ¼ [v1:x1, o1, v
0
1] � � � [vn:xm, om, v

0
m] [L>W

Since t [W andW is recognisable by S0, by the definition
of S0 (which is derived from S, i.e. fromGr0 in Proposition 1),
we get that

1. (9r1, r2, . . . , rm: 1 � r1 , r2 , � � � , rm � n)vr1 ¼ v^
x # xr1 ^ v0rm ¼ v0

2. (8k: 1 � k � m� 1)v0rk ¼ vrkþ1
^ xrk # xrkþ1

3. (8k: 1 � k � m� 1) (8i: rk , i , rkþ1)[vi:xi, oi, v
0
i] ¼

[vrk :xrk , ork , v
0
rk
] _ v0i = v0rk

By Definition, 5 we know that t [LE(v:x, v
0) . Thus,

L>W # LE(v:x, v
0), as required. A

If the user has more than one specification, say
{(vi:xi, v

0
i)ji [I} for some finite index set I, then the set

LE :¼ <i[I LE(vi:xi, v
0
i) contains all paths of threat. As an

illustration, in the poker game a user may provide the fol-
lowing specifications

[P1Data:], P2Score] and [P2Data:], P1Score]

In Step (1), we construct the set Aass which is

Aass ¼{[P1ID.P1, CS, PlayerID], [P1ID.P2, CS, PlayerID],

[P2ID.P1, CS, PlayerID], [P2ID.P2, CS, PlayerID],

[PlayerID:], DR, PID], [P1Data:], DR, PlayerScore],

[P2Data:], DR, PlayerScore], [PlayerScore:],

DR, P1Score], [PlayerScore:], DR, P2Score]}

InStep (2), we construct the set S, which turns out to be

S ¼ {[P1Data:], DR, PlayerScore]

[PlayerScore:], CS, P2Score],

[P2Data:], DR, PlayerScore]

[PlayerScore:], CS, P1Score]}

We can check that S is recognised by the following finite
state automaton depicted in Fig. 4. Notice that in this
automaton the initial state is the one with an incoming arrow-
headed line ‘!’ without any edge label, that is, y0 is the
initial state. A final state is the one with an outgoing arrow-
headed line ‘!’ without any edge label. The following

Fig. 4 FSA S that recognises the language S
211

automaton models obey the same notation rule. In Fig. 4, y3
is the only final state. In Step (3) we modify S as follows:

† For state y0, we have

f(y0) :¼{[P1Data:], DR, PlayerScore],

[P2Data:], DR, PlayerScore]}

c(y0) :¼1

u(y0) :¼1

Thus, at state y0, we only selfloop all elements of
Aass � f(y0)� c(y0)� u(y0) ¼ Aass � f(y0). The resulting
FSA is depicted in Fig. 5.
† For state y1 we have

f(y1) :¼{[PlayerScore:], CS, P2Score]}

c(y1) :¼{[P1Data:], DR, PlayerScore]}

u(y1) :¼{[P2Data:], DR, PlayerScore]}

Thus, at state y1 we selfloop all elements of
Aass � f(y1)� u(y1) and add one more transition j(y1,
[P2Data.], DR, PlayerScore]) ¼ y0. The resulting FSA is
depicted in Fig. 6.
† For state y2 we use the similar treatment as y1. The result-
ing FSA is depicted in Fig. 7.
† Finally, for state y3 we have

f(y3) :¼1

c(y3) :¼{[PlayerScore:], CS, P1Score],

[PlayerScore:], CS, P2Score]}

u(y3) :¼1

Thus, at state y3 we selfloop all elements of Aass. The result-
ing FSA, which is named as S0, is depicted in Fig. 8. The
language W generated by S0 is all strings that start with the
initial state y0 and end at the marker (or final) state y3. We
can show that LE ¼ L > W is L(t1þ t2)L (as claimed

Fig. 5 Modify transitions at y0 of S

Fig. 6 Modify transitions at y1 of S
212
before), where L ¼ LP1kLP2kLGM and

t1 ¼ [P2ID.P1, CS, PlayerID][PlayerID:], DR, PID]

[P1Data:], DR, PlayerScore]

[PlayerScore:], CS, P2Score]

t2 ¼ [P1ID.P2, CS, PlayerID][PlayerID:], DR, PID]

[P2Data:], DR, PlayerScore]

[PlayerScore:], CS, P1Score]

Next, we describe how to compute an access control mech-
anism that blocks paths of threat.

