
 

The mechanical behaviour of the aortic valve

Citation for published version (APA):
Sauren, A. A. H. J. (1981). The mechanical behaviour of the aortic valve. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mechanical Engineering]. Technische Hogeschool Eindhoven.
https://doi.org/10.6100/IR94978

DOI:
10.6100/IR94978

Document status and date:
Published: 01/01/1981

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR94978
https://doi.org/10.6100/IR94978
https://research.tue.nl/en/publications/0430d606-b63b-42d8-85cd-436e1e42342f


the 
machanical 
behaviour 
of the aartic valve 

a.a.h.j. sauren 



THE MECHANICAL BEHAVIOUR OF THE AORTIC V AL VE 



THE MECHANICAL BEHAVIOUR 
OF THE AORTIC VALVE 

PROEFSCHRIFT 

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE 
TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE 

HOGESCHOOL EINDHOVEN, OP GEZAG VAN DE 

RECTOR MAGNIFICUS, PROF. IR. J. ERKELENS, VOOR 

EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE 

VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP 

VRIJDAG 19 JUNI 1981 TE 16.00 UUR 

DOOR 

ALFONS ALOISIUS HENRICUS JOHANNES SAUREN 

GEBOREN TE KERKRADE 

DISSERTATIE DRUKKERIJ 
.... b .... 

HELMOND. TElEFOON 04920· 23981 



Dit proefschrift is goedgekeurd 
door de promotoren: 

Prof. Dr. Ir. J. D. Janssen 

en 

Prof. Dr. R. S. Reneman 

Co-promotor Dr. Ir. F. E. Veldpaus 



Aan aZZen die mij hielpen 

Aan mijn ouders 



Het verschijnen van dit proefschrift werd mede mogelijk gemaakt door 

steun van de Nederlandse Hartstichting. 



CONTENTS 

Abstract 

1 General i nt rodueti on 

1.1 Purpose and scope of the present study 

I .2 Contents of the study 

2 Input data f or t he mechanicaZ modeZ of the aartic vaZve 

2.1 Introduetion 

2.2 The anatomy and function of the aortic va lve 

2.3 The histology of the aortic valve 

2.3.1 Introduetion 

2.3.2 Material and methods 

2.3.3 Results 

2 . 3.4 Discussion 

2.4 The geometry of the aortic va lve 

2.5 The pressure difference across the aortic valve 

2.6 The mechanica! properties of aortic valve tissue 

3 The mechanicaZ properties of aartic vaZve tissue 

3.1 Introduetion 

3.2 General f eatures of the mechanical behav iour of sof t 

biologica! tissues 

3.3 A review of literature concerning the mechanica} 

properties of aortic valve tissue 

3 

3 

s 
7 

7 

7 

12 

12 
12 

13 

IS 

22 

26 

27 

29 

29 

29 

31 

3.4 A brief review of constitutive models for soft tissues 37 

3.5 The quas i -linear viscoelasticity law 41 

4 Experiment s 47 

4.1 Introduetion 47 

4.2 Theoretica! considerations 

4.3 Physiological values of strain 

4.4 Experilnenta l set-up 

4. 5 Tes ting pr ocedure 

4 .6 Results 

4.6.1 Introduetion 

4. 6. 2 The o-e: charac teristics of the various val ve 

parts 

4.6.3 The relaxation behavi our of the various va lve 

par ts 

47 

50 

52 

54 

56 

56 

57 

60 



4.7 Discussion 

4.7.1 The cr-E characteristics 

4.7.2 The relaxation behaviour 

5 A theoretical model of the aortic valve 

5.1 Introduetion 

5.2 Review of the literature on stress analysis of the 

aartic valve 

5.3 Description of the model 

5.3.1 Introduetion 

5.3.2 Geometry 

5.3.3 Material properties 

5.4 Some results of model calculations 

5.4.1 Introduetion 

5.4.2 A simple model incorporating the bundle 

structure 

5.5 Discussion and conclusions 

6 Summary and conclusions 

Appendix A The purpose and scope of the Eindhoven heart

valve research project 

Appendix B 

Appendix C 

A brief outline of the anatomy and physiology 

of the heart 

Linear viscoelasticity 

Introduetion 

2 Reduced relaxation function and elastic 

response 

3 Complex modulus 

4 Example 

5 cr-E characteristics for different constant 

strain rates 

62 

62 

68 

75 

75 

75 

78 

78 

79 

80 

80 

80 

80 

87 

89 

95 

97 

I OI 

lOl 

I OI 

I 04 

106 

I I 0 

6 Stress responsetoa step-like strain history 112 

Appendix D 

7 Relaxation spectrum 

A brief outline of the t heory of continuurn 

mechanics 

Introduetion 

2 General outline of the theory of continuurn 

mechanics 

114 

119 

122 

122 



Heferences 

Samenvatting 

Nawoord 

Levensbericht 

2.1 Geometrical aspects 

2.1.1 Same basic assumptions and 

defini ti ons 

122 

122 

2.1.2 The Lagrangian deformation tensor 124 

2.1.3 The Greenstrain tensor 126 

2.2 The Cauchy and the secend Piola-Kirchhoff 126 

stress tensors 

2.3 The equations of motion 

2.4 The principle of virtual work 

2.5 The finite element methad 

2.5.1 Introduetion 

2.5.2 The principle of virtual work for 

one element 

128 

129 

131 

131 

132 

2.5.3 The incremental salution methad 134 

3 Formulation of the properties of some elements 136 

3. I The membrane. element 136 

3.2 The cable element 140 

145 

155 

157 

159 



ABSTRACT 

In order to gain insight into the factors which govern themechanical 

behaviour of the natural aortic valve after closing, a theoretical 

model has been developed. Indeveloping this model special attention 

has been .Paid to aortic valve histology and the mechanical properties 

of the valve tissues. 

Based upon histological observations a valve leaflet is considered 

as an elastin meshwork reinforeed with stiff collagen bundles mainly 

arranged in one particular direction. The sinus walls consist of 

smooth muscle cells embedded in a grid of elasl:in fibres showing no 

preferred orientation. 

From the results of uniaxial tensile experiments the collagen 

bundles in the leaflets show a stiffening effect and cause a marked 

anisotropy. The sinus and aortic tissues appear to be much more 

compliant than the leaflet tissue. The stress-strain curves of the 

tissues are only slightly sensitive to strain rate. Stress relaxation 

phenomena were analyzed using a mathematica! model. In the leaflets 

more stress relaxation is found than in the sinus and aortic walls. 

Predietiens based upon the model indicate that on cyclic loading the 

larger viscous losseshave to be expected in the leaflets. 

In the theoretical model the influence of the bundle structure on 

the statie, mechanical behaviour of a leaflet in the c losed valve was 

studied. The bundies transmit the pressure load on the membraneus 

parts to the aortic wall. In the presence of the bundles the stresses 

in the principal directions become nearly the same and equal t o the 

minimum principal - stresses as found without bundles. This results in 

a homogeneaus stress distribution without s ignificant shear stresses . 



CHAPTER 1 

GENERAL INTRODUCTION 

1.1. Purpose and scope of the present studY 

The investigations presented in this study have been performed within 

the framewerk of the Eindhoven heart-valve research project!) with 

special reference to the mechanica! behaviour of the aartic valve. 

The aartic valve is one of the four valves which control the blood 

flow through the heart2). It is situated at the outlet of the left 

ventricle and has three leaflets. Behind each leaflet a cavi ty is 

present, the so-called sinus of Valsalva. Under normal physiological 

conditions the closing of the aortic valve starts during the 

deceleration phase of the aartic volume flow [Bellhouse and Talbot, 

1969; Van Steenhoven and Van Dongen, 1979; Van Steenhoven et al., 

1981]. A small aartic back flow completes the closure of the valve. 

One of the main problems encountered after replacing aartic valves 

by artificial triple-leaflet-valve prestheses is its limited 

durability. It is assumed that, apart from tissue degeneration, 

abnormal hydrodynamica! and mechanica! factors cause early failure of 

the prosthesis. 

One of the objects of the Eindhoven heart-valve research project is 

to assess the parameters which govern the stresses in the leaflets of 

the natural aortic valve. Knowledge of these parameters will 

contribute to obtain reliable technica! specifications for the design 

and implantation of artificial triple-leaflet-valve prostheses. 

