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Abstract. In previous work we studied linear and nonlinear left-invariant
diffusion equations on the 2D Euclidean motion group SE(2), for the pur-
pose of crossing-preserving coherence-enhancing diffusion on 2D images.
In this paper we study left-invariant diffusion on the 3D Euclidean mo-
tion group SE(3), which is useful for processing three-dimensional data.
In particular, it is useful for the processing of High Angular Resolution
Diffusion Imaging (HARDI) data, since these data can be considered as
orientation scores directly, without the need to transform the HARDI
data to a different form. In principle, all theory of the 2D case can be
mapped to the 3D case. However, one of the complicating factors is that
all practical 3D orientation scores are not functions on the entire group
SE(3), but rather on a coset space of the group. We will show how we can
still conceptually apply processing on the entire group by requiring the
operations to preserve the introduced notion of alpha-right-invariance
of such functions on SE(3). We introduce left-invariant derivatives and
describe how to estimate tangent vectors that locally fit best to the
elongated structures in the 3D orientation score. We propose generally
applicable techniques for smoothing and enhancing functions on SE(3)
using left-invariant diffusion on the group. Finally, we will discuss imple-
mentational issues and show a number of results for linear diffusion on
artificial HARDI data.

1 Introduction

A common approach for enhancing elongated structures in noisy images is by
nonlinear anisotropic diffusion on the image [1]. This can be regarded as calcu-
lating a nonlinear scale space on the additive group (Rn,+), i.e. the translation
group. In our earlier work [2–4], we proposed to enhance elongated structures via
the orientation score of a 2D image, which has the practical advantage that cross-
ing structures can be handled appropriately. An orientation score of a 2D image
is a function on the 2D Euclidean motion group SE(2), which is constructed
from a 2D image using an invertible transformation. The image enhancement in
our previous work is accomplished by a nonlinear diffusion process in the ori-
entation score of the image (which is a 3D dataset: 2 spatial dimensions and 1



Fig. 1. Visualization of a simple 3D orientation score u(x, y, z, n(β, γ)) containing
two crossing straight lines, visualized using Q-ball glyphs in the DTI tool (see
http://www.bmia.bmt.tue.nl/software/dtitool/) from two different viewpoints. At each
spatial position x a so-called glyph is displayed, which represents a surface in R3, i.e.
S2 → R3. The glyph surface at each position x ∈ R3 is given by n 7→ x + µ u(x, n)n
where u is an orientation score, n ∈ S2, and µ ∈ R+ is a scaling factor determining
the size of the visualized glyph.

orientation dimension), followed by an inverse orientation score transformation
to obtain an enhanced image.

In this paper we go one step further and investigate how we can apply the
same techniques to 3D orientation scores. Such orientation score is a 5D dataset,
i.e. 3 spatial dimensions and 2 orientation dimensions. The 3D case is very rele-
vant for many (bio)medical problems, since many (bio)medical images are intrin-
sically 3D. Our main application of interest is high angular resolution diffusion
imaging (HARDI) With the term HARDI we refer to all diffusion MRI tech-
niques, in which the diffusion profile on each spatial position is modeled by a
function on the sphere, which provides richer information especially in regions
where different fibrous structures cross or bifurcate [5–8]. Roughly speaking the
MRI scanner measures the probability of finding a water molecule at each po-
sition for a certain direction, where the number of acquired directions can be
varied. Clearly, all data obtained using any HARDI technique can be considered
as 3D orientation scores directly.

Remarkably, in HARDI processing algorithms that are proposed in litera-
ture, the data is processed as function on the sphere for each spatial position
separately, see e.g. [5, 7, 9]. In our approach, we consider both the spatial and the
orientational part to be included in the domain, so a HARDI dataset is consid-
ered as a function R3 o S2 → R. Furthermore, we explicitly employ the proper
underlying group structure. The advantage is that we can enhance the data us-
ing both orientational and spatial neighborhood information, which potentially
leads to improved enhancement and detection algorithms.

