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Analytic models of ultracold atomic collisions at negative energies for application
to confinement-induced resonances
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We construct simple analytic models of the S matrix, accounting for both scattering resonances and smooth
background contributions for collisions that occur below the s-wave threshold. Such models are important for
studying confinement-induced resonances such as those occurring in cold collisions of 133Cs atoms in sepa-
rated sites of a polarization-gradient optical lattice. Because these resonances occur at negative energy with
respect to the s-wave threshold, they cannot be studied easily using direct numerical solutions of the
Schrodinger equation. Using our analytic model, we extend previous studies of negative-energy scattering to
the multichannel case, accounting for the interplay of Feshbach resonances, large background scattering

lengths, and inelastic processes.

DOI: 10.1103/PhysRevA.77.052702

I. INTRODUCTION

The ability to control ultracold atom-atom interactions has
opened the door to a wide variety of fundamental and ap-
plied studies, including the production of ultracold molecules
[1-4], simulations of condensed matter phenomena [5,6],
and quantum-information processing [7]. The tools that have
been central to this development include designer atom traps,
for example, optical lattices [8], and controllable scattering
resonances such as a magnetic Feshbach resonance [9]. Both
of these can be used to manipulate the two-body scattering
process, thus affecting the strength of the interaction, the
nature of the resulting two-body states, and more general
many-body phenomena. Examples include confinement-
induced resonances [10], bound-states with repulsive interac-
tions [11], and Feshbach resonances in band structures [12].

A particular example that we have explored previously is
a trap-induced resonance (TIR) that occurs as a result of
interaction between atoms that are confined to spatially sepa-
rated harmonic traps [13,14]. This happens as a consequence
of a molecular bound state that becomes resonant with the
vibrational state of the separated atoms due to a quadratic
rise in the light shift when the two atoms approach one an-
other, as shown schematically in Fig. 1. A strong resonance
can occur when the confinement of the wave packet in the
trap is on the order of (or smaller than) the free-space scat-
tering length. This s-wave resonance is analogous to a
higher-partial wave shape resonance occurring in free space,
but here the tunneling barrier arises from the trap rather than
from an angular momentum centrifugal barrier. Because of
this tunneling, the interaction occurs at “negative energy”
values with respect to the free-particle s-wave scattering
threshold.

In previous work on the TIR in cesium [14], whose large
scattering length gives rise to a strong resonance, Stock et al.
extracted the scattering length at negative energy for the
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single channel case by an explicit integration of the radial
Schrodinger equation at negative energies using the Nu-
merov method. Such a procedure has limited utility; the so-
lutions are unstable since the wave function blows up in the
tunneling barrier. The situation gets very complicated as
soon as there is more than one channel. A proper numerical
technique must ensure that open channels are propagated
along with the exponentially decaying closed channels while
maintaining accuracy to relevant digits. Most coupled chan-
nel codes that incorporate such situations (i.e., propagating
closed and open channels) eventually drop the closed chan-
nels beyond a certain radius since they are only interested in
open channels. On the other hand, the problem of TIR con-
sidered in this paper requires us to integrate to a large
enough radius for determining a good asymptotic logarithmic
derivative (for both open and closed channels). We empha-
size that we are not allowed to drop any channels, since in
the end, we are required to extract the asymptotic logarith-
mic derivatives for both open as well as closed channels.
To remedy this, we consider here analytic models of the
multichannel S matrix. Simplified analytic models have been
employed in previous studies of ultracold collisions and scat-

A

Bound Molecuar State

V()

Trap state

T

FIG. 1. (Color online) Schematic of the effective potential be-
tween atoms trapped in separated wells of an optical lattice, as a
function of the relative coordinate in the direction of trap separation
(not to scale). At short range there is a molecular binding potential.
At long range the relative coordinate is bound by the traps. For a
given separation and well depth, one of the trap vibrational states
may become resonant with a bound state of the two-body interac-
tion potential, resulting in a trap-induced resonance.