The aim of the,present study is gaining some insight into the 

factors which govern the mechanica! behaviour of the natural aartic 

valve after closing. To this end a theoretica! model has been 

I) 
A description of the purpose and scope of this project is given in 

Appendix A. 

Z) An outline of the anatomy of the heart is presented in Appendix B. 
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developed based upon the extant knowledge about geometry , structural 

aspectsas obtained by histological examination, mechanica! material's 

properties and finally the load to which the valve is exposed. It has 

been thought the right strategy to restriet the number of parameters 

taken into account rather than to aim at a sophisticated model, in 

order to be able to investigate the influence of the factors which are 

considered to be predominant. 

A review of literature reveals that various stress analyses have 

been performed on theoretica! valve models. In nearly all these 

studies the valve leaflets are considered in the closed position. They 

range from analytica! studies, based upon membrane theory employing 

simple geometry [Chong et al., 1973; Missirlis and Armeniades, 1976] 

to sophisticated roodels using finite-element methods and detailed 

geometrical data obtained from stereophotogrammetric studies 

[Cataloglu et al., 1975; Gould et al., 1980]. As to the material's 

properties, it is mostly linear elasticity, isotropy and homogeneity 

assumed. Typical of these studies is that the -even macroscopically 

visible- bundle structure in the leaflets is not explicitly taken into 

consideration in studying their mechanica! behaviour. Moreover, no 

information could be found on the mechanica! significance, if any, of 

the surrounding regions, i .e. the walls of the sinus cavities and the 

adjacent portion of the aortic wall. In order to ensure that the 

relevant features of valve mechanics are studied, these aspects should 

be investigated before concentrating on detailed roedelling of the 

geometry of the leaflets and nonlinear material properties. 

Regarding these considerations, in the present study in particular 

attention has been paid to the histology of the aor tic valve in view 

of the possible relation to mechanics. In addition, experimental and 

theoretica! investigations of the mechanica! properties of the valve 

tissues were performed. Emphasis was laid on the cernparisen of the 

characteristics of the different valve parts (the leaflets as well as 

the sinus and aortic walls) rather than on a detailed rnadelling of 

their properties. For the theoretica! roedelling of the valve a 

finite-element model based upon the theory of nonlinear continuurn 

mechanics was developed. Although originally intended to perfe rm 

static studies of the valve leaflets in the closed configuration, the 

model can be extended easily to describe the behaviour of the sinus 

and aortic walls. With respect to the representation of the material's 
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properties, the model is more or less universa! and nonlinear 

elasticity can be taken into account. An extension to include 

viscoelastic·materials can easily be implemented. 

1.2. Contentsof the study 

In Chapter 2 a description of the anatomy and function of the valve is 

given. After a description of the valve histology a review of the 

literature on valve geometry is presented. The load on the valve is 

briefly discussed and the available data on the mechanica! properties 

of the valve tissue are briefly reviewed. A more detailed survey of 

material's data is given in Chapter 3, whereas in the same chapter 

the mathematica! model on which the present study is based is 

discussed. Chapter 4 deals with the constitutive experiments. The 

results of the model calculations are presented in Chapter 5. Chapter 

6 provides the summary and conclusions of the study, 

5 



CHAPTER 2 

INPUT DATA FOR THE MECHANICAL MODEL 

OF THE AORTIC VALVE 

2.1. Intr>oduction 

Data on geometry, dimensions, mechanica! properties and leads are 

basic requirements when studying the mechanics of a system. In this 

chapter a survey is given of the data available on the parameters 

descrihing the mechanics of the aartic valve. Befare proceeding to 

th{s, the anatomy and function of the aartic valve are described in 

~ection 2.2. Especially when dealing with a biologica! system, the 

structure of its components may provide valuable information on ,their 

function and mechanica! properties [Wainwright et al., 1976]. In 

sectien 2.3 the histology of the aartic valve and its possible 

relation to valve mechanics is therefore dealt with. The available 

data on valve geometry and valve loading are presented in sections 

2.4 and 2.5, respectively. A review of the Iiterature on the 

mechanica! properties of aartic valve tissue provided a series of 

experimental investigations. Data on the mathematica! description of 

these properties, however, could nat be found in literature. A brief, 

qualitative description of the results of these experimental studies 

is given in sectien 2.6. 

2.2. The anatomy and function of the aorotic vaZve 

The aartic valve, -situated at the outlet of the left ventricle, is ene 

of four valves cantrolling blood flow through the heart (a concise 

description of the anatomy and physiology of the heart is given in 

Appendix B). The valve consistsof three anatomical entities: three 

leaflets, three sinus cavities and the aartic ring (fig. 2.1 and 2.2). 

Two functional areas can be distinguished in each leaflet. The area 

near the free edge is known as the lunula, thanks to its semilunar 

shape. When the valve is closed, the outlet orifice of the left 

ventricle is sealed because the lunulae of adjacent leaflets are 
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AORTA t 

LEFT I 
VENTRICLE ' 

L'.Fig. 2.2. 
Exposure of the aortic valve in the closed c.onfiguration after 
dissectien of one leaflet and the corresponding sinus wall. The 
coronary arteries are not shown. 

c: commissure; f: free edge of leaflet; ~: lunula; n: node of 
Arantius; s: sinus wall~ t: top of a sinus cavity. 

<JFig. 2.1. 
A. The aortic valve in the closed contiguration as seen from the 

aortic side. The coronary arteries (see text) are omitted. 
B. Side view of the valve. All elements, lying between the dashed 

line a (aortic ring) and the circle b in the transversal plane 
through tbe sinus tops (t), constitute the aortic valve. 

c: commissure; s: sinus wall; t: top of a sinus ·cavity; 
1: circumferential direction; 2: radial direction in the leaflets; 
3: axial direction in the sinus and aortic walls. 
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coïncident with each other (fig. 2.1 and 2.2). The remainder of the 

leaflet surface, not making contact with adjacent leaflets when the 

valve is closed, is referred to as the load hearing leaflet portion 

[Mercer, 1973]. Halfway the free leaflet edge there is a thickening, 

the so-called node of Arantius. The line of attachment of the leaflets 

to the aortic wall will be referred to as the aortic ring [Missirlis, 

1973], although in literature other designations arealso used, e.g. 

annulus fibrosus [Missirlis, 1973] or fibrous coronet [Brewer et al., 

1976]. The line of attachment of each leaflet to a sinus for.ms a 

U-shaped arch. Consequently, the aortic ring, formed by the three 

U-arches, is actually a crown-like formation rather than a circular 

ring. The tops of the arches, where the lunulae of adjacent leaflets 

merge into the aortic ring, are called commissures. Behind each 

leaflet the aortic wall expands to form three dilated pouches, the 

sinuses of Valsalva, the walls of which are considerably thinner than 

that of the aorta. In two of the three sinuses are located the 

orifices of the coronary arteries which supply the heart muscle with 

blood. The two anterior sinuses (and leaflets) are commonly denoted 

as the right and the left coronary sinus (and leaflet). The third is 

the non-coronary or posterior sinus (and leaflet) [Silverman and 

Schlant, 1970]. 

The term "aortic valve" will be taken to apply to the part of the 

aortic root consisting of the leaflets and the sinus walls, bounded 

at the ventricular or inflow side by the aortic ring and at the aortic 

or outflow side by the circle that is obtained by intersectien of the 

transversal plane through the sinus tops and the aortic wall (fig. 

2.1). This definition includes the portions of the aortic wall, that 

are bounded by this circle and the aortic ring. 