3D orientation scores are defined as functions u : R3 o S2 → R or C, where
R3 is the spatial domain and S2 =

{
n ∈ R3

∣∣‖n‖ = 1
}

is the domain of a
unit sphere. In this paper, the domain of u is parameterized by (x,n), where
x = (x, y, z) ∈ R3 and n ∈ S2. Figure 1 shows an example clarifying the
structure of a 3D orientation score.



This paper will start with the introduction of the group structure of the 3D
orientation score domain, i.e. the 3D Euclidean motion group SE(3). Subse-
quently, we will introduce the important differential geometry on SE(3), needed
to estimate tangent vectors that locally fit best to the elongated structures in
the 3D orientation score. The next topic will be the diffusion on 3D orientation
scores, which yields a scale space representation of the SE(3) group. The paper
will end with results of linear SE(3)-diffusion on artificial HARDI datasets.

2 Group Structure of the Domain of 3D Orientation
Scores

2.1 The Rotation Group SO(3) and coset space SO(3)/SO(2)

The noncommutative group of 3D rotations is defined as matrix group by

SO(3) = {R |R ∈ R3×3,RT = R−1,det(R) = 1}. (1)

In this section, we will first consider different parameterizations of SO(3). Then,
we will describe the coset space SO(3)/SO(2), which is essential prerequisite to
relate functions on the sphere (i.e. two angles) to functions on SO(3) (i.e. three
angles).

The relation between positions on the sphere S2 and a 3D rotation SO(3) is
established by rotating the vector ez, i.e.

n = R · ez. (2)

This relation shows that the resulting position n on the sphere is independent on
an arbitrary rotation around the z-axis, that is RRez

α ·ez = R·ez for all α, where
Rn

α denotes rotation over α around the axis defined by vector n. This means
that a function on the sphere is not equivalent to a function on the complete
rotation group SO(3), but rather a function on the set that partitions SO(3)
into left cosets SO(3)/stab(ez). This will be explained below.

A left coset [g]H of a group G with subgroup H is defined as the set

[g]H = gH = {gh|h ∈ H}, (3)

for any g ∈ G. The left cosets form a partition of the group, i.e. the group is
divided into disjoint cosets, and the set of all of these cosets is denoted by G/H.
Two group elements g1 ∈ G and g2 ∈ G have an equivalence relation g1 ∼ g2 if
they belong to the same left coset, i.e. g1H = g2H.

In the case SO(3)/stab(ez), we have the equivalence relation R1 ∼ R2 iff
there is an α such that R1Rez

α = R2. From now on we will write SO(3)/SO(2)
rather than SO(3)/stab(ez) since stab(ez) and SO(2) are isomorphic The cosets
SO(3)/SO(2) are isomorphic to the space of the unit vectors of (2), i.e.

SO(3)/SO(2) ∼= S2 =
{
n ∈ R3

∣∣‖n‖ = 1
}
. (4)



The isomorphism is given by means of (2). The set of all the cosets SO(3)/SO(2)
can be parameterized using only two angles rather than three angles, for instance
as [Rez

γ Rey

β ]SO(2) ∈ SO(3)/SO(2) and therefore n(β, γ) = Rez
γ Rey

β ez ∈ S2.
Note that the set of all disjoint cosets SO(3)/SO(2) does not form a group since
SO(2) is not a normal subgroup of SO(2), so [g1]SO(2) [g2]SO(2) 6= [g1g2]SO(2).

2.2 The 3D Euclidean Motion Group SE(3)

The 3D Euclidean motion group is the group of 3D translations and 3D rotations,
i.e. SE(3) = R3 o SO(3). An element of SE(3) can be parameterized by (x,R)
where x ∈ R3 is the translation vector and R ∈ SO(3) is the rotation matrix.
The group product and inverse of SE(3) are given by

g g′ = (x,R) (x′,R′) = (x + R · x′,R ·R′),

g−1 = (x,R)−1 = (−R−1x,R−1).
(5)