4 Supremal controllable behaviour satisfying
security specifications

Let LE be the collection of all possible paths of threat with
respect to those given two-tuple specifications. The language
L2 LE is the collection of all sequences of assignments that
will not result in information leakage. From an application
point of view, if there is a path t [L2 LE and a path
ts [LE, then it is required for an access control unit to be
able to disable (or forbid) the execution of the atomic
action s [Aact following t. Sometimes this is not possible.
For example, in the poker game, the return of CS may not
be externally blocked after the assignments of input argu-
ments. If P1 uses the ID of P2 to call CS (i.e. [P1ID.P2,
CS, PlayerID]), and if the access control unit allows such a
assignment, then P1 will get the score of P2 in the end.
Thus, to capture such a phenomenon we introduce the
concept of controllability.
We partition Aass into two disjoint sets Aass,c and Aass,uc,

where each assignment in Aass,c is called a controllable
assignment, denoting that a user has means to forbid its
execution. and each element in Aass,uc is called an uncontrol-
lable assignment. It can be the architect of the system who
decides which assignments are controllable and which are
not. An atomic action in Aact is controllable if it consists
of only controllable assignments; otherwise it is

Fig. 7 Modify transitions at y2 of S

Fig. 8 Modify transitions at y3 of S
IET Softw., Vol. 1, No. 5, October 2007

uncontrollable. Let Aact,c # Aact be the collection of all con-
trollable atomic actions in Aact, and Aact,uc U Aact2 Aact,c

the collection of all uncontrollable atomic actions. Given
two sequences t, t0 [A�

act, we say tis a prefix substring of
t0, denoted as t � t0, if

(9m [A
�
act) tm ¼ t

0

Given a sublanguage L0 # A�
act, we use L0 :¼ {t [A�

actj

(9t0 [L0)t � t0} to denote the prefix closure of L0.

Definition 6: Given a language L # A�
act, a sublanguage

L0 # L is controllable with respect to L and Aact,uc if
L0Aact,uc > �L # L0.

Defition 6 says that L0 is controllable with respect to L
and Aact,uc if there exists no sequence t [L0 that can be
extended to a sequence t0 [L, which is outside L0, by con-
catenating uncontrollable atomic actions to t. Thus, when-
ever there is an atomic action s that makes ts out of L0,
we can disable (or forbid) the execution of s, because it
must be a controllable atomic action. Given a sublanguage
E # L, let

CL,E :¼ {K

EjK is controllable with respect toL andAact,uc}

be the collection of all controllable sublanguages of E. For
any two controllable sublanguages K1, K2 [CL,E, we can
derive that

K1 < K2Aact,uc > �L ¼ (K1 < K2)Aact,uc > L

by the property of prefix closure

¼ (K1Aact,uc > �L)< (K2Aact,uc > �L)

by the property of concatenation

K1 < K2 becauseK1 andK2

are controllable sublanguages

¼ K1 < K2

by the property of prefix closure

which means L1 < L2 is also a controllable sublanguage
of E. In fact, it is shown that, the union of a countable or
uncountable number of controllable sublanguages of E is
still a controllable language of E [20]. Thus, CL,E is a
join-semi-lattice under the partial order of set inclusion.
The largest controllable sublanguage of E exists, which is
denoted as SupCL,E. We aim to compute this largest
element, which can be obtained by using techniques devel-
oped in the supervisory control theory (SCT) [20]. It has
been shown in [21] that the time complexity of computing
SupCL,E is polynomial with respect to the size of L (i.e.
IET Softw., Vol. 1, No. 5, October 2007
the size of the state set of the minimum automaton that
recognizes L) and the size of E. Nevertheless, we want to
point out that, in the worst case the size of L is exponential
with respect to the sizes of the constituent components, and
so is the size of E. Therefore the centralised controller syn-
thesis approach proposed here is only suitable for dealing
with a small or medium size problem. The main purpose
of this paper is to introduce this new type of access control-
ler synthesis. For large-scale applications, we may need to
use more advanced supervisor synthesis techniques, for
example, decentralised, distributed, hierarchical or
modular approaches, which will be addressed in our
future papers. As an illustration, in the poker game the con-
trollable atomic actions are