Both mechanica! and kinematica! aspects are involved in valve 

functioning and differ in importance in the various phases of the 

cardiac cycle, as will be discussed below. During one cardiac cycle 

three main phases can be distinguished in valve performance: the 

opening and closing phases in systole and the diastolic phase during 

which the valve is closed. In the normal situation valve opening is 

very fast. The leaflets bulge towards the aorti just befere left 

ventricular ejection begins [Heckman and Ascanio, 1972; Swanson and 

Clark, 1973]. The valve is completely open when the peak flow in the 

ascending aorta has reached 75% of its maximum [Van Steenhoven, 1979; 
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Van Steenhoven et.al., 1981]. As to valve closing, Bellhouse and 

Talbot [1969] concluded from their model experiments that two phases 

can be distinguished. The first is the gradual closing of the valve 

that starts during the deceleration of aortic flow, resulting in 

about 80% valve closure at the moment of zero flow in the ascending 

aorta at end-systole. Finally, a small reversed flow completes 

closure. Similar results were obtained by Van Steenhoven [1979] and 

Van Steenhoven et al. [1981] in in vivo experiments. Moreover, they 

observed that in the intact animal the valve has already closed by 

about 10% at the onset of deceleration of ascending aortic flow and 

that complete closure coincides with maximum backflow in the ascending 

aorta. Being thin and flexible membrane-like structures, the valve 

leaflets cannot withstand any significant pressure difference during 

the opening and first closing phase. During these phases the leaflets 

may be expected to move with the fluid in an essentially kinematica! 

process governed by the fluid motions. Stresses resulting from 

pressure-loading, boundary-layer and inertia effects will be 

insignificant in these phases compared with the stresses to be 

expected in the second closing phase and during diastole. The 

coincidence of maximal backflow and complete valve closure [Van 

Steenhoven, 1979; Van Steenhoven et al., 1981] will inevitably cause 

peak stresses in the leaflets. In the course of diastole the leaflets 

have to withstand a slowly varying but none the less considerable 

pressure load (see section 2.5). Modelling of the valve behaviour 

during the second closing phase, including the moment of complete 

closure, is very complex because of its highly dynamical character. 

The present study will be restricted to investigations of the 

mechanics of the closed valve in the quasi-static situation in 

diastole. Insight into the behaviour of the valve in this situation 

is expected to provide important criteria for the design of a valve 

prosthesis, that combines an optimum loadbearing function with 

minimum stresses. Moreover, such a study may serve as a basis for 

investigations of valve behaviour during the other phases of the 

cardiac cycle, involving kinematica! and dynamica! aspects. 
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2.3. The histology of the aartic valve 

2.3.1. Introduetion 

When investigating a system consisting of biologica! tissue, 

histological data may provide important information for the 

theoretica! rnadelling as well as the interpretation of experimental 

results. Information on the aceurenee and arrangement of different 

tissue components with their specific properties, facilitates the 

qualitative interpretation of the results of materiàl experiments as 

performed on tissue samples (see sectien 3.2). Moreover, based upon 

the structure and mechanica! properties of the various parts of a 

biologica! system one might be able to formulate hypotheses 

concerning their respective functions. These hypotheses in turn may 

serve as guidelines for determining how the system components should 

be schematized in order to develop an appropriate, realistic model of 

the total system. 

Although many histological studies have been performed on both 

human [Clark and Finke, 1974; Gross and Kugel, 1931; Mohri et al., 

1972] and animal [Brewer et al., 1976, 1977; Lyons, 1976] aartic 

valves, only minor attention has been paid to the possible 

significanee of the various tissue components for the mechanica! and 

kinematica! behaviour of the valve. The aim of the work presented 

here is to contribute to the interpretation of aartic valve histology 

with respect to the understanding of valve mechanics and kinematics. 

In order to achieve this, all functional parts of the valve should be 

con.sidered. Furthermore, reduction of the many detailed findings to a 

set of relevant data is a necessity for developing a workable valve 

structure model. 

2.3.2. Materialand methods 

Porcine aartic valves obtained from the slaughter house were studied 

in the relaxed state. The age of the animals was about 4 months. After 

fixation in formaldehyde the specimens were dehydrated, embedded in 

paraffin and serially sectioned in the radial and circumferential 

directions (the definition of these directionsis given in fig. 2.1). 

Following staining with a combination of orcein for the elastin fibres 

and van Gieson's picrofuchsin for the collagen fibres, the sections 

(10 ~m) were studied by light microscopy. In this study specimens 
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from 8 animals were investigated. Sections related to the s tresseà 

statewere obtained from valves fixated in a 0.9% saline/4% 

formaldehyde solution at a constant pressure difference of 13.3 kPa 

for about 20 hours. The constant pressure gradient across the valve 

was maintained by means of a simple set-up consisting of a closed loop 

containing the valve with ligated coronary arteries, a reservoir with 

overflow, a supply reservoir and a roller pump. The flow generated by 

the pump accounted for valve leakage, the surplus of flow being fed 

back to the supply reservoir. 

2. 3. J. ResuZts 

In the leaflets many macroscopically visible connective tissue 

bundles are present (fig. 2.3). Originating at the commissures they 

run circumferentially like the free leaflet margin. Towards the 

leaflet centre they show many ramifications, centrally forming a dense 

interwoven network of fine fibres. In addition to these commissural 

fibres, discrete macroscopically visible bundles, perpendicular to 

the attachment line, anchor the middle portion of the leaflet to the 

aortic wall (fig. 2.4). In the aortic wall these bundles diverge into 

a fibrocartilaginous tissue (fig. 2.5) which forms a U-shaped arch in 

each sinus as part of the aortic ring. As can be seen in the 

micrographs (fig. 2.6), the diameter of this arch increases from t he 

commissures towards the bottorn of the sinus. 

Within the endothelium round the leaflet four different layers are 

immediately discernable in the load-bearing portion (fig. 2.7). The 

subendothelial ventricular layer is composed of elastin fibres, 

oriented in various directions. This layer is continuous with the 

subendothelial elastic tissue of the ventricle. The second layer 

consists of a loose connective tissue structure, containing sparse 

nuclei and a few elastin fibres. This structure is continuous with 

the loose connective tissue in the attachment line in the aortic wall. 

The third layer contains the already mentioned coarse bundles of 

tightly packed collagen fibres. Some elastin fibres are present 

between these bundles, increasing in number towards the aortic side 

and passing into a small subendothelial layer of elastin fibres. 

Close to the attachment to the aortic wall, the middle portions of 

the unstressed leaflets reveal circumferentially directed 

13 



radial \ 
circumferential 
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c 

A 
Fig. 2.3. 
Porcine aartic valve leaflet showing the typical collagen bundle 
structure. The leaflet is dissected from the aartic wall along the 
line C-A-C (van Gieson's picrofuchsin; original magnification x5). 

constrictions on the aartic side (fig. 2.4). 

The lunulae of the leaflets. are much thinner than the load hearing 

parts (fig. 2.4) and although the same tissue components are present, 

their arrangement is very irregular at most sites and varies from 

valve to valve . In some areas only loose connective tissue with a 

small number of elastin fibres can be seen, while in other areas the 

cross sectien of the leaflet consists excl~sively of tightly packed 

collagen fibres of the macroscopically visible commissural bundles. 

Fig. 2.8 shows a radial sectien of a pressure loaded valve. In the 

load hearing leaflet portion the loosely structured layer has almast 

vanished. Moreover, this portion shows no significant radial curvature, 

a phenomenon observed by visual inspeetion in all stressed valves. 

Further, it is noted that the constrictions . found in the relaxed 

leaflets have dissappeared in the stressed specimens. 

The sinus walls consist of mainly circumferéntially arranged 

smooth muscular tissue embedded in a network of arbitrarily oriented 

elastin fibres with scattered small collagen fibres (fig. 2.9). These 

structures are anchored into the fibrocartilaginous aartic ring. 

14 
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Fig. 2.4. •. I 

Radial section through sinuswalland leaflet. Leaflet (A): lunula (a ) ; 
load-bearing leaflet portion (b); constriction (c); collagen bundlei, 
perpendicular to the line of attachment and anchoring the leaflet to 
the aortic wall (e). Aortic ring (B) containing fibrócartilaginous 
tissue. Sinus wa11. (C) with inlet of coronary .artery (f). The 
wrinkles crossing th.e sinus wall are artifacts of the sectioning 
procedure (orcein + van Gieson's picrofuchsin; original magnification 
x 6). 