To map the structure of a group to operators on orientation scores, we need a
representation. A representation is a mapping of the form R : G → B(H), where
H is the linear space of orientation scores and B(H) is the space of bounded linear
invertible operators H → H, that maps a group element to an operator where
the group properties are preserved, i.e. RgRh = Rgh and Re = I. On SE(3) we
define the left- and right-regular representations on a function U ∈ L2(SE(3))
as

(Lg ◦ U)(h) = U(g−1h), g, h ∈ SE(3), (6)
(Qg ◦ U)(h) = U(h g), g, h ∈ SE(3). (7)

The matrix Lie algebra[10] Te(SE(3)) is spanned by the following basis

X1 =

0
BB@

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

1
CCA , X2 =

0
BB@

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

1
CCA , X3 =

0
BB@

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

1
CCA ,

X4 =

0
BB@

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

1
CCA , X5 =

0
BB@

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

1
CCA , X6 =

0
BB@

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

1
CCA .

(8)

The nonzero commutators can be found by [Xi,Xj ] = XiXj −XjXi.
By calculating the matrix exponents we find the following matrix represen-

tation of the SE(3) group

E(x,R) = exp(xX1 + y X2 + z X3) exp(γ̌ X4) exp(β̌ X5) exp(α̌X6)

=
(
R x
0 1

)
, with R = Rex

γ̌ Rey

β̌
Rez

α̌ .
(9)

where (α̌, β̌, γ̌) is a possible Euler angle parametrization of the rotation group
SO(3), see [4, Chapter 7].



2.3 Left-Invariance and Right-Invariance

An operator Φ : L2(SE(2)) → L2(SE(2)) is left-invariant if it commutes with
the left-regular representation (6)

∀g ∈ SE(2) : Lg ◦ Φ = Φ ◦ Lg, (10)

and similarly an operator Φ is right-invariant if it commutes with the right-
regular representation (7)

∀g ∈ SE(2) : Qg ◦ Φ = Φ ◦ Qg. (11)

In this work we aim at left-invariant operations and consider right-invariant
operations senseless. The rationale behing this will be clarified below. Define W :
(SE(3) → C) → (R3 → C) to be the operator that calculates the orientation-
marginal,

W[U ](x) =
∫

SO(3)

U(x,R)dµ(R). (12)

where dµ is the Haar measure, which is designed in order to fulfill requirement∫
SO(3)

F (R)dµ(R) =
∫

SO(3)

F (R ·R′)dµ(R), ∀R′ ∈ SO(3). (13)

It is easy to derive that for the left-regular representation

Ug ◦W ◦ U = W ◦ Lg ◦ U, ∀ g ∈ SE(3), (14)

where U is a representation of SE(3) on L2(R3) defined by (U(x′,R′)f)(x) =
f((R′)−1(x− x′)). On the other hand, we note that

(W ◦Q(x,R) ◦ U)(x′,R′) =
∫

SO(3)

U(x′ + R′x,R′R)dµ(R′), (15)

which shows that the integral variable R′ enters the spatial part, making it
impossible to find a relation equivalent to (14) for the right-regular represen-
tation. In words, the left-regular representation “commutes” with W, where
Lg changes into Ug since the function space changes from SE(3) to R3, while
it is not possible to find such a relation for the right-regular representation.
This observation makes it sensible to favor operators Φ to be left-invariant, i.e.
W ◦ Φ ◦ Lg ◦ U = W ◦Lg ◦ Φ ◦ U = Ug ◦W ◦ Φ ◦ U states that applying a group
transformation (Lg) on the input U renders the same result as applying the same
group transformation (Ug) on the orientation-marginal of the output.

2.4 Functions on SE(3) and R3 o S2

In the beginning of this paper we defined a 3D orientation score u as a function
of three spatial variables and only two angular variables describing a position
on the sphere. However, since the sphere S2 is isomorphic to the coset space



SO(3)/SO(2), rather than the entire rotation group SO(3), such an orientation
score is not a function on the entire Euclidean motion group SE(3), but rather
a function on the coset space SE(3)/(0× stab(ez)). Here, (0× stab(ez)) denotes
the SE(2) subgroup of rotations around the z-axis and translation 0, which is
isomorphic to SO(2). Analogously to the isomorphism SO(3)/SO(2) ∼= S2, we
have the isomorphism SE(3)/(0× stab(ez)) ∼= R3 o S2.