Aact,c ¼ {[P1ID.P1, CS, PlayerID], [P1ID.P2,CS,PlayerID],

[P2ID.P1, CS, PlayerID], [P2ID.P2, CS, PlayerID]}

The legal behaviour L2 LE ¼ L2 L(t1þ t2)L is depicted
in Fig. 9. It turns out that L2 LE is controllable with respect
to L and Aact,uc ¼ Aact2 Aact,c. Thus, SupCL,L�LE ¼ L� LE.
At the initial state as shown in Fig. 9 neither [P1ID.P2, CS,
PlayerID] nor [P2ID.P1, CS, PlayerID] is allowed, that is, a
player cannot pretend to be the other player when calling
CS. Practically, to make sure P1ID.P2 and P2ID.P1 are
detectable, each player can be assigned a unique password
allowing P1ID or P2ID to be determined by an access
control unit, which belongs to the issue of identification
and authentication.
The access controller synthesis (ACS) approach proposed

above is similar to the work of centralised glue code syn-
thesis (GCS) [22–24]. In GCS, a centralised system
dynamic model is constructed from components’ dynamic
models. Then a centralised adaptor is constructed to make
sure that the dynamic behaviour of the coordinated
system, that is, the original system and the adaptor, satisfies
the given specifications, for example, deadlock free. Since
the ACS framework proposed here and GCS in the literature
are more or less instantiations of the SCT in different areas,
it is not surprising for us to see their similarity at the con-
ceptual (or general) level, although their system models
may be different, owing to different problems that they
each deal with, which result in different computational pro-
cedures. For example, in GCS the objective of synthesis is
usually to remove ‘bad’ states, for example, deadlock or
livelock states, but in this paper we focus on removing
paths, which need not necessarily result in state removals.
The proposed synthesis approach is also similar to

approaches in the model/module checking (MMC)
[25–28]. But, the goals of ACS and MMC are fundamen-
tally different. The goal of MMC is to verify weather the
given system satisfies all specifications. The outcome of
such verification is usually a binary decision: either ‘yes’
or ‘no’, with a few counter examples when no is
Fig. 9 Legal behaviour L2 LE
213

encountered. In contrast, the goal of ACS is to constrain the
system behaviour so that any possible undesired behaviour
will not occur. Thus, ACS is far beyond simply providing a
binary decision as MMC does. Nevertheless, many compu-
tational techniques for MMC can be used in ACS, for
example, we may use binary decision diagrams (BDDs) to
encode those finite-state automata to make computation
more efficient in terms of space and time complexity.

5 One way of implementing the proposed
access control mechanism

The language-based access control mechanism essentially
contains three types of information: (1) all possible paths
denoting evolution behaviour of the system; (2) for each
path the set of atomic actions that are subsequently
allowed; (3) for each path the set of atomic actions that
are subsequently disallowed. If a language is generated by
an automaton, then we simply replace the term ‘path’
with the term ‘state’. The idea of such a control mechanism
is similar to history-based access control, [29, 30], although
technical details are different. Regarding how to block a
flow from one value to a variable, we can adopt the
concept of privilege levels to fulfill the task of enabling
and disabling specific transitions. More explicitly, by
assigning to each value or variable a specific set of privilege
levels, a flow is allowed if and only if it is from a value with
low privilege to a variable with higher privilege (i.e. read
low, write high), or vice versa (read high, write low). At
this point we can see that the access controller synthesis
proposed in this paper can play a role complement to
those existing access control techniques in the sense that,
the proposed approach computes an access control mechan-
ism that can be implemented by existing techniques such as
assigning the privilege levels used in type-based or lattice-
based access control. Moreover, we will show that the com-
puted access control mechanism can provide a guidance on
how to implement it efficiently, for example, to assign static
privilege levels in a systematical way as described in the
remaining of this section.
Given a system model L # A�

act and the controllable sub-
language L0 :¼ SupCL,L�LE , where LE consists of all paths
of threat based on security specifications. Let SL0 # Aass

be the collection of all assignments appearing in L 0, and
SL,L0,c # Aass the collection of all controllable assignments
that need to be disabled in L in order to obtain L 0. We
assume that SL0 > SL,L0,c ¼ 1, which says that disabling
assignments in SL,L0,c will not cause any assignment in
SL0 to be accidentally disabled. If this assumption does
not hold, then the static privilege-assignment approach
cannot be used to realise the proposed control mechanism
because it is impossible to assign static privilege levels to
two entities such that in one circumstance their privilege
levels disallow information flow between them, but in
another circumstance the opposite happens. Suppose the
assumption holds. Then we introduce the following
concept.