2.3.4. Discussi on 

The number and the composition of the observed tissue layers in the 

leaflets are in fàir agreement with similar data, reported by Clark 

and Finke [1974] and Gross and Kugel [1931] for human leaflets and by 

Brewer et al. [1977] and Lyons [1976] for canine specimens. The number 

of •the tissue layers observed in the leaflets, unquestionably depends 

on the resolution of the technique utilized for the examination. Using 

microscopie techniques of sufficiently high resolution, the four and 

five layers, as observed by Gross and Kugel [1931] and Clark and 

Finke [1974] 1n human specimens, respectively, may appear to contain 

several sublayers [Missirlis, 1973]. However, in view of the object 
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l aorta 

Fig. 2.5. 
Detail of radial section through sinus and leaflet (inset) showing 
collagen bundles (a) perpendicular to the attachment line which anchor 
the leaflet (A) to the aartic wall (B). In the aartic wall these 
bundles diverge into the fibrocartilaginous tissue of the aartic ring 
(b) (orcein +Van Gieson's picrofuchsin; original magnification x 50). 
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Fig. 2. 6. 
Circumferential sections through leaflet (I) and sinus (s) at 
different distances from the bottorn of the sinus. The diameter of t he 
fibrocartilaginous structure (arrows) of the aortic ring can be seen 
increasing from the commissures towards the bottorn of the sinus (a-c) 
(orcein +Van Gieson's picrofuchsin; original magnification x 4). 
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Fig. 2.7. 
Detail of circumferential section through the load-bearing portion of 
an aortic leaflet (inset) showing the layered leaflet structure; 1: 
elastic layer at the ventricular leaflet side, 2: loose connective 
tissue; 3: tightly packed collagen bundles; 4: small elastic layer at 
the aortic leaflet side (orcein + Van Gieson's picrofuchsin; original 
magnification x 80). 

left ventricle ~ 
Fig. 2. 8. 
Radial section through leaflets (~) and sinus walls (s) of a loaded 
valve, showing the myocardial support (m) of one of the coronary 
leaflets. 
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Fig. 2. 9. 
Detail of radial sectien through sinus wall (inset). The sinus wall 
consists of circumferentially arranged smooth muscle (m) embedded in 
a netwerk of elastic .fibres (e) (orcein +Van Gieson's picrofuchsin; 
original magnification x 300), 

of this study, it seems reasonable to think the load-bearing part of 

the leaflets is composed of three functional layers within the 

endothelial coverings: a dense layer composed of circumferentially 

oriented collagen fibres and bundies at the aortic side, a grid of 

randomly oriented elastin fibres at the ventricular side' and, in 

between, a loosely structured layer. So the load hearing part of the 

aortic leaflet can be regarcled as an elastic grid, reinforeed with 

collagen fibres and bundles. The collagen netwerk transmits the 

loading of the leaflet to the aortic wall by means of the bundies 

merging at the leaflet 'commissures and the collagen bundles, which 

are perpendicular to the attachment line. In the circumferential 

direction the relation between load and deformation is mainly 

expected to exhibit the properties of the collagen bundles. In the 

radial direction, however, the lead-deformation characteristics of 

the elastic meshwork wil l be the predominant factor. The anisotropic 
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characteristics of the leaflet tissue, as found by Missirlis [1973] 

and Missirlis and Chong [1978], can be explained in this way. 

Although there is no unanimity on the importance of the loosely 

structured layer [Brewer et al., 1977], it is plausible to assume 

that this structure enables the collagenous layer to move over the 

elastic layer as has been suggested by Mohri et al. [1972], 

Furthermore, the decrease of leaflet thickness with increasing 

pressure-loading of the valve observed by Clark and Finke [1974] and 

Swanson and Clark [ 1974], might result from compression of the loose 

connective tissue. This could indicate a damping function of the 

loosely structured layer, that would prevent the impact load on the 

leaflets from causing vibrations consequent to stopping the back flow 

on valve closure. 

As to the elastic layer, it should be noted that the present study 

reveals a grid of arbitrarily oriented fibres whereas for human 

[Mohri et al., 1972] and canine [Lyons, 1976] valve leaflets mainly 

radially oriented fibres are reported. That does not necessarily mean 

that the porcine valve has a different structure. A possible 

explanation for this discrepancy might be found in the fact that the 

number of layers and sublayers to be distinguished in the leaflet 

tissue, depends on the examination technique used. 

From the composition of the lunulae, showing pronounced 

collagenous bundles and thin membranous parts in between, the 

following assumption can be made about their function . . While the 

membranous parts have a sealing function, that of the bundles in the 

load-bearing leaflet portion is to transmit part of the pressure load 

on the leaflet to the commissures. 

The constrictions, found close to and running parallel with the 

line of attachment in the middle portion of the unloaded leaflets, 

have also been observed by others. Mohri et al. [ 1972] described them 

as irregular folds composed of circumferentially oriented collagen 

bundles. Clark and Finke [1974] reported stri ations on the aortic 

l eaflet s ide re sul ting from the macroscopical ly visible collagen 

bundles imrnediately below the endothelium. Because of their 

particular po~ition and orientation, we think that these constrictions 

ac t as hinges, thus reducing bending stresses during leaflet motions. 

This hinge hypothesis seems consistent with the results of Mercer's 

[1973] c ineangiographic analysis of the movements of the dog's aortic 
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leaflets and with the observations in model studies on the closing 

behaviour of the aortic valve, as described by Van Steenhoven and Van 

Dongen [1979]. 

In the present study no special attention has been paid to the 

possible presence of blood vessels in the leaflets. Smith and Taylor 

[1971] reported the porcine pulmonary and aortic valve vasculature to 

be relatively insignificant compared with that of atrioventricular 

valves. 

The present observations concerning the aortic ring confirm the 

crown-like configuration of this structure as described by Gross and 

Kugel, [1931], Zimmerman [1969] and Brewer et al. [1976]. Its 

cartilaginous character points to a relatively great stiffness 

compared with the other parts of the valve. The typical dimensions of 

the U-arches, constituting the crown, probably bring about the largest 

flexibility near the commissures and the least at the sinus bottoros 

and might constitute a stress-reducing mechanism. The bottoros and the 

extremities of the U-arches can probably move in radial directions. 

This is supported by the finding that, in vitro, the diameters at the 

ventricular and the aortic side of the closed human valve increase 

with increasing pressure [Trenkner et al., 1976]. These investigators 

observed the diameter variations on the aortic side to be the largest. 

In vitro, similar findings were obtained from porcine valves however 

without evident differences in the behaviour of both diameters. In in 

vivo expèriments Thubrikar et al. [1977] observed a 4 to 5 percent 

decrease of the canine aortic valve diameter at the level of the 

commissures fora pressure decrease from 13.3 kPa to 10.7 kPa in 

diastole. Duringa complete cardiac cycle a variatien of about 12 

percent was found. The arrangement of the cardiac muscle fibres at the 

ventricular side of the valve (fig. 2.8) indicates that the bottoros of 

the U-arches, corresponding to the right and left coronary leaflets, 

are pulled outward in the radial direction on contraction of the 

adjacent muscle fibres. 

The sinus walls consist of mainly circumferentially arranged smooth 

muscle cells embedded in a grid of elastic tissue with no special 

fibre orientation. Collageneus components are almest absent in the 

sinus walls. As far as the elastic components are concerned, the sinus 

tissue will probably show hardly any anisotropy whereas it will be 

rather compliant .• The latter assumption is supported by the findings 
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of Van Renterghem et al. [1979]. In in vitro pressure-volume 

experiments they observed the sinuses of the porcine valve to be 

about ten times more compliant than the leaflets. It is felt that, in 

addition to their importance in the hydrodynamica! functioning of the 

aartic valve [Van Steenhoven and Van Dongen, 1979], the sinus walls 

are also likely to have a mechanica! function because of their 

structural ability of energy starage and/or dissipation. Because of 

their ability to deform more extensively than the leaflets, the sinus 

walls could play a significant role in the absorption and/or 

accumulation of the energy of fluid motion at the moment of valve 

closure, at the same time reducing the pressure difference across the 

valve by increasing its volume. 

Further investigations as to the specific role of the smooth muscle 

cells are needed. In the present study their rele was not taken into 

consideration. 

2.4. The geometry of the aartic valve 

The difficulty in descrihing the geometry of the aartic valve is 

illustrated by the paucity of available data. Two types of 

investigations on valve geometry were found in literature. 

One way to determine the geometry is the use of closerange 

stereophotogrammetry [Karara and Marzan, 1973; Missirlis and Chong, 

1978]. This sophisticated methad enables the spatial coordinates of a 

large number of points on a surface to be accurately determined. 

Photogrammetric studies on silicone rubber casts [Karara and Marzan, 

1973] as well as actual valves [Missirlis and Chong, 1978] were 

reported. These techniques unquestionably present a valuable tool for 

the acquisition of geometrical data. Thanks to their high degree of 

accuracy and resolution, enabling small irregularities to be measured, 

they allow geometries to be determined in detail. Unfortunately, 

practica lly na numerical values that could have been used as input 

data for the present study, could be found in literature. 

