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CHAPTER 1 

INTRODUCIION 

I (DECENERATE) QUANTUM CASES 

Fritz London1 was the first to ascribe the remarkable superfluid 
4 properties of liquid He below the À-point to the influence of quanturn 

mechanics, more specifically to Bose-Einstein condensation of the 

helium atoms. The associated condensate wavefunction would extend over 

macroscopie distances and thus create a long-range order in the 

liquid. London therefore referred to superfluidity as a macroscopie 

quanturn phenomenon. Bose-Einstein condensation of particles in the 

lowest-energy single-partiele state has a parallel in fermionic 

systems: the condensation of fermions into the single-partiele states 

within the Ferm! sphere. Collectively, these two phenomena are often 

indicated as quanturn degeneracy. Effects due to quanturn degeneracy are 

noticeable in the regime 

À > J! > a. (1) 

where a characterizes the linear dimensions of the atoms, l = n-113 

characterizes the mean spacing of the atoms and À is the thermal de 

Broglie wavelength 

(2) 

with ks Boltzmann's constant and m the atomie mass. 

Quanturn degeneracy is known to play a role in such diverse 

systems as the electron gas in metals, 2 a gas of ekcitons in 

semiconductors,3 the system of protons and neutrons in atomie nuclei, 4 

3 5 6 7 the fermionic system He, neutron stars and superconductors. In the 

case of atomie nuclei, for instance, the condensation of nucleons 

within the Fermi sphere is an essential element in understanding the 

validity of the shell model. In the case of superconductivity 

Cooper-paired electrons take part in Bose-Einstein condensation. 
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All of these systems are commonly described by phenomenological 

theories. Landau, 8 for lnstance, was able to explain the superfluid 
4 behavier of He by interpretlog the llquid as an !deal gas of phonons 

and rotons. These theories, although very satisfactory for descrihing 

experimental phenomena, are difficult to justify rigorously from a 

microscopie point of view. For example, microscopie theories by 
9 . w Bogoliubov, and Lee, Huang and Yang, which were meant to serve as 

an explication of the degeneracy effects in Bose systems such as in 

superfluid 4He, are only qualitatively applicable due to the marginal 

validity of the ~econd inequality in Eq. (1): such theories are 

generally based on expansions in (powers of) (na3)~. of whlch only the 

lowest orders are calculated. The density of the helium fluid, for 

instance, is so high that the expansion parameter has a value not far 

from 1. The necessary calculation of the complete sum entails all 

complications of the many-body problem. Although in recent decades 

much progress bas been achieved with respect to the many-body problem, 

it would be of great importsnee to dispose experimentally of a system 

showing quanturn degeneraey in a regime for which the inequality i)a is 

less marginally fulfilled. 
11 In 1959 Hecht pointed to some suitable candidates: atomie 

hydrogen H and lts two heavier isotopes 2H (=D=deuterium) and 3H 

(=T=tritium) in their electron-spin polarized forms Hl, Dl and Tl, to 

be created by a strong magnatie fieldBat low temperatures (lis the 

electron-spin projection along B). The spin polarization is necessary 

to avoid the strong singlet attraction among a pair of atoms and the 

associated formation of molecules. Hecht's predictions were basedon 

the quanturn theorem of eorresponding states, first formulated by de 

Boer. 12 This theorem applies to any collection of atomie or molecular 

species with interatomie potantials which can be written as 

V(r) = e f(r/a) (3) 

with a common function f of, for instance, Lennard-Jones form, but 

different choices for the pair of parameters e and a. The Hamiltonian 

of these systems ean therefore be rewritten in self-evident notation 

as 

2 



(4) 

so that the free energy acquires the form 

* * * F =Ne F (T , n .n). (5) 

* with F a universa! function only depending on Fermi-Dirac or 

Bose~Einstein statistles i.e. on the (anti-) symmetry requirement of 

the admissable states, while n*=na3 is the reduced density, 

* T :T/(efks) the reduced temperature and 

(6) 

the quanturn parameter, a measure for the "quantumness" of a substance 

due to the finite value of n. This makes it possible to express all 

thermadynamie properties of the collection of gases in a universa! 

way. The exceptional value of n for 4He, due to its weak van der Waals 

interaction and low atomie mass, explains that it remains liquid at 

not too high pressure at T:O and is also thought to be responsible for 

lts superfluidity. By extrapolation the even weaker van der Waals 

attraction and 11gbter mass of spin-polarized atomie hydrogen and lts 

isotopes would give rise to even more exceptional properties: the 

critica! temperature for the gas to liquid phase transition for Tl 

would be as low as 0.95 K and for Hl and Dl even be shifted to 

negative values: they would remain gaseous at T=O for not too high 

pressures. This feature indeed enables a less marginal second 

inequality (1) and, in principle, independently controllable 

temperature and density. Later more rigorous calculations by Nosanow 

and coworkers13 using variational methods led to more definite 

predictions on the properties to be expected for the above-mentioned 

quanturn gases. 

Experimental work with the purpose of preparing the new quanturn 

gases was stimulated strongly by the idea to cover the wall of the gas 

cell with a superfluid helium film. One of the advantages of this 

superfluid helium lining is the low binding energy of atoms to this 

3 



surface (for H atoms about 1 Kin temperature units), so that the 

density of atoms on the surface remains limited down to very low 

temperatures and an enhanced surface decay is avoided. Silvera and 

Walraven14 at the Univarsity of Amsterdam were the first to stabilize 

! 14 3 a H gas with a density of roughly 10 atoms per cm for saveral 

minutes. 

After this breakthrough in 1980 attempts to realize the regime of 

densities and temperatures where the first inequality of Eq. (1) is 

satisfied, became a subject of widespread interest, both theoretically 

and experimentally. In 1981 a group at MIT (Cline et al.) obtained 

almost completely "doubly-polarized" atomie hydrogen gas15 (HH) in 

which also the proton spins are polarized. This increased the 

stability of the H gas dramatically. A gas of H!t is much more stable 

than H!: the hyperfine interaction admixes a small fraction of the 

opposite electron-spin projection in the one-atom spin state, when the 

proton spin is up, which leads to a singlet component in the 

wavefunction of two scattering H atoms and therefore to a possiblity 

to recombine on the surface. 

The creation of H!t opened the way to still higher densities by 
16 17 18 18 compression. ' ' The maximum density ever reported is roughly a 

4 factor of 5x10 higher than the densities first stabilized by Silvera 

and Walraven. However, the corresponding mean spacing 2=115 a0is still 

larger than the thermal de Broglie wavelength À=45 a0 at the 

temperature of 570 mK used in Ref. 18. The value of the density needed 

to reach the regime where degeneracy effects are playing an important 

role are roughly a factor of 50 larger. 

The work in Refs. 16 and 17 revealed the first evidence for a 

three-body recombination processin H!t. Hesset a1. 18 noted that the 

latter could also explain a large (factor 35) discrepancy, first 
19 pointed out by Ahn et al., between aarlier lower-density 

measurements and theory: the then undiscovered three-body 

recombination process was misinterpreted as a two-body surface rate. 

The three-body process, referred to in Refs. 16 and 17, is the 

recombination reaction H+H+H~2+H, where the electron spins of the 

doubly-polarized atoms are depolarized by a magnetic-dipole 

interaction. More in particular, the decay was ascribed to a mechanism 
. 20 

for this process, introduced by Kagan et al. for volume 

recombination. Explained in simple!te~ms, this Kagan dipole mechanism 
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INITIAL STATE FINAL STATE 

Ftg. 1. ELectron-spin projectton of atoms durtng subsequent steps tn 

Kagan dtpote mechantsm (doubte-sptn-fttp process). 

runs as follows. Two of the atoms, of which the electron spins precess 

differently in the magnetic-dipole field of the third one, obtain a 

singlet component in their wavefunction so that they may form a H2 
molecule. 

A more detailed quantummechanical description makes clear that 

the final state of the third atom may be either an electron-spin up 

(double spin-flip: the total electron-spin magnetic quanturn number 

changes by 2h) or down state (single spin-flip). The characteristics 

of the double-spin-flip are illustrated in a simple way in Fig. 1. The 

arrows reprasent the electron-spin projections during the various 

steps in the process. In the first step two of the colliding atoms 

interact via the dipole interaction. Each of them then acquires a 

smal! fraction of the opposite electron-spin projection in lts 

wavefunction. As will be explained in Sec. 11 the total spin state of 

the two atoms remains purely triplet. However, the spin state of one 

of these atoms together with the third atom contains a singlet 

component. lt therefore becomes possible for such a pair of atoms to 

recombine into a molecule in the same collision, the third atom also 

providing for combined energy-momentum conservation. 

Comparing Kagan's results with experimental H!tvolume decay 

rates it turned out that the predicted rate constant had the correct 

order of magnitude, although the field dependenee turned out to be 

incorrect. However, large discrepancies between experimental data and 

calculations by our group (see Chapters 2 and 3) for surface 

recombination, also based on the Kagan dipole mechanism, indicated 
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already that it is very unlikely that this mechanism alone can explain 

the observed decay. Several subsequent calculations of the rate 

constant for volume recombination, also by our Eindhoven group (see 

Chapters 4 and 5) made it likely that it is not the Kagan dipole 

mechanism that is responsible for the decay, but an alternative 

mechanism, the dipole-exchange mechknism, which is at least of equal 

importance to explain the measurements. 

The theoretica! aspects of these recent developments form the 

subject of this thesis. The theory of two- and three-body collislons 

underlies most of the work presented. Contrary to the general 

situation in the subject of atomie and molecular collislons which 

often allows for a (semi-)classical' treatment, a full 

quantummechanical approach is needed in our case: although the quanturn 

degeneracy regime À)l)a bas not yet been reached, the condition X>a 
characterizing a quanturn gas bas already been fulfilled since the 

first ploneering experiments in this field: À increases beyond a 

already at a few tens of kelvins. 

To fulfil also the remaining part of the condition for 

Bose-Einstein condensation, most of the effort in the field of 

spin-polarized hydrogen has gone into the direction of decreasing the 

mean spacing by increasing the density, in particular by compresslon. 

The value of .the three-body recombination r.ate observed for magnatie 

fields in .the 5-10 T range, however; makes lt. pr.obable that .. further 

progress to higher densities is limited by recombination heating. 

Experimentally, the recombination heating may possibly be removed from 

the gas by werking withvery thin samples, only on one side bounded by 

a heliumsurface and by a confiningimagnetic-field gradient in other 

directions. 21 Interestingly, theoretica! analysis shows strong 

variations in the three-body recombination rate as a function of 

magnetic field. Possible this may lead to the selection of a B-field 

"window" where the three-body recombination is sufficiently slow to 

enable Bose-Einstein condensation. Both the theoretica! work in this 

thesis, further work in our Eindhoven group22 and recent experimental 

work at Harvard University23 are first steps in this direction. 

Other recent developments alm at wall-free confinement by static 
. 24 

or dynamic field traps maklng use of evaporative cooling or 
25 microwave cooling to temperatures ,in the ~ range or even lower. 

This migh~ lead to a tulfilment of the degeneracy condition by 

6 



increasing À beyend t keeping the density very low thus causing 

three-body collislons to be of little significance. Although the 

prospects look promlsing, this field of cooling in a trap is still 

largely unexplored. In particular, it is still unknown at present how 

effective a cooling scheme will be in the final stage where atoms are 

to condense into the lewest quantum state in the field of the trap. 

A very recent publication26 calls attention for the special 

possibilities of realizing quantum degeneraey in doubly-polarized 

atomie deuterium Dtf. using evaporative cooling in a magnatie trap. 

Due to Fermi statistles the lowest relativa two-body partlal wave in a 

three-body system then has a value of 1. This would imply a streng 

reduction of the two- and three-body rates and thus the possibllity of 

combining cooling in a trap with compression. This reintroduces the 

subject of three-body recombination, but now in conneetion with a 

magnatie trap. 

11 INTERACTIONS 

The quantum mechanica! description of two- and three-body 

scattering forms the basis for the study of the decay of the density 

of spin-polarized atomie hydrogen gas. A collision of two (three) H 

atoms is in principle a process involving four (six) particles. 

However. previous experience gathered in particular in our group, 27 

shows that this problem can be reexpressed with sufficient accuraey in 

the form of a two- (three-) atom Schrödinger equation, by introducing 

a number of effective interactions among the H atoms, i.e. the 

interactions tobedealt with below as points a, b and c. A few 

additional aspects of the interactions will subsequently be covered by 

points d,e and f. 

a') Zeeman. and hyperfine interact tons 

The effective spin Hamiltonian of a single H atom in the ls 

ground state in an external magnet ie field S is given by 

25 -26 -26 where a=9.119x10- J. ~ =928.48x10 JIT and ~ =1.4106x10 JIT 
e P 

(7) 
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are the hyperfine constant and the magnatie moments of electron and 

proton, respectively. Furthermore, S, 1 are the electron- and 

proton-spin veetors (from which a factor of n has been extracted). For 

future convenianee it is useful to ~ress Hat and its eigenvalues 

also in temperature units. Wethen have a=68.169 mK, ~ :0.67249 KIT e 
and ~ =1.0217 mKIT. The two Zeeman terms of Eq. (7) are invariant 

p 
under separate rotations of the electen- and proton-spin veetors 

S and 1 about the direction of S. The corresponding magnatie quantum 

numbers ms and mi are therefore good quantum numbers with respect to 

the Zeeman interaction. The Ferm! contact hyperfine term of Eq. (7) is 

invariant under simultaneous rotations of electron and proton spins 

about an arbitrary axis. For this term alone, the total atomie-spin 

quantum numbers f and mf' associated with the vector-operator F:5+1, 
are good quantum numbers. 

The (difference of) eigenvalues and eigenveetors of Eq. (7) are 

presented in Fig. 2 for magnatie fields of B:O and 8=10 T. Here, the 

electron- and proton-spin projectlens are denoted by r or !, and ~ or 

t, respectively. Furthermore, the mixing parameter ~/[4B(~ +~ )] is e p 
small relativa to 1 for the high magnetic field values to be 

considered in the following (B=4 Tand higher). The large energy 

difference of about 13.5 K between the a,b states on the one hand and 

the c,d states on the ether at 8=10 T results from the electron-spin 

Zeeman interaction, while the remaining smal! energy splitting between 

the a and b levels and between the c and d states is caused by a 

combined influence of the hyperfine interaction and the Zeeman 

interaction of the proton. 

At equilibrium for low temperatures Til.O K the populations of 

the c and d states are completely negligible, while the a and b states 

are about equally populated. The small admixture of the "wrong" 

electron-spin projection in the a state is well-known15 to lead to 

preferentlal depopulation of this state in a+a and a+b collislons at 

the wall, due to a singlet component which is already contained in the 

asymptotic spin states. The remaining gas sample consists of the 

doubly-polarized b atoms (!t), with a much longer lifetime. Forsome 

time the decay of the gas bas generally been ascribed to ~ 

relaxation through the magnetic-dipole interaction eperating in 

two-body b+b collisions, taking place in the bulk and in the 

two-dimensional adsorbed gas. Our g~oup was the first to point to a 

s 



Fig. 2. Etgen~tues and eigenstatea of the effecttue one--atom 

Hamtttontan (7) for magnette ftetds of B=O and 8=10 T. 
The eLectron- and proton-spin projecttons are denoted by 

i or l, and +or f, respecttuety. The mtxtng parameter 

~.Sxl0-3 for B=lO T. 

previously mentioned factor of 35 discrepancy19 (see also Refs. 28-31) 

between theoretica! and experimental decay rates for the surface part 

of the relaxation. The more recent experimental and theoretica! 

developments concentrata on a three-body recombination mechanism, in 

which also the magnetic-dipole interaction is involved. 

In this thesis. we consider collislons of b-state atoms, which are 

of importance for relaxation and recombination in the doubly-polarized 

regime. The effective Hamiltonian of a two-atom system contains, apart 

from a sum of expresslons of the form (7) for each of the atoms, some 

effective interatomie interactions, which will be discussed 

subsequently. 
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b) Central tnteractions 

The Coulomb interactions between electrons and protons of two H 

atoms give rise, through the Born-Qppenheimer approximation, to 

central interactions among the atoms of the form27 

c -+ c c V (r) = ~ _1 V _1(r) + ~ ~ V _n(r) = 
S- S- S=v S=v 

(8) 

-+ where r is the relativa coordinate of the protons, while 

~s=O-!- 81.82 and ~s=l-! + 81.82 are projection operators on the 

singlet and triplet subspaces of the total spin space, respectively. 
c c Furthermore, Vs=O and Vs=l are the singlet and triplet potentials, 

which are given as a function of r' in Fig. 3. The two-atom problem 

comprises the relative atomie motion and the electron and proton spin 

degrees of freedom for each of the
1
two atoms, the total center-of-mass 

100 

c r 
s 15 0 

c TlO r ina0 ·;: 
ëii 
:>.:: 
.!: 

u 
> 

-100 

-200 

Fig. 3. 

10 

V•14,J•3 u 
> 

~~ 10 15 
r in a0 

-
( 

Vs.o 

v-141&1 

c c 
The singLetand triplet H-H interactions V

8
=0(r) and V

8
=1(r) 

(in temperature units) as.a function of the distance r 

between the protons. The ~nergtes of the bound states with 
c 

quantum. numbers v=l4, l=3 and v=l4, l=l of V s::::O are -72 K and 

-183 K, respectively. 



motion being understood to be split off. Eq. (8) being invariant under 

separate rotations in relative orbital, 2-electron-spin and 

2-proton-spin space, we have [. s~1+s2 and 1=1
1
+1

2 
as conserved 

quantities and the associated quanturn nurnbers /!,, mn, s, m , 1, m. as 
"' s l. 

good quanturn numbers. Note that, contrary to common use, we use 

lower-case symbols for two-atom spin quanturn numbers. Capita! spin 

quanturn nurnbers are reserved for future use in conneetion with the 

three-atom system. In actual calculations we use "state-of-the-art" 

v~=l and v~=O potent1als,32 including also relativistic, radiative, 

adiabatic and non-adlabatle corrections. 

The singlet and triplet potantials display a completely different 

behavior at smal! distances. The singlet potentlal is strongly 

attractive and contains a large nurnber of rotational-vibrational bound 

states. The more weakly bound ortho-states (1=1, l=edd) appear to play 

an important role in three-body dipolar recombination, especially the 

two states with vibrational quanturn nurnber v=14 and rotational quanturn 

nurnbers l=3 and 2=1, which have a binding energy of 72 K and 183 K, 

respectively. The radial part of the wavefunction ~v/!,(r) of the v=14. 

V •14 
1=3 

r in a0 

~1~--------~----------~----------~ 

Fig. 4. The radla.l. pa.rt ~v2 (r) of the wa.vefunctlon of the bound sta.te 

urtth quantWil num.hers v=H. 2=3 a.s a. functlon oF r, norma.Uzed 

a.s Jl~ve(r) 12dr = 1. Note the towe-r decrea.se due to the 

strong reputston a.nd centrlfuga.l. ba.rrler, a.nd the l.a.rge-r 

ta.lt due to weak binding. 
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0.075.------r--------,---..,--------, 

o.o5o1 

0.025 ....... 
:r 

0~------~~----------~--------4 
5 10 15 

-0.02S....__ ____ _.__._ ____ __,_ ____ ____J 

Fig. 5. The sphericatty symmetrie wauefunction +t(r) as a function 

of r. normat ized so as to have the constant ual.ue 

(~)-312 for ~. describing triplet scattering at zero 

temperature. 

1!=3 state is presented in Fig. 4. The triplet potentlal is strongly 

repulsive for smal! distances, due to the Pauli priciple for the 

electrons, but contains also a weakly attractive van der Waals tail 

for larger r values, which is too spallow to support bound states. In 

Fig. 5 the spherically symmetrie triplet state ~t(r) is given, which 

describes the scattering of two b atoms at T=O. This wavefunctiçm is 

going to play a central role in subsequent chapiters. There it is 
-3/2 normalized so as to have the constant value (2vn) beyond the 

range of the triplet potential. In ~he vertical scale of the figure 

the factor n-3/2 is left out. 

The central interactions cannot cause transitions between s=l and 

s=O, because s and m
5 

are good quanturn numbers. Additional 

spin-dependent interactions are therefore responsible for the decay of 

the doubly-polarized gas. An obviou~ candidate is the 

electron-electron magnetic-dipole interaction. The much weaker 

electron-proton and proton-proton counterparts are negligible for our 

future purposes. 
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c) Electron-electron magnetic-dipote interaction 

The spin flips èausing the recombination during collislons of 

three b atoms are now believed to be induced by the magnetic-dipole 

interaction between the electrens of the atoms. From previous 

experience27 it appears that in most circumstances it is sufficiently 

accurate to write it in the effective form: 

(9) 

Herewith, the electronic magnetic moments are localized at the 

protons. I~ is clear thar vd(t) is only invariant under simultaneous 

rotations in orbital and totàl electron-spin space. The separate 

orbital and spin angular momenta are therefore not conserved. However, 

the total angular momenturn J=l+S is a constant of the motion. 

Furthermore, it is useful to point out that vd(t) has the following 

structure in terms of irreducible spherical tensor operators33 y(2) 

and ~2) of rank 2: 

2 

Vd(t) = {yC2>c;,;).~2lcs1,S2)}oo a 2 (-1)~ y~~) ~2). (10) 
J.t=-2 

in which 2(2) is built up from the two spin vector-operators and y(2 ) 
A ~ . (2) A A 

similarly from rar/r. Note that the components of Y (r,r) are 
A 

proportional to the spherical harmonies Y~(r). Eq. (10) implies in 

particular a well-known selection rule for the initia! and final s 

and s' values and for initia! and final l and l' values: the 

"triangular condition", i.e. it must be possible to form a triangle 

with sides s,s' and 2 and similarly for t,t' and 2. Singlet-singlet 

and singlet-triplet transitlens are thus forbidden. The fact that a 

parallel electron-spin state can only change into a parallel 
d-+ electron-spin state can also be understood from the symmetry of V (r) 

under permutations of s1 and s2 • A classica! argument might also be 

instructive. The magnetic-dipole field of atom 1 at the position of 

atom 2 is equal to that of atom 2 at the position of 1. This results 

in a parallel precession of the electron spins in these fields. The 

atoms remain therefore in a triplet state. As first pointed out by 
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20 Kagan a two-atom dipole interaction in a system of three b atoms 

does admlx a singlet part in a two~atom subsystem (see Sec. 1). 

d) H-He interactton 

At low temperatures (T i 0.3 K) the major part of the collislons 

takes place among H atoms a.dsorbed to the superfluid helium. The 

presence of the helium surface is responsible for many new and 

interestlog aspects, both theoretica! and experimental. Throughout 

this thesis we leave out the dynamics of the superfluid helium: it is 

assumed to act on the H atoms in the form of a static surface 

potentlal V (z), depending on a coordlnate perpendlcular to the wall. 
w 

With a few exceptions this is a general approach in this field: it is 

clear that the inclusion of a static surface forms, even for two H 

atoms, already a huge compl!cation. The general "philosophy" is to 

find out to what extent experimenta:l data on phenomena in the adsorbed 

H gas can be explained within this restricted framework. It cannot be 

excluded that eventually the inclusion of dynamica! surface modes is 

inevitable. 

Although the precise form of V (z) is not known, 34 it has been w 
found experimentally that lts attractive van der Waals part is 

sufficiently strong to support a bound state $0(z). Very precise 

recent measurements based on the cryogenic H maser have provided an 

accurate yalue35 for lts binding en~rgy: &0=1.01±0.01 K. The 

single-partiele motion of the adsorbed particles parallel to the 

surface is not influenced by Vw. The gensity of the adsorbed gas of H 

a~oms lncn~ases J3lrongly for decrea~!zlg ternper.atur;-es. This, .together 

with the three-atom dipolar recombination process, is the maln reason 

for the rapid decay in compression experlrnents at low temperatures. In 

so far as we study surface collision processas in the followlng 

(Chapters 2 and 3), we wil! consider specific choices for Vw(z) and 

for the associated eigenfunction $0(z). 

e) H-H potenttaL at hettum surface 

From previous calculations of two-body relaxation processas in 

the adsorbed gas27 it may be concluded that the scattering of adsorbed 

b atoms is described fairly well by assuming that the atoms remain 
"' 19 bound in the o/o state during the collision (~model ). The relativa 
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motion parallel to the surface is decoupled from the z motion and can 

then be determined by solving a 2D Schrödinger equation, in which the 

2D triplet interaction ~=l(p) is given by the 30 potentlal v~=l(r) 
averaged over the motion of the atoms in the ~O state: 

(11) 

2 2 ~ -+ • Here, r = [p + (z1-z2 ) ] , p being the relative coord~nate vector 

along the (plane) surface. 

In Fig. 6 the 2D and 30 triplet potantials are given. As 

expected, the averaging process leads to a somewhat shallower wel! and 

a weaker. repulsive part. We used the H-He potentlal calculated by 
34 n. :-:c Mantz and Edwards todetermine ~0(z) and Vs=l(p). As an illustratlon 

Fig. 7 shows the lowest partlal wave (m=O) of a low-energy (E=O.lK) 2D 

scattering state +t~1). of which exp(i~.p)/(2mh) is the undistorted 

part. The factor 1/h is left out in the vertical scale in Fig. 7. On 

the basis of the effective-range theory, presented in Chapters 6-8, it 
-+ may be deduced that +t~(p) goes to zero logarithmically for a fixed 

c 

~ 30000 

.5 

:§ 
c. 

:E 10000 

5 10 15 
rand p ina0 

Ftg. 6. The 3D and 2D triplet potenttats V~=l(r) and ~=l(p) (tn 

temperature untts) as a. functf..on of the 3D and 2D distonces 

r and p, respectivety. 
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Fig. 7. -+ 
The m:O part of the mvefW'I.ction >/ltit(P) a.s a. fW'I.Ction of p 

for 2D tripLet scattering wtth energy E=O.l K. The 
"-+-+ undistorted part is given by exp(iK.p)/(2v). Camparing with 

Fig. 4, note the typteat 2D beha.vior: a. s!ower log p 

convergence for large p. 

but arbitrary distance p when the cellision energy E goes to 
36 zero. This is a typical feature of 2D scattering. A 30 wavelunetion 

goes to a finite limit for E~ (see Fig. 5). This typical 2D behavier 

plays an essential role in the cal~ulations of Chapters 2 and 3. 

f) H-H-H centrat potenttal 

Up to bere it was assumed implicitly that the interaction of 

three scattering H atoms is given by a sum of pair interactions. 

However, this is not completely justified from the Born-Oppenheimer 

point of view. A genuine three-body term is bound to play a rele in 

parts of three-atom configuration space where ene atom is at close 

distance from both ether atoms. In such a case, in particular, net 

only two-electron but also three-electron exchange plays a significant 

rele. 

We do net believe, however, that the above type of configurations 

come in to a significant extent. In the first place the three 

colliding atoms have parallel spin directlens befere the recombination 
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and repel each other at distances smaller than about 6 a
0

. After the 

recombination process the molecule is in a weakly bound singlet state 

with widely separated atoms. Furthermore, the electron-spin 

configuration of the third H atom with each of the bound atoms is 

predominantly symmetrie (75% s=l and 25% s=O) (see also Fig. 1 of 

Chapter 5). The third atom is therefore repelled effectively by the 

molecule. We neglect correctloos from a three-body potentlal term in 

the remalnder of this thesis. 

II I SOME ASPECTS OF TWQ- AND THREE-BODY SCATTERING 

In this section we summarize some of the fundamentals of 

non-relativistic two- and three-particle scattering, used in Chapters 

2-8. It is not our intention to present a complete and mathematically 

rigoreus treatment of the theory. We try to follow a more intuitive 

approach and illustrate some of the equations in terms of Feynman-like 

diagrams. The background theory is discussed by Messiah, 37 Taylor, 38 

Newton39 and Glöckle.40 

We first consider the scattering of two distinguishable 

particles, described by a stationary state I+(±)) which is a solution 

of the Schrödinger equation 

(H
0 

+ v - E) I+(±)> = o, (12) 

with outgoing-wave (+) or incoming-wave (-) asymptotic boundary 

conditions. The state I+(+)> corresponds closely to the intuitive 

picture of a scattering process: at infinity it consists of an 

unperturbed plane wave plus a radially outgoing, in general 

anisotropic, wave. The state 1+(-)}, on the contrary, has an 

unphysical plane wave plus ingoing radial wave behavior at infinity. 

Al though unphysical, we shall see that such states play an important 

role in some of the expresslons of this thesis in the form of final 

states in first-order collision amplitudes. In Eq. (12), H0 is the sum 

of the (relative) kinetic energy operator and possible single-partiele 

energy operators (e.g. of the type of Eq. (7) for H atoms), V the 

interaction between the particles and E the total energy. Eq. (12) is 
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a second-order differentlal equation in coordinate space, .which can be 

solved by numerical integration (potential scattering or coupled 

channels41 ) and adjusting the solution to the proper asymptotic 

boundary conditions for scattering. 

For scattering by a rotationally symmetrie potentlal V(r) it is 

useful to introduce the concept of the scattering phase shift. To show 

the physical importance of this quantlty we consider the special case 

of 30 scattering and expand the wavefunction _"C~(t) in spherical 

harmonies with respect to the direc;tions of the coordinate vector 

1 and the incident wavevector ~ 

The Schrödinger equation then reduces to a set of uncoupled radial 

diffentlal equations for the functions u}±l(r). 

(13) 

If the potentlal is negligible beyond a eertaio range,. these 

functions can for large r be expreseed as a combination of the regular 

and irregular solutions Fe(k,r)=W Jl!~(kr) and Gl!(k,r)=W N#!~(kr) 
of the radlal equatlons wl th V...O 

. u~±)(r) = a~±)[cos~#!(k) Fe(k,r)- s1n6e(k) G#!(k,rl] 

..tA (+) 
~ k at- sin[kr~#!w+6#!(k)] 

I"-100 

(14) 

(+) 41f t -3/2 Here, the coefflcients at- are given by :vçl (2m) exp(±i6l!(k)), 

when the undlstorted plane-wave part of the full wavelunetion 
(!} ..... ,.. oot . 3/2 

-11 1{ (r) is normalized as exp(iK.rJ{(21rh) . We conclude from Eq. (14) 

that the effect of the scattering potentlal is to shift the phase of 

each partlal wave l! by an amount 6/!(k). These phase shifts play an 

important role in two-body scattering theory and will also be 

considered in Chapters 6-8, where Eq. (14) is generalized to arbitrary 

dimeneion n~2. 

We will not go into this further, but rewrite Eq. (12) in order 

to introduce the two-body t operator. By regarding the V term of Eq. 

(12) artificially as an inhomogeneous term, it can be seen that I+(±)) 
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V=~ t=~ 

Fig. 8. GraphicaL representatton of FuLt two-particte scattering 

state I+(±)), see Eq. (16). 

also obeys the Lippmann-Schwinger equation37 

(15) 

where I$> is the undistorted wavefunction (i.e. a solution of Eq. (12) 

with V.O) and G~±)(E) = (E ± iO - H0)-1 the free resolvent operator. 

Iterating Eq. (15) shows that the full scattering state can be 

obtained by summing a multiple-scattering series (Ref. 37 Chapter 

XIX): 

I+(±)>= I$>+ c~±)(E) v I$>+ c~±)(E) v c~±)(E) v I$>+ ..... 

• I$> + c~±)(E) t(E) I$>. 
(16) 

See Fig. 8 for a presentation in the form of Feynmán-like diagrams. 

The two-particle t operator is defined as a scattering operator 

which takes into account the complete "V-ladder" in the series of Eq. 

(16): 
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~ - ~ + o + rn + ... 

Ftg. 9. Mutttpte-scattertng series for the two-body t operator in 

the fora of dtagrams, see Eq. (17). 

(see also F!g. 9). We note bere that the series, presented in Eqs. 

(16) and (17) and in the following do not necessarily converga for an 

arbitrary potentlal V. We consider them as forma! series in the same 

spirit as the well-known expansions in the coupling constant of 

"ladder" series of e.g. electron-eli:!ctron scattering in quantum 

electrodynamics. In our case we do not calculate ~~(±)> or 

t(E) by summing the series in Eqs. (16) and (17). Instead, we 

calculate for instanee t(E) by solving directly the Lippmann-Schwinger 

equation for the t operator: 

t(E) = V+ V G~±)(E) t(E). (18) 

A more rigorous introduetion of the operator t(E) can be based40 

directly on the defining equation (18) without resorting to series 

expansions. In momenturn space Eq. {tS) is an integral equation. It can 

be solved by matrix inversion after a numerical discretization and 

bringing the V G~±)(E) t(E) term to.the left. 