Definition 7: Let V be the set of variables appearing in
SL0 < SL,L0,c, and

Q :¼ V < {v:xjv [V ^ (9[v:x0, o, v0] [Aass)x ¼ x0}

Let N be the set of all natural numbers. A function

f : Q ! N

is a security mapping with respect to L and L0 if
214
1. (8v [V)(8v:x [Q)f (v) � f (v:x)
2. (8[v:x, o, v0] [SL,L0,c)f (v:x) . f (v0)
3. (8[v:x, o, v0] [SL0)f (v:x) � f (v0)

The first condition in Definition 7 says that the security
level of a variable is always at most as high as any value
that it may take. The second and the third conditions say
that an atomic assignment is allowed only when the security
level of the value is not higher than that of the receiving
variable. We can see that conditions 2 and 3 implement
the principle of read-low and write-high. As an illustration,
in the poker game we have

SL,L0,c ¼ {[P1ID.P2, CS, PlayerID],

[P2ID.P1, CS, PlayerID]}

and SL0 ¼ Aass � SL,L0,c. We can choose the partial order �
as the ordinary total order associated with the real numbers.
The security mapping f can be defined as follows

(8w [R)f (w)

:¼
0 if w [{P1ID.P2, P2ID.P1, P1ID, P2ID}

1 otherwise

�

Whenever a service instance requests to execute an assign-
ment [v.x, o, v0] [Aass, the access control unit will first
check whether such an assignment exists. To that end, the
access unit holds information about Aass,s for each service
instance s. If [v.x, o, v0] is indeed a pre-specified assignment,
then the access control unit will compare f(v.x) and f(v0),
and decide, based on the read-low write-high principle,
whether the request for execution can be granted. We
have the following result.

Proposition 3: Given two regular languages L [A�
act and

L0 # L, let Q be the same as above. Then the existence of
a security mapping f :Q ! N with respect to L and L0 is
decidable.

Proof: Since Q is finite, and each pair of elements a,b [Q
has only two possibilities: either f(a) � f(b) or f(a) . f(b).
Thus, we only need jQj distinct values, say
R :¼ {1, 2, . . . , jQj}, where jQj denotes the cardinality of
Q. If there exists a security mapping f̂: Q ! R, then there
must exist a security mapping f : Q ! N. On the other
hand, if there exists a security mapping f : Q ! N, then
we can define a new function

g: N ! R

such that

(8a, b [Q)f (a) � f (b)() g(f (a)) � g(f (b))

The existence of gis obvious because we can arrange values
of f(Q) in an ascending order, and for each element a [Q,
the location of the value of f(a) in that order can be defined
as the value of g(f(a)). We now have a security mapping
f̂: Q ! R, where f̂U gWf. Therefore, there exists a security
mapping f : Q ! N if and only if there exists a security
mapping f̂: Q ! R. Since both Qand Rare finite, the exist-
ence of a security mapping f :Q ! R can be decided in a
finite number of steps. Thus, the proposition is true. A

In fact, we can use the following procedure to
decide the existence of a security mapping f :Q ! N.
Suppose SL0 < SL,L0,c ¼ {[v1:x1, o1, v2], . . . , [vn:xn, on,
vnþ1]}, where vi:xi # vi:D. The finiteness of SL0 < SL,L0,c
IET Softw., Vol. 1, No. 5, October 2007

comes from the assumption that Aass is chosen to be finite.
We construct a directed graph Gr ¼ (Ver, Edg) as follows.