For the analysis it is more convenient to consider functions on R3oS2 as func-
tions on the entire group SE(3) with the extra property of α-right-invariance.
A function Ũ : SE(3) → C is defined to be α-right-invariant if

Q(0,Rez
α ) ◦ Ũ = Ũ , ∀α, that is,

Ũ(x,RRez
α ) = Ũ(x,R), ∀α,

(16)

where we write Ũ rather than U to make explicit in the notation that the function
is α-right-invariant. We observe that the value of Ũ(x,R) is independent on a
rotation of the z-axis applied on the right-side, so Ũ can be identified one-to-one
to an orientation score u : R3 o S2 → C, as

Ũ(x,R) = u(x,R · ez), where Ũ is α-right-invariant. (17)

In this paper we will mostly work with the α-right-invariant function Ũ , because
it is more convenient to work with functions on the group.

2.5 SE(3)-Convolutions

It can be shown that all operations on orientation scores that are linear and
left-invariant, can be expressed as an SE(3)-convolution, which is defined by

(Ψ ∗SE(3) U)(g) =
∫

SE(3)

Ψ(h−1g)U(h)dh. (18)

More explicitly this yields

(Ψ∗SE(3)U)(x,R) =

Z
R3

Z
SO(3)

Ψ(R′−1(x− x′),R′−1 R)U(x′,R′) dx dµ(R′), (19)

where dµ(R′) is defined in (13).
For an α-right-invariant Ũ cf. (16) we need to put additional requirements

on the kernel Ψ . We require the result Ψ∗SE(3)Ũ to be α-right-invariant as well,
leading to the following requirement

Q(0,Rez
α′ )

◦ (Ψ̃∗SE(3)(Q(0,Rez
α ) ◦ Ũ)) = Ψ̃∗SE(3)Ũ , ∀α, α′. (20)

This imposes requirements on the kernel Ψ̃ . One can easily verify that the fol-
lowing properties hold for the SE(3)-convolution of (18)

Qg(Ψ∗SE(3)U) = (QgΨ)∗SE(3)U, ∀g ∈ SE(3), (21)



(LgΨ)∗SE(3)U = Ψ∗SE(3)(Qg−1U), ∀g ∈ SE(3). (22)

Using the latter two equations, the left-hand side of (20) can now be rewritten
as

Q(0,R
ez
α′ )

◦ (Ψ̃∗SE(3)(Q(0,R
ez
α ) ◦ Ũ)) = ((Q(0,R

ez
α′ )

◦ Ψ̃)∗SE(3)(Q(0,R
ez
α ) ◦ Ũ))

= (L(0,R
ez
−α) ◦ Q(0,R

ez
α′ )

◦ Ψ̃)∗SE(3)Ũ .
(23)

Therefore
Ψ̃ = L(0,Rez

−α) ◦ Q(0,Rez
α′ )

◦ Ψ̃ , for all α, α′, (24)

so Ψ̃ is required to be both α-right-invariant and α-left-invariant (i.e. L(0,Rez
α′ )

◦
Ũ = Ũ for all α′). More explicitly this yields

Ψ̃(x,R) = Ψ̃((Rez
α )−1x, (Rez

α )−1RRez

α′ ), for all α, α′. (25)

3 Differential Geometry on SE(3)

In [3] we introduced the basic differential geometry on SE(2). In this section
we establish the same concepts for SE(3). We will introduce the left-invariant
vector fields and left-invariant derivatives, and a procedure to estimate tangent
vectors that locally fit best to elongated structures in 3D orientation scores. A
more extensive description, including explicit expression for e.g. curvature and
torsion, can be found in [4, Chapter 7].