The t operator has in general non-vanishing matrix elements of 

the type <il•!t(E) lil> between states, of arbitrary energy. It turns out, 

however, that the t matrix elements which determine the asymptottc 

form of the wavefunction for two-particle scattering, are those for 

which both initia! and final statas have energy E {the energy is 

conserved asymptotically). These on-shell t matrix elements are of 

special interest. because the most interesting physical observables 

for a two-body collision depend only on the asymptotic form of the 
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wavefunction. We also point out that the complete knowledge of the 

wavefunction in all space can be obtained from the half-shell t matrix 

elements only (i.e. in which the energy of the final state is 

variable). This follows directly from Eq. (16): the momenturn 

representation of ~~(±)> is obtained by taking the inner product of 

the third membar with an arbitrary plane-wave state, which is an 

eigenstate of G~±)(E). We finally note that for scattering of 

identical particles, we obtain the symmetrized scattering state by 

symmetrizing the driving term of Eq. (15). 

We end the discussion of the two-body problem with soma comments 

concerning the low-energy scattering of two b atoms in a 

doubly-polarized atomie hydrogen gas. The temperatures at which the 

experiments with atomie hydrogen are carried out are so low, that the 

typical size of wave packets reprasenting the relativa motion of 

colliding atoms is much larger than the interaction range (À))a), i.e. 

the gas is in the quanturn regime (see Sec. I). Consequently, the 

relativa wavenumbers k are so smal! that ka((l. This implies that only 

the lowest partlal wave of the undistorted plane wave enters the 

interaction region and is distorted. The corresponding phase shift and 

the related on-shell t matrix elements of this lowest partlal wave for 

the scattering of two b atoms through the triplet potentlal can be 

expanded around their values for k=O. The behavior of the scattering 
42 is then determined by one (or a few) effective-range parameters. 

In Chapters 6-8 such an effective-range theory is introduced for 

low-energy scattering in arbitrary dimension n~2. The primary purpose 

hare is to find an effective-range theory for the case of a 2D gas, as 

an extension of the well-known42 30 formalism. We shall see that such 

an extension is not trivia!. The 2D case is exceptional because it is 

the only integer dimension where the "centrifugal" potentlal for the 

lowest partlal wave is attractive. This gives rise to a logarithmic 

k-dependence of the low-energy phase shift. 

We now turn to three-body scattering. In this case there are two 

types of asymptotic scattering channels: two- and three-body 

fragmentation channels, in which one or no pairs are bound, 

respectively. For dipole recombination we need both channels. However, 

for convenianee we consider in this introduetion only the three-body 

fragmentation channel, the discussion of the other channel being 
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l\llo itl> • 2 --. + 

1-

Fig. 10. Graphical representation of fult three-particle scattering 

state l~á±)) in terms of sequential operations of 

two-particle potentials vi on the free three-particte state 

1~0>. see Eq. (19). 

similar. We refer to Glöckle's monograph40 for a treatment of this 

two-body fragmentation channel. 

Analogous to the two-body problem, a full scattering eigenstate 

l~á±)> of three distinguishable par~icles can be written as a 

multiple~scattering series (see Fig. 10) 

where we,Jeft out for silpplicity th151 three-body.e:t'!ergy. argu111ent E of 

the resolvent operators. Th~~state 1~0> desc;ibe~ ~hr~e fre~ 
particles. i.e. a plane-wave state. The subscripts 0 of the states 

1~0> and 1~0(±)> bere indicate the three-body fragmentation channel 

(compare with the index 1 used below for the other channel). The 

operators occurring in Eq. (19) and in the following, operate in the 

Hilbert space of three particles and are analogous to the two-body 

operators, introduced above. In Eq. (19) a pair interaction among pair 
40 i is denoted by vi (we use the spectator-index notation, i.e. 

i=l for instanee stands for particlès 2 and 3). 

We subsequently sum partlal ladders of V1 operators to t 1 
operators with the help of Eq. (17) (Fig. 9) and obtain 
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Fig. 11 Graphical representation of full three-particle scattering 

sta.te l>/1~±)) in tenns of sequentia! operations of 

two-particle scattering operators ti on the free 

three-particle state 1~0 >. see Eq. (20). 

+ + + 

+ + ... 

Fig. 12. Graphical representation of the three-particle scattering 

state l>/1~±)) in terms of sequentia! operations of 

two-particle scattering operators ti on the state 1~1 > for 

which pair 1 is bound (shaded pair) and partiele 1 free, 

see Eq. (21). 

(see Fig. 11). In order to make a comparison with the situation fora 

two-body fragmentation channel, we also present the corresponding 

equation and figure (see Fig. 12) for such a channel: 
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in which the index 1 indicates that pair 1 is bound. Note tha:t 

I+~±)) and 1_,.~±)) (and similarly 1_,.~±)) and 1_,.~±)>) are exact 

eigenstatas of the total three-body Hamiltonian and thus include all 

three-body correlations. 

In Eqs. (20) and (21) two subsequent t operators never operate on 

the same pair i. In addition, in Eq. (21) t 1 never operatas directly 

on 1~1 >. Eqs. (20) and (21) illustrate that a scattering event of 

three particles can be interpreted as a series of subsequent pair 

collisions. lf we insert the completeness relation in terms of H0 
eigenstatas between two subsequent t operators in Eqs. (20) and (21), 
we can associate a relativa momentum state with each set of three 

internal lines in Figs. lQ-12, add to such a set a G~±) "propagator" 

depending on the relativa momenta and integrate over the latter, as in 

the case of regular Feynman diagrams. Note that energies of 

intermediate states, i.e. their H0 eigenvalues, are in general 

different from E. This is somatimes interpreted as a vlolation of 

energy conservation in intermediate states·, which is then ascribed to 

the finite lifetime of such states. Thus the ti operators now induce 

transitions among plane-wave state~ with arbitrary two-body and 

three-body energy. In other words, the full off-shell t
1 

matrices are 

needed now. 

Eqs. (20) and (21) do not usually provide a practical scheme for 

calculating a three-particle scattering state. We now turn to a set of 

equations upon which such a practical scheme can be based: the Faddeev 

equations. To obtain them for the three-body fragmentation channel. we 

separate the series of Eq. (20) (Fig. 11) into four parts: 

3 

1".~±)> = 1~0> + 2 lx~>. 
i=l 

(22) 

The Faddeev components IX~> are defined as the collection of terms in 

Eq. (20) (Fig. 11), in which a t. operator is the "last" (i.e. 
l 

left-hand) operator of a given diagram. E.g. the Faddeev component 

lxi> is given by 
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·=s=···· 
Fig. 13. Faddeev component lx;> in terms of two-particle ti operators, 

see Eq. (23). 

+ 

Fig. 14. One of the three coupled Faddeeu equations, see Eq. (24). 

which is presented in Fig. 13. Eq. (23) can be rearranged as indicated 

in Eq. (24) (see Fig. 14). A similar procedure for the other 

components leads to Eqs. (25) and (26): 

(24) 

(25) 

(26) 
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The coupled equations (24), (25) and (26) are the Faddeev equations. 