The determination of a set of characteristic dimensions, from some 

simplifying but reasonable assumptions on the valve geometry is a 

different approach. Owing to geometrical irregularities, arising out 

of differences between similar parts in one and the same valve [Gould 
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et al., 1976], it is hardly possible to give a description of the 

valve geometry without such assumptions. It is assumed that the valve 

has 120° symmetry, the aorta being a cylinder. As to the geometry of 

the sinus cavities there is no clear unanimity. From the quantities 

that are used in characterizing the sinus geometry, one is apt to 

consider it to be spherical. The most detailed investigation of this 

kind was reported by Swanson and Clark [1974]. The dimensions and 

geometrical relationships of the human valve as a function of pressure 

difference across the valve were determined from a series of silicone 

rubber casts. Reid [1970] concentrated on the sinus cavities of the 

unloaded human and animal valves, while Sands et al. [1969] compared 

valves of various species. Data were obtained from quickly frezen 

specimens at a pressure load of 13.3 kPa. Other comparative studies 

were reported by Lozsádi and Arvay [1969] and Trenkner et al. [1976]. 

Fig. 2.10 illustrates the definition of the quantities used in the 

description of valve geometry. The numerical values reported by the 

various investigators for the human as well as the porcine valve are 

stated in Table 2.1. As far as they are available, the values given 

are applicable to the situation at zero and 13.3 kPa pressure 

difference across the valve. As can beseen from Table 2.1 the 

available data are rather poor and certainly not sufficient for a 

thorough comparison of human and porcine specimens. The use of the 

definition of the angle a by Swanson and Clark [1974] and Trenkner et 

al. [1976] is based on their observation that, in diastole, the shape 

of the load hearing leaflet portion can in essence be considered 

cylindrical which was confirmed by the findings in the present study. 

The thickness of the leaflets was often considered as an important 

dimension in stress computations. It should be realized that the 

definition of a mean thickness is actually meaningless in view of the 

inhomogeneous histological structure of the valve leaflets. The 

available data on this subject are given in terms of values that have 

been measured at discrete points or in discrete regions of a leaflet. 

Swanson and Clark [1974] reported an inverse proportionality between 

the pressure difference across human leaflets and their thickness. 

They observed that the thickness at the intersectien of the lunulae 

and the plane of symmetry of the leaflet decreases from 0.48 mm to 

0.32 mm when the pressure difference increases from zero to 13.3 kPa. 

In humans, Sands et al. [1969] found thickness values of 0.67 mm near 
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Fig. 2.10. 
Definition of the dimensions used for the description of the georr.etry 
of the aortic valve. 
A. The aortic valve in the closed configuration as seen from the 

aortic side. The dashed line indicates the plane of symmetry of 
one leaflet and the corresponding sinus cavity. 

B. View in the direction of the arrows in A on one leaflet and sinus 
cavity after dissection through their plane of symmetry: r : aortic 
valve radius; r : ventricular valve radius; h : sinus heig~t; d : 
sinus d~pth; h ~: height of the lunula at thesintersection withsthe 
plane of leafl~t symmetry; h 2: commissural height; the dimeosion 
hc

3 
was used only by Sands et al. [1969]. 

Table 2.1. 
Dimensionless quantltles at zeró pressure difference across the valve, 
relative to the ventricular valve radius r . Dimensions related to the 
leaflets and sinuses are average for the .tf;ree leaflets and sinuses. 
Between parentheses values at 13.3 kPa are given. For the definition 
of the quantities see fig. 2.10. 

Swanson & Sands et al. Reid Trenkner Lozsádi & 

Clark [1974] [1969]. [1970] et al. [1976] Arvay [1969] 

Hl) H p2) H p H p H p 

r 0.95 0.75 0.69 0.93) I . I 3) 
a 

(1.07) 

h I. 74 2 I .32 
s 

(1.76) 

d 0.34 0.70 0.71 0.12 0.12 s 
(0.46) 

hel 0.34 

(0.34) 

hc2 I .46 

(I, 42) (I .34) (I. 64) 

(I 20 19 31 

(degrees) (22) (28) (41) 

~ 40 60 ss 
(degrees) (32) (33) 4) (28) 4) (43) (31) 

I) h 2f . 3) f uman; porc1ne; mean value or loaded and unloaded valve; 
4) 

determined from $ = arctan{(hc 2 - hc 3)/rv). 
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the aortic ring and of 0.57 mm near the free edge. In pigs these 

values amounted to 0.80 and 0.70 mm, respectively. Clark and Finke 

[1974] reported thickness values ranging from 0.175 to I .5 mm at 

various locations in a hurnan valve leaflet at a pressure load of 10.7 

kPa. Data on the thickness of the sinus walls could not be found in 

literature. A study on valve geom~try would far exceed the scope 

of the present investigation. Therefore the available data presented 

in the foregoing will be used for modelling purposes. 

2. 5. The pressure difference across the aortic valve 

The load to be sustained by the closed aortic valve results from the 

difference between the aortic and left ventricular pressures. Being 

dependent on a variety of factors, the physiological range of 

pressures varies with the experiroental ~ircumstances and is therefore 

hard to define. A representative outline of the course of the aortic 

and left ventricular pressures is given in fig. 2.11. The pressure 

difference across the valve reaches its maximum at the beginning of 

diastole, the moment of valve closure. Next it decreases almost 

linearly during diastole. 
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Fig. 2.11. 
Representative outline of the aortic (Pa

0
) and left ventricular (P

1
v) 

pressures during the cardiac cycle. 
AO: aortic valve opens; AC: aortic valve closes. 
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2.6. The mechanicaZ properties of aort ic va Zve tissue 

Most studies on the mechanica! properties of aortic valve tissue 

focussed on the leaflet tissue under quasi-static load or strain 

[Clark and Butterworth, 1971; Mundth et al., 1971; Clark, 1973; 

Wright and Ng, 1974; Missirlis and Chong, 1978]. The leaflet tissue 

was found to have highly nonlinear stress-strain characteristics. 

Moreover the extensibility in the radial direction is much larger than 

in the circumferential direction. Missirlis [1973] and Van Renterghem 

et al. [1979] also introduced the sinus and aortic wall properties 

into their studies, finding them to be much more compliant than the 

leaflet tissue. Lim and Boughner [1976] demonstrated that the leaflet 

tissue has viscoelastic properties at low frequencies (frequency range 

0 .5- 5 Hz). The above-mentioned investigations wil! be discussed more 

extensively in Chapter 3. Nearly all these studies lack mathematica! 

modelling of the mechanica! properties of valve tissues. A simple but 

explicitly formulated mathematica! model will therefore be used i n the 

present study, providing a framewerk for the design of experiments and 

allowing a concise and more quantitative description of the 

experimental results. The model chosen in the present study will be 

discussed in Chapter 3. A description of the experiments performed to 

test the model for its validity is given in Chapter 4. 
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CHAPTER 3 

THE MECHANICAL PROPERTJES OF AORTIC VALVE TISSUE 

3.1. Introduetion 

As discussed in the previous chapter, in none of the experimental 

studies published in literature have the mechanica! properties of 

aortic valve tissue been described mathematically. In this chapter 

various important aspects of the development of a constitutive model 

are discussed. First, a description is given of the general features 

of the mechanica! behaviour of soft biologica! tissues (section 3.2). 

Second, the available data on the constitutive properties of aortic 

valve tissue are reviewed and classified according to the type of 

experiment from which the data are obtained (section 3.3). The 

various roodels proposed in literature to characterize soft tissues 

are discussed in section 3.4. Finally the relevant features of the 

"quasi-linear viscoelasticity law", that has been chosen as a starting 

point for the present investigation, are explained (section 3.5). 

3.2. General features of the mechanical behaviour of soft biological 

tissues 

In genera!, soft biologica! tissues mainly consist of collagen and 

elastin fibres embedded in a mucopolysaccharide structure. The 

collagen and elastin fibres are commonly thought to be the 

load-bearing frame of a tissue. Little is known about the mechanica! 

function of the mucopolysaccharide structure. The collagen and elastin 

fibres differ remarkably as to their mechanica! properties. Elastin 

fibres are able to elongate up to 100% in excess of their relaxed 

length without irreversible damage [Carton et al., 1962], whereas 

this upper limit is about 2 to 4% for collagen fibres [Rigby et al., 

1959; Rigby, 1964; Abrahams, 1967]. 

The general shape of the load-elongation curve of a soft tissue 

sample, that is obtained from a uniaxial tensile test, can be 

interpreted qualitatively in relation to its histological structure. 