3.1 Left-Invariant Derivatives in SE(3)

Using the matrix representation cf. equation (9), left-invariant derivatives are
given by

(AiU)(Eg) = lim
h→0

U(Eg · exp(hXi))− U(Eg)
h

. (26)

The tangent space of g ∈ SE(3) is spanned by these vector fields, i.e. Tg(SE(3)) =

span{A1

∣∣
g
,A2

∣∣
g
,A3

∣∣
g
,A4

∣∣
g
,A5

∣∣
g
,A6

∣∣
g
} where we define

(
Ai

∣∣
g

)
(U) = (AiU)(Eg).

Left-invariant derivatives A1, A2 ,and A3 can be implemented simply by approx-
imating (26) using finite differences.

On an α-right-invariant function Ψ̃ , we always have A6Ũ(g) = 0 for all
g ∈ SE(3). The remaining left-invariant derivatives AiŨ with i ∈ {1, 2, 4, 5},
do not render α-right-invariant functions, since these left-invariant derivatives
are dependent on the value of α resp. α̌. Therefore if one takes higher order
derivatives one still needs to take all 6 left-invariant derivatives into account.

As an example, let’s derive the left-invariant Hessian HU = ∇(∇U) for α-
right-invariant functions where the gradient operator is ∇ = (A1,A2, . . .A6)T.
To this end, we first use the commutator relations to order the numbered left-
invariant derivatives such that angular derivative A1 always appears on the
left-side and A6 always appears on the right-side and subsequently we can use



A6U(g) = 0 (which implies that AiA6U = 0 for all i). This yields the following
5× 6 Hessian matrix

HŨ = ∇(∇Ũ) =

0
BBBB@

A2
1 A1A2 A1A3 A1A4 A1A5 −A3 A2

A1A2 A2
2 A2A3 A2A4 +A3 A2A5 −A1

A1A3 A2A3 A2
3 A3A4 −A2 A3A5 +A1 0

A1A4 A2A4 A3A4 A2
4 A4A5 A5

A1A5 A2A5 A3A5 A4A5 A2
5 −A4

1
CCCCA Ũ . (27)

When implementing operators on orientation scores with domain R3oS2, for
the calculations of left-invariant derivatives one can choose an arbitrary rotation
matrix R such that R · ez = n and use Aj

∣∣
(x,R)

. One should, however, always
ensure that the result of the effective operator is independent on the specific
choice of R. To this end, we have the following important relation between the
left-invariant derivatives at g1 and g2 iff g1 = (x,R1) ∼ g2 = (x,R2)

∇Ũ(g1) = Zα1−α2∇Ũ(g2), with Zα = Rα ⊕ ( 1 )⊕Rα ⊕ ( 1 ), (28)

where Zα1−α2 ∈ R6×6 “converts” the left-invariant gradient at g2 to the left-
invariant gradient at g1, rotation matrix Rα is given by Rα =

(
cos α − sin α
sin α cos α

)
,

and the symbol “⊕” denotes direct sum of matrices.

3.2 Estimation of Tangent Vectors in R3 o S2

The exponential curves of SE(3) are found by (expressed in matrix form)

γc(t) = exp

t
6∑

j=1

cjXj

 , (29)

where c = (c1, c2, . . . , c6) denotes the SE(3)-tangent vector components, which
are elements of the tangent space at the unity element

∑6
j=1 cjAj

∣∣
e
∈ Te(SE(3)),

where we use the isomorphism between the Lie algebra and the left-invariant
vector fields at the unity element, i.e. Aj

∣∣
e
↔ Xj .

We aim to estimate the locally best fitting exponential curve (in the previous
subsection) at each position SE(3). Therefore, we formulate a minimization
problem that minimizes over the “iso-contours” of the left-invariant gradient
vector at position g, leading to the optimal tangent vector c∗

c∗(g) = arg min
c(g)

{∥∥∥∥ d
dt

(∇Ǔ(g γc(g)(t)))
∣∣∣
t=0

∥∥∥∥2

µ

∣∣∣∣∣ ‖c(g)‖µ = 1

}
, (30)

where ‖ · ‖µ denotes the norm on a vector in tangent space Tg(SE(3)) (i.e. the
norm at the right side) resp. on a covector in the dual tangent space T ∗g (SE(3)).
The norm on vectors is defined by ‖c‖µ =