For scattering of identical particles we have to symmetrize 

~~~±)>. To that end we replace the free state 1~0> in the above 

equations by a properly symmetrized state sl~o>· where sis the 

symmetrization operator (sum over six permutations without 

normalization constant). Furthermore, because of the fact that the 

particles are indistinguishable, the state veetors IX~> can be 

expressed into each other by a simple permutation of particles, i.e. 

lx~> and IX~> can be written as P12P23 1x~> and P13P23 1x~>. 
respectively. The operator Pij exchanges particles i and j. The set of 

coupled Faddeev equations then effectively reduces to one equation, 

which reads, leaving out the spectator index: 

(27) 

in which P=P12P23+P13P23 . Eq. (27) is our final equation and is 

rewritten in Chapters 4 and 5 together with Eq. (22) for purposes of 

numerical solution. 

It is clear that the evalua.tion of a three-body scattering 

wavefunction from Eq. (27) is much more complicated than the 

calculation of a two-atom state. It would therefore be very useful if 

an effective-range theory for three-particle scattering could be 

formulated in analogy to that for two-particle scattering. This has 

not been possible as yet. The diffi~ulty encountered, if one would 

like to derive a three-body effecti~e-range theory from a two-body 

'one, is the occurrence of the full off'-shell t matrix elements in 'the 

Faddeev equations, i.e. in intermediate states both the two-particle 

energy and the left-hand and right-hand momenta are not nessecarily 

smal!, even if the total energy E is low. 

IV THIS THESIS 

The contents of this thesis can be divided in three parts. The 

first part deals with three-body dipole recombination in the 2D H!t 
gas (Chapters 2 and 3). The second part treats the analogous bulk 

phenomenon (Chapters 4 and 5). The formulation of a two-body 
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low-energy scattering theory in arbitrary dimension n~2 is considered 

in the third part (Chapters 6-8). 

Each of the following chapters has been publisbed (Chapter 2: 

Ref. 43, Chapter 4: Ref. 44, Chapter 6: Ref. 45, Chapter 7: Ref. 46 

and Chapter 8: Ref. 47) or has been submitted for publication 

(Chapters 3 and 5). Within each of the three parts of this thesis the 

chapters are ordered according to their order of publication in the 

literature. As a possible drawback of this way of organization we 

point to the special role of the first half of Chapter 3. lt contains 

the general theory of recombination in a quanturn gas and as such has 

an introductory character: it may serve as a derivation of the 

expresslons for rate constants in terms of three-body collision 

quantities on which all chapters dealing with three-body recombination 

are based. We now turn to a summary of the three parts. 

Part A: Surface dtpole recombtna.Hon (Outpters 2 and 3) 

In Chapters 2 and 3 we calculate the rate constant for H+H+H 

surface recombination on the basis of the Kagan dipole mechanism. In 

Chapter 2 we discuss the principal results of this calculation. The 

ideas bebind the approach as well as the motivations for and 

implications of the approximations are more extensively studled in 

Chapter 3. 

For volume recombination it had earlier been found, 20 that the 

Kagan mechanism is not able to explain the slowly decreasing 

magnetie-field dependenee of the experimentally observed rate constant 

between 8=5 T and 8=10 T. In Chapters 2 and 3 we show that this 

conclusion also holds for surface dipole recombination. Furthermore, 

although the volume rate constants have the correct order of 

magnitude, it turns out that the surface rate constants are roughly an 

order of magnitude smaller than the observed values. 

This suggests that an additional mechanism might play a role, 

which dominatas over the Kagan dipole mechanism in the surface case, 

while it should lead to comparable contributions to the total rate 

constant for volume recombination, which change the rapid increase of 

the rate with B according to Kagan into a slowly decreasing one. 

Part B: Volume dipale recombina.tion (Chapters 4 and 5) 

In Chapter 4 we introduce the dipole-exchange mechanism. In order 
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INITIAL STATE FINAL STATE 

Ftg. 15. Etectron-sptn projecttons of atoms durtng subsequent steps tn 

the dtpoLe-exchange mechantsm (doubte-sptn-FLtp process). 

to get an idea about the importance of this mechanism and about the 

magnetie-field dependenee of its contribution to the total rate 

constant, we estimate this contribution for the easier case of volume 

recombina ti on. 

The essential idea of the dipole-exchange mechanism canbe 

summarized as follows. In the Kaganlpicture the pair of atoms 

interacting via the dipole interaction cannot form a molecular state. 

If, however, one of the atoms of this pair exchanges lts spin state 

with the third atom, the dipole-interacting pair does acquire a 

singlet component and therefore may recombine (see Fig. 15). The 

exchange of electron spin states can take place through the exchange 

part Vexch of the central interatomie interaction (8). This is 

relatively strong so that a two-step process of this type does not 

necessarily have a much lower probability than Kagan's single-step 

process. 

Simple calculations based on this new mechanism are presented in 

Chapter 4 and lead to volume rate constants, which show the correct 

tendency as a function of magnetic field. The absolute magnitude of 

the rate, however, is difficult to estimate with a simple approach. 
! 

Therefore, we turn to a more exact determination of the volume 

rate constant. This is started in the second half of Chapter 4 and 

continued in Chapter 5. Ideally, one would. like to carry out a 

calculation which is rigorous, except for the treatment of the 

electronic magnetic-dipole interaction as a first-order perturbation, 

which is undoubtedly an excellent approximation. This would imply the 

evaluation of a matri~ element of tbe dipole interaction between an 
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initia! state of the type ~~~+)) and a final state of the type l~i-)>. 
in both of which the central (singlet/triplet) interaction is included 

exactly. Within the frameworkof this thesis an important part of this 

task has been realized: the initia! b+b+b collision wavefunction has 

been calculated rigorously by means of the identical-particle Faddeev 

equation (27). The final atom +molecule collision wavefunction, which 

is replaced by a free atom + molecule state by Kagan, is still treated 

approximately: the interaction of the final atom with the atoms of the 

molecule is taken into account in such a way that the molecule can 

undergo all changes of internal state except for break-up. This 

implies that only the vdirect term in Eq. (8) contributes. The 

contribution of the V h part vanishes automatically, so that an exc 
exchange of electron-spin states as in Fig. 15, i.e. the 

dipole-exchange mechanism, is not included. 

The final results of this calculation are still in disagreement 

with experiment for fields B~lO T. Since the calculation is complete 

except for the dipole-exchange mechanism, we are able to conclude 

finally that indeed the dipole-exchange mechanism is responsible for 

the remalnlng dlscrepancies. 

This might be an approprlate place to mention for completeness 

that at the moment of completion of this thesis, our Eindhoven group 

is extending calculations to stronger fields 8)10 T. 

Part C: Low-energy s~ttertng (Chapters 6, 7 and 8) 

We then turn to the formulation of a low-energy parametrization 

of the two-particle phase shifts (and wavefunctions) in two and three 

dimensions, which is of major importance for the description of the 

decay kinatics of atomie hydrogen. In particular, this subject is 

relevant for part A where it is used to split off the temperature 

dependenee of the 20 scattering wavefunction of three polarized atoms. 

Verhaar at a1. 36 already demonstrated the usefulness of an 

effective-range theory for scattering in a plane in analogy with the 

well-known concept for three dimensions. However, this approach was 

limited in the first instanee to potantials which vanish exactly 

beyond a finite range. This restrietion is relaxed in Chapter 6. In 

addition we show that the 2D formalism is not an ad-hoc varlation on 

the 30 scheme: both the 2D and 3D verslons are special cases of an 
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elegant general effective-range theory in dimension n~2. Also, a 

Coulomb-type interaction ;/r may be included, 1 being the strength 

parameter of the Coulomb interactiqn. The basis for the approach is 

formed by the interpretation of the parameters in the expansion for 

cot15(k) as "equivalent hard-spbere radii", with values such as to lead 

to the same energy dependenee in the respective orders as for the 

actual potential. Thus, the value of an arbitrary effective-range 

parameter reduces to R for scattering by a hard spere of radius R. We 

prove that the parameters behave smoothly as a function of 1 and n, in 

contrast to these of an alternative approach introduced by Bollé et 
al.48 

Chapters 7 and 8 contain a further foundation of the formalism, 

for neutràl-particle scattering (ï=O) and collislons of charged 

particles (ï~). respectively. In these chapters we present conditions 

for the asymptotic behavier of the potential, which are sufficient for 

the formalism to be applicable. We find a smooth dependenee of the 

scattering length a and effective range re on n and i· This is 

compared with the (dimensional and continuity) problems of the 

scattering length defined by Bollé et al. for n~ and 1~ (n=2). As 

an example we consider a square-wel! potentlal for ;=0 in Chapter 7. 

In Chapter 8 we further discues the problem of how to take into 

account the.effect of charges on the value of the neutral scattering 

length. 
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CHAPTER 2 

VOLVME 53, ·· NUMBER 20 PHYSICAL REVIEW LETTERS 12 NOVEMBER 1984 

Surface Tbree•Body Recombination in Spin·Polarized Atomie Hydrogen 

L. P. H. de Goey, J. P.J. Driessen, and B. J. Verhaar 
Department o/Physit:s, Eindhoven Vnivenizy o/Ter:hno/ofiY, 

56()().MB Eindhoven,. The Netherlands 

J. T. M. Walraven 
Naruurkundig IAboratoriu/n der Universiteit van Amsterdam, 

1018-XE Amsterdam, The Netherlands 
(Rec:elved 12111ly 198-C) 

We calculate the surface dipolar recombination rate L, for spin·polarized h)'drosen ad· 
sorbed on 'He surf a~ at temperatures in tbc 0.2• to 0.6-K regime and for masnetic r~elds up 
to 30 T. For a magnelic field of 7.6 .T normal to the surface and 0.4 K we find 
L,-1.3(3}x l0-21 cm4 s-1 increasins by 10%/T in tbc ranse of experimental interest. The 
anisotropy with the direction of the magnetk: field is considerably smaller tban in the case of 
the surface dipolar relaxation. 

PACS numbers: 67.40.Fd, 67.70.+n. 6UO.Jy 

The recent observation1 of three·body phenome· less than that of the two-body surface dipolar relax· 
na in high·density spin-polarized hydrogen (H I ) ation. 7 This feature is in comrnon with a very re· 
bas focused considerable attention on a very in· cent experimental analysis. of the surface rates by 
teresting elass of thresholdless recombination Bell et al. 8 · but seems to. contradiet earlier low· 
processes, lirst described by Kagan, Vartanyants, tempersture results obtained by Sprik et aL 6 using 
and Shlyapnikov.2 Detailed understandlng of these "3He .surfaces. We point out that in parlicular the 
processes is of vital importance for H J research as large difference in absolute value indicates that the 
they appear to limit the highest densities that may existing discrepam:y4 between theory and experi· 
be achieved e)tperimentally. In a recent publication mentally observed decay rates remains unresólved. 
Hess and co-workersl pointed out that effects previ- We.also calc:ulated the bulk dipolar recombination 
ously attributed to an anomalously large surface process and find a rate which at 10 T is in agree· 
two-body nuclear relaxation rate• could be account· ment with results obtained by Kagan, Vartanyants, . 
ed for by a surface analog of the Kagan process. In and Shlyapnikov,2 althougil our field dependenee is 
their analysis the surface rate was estimated by a slightly weaker. Our \'lllue is L1 • 8.5 x 10-39 cm6 

sealingargument takenfrom Ref. 2. s-1 (B.-10 Tand T- 0). 
We took up this interestins sugestion and At low temperatures ( T S 1 K) the available 

present here the first detailed caladation of the number of recoQ'lbination channels for a system of 
three·body surface recombination ·rate L,. We H atoms is vastly reduced. Resonance recombina· 
analyze the nature of the Kagan dipole mechànism tion, dominant at room temperature, may be ex· 
and discuss the differenc:es between recombination cluded entirely as the enerales ofthe resonanèes are 
on. a 4He surface and in the bulk. We find that the too elevated to permit thermal population.9 The 
sealing argument, which results from a model in first description of a I()W·temperature recombina· 
which the relative motion of the H atoms on the tion mechanism for H was given by Greben, Tho-
surface is assumed to be identical to that in the mas, and Berlinsky.' This exehange·recombination 
volume, is not supported by detailed theory. lt process requires a c:ollision between a pair of H 
leads to an overestimate of the surface rate by an atoms. with singlet character in their initial state. A 
order of magnitude. We calculate L,-1.3(3) third body is requlred to conserve energy and 
x 1 o-lS cm4 s- 1 for a magnetic field B -1.6 T nor· momenturn in the process. Besides H other atorns 
malto the surface and temperature T-0.4 K, to be or surfaces may be effective as third body. One of 
compared2 with an experimental vatue L, -2.0(6) the most fascinating features of the H I system is 
x 10-24 cm• s-i obtained3 at the sa me lield. In the that the above mechanism implies (in combination 
range of experimental interest our results show an with slow magnetic relaxation in high fielcis) pre· 
increase of the rate of recombination with growing ferential rec:ombination and depletion of the 
fJeld although this trend is weaker than theory "mixed" a state (a, b, c, and d are the hyperfine 
predias for the bulk process. Experiments show a states in order of increasing energy). This process 
deercasins behavior for growing f~elds.3.S· 6 The an· results in a gas of atorns in the "pure" b state, 
Jsotropy of the Kagan mechanism is found to be double-polarized hydrogen (H I t) in which both 
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electron and proton spins are polarized. 
The Kagen process is the only recombination 

mechanism presenled in the literature which may 
limit the stabilily of H 1 t. This process involves 
a combined relaxation-recombination mechanism 
which is thresholdless and in which the dipolar in· 
teraction between the electronic spins of the b -state 
atoms causes the spin flip required for recombina· 
tlon. We distinguish between single· and double~ 
spin-flip processes and will show that the double-

. spin·flip process is dominant at low lields, whereas 
it may be suppressed entirely by application of a 
field B ~ 24 T. 

lf we di vide the triple of atoms in a bbb incoming 
state into a recombining pair (atoms l and 2) and a 
third body (atom 3), we note that one may neglect 
the electronic dipolar interaction between the atoms 
1 and 2 as this interaction cannot eau se triplet· 
singlet transitions. In principle the electronic
nuclear dipolar interaction may do so, but this pro
cess is believed to be much weaker. As a result 
only the diff erenee in magnetic field experienced by 
the recombining atoms due to the third atom is ef· 
feÇtive in the recombination process. This causes 
the remarkebie feature that even in the presence of 
an abundance of third bodies provided by the He 
surface a third H atom is required. In principle the 
interaction with a magnetic surface impurity may be 
present and may cause a similar process with a 
second-order character. 

We write the transition amplitude I for recom· 
bi nation of atoms I and 2 as 

l.mH 
I--1 - 2 (+,1Vf,+V!JIIP•IIt>. m 

211N I' 

Here, mH is the mass of the hydrogen a torn, . va 
represents the dipolar interaction between atoms I 
and }, while the initia! state IPtll 1 is a symmetrlzed 
three•atom bbb state, P being a permulation opera· 
tor. Following Kagan we approximate the initia! 
state by only taking into account the spatial correla· 
tions between the atoms of the recombining pair 
and between the atoms interacting via the dipolar 
intetaction. For instance, for the 13 term the initia! 
state is written as 

oll1 - cf>o(zl }cfJo(z2)cf>o(z,ltlll;1fPnlofllë1Ii>ull bbb). 

(2) 

For each of the atoms we use a bound-state wave 
function4 cf>o(z)- z exp(- az). Fora- 0.2ao- 1• c/>o 
resembles the bound·state wave function in a 
Stwalley-type potenlial reproducing the experimen· 
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tal adsorption energy,4 white for a-0.1Sa0-
1 it 

resembles the Mantz and Edwards wave funÇtion.U' 
The error· bar for our L, value correaponds with 
these values for a. In Eq. (2) 1/Jy describes the re
lative motion of a pair of H atoms along the surface 
distorled by the triplet interaction averaged over the 
z motion ("2t·dimensional" m~el4) and no.rmal· 
ized with plane·wave pan exp( ik· j)). Here k and 
p are two-dimensional momenturn and position 
vectors. The final state of~ 1 is assumed to be identi· 
cal to that used by Kagan in the volume case, but 
expressed in cylindrical coordinates: the product of 
a final spin state u 1- + t or - t of atom 3, a 
plane wave with three·dimensional momenturn 
liq1(B,v,J,u1) for the motion of this atom relative 

• to atoms 12, and a 12 molecular singlet state with 
vibrational and rotallonat quanturn numbers vjm~ 
In view of the rather high H+H2 relative kinetic 
energy we neglect completely the influence of the 
helium surface on the linal state, which at the same 
time reduces the expressions to a form manageable 
numerically. With this approximation we neglect a 
reduction of the available tinal-state phase space 
and a possible energy transfer to the center-of·mass 
motion or to the helium. These effects are estimat· 
ed to be small. 

We note that onty onho (J • odd) final states are 
allowed, as the proton spins are unaffeÇted by the 
process. Funhermore, we note that in the matrix 
element of Eq. (I) the spatlal intergration is over 
relative coordinates. The essential difference from 
the volume case is the Jack of translational invari· 

. ance in the z direction, which èauses the .result to 
· depend on the center-of~mass coordinate Zin this 
direction. The. recombination rate is obtained by 
summing 1/12 over final states, inlegrating overZ, 
and thermal averagint over initia! momenta along 
the surface: · 

L,- I (: ql J dZ J dq/~Jm<r }"Q,,Z) li~-· 
•Jmv1 mH 

(3) 

Notlee that in two dimensions a T- 0 approxima· 
! tion cannot be made. Inslead we use a low-energy 

logarithmic k12,ku dependenee of lfollowing from 
two-dimensional effective·range theory ,11 using the 
value 2.3o0 for the scattering length. It is appropri· 
a te to point out bere that the same logarithmic char· 
acter of I probably contributes to the failure of the 
above·mentioned sealing argument. 

To evaJute L, we reexpress the spin wave func· 
tions using the surface normal as the new quantiza· 
tlon axis. lf we represent the transfer of angular 
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momenturn from the spin system 10 lhe orbital system along this axis by jJif, we lind an expression for L, as 
an incoherentsumover p.: 

where the dfunctions are reduced Wigner functions 
and 6 is the angle between B and the surface nor· 
mal. We note ihat the double-spin-flip contribu· 
tion tends to dominate over the single-spin-flip one 
because of the relation 

For the dominant slales v-14, i""J and J-1 
(all other molecular stales contribute at a negligible 
level), and various lp.l and lml combinations, we 
calculated the behavier of 1!12 as a function of z 
and of the projection q111 of q1 along the surface. 
For q1u- q/ all 1!12 surfaces show a streng de· 
crease. Physically this is due to the absence of high 
relative momenta along the surface in the initia! 
state. Essentially this is the same feature which 
gives rise to the strong B dependenee of volume 
recombination. Because this argument applies in 
the surface case only for two coordinate directions 
instead of three, the B dependenee of L, is weaker 

~ 0.2 
~--
~ 

;t 
'$2 

" ... 0.1 

B(Teslal 

FIG. l. Coefficlents A. •l:A,., of Legendre p<>lyno· 
mials describing the surface recombination rate L, for 
a•0.2a; 1 at T•0.4 Kas a function of magnitude and 
direction of magnet ie field (solid curves). The coefficient 
A. isomilled (magnitude < 0.0!4x to- 2• cm• s-t). The 
brok en curves represem single-spin-Oip conuibutions. 

(4) 

than that of L1• In Fig. 1 we show the functions 
A."(B) for T-0.4 K. The coeffieients A0.,. 

represent the recombination rate averaged over the 
direction of B. The coefficients A 2 .. and A..., ex· 
press the anisotropy as a function of the field direc· 
tion. The A4 coeffidents are negligibly small. 
whereas the A 2 are small for the single-spin-flip 
con tribution ( o-1• - +) and at most half the A 0 
value forthe double-spin-flip process (u1 • + t ). 

Although the absence of a streng anisotropy is in 
common with experimental indications,8 both the B 
dependenee and the absolute magnitude of L, seem 
to be at varianee with the experimental data, 
although it would be desirabie to extend the mea· 
surements to the double-spin-flip cutoff at 24 T. 
The extreme sharpness of thè bends at this cutoff is 
due to the above-mentioned low·energy approxima· 
tion and is similar to the behavier in the volume 
T- 0 limit. We find a rate which is growing by 
70% from B • 4 to 9 T, whereas 1he experiments 
show a decrease by about the same amount. For 
6•0 we calculate L,-1.3(3)xlO-l5 cm' s-1 at 
B- 7.6 T. Experimentally a larger value will be ob· 
servèd because of the large probability for the c 
atom, originating from the double spin-flip process, 
to recombine in a subsequent collision.8 Tbis im· 
plies that the experimental value given by Hess and 
co·workers3 has 10 be scaled down by approximately 
a factor 2x0.87, where 0.87 is the double spin·flip 
fraction. This leads to L,-1.1 (4} x 10-24 cm• s-t. 
An angular average reduces our theoretica! L, value 
by 25%. The calculated values show an increase by 
roughly a factor of 2 in the tempera1ure range 
0.2-0.6 K. 

We stress that 10 evaluate the surface dipolar 
recombination process rather substantial approxi· 
mations had to be imposed. Hence, our preser.t 
results do not provide the same level of accuracy as 
the results for surface dipolar relaxation. However, 
we are convineed that relinements of tbe theory are 
unlikely to resolve the large discrepancy with exper· 
i ment. 

We would like 10 thank Joop van den Eijnde for 
his contributions to this work. One of the authors 
U.T.M.W.). wishes to thank the University of 
Grenoble for hospitality during the preparatien of 
the manuscript. 
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CHAPTER 3 

SURFACE THREE-BODY RECXIMBINATION IN SPIN-POLARIZED ATOMIC HYDROGEN 
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Department of Physics, Eindhoven Univarsity of Technology, 
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ABSTRACT 

We study the theory of exchange and dipole recombination in H!. 

starting from a) three-body scattering theory, b) a quanturn Boltzmann 

equation. On the basis of this we determine the rate of surface dlpole 

recombination for doubly-polarized hydrogen atoms adsorbed on a 4He 

film. The calculation is based on the Kagan mechanism adapted to a 2*0 

initia! state. We find a rate constant Leff= 2.7(7)x10-2S cm4sec-l at 
s 

8=7.6 T and T=0.4 K. which is roughly a factor of 6 smaller than the 

experimental results. The magnetie-field dependenee also disagrees 

with experiment. A sealing approach, although leading to the correct 

order of magnitude, is discussed and shown to be unsatisfactory. The 

reliability of some of our approximations is estim~ted. We conclude 

that the dipole-exchange mechanism is probably responsible for the 

discrepancies with experiment. 
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I • INTRODUeT I ON 

1 Since the ploneering work of London in the early sixties, the 

phenomena of superconductivi ty in metals and superfluidi ty in llquid 

~e are believed to be manifestations of quanturn meebanles on a 

macroscopie scale. Since then superfluidity bas been observed in 

liquid 3He and in the lower part of the energy spectrum of atomie 

nuclei. It is also believed to play a role in neutron stars. The 

prospect of observing quanturn phenomena on a macroscopie scale in 

electron-spin polarized atomie hydrogen Hl bas strongly stimulated the 

investigation of such a gas at low temperatures (T=SO mK-1 K) in 

liquid-helium-covered sample cells. 2 •3 Compared with the 

above-mentioned systems, an attractive feature of Hl is the 

possibility to observe Bose-Einstein condensation in a wide range of 

controllable circurnstances of temperature and density. This feature is 

related to the fact that Hl is expected to remain in gaseous form even 

for T-1(), which should in addition facilitate a "first-principles" 

interpretation of the observed phenomena. Up to now the decay of the 

gas into H2 molecules bas been the major obstacle to reach the 

density-temperature regime of interest. 

Polarizing the electon spins in a strong magnetic field (~10 T) 
16 17 -3 strongly reduces the decay and densities in the range ~=10 -10 cm 

were achieved. The next step towards Bose-Einstein condensation was 

the creation of a doubly polarized Hlt gas, where both the electron 

and proton spins are polarized. The double polarization is achieved by 

the spontaneous selective recombination4 of the hyperfine a-state 

population as a result of the small admixture of the anti-parallel 

electron-spin state (The ls hyperfine levels .of atomie H are as 

usually labeled a,b,c,d in order of increasing energy). 

The first experiments based on this mechanism still showed a slow 

decay, which was interpreted for low temperatures in terms of ~ 

surface relaxation, studled theoretically in Refs. 5-9, foliowed by 

rapid recombination. In Ref. 8 it was first pointed out that this 

interpretation led to a discrepancy of order 50 between expertmental 

and theoretica! values for the ~ surface relaxation constant C . s 
Many attempts were made to resolve this discrepancy, in particular via 

a three-dimensional calculation of the collision of adsorbed atoms9 
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and a possible role of surface dimers. 9 •10 

Further experimental progress took place by compression2•3 of H!t 

to densities up to 4.5xto18 cm-3• This is to be compared with the 

critica! density for the transition to the Bose-Einstein condensed 

phase, predicted at nc=(~ksTc/3.31&2}3/2 ~ 1.6x1019 cm-3 for an !deal 

gas at Tc = 100 mK. The main obstacle to achieving higher densities 

nów turned out to be a process of magnet!c-dipole induced 

recombination in a three-body collision of b atoms, first described by 

Kagan, Vartan'yants, and Shlyapnikov. 11 Hesset a1. 12 first notleed 

that this same process taking place at the surface could have been 

responsible for the apparent discrepancy at Iower densities. A 
reanalysis of previous experiments and a new experiment by Reynolds et 

13 al. confirmed this and showed G to agree with theory taking into 
s 

account the roughness of the cell walls. 

With respect to the three-body rate constant L the situation is 

less satisfactory. For the bulk constant the magnitude is roughly in 

agreement with Kagan's calculation for B=7.S T. The field dependance, 

however, shows a disagreement. At the temperatures relevant for 

achieving Bose-Einstein condensation, the Kagan process takes place 

primarily at the surface. The present paper deals with the theory of 

this surface process. The main results were publisbed earlier as a 

short report14 (further referred to as I). 

The decay of H!t through the three-body channel is described by 

an additional ~ term in the rate equation 

~ . ~eff 2 Leff 3 
dt =-u ~- ~· (1) 

Like the two-body relaxation constant, Leff is the sum of bulk and 

surface contributions 

(2) 

Here, A/V is the surface to volume ratio, À the thermal de Broglie 

wavelength and e0 the adsorption energy. lt should be noted that the 

effective rate constants include a subsequent recombination of the 

final H atom in case lts electron spin is flipped: 
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Leff = L~ + 2L+K ' 
g,s g,s g,s 

the superscripts ~ standing for the spin projection of this atom 

along if. The constà.nts L -~ and L +IA, denote the pure single- and g,s g,s 
double-spin-flip contributtons to the effective rata constants. In 

this paper we shall somatimes consi~er the rate constants 

(3} 

(4) 

reprasenting the pure b+b+b ~H2+H recombination.decay. For comparison 

with experiment, however. we present results of the separate 

contributtons L~. as wellas the total effective surface rate s 
constant. A welght factor close to 2 for the double-spin-flip 

contribution has been considered in saveral experlmental papers. 

Results to be presented hare allow the derivatlon of L:ff for weight 

factors close to 2. 

In this paper we reexamine the results of I with respect to the 
eff surface rata constant Ls . Throughout this paper we approximate the 

helium film as an inert surface, the effect of which on an H atom is 

represented by a potentlal well V(z). In Sec. 11 we study the theory 

of recombination starting from three-body scattering theory. In view 

of the subtieties with respect to identical-particle aspects which 
5-9 have played a role in similar aarlier two-body treatments, it is 

useful to supplement this approach by a formalism in which the 

many"'body,,and. the, ldentlcal"-particlljlaspects, .. are. taken into. account 

from. the beginning. This is done in Sec. III on the basis of a quanturn 

Boltzmann equation. In Sec. IV we .specialize the previous general 

theory to dipale recombination. In Sec. V we review our metbod to 

calculate L~. In Sec. VI we describe our results. It turns out that 
s 

they show soma difference with I, primarily.by the use of an H-H 
singlet potential, descrihing more accurately the H-H binding energy 

data. A major discrepancy still exists with experimental data, both 

with respect to absolute magnitude and field dependance. Furthermore, 

we add to I a set of intermediate results which land themselves to 

physical interpretation. In Sec. VIt we confront our metbod with the 
15 sealing procedure, described by Kagan et al. We show that the 

sealing metbod is unsatisfactory, a~though the results do agree 
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roughly with experiment (as to magnitude, not to field dependance) and 
eff although it enables one to obtain an L value without cumhersome s 

calculations. One of our model assumptions in Secs. V and VI is the 

complete neglect of 'the influence of the helium surface on the final 

H2+H state. In I we already pointed out briefly that some of the 

effects which arise wben this assumption is relaxed, are estlmated to 

be small. In Sec. VIII we describe how the estimate is carried out and 

present lts results. Some conclusions of the present paper are given 

in Sec. IX. 

11. THREE-BODY COLLISION THEORY 

In this and in the following sections we present a treatment of 

three-body recombination which applies to recombination in a 3D as 

well as in a 20 gas. Our starting point in the present sectien is the 

recombination probability per second for a system of three H atoms, 

after which we make the step to calculating the rate dN~dt due to 

formation of H2 molecules in a gas of H atoms. 

The system of three H atoms, in the first instanee to be treated 

as distinguishable particles, is in a normalized state l~(t)>. 

evolvlng under the lnfluence of the interatomie interactions from some 

"free" wave packet 

1~0(t)> = l Jdp dq f(pqa) I'Peia> e-iEpcrat/h (5) 

a 

-Here, pq is a combination of 3D or 20 Jacobi relative momenturn 

vectors, 16 depending on whether the initia! state consistsof bulkor 

adsorbed particles. The label a represents additional spin 

information, needed to specify the "free" eigenstates. In the 2D case 

it also speelfles the bound state ~0(z) of each H atom in tbe 

potentlal well at the wall. For the sake of definiteness we choose 
~ ~ p to be the momenturn of atom 1 relativa to atom 2, while q is the 

momenturn of atom 3 relativa to the center of mass of atoms 1 and 2. 

The states I'Peia> are eigenstatas with elgenvalue Epqa of 
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(6) 

i.e. the Hamiltonian with interatomie interactions omitted (in the 2D 

case lt still includes the interaction w!th the inert wall), and are 

normallzed accord!ng to 

... ... 1-++ ... ... ... -+ (p'q'a' pqa) = ö(p'-p) ö(q'-q) öa•a· (7) 

The wave packet 1~0(t)) is taken to have spatial diroenslons small 

relatlve to ~. ~d being the macroséop!c area (d = 2) or volume (d = 
3) available to the atoms. 

The wave packets 1~0(-r)> and 1~(-r)> are assumed to be identical 

for times -T with 

2-(T(!_ 
v v' (B) 

where o characterizes the range of the interatomie interaction and v 

is a typical atomie velocity. Then 

(9) 

The condition T < ~v is imposed to avoid the necessity of taking into 

account the boundary of the area or volume ~d in the scattering 

process. 
16 . 

As in the usual treatment we now rewrite tbe T-"limit~· in'i>.Eq. 

(9) as an e.-"limit": 

0 
-iHTifl iH0T/n 1-++) e. J dt' e.t'/l't 1Ht'lfl -1H0t'lfl l-++pq~) e e pqa = [ e e e ~ 

(10) 

= E-++ +~: -H l~a> • 
pqa 

in which e. is chosen sucb tbat 

o n ~ -(T(-(-. 
V é V 

(11) 



The validity of the first equality in Eq. (10} can be understood by 

separating the integration interval in parts ) and ( -r. 

Mathematically the conditions (11) express the proper order of taking 

limits. That ë does not strictly go to zero is essential for one of 

the following steps in the derivation. From Eqs. (5), (9) and (10) we 

have 

1~(0)> = l Jdp d~ f(pqa) l~(+)(pqa)>, (12) 

a 

in which 

(13) 

tends in the limit ë~ to an eigenstate of H satisfying outgoing-wave 

scattering conditions with the same eigenvalue Epqa and 0 is a 

three-body ~ller wave operator. 

We now consider the total transition probability to a subspace of 

stationary states l~fn> of a Hamiltonian H3 obtained from H by 

subtracting the sum of the interactions of atom 3 with atoms 1 and 2: 

~ = H- vl. (14) 

The label n denotes a particular molecular state of atoms 1 and 2, 
-+ while qf is a momenturn of atom 3 relative to the molecular center of 

mass. In the case of surface recombination we neglect for phase-space 

reasons the possibility that a final atom is again adsorbed to the 

surface. The final state l~fn> then represents a state where a 

molecule and an atom without mutual interaction collide with the inert 
-+ wall. The vector qf therefore stands in this case for the 

three-dimensional relative momenturn of atom and molecule as they 

impinga on the wal!, as wel! as their total momenturn component 

Pz relative to the surface. In principle the notation l~fn> should 

include an additional quanturn number m . For simpilcity this is 
s3 

omitted. 

The transition probability Pn(t) is given by 
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in which 

I 0 I-+ -iE-+ tl'fl 
~ (t)> = qfn) e qfn , 

qfn 

(15) 

(16) 

E-+ bei~g the corresponding eigenvalue of H_, The inner product in qfn ··3 
Eq. (15) can be written as 

As explained below, we also need the time derivative of this equation. 

Using Eq. (14) this can be expressed in a similar matrix element as in 

Eq. (17), but now containing an additional operator vl. 
We subsequently rewrite Eq. (17) with the help of Eq. (13). 

exchanging 0 with the exponentlal and using the Lippmann-Schwinger 

equation 

ie. ie + 1 y3 ie. . ( lB) 
E- +ie. - H = E- +ie - H3 E- +iE. .._ H3 E-. +iE. - W pqa; pqcx pqcx: . pqa; 

We omit the first term in the right~hand side anticipating the 

e.-}Jmit. We then fip.d an ~pre~!J~On as,.J::q. (ti). which .. c:ontaills not. 
'<'(~,~-,;-_· -;_<:-··,·>·-_-_· +.-t~·\.3·--- :---',_,è'> · -"·---·-<:+~.", ..•. ~::~<.'·._.--,_-.·---· · · • ··_··=:·· /~-::,·:-··f!'":.,··:\c.'*"~:'-·~-'-."/-_::r:::·,_'<·-- .'!. 

only an additional V operator but lillso an energy denominator 

(E- +ie. - E-+ )-1. 
pqcx qfn 

Actually, in conneetion with t~e .recombination rate we are not 

interested in P (t) for a single wave packet, but in the transition 
n 

probability per unit time 

(19) 

where the brackets stand for an average over an ensemble of wave 

packets, thus simulating the situation of the three H atoms in a 2D or 

30 gas. Through the averaging process <Pn(t)> becomes a linear 

function of t and therefore w a constant. 
n 
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We thus obtain an expression for w containing the 3-body density n 
matrix: 

(20) 

In the third member we have carried out a Wigner transformation. 17 

Furthermore, we introduced the notation 

-t IL(-t' -t) pi = 7Z p + p • (21) 

We assume the system to be homogeneous, so that the Wigner 

distribution function F is independent of l and R. For a 

non-degenerata gas F is taken to be a Maxwell-Boltzmann distribution 

in momenta, diagonal in a' and a, and normalized according to 

(22) 

a 

. -+ -+ 
As Eq. (20) shows, the widths Ap and !q of p as a function of p'- p 

-+ -+ and q'- q, respectively, are of order~. We apply this in working 

out the expression for wn: 

-+-+ -++ Because of Eq. (11), the arguments p'q' and pq may be replaced by 
. -+-+ -+ -+ -+ -+ 

their average values piqi in all factors except for p. The p'-p, q'-q 

integrals can then be evaluated by means of Eq. (20). We may 

subsequently take the limit~ -+0, with the associated replacement of 
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(24) 

Eq. (24) is our final result for three distinguishable particles. 

In the next step we include the identical-particle aspect. This 

may be done by replacing in Eq. (15) the wave packet l~(t)> by a 

symmetrized state: 

~ ~ p l~(t)). 
p 

(25) 

Note that for large negative t the six wave packets in this sum do not 

overlap, so that the resulting state is properly normalized. In 

addition we sum the right-hand side of Eq. (15) over the three 

identities of the final free atom. We thus end up with 

(26) 

Finally, we consider a gas of NH atoms with 

rNH] _ ~ 
L3 - s 

triples. We thus have as a final result: 

(27) 

i.e. the rate equation for recombination: 
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with ~ the 2D or 30 density and the rate constant 

(28) 

II I. QUANTUM BOLTZMANN EQUATION 

As motivated in Sec. I we now include the many-body and 

identical-particle aspects from the beginning in the form of the 

second-quantization formalism. 

We enclose a system of NH atoms in a square (cube) with volume ~d 
on the faces of which we impose periodic boundary conditions. At the 

end we take the limit~~~. The starting point is the BBCKY 
18-20 equation for the two-particle distribution matrix 

in which we have introduced the molecular-chaos assumption in the 

right-hand side, neglecting the presence of initia! correlations in 

the form of molecules, because any produced molecule disappears 

rapidly fr.om the gas. The symbol o3 stands for the three-particle 

M$!11ler operator, introducing the atomie interactions in the "free" 

three-particle state. Furthermore, ~ is the full k-particle 

Hamiltonian and 

v3 = V(l,3) + V(2,3). (30) 

Note that ~ and 03 were denoted as H and n in the previous section. 

The curly-bracket factor stands for the sum over three-particle 

permutatlons: 

{F1(1)F1(2)F1(3)} = l F1(Pl)F1(P2.)F
1

(P3). 
p 

(31) 
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The trace Tr in Eq. (29) stands for a sum over momenturn and spin 

states for partiele 3. In Eq. (29) ·ik is normalized according to 

k N! 
Tr F = (N-k)!. 

l .. k 
(32) 

We use Eq. (29) to calculate the ràte of formation of H2 molecules for 

the pure recombination process: 

(33) 

in which pN is the N-particle density matrix, g (i,j) is the n 
projection operator on a specific bound state of H-atoms i and j, and 

g5 is the projection operator on the symmetrie part of N-particle 

Hilbert space. Note that the Tr-operations include all, not 

necessarily symmetrie, N- and 2-particle states, although the 

formalism takes correctly into account the identical-particle aspects. 

We now substitute the time derivativè using Eq. (29). The 

commutator [H2.F2] does not contribute, since [~,g ] = 0. In the 
n 

contribution from the other commutator we introduce the three-particle 
16 transition operator t'.rom the fr:ee st~te (s.Hl::lscript 0). t() the 

molecular state with partiele 3 frèe (subscript 3): 

u3o = l gn(1,2) v3o3. 
n 

We thus find 

with 
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L = -~ d Tr (u30{r1(1)F1(2)F1(3)}o3tl !9in(l,2) 
~ ~ 123 n 

- l !9'n(l,2)g3{F1(t)F1(2)F1(3)}u30t]. 
(36) 

n 

Furthermore, we insert on both sides of the F product the completeness 

relation in terms of unsymmetrized free three-particle states. We 

assume F1 to have the Maxwell-Boltzmann form, diagonal in momenturn and 

spin state. Splitting off a center-of-mass factor, we have 

Here. Faa and Fcm are normalized according to 

l )_. Faa(piqi) = (~]2d. 
a piqi 

l Fcm(P) = 1. 

p 

(37) 

(38) 

The three-particle trace in Eq. (36) is written as a sum over P, n and 
-+ 3 qf in view of the operator !9'n. Using the fact that u30, 0 and!9'n(l,2) 

operaté only on relative degrees of freedom, we carry out the 

summatien over P and use 

We now take the limit~-+~. making the replacements: 

(39) 

(-40) 

for each of the momenta. In the second substitution of (-40) we replace 
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a momenturn state normalized over the cube (square) py one with Dirac 

normalization. The final result 

n a 

I <ëffn 1°30 lp IPi<îia> 1
2 

p 

is easily seen, using Eq. (3-4), to be identical with the result of 

Sec. II. 

IV. DIPOLE RECOMBINATION 

(-41) 

In the previous sections we derived general expresdons for L, 

applying to both bulk and surface recombinat!on, and to exchange as 

well as dipole recombination. We now derive more special expressions. 

Starting with L in the 30 case we eliminate the energy 
g 

conserving 6-function by carrylng out the integration over 

1-+ "' -+ -+ qfj, ending up with an angular integral over qf = qf/jqfl: 

(42) 

with the recombination amplitude 

(43) 

qf being determined by energy conservation. 

Continuing with the surface r~te constant, we now split off from 
-+ 
qf the implicit total center-of-ma$s momenturn Pz• obtaining 

with 
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(45) 

We stress that the final state lqfPzn> contains in principle the full 

influence of the (inert) wall, both for the atom and for the molecule. 

The previous derivations of expresslons for L contain exact 

three-particle colliston matrix elements. These form a suitable 

starting point for recombination processes which can take place via 

the st.rong central (singlet + triplet) interaction, such as a + a + b 

recombination. For the class of dipole recombination processes, with 

changing total spin projection (AMF ~ 0), the magnetlc-dipole 

interaction is essential as a non-central interaction to transfer 

angular momentum from orbital to spin degrees of freedom. The relative 

weakness of this interaction enables us to approximate the exact 

three-particle transition amplitude f to first order in the dipole 

interaction. Neglecting the very small energy shift of the final 

singlet state to first order in the dipole interaction, which is in 

principle induced by the hyperfine interaction, it is easy to write 

down the first-order part of the .f3 matrix element inf. We separate 

.f3 and the bra and ket in a "central" part. due to the central 

interact.ion, and a first-order dipole part: 

(46) 

In view of the factor 1-~ , we may add a term -ie in the denominator 
n 

of the second equation. We then use energy conservation, a 

Lippmann-Schwinger equation like Eq. (18) for the central interactions 

and the orthogonality of "free" atom states. We thus find, noting that 

the zerotb-order contributton vanishes in the special case of dipole 

recombination: 
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in which the eigenstate of He with ingoing scattered-wave character is 

given by 

(48) 

In the following section we use Eq. (47) to calculate the dipole 

recombination rate. Note that it applies both to the volume and to the 

surface. We repeat that the right-hand sides of Eqs. (42) and (44) 

contain an unweighted sumover m • For comparison with experiment, 
s3 

however, we are interestad in effective rates. In the following we 

therefore present either Leff or lts separate contributions l~. 
s s 

V. CALCULATION OF L ~ 
s 

The Diode! we use hereiS basedon the Kagan dipole·mechan1sm. 11 

In this description of the recombination the electronic dipolar 

interactions induce a transition from a bbb incoming state to a final 

state. consisting of a bound pair of atoms (1 and 2) and atom 3, which 

does not interact wi tb tbis . pair. In view ·of .. this,cand the· selection 

rule s 12=l.". s12=1, the dipolar interaction between 1 and 2 does not 

contribute. It was pointed out in Ref. 22 tbat such a contributton 

does arise when an additional exchange interaction of partiele 3 with 

1 or 2 in the final state is taken into account. This dipole-exchange 

mechanism and possible other more complicated higher-order processas 

are neglected in the present paper. 

An attractive feature of the Kagan approach is that it admits a 

simple interpretation. The electronic spin of atom 3 causes a 

magnetic-dipole field at the positions of 1 and 2. The difference in 

magnetic field, experienced by 1 and 2, leads to different precesslons 

of their electron spins. This induces a singlet component in the 



wavefunction of the 1-2 system, offering the atoms the possibility to 

recombine subsequently. It is clear that the proton spins are not 

influenced during the process. Therefore we leave them out of 

consideration in the following. 

This mechanism explains the fact that a third H atom is required, 

even in the presence of an abundance of third bodles provided by the 

He surface. As a result of the long range of the dipolar interaction, 

this third atom can be located at a large distance from the 

recombining pair. 

Fig. 1 shows the geometry of the system. We use Jacobi 
~ ~ ~ ~ 

coordinates rij' rij,k and their projectlens pij' pij,k on the 
surf ace. 

To calculate f. we first consider the initia! state 

l~(+)(~iqia)>0 of Eq. (47). This represents a state of three 

non-interacting H atoms bound to the surface, i.e. 

z 

x 
3 

Ftg. 1 Situatton for three-body coLListons on a 
4He fiLm. Here, z1 

denotes the di stance of parHete i from the surface. 
~ ~ ~ ~ 

Furthermore, rij'rij,k and pij' pij,k are 3D and 2D Jacobi 
coordtnates, and e is the angLe between magnette-field 

directton and surface normaL 
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of which the spatlal part is distorted b,y the mutual triplet 

lnteractions. For this distortien we use the "2if-dimensional" 
8-9 model, which bas proved to be ver,y succesful for the description of 