©2008 The American Physical Society
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FIG. 2. (Color online) Energy level diagram of the 65,,, hyper-
fine manifold of '**Cs (not to scale). The solid (dashed) lines cor-
respond to the levels in the absence (presence) of the external mag-
netic field. The magnetic quantum numbers and the corresponding
level-labelings are shown.

tering resonances. Julienne and Gao have predicted the prop-
erties of Feshbach resonances based on the analytic proper-
ties of the van der Waals long range potential [15]. Marcelis
et al. have used analytic models to describe the interplay of
open and closed channels in the context of Feshbach reso-
nances associated with a large background scattering length
[16]. These analytic models, while simple in nature, are able
to encapsulate the necessary physics in just a few parameters.
These parameters can then be incorporated into building
model many-body Hamiltonians, an example being the two-
channel model used for describing resonance superfluidity in
a two component Fermi gas [17].

Our goal in this paper is to develop an analytic model that
can be used to study the TIR for Cs atoms trapped in an
optical lattice. In Sec. II we review the basic physics that
gives rise to the TIR, its application in Cs, and show the
limitations of direct numerical solutions, even for single
channel scattering. Section III contains the heart of our re-
sults. We review the basic resonant scattering phenomena
and how they are modeled analytically in the S matrix. We
then apply this to determine expressions for the negative-
energy scattering length in a nontrivial multichannel scatter-
ing process, relevant to an experimental observation of the
TIR. We summarize our results in Sec. I'V.

II. SCATTERING RESONANCES IN 33Cs

We consider the scattering of two 3Cs atoms in their
65, electronic ground state, trapped in an optical lattice.
The Zeeman hyperfine structure of this manifold is shown in
Fig. 2 with magnetic sublevels labeled as a,b, ...,p for con-
venience. Henceforth, all two-atom scattering channels will
be denoted by the relevant pair of these sublevels. To begin
with, we consider the scattering in the |ap> channel. This is
motivated by studies of controlled collisions via spin-
dependent transport in polarization gradient lattices [18]. In
these spin states, two atoms that are separated by A/4 in a
lin-perp-lin optical lattice can be transported into the same
well in a lin-parallel-lin optical lattice via a rotation of the
laser polarization. By angular momentum conservation, be-
cause these are “stretched states,” and ignoring small spin-
dipolar and second-order spin-orbit coupling [19], the domi-
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nant s-wave collision does not couple this channel to any
other channel. The result is an elastic phase shift that can be
used to implement an entangling two-qubit logic gate. In
addition, as the wells approach one another, there will be a
TIR that can strongly affect the two-atom interaction [13].

The properties of the TIR follow from a simple model of
the two-atom system. We express the Hamiltonian for the
atoms in the |ap) scattering channel in center-of-mass coor-
dinates, R, and relative coordinates, r, as

2

1
Hoy=—%+ ~Mo’R?, 1
MZom T2 m
p° 1

Hyy=—+ —po’r— Az]> + V(r), (2)
2u 2

where u is the reduced mass, Az is the separation of the
traps, and V(r) is the interatomic potential. In principle, the
TIR can be seen by diagonalizing the above Schrodinger
equation using the precise Cs, molecular potential projected
on |ap) for V(r). This is a nontrivial task, however, since
there is a huge separation of length scales between the mo-
lecular potential and the external trapping potential, and the
displacement of the trap from the zero of the relative coor-
dinate makes the system anisotropic. Instead, we treat the
molecular potential through a contact pseudopotential [20],

2

V(r,E) = 2 a(E) 5(r)i. (3)

Jar
Here a(E) is the energy-dependent s-wave scattering length,
determined by direct numerical integration of the
Schrodinger equation based on the s-wave scattering phase
shift of the known Cs, molecular potential in the absence of
the trap, according to a(E)=—tan §y(E)/k. The energy is then
chosen self-consistently to solve the Schrodinger equation,
including both the boundary conditions at short-range due to
the atomic interaction and at long-range due to the trap [13].
For sufficient separation between the traps, the lowest energy
eigenstates drops below the threshold of the molecular po-
tential. Thus the “negative energy” scattering states that are
inaccessible in free space become opened by the trapping
potential.