√
(c, c)µ with the inner product

(c, c)µ = µ2
(∑3

j=1 cjcj
)

+
∑6

j=4 cjcj . where parameter µ ensures that all com-
ponents of the inner product are dimensionless. The value of the parameter



determines how the distance in the spatial dimensions relates to distance in the
orientation dimension. After some elementary math, we find that equation (30)
can be expressed as

(MµHUMµ)T(MµHUMµ) c̃∗ = λ c̃∗, (31)

where Mµ = diag(1/µ, 1/µ, 1/µ, 1, 1, 1) and c̃∗ = M−1
µ c∗. This amounts to eigen-

system analysis of the symmetric 6×6 matrix (MµHUMµ)T(MµHUMµ), where
one of the three eigenvectors gives c̃∗. The eigenvector with the smallest corre-
sponding eigenvalue is selected as tangent vector c̃∗, and the desired tangent
vector c∗ is then given by c∗ = Mµc̃∗.

Once the local tangent vector is found, it is of interest to obtain a measure for
orientation confidence, which can be used for controlling the anisotropy factor of
an adaptive diffusion process, as described for 2D in [2, 3]. Such measure can be
obtained by calculating the Laplacian in the five-dimensional (considering the
full SE(3)) hyperplane orthogonal to the estimated tangent vector.

4 Diffusion on 3D Orientation Scores

The general left-invariant diffusion equation on SE(3) is given by∂tW (g, t) = ∇ ·D∇W (g, t) =

(
6∑

i=1

6∑
j=1

AjDijAi

)
W (g, t),

∂tW (g, 0) = U(g),

(32)

where W (·, t) represents the diffused orientation score at time t. This equation
generates the diffusion scale space on the 3D Euclidean motion group SE(3).

Next, we will derive which types of diffusions on SE(3) preserve the α-right-
invariance of an α-right-invariant input function W̃ (g, 0) = Ũ(g). In that case,
the right-hand side of (32) becomes, using (28)

∇ ·D(g1)∇W̃ (g1) = ∇ · ZT
α1−α2D(g1)Zα1−α2∇W̃ (g2) = ∇ ·D(g2)∇W̃ (g2), (33)

which shows that diffusion is only valid (i.e., α-right-invariance-preserving) if

D(g1) = Zα1−α2D(g2)ZT
α1−α2

, for all g1 ∼ g2. (34)

Next, we separately consider constant diffusion (diffusion tensor D is constant
for all g ∈ SE(3)) and adaptive diffusions (diffusion tensor D varies).

Linear and Constant Diffusion: Suppose D is an arbitrary diffusion tensor,
which is not necessarily valid, one can always make it valid by taking the α-
marginal to remove the dependency on α, i.e.

1

2π

Z 2π

0

∇ ·D∇W̃ (g, t)dα =
1

2π

Z 2π

0

∇ · ZT
α−α0DZα−α0∇W̃ (g0, t)dα

= ∇ ·
�

1

2π

Z 2π

0

ZT
α−α0DZα−α0dα

�
∇W̃ (g0, t) = ∇ · D̃∇W̃ (g0, t),

(35)



with D̃ = 1
2π

∫ 2π

0
ZT

αDZαdα and where g = (x,R(α,β,γ)) and g0 = (x,R(α0,β,γ)).
So by considering only diffusion tensors D̃, α-right-invariance is preserved. All
diffusion tensors D̃ have the form D̃ = diag(A,A, B, C,C, 0) (where the sixth
value is irrelevant since A6Ũ = 0). This corresponds to horizontal, zero-curvature
and zero-torsion, linear diffusion.