two-particle collislons along the surface. In this model the 

distortien affects only the factor between curly brackets in Eq. (49). 
.... .... 

It is replaced b,y a solution u(p12,p12,3) of the 2-dimensional 

Schrödinger equation for three H atoms mutually interacting b,y means 

of triplet potentlala V~=l averaged over the z-motion of the atoms: 

Cl) Cl) 

~=l (pij) =I dz1 I dzj <j>~(z1 )<j>~(zj)V~=l (r1j)~h(z1 )<fh(zj). (50) 
...,., -co 

In the spin part X of Eq. (49) the magnette quanturn number refers to 

the magnetic field direction. 
.... .... 

The calculation of u(p12,p12,3) is a 2-dimensional three-atom 

prohlem. It could be obtained with the help of the Faddeev 

formalism21 •22 in 2 dimenslons. lnstead of this, however, we follow 
11 .... .... the metbod of Kagan et al. We approximate u(p12.p12,3) by only 

taking into account spatlal correlations between the atoms of the 

recombining pair (1 and 2) and the pair (1-3 or 2-3) interacting via 

the dlpolar lnteraction. We start with the symmetrizedfree stateand 

replace the exponentials of the recombining pair and dipole pair by 

two-particle triplet scattering states. For instanee for the 

Vd(1,3)-term of Eq. (47) we make the replacement 

(51) 
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in which iti2 = (pi~i)/fl and itj3 = - qilfl. Furthennore, "'titCP) 
denotes a 20 two-particle relatlve scattering state, with 

".~ 
exp(ik.p)/(2mn) as a plane-wave part. Note that this Kagan-like 

replacement destroys partly the symmetry of 2 P u. Note furthermore 

that the combination of six terms in Eq. (51) describes correctly the 

asymptotic plane-wave part. 

In the volume case the six terms are identical in the T=O limit, 

leading to Kagan's results. We believe that Eq. (51) is a reasonable 

approximation, since the volume of configuration spaee in which 

particles 2 and 3 are closely tagether and thus correlated, is only a 

smal! fraction of the total volume contributing significantly to the 

dipole integral. For low temperatures the only significant 

contribution of -/ltk(p) to the amplitude comes from the lowest partlal 

wave m=O, which for low k separates further into p and k dependent 

factors23 : 

(52) 

with 
-1 g(k) = --;::2:---_ _..;;. ____ """:!4 

{~ + [1 + log(ka/2)]
2
} 

(53) 

and 

(54) 

just outside the potentlal range. Here, 1 is Euler's constant and a is 

the 20 scattering length. which bas the value of 2.4 ao for the 

20 potentlal given by Eq. (50), if we choose the Mantz-Edwards 

wavefunction24 for ~0(z). Note that "'titCP) differs in normalization 

from the radial wavefunction in Ref. 23. A T=O caleulation, as for 

volume recombination, is now impossible, because of the logarithmie 

k-dependence in Eq. (53). These equations, however, still enable us to 

derive a low-T approximation, since the energy dependenee in now 

contained in a separate factor. We will use this later to caleulate 

the thermally averaged rate constante. 

We now turn to the final state 1_"(-)(qfn)>c of Eq. (47). In the 
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previous section we defined it as an eigenstate of the Hamiltonian 

with central interactlans between the atoms and atom-wall, 

molecule-wal! interactions included. We now follow Kagan, however, in 

leaving out the atom-molecule interaction. Furthermore, in view of the 

rather high H+H2 relativa kinatic energy (~ 60 K for B=lO T, v=l4, j=3 

and m =-*). we neglect the attractive part of the surface potentlal 
s3 

(~ 4.5 K) and replace it by a perfectly reflecting rigid wal!. As a 

first step, however, we will leave out the wall completely. An 

estimate of the effects neglected with this approximation is given in 

Sec. VIII. 

On the basis of this the final state reduces to 

(55) 

In Eq. (55) Z is the center-of-mass position perpendicular to the 

surface and ~ j is the molecular wavefunction (m relativa to z). lt vm 
turns out that only odd j final statas are possible, since the 

Vd(1,3)- and Vd(2,3)-terms of f cancel for even j and are equal for 

odd j. Using Eqs. (49), (51) and (55) we obtain for the amplitude 

To evaluate the integrals it is convenient to use cylindrical 

coordinates with the surface normal as a symmetry axis. The dipolar 

interaction can be written as a scalar product of rank-2 tensor 

operators L(2) and y(2) in spin and coordinate space, respectively. 

Clearly, only the term 

(2) 

~ -+m 
2 s 3 
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(2) 
y 3 

---m 2 s 3 

(57) 



of this scalar product contributes, when these operators have the 

magnetie-field direction as a quantization axis. The z-axis normal to 

the surface being the natura! quantization axis for the spatlal part 

of the problem, we express the y(2) operator in terms of y(2) 

operators with respect to the z-axis. Choosing x along the projection 

of Bas in Fig. 1, the coefficients in this expressionare reduced 

Wigner functions 

(2) 
d 

3 
(e). (58) 

- 2- ms3'J.L 

Here, e is the angle between B and the surface normal and ~ is the 

transfer of angular momenturn from the spin system to the orbital 

system along the z-axis. The Wigner functions describe the field

orientation dependenee of the amplitude. Furthermore, the 

Pz-dependence of f is concentrated in the exponentlal exp(-iPzZIU) and 

in qf by means of the energy-conservation relation 

(59) 

where Evj is the energy of the molecular state. In the first instanee 

we neglect a possible energy transfer to the center of mass in the 

final state, i.e. the P~~ term in Eq. (59). In Sec. VIII we discuss 

also the effect of this approximation. This reduces the Z-integral in 

Eq. (56) to a more simple Fourier integral: 

(60) 

where (e .~ ) are the polar angles of qf. Evaluating the two integrals 
q q 

over the azimuthal angles $12 and $13• reduces the expression for 

F~(eq,Z) to a multiple integral over p12• z12• p13 and z13• This is 

worked out in App. A. There we also give the expression for G in terms 

of the functions g(ki2), g(ki3) and g( 1-iti2-iti3 1), defined in 
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Eq. (53). In the volume case, we would obtain two separable integrals 

over r 12 and r 13. Now the 12 and 13 integrale are not completely 

separable because of the surface bound states in Eq. (56). Thè 

problem, however, is still manageable numerically. 

We now turn to the calculation of the rate constants L~. By 

Pareeval's theorem the integral over Pz in Eq. (44) can be carried out 

analytically. Apparently, this is due to the present neglect of the 
2 
Pzt6~-term in Eq. (59). As we are only interestad in low 

temperatures, the energy pertaining to the initia! state is much 

smaller than that of the f!nal state. Therefore, we neglect energy 

changes !n the f!nal state due to the thermal-averaging procedure. 

· With the help of Eq. (53) it is now possible to determine the 
±'A temperature-dependent factor of the rate constante L : s 

We end up with L~ as a function of Band T: 

where 

(62) 

(63) 

To exhibit more clearly the dependenee on field orientation, we expand 
±'A L in Legandre plynomials P (cose), making use of Wigner 3j symbols: s n 

(64) 
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The result is 

A~ (B,T) Pn(cos9). (65) 

n::0,2,4 

Only even n values contribute because F~ turns out to be even in~· 

Apparently, as in the volume case the double-spin-flip (m = ~) and 
s3 

single-spin-flip (m = ~) contributions are related by 
s3 

A:~ (B,T) [-~ ~ ~]= 4 A~ (2B,T) [-~ ~ ~]. (66) 

where the factor of 4 results from the spin matrix element of Eq. 

(56). Eq. (66) is the counterpart of a similar relation between 

L+~ and L~A for the volume. 
g g 

VI. RESULTS 

As in the volume case, the most important molecular states appear 

to be the states close to the continuum. For fields below 10 Tesla 99% 

of the total contribution to the effective rates comes from the 

v=14,j=3 state, with a binding energy of 72 K, and the smal! remaining 

fraction from the v=14,j=1 state, with a binding energy of 183 K. This 

fraction becomes the dominant part for higher fields. 

In the previous section we used the surface wavefunction 
~ M ~ 
~0(z) of Mantzand Edwards to calculate the potantials Vs=1 of Eq. 

(50). To keep the computation time within reasonable bounds, we prefer 
~ 3/2 -1 to use the form ~0(z)=2a z exp(-az) for calculating f. For a::0.15a0 

~O resembles rather closely the Mantz and Edwards wavefunction, while 

it resembles the wavefunction in a Stwalley-type potentlal reproducing 
8 -1 the experimental adsorption energy for a--Q.20 a0 . In most of the 

calculations we shall use the former value for a. The error bar in 

some of the results to be given corresponds with the change in the 
-1 

effective rate constant if this value for a is replaced by a--Q.20 a0 . 

It turns out that our values for the effective surface rate constants 
2 scale roughly with a , which would suggest the validity of the sealing 

prescription15 (see, however, Sec. VII). 
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The double-spin-flip process is dominant. Furthermore, we observè a 

double-spin-flip cutoff at 25.6 T and a (less pronounced) 

single-spin-flip cutoff at 51.2 T. for fields B)25.6 T (51.2 T) the 

Zeeman energy needed to flip two (0ne) spins lncreases beyond the then 

available recombination energy (-Evj-3e0=69 K for v=l4,j=3). The 

sharpness of the cuttof results from the low-energy approximation. For 

higher temperatures the uncertainty in the initia! kinatic energy 

leads to a spread in the available recombinati<:m energy and thus in 

the field for which qf=O. Another effect which tends to a smoother 

field dependenee around 25.6 and 51.2 T is the transfer of z-momentum 

to the 3-atom center of mass, to be considered in Sec. VIII. Note that 
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eff in I we presented values for L instead of L . The remaining s s 
differences between the results of I and Fig. 2 can be explained by 

the fact that we here use a H-H potential, which reproduces more 

accurately the expertmental data on singlet boundstate energies. 

Therefore the potantials of Eq. (50) and the wavefunctions ~vjm and ~t 

are slightly changed. An important effect comes from the increase of 

the binding energy of the v=14,j=3 state by about 6 K, which results 

in a shift of the curves of the rata constant as a lunetion of B. 
The n--o curves in Fig. 2 reprasent the rates averaged over all 

field orientations. The ~ curves express the anisotropy as a 

function of the field direction. As we see in Fig. 2, the n=2 

coefficients are smal! compared to the corresponding n=O values. The 

I 
~ ~ 1 -27 4 -1 n=4 part turns out to be negligible: A
4 

+2A4 < 9.0x10 cm sec • 

Therefore we may conclude that the anisotropy is small, which is 

caused by the fact that all ~ values in Eq. (63) give contributions of 

the same order of magnitude. This seems to be in agreement with 

experimental indications. 12•25 

Both the field dependenee and absolute magnitude of the effective 

rate constant, however, are at varianee with experiment. We find a 

rate which is growing with B by 70% from B~ to 9 Tesla, whereas 

experiments show a slow decrease. For the field orientation normal to 
eff -25 4 -1 the surface we find Ls = 2.7(7)x10 cm sec at 8=7.6 Tand T=0.4 K. 

while the corresponding experimental values are 
Leff=l.5(2)xl0-24 cm4sec-l (Ref. 25) and Leff=1.8(4)xl0-24 cm4sec-l 

s s 
(Ref. 12). These values are a factor of 6 larger than our calculated 

value. In R~f. 15 it was notleed that a sealing prescription to 

convert the volume rate into a surface rate, leads to a correct order 

of magnitude for Leff. (More precisely, the difference with experiment 
s 

is a factor of 2). Objections against this sealing prescription will 

be presented in the following section. 

In Fig. 3 we present the temperature dependenee of the rate 

constant, governed by Eq. (61). As a raferenee temperature we use 

T0=0.4 K and therefore we plotted <C2>J'<c2>T
0 

as a function of T. 

Note that effective surface rate constant goes to zero logarithmically 

for T~. illustrating again that a zero-temperature approximation as 

in three dimensions is not feasible. 
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As can be seen from Eq. (63), the surface rata constant is 

essentially an incoherent sum or integral over m, ~. Z and 

aq of IF~(Z,9qJ12. To understand the underlying physics, we plot in 

Fig. 4 the IF (Z,S 112 surfaces as a function of Zand sin9 for 
~ q . q . 

various l~l.lml comblnatlons. In Fig. 4 the maximum value of the m~-o 

surface has arbitrarily been taken as 1. All surfaces have their 

maximum value for 'Z::>!7 a0 , which corresponds to the most probable 

location of the atoms from the wall in the ~O state. For sin9q~l the 

dominant IFI2 surfaces show a decrease which is due to the absence of 

high relativa momenta along the surface in the initia! state. A 
· . eff similar feature gives rise to the increase of Ls with B at lower 

fields. The absence of high initia! momenta along the surface is also 

responsible for the gradual shift of the maximum of the IFI2 surface 

to larger sin9q values for increasing lml and 1~1: atom 3 can only 

gain high momenturn q 11=qfsin9q by the dipole interaction, say with atom 

1. The strong xy-recoil of atom 1, however, enhances rapid rotation 

(large lml) of atom 1 around atom 2, which has hot been involved in 
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the dipole force. On the other hand, strong dipole forces along the 

surface are correlated with high transfers 1~1 of z-angular momenturn 

from the spin system to the spatlal dagrees of freedom. The above 

picture also explains that the absolute value of the surfaces 

decreasas for incre~sing lml and 1~1. Via Eq. (63) this would seem to 

be inconsitent with the previously mentioned smal! anisotropy as a 

function of e. lt turns out, however, that the solid angle in which 

atom 3 is emitted decreasas for decreasing 1~1. This leads to 

comparable contributions of all 1~1 values and thus a non-significant 

anisotropy of the rate constant with respect to the magnetie-field 

direction. It turns out that the summation. over ~ also washes out the 

anisotroplc structure as a function of sineq implied by the lndividual 

surfaces in fig. 4. 

VI I. SCALINC PRESCRIPTION 

As bas been pointed out in the previous section, the sealing 

procedure, proposed by Kagan et a1. 15 leads to surface rates whlch 

differ by more than an order of magnitude from the values presented 

bere. Their results agree better with the experimental data. We 

believe, however, that this sealing procedure is a bad approximation 

in the present situation. To show this, let us analyze step by step 
· eff 

where the above-mentioned large difference with our L value arises s 
from. 

In Ref. 15 Kagan et al. claim that a state of adsorbed atoms can 

be regarcled as quasi three-dimensional, when the width of the one-atom 

z wavelunetion is much larger than the interaction range of the 

particles. (In the case of polarized atomie hydrogen atoms the 

interaction range ~ a0 and the 4He-H potentlal wel! bas a width of 

~10-20 a0). The initia! state is considered to be a product of a 30 

relativa three-atom state and three surface bound states. The autors 

use the function ~0(z) = (~) 112 exp(~). with ~=J~e0!n, as a 

boundstate. A choice of 0.9 K for the binding energy in the case of a 
-1 .... 

superfluid helium film leadstoa value of 0.10 a0 fora. Strictly 

speaking, the exponentlal form is only assumed for large positive z. 

The normalization factor implies a cutoff close to z=O. The simple 

exponentlal form introduces a simplification in that the product of 
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Transitton proba.biUty IF (Z.e ) j2 a.s a. function of Z, sin9 
~ q q 
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Fig. 4 

-1 . momenturn transfer) va.tues. (B=7.6 T. a--Q.15 a0 , v=l4, J=3, 

m =~h.). ALl. surfaces a.re norma.!tzed reta.ttve to the 
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bound states then depends only on Z. When the relative and 

center-of-mass motion are subsequently treated independently, this 

leads to a very simple relation between the surface and bulk rates 

(67) 

At a field of 7.6 Tesla, where the Kagan dipole rate constant bas the 

value Leff=6.8x1o-39 cm6sec-1, this leads to reff = 3.2xl0-24 cm4sec-l 
g s 

for the surface rate constant, which is a factor of 16 largerthan our 
eff -25 4 ..:1 -1 value L
8 

= 2.0x10 cm sec for B=7.6 T, 9=0, T=0.4 K, a--Q.15 a0 
(and only a factor of 2 different from experiment). 

We notlee that the bound states $0 and ~O of the two models are 

different. The widths Az of the wavefunctions are comparable, however. 

To analyze the differences between the two models, we first try to 

find out how the result of our calculation is modified by replacing 
,r.. ::;:. - eff our o/o and a by o/o and a. This leads to an increase of Ls by a 

factor 2.4, which indicates that the different choice of bound states 

is not the main reason for the large difference. 

In the derfvation of Eq. (67) by Kagan et al., the relative and 

center-of-mass motions are considered to be independent, which is not 

strictly justified, since all three-particle coordinates perpendicular 

to the surface should essentially be positive. This gives rise to 

restrietloos in relativa z coordinates, which have been taken into 

account correctly in our model, but not in the sealing procedure. If 

we introduce the same approximatlon in our calculation, this leads to 

another increase by a factor of 1..6. The remaining factor ofc1.2 can 

only be accounted for by the two- and three•dimensional natures of the 

relative three-atom state, used in the two models. 

As we already pointed out, Kagan et al. argue that the nature of 

this state should be three-dimensional when d))a. However, a third 

length scale plays a cruelal role: tpe wavelength À. For d))À the well 

would indeed be wide enough to justify this approximation, especially 

near the interaction region. However, the actual situation is closer 

to the oppo'site limit: at 0.4 K the ;_.avelength J\::l<l30 a0 . In this 

s!tuation the typical single-partiele energy separation 
2 2 . • 22 2 eo=fl /(~d ) in the z-directlon is larger than 411" n /(~À ), the 

relativa kinetic energy along the surface, thus impeding transitlens 

in which the.z-eigenstate $0 is c~anged. Freezing the $0 eigenstate in 
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the z-direction, however, is the basic assumption leading to the ~ 

model. A~ approach therefore seems more appropriate than the 
"-2 2 limiting situation 60((4v:n /(~ ) in which the atoms would bahave 

unconfined also in the z-direction. This is also the main 
8-9 conclusion reached in previous more exact calculations of b+b 

surface dipole relaxation. 

To make the comparison of our surface recombination model with 

the sealing approach complete, we also replaced our 2D triplet 

functions in Eq. (56) by 30 ones. This indeed resolved the last factor 

of 4.2 discrepancy. It is of interest bere to point to the radically 

different low-energy behaviors of 2D and 30 relativa two-particle 

wavefunctions: 2D wavefunctions tend to zero logarithmically, as can 

beseen from Eq. (52), while 3D wavefunctions are finite in this 

limit. This feature expressas ltself in the temperature dependenee of 

<c2>T (see Fig. 3) and thus represents a characteristic difference 

with the sealing result. 

VI I I. DISCUSSION OF SOME APPROXIMATIONS 

In this section we estimate the errors introduced by some of the 

approximations in the previous sections. To begin with, we neglected 

the center-of-mass energy in the final state in Eq. (59). If we take 

it into account, it leads to a redistribution of the energy released 

by the recombination among the relative atom-molecule motion and the 

center-of-mass motion in the final state. As a result, we cannot use 

Pareeval's theerem to simplify the calculation, but we have to use 
:tlS Eqs. (44) and (45) to calculate L
6 

and f. All equations presented in 

Sec. V remain valid, except for Eq. (63), which bas to be replaced by 

(68) 

keeping in mind that F~ also depends on Pz through its dependenee on 

qf(Pz)· Since the center of mass now absorbspart of the recombination 

energy, the average value of qf decreasas compared to the situation 
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before. Thereior·e the curve of the rate ,·.o •• stant as a fm,~tion of B, 

pc·esented in Fig. 2, is expected to shif <. to low<:.r field values. For 

B=7.6 T, T=O.~ K and field orientation perpendicular to the surface we 
etf -25 ~ -1 now find L =2.2x10 cm sec , which is a factor of 1.1 larger than s 

the corresponding value given in Sec. VI. In Fig. 5 we present the 

effective rate constants averaged overfield orientations as a 

function of B (full curve}. Altogather we flnd a shift of the curve by 

about 1.5 Tesla, which corresponds to an average of 2.0 K for 

?~· Thls is at least a factor of 20 smaller than 3q;/-4~, the 

average relativa kinatic energy. The expectation value of the kinetic 

energy P?~ in the initia! state 4b(z 1 )$0(~)<j>0(~) is n2a2/~ for 

the analytic choice of our bound state. Thls leads to a value of 2.0 K 
-1 for the center-of-mass energy if a=O.l5 a0 , and is in agreement with 

the shift found bere. Furthermore, the field dependenee of the 
eff · 

effectlve ra te constant L as a function of B found in Sec. VI. is s 

t 

g 

o+----------r---------,----------~---------r--------~r-
0 10 20 30 

B(JJ -
Fig. 5 The fieLd dependenee of the effectiue rate constant aueraged 

over ftetd dtrectf.ons: Futt curve: without wa.tt, but 

center-of-mass energy tn the z-direction taken into account, 

Braken curve: with rigid wa.tt. 
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hardly changed. The smallness of the effect is related to the small 

expeetation value and spread in the center-of-mass energy compared to 

the relativa kinatie energy. 

The derivation of ls and f in Secs. II and III included the inert 

wall in the final state. In Sec. V, however, the actual calculation 

was carried out without it. This might seem a very erude 

approxlmation, because the atom-wall interaction has a strong 

repulsive part for smal! distances. Therefore, we wlll now estimate 

the effect of this approximation. We improve the model described in 

Sec. V by assuming that the surface is a hard rigid wall. As we 

already explained, the shallow attractive part of the surface 

potentlal is neglected for the final state (but not for the initia! 

state). The atom and molecule are now effered the possibility to 

reflect from this wall in the final state. In principle the molecule 

could be deexcited to states with higher binding energy by these 

collisions. This is not likely, however, because the additional energy 

released would give rise to higher final momenta, and a decreaslng 

overlap with the initia! state. Therefore we wil! only consider 

reflections of the center of mass of the molecule from the surface. 

To compare with the case without a wall, we explieitly give the 

expresslons for both models here. Without wall Eq. (44) can be 

rewritten as 

where the momenta perpendicular to the surface 

can be both positive and negative. The final state vector 

l~(-)(4fPzn)>c in Eq. (47) for f is then given by Eq. (55), where the 

z-motion is described by 

lp t z31n ip 1 (zl+z2)/2h 
A e a ,z e mo ,z 

= (2m) t/2 .;:___(2-m---=} 1-=/2::::---- (71) 
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In the case including the wall the lntegrals over p t and p 1 in a .z mo .z 
Eq. (69) run from 0 to ro, because the particles can only move away 

from the surface. Furthermore, the plane-wave part Eq. (71) should be 

supplemented with "time-reversed" reflected waves of atom and 

molecule: 

Pmol,z> + 1-Pat,z' -pmol,z) 

-pmo1.z) - 1-Pat,z' Pmo1,z) 
(72) 

For the followlng it is of importance to point out that we may now 

extend the ranges of integratlon of p t and p 1 again to (-ro,ro) a ,z mo ,z · 
lf we mu1tlply Eq. (69) by an additional factor ~. The total z 

wavefunction now vanishes for z3=0 and for ~(z1+z2)=0. We note that 

the 1ntegra1s over ~ and ~(z 1+z2) in the expression for the amplitude 

F run over positive values only. 

We were ab1e tocalculate the rate constant numerically for this 

case of a rigid wa11. In Fig. 5 we plot the effective rate constant 

averaged over magnetie-field directions as a function of B at T=0.4 K 

for the case ln~1uding the wa11 (broken curve). We see that the 

difference with the case without a wa11 is not significant. It is at 

most 20%. There is also no sign of change with respect to the 

field-orlentation dependance. The similarity between these resu1ts can 

be exp1ained as follows. In good approximation the four terms of Eq. 

(72) give rise to equal and non-interfering contributions to the 

transition probab!Iity, which add up to the origina1 resu1t. As a 

matter of fact, the main contribution of the terms comes from 

non-overlapping parts of the (p t , p 1 )-plane. As has been a ,z mo .z 
po!nted out in the foregoing, smal! center-of-mass momenta in the 

z-direction are dominant. Therefore the dominant regions in the 

(p t , p 1 )-plane are the parts where p t ~ -p 1 (p t >O), a .z mo .z a ,z mo ,z a ,z 
Pat.z ~ -pmol.z (Pat,z<O), Pat,z ~ Pmol,z (pat,z>O) and Pat,z::::: Pmol,z 
(p t <O) for the terms of a .z 
Eq. (72), respectively. Because of the absence of high momenta along 

the surface, p2t /2~. + p2 
1 /4~. is large for weaker flelds. a ,z -··H mo ,z n 

Consequently, the foregoing reglons do not overlap, and do not 

interfere. For stronger fields this is no longer the case and the 

difference with the results without a wall is indeed observed to 

increase. 
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IX. CONCLUSION 

In the foregoing we described a method, based on the Kagan dipole 

mechanism, for the calculation of the three-body dipolar recombination 

rate for atoms adsorbed on a 4He film. The results can be summarized 

as follows: (1) At a field of 7.6 Tand temperature of 0.4 K we 
eff -25 4 -1 obtained Ls =2.7(7)xl0 cm sec , which is a about a factor of 6 

smaller than the experimental value. (2) The field-orientation 

dependenee of the effective rate constant is found to be weak, which 

agrees with experimental data. (3) We predict a strong increase of 

L:ff with increasing temperature between T=O.l K and T=0.6 K. It might 

be interesting to include this in the analysis of the experiments. (4) 

The field dependenee of Leff calculated by Kagan and that of Leff 
g s 

display a similar behavior and disagree both with the experimental 

B-dependence. 

Although the model we presented bere is far from exact, we 

believe that the essential features of the interaction of the 

particles with the wal! are included. Some refinements to improve the 

model in conneetion with the influence of the inert wall have shown to 

be of minor importance. Part of the discrepancy with the experimental 

data may be ascribed to the dynamica! role of the wal!. However, since 

the magnetie-field dependenee of the volume and surface rate constants 

display similar deviations, it is likely that the discrepancies in 

both cases are caused by the same mechanism. We have strong 

indications that the discrepancy in the volume case is caused by the 

neglect of interactions between the final state molecule and atom, in 

particular by the absence of exchange: a more rigarous calculation of 

volume recombination, in which all three-particle correlations are 

included except for exchange, lowers the rate constants to values a 

factor of 5 too smal! compared to the experimental data. 26 The 

physical picture underlying this correlation. effect is the quenching 

of the dipole force at smal! distances due to repulsion. From the same 

physical picture we expect the above-mentioned factor of 6 surface 

discrepancy to show a further increase, when similar correlations 

would be taken into account. It seems probable that the 

dipole-exchange mechanism22 is cruelal to resolve the discrepancies 

for both volume and surface recombination. It remains to be seen, 
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however, whether a calculation including this rnE:chani nn w.:;uld be 

feasible in the surface case, where a great part cf the symmetry of 

the volume is lost. 
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APPENDIX A 

We bere present a complete expression for the reduced amplitude 
-t 

FJill.(eq,Z) of Eq.(60) for fixed final state quanturn numbers qf' v, j, 

m, m , and fixed JL, Z: 
s3 

This includes the subsldiary condit!Óris z1 ~ 0 introducedln Sec. 4, 

· which also lead to 

a = min(-3Z-z12• -3Z+2z12), 

3 1 
b = 22 + ZZ12 

Furthermore, 
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KJL(z13'qll) = Jdp13 P13 vt(p13) 
0 

(A2) 



represent the uncoupled integrals along the surface, with qll = qfsin9q 

and q = qfcose • The functions J are cylindrical Bessel functions 
z q m 

and coseij = zij/rij. Finally, the energy-dependence in the f 

amplitude is concentrated in the function 

G(ki2·ki3) = 2{ g(ki2)g(ki3) + g(ki3)g(l-ki2-ki31) + 

g(ki2)g( l-ki2-ki31) }. (A4) 
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In view of the failure of the Kagan dipole mecbanism ta explain the magnetic field dependenee of 
the H+H+H recombination rale in spin-polarized atomie bydrogen, we consider an additional pro
cess, the só-<:alled dipole-exchange mecbanism. Two simple approaches to estimate lts consequences 
turn out to he promising but tbe question of tbe role of different and higher·order processes remains 
open. We therefore turn to in principle, an exact ·approach to tbe three-body recombination, includ· 
ing all possible processes. Tbe first numerical results of the approach are presented. 

I. INTRODUCTION 

In severallaboratories experiments are being carried out 
with the ultimate aim of achieving Bose-Einstein conden
sadon in spin-polarized a!omic hydrogen (Hl). For these 
attempts to be successful, it is of vita! importance to 
understand the decay mechanisms in H I samples. Farmer 
belief tbat the decay at low temperatures found in 
"precompression~ experiments was due to two-body sur-

leads to an overestimate by more than an order of magni· 
tude. On the basis of this we then turn to an approach 
which treats the three-body aspects exactly. This is 
described in Sec. IV. In Sec. V the first numerical results 
of this approach are shown. A discussion follows in Sec. 
VI. 

II. KAOAN DlPOLE MECHANlSM 

face relaxation' led 10 large discrepancies between theory We consider the recombination of two H atoms in a 
and experiment. Hess et aJ.l first came up with the in· three-body collision, taking place in a strong external 

magnetic field. As first discussed by Kagan et al., 3 with teresting suggestion, that these discrepancies migbt be 
resolved, if three·body processes were taken into account. all three atoms doubly polarized, this recombination is 
At high magnetic fields in the .doubly polarized regime caused by an electron-electron magiletic dipole interae-

b tion. The idea is that the electron .spiqs of two atoms pre· 
(bot)telectron and prOIQ!l spins pqlarized), where only . h . . 1 fi 1 f h • H h 
atom. s {a ,b •. c,tf .. ~:lJ .. Yl'f:rfll1e lev. ·.els of s .. r~u. nd. • ... stat.~ at. om~ ..... · cessint e lll~gnettç.,!)!p<J e • 1e d 0 ll;:l trd alom, t us 
ie hydragen in órdèFóf. ini:'reäsing~eiîi!rg}'l 'are 'ptesent, ·': .getting a totàl S =ó component"whèreafter recombination 

· · f · 39 is possible. The proton spins· are unaffected during the 
tb~ found three-body rates 0 L,=7·5(3lX 10- process. The third atom is 11ot only needed for .. this so-
cm s-t in the volume, and L,=l.O(~)xl0-24 

cm
4
s-t at c. alled .. spin flip •. but also for.•conservation.o. f the e.neroy 

the surface at B=1.6 T, bath -dèereàsing slightly'wiih " 
magnetic field B. réleaSed during the recombinalion: 

Sinee ... it is·· now · believed that this decay process ' 2 -

represents the main obstacle on the way to achleve Base· ----f'--=-EvJ- 2p. sB (T-ol . 0) 
Einstein condensation, it seems worthwhile to find out by 2tT111 H l 
which mechanism(s) it takes place. In Sec. II the Kagan Here -E.1 is the binding energy of the molecule in the fi. 
dipale mechanism,

3 
the first mechanism proposed for a nal state with vibrational and rotational quanturn num-

bbb tbree-body process is reviewed bath f'Or the volume3 bers u and J, 2p.sB is the Zeeman energy needed fora siri· 
and ior the surface. 

4 
The absolute magnitude of L, is too gle spin-flip process, P.B is the Bohr magneton and q1 is 

small by an order of magnitude, and, more important, the relative momenturn of atom (mass mH) and molecule. 
both L1 and L, have a field dependenee different from We shall restriet ourselves to T -o ealculations. In Eq. 
experiment. We therefore try to findan additional recom· (l)and in the following we restriet ourselves for simplicity 
bination mecbanism bath for the volume and the surface 10 the socalied single spin-flip process. With some ob\·i· 
\\'Îth a different B dependenee, dominating the Kagan di· ous changes, such as the replacement of 2p.8 B by 4p8 B, 
pole mechanism for tbc volume and strongly dominating similar expresslons hold for double spin flip. 
in the surface case. The most promising approach would The most appealing feature of the calculation of Kagan 
be to first solve the volume discepancy. Once that recom· et al. is its simplicity. The starting point is the exact 
bination process is understood, it may be easier to deal "post farm,~ 
"''ith the surface. In Sec. UI we therefore introduce a new 
mechanism, the socalied dipale-exchange mechanism, by 
which we hope to resolve the discrepancy. We find, how
ever, that a naive approach to calculate its contribution 
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for the scattering amplitude, vjm being · the molecular 
quanturn nurnbers (m is the magnetic quanturn nll1il.ber), 
while u I is the final spin projection of the atom along B. 
Here Vk and J1 are the dipole and central interactions be
tween tbe atorns of pair k {particles m and n with m=fok 
and n =fok). The initia! state 'l!t. symmetrized using the 
symmetrlzation operator S (sum over six permutations 
\\ithout nonnalizatimt coefficientl, is in the first instanee 
an exact scattering state of the total system, describing 
three atoms approaching one another owith mornenia 
which are considered to be smal!. The plal\e-wave part of 
'l!t is normalized as an exponential \\ith coefficient 

I 

9 

p G\ 

--
~ 
\~d 

l~/l 
~ 

D<>a.-

~ 
lol 

lë 
.~ .. , , 

-
Cb) 

(2rli)-3• In Eq. (2), 4Jt describes the free motion of atom 1 

I and the molecule consisting of atoms 2 and 3. Again its 9 
I ~ ~ 9 

.... "" lë plane-wave factor is the usual exponential with coefficient 
(2rlil-312• 

In terms of the amplitudes (2) the rate constant L, for · P '<'l 
;/,. yd ..... t. 
2 3 ., 

,, .. 

i~l ~ volume recombinatimt bas the form 

L,==( L 9
q' (2rli)9 f dl1,1J.%<q,w} (3) 

ltJ,m", ma 1he:tmal 

where tbe inlegral is an angular inlegral over direcdons of 
~· The cortesponding expression for surface recombina· 
tion bas been given in Ref. 4. 

Starting from Eq. (2) we now introduce the approxima· 
tions of Kagan et al. The amplitude is calculated to first 
order in the weak dipole interaclion, which is only taken 
into account in the form of the operator connecting initia! 
and fmal state. A far-reaching simplification for IJlt 
would consist of replacing it by its exponential free part. 
Instead Kagan er al. introduce some of the distortions, 
but in such a way that the final expression can still be 
handled fairly easily. Insofar as tbe initia! state is opera!· 
ed upon by J!f, they consider the distonions of the rela· 
tive motion ot atom pair 2 as essential, as well as the dis· 
tortión of the pair I, since this pair is bound as a molecule 
in the final state. With this in mind they write the free 
exponential as a prodl!Ct of two exponentials in the corre· 
sponding relative coordinates and subsequently replace the 
exponentials by the cortesponding distorled waves '1'1• 

The term with J1 is handled similar!y. The contributions 
of the two terms cancel for j=even and are equal for 
J=odd. 

Using these approximations the amplitude separates 
into two spatial matrix elements: 

l:/..!<v>=C,<IJI.J,. I /qrttll 1'1', h<qtl ~I '1', h. (4) 

where ~ represents the spatial part of the dipole interac· 
tion: Y4 _ 1\r)/r3 or -2Yz.-z(Î')/r3 for u=-t or 
u=+t. respectively, wbile 

' J 
C =---I_P.fils1llH ~ 

J (IS;rl)IIJ fil 1.odd • 
(5) 

The subscripts to tbe matrix elements in Eq. (4) indicate 
the partiele pair to which each of the matrix elements ap· 
plies. Tbe secoud factor describes the action of the dipole 
interaction among particles I and 3 (I and 21 giving rise to , 
final momenturn q,. The free relative state I q/) is again 
normalized as an exponential with coefficient (2rli)-312• 
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FIG. I. (a) Graphical represtntatlon ofthe Kagan dipole pro
éflS. The Jong arro"'S reprcsent tbe momenta of the particles 
after tbe ''arious stages of tbc proeess displayed. The short ar· 
rows reprosent spin angular momenta. (b) Grapbical representa· 
tion of tbe dipole-exchanac process. Long atrows: momenta. 
Short arrows: spins. 

The first factor describes the cortesponding momenturn 
change of particles 2 and 3 and tbe overlap with the final 
molecular state. A graphical representation of this so
called Kagan-mechanism is given in Fig. Ha). Mornenia 
are indicated by long arroVI'S, spins by short arrows. In 
contrast to the equations in this paper, Figs. l(a) and l(b} 
illustrate double spin flip, which is somewhat easier to 
visualize. 

The dipole interaction tums out to introduce only small 
momenturn changes •. Since q1 goes down \\ith incrcasing 
B, the momenturn mismatch decreases, Jeading the ampli· 
tude to increase in magnitude wlth · B. The approach of 
Kafan et al. leads to a volume rate of L1 =8.5X 10-39 

cm s-1 at B=IO Tand T=O. increasing with B by a 
factor of 3 from 4-9 T. 

The rate of this Kagan mechanisrn was also calculated 
for the surface case by de Goey et a1.,4 who found 
L,==l.3X J0-2s cm6s-1 at.B=7.6 Tand T=0.4 K, in· 
crcasing by 70% from 4 to 9 T. The incrcase of these 
rates as a function of B. contrary to the experimental field 
dependence, bas led us to investigate other mechanisms 
with non-negligible rate. 

JII. DIPOLE·EXCHANGB MECHANISM 

An essential feature of the Kagan dipole mechanism is 
that the two particles, interacting via tbe dlpole interac
tion cannot recombine, because tbis interaction only per· 
mits S = I to S = I transitions. The idea bebind tbc 
dipale-exchange mechanism is that recombination be· 
tween these particles is made possible, after tbat one parti· 
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cle bas meanwhile cbanged its spin state by interaction 
with a third one via a strong exchange (triplet or singlet) 
interaction [see Fig. l(b)]. 

We have estimated the rate for this process in two 
ways. The first one is a Kagán-like approach, the second 
one is an impulse-approximation-like calculation. We wiJl 
discuss them in this order. 

The idea of the first approach is to follow the approach 
of Kagan et a/.3 for exchange recombination, e.a., for aab 
scatteting, but to consider dipole distorted statas for the 
r'ecombinins atoms instead of h)'Jlefline distorted states. 
We write the amplitude again as Eq •. (2). but now we con· 

Here (~I V" I '!'r )~ and (p I.V: I '11, ) 1 represent the ac· 
tion of çentral and dipole interactions, leading to final 
mornenia ~ and p, respectively. Furthermore, 
( '~~•Jnt I t ~ + p) 1 is tbe overlap of the resulting state with · 
momenturn !Q.r+P of the recombining ~torn pair with 
the linal molecular sta.te. The energy ~ominator 
represents the free propagation in between the interac· 
tions. Figure l(b) illustrates this approach, except for the 
p contribution to the momenta of the atoms 2 and 3, 
which for the time being is left out in the v• matrix ele
ment. In a way, therefore, the present approach deals 
witb the dipole and exchange interaction as parallel pro
cesses in sofar as the spatial degrees of freedom are COO· 
cerned. For the spin degrees of freedom the order of tbe 
processes is as indicated in Fig. l(b). Results for L1 are 
given in Fig. 2(al. 

To introduce the second appróacb we first note that .the 
V" matrix element in Eq. (6) can be written as 

(C!JIV"I>~',h=(9flt'J0)2 .(T-Ol. (7) 

Writing it in such a \\'liY it indeed becomes <:lear that tbe 
momenturn change of partiele 3 in tbe dipole process is 
nol taken into account in the subsequent exchange pro
cess. With this in mind we replace the t• matrix element 
by (C!.f+fp lt'l +Ph: 

r:t:-·11
<qtl=fCJ I dp('II.Jm I tC!J+P>I 

x (q1 +!P lt' I !P>1 

x !p 11mH~+2p11B (pI v! J'i',>.. 
(8) 

Tbe replacement of I 0} by I fp) introduces higher par· 
tial waves. For even (odd) partial \\'l!Ves contained in 
I fp), t• is effectively a triplet (singlet) t matrix. As we 
shallsee in Sec. IV this expression (8), "ith I '1',) replaced 
by the free state I 0) in the V"' matrix element, would be 

sider the remaining part of the operator consisting of the 
central interactions. The initia! state 'i'{ is now approxi· 
mated to first order in the dipole interaction. Following 
Kagan et al. we reptace '11{ by a product of two triplet 
wave functions. The triplet function descnöing the initia! 
motion of the recombining particles, is distorled witb a 
dipole interaction. Tbis changes 'i', into '11 and produces 
the necessary spin flip(sl, but no change of S. Tbe subse
quent spin exchange due to the J1 and J1 operators en
ables atoms 2 and 3 to recombine. 

The amplitude for single spin flip (u,=-fl can now. 
be wrltten as [cf. Ref. 3 and Eq. (4)] 

(6) 

obtained as one of the first-order terms in the expansion 
for the exact transition amplitude in powers of t•. How· 
ever, we do not base our anai)-sis on st.''!l an expression, 
since replacing I '11,} by I 0} would lead to a strong un· 
physical increase of the amplitude: the triplet repulsion 
does no Jonger damp the smali-distance 1/r3 dependenee 
of V"'. Figure l(b), now with the p contributions includ· 
ed, is a graphical representation of this second. approach 
(8) for the dipole-exchange mechanism. Tbe resuhing L1 
is presenled in Fig. 2(b). The field range in this case bas 
been restricted to 0-10 T. Note that the energy argument 
of the t' matrix in . Eq. (8) is .. the er~ergy 
-2JlsB-p11lmH of the free intermediale state for pair 
2, whereas in the first approach it bas value 0. It thus be· 
comes clear that the exchange process in the first. ap

. proach does· nof take ad\·antage of the telative moméntum 
fp acquired by the atoms I and 3 througb the dipok in· 
teract ion. As a consequence only the S·\\'l!Ve part of the 
relative pair 2 wave function participates in the exchange 
process. In addition the Zeeman energy for the spin 
flip(s) is produced by the dipole pair only, contrary to the 
second approach., wbere it is prod uced by all three part i· 
cles. · 

These differences explaln the mucb higher rate fonhe 
second approach. At a field of 8 T we find LJ: =2.8 
X 10-40 cm6s-• and L1 =4.0X to-38 cm6 s-• for the 
first and second approach., respectively. 
· Turnlng from the absolute magnitude to tbe field 

dependence, we repeat tbat the dipo!e interaction can in· 
duce only small momenturn changes. Tberefore the in· 
tegrals in Eqs. (6) and (8) are restricted to small p. Be· 
cause of this we ex peet the rat es to deercase with the field, 
mostly due to the denominator of the free propagator in 
Eqs. (6) and (8). This indeed appears to be the case. 
However, this field dependenee is distOTled in the first cal· 
culation by an additional zero of the exchange matrix ele· 
ment at B=6 T for 1he double spin•flip process and at 
B = 12 T for the single spin·flip process [see Figs. 2!a) and 
l(b)]. 

81 



6186 L. P. H. de GOEY et aL 

(a) 

(b) 

··· ..... . 
····· ...... 

·······•···· ... 

--------------

s 
B!TI 

10 

50 

FIG. 2. (al Three-body recombination rate L1 as a function 
of magnotie field B for the Kagan-like approach of the dipole~ 
exchange process. The dàshed curve represen'ts' ihè single spin'' 
flip CO!ltribution, the Juli curve the sum of single and double 

, spin-flip èontributions:' !bl Three-bOdy recombination ra te L1 as , 
a function of B for the impulse-approximation-Jike àpproach of 
the dipole-exchange process, The dasbed and dotted curves 
reprosent tbe contributions of the v= 14, j=3 and v= 14, j= I 
final stales to tbc total rate, respectively. The total rate is 
displayed by the full curve. 

It may seem surprising that the rate of the second cal
culation is so large, toughly a factor of S larger than that 
of the Kagan dipole calculation. (This factor of S even in
creases to a factor of 20 if also other dipole-exchange 
terms are taken into account where the dipole interaction 
takes place between pair 2 if exchange occurs between pair 
3 and vice versa.) Such large discrepancies seem to be 
common for calculations based on the impulse approxima
tion.5 This can be understood as follows. Considering the 
timé-inversed process, i.e., the break-up process of a mole
cule colliding with an atom with relative momenturn 
-q1, our impulse-like approximation means that the 
atom collides only with one atom of the molecule, while 
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nothing happens with the other one, before the dipole in
teraction takes place. But this is very unlikely, especially 
for smal! q1. The atom collides most probably with the 
molecule as a whole. In other words, roscattering process• 
es, which are higher order in the z• matrix, are important. 

The shortcomings of the simple approaches (one un
derestimating the rate, caused by the approximations in· 
volved, the other giving rise to an overestimated rate, 
pointing to the fact that higher-order roscattering effects 
are important) force us to conclude that we are in need for 
a more exact three-body càlculation, with all mechanisms 
and higher-order terms included. On the other hand, the 
field dependenee found bere gives us hope that the exact 
calculation will also give rise to a decreasing field depen· 
dence (higher-order rescatterings give rise to more free 
propagators with field B in the denominator). Such an 
approach is discussed in the remaining sections. 

IV. EXACT THREE-BODY CALCULATION 

In this section we describe a metbod for carrying out a 
. three-body calculation of the bbb dipolar recombination 

process based on the Faddeev formalism,6 in which the 
three-body aspects are dealt with exactly. In this calcula
tion we take into accóunt the strong central (singlet and 
triplet) interactions to all orders. The dipole interaction, 
however, only to first order. This is a very good a~proxi
mation, because of the weakness of this interaction. 

Doing this, we can write the transition amplitude as 

" mH/54{ -13 ·"'I +) J;;..<~l=--2- SIJI1 l: "ii SIJI, • 
2r.li k-1 

(9) 

Here, I IJlt) and IIJiï) are the initia) and final states 
of the process, \\Ïth central interactions taken into 
account to all orders, normalized as in the previous sec
tions. Wedefine the Faddeev components I x1 ) as 

Go<E>Vj<l+P>IIJI), j=1,2,3, 

where 

for the initia) state and 

IIJI)=(l+P23>IIJiï) 

for the final state, P1k standing fora permulation of parti· 
cl es j and k and P for P 12P23 +P13P23 (see Ref. 8). Also, 
G0(E)=l/(E-H0 ) is the free propagator, H0 being the 
free Hamiltonian, and E the total energy, both including 
Zeeman energy. The states I x1 ) obey the Faddeev equa