The scattering length at positive energies for the |ap)
channel, calculated using a numerical solution to the radial
Schrodinger equation based on the well-established '**Cs
dimer potential, is shown in Fig. 3. A resonance exists at E
=4.03 K (here and throughout, energy is measured in tem-
perature units) due to a bound state very close to zero energy.
Finding the scattering length at negative energies via equiva-
lent numerical integration is highly unstable, as the wave
function blows up in the classically forbidden region. Even if
one manages to do it, it is necessary that the integration be
sufficiently stable for large r, well into the asymptotic region
of the potential, in order to extract a meaningful scattering
length [14]. In addition, because we are in the neighborhood
of a scattering resonance near zero energy, the strong varia-
tion of the scattering length with energy makes the require-
ment for a robust numerical solution even more demanding.
To address these problems, we develop analytic models that

052702-2



ANALYTIC MODELS OF ULTRACOLD ATOMIC ...

1.5

E(uK)

FIG. 3. Scattering length for the |ap) channel in units of Bohr
radius ap as a function of scattering energy E.

will allow us to calculate the scattering matrix below thresh-
old. In doing so, we will extend the method to a more com-
plicated process that occurs for the multichannel scattering
case.

III. ANALYTIC MODEL

Near-threshold scattering is dominated by resonant phe-
nomena. Such resonances can arise from a variety of differ-
ent physical mechanisms, and thereby affect the form of the
analytic model. We identify the nature of the resonance
based on our understanding of the physical processes and the
location of the poles in the S matrix. Away from resonance,
the scattering properties are smooth functions and therefore
can be modeled by a few free parameters. The total S matrix
thus factors into resonant and background contributions,

S(k) = Spg(k)Sres(k). 4)

For the scattering on the single channel |ap), the resonant
behavior can arise only from a bound state or a virtual-bound
state near threshold; any other type of resonance such as a
Feshbach will require the inclusion of other channels. A di-
rect numerical integration gives a bound state with a binding
energy E,=246.2 nK. Thus the resonant part of the single
channel S matrix can be written as [21]

k+iKb

Sres(k) == s (5)

k - iKb
where ﬁzkﬁ/ 2u=E,, representing a pole of the S matrix in
the k plane on the positive imaginary axis. There is no need
to single out the other bound states, as they are energetically
too far away, and their effect is absorbed in the background
part. This remaining part can be written in the low energy
limit k—0 as

Spe(k) = exp(= 2iayk), (6)

where a;, is the background scattering length that encapsu-
lates the effect of all other nonresonant processes, including
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FIG. 4. (Color online) Energy dependent phase shift 8(E) for
s-wave scattering on the |ap) channel. The circles represent numeri-
cal data from the coupled channel calculation, the dashed green
curve is the analytical fit using Eq. (7), and the solid red curve is the
analytical fit using Eq. (8).

other deeply bound states. Now we can write the complete
S-matrix element analytically with just one free parameter,
apg, the value of which can be determined by fitting one
positive low energy point to the equation

(k) = = apgk — tan™' (k/ k). (7)

In Fig. 4 we plot the scattering phase shift as a function of
the scattering energy, obtained via the full coupled channels
calculation and compare it with the one obtained from Eq.
(7). We see good agreement at low energy but for energies
beyond 10 uK a slight difference is noticed. This is ex-
pected since the linear form of the background phase shift is
only valid at low energies. To remedy this problem, we use a
higher order expansion for the background part given by

= Vay, + rok?/2 + ik
= Vayg + rok/2 — ik’

Spe(E) = ®)
where we have added an additional free parameter, r(, the
effective range. As before, we determine both the parameters
by fitting two low energy data points. The inset of Fig. 4
shows excellent agreement of this improved model with the
numerical solution.

Given the form of the § matrix, we can predict the scat-
tering properties in the |ap) channel at negative energy val-
ues by performing an analytic continuation of the S matrix to
the imaginary k axis. From this one can consistently define
the scattering length at negative energies E=—#A’«%/2u by

~ tan[ (i) ]

LK

alik) = 9)
In Fig. 5 we plot the scattering lengths obtained from the
analytic procedure discussed above. These agree with the
direct numerical integration just below threshold [14].