In the curves obtained from constant-strain-rate experiments four 

different phases can be distinguished (see fig. 3.1). In the first 

phase the tissue offers negligible resistance to elongation. Force 
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Typical load-elongation curve for a soft biologica! tissue in unaxial 
tension at constant elangation rate. 

transmission is provided only by the elastin fibres, so that this 

phase is often denoted as the elastin phase. 

In the second or transition phase gradually more collagen fibres 

become aligned and uncoiled,. thus increasingly contributing to force 

transmission. In the third or collagen phase all collagen fibres are 

uncoiled and the slope of the load-elongation curve becomes steep and 

almost constant, mainly reflecting the material properties of the 

collagen fibres. In phase 4 the slope of the load-elongation curve 

becomes less steep and a further increase of the load will finally 

cause total rupture of the tissue. Whether a specific tissue fellows 

the load-elongation curve as shown in figure 3.1 depends on the 

structure and quantitative relation of the various tissue components. 

An additional aspect is that for most soft tissues the load depends 

not only on the instantaneous elangation but also on the history and 
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the rate of elongation. Viscoelastic phenomena, such as hysteresis, 

creep, relaxation and different moduli for different elangation rates 

have been reported for various soft tissues. 

3.3. A review of literature concerning the mechanical properties of 

aartic valve tissue 

Only experimental work on the mechanica! properties of aartic tissue 

is reported in literature. In practically none of these studies have 

viscoelastic phenomena explicitly been taken into consideration. 

Roughly three types of experiments can be distinguished: the bulge 

test performed on a valve leaflet, pressurization of an entire aartic 

root and uniaxial tensile experiments performed on a strip of tissue. 

In the bulge test a disc of leaflet tissue forced to bulge 

under uniform pressure. Assuming that the piece of tissue behaves 

like a homogeneaus thin-walled sphere with uniform thickness during 

deformation, tension-elongation relationships are derived from 

pressure-volume curves, using Laplace's law. Mundt et al. [1971] 

studied the static pressure-volume relations of canine aartic wall 

and aartic valve leaflets. The leaflet tissue shows the weak elastin 

phase for pressures up toabout 1.33 kPa, while the stiff and almast 

linear collagen phase is found for pressures exceeding 4 kPa (fig. 

3.2a). The aartic wall shows nearly linear characteristics in the 

pressure range from 0 to 21.3 kPa (fig. 3.2b). Wright and Ng [ 1974] 

-VOLUME -VOLUME 

(a) (b) 

Fig. 3. 2. 
Pressure-volume curves for (a) a cani ne aartic va lve leaflet and (b) 
canine aartic loN'lll [Mundt et al., 1971 ] , No volume units were g iven. 
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reported similar studies on human valve leaflets. They measured 

volume changes due toa 1.67 kPa pressure increase in the ranges 

0.13- 1.80 kPa and 11.66- 13.33 kPa. In the latter range a 

significantly less pronounced increase (tenfold) in volume change was 

found compared to the farmer for the same increase in pressure. 

This different behaviour can likely be explained by the elastin and 

collagen phases in the stress-strain characteristics of the leaflets. 

Lim and Boughner [1976] stuclied human aartic valve leaflet samples by 

applying sinusoidal pressure variations (peak-to-peak ~ 40 kPa) at 

frequencie s between 0.5 and 5 Hz. Analysis of the results, based upon 

linear viscoelasticity theory, revealed that the complex modulus and 

the loss tangent (the definition of these quantities is given in 

Appendix C) are hardly frequency dependent. The way the specimen in 

these experiments is loaded looks quite similar to that in the 

physiological situation. It should be noted, however, that the 

conditions at the edges are certainly not physiological , which 

could influence the overall behaviour of the specimen. Moreover, 

anisotropy and inhomogeneity are not taken into account in 

interpretating the results. Therefore these methods only provide 

overall information on the mechanical behaviour of tissue. 

A different approach in studying the mechanical properties of ~he 

aartic valve has been described by Missirlis [1973] and Missirlis and 

Chong [1978]. Intheir experiments an entire aartic root was 

pressurized. Missirlis [1973] used photographs of the ventricular 

surface of the valve, on which a random pattern of ink dots was 

depoaited. Strains were determined from the change of dis t ance between 

neighbouring dots. In the pressure range from 5 to 25 kPa the average 

r adial (see fig. 2.1 for the definition of directions) distension of 

human valve leaflets was found to be 0.1, the average distension in 

the circumferential direction being less than 0.02. The aartic ring 

per imeter remained virtually constant . Missirlis and Chong [1978 ] 

perfo rmed a similar study on porcine valves. By using a 

s tereophotogramme tric method, the spatial coordina tes of a grid of 

points on the ventricular side of the valve leaflets could be 

obtained. From the.se data local strains in various directions were 

determined as a function of pressure. For an increase of pressure 

from 0.4 to 16.0 kPa, radial stra ins from about 0.1 to more than 1.0 

and circumf erenti al strains of 0 . 05 to 0.1 were found in the various 
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leaflets. The values of the circumferential strains, reported bath by 

Missirlis [1973] and Missirlis and Chong [1978], must be considered 

with eautien because they are in the same order of magnitude as the 

errors involved in measuring the strains. Changes of the aartic ring 

perimeter never exceeded 0.1 in the above-mentioned pressure range. In 

these studies the geometrical and loading conditions approximate very 

closely the physiological situation. These experiments may J herefore 

be expected to provide reliable data on deformations under 

(quasi-statie) physiological loads, the influence of tissue damage on 

the measured data being absent. However, the requirements as to 

instrumentation and .in particular regarding data processing are 

considerable. 

The methad most frequently used to determine stress-strain 

characteristics is that of uniaxial tensile experiments on tissue 

strips. Aartic valvular tissue shows the characteristic 

laad-elangation relationship depicted in fig. 3.1. In order to campare 

the results of different tissue strips, these characteristics are 

converted into stress-strain curves. The physiological differences, 

inherent in the properties of biologica! tissues, is a major cause of 

the braad scatter of the data. An additional cause is the diversity 

of methods and the uncertainties involved in computing stresses and 

strains. Stress is defined as 

F 
a = A ( 3. I) 

where A and F represent the cross-sectional area of the specimen and 

the laad acting on it, respectively. Strictly speaking, the stress 

definition (3.1) is significant only in the case of a homogeneaus 

distribution of the laad over the whole cross-sectional area. 

Especially in testing leaflet samples it must be doubted whether this 

is the case bècause of the obvious inhamogeneaus structure and 

irregular dimensions of the leaflet tissue (see sections 2.3.3 and 

2.3.4). For the time being, however, á more precise description of 

force transmission in these samples does not seem possible. Moreover, 

stress values will differ according to whether the cross-sectional 

area is used in the relaxed state or in the stressed state in their 

computation. In determining the cross-sectional area, Missirlis [1973] 

measured width and thickness of the mounted specimen at zero load 
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through a microscope with a calibrated eyepiece. Clark [1973] measured 

the minimum thickness of the tissue strip during testing, using two 

cathetometers with a micrometer eyepiece at two different angles. It 

is unclear what l.S meant by these "two differf:!nt angles". Moreover, no 

information was given about the measurement of the width of the 

specimen. Missirlis and Chong [1978] measured width and thickness of 

the specimen, using photographs that were made at known elongations 

and loads during an experiment. The definition of strain used is 

I - 1
0 

E = -~-0- (3.2) 

where I is the lengthof the specimen at a given moment and 1
0 

designates a reference length. The strain definition (3.2) assumes a 

homogeneaus deformation pattern tbraughout the sample. Here the same 

remarks apply as those made with respect to the stress definition 

(3.1). Clark [1973 ] obtained a reference length by adjusting the 

length of the jaws" (holding the specimen) "until no buckling or 

crimping of the tissue was observed". Missirlis [1973] and Missirlis 

and Chong [1978] determined the reference length optically "at the 

moment of initia! deEleetion of the laad recorder pen", taking care 

that the specimen was in a slightly slack position at the beginning of 

the experiment. To eliminate uncertaint i es, due to a possible 

inhamogeneaus deformation pattern in the tissue samples, Missirlis 

and Chong [1978] determined strains in two or three sections of a 

specimen, using the previously mentioned ink-dot method. Their results 

in fact indicated the deformation pattern to be i nhomogeneous. For the 

radial strips they observed a decrease in the strain values from the 

aartic ring towards the lunulae, this being diametrically opposed to 

the results of their whole-valve experiments. As an explanation, they 

stated that in the whole-valve experiments the leaflets at the "zero" 

pressure state are lightly compressed, folded or buckled near the 

lunulae. Cónsequently, strain va lues in the leaflet region might nat 

only result from dis tension but also from unfold ing of the leaflet in 

the radial direction near the lunulae. 