tions. For identical particles these equations reduce to 
equations, identical for all components. For I X}= I X1) 
this equation reads 

IX}= I~)+Go1Elz~<ElPIX), (10) 

t~ (E) being the central interaction t operator for pair I. 
The driving term 1~)=0+P23 liiJI.Jmq/~/) 1 describes 
the free motion of the molecule (pair !) and atom I 
in spin state u 1 with relative momenturn q1 , when 
Eq. (I 0) is the Faddeev equation of the final state. For 
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tbe Faddeev equation of tbe initia! state I 1/>} 
=II+Plllipti"qobbb)~o descrihing pair I to be in a cen
tral interaction scattering state with momenturn Po and 
atom I movins freely with momenturn q 0 relative to pair 
I. As usual tbe + sign describes outsoing wave boun
dary oonditions at infinity. For T -o, the moménta p0 
and qo so to zero. The symmetrized 'states SI '11{) and 
S I ~Ï) in Eq. (9) can fiually be found from the corre
spondins Faddeev components by operatins with 1 + P. 

To solve the above-mentioned two versions of Eq. (10) 
it is useful to introduce the angular-momentum basis1 

lpqa)1= lpq!ll)LML<sf)SM5 )1; where p represents the 
magnitude of the relative momenturn p of pair j, 1 tbeir 
relative angular momenturn quanturn number, s their to
tal spin quanturn number, IJ the absolute magnitude of the 
relative momenturn q of partiele j with respect to pair j 
and ). the associated angular momenturn quanturn num• 
ber, while LMLSMs stand for orbital and spin quanturn 
numbers of the total system. Unless staled otherwise, this 
basis wil! be used with j equal to 1. For simplicity we 
tberefore in general suppress the subscript I. 

In this basis the t operator for pair 1 in the three· 
partiele space becomes 

(pqa lt~tE) lp'q'a') 

=t' ~,p',E- 4~: -21lBBMs l ó<~-;q') S.,..•, 

(ll) 

where t&tp,p',z) is tbe t matrix in the two-particle space: 

(plmtsm, lt'(z) lp'l'mjs'm;) 

=Sll'l'>m
1
mjó,.·Sm,m;tf.(p,p',_z). (12) 

Tbe basis f ]plm1sm,)) "itb m1 and m, denoting orbital 
and spin magnetic quanturn numbers, is normalized ac· 
oordins to 

(plmtsm,Jp'l'mjs'm;)== /)(p-:p') llu·S .• S..,.I) , • 
p• '"J'"I "'""'' 

(13) 

Tbe functións ,g can be calculated "ith tbe Lippmann· 
Scbwinger equation 

~ I Trt t r GO U <pU )2 
t4 (p,p ,zl",.r4 (p,p l+ Jo dp ( ")1/ 

z-p mn 

X v&<p,p"lz&<p",p',z I , (14) 

11 being the "Fourier transform" of the singlet 01 triplet 
interactions normallzed according to an equation analo
gous to Eq. (12). For energies z::; 0, which are the only 
values appearing in the Faddeèv equations for our initia! 
aod fmal stales (T ..... Q), the inlegral in Eq. (14) is regular · 
and eauses no problems. This one-dimensional integral 
equation ean be solved by matrix inversion. When the en- , 
ergy z=E-(3/PI4mnl-2!l8 BMs equals tbe energy E.J 
of a two-panicle bound state v,)=l, the t matrix bas a 
pole in the sinslet case tP••O). We come back to this 
problem shonly. 

In tbe angular-momentum basis the partiele rmuta
tion operator Pin Eq. (lOl bas the representation · 

f
t . 6('ll't-PI 1)(,;2-p'l · . 

(pqa]P]p'q'a')=l(pqalp'q'a'h+l(pqa]p'q'(t'h= .;. 1dx~ (p•)'+l Ga.rlq,q',xl, US) 

"ith ,;1=[lq'l2+<q2/4)+qq'x)112, 11'2=1ql+[(q')l/4]+qq'x )'12, and 

(16) 

The functions Pk(x) are Legendre polynomials of the eosine x of the angle between q and q' and g~ji1112 is the so
called geometrical factor, a complicated expression in terms of 3-j and 6-J symbols, for wbich we refer to Glöckle's 
monograpb8• 

Tbe remaining operator G0(El in Eq. (lOl bas a simple form in the basis ]pqa ): 

[ L :l.i.. l-1 §JJ!.::.eJ.Mi.=.i1 (pqa I G0(E) lp'q'a')= E- -
4 

-2!lsBMs l 2 ll...,•. 
mH mH P q 

(17) 

For low temperatures, tbe enersy E=(pälmHI 
+<31J614mHl-31l8 B <0 approaches tbe energy for three 
polarized electron spins. Therefore for tbe final state, 
where Ms=±f, the energy factor in large parentheses in 
Eq. (17) is nonvanisbing. For the initia) state, on the 
otbet hand, the denominator vanishes wben pl+3ql/4 
=P~+3q6!4. This leads to singularities9 in the kemel of 
tbe Faddeev equation (10). For T ..... o, howe,·er, the con
tribution of the singularities goes to zero continuously. 
We \\ill comebacktotbis problem shonly. 

Equation (!0) is a two-dimensional inlegral equation. 
The dimension of the kemel G0t~P is too large to solve 
the equation by matrix inversion. Instead, we sol\'e it by 
iteration (if the Neumann-series dh•erges, it is summed us
ing Padê's metbod10). The successive terms in the serles 
build in scattering correlations between the particles. 
Note that the final state I t,b 1 ) in our previous discussion 
of the Kagan dipole mechanism [see Eq. t2l] is just the 
driving term I 1/>) of the Faddeev equation for the final 
state. The first iterated term G0t!P I tf>) is the state on 
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the Jeft·hand side of the dipole interaction in the treat· 
·ment of the dipole·exchange mechanism (Sec. Ill). 

The advantage of the Faddeev equation is that its ker· 
nel is compact so that it bas a unique solution.11 The 
driving term I cf;), however, in general contains /) func· 
tions, which one cannot discretize. Therefore, inslead of 
werking with IX) we use another state IX). For the fi. 
nal state we write I X)= I X)- I cf;), whicb obeys 

IX)=Got~Picf>)+GotfPIX). 08) 

The driving term in tbis equation no Jonger contains /) 
functions. The driving term of the Faddeev equation of · 
ihe initia! state may be written as • 

I cl>) =(1 +Got~l( l+P:3l I cf>o) 

(19) 

where I cf;0 ) describes the ftee motion of three polarized 
atoms. We now define IX) as IX}-(l+P%3llcf>o) 
- G0t~S I cf;0 ) and find I X) to obey the Faddeev equation · 

IX)=GotfPGot~Sicf>o)+Got~PIX}. 120) 

Once again I) functions have been eliminaled from the 
driving term. 

In Eqs. (18)-(20), Go and 1~ have energy arguments E. 
Because of the pole$ of tbe 1 matrix (11) for I= j at 
(3q214mfll=E-Ev~-2JI.BBM5, the kemel of the Fad· 
deev equation (18) for the final !_!ate is irregular. These , 
pol es also occur in the solution I X). The physical mean
ing of these poles in the solution is that they are associat
ed witb waves extending to infinity in all open (elastic and 
inelasticÏ channels COrtesponding to the possible molecular 
states vj. The poles are handled in the following way. We 
define a new state 1 X) by splitting off the pole factor 
from IX): 

(pqa IX>=<pqa IX> 

xiJ[E- :~: -Ev~-2JI.BBMrie ]• (21) 
in which the product runs over all bound states witb ener· 
gy Evt <E -2J1.BBMs fora certain angular momenturn 1. 
The poles in the drlving term of Eq. (18) are eliminaled in 
this way, but those in the kernel in the new integral equa
tion f or 1 X ) are not. The Jatter, however, çan be handled 
by wrlting its kemel as a sum over individual pole terms 
and subsequently dealing with a pole at a specific q value 
q' by means of the following equation: 

I. .. d [(q) J." d [(q)-/(q') 
o q qz-(q')2-ie o q q2-lq'l2 

+[(q') fo" dq 2 ( 
1
.,2 · 

q- q -re 
(22) 

forsome regular function [(q ). Here the inlegrand of the 
first integral in the rhs is regular and the secend term is 
easily ça)culated to be - /(q' ).,..; 12q'. 

The propagator G0 in the initia! state equation (20) 
gives rlse to a singular behavior. Therefore we introduce 
a state IX}=(E-H0 ) IX) for which we finally have the 
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following Faddeev equation 

IX)=t~PGor~SI~o)+t~PGoiX). (23} 

For T .... o, the well-known singularity lines9 in the kemel 
of this equation disappear. 

V. FIRST NUMERICAL RESULTS 

In this sectien we present the first results of an ap· 
proach based on the metbod descnöed in the preceding 
section. These calculations have been catried out by 
means of the local Eindhoven computer, witb some excep
tions for whiçh we.turned to the Cyber vector-array com· 

(o) 

(b) 

~~·lOOK 

FIG. 3. !a) "Fourier transform•• of thé 1=0 triplet potential 
V{,!p,p') as a furn:tion of finaland initia! morneniapand p'; {b) 

1=0 triplet t matrix t'(p,p',:) as a function of pand p' foren· 
ergy z- -100 K. 
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(l>l 

·2 

(c) (dl 

7.5 

(e) 

FIG. 4. (al "Pourier transform" of the 1=1 singlet potendal Vf,(p,p'l as a function of pand p'; ibl 1=1 singlet I matrix 
rg(p,p',z) for enetgy z=-50000 K; (cll=l singlet t matrix tE!p,p',z) for z=-40000 K; !dJ 1=1 singlet 1 matrix rt<p,p',z) for 
z=-20000 K; (e) I= I singlet t matrix tg(p,p'.zl for z= -10000 K. 
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puter of SARA in Amsterdam. The first step is the calcu· 
lation of the functions J1lp,p'l, the "Fourier transfonn" 
of the triplet and singlet potentials. These are shown in 
Fig. 3(a) for s=l, 1=0 and in Fig. 4(a) far s~o, 1=1. 
The second step is to calculate the t matrix \\ith Eq. (14) 
by matrix inversion. As grid points we used Gauss
Legendre points. For the triplet case 7S grid points were 
sufficient. For the singlet case we used 121 points: A 
maximum momenturn value of 35 ai) 1 turned out to be 
necessary. For the triplet potential, a value of·IO aö1 ap· 
peared to be sufficient •. Special care bas to be devoted to 
the choice of the "centra!" Gauss-Legendre point in the 
singlet case, due to the more complicated structure. As 
can be seen in Figs. 3(b) and 4(b)-4(e), where we present 
tL matrices for s=l, 1=0 and s=O, 1~1, respectively, 
weneed more points for the singlet case, again because of 
the oscillations as a function of p and p'. For very Jow 
energies the oscillations disappesr and Jess points are suf· 
ficient. However, energies near z = 0 are Jikely to be more 
important for the solution of the Faddeev equations. We 
also calculated the residues îtlp,p',E111 } of the t&lp,p',z) 
functions at the pole energies with the help of an addition
al equation: 

ît_ofp,p',Eo~)=(plmd V" I '~'vtn)<'l'.r...1 1 V" lp'lmt) , 

124) 

'; ... -.. 

2.0 

~>< .. 2.0 ... 

FIG. 5. Solution of the Faddeev equation (23) for the initia! 
state, multiplied by q1, i.e., q1X .cp,q) as a function of pand IJ 
forchannela=!I=À=L=O, S=f, Ms=-fJ. . 

tbe basic cotrectness of our metbod and also its feasibility 
when applied to atomie hydrogen. 

I p1ml) being the orbital part of the stales I plm1sm,} VI. DISCUSSION 
with normalization corresponding to Eq. 113). The results 
of this calculation were in accordance with results from Anticlpating a more complete approach extending, the 
matrix inversion. previous one-channel calculation, we now present some 

As a check on our program for solving tbe Faddeev general CO!ISÎderations regarding the number of a chan· 
equations we calculated the phase shift of elastic neutron· nels to be taken into account. For the Faddeev equation 
deuteron scattering at an energy Etab•3.26 MeV fora of the i~tial state for r-o, we have s=J, s-f, 
single a channel {/=0, À=O, L=O, s=l, S=f, Ms~f, Ms=-y, L~o, and 1=J..; so if I valnes tanging from 0 
and isospin ~uantum numbers for pair J t =0 and total to lma• are to be included, we need about 1,...12 channels 
system T = T ). We took this nuclear physics example, (see Table 1), because only even 1 va lues are possible. This 
since similàr calculations for atomie. bydrogen are not is because of thefact that pairs of ground·state.hydrogen 

, available in the literature. The results Wète in aceordlmce ' 'atoms'''should· ·hàve, ever'n"l+s +hfor identica):j:>art,icle 
with results presenled previously.9 teasons, where i is the total nuclear spin. With three · b 

To start \\ith we did a one-chiÛlnel calculation for the atOijlS in the initia! state, i= I fot each atom pair. In our 
initial·state Faddeev equation (23), for which we needed recomblnation process proton spins are unaffected. 
40X40 (p,q) grid points and found convergence after 20 Fot the flnal state the Faddeev equation is not as easy 
iterations with Padé's method. We chose tlle most impor· to solve, because we need a far greater number of chan-
tant l=i..=L=O. S=f, Ms~-f channel. Because of nels. In TableI we see the number ofchannels neededas 
the l/q2 behavior of the driving term of Eq. (23), the a function of the maximum 1 value lma•• We now have 
soiution x alp,q)={pqa IX) also displays a 1/ql depen· both singletand triplet channels. Frorn the denominator 
dence. This 1/ql fac:tor is cancelled by the ql phase- of the propagator, the energy argument of the t matrix 
space factor of the matrix element in Eq. (9). For this and t~e fac:t that the geometrical factor is independent of 
reason and to see the underlying structure we plotled Ms, 1t can be concluded that the transition amplitude fot 
q~ alp,q) as a function of pand q in Fig. s. This func- the Ms=+f channel lo-t=+tl can be obtained from 
tion is purely real, because of the disappesrance of the the Ms=-+ lo-t=-fl c:hannel by doubling tbe mag· 
singularities for r -0, and obeys tbe "one channeJ» netic field B. We have an additional factor of -2 from 
Schrödinger equation. We indeed checked that it fulfills the spin matrix element of the dipole interaction in Eq. 
that equation. , (9): 

Funhermore, we did a preliminary one-channel calcula· /:t..-+ 112
191=_21;{.,--112(2.8). 

tion of the final state with 40X 50 (p,q) points, in which r· ~· 
(25) 

we included eight poles of the kind mentioned in Eq. (21). 
We found convergence with Padé's metbod after 25 itera
tions. Clearly, the first results given in this secdon show 
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As a consequence there is no need to calculate the neld 
depêndence for both Ms channels. In interpreting TableI 
it is of importance to point out that even and, odd I+ i. 
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T ABLl> I. Number ot coupled channels as a f unction of the 
maximum angular momenturn /,... for the initia!· and linal-

Initia!. 
Final 

2 2 3 3 
6 9 12 IS 

channels are uncoupled. This simplification of our three
particle problem foliO\\'S from tbe diagonality of t• and 
G0 with respect to I and À. and frorn the fact that the 
geometrical factor does not couple even and odd 1 +À. 
Furthermore, the initia! state bas even angular momenturn 
quanturn numbers I=À (othen~se not understandable) 
and the dipole interaction couples triplet channels only. 
As a consequence, only the 1 +i.. even channels are possi
bie both ior .the initia! and final states. From the conser
vation oi total angular momenturn J=L+S, we would 
have botb L=l (i.e., 11-11 :;;A:s;l+ll and L=2 (i.e., 
11-21 ;:!\ÎI.:!\1+21 channels. However, the dipole in
teraction transferring angular momenturn I AL I 
= 1 AS 1 = 211 frorn spin to spatlal degrees of freedom, 
only L = 2 is allowed. These considerations lead to the di
rnensions of independent sets of coupled channels given in . 

1R. M. C. Ahn, J. P. H. W. van den Eijnde, C. J. Reuver, B. J. 
Verhaar, and I. F. Silvera, Ph)'S. Rev. B 26, 452 (1982); 1. P. 
H. W • .van den Eijnde, C. J. Reuver, and B. 1. Verhaar, fbfá. 
28, 6309 (1983). 

ZH. F. Hess, D. A· B<ll, 0. P. Kochanskl, D. Kleppner, and. T' 
1. Gre)'tàk, Phys. Rev. Leu. 52, 1520 (1984). · · 

'Yu. Kagan, I. A. Vartan'yants, and 0. V. Shlyapnikov, Zh. 
Eksp. Teor. Fiz. 81, 1113 U9Sll [Sov. Phys.-.JETP S4, 590 
(1981)]. 

4L. P. H. de Goey,J. P. 1: Driessen, B.J. Verhaar, and J. T. M. 
\Valraven, Pbys. Rev. Lett. 53, 1919 (1984). 

S:t.f. I. Hafteland T. K. Lim (unpublished). 

Tablel. 
From the considerations in Sec. III we may coriclude 

that our so-called dipole-exchange mechanism is a poten
dal candidate for soh-ing the existing discrepancies of 
present theoey and experlmental recombination kinetics. 
In Sec. IV devoted to tbe principles of an exact approach, 
we have demonstraled that the building bleeks ofthe Fad
deev scheme, tbe potendals and 1 matrices witb their com
plicated structure (see Fig. 4), can be controlled numeri
cally. We have also sliown that Faddeev equations can be 
solved under sirnplifying assumptions. The exploration of 
the rich content of physics contalned in the process of 
recombination of three H atorns, including more and more 
channels, is under way using a vector-array computer. 
This should also answer the question whether three-body 
recombination is sufficiently suppressed at fields larger 
than about 25 T to allow Bose-Einstein condensation to be 
acbieved in a compression experiment. 
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ABSTRACT 

We present results of a calculation of the volume rate constant L;ff 

of dipole recombination in Hlt, in which the bbb incoming state is 

determined exactly by means of the Faddeev formalism. Inclusion of all 

three-particle correlations in the initia! state does not resolvethe 

discrepancies between Kagan's approach and experiment. As a first step 

towards an exact determination of the outgoing atom-molecule state, we 

present a calculation, in which all three-particie collision aspects 

are taken into account, except for rearrangement. This leads to values 
eff for Lg , which are a factor 5 smaller than experiment, while the 

B-dependence of the rate constant still shows a s!ow!y increasing 

beha·vior. On the basis of this state-of-the-art calc:ulation we thus 

localize the cause for the existing discrepancies in rearrangement 

processes. 
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I. INTRODUCTION 

In the last decade, a dramatic progress bas been made in the 

creatlon and stabilization of gas samples of spin-polarized atomie 
1 2 hydrogen. ' The interest in this field bas been stimulated by the 

realization that spin-polarized atomie hydrogen is the only substance 

that remains in gaseous form even at the absolute zero of temperature. 

This would imply that a phase transition to the Bose-Einstein 

condensed state will thus be observable in a weakly interacting Bose 

gas. Furthermore, the simple structure of the hydrogen atom and the 

well-known interatomie interactions allow for a first-principles 

approach to describe the physical properties of this gas. Therefore, 

atomie hydrogen is an ideal medium to test quanturn statistica! 

theories. Beyond this, the experimental work bas already led to 

numerous interesting applications. 

In 1980 Silvera et a1. 3 created the first long-lived sample of 

atomie hydrogen by polarizing the electron spins in a strong magnetic 

"' field using He-coated cells. This leads to a population of only the 

two low-lying a and b hyperfine states (a,b,c,d are the hyperfine 

levels of the 1s ground state of atomie hydrogen labeled in order of 

increasingi"Emergy). Stàtt et al."~ realized that a "subsequent 

depopulation of the <a state with itsadmixedelectron t state, by 

means of preferentlal recombination of the a atoms, would lead to a 

much more stabie doubly-polarized gas of b atoms. This was first 

observed by Cline et al., 5 who found lifetimes orders of magnitude 

larger than before. The next step towards Bose-Einstein condensation 

consisted of compression of the doubly-polarized gas to higher 

densities. 6 The occurrence of a rapid decay"of the gas in these 

experiments has retarded further developments to reach the degeneracy 

regime at high densities. Explanations, restricted to two-body bulk 
7 and surface processes, were found to be incapable to account for the 

experimentally observed rapid decay. This led to the suggestion that a 

three-body dipolar recombination process could provide for the 
8 dominant decay mode of the gas sample. lnclusion of a three-body term 

in the rate equation immediately resolved the previous discrepancies 

between experiment and theory concerning the two-body contributions. 

Up to now, simple approaches to describe the three-body part9 •10 have 
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fa1led to reproduce the experimentally observed magnetie-field 

dependenee of the volume and surface rate constants. There exists an 

additional discrepancy with respect to the absolute magnitude of the 

rate constants: for surface recombination the theoretica! value is 

roughly a factor of 6 too sma11. 10•11 

A better understanding of the three-body dipolar recombination 

mechanism is thus cruelal to remove the obstacles on the way to the 

degeneracy regime in compression experiments. Therefore, it seems 

important to perform a calculation, based on the Faddeev 
12 13 . 

formalism, ' in which the three-body collision aspects are taken 

into account exactly. Furthermore, the use of the Faddeev formalism, 

which bas been succesfully applied in nuclear physics, is of interest 

in lts own right, because it opens possibilities for further 

applications of exact three-body calculations in atomie physics. It 

turns out tbat, eompared to tbe case of Yukawa-type potentlala among 

nueleons, central (singlet and triplet) interatomie interactions 

present more difficulties. This expressas ltself most clearly in the 

case of the singlet potentlal with its numerous bound states. 

Obviously, this situation bas no-counterpart in the few-nucleon 

problem. 

In Ref. 13 (further referred to as I) we started an exact 

treatment of the three-body recombination process in the bulk. Here, 

further developments are presented. In Sec. II we review the metbod we 

use to calculate tbe-effective volume·rate constantLeffin termsof 
g 

the _transition amplitudecf, which-describes-,,.:the transition from the 

incomipg l;>bb ... sta:te,o to -the,,0~~g~Jpg,;,a~()nt;1JIOl~cule,,s,tate, -~~duced by the 

electron'-electron magnetic-dipole interaction. In thepresent paper we 

calculate tbe initiàl state rigorously, by means of tbe Faddeev. 

equation. In Sec. II I tbis equation is introduced, as well as our 

metbod for solving it. Witb respect to the final state we follow two 

approaches. In the first one all atom-molecule correlat!ons are 

neglected. Despite the rigorous treatment of the initia! state this 

does not resolve the discrepancies with experiment. The relation with 
9 an initia! wavefunction previously used by Kagan et al. is discussed 

in Sec. IV, where also a simple, more accurate approximation of the 

.Xact wavefunetion is presentèd. As we already mentioned in I, solving 

the Faddeev equation ,for the final state is an even more difficult 

problem than the determinat!on of the initia! state •. In Sec. V we 
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present an approach to calculate the final state. in which all 

three-particle correlation aspects are taken into account, except for 

rearrangement. We show that this leads to a rate constant, which 

displays a less strong field dependenee than in Sec. 111. lt is, 

however, still increasing with B, and more lmportantly, the absolute 

magnitude of Leff now turns out to be a factor of 5 smaller than the 
g . 

corresponding experimental value. In Sec. VI we therefore come to the 

conclusion that rearrangement (the dipole-exchange mechanism, 

introduced in I) must he the dominant decay channnel. 

I I. DIPOLE RECOMBINATION 

The rate of decay of doubly-polarized atomie hydrogen can be 

described effectively by means of the rate equatlon 

~ -ceff 2 Leff 3 
dt = nH- ~· 

where ~is the atomie density, and Geff and Leff are the effective 

two- and three-body rate constants. The two-body term describes the 

(1) 

I· ·. . • '' .c • / 

decay of the gas due to bb-lab relaxation, in which the transition is 

induced by the weak electron-proton and the stronger electron-electron 

magnetic-dipole interactions. Both interactlons give rise to 

comparable contributions, because the electron-electron dipole 

interaction only contributes in combination with the hyperfine 

interaction. Under normal circumstances, the density of the sample is 

so low that the probability of collislons of an increasing number of 

particles strongly decreases. This explains the fact that higher order 

terms in Eq. (1) can be neglected. However, the three-body part. which 

describes the decay due to dipole recombination, is still important, 

because the transition is caused purely by the electron-electron 

dipole interaction. As we already pointed out in Sec. I the three-body 

term even domlnates for higher densities in compression experiments. 

The rate constant Leff can be written as a sum of bulk and surface 

contributions 

(2) 
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In Eq. (2), A/V is the surface to volume ratio. A the thermal de 

Broglie wavelength and e0 the adsorption energy of an atom on the 

surf ace. 

Up to now, simple models have not succeeded to explaln the 

experimental behavior of L:ff and L:ff. The discrepancies are probably 

in both cases caused by the same mechanism, due to their simllar 

features. Therefore. it seems reasonable to coneentrate first on the 

easier case of volume recombination. We ean distinguish between 

contributions due to single- and double-spin-flip proeesses, for which 

the total final electron-spin projection M$ is ~ or ~. respectively: 

(3) 

Here the factor 2 results from the fact that the final c-atom in the 

double-spin-flip process recombines immediately on the surface, 

removing an additional pair of partieles from the sample. A weight 

factor somewhat different from 2 is also somatimes used in 

ex:perimental analyses. Furthermore, L: and L;: are related by13 

L ~(8) = "!lL ~(28). 
g g (4) 

In I we concentrated on 

L = L~ + L~ g g g • (5) 

the rate constant reprasenting the pure bb~2+H decay, instead of the 

effeetive rate constant, whieh is more important experimentally. 

We assume that the final molecule. eonsists of partieles 2 and 3 
-+ -+ -+ (pair 1). Furthermore, we introduce the Jacobi momenta pand q, p 

being the relative momenturn of pair 1 and ~the momenturn of partiele 1 

relative to pair 1. As we have shown in Ref. 11 

which is essentially the transition probab!lity, described by ltl2• 

summed over all possible f!nal state quanturn nurnbers v, l, m and 

(6) 
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~ ~ ~ 
qf and averaged over all initia! momenta p0 and ~· In Eq. (6) "11 is 

the mass of the hydrogen atom, vlm are the vibrational and rotational 
~ 

quanturn numbers of the molecule and qf is the relative atom-molecule 

momentum. The integral over this final momentum has redueed to an ,., 
angular integral over qf. due to energy conservation 

(7) 

In Eq. (7) -Evt is the binding energy of the molecule and 2(Ms + ÏJJJ.sB 

the Zeeman energy needed to flip one or two electron spins, 
2 2 

J.ls being the Bohr magneton. Furthermore. PÖ("1f + 3qQI~ is tbe smal! 

relative kinetic energy of the three particles before the collision. 

The dipole recombination amplitude f can be described very 

accurately by means of a DWBA-approach, 11 in which the extremely weak 

dipole interaction is treated in first order. The amPlitude f, which 

is essentially a matrix element of the summed dipole interactions V~ 
(the pair k is denoted by the spectator particle) then reduces to: 

(8) 

Here, S is the unnormálized symmetrization operator 

(9) 

where 

(10) 

P
1

j being a permutation operator of particles i and j. 

In the fully symmetrized initia! three-atom state 

Sl+f+)) and final atom-molecule state 1+}-J> of Eq. (8), the central 

interactions in principle have to be taken into account to all orders. 

The (+) and (-) superscripts denote outgoing and incoming asymptotic 

boundary conditions, respectively. Since three hydrogen atoms consist 

of three electrons and three protons, we have to solve six-particle 
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Schrödinger equations. As in the two-atom case, 14 however, we 

reformulate these as three-atom Schrödinger equations15 by the 

introduetion of effective in~eractions, which are essentially the 

Coulomb interactions averaged over the electron motions. These 

effective central potantials consist of direet parts and eontributions 

reprasenting the exchange of two or three electrons. Since there 

exists no completely anti-symmetrie spin state of three electrons, 

there is always at least one repulsive hydrogen pair. Moreover, for 

our polarized initial state the three subsystems are repulsive, which 

prohibits the partieles to approach each other closely. Therefore, a 

three-hody force, descrihing the exchange of three electrons, can he 

neglected. Throughout this paper we deserihe the central interactions 

hy a sum of pair (singlet and triplet) interactions. 

II I. EXACT bbh INCOMINC STATE 

In this section we determine the wavefunction of the bbb ineoming 

state. The metbod we use is based on .the Faddeev formalism. which we 

introduced in I. We start with a recollection of the main results of I 

and continue the discussion started there. 

The stat~ SI >iJl+)> ean~ be regàrèled to dev~lop o~t;of thê fre!;;' 

state 

(11) 

hy suceessive pair collisions. This introduces all three-partiele 

correlations. The orbital part of the free státEiis normalized as a 

product of two Dirac 6-func:tions in momenturn space. The 

multiple-scattering series is generated by the Faddeev equation 

(12) 

where the amplitude lx> contains all terms of seeond and higher order 
c in t 1: 

95 



(+) -1 Here, c0 (E) = (E+io-H0) is the outgoing-wave free propagator, H0 
being the free Hamiltonian including the Zeeman energy and E the total 

energy. Furthermore, t~(E) is the t operator of pair 1 oparating in 

three-particle space, which obeys the Lippmann-Schwinger equation 

(H) 

Since we are only lnterested in recombination at very low 

temperatures, we perform our calculations for T=O. This simpUfles the 
-+ -+ calculations significantly, because the initia! momenta Po and '1o are 

zero in thia case, leading to a trivia! thermal aversging procedure. 

At the same time, the denominator of the free propegator in momenturn 
2 2 . 2 2 

representation is: E-p ~ms-3q ~~+~B = -p ~ma-3q ~~. leading to 

harmless singularities at p=q=O (see I). 

To solve Eq. (12), we introcluc:e the angular momenturn basis16 

lpqa) = lpq (tA)Lf\ (8!4)~>, (15) 

which is normalized according to 

(16) 

In Eq. (15) t, s are the orb! tal and spin angu~ar momen·fa of-'palf 1. ~À ;'' ,. ~~;-,·' ·" ,' <: -~-'--._. -. 
is the orbital angular momenturn of partiele 1 relative to pair 1 and 

Lf\ ,SM5 are the total three-:-particle orbital and spin angular momenta. 

Note that the proton spins are left out of consideration in Eq. (15). 

They remain polarlzed during the process and do not influence the 

dynamica of the recombination. For the polarlzed initia! state the 

spin angular momenta are restricted to s=l, S=3/2 and Ms=-3/2. 

Furthermore, only the total orbital angular momenturn L=O contributes, 

due to the T=O limit. This restricts the number of a channels to be 

taken into account to a few even t=A values. 

With the help of the representation of the various operators in 

the angular momentum basis. as diseussed in I, Eq. (12) is a coupled 
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two-dimensional integral equation. In discreti:z:ed form, using spline 

techniques to express the functions in the values at the grid 
17 points, this equation can be transformed to a matrix equation 

z.1 = !..1 + fJ. ~11 Z.t • (17) 

A C (+) C 
where the veetors z.1 and !..1 represent lx> and t 1PG0 t 1SI~0>, the 

Faddeev component and driving term of Eq. (12), respectively. The 

matrix ~11 stands for the kemel t~PG~+) of Eq. {12). Furthermore, we 

added the strength parameter p., for whlch we will finally substitute 

the value 1. 

Due to the oscillating behavior of the t operator and 

consequently also of the solution as a function of momenta, we need at 

least 40 pand 40 q Causs-Legendre grid points to describe z.1. The 

kernel ~ll is therefore too large to solve Eq. (17) by matrix 

lnversion, even for a few a channels. Instead we solve it by 

iteration. Furthermore, we use Padé's method, 18 because the Neumann 

series diverges for the physical value ~1. as a result of the 

strength of the triplet potential. The iteration series converges for 

complex fJ. values with lv.l<t/IXmaxl' where Àmax~2.0 is the eigenvalue 

of ~11 wlth the largest absolute magnitude. Because of the compactness 

of l-~11 it is possible, to construct an analytic continuation of 

z.1(v.) into the complete complex p.-plane in the form of a meromorphic 

function, i.e. a ratio of two regular analytic functions. In our case 

the applicatlon of this Padé metbod to the iteration series generated 

by Eq. (17) leads to a non-uniformly converging behavior of the 

solution: for small p and q values z.1 converges rapidly, but for 

larger p and q values we find no stabie solution. at least within a 

reasonable number of iterations. To solve this problem we make use of 

a variant of the Nyström method. 19 In addition to Eq. (17), with fJ. 

replaced by l, we introduce the equation 

(18) 

which links the solution z.1 based on the initia! set of grid points to 

that based on an alternative set, denoted by the subscript 2. The 

number of points of this last set is supposed to be only a fraction of 

the initia! set. With Eqs. (17) and (18) we subsequently formulate an 
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equation for !· the direct sum of z1 and z2 : 

Y=A+KY, - - --
where 

and 

K = = [ 
~11 + ~12 ~ ~1 

~1 

-1 In Eqs. (20) and (21) we used ~ for (l-~) . It can be checked 

(19) 

(20) 

(21) 

that the eigenvalues of the new kernel ~of Eq. (19) become 

arbitrarily smal!, when the set of points denoted by 2 approaches that 

denoted by 1. In this limit the matrix~ becomes singular, lts upper 

submatrices approaching the lower ones. If the sets of points are 

different, one can systematically improve the vector ~ by iteration of 

Eq. (19). That convergent procedure leads in the upper component of! 

to the desired solut!~n z1• To solve Eq. (19), the dimension of~ 

should be smal! enough to be able to calculate the inverse ~· and on 

the other hand it should be large enough in order to obtain smal! 

eigenvalues of ~· i.e. in order for ~ ~2 to describe the most 

essentlal correlations. A choice of 15 p and 15 q points fulfllls both 

demands, leading toa spectrum of eigenvalues of~· with 1Xmax1~.15. 

Therefore, we now find convergencel after about 10 iterations. 

We solved Eq. (19) with various numbers of channels. The four 

lewest partlal waves up to l=X=6 are sufficient to describe tne 

wavefunct!on of the initia! state and to find a converged transition 

amplitude. Furthermore, the l=X=O partlal wave appears to be dominant. 

As we already pointed out her~ and in I, the wavefunction in 

momenturn space displays a lot of structure and is not useful for a 

clear physical picture. To understand the underlying physics, we 

therefore performed a Fourier transformation of the varleus terms of 

Eq. (13) to configuration space, by means of 
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(22) 

where +a(p,q) = (pqaiS+~+)) is the orbital part of the symmetrized 

initia! state in the angUlar momentum basis. In our special case of 

la> = 1(22)00 (1~) ~ -~>. it is possible to write SI+~+)> as a 

function of r, R and a: 

+(r,R,a) = 4! ~. (-1)2~P2(cosa) +a(r,R), 

e 

where a is the angle between the Jacobi coordinates 1 and i 

(23) 

(see Fig. 1). Note that the free part Sl~0> in Eq. (13) contributes 

only an l=À=O partlal wave. This is also the case for the term 

C~+)t~SI~0>. while the remaining parts contain in principle all even 

I.=À partlal waves. In Figs. 2a-2c we plotted +(r,R,a) as a function of 

r and R for e=0.~/4 and ~/2. The wavefunction is symmetrie under a 

permutation of particles 2 and 3, leading to symmetry .of +(r,R,e) with 

respect to the interchange of a and ~-a due to the evenness of l and 

À. In each of the figures we observe that the wavefunction vanishes 

for r~6 a0 , which is caused by the strongly repulsive.triplet 

interaction for small distances between particles 2 and 3. This effect 

also.plays a. role·.in F1g.:.2a for 9=0, when 1:he distance between 

particles hand 2,,,1R~rrl~6,.1l0 .. ,.Jn,:,Figs. 2b and 2c we see t~at +(r.R.e) 

2 

Fig. 1 The Jacobi veetors 1 and R. 
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behaves for large R essentially as the zero-temperature two-particle 

triplet wavefunction +t(r). For small R values, however, +approaches 

~t(*r), because the distance between particles 2 or 3 from partiele 1 

is only *r in this case. Furthermore, +(r,R.e) approaches the free 

wavefunction <t Rl<(s*}SM5 1s~0> = 6/(2wb)3 for large distances rand 

R. 
It is of interest in this conneetion to point out the role of the 

various termsin Eq. (13). It turn, out that the (l+P)G~+)Ix> term 

contributes only in that part of configuration space where all three 

particles are closely together. Similarly, a G~+)t~SI~0 > term 

contributes only when the distance between the atoms of pair i is 
(+) c . (+) c c smal!. Note that PG0 t 1 ~s effectively equal to G0 (t2+t3). Taking 
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partiele 1 apart, the non-zero part (1+G~+)t~)SI~0 > of Eq. (13) 

converts a free three-particle state into a state in which the pair i 

wavefunction is distorted to a triplet scattering state. 

We now turn to the calculation of the effective rate constant 

with the help of Eqs. (6) and (8). It turns out that the expansion of 

~t(ltR~I) in partlal waves 2=À converges very slowly, due to the 

fact that ~t(r)~ for r~6 a0 . Therefore, the contribution of the term 

PC~+)t~SI~0> of Eq. (13) to ~(r,R.e) and to the dipole matrix element 

cannot be calculated in the angular momenturn basis. We calculated it 

in the momenturn basis lpq>j(s~) SMs>· 

Another numerical problem arises from the strong increase of the 

dipole interaction at smal! r. The fully correlated initia! state 

gives rise to a suppression of the small r contribution to the llr3 

magnetic-dipole integral. It turns out, however, that the separate 

terms in Eq. (13) lead to large (but finite) contributions of the 

order of a "free" matrix element, which cancel when added. The ensuing 

loss of accuracy is easily avoided. The magnetic-dipole interaction 

bas an artificial 1/r3 dependenee only as a result of the Shizgal 
20 approximation, according to which the electronic magnetic-dipole 

moment of the H atom is located at the position of the proton. This is 

a good approximation, except for smal! distances, where the dipole 

interaction should rapidl.y decrease to negligible values. We therefore 

multiply it by a function g(r) which damps its 1/r3 behavior near the 

origin and which is equal to 1 for distances r~6 a0 . Clearly, apart 

from this restriction, the precise form of g(r) is unimportant. This 

is confirmed by numerical results. 

We now turn to the evaluation of the effective rate constant. In 
9 a previous calculation of Kagan et al. both the exact initia! and 

final state wavefunctions were replaced by simple approximations. As a 

first step we now follow the same procedure for the final state: we 

neglect all atom-molecule correlations. In this case, the dipole 

interaction V~ for k=l does not contribute to the transition 

probability, because it can cause no transition from s=l to s=O. 

Furthermore, the results presented bere do not include any 

contribution of the dipole-exchange mechanism, as a result of the 

neglect of all atom-molecule interactions. The calculation can be 

regarded as an improvement of the original evaluation of the Kagan 

dipole mechanism. 9 
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As in previous calculations, the major contribution to f turns 

out to be supplied by the v=l~.2=3 molecular state, while the smal! 

remainlng fraction comes from the v=l~.t=l state. In Fig. 3 we present 
+~ ~ the separate contrlbutlons L and L to the effective rata constant, g g 

evaluated with the help of the exact initia! state, as a function of 

magnatie field B Ccurves 1 and 3). In Fig. ~we also plot the total 
eff ( effective rate constant L as a function of.B curve 2). For 
g 

comparison we also give the results of the calculation of Kagan et al. 

(curve 1). The difference between the curves is smal!, both .in 

t 
-;; 

". .... 
!!I 

i~ 
'o 

2 

= s +Ij" 

'em-

-'A ~ 
Fig. 3 The single- and double-spin-flip contributtons Lg and Lg to 
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the rate constant as a flmCtion of magnette field B. 

curve 1: M5=+~. exact initia! state, undistorted final state. 

curue 2: Ms~· exact inittal state, (in)elastica!ly distorted 

fina! state. 

curue 3: M
5

:-1A, exact initta! state, undtstorted ftna! state. 

curue 4: Ms=...JA, exact inttta! state, (tn)elastically distorted 

final state. 



f 
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· Ftg. '* The·effecti.ve rate toruit.àÎlf. l:ff as (1 Functton of B. 

curve.. 1 :. J(a.QC!Il' s re sult. 

curve 2: exact tnf.tt(ll st(lte, Wldtstorted ff.n(ll st(lte. · 

curve 3: exact intti(lt st(lte, (in)el(lSttC(ll.ty distorted 

fJnaJ stqJe .. 

absolute magnitude and in B-dependence. We will come back to this 

remarkable resemblance in the followlng section, where we compare the 

initia! states of both calculations. 

Since the results are still .not in agreement with expertmental 

data, we come to the important conclusion that the poor treatment of 

the final state is the cause of the discrepancies. A better treatment 

of the final state, which was also the aim of our earlter calculation 

of the dipole-exchange mechanism in I, will be discussed in Sec. V. 
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IV. OOMPARISDN WITH THE CALCULATION OF KACAN 

As we pointed out in the previous section, the approach of Kagan 
9 eff et al. leads to an effective rate constant L , which displays a 

g 
similar behavior as a function of B, as the results obtained in Sec. 

111. We bere investigate the reason for this resemblance. In both 

approaches the correlations between the final atom and molecule are 

neglected •. Therefore, the only difference between the calculat!ons is 

the character of the !n!t!al state. We first analyze the features of 

Kagan's incoming state and subsequently discuss their effect on the 

transition probabil!ty. 

In the initia! state of Kagan, only the correlat!ons between the 

recombin!ng atoms (pair 1) and among the particles interactlog via the 

dipole interaction (pair 2 or 3) are.taken !nto account in the form of 

a product of two pair wavefuntions. For !nstance, in the ~ term of 

Eq. (8): 

(24) 

For the contribution of~· ~t(I-R~AtiJ is replaced by ~t(IR~tl). As 

in the previous section, the zero-temperature waveruntion 
-3/2 

~t(r) is normalized as (2rh) for larger r values. 

The spin part of the initia! state is symmetrie under all 

partiele permutations. Because of the boson character of H atoms, the 

orbital part of the wavefunction should also be completely symmetrie. 

However; because of the fact that not all partiele pairs are distorted 

by the triplet !nteraction, Eq. (24) is only symmetrie under a 

permutation of particles 1 and 2, and not under an exchange of other 

atoms. Therefore, an expans!on of Eq. (24) in partlal waves t, 
.... 

descrihing the dependenee on the angle e between the Jacobi veetors r 

and R, shows that unphysical odd t values contribute to the 

wavefunction and the transition amplitude. Moreover, the contributton 

of the odd partlal waves to f is essential in Kagan's model in order 

to obtain reasonable results: odd t values have to be included to 

obtain a vanishing wavefunction for smal! distances between the 

particles 1 and 3, interacting by the dipole force ~· 
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To compare Kagan's wavefunction Eq. (24) with our exact initia! 

state, we plotted the spatlal part of Eq. (24) as a function of r and 

R in Figs. 5a-5d for 9=0,v/4,v/2 and v. Notice that the figures for 

9=0,v/4 and v/2 look very similar to the corresponding surfaces for 

the exact wavefuntion, presented in Fig. 2. In spite of the lack of 

symmetry of Kagan's wavefunction, it possesses the essential elements 

of the exact initia! state. For ~. however, the difference between 
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the wavefunctions becomes significant, as can be seen by comparing 

Fig. 5d with Fig. 2a. This results from the neglect of correlations 

between particles 1 and 2, which is of importance for ~. The 

asymmetry of the wavefunction with respect to the exchange of e and 

1T-9, which can be observed by cernparing the surfaces for 9::0 and 9=1f, 

demonstratas again that Eq. (24) contains odd l values. 

An essential element in understanding the effectiveness of 

Kagan's approach can be found in the zero-tempersture approximation. 

This causes the wavefunctions to "heal" withindistances of roughly 

10 a0 • In a way the atoms hebave a,s transparent objects, except for 

smaller distances. Therefore, the wavefunction of Kagan is a good 

approximation of the exact initia! state for the complete 

three-particle configuration space, except for the part where the 

distance IR~il between particles 1 and 2 is Iess than to a0 • 

Apparently, the contribution from this forbidden region is of minor 

importance for dipole recombination. 

The relative error, due to the contributton to f from smal! 

IR-~tl values is roughly proportional to 1/r~. i.e. to the average 

strength of the dipole interaction between atoms 1 and 3, when 

particles 1 and 2 are within the forbidden region. Here, rb is the 

most probable distance between the' bound particles, directly after the 

recombination. Ob~iously, the error in lfl2 increases for more 

strongly bound states. For the dominant v=l4, l=3 state, the error 

turns out to be roughly 20%. For the v=l4, l=l state it bas already 

increased to a factor of 2. Therefore, we conclude that the 

applicability of Kagan's approach decreases. when the contribution of 

stronger bound molecular states increases. We come back to this 

shortly (Sec. V); 

Cuided by the success of Kagan's approximation for the initia! 

state, an obvious improvement to Eq. (24) would be a Jastrow-like 

expression: 

(25) 

-+-+-+ -::t-+ -+-::t,.. with r 1er, r2=-x~r and r3=K~r. This wavefunction contains the pair 

correlations in a completely symmetrie way. Furthermore, Eq. (25) 

describes correctly the behavier of the initia! state, in the case 
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that one of the particles is separated from the others. In Figs. 6a-6c 

we plot Eq. (25) as a function of r and R for 9=0,v/4 and v/2, 

respectively. The difference with the exact wavefunction (Figs. 2a-2c) 

is hardly observable. Only when all three atoms are located close to 

the forbidden region, there are smal! deviations. We conclude that Eq. 

(25) provides for a simple and accurate approximation of the T=O bbb 

incoming state, also for more strongly bound molecular states. 
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V. THE FINAL STATE 

A calculation of the outgoing atom-rnolecule scattering state 

based on the Faddeev formalism is in principle possible. However, as 

we already pointed out in I, the splution of this problern is even more 

difficult than the determination of the initia! state, because of the 

rapidly oscillating character of the singlet t matrix and the nurnerous 

bound states, which enter into the calculation. Furthermore, the 

nurnber of a channels which have to be taken into account is at least a 

factor of 6 larger, and the solution now depends on the strength of 

. the applied rnagnetic field. Theref0 re, we present as a first step a 

calculation of ~~~-)), in which atom-rnolecule (in)eleastic scattering 

is included. The only approxirnation left is the neglect of 

raarrangement processes. 

Our starting point is the three-particle Lippmann-Schwinger 
16 equation 

(26) 

The channel resolvent operator G~-)(E) of pair 1 is given by 

where 

is the free three-particle Harnilton operator, including the Zeeman 

energy. The driving term 1<1>1> of the Lipprnann-Schwinger equation 

(26) was used in Sec. III instead of the exact final state 

(27) 

(28) 