1. Let Ver U Q be the vertex set of Gr.
2. For each v [V and v.x [Q, draw a directed edge from
v to v.x. Thus, (v,v.x) [Edg.
3. For each assignment [v:x, o:v0] [SL0 , draw a directed
edge from v.x to v0.
4. For each assignment [v:x, o:v0] [SL,L0,c, draw a directed
edge from v0 to v.x.
5. The edge set Edg only contains edges described in Steps
2–4.

If there exists a directed loop in Gr such that one of the
relevant edge (v.x,v 0) is associated with an assignment
[v:x, o, v0] [SL,L0,c, then we know that the security
mapping f does not exist. The reason is simple: the directed
loop requires that all relevant nodes in the loop must have
the same value under f, but on the other hand,
[v:x, o, v0] [SL,L0,c requires that f(v.x) = f(v0), contradic-
tion. If there is no such a directed loop in Gr, then we can
construct a security mapping f as follows. First, define an
equivalence relation ; on Ver such that,

(8a, b [Ver)a ; b() there is a directed loop in Gr

containing a and b

Define a quotient graph Gr/;, which must be acyclic. Then
there exists a value assignment f such that two nodes in
different equivalence classes, that is, they are in the quotient
graph, have different values, and nodes in the same equival-
ence class have the same value. It is not difficult to see that
such a value assignment is actually a security mapping
f : Q ! N.
The above description suggests that a user can systemati-

cally assign privilege levels to relevant entities in a
component-based framework, instead of somehow ‘gues-
sing’ those privilege assignments, as commonly used in
those mentioned approaches in the literature.

6 Conclusions

In this paper, we have proposed a language-based
access control mechanism. The dynamic of each service
instance is modelled by a regular language. Specification
for confidentiality are also regular. Then, by solving a
control problem we can construct a transition diagram
that tells which operation call is allowed and which is
not. By this means, every information flow in the system
that may lead to a security breach will be blocked.
Meanwhile, the controlled system attains its maximum
permissiveness.
The current approach is applicable to a system that has

only one processor. If multiple processors are used, then
the system has concurrent behaviour, that is, more than
one assignment can happen at the same instant. To handle
that, we need vectors of atomic assignments to capture con-
currency. Furthermore, if the system is very large and there
are many specifications, then we may need to use more
advanced synthesis techniques, for example, decentralised,
distributed or modular controller synthesis, to obtain an
access control mechanism, These advanced techniques
may also allow a target component-based application to
be dynamically reconfigurable in the sense that the
number of constituent components can be increased or
decreased in a runtime environment and only part of the
controller related to those reconfigured components need
to be updated, which cannot be achieved in the centralised
IET Softw., Vol. 1, No. 5, October 2007
synthesis approach proposed in this paper. All these are
our ongoing research topics.

7 References

1 Robocop: robust open component-based software architecture: URL
http:\\www.hitech-projects.com\euprojects\robocop\deliverables.htm

2 Public deliverables of the Space4U project: URL http:\\www.
hitech-projects.com\euprojects\space4u\deliverables.htm

3 Lampson, B.W.: ‘Protection’, ACM SIGOPS Operating Syst. Rev.,
1974, 8, (1), pp. 18–24

4 Lampson, B., Abadi, M., Burrows, M., and Wobber, E.:
‘Authentication in distributed systems: theory and practice’, ACM
Trans. Comput. Syst. (TOCS), 1992, 10, (4), pp. 265–310

5 Bugliesi, M., Colazzo, D., and Crafa, S.: ‘Type based discretionary
access control’. Fifteenth Int. Conf. Concurrency Theory (CONCUR
2004), London, England, 31 August–3 September, 2004

6 Gordon, A.D., and Jeffrey, A.: ‘Types and effects for asymmetric
cryptographic protocols’. IEEE Computer Security Foundations
Workshop (CSFW), June 2002

7 Myers, A.C., and Liskov, B.: ‘Protecting privacy using the
decentralized label model’, ACM Trans. Softw. Eng. Method., 2000,
9, (4), pp. 410–442

8 Didriksen, T.: ‘Rule based database access control—a practical
approach’. Proc. 2nd ACM Workshop on Role-based access control,
Fairfax, Virginia, US, 1997, pp. 143–151

9 Li, H., Zhang, X., Wu, H., and Qu, Y.: ‘Design and application of
rule based access control policies’. Semantic Web and Policy
Workshop, 4th Int. Semantic Web Conf., Galway, Ireland, 7
November 2005