Often the experimental results are presented in terms of the 

tangent moduli in the elastin and collagen phases. They are denoted as 

the low strain modulus E1 and the high strain modulus Eh, respectively 

(see fig. 3 .3). In this approach the curve is assumed to consist of 
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straight portions in the elastin and collagen phases. The ill-defined 

term "transition strain" is also used by several authors as "the 

point where the tangent modulus rapidly increases" [Clark and 

Butterworth, 1971], Although a more precise definition of this 

quantity could be formulated in several ways (e.g. by Et as shown in 

fig. 3.3), no such definition was found in literature. The directional 

designations "transverse" and "circumferential" are used 

indifferently. Only Missirlis [1973] used "circumferential" in the 

sense of "parallel with the line of leaflet attachment to the aortic 

wall" (see fig. 2.1). The data found in literature a re summarized in 

Table 3.1. The highly nonlinear nature of the stress-strain 

relationships of aortic valve leaflets is emphasized by the great 

difference between the values of E1 and Eh, found in one study. The 

marked differences in values of Eh in various directions suggest the 

existence of significant anisotropy. The compl iance of the leafl e t 
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Table 3.1. 

Tensile properties of aortic valve tissue. The definitions of E~, Eh and Et are given in fig. 3.3. 

Clark & 

Butterworth 

[ '71]. 

Cl ark [' 73] 

Missirlis ['73] 

Missirlis & 

Chong [ '78] 

Thubrikar 

et al. ['78] 

Thubrikar 

et al. ['80] 

leaflet 

radial circumferential 

2.76xi0-3 0.17-

0.69 

3.45xi0-3 

1.12xi0-2 1.74 0.24 1.99xi0-2 5.98 

2. 27 3. 52 

1. 09 0.60 3.35 

0.15 4. 7 

0.24 5.2 

* no direction given 

0.13 

0.33 

sinus aorta 

axial c ircumf erentia 1 axial circumf erential 

Et Eh Et Eh Et Eh Et Eh 

[HN/m
2J [HN/m 2J [HN/m2J [HN/m2J [HN/m

2J [HN/m
2J [HN/m2J [HN/m2J 

HUMAN 

0.10 1.90 0.12 3.54 0.18 2. 38 0.24 7. 85 
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tissue in the radial direction is much higher than in the 

circumferential or transverse directions. Comparison of the data 

concerning human specimens reveals a broad scatter. Most 

investigations were performed on leaflet tissue only. Missirlis [1973], 

however, also incorporated the sinus and aortic walls in his 

experiments. The data in this table indicate that the behaviour of the 

human sinus and aortic walls tends to be similar. The sinus tissue 

appears to be compliant compared with the leaflets and the aortic wall. 

In table 3.1 no data on the strengthof the leaflet tissue, as 

reported, for instanee by Yamada [1970], are summarized. It is unclear 

whether such data reflect the proper material behaviour or are 

governed by edge effects, introduced in the course of preparing and 

clamping the specimen. Of course, this applies also to other 

quantities obtained from tensile experiments, which should thus 

always be considered with caution. However, the relevanee of 

stress-and-strain values at rupture in studying the mechanical 

properties of a tissue under normal physiological conditions is 

questionable. This is all the more the case as there are no 

established criteria which allow a description of the strength of 

soft tissues in multi-axial-stress situations. 

3.4. A brief review of aonstitutive modeZs for soft t i ssues 

In order to describe the mechanica! properties of soft tissues 

quantitatively, a mathematica! framework is needed that is based on a 

constitutive equation. Such an equation should make it possible to 

give a concise, well-defined description of the tissue behaviour by 

using only a few parameters. Likewise it should provide directives 

for the design of experiments and for data collection. The literature 

on the subject was reviewed to seek an appropriate model for aortic 

valve tissue. While making no claim to completeness, this section 

gives a survey illustrating the variety of constitutive models tha t 

have been presented in literature . The demands imposed upon a 

mathematica! model depend largely on the specific aims of the 

investigation for which the model is used. The mathematica! models 

presented in l i terature can be roughly divided into two main 

categories. 

Models of the first category try to describe the properties of a 
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tissue on a macroscopie level, starting frorn the properties and 

structure of the microscopie constituent parts. Consequently, their 

parameters have a distinct physical meaning. Without exception these 

models are based on the assumption that only the fibrous components 

transmit forces. The fibre material is always assumed to have linear 

elastic properties. Lake and Armeniades [1972] proposed a model with 

a parallel arrangement of elastin fibres and collagen fibril bundles. 

The elastin fibres were assumed to be of equal length, whereas the 

lengths of the collagen fibrils were described with a distribution 

function. Diamant et al. [1972] formulated a mathematica! description 

of the stress-strain curves for rat-tail tendon, rnadelling a collagen 

fibre as a zig-zag beam with rigid nodes. Soong and Huang [1973] 

developed a model to predict tangent moduli of soft tissues and based 

it on the theory of fibre-reinforced composite materials. They used a 

stochastic model, formulated in terms of the volume fraction of 

collagen and elastin fibres and of a "collagen arrival density". 

Both the collagen and elastin fibres were assumed to be linearly 

elastic. The collagen arrival density describes the number of 

collagen fibres participating in force transmission as a function of 

the overall deformation of the tissue. In this way the nonlinear 

relation between tangent modulus and strain is introduced. The elástin 

fibres are assumed to participate in force transmission at all stages 

of overall deformation of the tissue. Comninou and Yannas [1976] used 

a long sinusoidal beam and finite-strain beam theory to. describe the 

behaviour of a collagen fibre. A model, not unlike the model 

proposed by Lake and Armeniades [1972] was presented by Decraemer et 

al. [1980a]. All these models can only be used for the description of 

uniaxial stress-strain situations because parallel fibre arrangement 

is assumed to be present. Lanir [t979] derived biaxial stress-strain 

relationships for flat tissues. His theory accounts for the different 

properties of elastin and collagen fibres as well as the degree to 

which they are interlinked. Material constants and material 

distribution functions, related to the angular and geometrical 

nonuniformities of the fibres, are used in the analysis. 

The models mentioned thus far concern nonlinear elastic overall 

properties of soft tissues. Though very useful for gaining insight 

into the role of the properties and the arrangement of the collagen 

and elastin fibres with respect to the overall behaviour of the. 
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tissue, they do not take into account viscoelastic phenomena. A 

linear viscoelastic model for the analysis of the properties of the 

aortic wall was used by Apter [1964]. Because of the obvious 

nonlinear characteristics of most soft tissues, this model suffers 

from a limited applicability when dealing withether tissues. Wijn 

[1980] developed a nonlinear viscoelastic model for the description 

of human skin .behaviour in the case of small deformations. It consists 

of fibres with nonlinear viscoelastic properties, viscous effects 

being accounted for by a linear viscoelastic element. 

The constitutive models of the secend category are used 1n the 

description of tissue behaviour as such, without physical 

interpretation of the observed phenomena. They are especially useful 

when the overall mechanica! behaviour of biologica! structures is 

required in order to formulate specifications, for example, for 

prosthetic materials. 

In some models the elastic properties are described by 

strain-energy functions [Gou, 1970; Snyder, 1972]. Other 

investigations describe the elastic stress-strain relationships in 

terms of polynomial, exponential or power functions [e.g.: Wismans, 

1980; F~:mg, 1967; Kenedi et al., 1975]. 

Nonlinear viscoelastic properties of soft tissues were described by 

Viidik [1968] with a model consisting of idealized elements. Three 

types of elements were used, representing linear elasticity, ideal 

dry friction and linear viscous friction. Nonlinearly elastic tissue 

characteristics were simulated by arranging the elastic elements so 

as to come into subsequent action at various levels of deformation. 