~~~-)) to calculate the rate constant. It is an undistorted 

wavefunction, in which pair 1 is bound with vibrational and rotational 

quanturn nurnbers v and 1!, while atorn 1 is free. In the angular momenturn 

basis it can be expressed as follows: 
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1<1>1 > = l+.vlm ëif> I (Qlh) ~s> = 

l (tm ~lUi_) Y~(~f) l+.vt qf:>t.> I(O'A) ~>. 
~ 

(29) 

where the spherical harmonies Y~ describe the angular dependenee of 

1<1>1> and (tm ~lUi_) is a Clebsch-Gordan coefficient. For reasons of 

linearity we can replace 1<1>1> in Eq. (26) by the vector 

410 

lwvt qf:>t.>I(O'A) ~s> = Jp
2
dp 'i've(P) lP qf (t:>t.) ~>I(OK) ~8>. (30) 

0 

and solve Eq. (26) for such a vector separately. 

Taking into account the possibility that the molecule changes its 

vibrational and rotational quantum numbers during the collision with 

the atom, but excluding raarrangement of atoms leads to the following 

expression for the final state: 

410 410 . 

l ... f<->> = ' r. .. 2d .. r .. 2d .. ·'· c ") c "> "' l JP P Jq q "'v"t" P "'v"t":>t." q 
v"t":>t." 0 0 

(31) 

The function "'v"t":>t."(q") describes the motion of the atom in the 
channel denotedby the quantum numbers v", t" and 1<". The vibrational 

quantum number v" runs over all possible bound states, belonging to a 

specific angular momentum l" of pair 1. Furthermore, l" is limited to 

odd values, due to the singlet character of the subsystem. In 

conneetion with the fact that l!"+:>t."=even (see I), this restricts ;>.." to 

odd values, which obey the triangular rula 11.!"-LI~:>t."~l!"+L. Nota that 

Eq. (31) does not include a sum over L.Mt and Mg due to the fact that 

the central interactions conserve these angular momenta. 

The solution of the Lippmann-Schwinger equation (26) is in 
16 principle not defined uniqualy, becausa the two statas 

P12P23 1+.~-)} and P13P23 1+.}-)> ,for which pair 2 or 3 is bound, 

respectively, obey the homogeneaus equation and can be admixed 

arbitrarily. However, our special choice Eq. (31) for 1+.~-)), in which 
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raarrangement terms are excluded, prevents the appearance of these 

undesired solutions. 

Substitution of Eqs. (30) and (31) in the Lippmann-Schwinger 

equation (26) and a subsequent projection of the equation on 

l+v'i'q'À'>I(~) ~s> leadstoa set of coupled one-dimensional 

integral equations: 

1 
+ 2 .. 2 

Ev2-Ev, 2 ,+3qf/4~-3q /4~-iO 

lXI 

x r .. 2d .. v < • ") Jq q v'2'À' ,v"2"À" q ,q 
v"l"X" 0 

where we used the energy-conservation relation (7) to rewrite the 

energy denominator. The coupling matrix of Eq. (32) is given by 

lXI lXI 

V ( • .. J r . 2d • ••• < . J r .. 2d ..... < .. J 
v'2'À' ,v"2"À" q ,q = JP P '~'v'2' P JP P '~'v"2" P 

(32) 

0 0 (33) 

x <p'q' (2'À')~I<(O'h) ~si (V~+ v~) I(O'h) ~>lp"q" (2"À") LML>. 

In our notation we suppressed the label L of the coupling matrix, 

since this has the unique value 2. This results from the fact that the 

dipole interaction, being a tensor operator of rank 2 in orbital 

space, causes transitions from L=O in the initia! state to L=2 in the 

final state. Eq. (33) is essentially the Fourier transform of a matrix 

element of the non-spherical atom-molecule interaction 

(34) 

c c resulting from the average of the central interactions V2+V3 weighted 

by the product of the radial wavefunctions of the initia! and final 

molecular states: 
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Cl) 

V:·~· ,v"~ .. (R) = Jr
2
dr +v'#!'(r) +v"l"(r) 

0 
1 (35) 

x Jd(cose) P"(cose) (vdirect< li~~ij) + V direct( IR-Kil)]. 
-1 

The direct interaction is the sum of triplet and singlet interactions. 
::Lc 1 c 

vdirect= ~s=l + ~s=O' which bas a strongly repulsive character. Only 
even" values, which obey the triangular inequality 11!'-t"I~K~l!'+l", 

contribute. In Fig. 7 we present the potentlal surfaèe V •n• ••• (R,e) V c; ,V c; 

as a function of x'=Rsin9 and z'=Rcose, descrihing the elastic 

interaction of the atom and the molecule with quantum numbers v'=14. 

1!':3. Note that the potentlal is extremely repulsive for x·~ and 

z'~.7 a0 , avoidlng a close approach of atom 1 and one of the bound 

atoms, when the bound particles of the subsystem 1 have their most 

probable distance ~.4 ao. 

Eq. (32) cannot be solved numerically as it stands, due to the 

presence of the Dirac 6 function and the singular energy denomlnator. 

Instead, we solve the equation for the corresponding half-shell 

t matrix 

11)0000 

200000 

t 
g IODDOD 

> 

0 

Z'(OoJ-

Ftg. 7 The dtagonnt potenttat V •n• •n• as a functton of x'=Rsin9 
V c; ,V c; 

and z'=Rcose for v'=l4, #!':3. 
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Q) 

I "2d " V ( ' ") q q v'l')..' ,v"l").." q ,q 
(36) 

v"l!.").." 0 

The Lippmann-Schwinger equation for T contains no 6 functions anymore 

and the poles in the integral kemel of the equation, related to the 

presence of additional incoming waves in the open channels, can now be 

handled without problems (see I). 

We now turn to results forT, ~ and subsequently for L~. L:ff. 

We solved the equation forT for various outgoing states v,t,À. lt 

turns out that only the 1+~-)) states corresponding to v=14,1!.=3 and 

v=l4,1!.=1 contribute significantly to the recombination rate, as was 

the case in Sec. 111. However, within each of these 1+~-)) states the 

coupling to other loosely bound states with quanturn nurnbers v' and 8' 

bas to be taken into account. Scattering in the elastic channel 

appears to be dominant, while the contribution of other states 

decreasas strongly with an lncreasing energy separation Ev. 8 .-Evl from 

the elastlc channel. lnclusion of the six possible levels with v'=l3, 

8'=1.3.5, 7 and v'=l4, 8'=1.3 is found to be sufficient to solve the 

problem. Including the corresponding >..' values, the coupllng within a 

total nurnber of 16 channels is taken into account for each 1+~-)) 
state. Furthermore, we have to use roughly a nurnber of 20 q grid 

points to find a converged solution. Thls leads to a matrix equation, 

of which the dimension is smal! enough to solve by matrix inversion. 

From T we calculate ~ by making use of Eqs. (32) and (36). The 

wavetunetion in coordinate space can subsequently be evaluated by 

means of a Fourier transformation 

)..' 
= 1 (37) 

In Flgs. Sa-Sc we plot the real and imaginary parts of these functions 

for >..'=1,3,5 and v'=l4,2'=3, while the final channel has the quanturn 

numbers v=l4,/!.=3,À=3. Note that ~'l')..'(R) vanishes for smal! Rvalues 

as a result of the repulsive character of V. Scattering within the 

112 



·•'r-----...:;."-----~'":......---~"·• 

... . .. 

.... .. .. 

Rlaol-

Riool-

.. • .. .. .. .. 
~·.s 

... . .. 
~ _........_ 

lal 

.... .. .. 
... , . •• .. .. ... , 

Riool-

Fig. 8 The re!~ttve atom-molecu!e motton ~v'/!'À'(R) in the channe! 

v'=V=l4, 1!'=1!=3, for (a) À'=l. (b) À'=3 a.n.d. (c) À'=5. The 

fina.l channel ts v=l4,/!=3,À=3. 
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elastic channel 'h'=À=3 is observed to be dominant. The coupling to 

v·.~· states, except for v'=14.~'=1 and l'=3, is so weak that the 

solution in these channels would be hardly visible on the scale of 

Fig. 8. 

With the help of the final state presented bere, we calculate the 
~ effective rate constant, as well as the partlal contributtons L , as g 

a funtion of B. The results are presented in Fig. 4 (curve 3) and 

Fig. 3 (curves 2 and 4), respectively. Although the magnetie-field 

dependenee is now less strong, Leff is still increasing in the range 
g 

6-8 T where expertmental data are available. Furthermore, the 
eff magnitude of the effective rate constant L is roughly a factor of 5 
g 

too smal! in this range. Therefore, we are led to the important 

conclusion that raarrangement (the dipole-exchange mechanism of I) is 

an essential ingredient of the decay mechanism. and should be included 

in any future attempt to give a realistic description of volume 

recombination. 

Compared to the case of the undistorted final state, the 

contribution to the dipole matrix element is largely suppressed for 

small atom-molecule distances R due to the repulsive character of the 

non-spherical interaction, especially for smal! angular momenta A of 
eff atom 1. This is the reason for·the smaller absolute magnitude of Lg . 

The incorporation of three-particle correlations in the initia! and 

final states explains the weaker field dependenee of the effective 
eff ~ rate constant Lg . In the calculation of Kagan, the final momenturn qf 

of atom 1 relative to the ~lecule is to be induced by the dipole 

interaction. This momenturn transfer decreasas for increasing 

magnetie-field strengths. leading to a strongly increasing 

B-dependence of the rate constant (Fig. 4: curve 1). Part of this 

momenturn change can be provided by the additional triplet 

interactions, taken into account in the exact SI>~'~+)>. This gives rise 

toa first sign of a weaker B-dependence (curve 2). The effect is 

further amplified by the incorporation of the final atom-molecule 

interactions, because the effective repulsive interactlens can cause 

large momenturn changes of the particles (curve 3). 

We end this section with an important remark concerning the 

approach of Kagan et a1. 9 In Sec. iiV we explained that Kagan's 

approximation with respect to the initia! state is excellent, as long 
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as the contributions to Leff are dominated by extended bound states. 
g 

The relativa eontribution of the v=14.l=l state increases due to the 

inclusion of the final state interactions. A replacement of our exact 

initia! state by the approximation Eq. (24) indeed turns out to be 

disastrous: the absolute magnitude of L;ff increases by roughly a 

factor of 2 in a Kagan-like ealculation, due to the over•estimate of 

the v=14. l=l contribution. 

VI. CONCLUSIONS 

We presented a calculation of the effective bulk rate constant 
eff Lg in which all three-particle collision aspects are included, 

except for rearrangement. Kagan's approximation with respect to the 

initia! state appears to be excellent. as long as the contribution to 

the transition probability is dominated by extended bound states, like 

the v=14.l!:::3 state. Inclusion of the initia! state eorrelations gives 
eff rise to a weaker B-dependence of L . The dependenee on the g 

magnetie-field strength becomes even weaker due to the incorporation 

of (in)elastic atom-molecule scattering in the final state. The 

absolute magnitude of Leff is now roughly a factor of 5 too smal!. We 
.. · . .,, ,,,; ... g ·.·.• ..... ".·- • . ..• > ·. 

therefore cönclude t.hat raarrangeinent (the dipole-exchange'mechanfsm), 

is very important.·Furthermore, it seems probable that the 

dipale-exchange mechanism is also essential to resolve the 

disagreement with experiment in the case of surface recombination. 
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CHAPTER 6 

Volume I tOA. numbcr 7,8 PHYSICS LETIERS 

SCATTERING LENGTHAND EFFECTIVE RANGE FORSCATTERING 
IN A PLANE AND IN HIGHER Dl MENSlONS 

IZ Alll!US! 1985 

BJ. VERHAAR, L.P.H. DE GOEY, E.J.D. VREDENBREGT.and J.P.H.W. VAN DEN EIJNDE 
D"f'artmclll of Physia, E/m/h()l)tll Unltoerllil)' of Techi!OÛifJ~ 1'.0. Box jiJ. 56()() MB EPul/wv<'ll, Tlu! Nethcrlmlás 

Received 15 March 1985: a<:ceplcd for publication 14 June 19SS 

The conccpls of scaucring length and effec~ive range for low·energy seauering are introduccd for general dimension n in 
such a way that previoll$ly encountercd dimensional and discontinuity problcms are avoided. The theory is applied I<> 
two·body scattering in two-dîmcnsional atomit hydrogen gas adsorbcd lo a supcrfluid helium film. 

J. Jntroduction. The study of two-dimenslonal gases adsorbed to a superfluid helium surface or helium interface 
[1] has strongly stimulated thc devclopment of tbeorics of two-dbnensional (2D) systems.ln view of such applica· 
tions we introduced [2] scattering lcngth and effeetivc range parameters forscattering in a plane, in analogy wltb 
the commonly used correspondlng conceptsin tilree dimensions. AppUcatlons to 2D atomie hydrogcn gas in thc 
samepaper and a subscquent one [3] sbowed the usefulness ofthe coneepts introdueed. Our discussionwas based 
on. potentlals whlc:h vanlsb beyond a eertain range, an approximation whlch for all practical purposes is valld for 
H + H scattering, even at 1ow energies. A publicatlon by Bollé and Gesztesy (4] reconsidercd the sametopic for 
potcntials whlch need not satlsfy this rcqulrcment, including in particular a posslble 1/r potcntlal. Such a genera!· 
ization might ha\ie important applicatlons in conneetion with 20 electron and ion gases [ 1]. In addition the n = 2 
result was showntobc a natura! cxtenSion ofthe well-kilown n = 3 forrnalism in the sense thatboth filrned out 
to be special case• of forrnulae forgcneraln. This work, however;led toa concept of scattering lcngth in two di· 
menslons with the propcrty that lt is discontinuons for 'Y .... 0 and even changes from a dbncnsionless quantlty for 
'Y * 0 lnto one wlth the inappropriate dimonsion of 1/iog(length) at 'Y = O.ln the present contn'bution it is our 
alm to gencralize thc discussion of ref. (2] to more general potelltials .and to general dbnenslon. We also fmd our 
n ,." hffective-range•fotnlu~'t<!'.bc ll'speciltl~case .of<thát for-genètaJ u witho~tr\lowcvcr;:meetlngwlth the discon· 
tinuity ánd dimensiÓriäl difficultles Inherent in ret [4]. · · 

2. Local scattering lengtil. The radial Schrödinger cquation for scattering of the Jo west partlal wa\'C in il dbnen· 
slons from a potentlal V(r) +"f/T isgivcn by 

(-d2Jdr2 + V(r)+'f/r+l(l+ 1)/r -k2] u(r,k,r)=O, (I) 

in whlch I= hn-3) and a factor 2pjtl2 is absorbed in V(l.t = mass orreduced rnass). Fot V • 0 we have the basis 
solutions 

(2) 

wlth wronskian cqua1 to 1, In tcrms of regular and irregular Coulomb functlons F1 and G1 for integer and half·in· 
tcgcr l·valuesl;;. -i, in conventional notation [5,6]. 

The regular solution u(r, k, r) of cq. (1) is chosen with norrnalizàtinn such that it satisfics the energy-indepcn· 
dent and r·independent boundary condition 

limr1-lu•1: 
r-0 

0.375.9601/85/S 03.30 €> Elsevier Scicnce Publishers B.V. 
(North·Holland l'hysics Publishing Division) 

(3) 
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Then by Poincaré's thcorem [7) both u and itsradial derivatlve u' := öuför are known to be entlre functions of 
k2 and ')' for any fixed value of r. This Is true under rather general condit !ons for the behavior o( V. Splittlng off 
c~r,)kl+l/2 , in convcntionalnotation, from F the same Is truc for that functlon. 

We consider effective-range fommlae for thc phase·shift ó(k, ')', r) with V cut off [8] at r. We have 

cot 6(k,-y,r) = (G'u- Gu')f(F'u- Fu')l,. (4) 

Inserting the low.energy behavior [6] of G and that of u and F, as weD as. their derivatives, we reeover our 20 ef • 
. fective·ranse formula [2) · 

cot6 =(2/1r)(C+ioll~ka)+O(k2), (S) 

for n = 2, l = 0, and furthermorc 

k21+1 cot ó =- [1'(/ + 3/2)]2221+1J~r(/ +t)a21+l +O(k2) (11 > 2, l = 0), 

cot ó = -(2/'lr) [e211'11 - (-l)2/][K2f+J (J.../Yö)//21+1 (2.,/iä) + O(kl)] ('y :P 0). 

(6) 

(7) 

We leftout argumentsr,k, l on and r, lof a. We deoote Eulcr's constant 0.577215 •••• by C insteadof ')' to avold 
confusionwiththe l{rstrengthpararncter.lnTermsofu0 :au(r,O, l) and u0 :=(21 + 2)u0-2ru0 the "local'' scat· 
tering length a in (S)-(7) is dcfined by 

a•r exp(2uofU0) (n .. 2,')' =0), (8) 

a= r [1 + (21 +I) 2u0/U0)1/0I+l) (11 > 21Y = 0), (9) 

Kv+1(2.,/iä) K'11+1(2.,;;;;)u0 -2W K'1J+2(2.,fiÎ)J0 
1'1J+I(2'\fiii),. 1'1J+I(2J;)Uo+2WI'1J+2(2;,;.;;)u0 (')':PO), 

(10) 

where K and I rcpresent modified Besset functions [S], For thrce dimensions and ')' :P 0 tbc definition of a differs 
from tbe usual one. It bas thc advantage that it behaves smoothly as 1-> 0 also for n = 2. In addltion lt bas thc 
physicalsignillcancc of an equivalent hard·sphcre radius. The expression for n = 2l$ the limit for n-> 2 ofthe11 > 2 
formula. 

To obtain cffectlvo·ransc formulae for r-+.,. we genbra!Wl a(r, 1) to an equivalent hard-spbere radius a(r,k, 1) 
fork:PO: · 

cot 6(k,r,1) = G(a(r,k, l),k, l)/F(a(r,k, ')'),k, T). (11) 

Thls defincsa(r,k, T) uniqucly,ifwe rcquire it to go continuously to a(r,')') for k-> 0. ft satlsfies the radial dlffer· 
cntial cquation 

a'= V(r)(F(a, k, l)G(r,k, l) -F(r,k, 'Y)G(a, k, oy)] l. (12) 

An analogouscquation fora= a(r, l) follows by tbc limit k-+ 0 or by diffcrentiation of(S)-(10): 

a'= V(r) ar[log(rfa)]l (11 = 2,1 = 0), (IJ) 

a'= V(r)ar{(21 + I)-1 [(r/a'fl/2..., (a/if+l/2])2 (n > 2, l • 0), (14) 

a'= 4ar V(r)[K'1l+1(2.,/iä)J'JJ+J(2W) -Iv+t<2..fiä)Kv+t(2v:r;)] 2 (11 > 2, l :PO). (IS) 

We now equate (4)and (11} and multlply by Cfk21+l: 

u(r)uiis(r)-u'(r)uus{r) (l
6
) 

T(a,r,k2,')')s 2 21 =0. 
F(a) {F(r)u'(r)-F'(r)u(r)Jflc1 k +IJ 
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In the second membcrofthisequaUon we Jcft out thè argumentsk and "/, while "Hs(r) = F(a)G(r)-G(a}F(r) rep· 
resents a (extrapolated) wave function forscattering from a hard sphcre with radius 11. From the analytlclty prop· 
erties of the funct!ons In (16), following from Poincaré's thcorcm, we fmd by the lmplicit function theorcm of 
complex function thcory that a(r,k, ')')is analytic In A:2 near.k = 0 andin."/ near')' • 0. The sameproperties ean 
then be dcrived for a(r • ""• k, 'l') by considerlng eqs. (12)-(1 5) fora potentlal Y which deercases exponentlally 
at infm!ty. This condition ean bc relaxedtoa ccrtain elitent if continuity propertiesfora and a number of lts k2 

and 7 derivativcs are deslred. Such properties au function of k2 enable us to wrlte down effective-range formulae 
(5)-(7) for r .... "" as asymptotic elipresslons with.any desired number of k2 powers. The resulting scattering length 
a(')') has for alln the dimcosion of lèngth, the phySieal significanee ofan equivalent hard-spbere rádlus and the 
property of smoothness for ')' .... 0. Upon oomparing with ref. [4] we have 

K'JJ+t(2.../iá)/12l+l(2..J1ä)= [(21+ 1)!]2/2-y:U+las (7:FO), (17) 

a8 • -1/log a (n = 2;y = 0), as = (tr- 2) t!'-2 (n > 2, 7 = 0) , (18,19) 

denotlng the scattering le!'!Sth introduccd by Bollé and Gesztesy by as. It is lnteresting to oompare aandos for 
small non-vanishing 'l'· Approximating the K/1 ratio for small argument we reeover (19) for n > 2 and fmd a8 = 
-l/(2C +log ')'ll) for ia • 2.Contrary to the continuity of as for ')'-+ 0 if n > 2, we thus find the two.dirnensional 
as totend to 0 for ')' .... 0, whereas at')'= 0 it assumcs a non-vanishing value. Apparently, a8 is even discontlnuous 
with respect to physlcal dirnenslon. Essenlially, these problcms are conneeled with the difficulties arising from 
the interchange of thc k ..,. 0 and 'l'-+ 0 lirnits. This contrasts with the smooth charge-dependenee of our scattering 
Jength for alln;;. 2 undcr rather general condit !ons on Y, making lt possible to take into account the effect of 
charges on the neutral scattering length not only for n = 3 as In ref. [4], but for any n. We confrrmed the above. 
mentioned behavior·of 11 and a8 wlth ')' by means of numerical calculations. 