We now turn to a more complex situation: collisions be-
tween |a)=|F=3,mp=3) and |o)=|F=4,mp=3) or the |ao)
channel. This is motivated by the following experimental
considerations. Controlled collisions via spin-dependent
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FIG. 5. (Color online) Analytic continuation of the scattering

length for the |ap) to negative energies. The circles represent data
from numerical integration of the Schrodinger equation.

transport in polarization gradient optical lattices [18] is ham-
pered by inhomogeneous broadening arising from unwanted
real or fictitious magnetic fields (due to elliptically polarized
light at the atomic position) [22]. This is a particularly del-
eterious effect for the |ap) states that see a strongly varying
difference in their optical potentials along the transport. In a
lin-angle-lin optical lattice at very large detunings, atoms in
the |a) and |o) states experience almost the same shift due to
the fictitious magnetic field. Any residual broadening is due
to the finite detuning effects (giving a differential scalar light
shift) and the true magnetic field inhomogeneity. Controlled
collisions in the |ao) channel thus offer the advantage of a
higher degrees of coherence, with potential applications to
quantum-information processing.

To treat scattering with the incoming |ao) channel, we
must account for the exchange interaction, which leads to
spin-changing collisions that preserve the total projection of
angular momentum along a quantization axis. In this case,
the s-wave collisions couple the |ao) channel to the |bp),
|aa), |0oo), and |pn) channels. At low energies, small com-
pared to the hyperfine splitting, [0o) and |pn) are energeti-
cally closed. Moreover, in the presence of any positive mag-
netic field B> 0, the channel |bp) shifts to a higher energy
compared to the |ao) channel, as depicted in Fig. 6. For
energies that are smaller than this shift, the |bp) channel is
also closed. The movement of this channel from below to
above the threshold can lead to a Feshbach resonance that
strongly affects the scattering process, as discussed below.

The scattering phase shift for the |ao) channel is calcu-
lated by a full coupled-channels calculation. In Fig. 7 we plot
sin’[ 8(E,B)] as a function of scattering energy E and the
external magnetic field B in the range of a few hundred mG.
As is seen in this figure, there is a scattering resonance along
the dashed line where 8(E,B)=/2. Also, since the reso-
nance moves monotonically upwards in energy as a function
of the B field, it is clear that this resonance is a Feshbach
resonance. We confirm this by calculating the bound state
energy and find that it changes sign at approximately B=30
mG as shown in Fig. 8. There also exists a threshold E(B)
corresponding to the opening of the |bp) channel (shown by
the solid line in Fig. 7). Across this threshold the number of
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- EI R
s It
>
)
v [—op
] -- ao
" ---aa
) = bound
r B

FIG. 6. (Color online) Schematic of the potential energy curves
for different channels. The figure on the left shows potential energy
as a function of the internuclear separation. The right figure shows
the scattering threshold for different channels as a function of the
external magnetic field B. At B=B,, the bound state corresponding
to the |bp) channel crosses the |ao) channel threshold. The |bp)
channel becomes closed for B>0.

open channels changes by one, as reflected in the abrupt
change in the (E,B) dependence of the scattering properties.
This is indicated in Fig. 9 where we plot the scattering phase
shift as a function of energy for various values of the B field.

Based on the above understanding of the mechanisms that
lead to scattering resonances, our goal is to build an analytic
model that will allow us to predict the scattering lengths at
negative energies where the TIR is predicted to occur. To
begin with, we will again assume that the diagonal element
of the § matrix can be modeled as

Sao = <a0|S(B,k)|a0> = Sbg(B’k)SFesh(B5k) » (10)

where S, is a smooth function describing the background
contribution and Sg.g, is the contribution arising from the
Feshbach resonance. As before, the resonance leads to a pole
in the S matrix. In fact it can be shown that every element of

0.7

06
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o
w

B (Gauss)