Adaptive Diffusion: In case of adaptive diffusions, both linear and nonlinear,
the diffusion above with adaptive A, B, and C is valid as well, since the derivation
in (35) can also be applied on an adaptive D. Furthermore, adaptive diffusion
with diffusion tensor D(g) = c(g) c(g)T, which can be interpreted as a diffusion
process that only diffuses tangent to an exponential curve at each position g ∈
SE(3) with tangent vector c(g), is a valid diffusion as well. This can be easily
seen by observing that c(g1) = Zα1−α2c(g2), iff g1 ∼ g2. This yields for the
diffusion tensor D

D(g1) = (Zα1−α2c(g2))(Zα1−α2c(g2))T = Zα1−α2c(g2)c(g2)TZT
α1−α2

, (36)

which matches requirement (34).
Furthermore, the sum of two valid diffusion tensors D1 + D2 forms a valid

diffusion tensor again since

D1(g1) + D2(g1) = Zα1−α2D1(g2)ZT
α1−α2

+ Zα1−α2D2(g2)ZT
α1−α2

= Zα1−α2(D1(g2) + D2(g2))ZT
α1−α2

.
(37)

Therefore, in an adaptive setting one can also use a mixture between the between
spatially-isotropic diffusion and diffusion along estimated exponential curves, i.e.

D(c, Da) = (1−Da)
µ2

‖c‖2µ
c cT + Da diag(1, 1, 1, µ2, µ2, µ2), (38)

where Da is the anisotropy factor. Both Da and c are made dependent on the
local structure in the orientation score. This diffusion process is analogous to
the nonlinear curvature-adaptive diffusion process on 2D orientation scores that
we have proposed in [2, 3].

5 Results

We implemented linear, left-invariant and α-right-invariance-preserving, diffu-
sion on 3D orientation scores with D̃ = diag(A,A, B, C,C, 0) using an explicit
numerical scheme. The time derivative is taken as a first order forward finite
difference. Spatially, we take second order centered finite differences for ∂2

x, ∂2
y ,

and ∂2
z . In the orientation dimensions we calculate the Laplace operator on the

sphere ∆S2 via the spherical harmonic transform, where for stability a small
regularization with scale treg is applied via the spherical harmonic domain as
well [11].

In Figure 2 we show a result of the linear SE(3)-diffusion process. In these
examples an artificial three-dimensional HARDI dataset is created, to which Ri-
cian noise is added. Next, we apply two different SE(3)-diffusions on both the



(a) t = 0, no noise (b) t = 0, noisy

(c) t = 1, µ-isotropic, no noise (d) t = 1, µ-isotropic, noisy

(e) t = 1, anisotropic, no noise (f) t = 1, anisotropic, noisy

Fig. 2. Result of R3 oS2-diffusion on an artificial HARDI dataset of two crossing lines
where one of the lines is curved, with and without added Rician noise with σ = 0.17
(signal amplitude 1). Image size: 10×10×10 spatial and 162 orientations. Parameters of
the µ-isotropic diffusion process: A = B = 1, C = 0.01. Parameters of the anisotropic
diffusion process: A = 0.01, B = 1, C = 10−4.

noise-free and the noisy dataset. To visualize the result we use an experimental
version of the DTI tool, which can visualize HARDI glyphs (recall Figure 1) using
the Q-ball visualization method [7]. In the results, all glyphs are scaled equiva-
lently. The µ-isotropic diffusion does not preserve the anisotropy of the glyphs
well; especially in the noisy case we observe that we get almost isotropic glyphs.
With anisotropic diffusion, the anisotropy of the HARDI glyphs is preserved
much better and in the noisy case the noise is clearly reduced. The resulting
glyphs are, however, less directed than in the noise-free input image. This would
improve when using nonlinear diffusion, or when adding some sort of “thinning”
step in the method.



6 Conclusions

In this paper we have shown that we can map all techniques of our previous work
on 2D orientation scores to the more complicated case of 3D orientation scores.
Some issues require special attention. Especially the fact that we usually have to
deal with the coset space SE(3)/(0×stab(ez)) ∼= R3oS2 has been emphasized as
an important issue. We have shown that we can consider functions R3 oS2 → C
as functions on SE(3) which are α-right-invariant. The required preservation
of α-right-invariance imposed additional constraints on the SE(3)-convolution
kernel and the allowed types of (non)linear diffusion. The results suggest that
even anisotropic linear diffusion on SE(3) is a useful way to denoise HARDI
data. Future work should include the implementation and evaluation of nonlinear
SE(3)-diffusion.
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