3, ApplicatfoiiS. Scattering from an (attractlve) square well w!th radiusris an analytlcally solvable illustralion. 
From (8) and (9) we f'md 

a(r)=rellp(J0(Kr)/KrJ1(Kr)] {11=2), (20) 

a(r) • r/ [1 - (21 + I)J1+l/l(Kr)/Kr J1+3f2(Kr)Jll<21+1) (11 > 2). (21) 

The k "'0 wave number within thc wellis denoted by K. The ratio of the oscillating Bcssel functions leadstoa 
cot Kr·like bebavior. Again, the expression for 11 = 21s the Jinrit fotn..,. 2ofthe 11 > 2 formula. 

Fis- 1. Loet.~ scatteling lengtb a(r) and cffective ran~e r 0(r) 
lor triplel scatlering oC 11-atoms adsorbed at a supcrfluid heli· 
um r!lm. Tbc horizontal scale h8 been intcrwpted to lnclicate 
tbc asymptolic \'alueut 125110 • 

373 

121 



Volume IJ OA, numbcr 7,8 I'HYSICS LETTERS 12 August 1985 

For tbc scattering of adsorbed H-atoms we show in fig. 1 how 11(7) and r e(r) build up as a .fWlctlon of r startlng 
from 0 at tbc origin, Wc describe the scattering au 20 phenomenon, accounting [9] for the spatlal extcnt ofthc 
bound statos of the H-atoms bl averaging tbc H-H interaction potentlal wltha gaussJan weight.function(mliximum 
value [10] equalto O.OSOa0 )oftbe relative vertlcal di~a"ce' For smallr a(r) and re(r) are both seen to be al· 
most eq!lalto r. This bdue to tbc extreme hardnessoftheiruler repulsive part ofthe potential. At about 7a0 the 
curves start to diverge;11(r) continues to deercase due to the attractive part of the potent ia I. Note that r e(r) cOn· 
vergcs more slowly than a(r). T!te asymptotic values are found to be: 11 = 2.Ja0 and r0 • 14.Ja0• These parameter 
values can be uscd for the analysis of low-energy H-H scattering at a soperfluid 4He surface. To gJve some feeling 
for the influenee of the wldth of the relative vertical probability distributlon we bere psescnt the eorresponding 
values fora truly lD gas (i.e. no averaging): 11 = 2.0110 and l'e = 17 .4ao· · 
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CHAPTER 7 

PHYSICAL REVIEW A VOLUME 32, NUMBER 3 SEPTEMBER 1985 

Scattering length and effective range for scattering in á plane and in higher dimensions 

B.J. Verhaar, L. P. H. de Goey,J. P. H. W. van den Eijnde, and E. J. D. Vredenbregt 
Deportmem of Physia, EindhoiJI!n Uniuenity of Tcchnology, Postbus $13, $600 MB, Eindhoven, '11ul Netherlands 

(R=Ived 9 November 19841 

11 is shown ,how the c:oncepts ol seattering length and effeetive range, previou$1y inttoduced for 
low-energy scattering from a potential Ylrl in a plane, c:orrespoud to the well-kuown parameters in 
tbree dimensions. Tbla is done by considering low-energy seaUerilis in a geneml dimenslon 11 ~ 2 
and subsequently showins that botb the n .. 2 and n ,.. 3 eases fit naturally in such a genemlized 
treatnlent. Funhermore, ,our previnns work is extended 10 lons·ranse potentlals, deereasing Caster, 
tban 1/r-+1• The metbod used is hased on tbe properlies ol a local seattering lensth alrl for tbe 
potential Y!rl cut off at radius rand an equivalent bard·sphere radius o(r,k) Cor k.pO. Somc ap
plications and illustrative examples are pvell. 

I. JNTRODUCTlON 

In this paper we present a generalized effcctive-range 
theory for low-energy quantum scattering in n dimen· , 
sions. Earlier we introduced1 for the first time the 
scattering length and effective-range parameters for 
scattering in a plane, in analogy with the c:ommonly used 
corresponding coneepts in three dimensions. Applications 
to scattering of spin·polarized H atoms adsorbed at a su· 
perfluid helium film in the same paper and a subsequent 
on~ showed the usefulness of the eoncepts of scattering 
!ength and effeetivc: range introduced. Our discussion was 
based on potendals whic:h vanish beyond a ccrtain range, 
an approximation which for all practieai purposes is valid 

and eharged scattering and tor acneral dimeosion n ;:: 2. 
In Sec. IV some applications and illustrativc: e.umples are 
given: scattering from a square welt and scattering of H 
atoms adsorbed at a soperfluid helium film. 

· ll. LOCAL SCA 'ITERING LENGTH 
POR DIMENSlONS 11 11:% 

The radial Schrödinget equation for scattering of the 
lowest partial wave in n dimensions from a potential V Ir) 
is given by 

I dl m
2-t I --2 +VIr)+--2--k

2 u(r,k)=O, 
dr , r 

for H + H scattering, even at low energics. 
In the present eontribution it is our aim to generalize in .whic:h m =fn -I and a factor 2!'1~ is absorbed in Y 

the discussion of Ref. I to more general potentials, using a lp, is the mass or reduced mass). We eonsider the local 
variable-phase approach,' and to show that our scattering pbase shift3 6(k,r) for this potenlial V cut off at r. Ac· 
length fits naturally in a eonoept of scattering length for eording to Ref. I its low-energy hebavior is described, for 
general dimension. In particular we shall show how the n = 2, by 
two-dimension11l ·scattering length a builds up from the 2 . 

~l)rigin"t9&!!f!!lil)l(II!~À.:.ai. ,. '.;pit,P~ill~I)Çah,ya)~~~(r )~e·, • · c•A:cot6(k,r) :m-:-( Y +infka ( r) ]+ 0 (k ~~ , !2) 
fined for ihe lSpberically symmêtrièl potèntial V cut óff at . • .. ··•. . .. · 1T . . . . , 

r. Differential equation·for a(r) will be prescnted. ·These 
make dèar that a (r) tends to a( oo l=a under rather weak 
conditions for V. satisfied in particular by the H + H sys
tem. Our derivation also applies to the case where a I Ir 
potential is added to V(r). In principle, this would make 
it possible to apply the metbod to eleclron-:clectron 
scattering in a two-dimensional electron system in the vi· 
cinity of a soperfluid helium film. In view of our more 
immediate interest in two-dimensional neutral gases like 
spin·polarized atomie hydrogen, however, we eonfine the 
discussion to the case where a I Ir potentlal is absent. 

Section U of this paper will be devoted to the introduc· 
tion of a "loeal scattering length" a (r), the introduetion 
of an "equivalent hard·sphere,radius" a Cr,k) for k,PO, as 
welt as to the denvation of equations for these quantities. 
In Sec. lH we derive from the properties of a lr,k) the 
effectivc-range expansion for r-+ oo. Also, we rompare 
our results to those of Bollé and Gesztesy,4 whointroduce 

·a different eonoept of scattering length for both neutral 

r==O.S7721566S ... representing Euler's wnstant •. For 
any diménsion · n ;:: 2, Bq. 12) may be generaliud by using 
the equation 

G'u-Gu' 
eotS!k,r)= Fu -Fu' . (3) 

Here u =ulr,k) is a regular salution of the radial equa· 
tion including V, If its normalization is chosen to be such 
that it satisfies the energy·independent boundary eondi· 
tion 

limr-••-llllu=l, 
r-o 

(4) 

both u (r,kl and its radial derivativc: u'(r,klaau/or are 
known to be entire functions of k 2 for any fixed value of 
r. In Bq. (3), F(r,k) is a regular salution 

F= [ '; rJ".Ckrl 15) 
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without 1', wbile G 1r,kl is en irresular solution without 
Jl'siven by 

G-!7 r N.,.(kr). 16) 

The expressions fot the function F and G in tenns of tb~ 
Besset and Neumann f'unctions$ have been ebasen so as tó 
make the Wronskian equal to uniiy. 

The analydcity properties of' u, u', and the Besscl and 
Neumann functions in Eq. (3) and their behaviot fot small 
arsuments then lead to Eq. (2) fot 11 = 2 and 

k2.,cotli(k,rl=- [r!m +lll
222

"' 1 +Oik~) 
r.m (a(r)]201 

(7) 

fot any 11 > 2 •. Hete, fot m •0 the local scattering length~ 
a(r) is glven by 

a(r)=rexp(2u0/Uo), 

whereas for m > 0, 

(8) 

n.2 ·-. 
\ 
\ 

........... 
\ 
\ 
\ 
\~ 

10 IS 
r 

PlO •. I. Behavlorof tt(r) fora square wellof radius r int
dimensions (Solid curve) and of o (r,k) with k"'0.5 (dashed 

a (r)=r /[ 1-2m(2uo/Uol]112m , 

with 

(9) curve). 

uo=u(r,O), {l()l 

Uo=uo-2ruó+~nuo. !IJl 

Fot m = t Eq. (7) is the weiJ.known three-dimeosional 
effectiveoranse formula 

kcot~k,rl=~l!a(rl+01k2). (12) 

The three-dimensional scattering length and that intro
duced in Ref. 1 for 11 =2 are thus secn to fit naturally in a 
definition for general n :<!: 2, contrary to tbe susgesdon i~ 
Ref; 4 (p. 12881. Note that the right·band side of Eq. (91 
tends to that of Eq. 181 fot m ..... o; 

As in three dimensions tbe local scattering length a (r) 
can be interpreled as an equivalent hard-spbere rndius: if 
the local solution of the wave equation including V, . 
characteri;red by u0 and uó, is extrapolated by means of 
the wave equation fot k =0 witbout V, a node is found 
precisely at a (r). This follows dircctly from Eqs. (8) and 
{9). It is well·known that for three-dimensional scattering 
the scattering length may beeome negative, which already 
generalizes the concept of an equivalent bard-spbere ra• 
dius to unphysical values. This is related to the fact tha~ 
in such a case tbe extrapolated local wave function cuts 
the.axis beyond the origin. The same is true for all other 
odd dhnensions. For these dimensions we choose a Crlto 
be positive or negaûvc, altbougb in principle also 
2m-1=n -3 equivalent complex roots exist. Similarly, 
fot all even dimensions n > 2 it follows for Eq. (9) thatl 

. complex values fot a (r) are unavoidable, corresponding to 
the absence of a zero of the curved extrapolated radial 
wave tunetion in that case. From the 2m equivalent 
choices for a Cr) we choose that with the smallest phase in 
the complex plane (posiûve reaJ if l-4mu0/Uo is posi· 
tive). Fot dimeosion 11 =2 an extrapolated zero always 
oceurs in tbe interval from 0 to oo. This exceptiooal role' 

124 

of 11 =2 may be related tothefact that fortbat dimeosion 
the Moentrifugal" potential of the .lowest partlal wave is 
negaûve, so tbat the wave function bends more strongly 
towards the axis. 

We point out that in dimeosion n •2 the values a =0 
and oo are equivalent in tbe sense tbat ll changes continu· 
ously in soms from the one value of 11 to tbc other. In all 
other dimensions the infinite a values are equivalent. See 
Figs. 1-3. 

In the foregoins a (r) bas been defined so that the lead· 
ing tenn in the long·wavclengtb enersY · dependenoe of' 
cot~k.r) is identical to that for scatterins from a hard 
sphere with radius d =a Ir): 

10 

FlG. 2. Scauerins lengtil o (r) for squarewellof radius r in 
tbrec dimensions. 
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FIG. 3. Scattering lengtil a (r) for square wel! of radius r in 
four dimensions. Solid !"'ris. a ( r) positive rcal. Daslied pans, 
a(rl positive imaglnary. 

k2"'c.otli !k d)=k2m G!k,dl 
HS ' F!k,d) 

n>2. (13) 

As explained previously, we are interested in the possi· 
bility of writing down equations such as !2) and (7) for 
loog-range potentials, decreasing at inlinity, for instance, 
as J I r 6 in the case of the two-dimensional scattering of 
(bydrogen) atoms. To thal end we want to relale tbe low· 
energy behavior of colli(k, oo l to a ("")=a. This is nol a 
trivial problom mathematically, since the interchange of 
two limits Ir- oo and k-+Ol is involved. To discuss this 
point properly we incroduce an equivalent bard-spbere ra• 
dius a (r,k) also for k~O, i.e., in the spirit of Eq. (!31, 

cotli(k,r)= G(k,a!r,kl) . 041 
F(k,o (r,k)) 

Taken by itself Eq. 04) does nol deline a (r,k) uniquely, 
since any radial node_ of the oscillating e~trapolated radial 
wave function is an equivalent hard-spbere radius in Ibis 
sense. However, for small k, a (r,kl is uniquely defined, 
if we require it to approach a (r) for k-0. This is dis
cussed in more detail in Sec. UI. 

A radial differentlal equation for a (r,k) can be derived 
by differentlating both Eqs. (14) and (3) with respect tor: 

(15) 

{16) 

where we made use of the Wronskian relalion of F and G. 
In Eq. (16) we omitted the arguments k,r o( all functions 
within the large parent11eses. Equating Eqs. (I Sl and (16) 
we find · 

p:~,k) =V Ir) [ Fu' ~Fu r. a .,.a (r,k} • (17) 

A second usef'ul _ equation for a' is obtained from Eq • 
<17l by ~pressing u'/u in termsof cotli(k,rl by means of 
Eq. (3) and replacing the latter quantity by tbe right·hand 
side of Eq. (14). The result is 

a'= Vlrl[Fir,klGia,k)-F!a,klGir,kl]2 , 

a .. a(r,k). (18) 

Both Eqs. 06) and (18) make clear that a(r,k), if real, in
ereases (decreases) in radial regions where V is positive 
(negative). This is also clear intuitively. Equation (18) 
will be our most important starting point for the con
sideèations of Sec. m. 

By differentiating Eqs. (8) and {9) it is found that a (rl 
satisfies a differential equation. For n > 2 ( m > 0) the r-e
sult is 

a'=VIr)ar{ ~ 11; r- [; rJ r a=a(r,Ol 

(19) 

and for 11 = 2 we gel the equatioo 

a'= V(rlar !In; r 1201 
of which the rigbt-band side may also be considered as 
the limit obtaincd for m-0 from Eq.ll9). For n =3 we 
have 

a'=V(r)(r-a)2 • 121) 

These equatioos s_how how the local scattering lengtb a (r) 
builds up starting from r ... o. In addition tbey show 
again that the concept of scattering length that was pro
posed in Ref. 1 for two-dimensiooal scattering fits 1111tur· 
ally in tbe general delinition of an equivalent hard-spbere 
radius. For the following considerations it is of impor· 
tance to point out tbat the right·band sides of Eqs. 
(19)-(21) are tbe limit for k-+0 of the right .. hand side of 
Eq. (18). Note tbat oor a (r), althougb being very similar 
to the quantity a (r) introduced in Ref. 3, coincides withit 
ooly for n -3. The reàson for introducing it in a dif
ferent way for otber n values is to avoid dîfficulties for 
n-2. 

III. DERIV A TI ON OF E.FFECTIVE-RANGE 
EXPANSION FOR '"'"' 

In this section we want to derive the low-energy 
behavior of the phase shift lilk,r = oo ). As a first step we 
prove that a(r,kl is an analytic function of k2in a vicini· 
ty of k =0 for any finite radius r for which a (r,Ol is nol 
singular, i.e., finite and nonvanishing. · 

We equate the right·band sides of Eqs. (3) and (14) mul· 
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tiplied by k2m. The result is tbe equation 

T<a,r,k 2) 

•klm I Gla,k) _ G'lr,k)u (r;k)C:.G!r,klu'(r,k) .] 
F(a,k) F'(r,k)u (r,k)-F(r,k)u'(r,k) 

=0. (22) 

lf we introduce low-k expansiQilSs for F, G, u, and tbeir 
first derivatives, tbe logaritbmic k dependenee for even 
dimensions is found to cancel. The tunetion T is extend· 
ed by mcans of its k =0 limit 

a 2uo 
In--- (m=O), (13) 

r U0 

[rlm +l)]lz2m [-'- [1- 4muo ]--'-·1 (m >0). 
2m ,.:zm Uo o2m . 

(14} 

Por k = 0 tbe solution of ~· (22) is tben given by the 
quantity a (r) given in Eqs. (8) or (9). For fixed r, T is 
analytic in a in any bounded region in the comJl)ex a 
plane not c:ontaining the origin, and analytie in k 2 in a 
corresponding environment of k =0.. Purtbennore, for 
k -+0 the derivative 

T. •k2m.È_ G!a,k) -~ !2Sl 
• da F!a,k) pl(o,k) 

goes to nonvanisbing value for nonsingular o (r). Acc:ord· 
ing to the impliclt·function theorem of complex·functior 

· tbeory,6 this implies that in a vicinity of k =0 a solution 
a (r,k),. lll!lllytic in k~, exists witb o (r,Ol=a (r). We 
stress that this result hás been shOwn to be valid for any 
finiter in whicb a(r) is nol singular. 

\Ve subsequently make the step to r = .. , starting froin 
a ~ius r0 beyond which if (r) is n.ot singyl11r and exclud· 
Jng tbc exccptional case tbat o (r) tcnds io a singular 
\'lÛ~c,.\\fe.t~~orm,tbe;j1ÛI!lÏt~int~J.;li',q,"'J,iJ1to,a 
finite onc by the transformation s= I Jr;· The aifferèntial 
equations (18l--(1llthen take theform · 

da 2 
ds =l!s,a,k ) 126) 

with 

I=- s'2 V [ ~ l [F [~.k IG(a,k)-F(a,k)G [~.kIr 
(271 

for 0<.t:s;s0= llr0• \Ve now want lto be eontinuous at 
s =0. For k;OoO this implies that I<O,a,k 1)=0, taking 
into aec:ount the rapid oscillations of I near s .. 0. Re· 
quiring in addition that /(0,a,k 2J is c:ontinuous at k =0, 
l!s,a,O) has also to go to zero for s-0. In view of ~s. 
(19)-121 I we therd'ore eonetude that V should go to zero 
fasterthan !Ir" +1• Itis then possible to extend the func· 
tion I by defining it to be ~:ero in an arbitrary closed inter
val [:r.,O), s 1 <0. \Ve assume V(r) to be continuons or to 

· ha\'e. a finite number of diseontinuities. ,We stress that it 
is not our purpose to find the weakest possible mathcmati-
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cal eondition for V. 
With respect to a !r,k) for k =0 tbe possibility men· 

tioned in the previous paragraph to ehoose r0 and tbe ex· 
istence of a finitc limit a(ooJ=a now follow from a 
theorem in the theory of ordinary diffcrential equations.7 

Furthennore, we may eonclude' tbe foltowing. !i I 
a ( oo,k) is eontinuous as a function of k 2 in a \'Îcinity of 
k ==0. For a( oo ,k) to have a continuons derivative of or· 
der i, tbe. rèquirement on V should be eorrespondingly 
strengtbened: V should go to zero Caster than 1/ro+:U +1. 
A stronger result follows9 from a stTonier eondition for 
V: lil) a( oo,k) is analytic in a viclnity of k =0, if V de
creases faster than exp(-1r) (1 > Ol. 

The third step in out. derivation ·concerns the ·Jow. 
energy behaviorofeo!Mk,oo). From ~. (14) we have 

N,.!ka(oo,k)) 
cot81k)ecotó(k,oo l= J.,(kal oo,k)) , 

which equals 

.!unfka!..,,k>+rl+ .!1 fka<..,,kJJ2+ · · · 
1T 1T 

for IJ =land 
I . . 
-[2ln4-ka!oo,kl+r-~(m + 11)8 ..... 1T • • 

22M[ f(m + 1)]2 + ... 
l:'m [ka ( oo ,kl}2m 

(281 

(29) 

(30) 

for IJ> 2 • . We now use the analyticity or C1 property of 
a(oo,kl to expand a(oo,kl in powers ot k 2 intbis expres· 
sion. This leads us to 

(IJ =41 .. (32) 

the last expression being valid for 11 > 2, n;Oo4. Here the,, 
effective range '• is glven by 

r,= 
4à 

a exp;r (11 =4) 

0 l[l-4(ml-t )(Ö /alJ]IIllm -11 (n;64) 

(34) 

135) 

with ä=aa!oo,k)/ok1 fot k=O. Theeffectiverange '• 
is normaliz.ed for all dimensions In sueh a way that its 
value èquals d for hard-spbere scattering [sec Olk 1J term 
in ~. (13)). This colTClipouds to tbc convention chOSCJl 
for 11 =2 in Ref. I. For 11 =3 our eonvention diffcrs 
from the usual one by a factor of f. 
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For even dimezisîons the (m + 1ltb term in Eq. (33}. bas 
a logarithmic k depèndenee, as in Eqs. (31) and {32). 
Ap,art from this logarlthmic term tbe expansion .of 
k "'cotó(k) in tbe tb~ .equations is to be interpreted as a 
convergent Taylor series of a function analytic in k 2, or, 
in the more general situation, (i) as an asymptotic expan· 
si on. 

Note that analogous to the ease of Eqs. (8) and (9J tbe 
present equation (34) can be considered as the limit for di· 
mension approaching 4 of Eq. (35) •. Apart from tbe use
fulness of tbe n ;a: 2 formulas in providing a generalized 
framcwork f or the special n = 2 and n = 3 cases, thé equa· 
tions for n ;a: 4 may also have applications in studies. of 
tbe energy dependenee for higher partial waves in two and 
tbree dimensions whiéh arealso described by Eq. UI. 

Note that the k depèndence in Eqs. (31J-(33l is identi· 
cal to that found by Bollé and Gesztesy4 (neutra! ease). A 
differenee is that we introduce both tbe scattering length 
a and the effective range r., each of which bas the physi· 
cal significanee of a radius of an equivalent bard spbere 
giving rise to tbe same energy dependenee of tbe scatter• 
ing phase shift in a specific order of the effective-range 
expansion. In addition, we believe our metbod of deriva· 
tion to be more transparent, due to tbe use of the (adapt· 
ed) variahie-pbase approach.3 

Looking especially at our n = 2 formula (J ll [see also 
Eq. (13) of Ref. 1] and camparing with tbe corresponding 
equation 

cot6tkl=.!llnfk-...L+r j+Oik2l, 136) 
rr o8 

obtained by Bollé and Ges:r.tcsy,4 we indced. abserve tbe 
same k dcpcndencc. Equation (361, in which for distinc· 
tion we indicate tbe scattering lengtb as a8 , bas been de
rived in dimcnsionless quantitics. Inserting dimcnsions 
one would eitber have to insert a lcngth scale r0 to the 
logarithmic ~trgument, changing .it into lrifkr0, wbleh 
would keep a8 dimensionless hut dependent on ro, or one 
would replace lnfk '-lta8 by lnfka which is our choice. 
By .our. appfl)tlcb~ in ~bieb dimcnsi~~~ a~e tak~ along in 
the dcrivation, a (and .r,) bas tbc dimeosion of length 
from the beginning for all n. It is of importance to. point 
out that the problem does not provide a natura! lengtil 
scale 'o· 

In this paper wc met some examples in which an equa· 
tion for a specific dimension could be scen as a limit of an 
equation for general dimcnsion. Equations (J ll-133) 
seem to be exceptions in this respect. We note, bowever, 
tbat an analogous derivation for any real di mension n ;a: 2 
gives rise to an additional term COS(/LlT)/sin(f<IT) in tbc 
cotó(k) cxpression Y.=fn-ll. Adding this to Eq. (33) 

with m replaced by ~'• one does obtain Eq. (31) in the lim· 
it 1'-o. Eq. (32) in the limit !L-1, and similarly the 
equations for all other dimensions :::2. 

IV. EXAMPLES AND API'LICATlONS 

We start by considcring tbe scattering lcngth for 
scattering from an (attractivel square wcll with radius r. 
For k =0, Eqs. (8) and (9) lead to 

a(r)== 

(38) 

I Jo<Kr) 1 
rexp KrJ,(Kr) (n ==2) 

[ 
J,..!Kr) ltnm 

r / l-2m KrJ,..+
1
1Kr) . (n >2). 

(37) 

The k =0 wave number witbin the well is denoted by K. 
The strength of the potential enters tbe fórmulas for a (rJ 
only througb K. For other potentlal strengtbs a (r) ca~ .be 

· obtained by slmple sealing. In Figs. 1-3 these quanllhcs 
are given for K ==I as a function of r for n = 2, 3, and 4, 
respectively. The cot(KrHike behavior duc to. the ratio of 
the asciilating Bessel functions is clearly vlsible. We re
peat that for n =2, a Ir) varles between the equivalent 
values 0 and CQ. For n = 3, the varlation is between co 
and -co. F<lr n =4, the solid parts are those witb a (r) 
real. The dasbed parts have complex phase flT. Note 
that due to tbe factor Kr in the denominator of Eq. (38) 
tbe intervals in wbich a(r) varles along a complex axis, 
become gradually narrower. In Fig. 1 tbe dasbed curves 
represent a (r,k) for k =0. S. As mentioned in Sec. III, 
we select from the infinity of possible values at each r 
that a (r,k) value whicb goes continuously to a !r) for 
k -+0. The magnitude of tbe jumps incrcases for decreas
ing k. Tbe value 4.82 ••• of a IO,k) corresponds witb the 
first zero of J0(ka). Tuming the attractive well into a 
repulsive barrier leads to similar equations with K imagi· 
nary. The corresponding curves show less structure. 

For the scattering of adsorbed Hatoms Wè show in Fig. 
4 bow a (r) and r,(r) build up as a function of r starting 
from 0 at tbe orlgin. We describc tbe scattering as a two
dimensional phcnomenon, accounting10 for tbc spatial ex· 
tent of the bound stales ' 0(:1) and 4>of.z2) of tbc H atoms 
by averaging the H-H interaction potential. For the 
weigbt function 

""·f 

""· 

lè(r) 

a{r) 
~-----

-----,o.,-. ---;;;a_---#' 12>a. 
r 

FIG. 4. Local scattering lenglh a(r) and effcclive range r,lr) 
for triplet scattering of H atoms adsorbed at a supcr~ui~ helium 
film. The horizontal scale bas been interrupted to lndJC:atc tbc 
asymptotic valucs at 125a0• 
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(39) 

we choose a Gaussian function of z1-z2 with maximuni 
value 0.050 26a ö 1, taken from Mantz and Edwards.ll 
Por small r, a (r) and r,(r) are both seen to be almast 
equal to r. Tbis is due .to the estreme hardness of the 
inner repulsive part of tbc potential. At about 7 a 0 the 
curves start to diverge; a Ir) eontinnes to decrease due to 
the attractive part of tbc potential. Note that apparently 
r,(r) converges more slowly than does a (r). The asymp
totic values are found to be a=2.3a0 and r,=l4.3a0• 
These parameter values ean be used for the analysis ot 
low-energy H-H scattering at a helium surfac:e. To give 
some feeling for the inf'luence of the width of the z1-z1 
probability distribution we bere present the corresponding 
valnes for a truly two-dimensional gas (i.e., no averagingl: 
a=2.0a0 and r,=11.4a0• 
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Scattering length and effective range for charged·particle scattering 
· in a plane and in higher dimensions 

B.1. Verhaar, L. P. H. de Goey, and E. J. D. Vredenbregt 
Department of Physics, Eind.hoven Uniuersity o/Technology, i'Qstbus SJJ, $600MB, Eind.houen, The Netherlands 

!Recclved l41anuary !985) 

The concepts of sçattering length o and effective range r, prevlously introdu.:ed for low-energy 
scattering from a potentlal V(r) in a plane and in lli&her dimensions aR extended 1o iru:lude a 1/r 
potcntialls!Rngtb parameter yl. Botb a and '• have tbe pbysical signïncance oC being equallo lbe 
radius ofan equivalent hard sphcre givin& rise to thesame 0(k0) and O!k1l termsin theupressi011 
for the phase shift. The metbod used is basedon tbe properties of lbe "loeal sçattering lengthn 
a(r,yl for the ~ential V(r) cut off at radius· rand an "equivalent hard·spbere radius" a!r,k,rl 
for wave number k+f). It is shown that these quantilies have a smooth bebavinr for r-o and for 
elimension n-2. 

J •. INTRODUCTION 

In view of applications 'to scattering phenomena in 
two-dimensional spin-polarized atomie bydrogen gas we 
introduced1 a year ago tbe concepts of scattering lengtb 
and effective range for scattering in a plane. In tbe same 
paper we sbowed tbat tbe H + H scattering phase shift 
could be described by a. simple effective-range formula, 
even at tbe highest Collision energics occurring signifi
cantly in tbe relevant experimental temperature range. In 
a subsequent papec1 we applied tbis effective·range tbeory 
in a calculation of tbe two-dimensional H + H recoinbina
tion rate on tbe basis of the Kagan dipole mecbanism. 

In tbe preceding pa~ we sbowed that a consistent 
effective-range theory could be derived, making use of tbe 
concepts oC "local scattering lcngth" and "equivalent 
hard-spbere radius." This enabled us to dispense witb our 
previous restrietion to a finite-range potcntial and to di· 
mension n =2. Furthcrmore, we reinled the formalism lo 
that proposed by Bollé and Ges4tcsy.4 The purpose of tbc 
present paper is to remove the single rcmaining restrietion 
of our work3 compared to that of Ref. 4: the absenée of a 
1/r potential. The main result of this paper is tbe denva
tion of the elegant analyticity (or continuityl properties of 
the equivalent bard-spbere radius o(r,k,y) as a function 
of k1 and of r, tbe strength parameter of the I Ir polcn
tial. The smoothness of a(r,k,y) contrasis strongly with 
tbe singular behavior of the pbase shift ncar k =0 and 
r=O which we sball also derivc. 

In Sec. Il an effective.range thcory is presenled in gen
eral dimension n;;: 2 for r">O, starting from !he proper· 
ties of a(r,k,r). Section III deals with tbe behavior of 
tbat quantity and the phase shift as a function of r and 
briefly also as a function of dimension n. Some con· 
clusions are presenled in Sec. JV. 

IJ. LOW,ENERGY SCATTERING FOR y;60 

The radial Scbrödingcr equation for scattering of the 
lowest partial wave in n dimcnsions from a potential 
V(rl+r Ir is given by 

in wbich t-t<n -3) and a factor of 2p/fr is absorbed in 
V (p. is the mass or redueed mass). For V"" 0 we have the 
basis solutions 

(2) 

(3) 

normalized in order to make tbc Wronskian equalto uni· 
ty. We use conventional notation'·6 for tbc regular and ir· 
regular Coulomb functions F1 aitd (ii for integer and 
half-integer halucs !;;: -f. 

The regular salution u(r,k,y) of Eq. (!)is cbosen with 
normalization such !hal it satisfics tbe energy-independent 
boundary condition 

limr-1ë 1u=l. 
•-o 

(4) 

Tbcn by Poineari:'s tbcorcm7 bÓth u and its radial deriva
tive u'sàu ;ar are known to be entire fundions of k 2 for 
any lixed value of r. This is true under rather general 
conditions for the bebavior of V. If a factor c1(1J)k 1+1n, 
in conventional notation, it split off from F, tbe remain
ing function also satisfies Eq. (41 and therefore has tbe 
same analyticity propertics as u. 

As in Ref. 3 we consider the phase shift li(k,r,r) for 
the potcntial V cut off at r. Again it satislies tbc equa· 
ti on 

G'u-Gu' 
cotö(k,r,rl= F'u -Fu' (5) 

Inserting the low-energy beba••ior6 of G and tbat of u and 
F, as wel! as tbcir derivatives, we find 
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cotS=-l.[eZ"''-(-1)21) 
1T 

X [ K.v+t!2v,;ii'l 
J.l1+1(2v,;ii') 

+fC-tf'Re[ 1{1(/+1-'i'l]l+l{l(-1-i'l) 

- 2ln'll]+0(k2l] 16) 

for botb n =-2 and n > 2. The order symbol represents a 
convergent expansion in k 2• For practical purposes an 
asymptotic expansiQll is equally useful. lts zero-order 
term is obtained by leaving out the Re term between the 
large parentheses which is 0Ck 2). The local scallering 
length a(r,y) in Eq. (6) is delined by tbe implicit equation 

K21+tl2v,;ii') 

ht+t<2v,;ii') 

K21+t<2v')ir )Uo-2v')irK21+2C2v')ir luo .
171 

121+t<2v')ir!Uo+2v')ir121+212v')irluo ' 

where K and I represent modified Bessel functions5 and 

u0 =u(r,0,y), 

U0 =121+2luo-2ruó • 

analogoos to neutrai-partiele scattering.3 

(8) 

(9) 

Note that for tbree dimensions and r~ tbis definition 

Rtbl 

FIG. I. Delinition of scatlering length by means of complex 
x=yolyl plane. For positive right·band skie of Eq. (7), yo is 
taken to be positive real; for negative values, Y" is cllOtiCII alons 
a complex palh, sbown for n =2, 3, and 4. Function K /I varles 
from 0 at 2Vx =+."+f".; to -oo at the origin In ;::31 or al 
x0 • -1.445 ..• In =2; 2-v=i;=lirst ~ of Jol· For r-o 
ya tends to the crigin with slope 'lt/(n-2) or 0 corresponding 
to the neutral case. 