4 6
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FIG. 7. (Color online) Scattering phase for the |ao) channel as a
function of energy and magnetic field, plotted as a surface plot of
sin’[ 8(E,B)]. The solid line corresponds to the boundary in the
(E,B) plane that separates the region where channel |bp) is closed
and open. The dashed line corresponds to the points where
SE,B)=/2.
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FIG. 8. (Color online) Location of a molecular bound state as a
function of magnetic field. Data points shown with circles corre-
spond to values obtained from direct diagonalization of the two-
atom Schrodinger equation in a large quantization volume. The
solid line indicates the position of the bare |bp) channel bound state
which moves up with B field. The inset shows the shift of the bound
state due to dressing by the |ao) channel.

the multichannel S matrix has a pole corresponding to this
resonance [23]. Also, since the location of the resonance
moves upwards in energy almost linearly as a function of the
B field, it is fair to assume that the bound state solely resides
on the |bp) channel and is shifted by an amount A, due to
coupling to the |ao) channel. Therefore without considering
the off-diagonal elements of the S matrix, the resonant part
can be modeled by a pure Breit-Wigner pole,

E—E,(B) = Apegy — iT(E)/2
E—E,(B) = Apegy +iT(E)/2°

SFesh(BvE) = (11)

so that the Feshbach contribution to the phase shift is

25

B=0.04G
\

] 2 4 6 8 10
E(u K)

FIG. 9. (Color online) Scattering phase shift for the |ao) channel
as found from a full multichannel calculation, as a function of en-
ergy for different values of magnetic field B. The crossing of the
|bp) channel threshold is marked by a finite jump in the value of
dé/dE.
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FIG. 10. (Color online) Top figure shows that I' varies linearly
with VE. This agrees with the Wigner threshold law. As for the
energy dependence of Ag., it can be assumed to be constant and
approximated by its value at zero energy.

I'(E)2

E-EyB) —Am] (12)

6Fesh(BvE) =—tan™' |:
Here E,(B) is the location of the bare bound state of the |bp)
channel, I'(E) is the width of the Feshbach resonance and
represents the location of the pole of S(E, B) along the imagi-
nary axis in the complex E plane. This model is restricted to
energies below the |bp) threshold for a finite magnetic field,
E(B). The discontinuity in the scattering phase shift seen in
Fig. 9 shows that a different model is required as additional
scattering channels are opened. We leave that problem for
future study.

To specify our model, we need to find the parameters that
characterize the Feshbach resonance, I' and Ag.g,. This is
most easily done by fitting the data to the derivative of the
phase shift S(E,B) with respect to B, as determined by Eq.
(12),

E,(B)T'(E)/2

i5(E B) = (13)
B " [E-Ey(B) - Ape ] + [T (E)2]*

The resonance width and the location of the dressed bound
state can be obtained by fitting a Lorentzian to the numeri-
cally calculated values as a function of E. In Fig. 10 we plot
the values obtained from this procedure. The fit to the data
agrees well with the expected Wigner threshold law, I'/2
=C\VE, where we find C=2.49vVuK. We neglect the small
value of the zero intercept, typically associated with the pres-
ence of the inelastic component.

Finally, from Fig. 10 we see that for E<0.2 uK,
the level shift acquires a constant value of Ap.,(0)
~-0.79 uK. Thus we model the scattering phase shift by

C\J/E
E—E,(B) - Are(0) ] - 14

A more complete model at higher energies requires a deter-
mination of the threshold law for Ap.g,. Marcelis ef al. [16]
have shown for a one channel model or more (if losses are
neglected) that this law can be obtained from the below-
threshold behavior of the Feshbach bound state as a function
of the B field. While this is true, a direct application of their
model is not possible here since we are dealing with a situ-

AE) = — apek - tan™! [
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FIG. 11. (Color online) Comparison between the analytical
model and the multichannel data for scattering on the |ao) channel.
The circles represent values of & obtained from the multichannel
code for B=0.0287, 0.3, and 0.5 G. The solid lines correspond to
the analytical model developed in this paper. The fit is chosen to be
made in the regime where the |bp) channel is closed.

ation where one of the closed channels gets opened. As we
are mainly interested in near-threshold behavior in order to
extract information below threshold, we will neglect the
functional behavior of A, at higher energies.