10 Denning, D.E.: ‘A lattice model of secure information flow’, Comm.
ACM, 1976, 19, (5), pp. 236–243

11 Sandhu, R.S.: ‘Lattice-based access control models’, IEEE Comput.,
1993, 26, (11), pp. 9–19

12 Sandhu, R.S., Coyne, E.J., Feinstein, H.L., and Youman, C.E.:
‘Role-based access control models’, IEEE Comput., 1996, 29, (2),
pp. 38–47

13 Ferraiolo, D.F., Kuhn, D.R., and Chandramouli, R.: ‘Role based
access control’ (Artech House, 2003)

14 Spinellis, D., and Gritzalis, D.: ‘Panoptis: intrusion detection using a
domain-specific language’, J. Comput. Security, 2002, 10, (1–2),
pp. 159–176

15 Eckmann, S.T., Vigna, G., and Kemmerer, R.A.: ‘STATL: an attack
language for state-based intrusion detection’, J. Comput. Security,
2002, 10, (1–2), pp. 71–103

16 Ahn, G.J., and Sandhu, R.: ‘Role-based authorization
constraints specification’, ACM Trans. Inf. Syst. Secur., 2000, 3, (4),
pp. 207–226

17 Schneider, F.B.: ‘Enforced security policies’, ACM Trans. Inf. Syst.
Security, 2000, 3, (1), pp. 30–50

18 Inverardi, P., and Mostarda, L.: ‘A distributed intrusion detection
approach for security software architecture’. Lecture Notes in
Computer Science 3527’ (Springer, 2005), pp. 168–184

19 Zhang, X., Parisi-Presicce, F., Sandhu, R., and Park, J.: ‘Formal model
and policy specification of usage control’, ACM Trans. Inf. Syst.
Secur., 2005, 8, (4), pp. 351–387

20 Wonham, W.M.: ‘Supervisory Control of Discrete-Event Systems’.
Systems Control Group, Dept. of ECE, University of Toronto,
http://www.control.toronto.edu/cgi-bin/dldes.cgi, 2004

21 Wonham, W.M., and Ramadge, P.J.: ‘On the supremal controllable
sublanguage and a given language’, SIAM J Control Optim., 1987,
25, (3), pp. 637–659

22 Yellin, D., and Strom, R.: ‘Protocol specifications and component
adaptors’, ACM Trans. Program. Languages Syst., 1997, 19, (2),
pp. 292–333

23 Inverardi, P., and Tivoli, M.: ‘Software architecture for correct
components assembly’, in Formal Methods for the Design of
Computer, Communication and Software Systems: Software
Architecture, LNCS 2804, 2003, pp. 92–121

24 Tivoli, M., and Autili, M.: ‘SYNTHESIS, a tool for synthesizing
correct and protocol-enhanced adaptors’, RSTI L’Objet J., 2006, 12,
(1), pp. 77–103

25 Clarke, E.M., Emerson, E.A., and Sistla, A.P.: ‘Automatic verification
of finite-state concurrent systems using temporal logic specifications’,
ACM Trans. Program. Lang. Syst., 1986, 8, (2), pp. 244–263

26 Kupferman, O., and Vardi, M.Y.: ‘Module checking revisited’. Proc.
9th Int. Conf. Computer Aided Verification LNCS 1254, 1997,
pp. 36–47

27 Clarke, E.M. Jr., Grumberg, O., and Peled, D.A.: ‘Model checking’
(MIT Press, Cambridge London, MA, England)

28 Mantel, H.: ‘Information flow control and applications – bridging a
gap’, FME 2001, LNCS 2021, 2001 pp. 153–172
215

29 Edjlali, G., Acharya, A., and Chaudhary, V.: ‘History-based
access control for mobile code’. 5th ACM Conf. Comput.
Communications Security, San Francisco, CA, USA, 1998,
pp. 38–48
216
30 Banerjee, A., and Naumann, D.A.: ‘History-based access control and
secure information flow’. In Proc. Workshop on Construction and
Analysis of Safe, Secure and Interoperable Smart Cards (CASSIS),
Nice, France, 8–11 March 2005, pp. 27–48
IET Softw., Vol. 1, No. 5, October 2007