Anticipating tbc discussion of the analyticity property 
of a as a function of r to be derived in Sec. liJ, we nole 
that a, thus defined for y#<O, approaches continuously 
tbe value3 for y=O. Replacingtbe K and 1 funclions in 
both members of Eq. (7) by !heir asymplotic expressions 
for smal) arguments, we reeover tbe equations 

rcxp(2uo/U0 ) Cn =2) (10) 

I lu 111121+11 
a(r)= r / 1-121+1) u: 

of the scattering length differs from the usual one. Iu we 
sball see in Sec. Ill, our scattering length bas tbe· advan· 
tage tbat it behaves ~moothly as r-o also for 11 =2. In 
addition it bas the pbysical significanee of an equivalenf 
hard-spbere radius. Iu in the neutral càse this can beseen (n =3,4, •.• ) (J I) 
by extrapolating the local solution of the wave equation for the local scatlering length in the neutral case. In the 
iociudins V, charaeterizcd by uo and uó, by mèans of tbe limit y-+0 the slopes near the origin of the paths in Fig. 
wave equation for k =0 without V. The. cxtra.,Olated I • . /( 2) 0 d t t'-· L--- r tb , t.e., 'Ir n - or , correspon . o "" pu_",. o e 
wave function cuts the,.!IXÎs at a(r,y). Again, a. can be neutrai-partiele a(rJ,cliosen in Ref. 3. 
negative er' C\"en coinplei if this point of intersèction is The aim of the following derivation ili 10 obtain equa· 
nol on the pasitiVe .' as1s. For. pósitive rigbt-band.side of:· : •tions such as (6) for ,_,. ... To that end we generalize 
Eq. !7l, ra 'catf be cbnsen. to be positive and is ·then . a(r,y) to an equivalent hard·sphere radius a(r,k,y) for 
uniquely delined. This follows from tbe fael that on the 
real x uis K21+ 1CZVx )/121+tC2Vx) varies monotonical· k#<O: 

G(a(r,k,y),k,yl 
F(a(r,k,y),k,y) 

ly from 0 to .. for x approaching the origin from + ... 
lf tbe right-hand side of Eq. (7) is negative, we take 
another path in the complex x plane where tbc K /1 ratio 
is monotonic but now negative: the patb which starts at 
2Vx =+co +if~r. Along Ibis patb, which is sbown in ' 
Fig. I for n =2, 3, and 4, the K 11 ratio varies from 0 to 
-co. For all dimensions n > 2 the patb ends at x =0, for 
n =2 at Xo= -1.445 ... , corresponding to the first zero 
of the Bessel function / 0(2Vxl=J0!2v=i). This de
fines a uniquely. The abovc:-mentioned monotonicity of ' 
K 11 fellows from the fact that its derivative with respect 
to 2Yx equals (IK'-l'K)/1 2=-IIC212Vx), whicb. 
does not vanish anywhere in the x plane and can only be 
infinite on tbc negative real u is. Along tbc 11 ;:: 3 paths 
tbe derivativc is inlinite only at tbc origin and along !he : 
n =-2 path only at x0• This is consistent witb the abovc:
mentioned infinite value of K /I at these points. · 
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cotó(k,r,y) (12) 

This delines a uniquely, if we require it to go continuous· 
ly to a!r,y) for k-+0. 

A number of rndial equations for a can be derived as in 
the neutral case. We mention only one of them, to be 
used in the following> 

a'= VCrl[FCa,k,ylG!r,k,y)-FCr,k,rlG!a,k,yl]2 • 

(13) 

An analogous equation fora =a(r,y) follo\\-s by diffcren· 
tiation of Eq. (7) and some tedious algebra: 

a'=4arV(r)[ K21+112v,;ii' )121+1(2v'ji;) 

-ht+tC2v,;ii' lK21 +1(2v'ji; 1]2 • (14) 
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The right-band side of Ibis equation may be seen to be tbc 
limit for k --+0 of tb~ term on !he rigbt·hand side of Eq. 
(13). 

In tbe remaining part of this section. we derive the low
energy behavior of o(k,y,r=oo). First of all we show 
that a(r,k,y) is analytie in k 2 near k=O for fixed rand 
r, if a (r, 0, r l is not singular, i.e., fini te and nol)vanishing. 
We equate the right-hand sides of Eqs. (S) and (1;2), multi· 
plied by clkU+I: 

F!al[F{rlu'{r)-F'(r)u(r)]l(crk21+1] 
(IS) 

=0. 

In tbe second member of this equation we left out the ar· 
guments k and y, while u 115{r) represents a (extrapolatedl 
wave function for scattering from a bard spherc with ra
dius a: 

uH5(r)=F(aJG(rJ-G(a)F(r). (16) 

Since for sufficiently smal! Ik I the function 
G(a,k,y)/F(a,k,y) is an analytic function~•6 of a in any 
bounded region of the complex a plane not containing the 
ori&in, T is analytic in a in the same region. From the 
radial wave equation for the function u 115(r) and the 
boundary conditions uH5(a)=O, uiJ5!a)= I we derive by 
applying Poincaré's thcorem 1 (if a is complex, along a 
straight line in the complex plane tbrough a and r) that 
uH5(r) and uiJ5(r) are entire functions of k 2• A similar 
statement was already made with respect to the other 
functions occurring in Eq. OS). We conclude that T is 
analytic in k 2 in a neighborhood of k =0 wber~ the 
denominator is nonvanishing. Furthermore, for k -+0 the 
derivative of Twith respect to a, 

T.5cfkU+I..È_ G!a,k,y)"' c/k'J./+1 (17) 
da F(a,k,yl F (!l,!:.rl 

goes toa nonvanishing value. FromJhe implicit-function 
theerem of complex-function tbeory' we rnay then con~ 
clude that in a vicinity of k =0 a local scattering lcngth 
a(r,k,y) exists, analytic in k 2 and with .a(r,O,y) 
=a(r,y). 

As a see.::ind step we derive the low-k behaviór of 
a(oo,k,y). To that end we start from a finite radius r0 
beyond which a(r,y) is not singular, excluding the excep
tional ease that a(r,y) tends toa sin&War value. We fol· 
low the metbod of derivation of the neutral case.3 We 
merdy repeat the essendal points. (al The infinite r inter· 
val r0 s; r < co is transformed into a finite one by intro· 
ducing the vari;~ble s=llr. (b) For S>O the function f 
in the transformed equation 113) dalds=fla,s,k 2,y) is 
analytic in k 2 and in t1 for a+O. In addition it Is re
quired to bc continuons and therefore, taking into account 
its rapid oscillations, to go to 0 as s--+0 for lhed k+-0. 
(c) For reasens of continuityin k 1,fis also required to go 
to 0 as s-o for k=O. From Eq. (14) wethen lind til 
a( oo,k,y) is continuous as a function of k 2 in a vicinity 
of k=O, if 

V(r)= 

(19) 

[ 
exp( -4VrT l l 

0 ,~n. 

o [ )n. J <r<OI. 

118) 

Here we used !he asymptotic expression for the modified 
Bessel functions in Eq. (14) for r--+ oo. For al oo,k,ylto 
be continuously differentiable in k 2 up to a certain ordèr 
these conditiom have to be correspondingly strengthened. 
This is necessary if in the asymptotic k 2 expansion of 
coto further terms are desired in addition to the k 0 term 
[see Bq. (21) below]. lf Vsatisfies the stronger condition 

V!rl=o(exp(-w)) (À>Ol (20) 

we have the stronger result (ii) a(oo,k,rl is analytic in k 2 

in a vicinity of k =0. Note tbat tbe conditions on. V for 
continuity do nol depend on the dimension, contrary to 
the. neutral case. 

V The· third and final step is to take the limit r-"' in 
Bq. (12) and thus to derive effective-range expansions for 
the phase shift at infinity. The result to lowest order in 
k 2 is again given by Eq. (6), but with o replaced by 
alr)aa{r= oo,y). For completencss we also give an ex· 
pression which includes tbe terms of order k 2: 

k
2 rr, [ ·J 2~2-. 2i!Ku+Jlu+ 1-Ku+ 1Iu+3l-l]+O(k I , 

r 6lu+t 
(21) 

where the argumcnts of a and r, are y, and those of the K 
and I functions in the second term in lar&e parentheses 
are 2VYr.. The scauering length a(y) and the effective 
range r,(y) have been defined such that the k 0 and k 2 

terms in lar&e parentheses are the same as for scatlering 
from a hard sphere with radius a and r., respectively. 
The effective range may bc expressed in terms of a and 
á=~< .",k,rl!ak 2!k-o-

For'n =3, Bq. (21) is more complicated than the usual 

r-----· 
effective·range expansion, in whicb the expression in large 
parentheses reads simply 

r-~+fr,k 2 1+0<k4 ). (22) 

For any n ~ 2, Bollé and Gesztesy4 generalized the first 
term in expression (22). Upon camparing their coto for· 
mulas for even and odd dimensions with Bq. {21) we have 
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. Kv+ll2rya) [IU+Ilt]l 
121+1(2rya) "" 2y21+1a8 ' 

1231 

denoting the scattering length introduced by Bollé and 
Gesz;tesy by as. lt is interesting to oompare aandas for 
small y. Totbat end we approximate the Kil ratio fQr 
small arguments and find 

In -2)a•-l In ~3) 
as= -1 

2C+In(ya) ln=2. r+Ol 

(24) 

12Sl 

denoting Euler's conslllnt O.S77 liS. • • by C instead of y 
as in Refs. 1 and 3, to avoid confliSion with the strength 
parameter of the 1/r potential. Anticipating the results or 
Sec. Jll, we already note bere that Eq. 124) implies a8 to 
be continUOliS fot r-o. altbougb not dlfferentiably, whilc 
for 11 =2. Bq. (25) shows lls to have a discontinuity. Tbis 
contrasiS witb the smootb charge dependenee of our 
scattering lengtb for all 11 ~ 2 under rather general condi· 
tions on V. We conlirmed tbe above-mentioned bebavior 
of ll and lls witb r by means of numerieal c:alc:ulations. 

liL COULOMB..CORRECTED SCATTERING LENGTiiS 
AND PHASE SHIFTS 

In tbis sc:c:tion we pay attention to a problem often 
studled in the literature: tbc problem of how to lllke into 
ac:c:ount tbe effect of charges on tbe value of tbc neutral 
scattering lengtband pbasc shift.9-11 

We extend tbc derivation of tbc preceding section ful· 
lowing Eq. (14) by including tbe dependenee on y. Tbe 
lirst step concerns tbc analytic dependenee of a(r,k,yl on 
y for linite r, taking into account tbat T(ll,r ,k 2, y) is also 
analytic in y by Poincaré's tbeorem, tbe boqndary condi· 
tions for u, IIHS, and F /(c1k1+1nl being independent of 
r. Tbc sccond step concerns the dependenee of 
a(r= oo,k,yl on y. We again start from a fmite radius 
ro beyond whieh ll(r,y=Ol is not singular, excluding tbe 
exceptional ease that it tends to a singular limit. Essen· 
tially, tbc derivation of the preceding sc:c:tion tben applies, 
sinee in tbe first plaee the funetion /(a,s,k 2,yl is entire 
in k 2 and y for s>O. Tbis follows from Eq. (13), the 
function Uuslrl between square brackets satisfying k1-. 
and r·independent boundary condltions. Turning to the 
point s -o, again for reasons or continuity 1 a1so bas to 
go to 0 as s-0 at k1=r=O. Tbis implies the condition 

Y(r)=o I ,}+I ] 
of Ref. 3, logether with conditions (IS) and (19) for r > 0 
and r < 0, respectlvely (the preeedlog conditions automati~ 
cally imply continuity of I as , .... o for real k*O). Tbus 
a is continuons in y for Ir 11n < :l, if tbc strongest of 
these is satisfied, i.e., if V(r) goes to zero Caster than 
exp( -4À/Yr ). Tbe same condition is needed, if we want 
a to .be analytic in y for rcal k. For complex k we again 
have to impose tbe stronger condition (20). A survey. of 
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conditions on Vis given in Table I. 
We conclude that alyl goes smootbly to a(y=OI for 

any dimeosion n;o:2. As a consequence a8(y) for n;o:3 
also behaves continuously, Eq. (24) also being valid3.4 foi' 
r=O. Note, however, tbat lt is certalnly not analytic in y, 
sinee the left·hand slde of Eq. (23) contains a In( ya ) term. 
Tbis bas also been pointed out in Ref. 4. A Taylor series 
expansion of a8 is tbus impossible: Bq. (241 is an asymp· 
totic expresslon. Furthermore, for n .. 2, a Ir I soes to a 
real positive value a I y =0), Tberefore, aecording to Eq. 
12Sl, a8<rl tends to 0 both for r-+0 and r--o. lts 
value for r=O, however, is, In genera!, different from 0. 

The continuity of out scattering length for r-O makes 
it possible to derive for any n ~ 2 an explicit expression 
for the Coulomb c:orreetion to óUr scattering lengtb in 
tcrms of tbe r = 0 scattering length. Tbe right·hand si de 
of Eq. (14) being an entire function or y, we consider its 
lirst derivative relative to y. As mentioned betore, its 
z.ero.order form corresponds to the radial equation3 for 
tbe .. neutral scattering Jengtb. Taking fitSt-order terms 
and inlegrating over r from 0 to co we are able to express 
a(y) in.the y=O quantities 

~lrl=a(O)+y J
0
"'l<r)glrldr+Oirl. 1271 

In this equation I and g are given by 

llrl=exp- f"' U2tV(t~ 
' ( +Ir 

x 1~1; r+·-(/+1) [7 r+l 
+ ll àt hl ~3)' (281 

llr)=exp J,"' tV!tllnf [lnf+2jdt (n,.,2), 1291 

( 1 2arV!rl 
g r = (2/+1Jlc21+2l 

x { [[; r+l-lt r+ll(r-ll) 

+f 11-1; r+·1 
+-r!~-l;r+lj} (11>31. (301 

I ~ ~ al g(r)=arV(r) -+--a-r+21r-alln-
ll r r 

!11 ..,3), (311 

g(r)=2arV(r)lnf [<a+rlln;-2{a-r) I (11=21. 

(32) 

In Eqs. !281-!32) a stands for tbe r=O local seattering 
lengtb ll(r). We stress tbat no approximations have been 
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TABLE I. ConditiOliS on V at infinity for eontinuity and 
analyticity properties of al oo,k,y) in k2 and y. 

Property of al co,k,y) Condition on V 

Continuons in k l for r < 0 o [ )n I 
Continuous in k2 and y at y=O oll/r-+1) 

[ 
exp! ..-4v,;;: ) ] 

Anal)'tic in r for real k 
Analytic in k 2 and y 

0 rM 

olexpl-4i.Vr)}, hO 
o(exp!-i.rl), 4>0 

made in derhing these lowest-order termsin y. We note 
runhermore tbat again ell.pression 129) is the limit for 
n-2 of Eq. (28). Similarly, Eqs.l31l and 132) are limits 
ofEq.l30). 

11 does not make muc:h sense to turn to an expansion of 
tbe phase shift ö or c:otll itself in r: the availability of an 
explicit expression via Eq. 1211 makes it possible to substi· 
tute direc:tly an order·r approximated scattering length in 
the K /I ratio. 

In the present paper· and in Ref. 3 we have pointed 
several times to the fac:t that our equations show a natura! 
behavior for varying di mension n. In partic:ular tbe equa· 
tions for two dimensions fitled naturally in tbose for gen-

IB. J. Verhaar, J. P. H. W. van den Eijnde', M. A. J. Voermans, 
and M.M. J. Schatfratb, J. Pbys. A 17, 595 11984). 

2L. P. H. de Goey, J. P.J. Driessen, B. J. Verhaar, and J. T. M. 
Walraven, Phys. Rev. Lett. S3, 1919 H984J. 

'B. J. Verhaar, L. P. H. de Goey, J. P. H. W. ,,.n den Eijndc, 
and E. J: 0. Vredenbregt, preeedins paper, Pbys. Rev. A 32, 
1424 (19851. 

•o. Boll.! and P. Gesztesy, Phy1;. Rev. Lett. 52, 1469 {1984); 
Phys. Rev. A 30, 1279 (1984). 

SHandbook of Mathernatlt:tJI Functions, edited by M. 
Abramowitz and l. A. Stegun (Dover, New York, 1968). 

6p, S. Ham, Q. Appl. Math. IS, 31 (1957): Eqs. (9), (23), !Àl4), 
lA16l, and (Al7), tlsing the WalSOli dcfinition of the K fune· 

era! n ~ 2. To show this was in fac:t one of tbe main ob· 
jec:tives of Ref. 3 and this paper. lt is appropriate to point 
out tbat this forma! behavior as a func:tion of dimeosion 
can be put on a more rigorons basis bY treating n (i.e., l) 
a$ a tbird parametet besides k 2 and y. Poinc:aré's 
thoorem can also be applied to prove the smooth behavior 
of the equivalent hard-spbere radius and the scattering 
lengtb as a func:tion of n near n ... 2. 

IV. CONCLOSIONS 

We have thus extended the conceptsof scattering length 
and effec:tive range introduc:ed in Refs. I and 3, so as to 
include a 1/ r potential. Both of tbem have the physical 
significan<:e of the radius of an equivalent bard sphere· 
giving rise to tbe same 0(k0l and 0(k2l terms in the ex
pression for cotö. The derivation was bssed on the intro
duetion of an equivalent hard-spbere radius o(r,k,y) for 
general k and y, cutting off the potential V at r. The 
smooth cnergy dependenee of this quantity made it possi
bie to derive the effective-range expansion for fixed r. 
botb fór fini te rand for r guing to infinity. 

Making extensive use of Poincaré's tbeorem it was sub
sequenlly possible to derive a similar smoothness property 
for o(r,k,y) and a( OQ,k,yl as they depend on r and on 
the dimension. 

tinn, we omit the cos( ".m l factor in Eq. (A 17). 
7H. Poincaré, Acta Math. 4, 201 0884); R. G. Newton, Scotter· 

lng Theory of Waves and Partlcles, lnd ed. (McOraw·Hill, 
Ncw York, 1982), p. 334. 

8L .. Bieberbach,l.Ahrbuch der Funktwlienrheorie (Chelsea, Ncw 
York, 1945), p. 190. 

90. P. Chc:w and M.L. Goldberger, Phys. Rev. 7S, 1637 11949). 
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llA. M. Badalyan, L. P. Kol<, M. I. Polikarpov, and Yu. A. 

Simonov, Phys. Rep. 82, 32 119821. 
12J. Fröhlieh, L. Streit, H. Zankel, arnl H. Zing!, J. Phys. 0 6, 

841 11980). 
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The study of atomie hydrogen gas, stabilized against the 

formation of ~ molecules by the parallel direction of the electron

and proton-spins (H!t or Hfi.), has attracted much attention in recent 

years. This thesis deals with the theoretica! aspects of some 

interesting quantummechanical collision phenomena appearlng in such a 

spln-polarized gas at densities and temperatures for which degeneracy 

effects do not play a role. 

The thesis is divided in eight chapters. Chapter 1 serves as an 

introduetion and gives the motivation for the research. We start with 

a brief summary of the progress during the last years, in which we 

come to the conclusion that 6ne of the possibillties to obtain 

Bose-Einstein condensation in Hlt gas is under present expertmental 

circumstances blocked by a rapid decay of the gas via the exothermal 

recombination reaction H+H+H -+ H2+H. This process can take place when 

one or two electron spins are flipped by the magnetic-dipole 

interaction during a collidon of three polarized hydrogen atoms. A 

study of this cellision process, taking place in the volume and in the 

Hlt gas adsorbed to the helium surface, is 6ne of the main toples of 

this thesis. As a preparatien for this study, we give in Chapter 1 

also an overview of the lnteractions in the atomie gas and a summary 

of some aspects of (non-relatlvistic) quantummechanical scattering 

theory of two and three particles. 

A calculatlon of the decay constant of the three-body dipolar 

recombination process at the surface is presented in Chapter 2. Thls 

calculation is basedon a mechanism, first described.by Kagan for the 

volume. The results display important differences with experiment: the 

magnetie-field dependenee is wrong as in the case of the volume, while 

also the order of magnitude is roughly a factor of 10 too small. In 

Chapter 3 the theory of this surface reaction is more extensively 

studled and the effect of some approximatlons further lnvestigated. 

Apart from this, Chapter 3 contains also the more general theory of 

exchange and dipolar recombination in atomie hydrogen gas: on the 

basis of scattering theory and via the quanturn Boltzmann equation 

expresslons are deduced for the decay constants in terms of transition 

matrix elements. 
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In view of the discrepancies between the experimental and 

theoretica! behavlor of the surface and volume recombination constants 

for fields B~lO T. we introduce in Chapter 4 the dipole-exchange 

mechanism as an alternative to the Kagan process. Two ways to estimate 

lts contribution turn out to be promising, but too uncertain to come 

to definite conclusions. 

Therefore a start is made in the same Chapter 4 with a more exact 

determination of the decay constant for the volume. This calculation 

is continued in Chapter 5. An almost rigarous starting point bere is 

the first-order matrix element of the extremely weak magnetie-dipole 

interaction between the H+H+H init~al state and the ~+H final state. 

in which.the central (singlet/triplet) interactions are included to 

all orders. A major part of such a: project has already been realized: 

the H+H+H initia! state is determined exactly by means of the Faddeev 

formalism, while in the ~+H final state all three-body correlations 

are included, except for the correlat!ons giving rise to the 

dipole-exchange mechan!sm. The results of this calculation are still 

not in agreement with the experiment, so that we may conclude that the 

latter mechanism must be responsible for the discrepancies for fields 

BS:lO T. 

A parametrizetion of the low-19nergy behavior of two- and 

three-particle colliston phenomena is of special importance to 

describe the low-temperature phenomena in.a gas of Hlt. In Chapters 

6-8 attention is given to formulate such a theory for scattering in 

arbitrary dimension n~2. so that it can he used in particular for H+H 

and H+H+H collislons in the bulk and in the two-dimensional gas of 

atoms adsorbed to the helium surface. Chapter 6 contains a summary of 

this effective-range theory in gen,ral, while Chapters 7 and 8 are 

especially devoted to scattering of neutral and charged particles, 

respectively. 
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SAMENVATTING 

De studie van atomair waterstof gas, gestabiliseerd tegen de vorming 

van H2 moleculen door het gelijk richten van de electron- en proton-spins 

(Hli of Hf~). heeft de laatste jaren veel aandacht getrokken. Dit 

proefschrift behandelt de theoretische aspecten van enkele interessante 

quanturnmechanische botsingsverschijnselen die in zo'n spin-gepolariseerd 

gas optreden, bij dichtheden en temperaturen waarvoor degeneratie 

effecten nog geen rol spelen. 

Het proefschrift is verdeeld in acht hoofdstukken. Hoofdstuk 1 is 

een inleiding en geeft de motivatie voor het onderzoek. We starten met 

een korte samenvatting van de ontwikkeling gedurende de laatste jaren, 

waarin we tot de conclusie komen dat één van de mogelijkheden om 

Bose-Einstein condensatie in Hlt gas te verkrijgen onder de huidige 

experimentele omstandigheden wordt geblokkeerd door een snel verval van 

het gas via de exotherme recombinatie reactie H+H+H ~H2+H. Dit proces 

kan optreden als een of twee electron spins worden geflipt door de 

magnetische dipool interactie tijdens een botsing van drie gepolariseerde 

waterstof atomen. Een studie van dit botsingsproces, dat plaats vindt in 

het volume en in het aan de heliumwand geadsorbeerde Hlt gas, is één van 

de hoofdpunten van dit proefschift. Als voorbereiding op die studie geven 

we in Hoofdstuk 1 tevens een overzicht van de interacties in het atomaire 

gas en een samenvatting van enkel aspecten van de (niet-relativistische) 

quanturnmechanische verstrooiings-theorie van twee en drie deeltjes. 

Een berekening van de vervalsconstante van het drie-deeltjes 

dipolaire recombinatie proces aan het oppervlak wordt in Hoofdstuk 2 

weergegeven. Deze berekening is gebaseerd op een mechanisme, dat voor het 

eerst beschreven is door Kagan voor het volume. De resultaten vertonen 

belangrijke verschillen met het experiment: net als in het volume is de 

magneetveld afhankelijkheid fout. terwijl ook de orde van grootte ruwweg 

een factor 10 te klein is. In hoofdstuk 3 wordt de theorie van deze 

oppervlakte reactie meer uitgebreid bestudeerd en het effect van enkele 

benaderingen verder onderzocht. Daarnaast bevat Hoofdstuk 3 nog de meer 

algemene theorie van exchange en dipolaire recombinatie in atomair 

waterstofgas: via de verstrooiingstheorie en via de quanturn Boltzmann 

vergelijking worden uitdrukkingen afgeleid voor vervalsconstanten in 

termen van overgangs matrix elementen. 
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Met het oog op de discrepanties tussen het experimentele en 

theoretische gedrag van de oppervlakte en volume recombinatie constanten 

voor velden B~lO T. introduceren we in Hoofdstuk 4 het dipool-exchange 

mechanism als een alternatief voor het Kagan proces. Twee manieren om de 

bijdrage hiervan af te schatten blijken hoopgevend te zijn, maar toch te 

onzeker om er definitieve conclusies aan te.verbinden. 

Derhalve wordt nog in hetzelfde Hoofdstuk 4 een aanzet gedaan tot 

een meer exacte berekenins van de vervalsconstante voor het volume. Deze 

berekenins wordt voortgezet in Hoofdstuk 5. Een bijna-rigoreus 

uitgangspunt hierbij is het eerste-orde matrix element van de extreem 

zwakke magnetische-dipool interactie tussen de H+H+H begintoestand en de 

H2+H eindtoestand, waarin de centrale (singleVtriplet) interacties zijn 

verdisconteerd tot alle orden. Een groot deel van een dergelijk project 

is reeds gerealiseerd: de H+H+H begintoestand is exact berekend met 

behulp van het Faddeev formalisme, terwijl in de H2+H eindt~estand alle 

drie-deeltjes correlaties zijn verdisconteerd, behalve de correlaties die 

tot het dipool-exchange mechanisme leiden. De resultaten van de 

berekeningen zijn n~ al tijd niet' in overeenstemming met het experiment. 

zodat we kunnen concluderen dat dit laatstgenoemde mechanisme 

verantwoordelijk moet zijn voor de discrepanties voor velden B~lO T. 

Een parametrisatie van het lage-energie gedrag van twee- en 

drie-deeltjes botsingsverschijnselen is van speciaal belang voor het 

beschrijven van lage-temperatuur verschijnselen in H!t gas. In 

Hoofdstukken 6-8 wordt aandacht geschonken aan een formulering van zo'n 

theorie voox>verstrooiing in al~emene> dimensie .n~2 •. ;zodat deze in het 

bijzonder gebruikt kan worden,:voor H+Ho enJi+H+H botsingen in het volume 

en in het twee-dimensionale g~s v~n atomen geadsorbeerd aan het helium 

oppervlak. Hoofdstuk 6 bevat een samenvatting van deze effectieve dracht 

theorie in.het algemeen, terwijl Hoofdstukken 7 en 8 speciaal gericht 

zijn op respectievelijk verstrooiing van neutrale en geladen deeltjes. 

138 



De hulp die vele anderen hebben geboden bij het voltooien van mijn 

promotieonderzoek en het tot stand komen van dit proefschrift is van 

groot belang geweest. Daartoe wil ik op.deze plaats een ieder bedanken 

die een bijdrage hiertoe geleverd heeft. 

Enkelen echter wil ik met name noemen: Boudewijn Verhaar voor zijn 

nimmer verflauwende aandacht en zêer stimulerende samenwerking, Jook 

Walraven voor zijn onontbeerlijke "experimentele" inbreng en Walter 

Glöckle voor het op gang brengen en houden van het omvangrijke 

drie-deeltjes project. Verder waren de diepgaande discussies met mijn 

medepromovendi Vianney Koelman en Henk Stoof van belangrijke betekenis 

voor mijn fysisch begrip. Mijn speciale dank gaat uit naar Henk Stoof, 

voor de bergen werk die hij verzet heeft en voor zijn medewerking in het 

uitvoeren en begrijpen van de vele berekeningen. Ook wil ik de vele 

stagiairs en de afstudeerders Norhert Mulders, Tom van den Berg en Willem 

Rovers noemen, van wie ik veel geleerd heb. Als laatste gaat mijn dank 

uit naar de ondersteuning vanuit het Rekencentrum, SARA en de Werkgroep 

Supercomputers en naar Ruth Cruyters voor het vervaardigen van de vele 

plaatjes in dit proefschrift. 

139 



4 Nov. 1959: 

Aug. 1971 - Juni 1977: 

Aug. 1977 - Dec. 1982: 

Dec. 1982 - Juni 1983: 

Aug. 1983 - jan. 1984: 

Jan. 1984 - Jan. 1988: 

140 

LEVENSLOOP 

Geboren te Budel. 

Gymnasium B aan het Bisschoppelijk College te 

Weert 

Studie Natuurkunde aan de Katholieke 

Universiteit Nijmegen. 

Afstudeerrichting: Theoretische elementaire 

deeltjes fysica bij Prof. dr. R.P. van Royen. 

Eerste graads lesbevoegdheid natuurkunde aan de 

Katholieke Universiteit Nijmegen. 

Hospitium: Vincent van Cogh Havo te Oss. 

Eerste graads leraar natuurkunde aan de 

R.K. Havo de Naulande te Drunen. 

Promotieonderzoek in de vakgroep Theoretische 

Natuurkunde aan de Technische Universiteit 

Eindhoven onder leiding van 

Prof. dr. B.j. Verhaar. 



STELLINGEN 
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L.P.H. de Goey 



1. Uit het T-matrix formalisme. geïntroduceerd door H.T.C. Stoof et 

al .• volgt dat het anti-hermitische deel van de T(ransition) 

operator die de verstrooiing beschrijft aan een 

rotatie-syuunetrische potentiaal exact separeert. 

H.T.C. Stoof, L.P.H. de Goey, W.M.H.M. Rovers, P.S.M. Kap Jansen 

en B.]. Verhaar, ingezonden ter publicatie. 

2. De recente ontwikkeling m.b.t. hoge-Te supergeleiding opent 

perspectieven voor de (verdere) stabilisatie van atomair 

waterstof. 

T.K. Worthtngton, W.J. Galtagher en T.R. Dtnger, Phys. Reu. Lett. 

59, 1160 (1987). 

3. De generalisatie van de effectieve-qracht theorie van 3 dimensies 

tot algemene dimensie n~2 zoals gepresenteerd in dit proefschrift 

is superieur t.o.v. formuleringen van andere auteurs. 

D. Bolte'en F. Gesztesy, Phys. Reu. Lett. 52, 1469 (1984). 

S.K. AdhUutri, W.G. Gtbson en T.K. Ltm. ]. Chem. Phys. !§, 5580 

(1986). 

4. De beschrijving van de relatieve beweging van twee aan de helium 

wand geadsorbeerde H atomen wisselwerkend via de triplet 

interactie, zoals toegepast door Kagan. is een slechte benadering 

voor subkeivin temperaturen. 

Yu. Kagan. G.V. Shl.yapni.lwv, I.A. Vdrtan'yants en N.A. Gtukhou, 

Zh. Eksp. Teor. Ftz. 81. 1131 (1981). 



5. Het is mogelijk om een experimentele benedengrens te bepalen voor 

de bulk recombinatie-constante van dubbel-gepolariseerd atomair 

waterstof gas voor magneetvelden tot 40 Tesla via metingen bij 

velden variërend tussen 0 en 20 Tesla. 

6. De uitdrukking die Bogoliubov, op basis van een suggestie van 

Landau, gebruikt voor het T-matrix element van een binaire botsing 

om zijn microscopische theorie van verdunde gedegenereerde Bose 

systemen te generaliseren tot willekeurig sterke paar-interacties, 

is onjuist. 

N.N. Bogotiubov, }. Phys. (USSR) 11, 23 (19117). 

1. Het gedrag van een groot deel van de Budelse bevolking ten aanzien 

van de cadmiumvervuiling kan verklaard worden met behulp van de 

cognitieve dissonantie-theorie van Festinger. 

C. Keers en H. Wtlke, Ortehtntte tn de soctnte psychologie. 

B. Met name vanuit het oogpunt van het Japanse onderwijs zou het 

grote voordelen bieden als de Kanji tekens in het Japanse 

letterschrift vervangen zouden worden door Kana tekens. 

9. Het dient aanbeveling strips als "Kuifje", "Asterix" en 

"Lucky Luke" te verwerken in het lesmateriaal van het 

basisonderwijs. 

10. De toekenning van Nobel prijzen in de Natuurkunde doet te weinig 

recht aan belangrijke bijdragen met een minder spectaculair 

karakter. 