As in the case of the |ap) channel, the background scat-
tering length acts as a free parameter that is determined by
fitting the above model to one low-energy data point. In Fig.
11 we plot the scattering phase shift 8(B,E) for three differ-
ent values of the magnetic field B. The plots show a very
good agreement of the analytical model to the numerical
multichannel data.

Given our model, it is simple to obtain the scattering
properties such as the s-wave scattering length at negative
energy (below threshold), by analytically continuing the
above formula to the positive imaginary axis in the complex
k plane. Figure 12 shows excellent agreement of the scatter-
ing lengths obtained using our model with the numerical data
for positive energies. The predicted values at negative ener-
gies are also shown which agree well with the numerical
value obtained just above threshold.

Critical to the use of the TIR for quantum coherent cou-
pling between atoms is a favorable ratio of elastic-to-
inelastic scattering processes. Near threshold scattering at en-
ergies E<E7(B) can couple the |ao) channel to one other
open channel, |aa). Such transitions will lead to loss of the
atomic pair, as the hyperfine energy will be converted to
kinetic energies that are much larger than the depth of the
trap. By unitarity of the S matrix, such inelastic processes
imply |S,,| <1, which can be modeled by an imaginary part
of the scattering phase shift. Formal theory of multichannel
threshold scattering allows us to model the energy depen-
dence of this imaginary phase shift [21,24,25]. Nesbet has
shown how to separate the threshold behavior arising from
smooth background and singularities of poles such as those
resulting from virtual bound states and Feshbach resonances
below threshold [26]. For a general multichannel situation
consisting of M open and n closed channels below and above
a certain threshold, the off-diagonal elements of the S matrix
near threshold can be written as

PHYSICAL REVIEW A 77, 052702 (2008)
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FIG. 12. (Color online) The analytical continuation of the scat-
tering length for the |ao) channel to negative energies for B
=0.0287 G. There is very good agreement between values obtained
using the coupled channel code (shown by diamonds) and the ana-
lytic model (solid line).

2k . kl/2
ViMsj T (15)
k+ [Kpole

Simsej=e€ {og.rtideg.)

where y is some M X n matrix, i €{1,M}, jE{1,n}, and K,
is the location of the pole on the imaginary k axis. In our
case, for B>0, near the |ao) channel threshold, this corre-
sponds to one open channel |aa) and one closed channel
|a0>, the relevant S-matrix element has the form

IS15> = 1 = [{ao|S|ao)|? =Aiee_26bg.i2L2, (16)
k™ + Kpole
where A;, is some proportionality constant that can be treated
as a parameter. The imaginary part of the background phase
shift is given by the Wigner threshold law &, ;=—dapgs ik
where ay,; is the imaginary part of the background scattering
length.

The values of the parameters of the model are typically
obtained by fitting Eq. (16) to the numerical coupled chan-
nels data once the position of the pole, &, is known. Mar-
celis et al. [16] showed that the existence of a virtual bound
state leads to a rapid change in the shift in the energy of a
Feshbach resonance, Ag., in Eq. (13), and derived a simple
formula that connects the pole location to the shift. From the
inset of Fig. 8, the rapid change in Ap., near threshold
strongly indicates the existence of a such a virtual pole. We
cannot, however, apply the formula in [16], since that analy-
sis was limited to a two-channel model. Here, we have a
more complicated interplay of three channels, (|ao), |aa),
|bp)), since the Feshbach resonance arises from the bound
state in the |bp) channel. A more detailed analysis is required
to determine the location of k. from first principles. In-
stead, since sufficient data points are available from the
coupled channels numerical solution, we treat k. as an
additional fitting parameter.

Figure 13 shows excellent fit of the above model to the
numerical data. Analytic continuation of this model will give
a precise determination of the off-diagonal elements of the S
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FIG. 13. (Color online) Inelastic transitions, 1—|S,,|%, plotted as
a function of energy. A fit of the analytic inelastic model Eq. (16) is
shown by a solid line to the coupled channel numerically shown by
red circles. The dashed line corresponds to the prediction for nega-
tive energies based on analytic continuation of the model.

matrix at negative energies. This is shown in Fig. 14 for the
magnetic field value B=0.5 G. Since the above model for
the inelastic component of the S matrix is known to be valid
only in a small energy region close to threshold, we have
limited ourselves to the energy range —0.1 to 0.1 uK for the
purpose of illustration.

As a measure of the ratio of inelastic to elastic processes,
we define a general energy-dependent complex scattering
length,

Re[a]+iIm[a] = - tan[ 8(E)]/k, (17)

which can be analytically continued to negative energies. In
Fig. 14 we plot Im[a]/Re[a]. We see that inelastic processes
should not dominate, even at negative energies sufficiently
far from the Feshbach resonance.

IV. SUMMARY AND CONCLUSION

In this paper we have discussed the need for an analytic
model of the S matrix in order to extract scattering properties
at negative energies where numerical methods fail. Such
negative energy solutions are essential for understanding
trap-induced resonances that involve atoms tunneling into
regions of the molecular potential that are below the thresh-
old. Beyond improved numerical solutions, these models
give us physical intuition with regards to the scattering reso-
nances that are critical to developing many-body model
Hamiltonians that can help to explain ultracold atomic phe-
nomena [17,27].

We applied this method to study the collision of two '**Cs
atoms in separate harmonic traps, a situation similar to that
of atoms in separate sites of a polarization gradient optical
lattice. Colliding atoms in spin states that are chosen so that
they are robust with respect to trapping inhomogeneities are
not necessarily optimal when considering the scattering pro-
cess; they can undergo multichannel scattering processes, in-
cluding inelastic loss. We studied a specific example of such
scattering—collisions between |F=3,M=3) and |F=4,M

PHYSICAL REVIEW A 77, 052702 (2008)

100 3
_ 50 2
< o 1
8 0 , 3
(0]
o L EO I
-50 e A .’
—100k= okt
=01 0 0.1 0.1 0 0.1
E(u K) E(u K)
0.03 0.015
r
,
—0.025 .
> - a_ 0.01
-t g [~
£ 0.02)-- o ~.
£ L 0.005 ™
<o .
Eoo15 |
A
0.01 Q
0.1 0 0.1 -0.1 0 0.1
E(n K) E(n K)

FIG. 14. (Color online) Real and imaginary parts of the scatter-
ing length for |ao) obtained by analytic continuation of the multi-
channel S matrix at B=0.5 G. Solid lines correspond to numerical
coupled channels data while the dashed line is the analytic continu-
ation.

=3). A Feshbach resonance occurs at very small magnetic
fields (~30 mG) due to coupling to a bound state in the
|F=3,M=2)|F=4,M=4) channel. To treat this, we modeled
the S-matrix element via a smooth background component
with an imaginary part in its scattering length and an elastic
single-resonance Feshbach model. The resulting total scatter-
ing length agrees well with direct numerical multichannel
scattering solution at small positive energies and extends
analytically to negative energies well beyond the validity of
numerical solutions.

We have also discussed a model consisting of a few pa-
rameters in order to describe the off-diagonal element of the
S matrix that corresponds to inelastic processes. The model
agrees extremely well with the coupled channels calculation
at positive energies above threshold. Analytic continuation
allows us to calculate the scattering length at negative ener-
gies below threshold. We note that, whereas for free-space
scattering the reaction rates for elastic and inelastic processes
just above threshold are simply related to the complex scat-
tering length [28], in the negative energy case one must ac-
count for the tunneling rate from the trap to the molecular
potential. We will treat this in detail in a future paper.

Within the framework described in this paper, it is also
possible to study the threshold behavior arising due to the
opening and closing of the |bp) channel. This particular
threshold is interesting because the channel closing can be
controlled by use of a very small magnetic field. Also since
|bp) is the same channel that has the Feshbach bound state,
opening of this channel leads to the disappearance of this
Feshbach resonance. While Feshbach resonances in ultracold
atomic gases have been thoroughly studied in recent years,
our study opens up the prospect of studying Feshbach reso-
nances in the vicinity of such tunable thresholds and their
implications to the many-body properties of trapped ultra-
cold gases.
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