The result is a discontinuous change in the overall stiffness of the 

model as a function of deformation. Frisén et al. [1969] developed an 

alternative formulation of this model. Using a nonlinear continuous 

function to describe the elastic lead-deformation relationship, they 

ended up with a nonlinear differential equation. Fung [1972] 

proposed a somewhat similar model, the so-called quasi-linear 

viscoelasticity law. This model is based on linear viscoelasticity 

theory, modified so as to describe nonlinear elastic properties by a 

continuous function. A more comprehensive discussion of this model is 

presented in sectien 3.5. Decraemer et al. [1980b] have used Fung's 

constitutive equation in their fibre model [1980a]. A cernparisen of 

the Fung equation with two constitutive equations, ·derived from 
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continuum-hased theories descrihing the nonlinear viscoelastic 

hehaviour of polymers, was made hy DeHoff [1978]. He showed the 

equivalence of the two equations to one form of the Fung equation for 

s tress relaxation, whereas different results were predicted for 

constant-strain-rate tests. In the same way Ringham and DeHoff [1979] 

characterized the nonlinear viscoelastic properties of the canine 

anterior cruciate ligament. 

In the foregoing some exampl.es were given of the various 

constitutive models for soft tissues. Two categories were 

distinguished according to whether the model parameters have a 

physical meaning or not. Furthermore, a suhdivision into elastic and 

viscoelastic models could he made. It should he noted that nearly all 

theories discussed in the foregoing are limited to one-dimensional 

statie-strain fields. But, as stated hy DeHoff [1978], a constitutive 

equation that is universally applicahle in characterizing soft tissues, 

should he capahle of descrihing time dependence, anisotropy, 

nonlinearities and multiaxial stress-strain rela.tionships. In the 

present state of the art, rnadelling is confined to one-dimensional 

strain fields, due to the prohlems encountered in collecting 

experimental data on the viscoelastic hehaviour of soft tissues under 

multiaxial loading conditions. In spite of these limitations, 

one-dimensional constitutive equations are of great value in obtaining 

insight into tissue behaviour. Besides, they allow quantitative 

description and may suggest directions for further research. Because 

of hoth the ohvious nonlinear elastic properties of the valve tissue 

and the viscoelastic aspects of its hehaviour that were to he 

expected [Lim and Boughner, 1976], a nonlinear viscoelastic model was 

found suitable for the purpose of the present study. Although 

desirable, a physical meaning for the model parameters is not 

strictly necessary. Therefore, the quasi-linear viscoelasticity law 

proposed hy Fung [1972] is chosen. 
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3.5. The quasi-linear viscoelasticity ûxw 

As already stated above the use of a nonlinear viscoelastic 

constitutive model was considered to be appropriate for the present 

investigation. The model had to contain a limited number of 

parameters with values easily determined in experiments. These 

requirements were met by the so-called quasi-linear viscoelasticity 

law proposed by Fung [1972]. An additional and important argument in 

favour of this model were the satisfactory results obtained in 

descrihing the behaviour of various soft tissues, such as collagen 

fibres from rat tail tendon [Haut and Little, 1972], bovine 

ligamenturn nuchae [Jenkins and Little, 1974], cardiac tissue in the 

passive state [Pinto and Patitucci, 1980], canine aort~ [Tanaka and 

Fung, 1974], rabbit mesentery [Chen and Fung, 1973] and bovine 

articular cartilage [Woo et al., 1980]. The model is simple, being 

essentially a modification of linear viscoelasticity theory (a brief 

outline of linear viscoelasticity theory i s presentedinAppendix C). 

In the following pages the essence of the model of Fung will be 

elucidated. 

For a linearly viscoelastic material, the constitutive equation 

relating stress o and strain ~*) in a one-dimensional strain f ield 

can be expressed by the convolution integral: 

t do(e)(~) d~ d,-o( t) I G(t-1") (3.3) 
d~ d,-

1"=0 

with o( t) 0 and dt) = 0 for t < 0, 

G(O) = I. 

The dependenee of stress on both strain and time is separately 
(e) 

described by the elastic response o and the reduced relaxation 

function G(t), respectively. In principle, these two functions can be 

determined from the stress response ost(t) to a step change of the 

strain from ~ = 0 for t < 0 to ~ = ~ 0 for t > 0 so that 

*) The choice of the quantities "stress" and "strain" is arbitrary . It 

should be noted that the theory is equally valid when using o ther 

quantities, related to load and deforma t i on, e.g. " f orce" and 

"elonga t i on", respectively. 
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a (t) = G(t)o(e)(€
0
). 

st 
(3.4) 

Because of the definition G(O) = I, theelastic response o(e) can be 

found from the instantaneous response to step changes with different 

step magnitudes €
0 

so that 

whereas the reduced relaxation function can be determined from 

G( t) 
a st (t) 

o(e) (€0) 

(3.5) 

(3. 6) 

For a linearly viscoelastic material the elastic response o(e) is a 

linear function of s train. However, as discussed in sections 3.2 and 

3.3, the stress-strain relationships of most soft tissues, including 

aortic valve tissue, are nonlinear. Consequently, a linearly 

viscoelastic model does not provide a reasonable description of 

soft-tis sue behaviour. To be able to cope with this difficulty, it 

was proposed by , fung [1972] to r epresent the elastic response by a 

nonlinear function of €. This manipulation is a considerable 

modification of linear theory, since the use of a nonlinear elastic 
response maKes it impossible to reduce the convolution integral to a 

differential equation descrihing the equilibrium of forces within the 

material. Therefore the convolution integral containing a nonlinear 

elastic res ponse has in fact to be considered as an empirica! formula 

that has proved to be useful in characterizing the constitutive 

properties of soft tissues. Although Fung [1972] proposed this 

concept for soft biologica! tissues, it is noted that the same 

approach was already used by Guth et al. in 1946 in descrihing the 

results of their experimental work on the s tress relaxation of 

natura! and synthetic rubber. 

As discussed in Appendix C (section 5), a linearly viscoelastic 

material will reveal strain-rate sensitivity of O-€ curves obtained 

by straining the material at different but constant rates. The stress 

required to prod~ce a certain strain level will be seen to increase 

with increasing strain rates. In preliminary constant-strain-rate 
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experiments with aortic valve tissue we observed, however, a 

remarkable insensitivity of the load-deflection curves with respect 

to the strain rate. No significant shift or alteratien in shape of 

these curves was found on varying the strain rate over more than tl~o 

decades. These observations point in the same direction as the 

finding of Missirlis [1973] that the high-strain modulus of human 

aortic valve leaflets is not affected by variatien of the strain rate 

from 0.01 to 0.50 s-I. Similar findings are reported in literature for 

several other types of soft tissue. Chen and Fung [1973] observed the 

hysteresis loop of rabbit mesentery to be almest independent of the 

strain rate within several decades of rate variation. Heart muscle in 

the passive state has also been found to be insensitive to strain rate 

[Pinto and Fung, 1973 ] . The same applies to canine aortic tissue for 

strain rates, ranging from 0.001 to 1.00 s-I [Tanaka and Fung, 1974] 

whereas Schwerdt et al. [1980] report the hysteresis loop of human 

flexor digitorum tendon to be insensitive to the frequency of periodic 

straining within the range 0.5 to 9 Hz. From dynamica! bulge tests on 

human aortic valve leaflets Lim and Boughner [1976] observed no 

significant frequency dependenee of the loss angle within the range 

0.5 - 5 Hz. This means that there will he hardly any variatien of the 

amount of energy dissipation as a function of straining or loading 

frequency. Energy dissipation is governed by the los s modulus, and 1s 

generally a frequency-dependent quantity. In sectien 4 of Appendix C 

it is shown that, for a simple linearly viscoelastic model like the 

standard linear solid, the loss modulus and consequently the amount 

of energy dissipation will have a maximum at one particular frequency 

that is determined solely by the relaxation-time constant of the 

model. Further, it is noted that in characterizing real viscoelastic 

materials a large number of relaxation-time constants is needed. In 

these cases fruitful use can be made of a continuous relaxation 

spectrum ( s ee sectien 7 of Appendix C). Obviously, the description of 

many soft tissues requires a loss modulus that shows no sharply 

defined maximum at one particular frequency, but is rather f lat 

within a certain frequency range. This requirement may be met by 

choosing a continuous relaxation spectrum like that proposed by Fung 

[1972] and given below 
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s (e) l K for e e e (K · ) e 
1 

~ ~ 2 LS a constant 
(3. 7) 

0 for e < e
1 

and e > e 2. 

That this approach is not entirely new is shown by the proposal of 

Neubert [1963] to use a continuous relaxation spectrum of the ferm: 

s(e) = constant for e
1 

< e < e2 and S(e) = 0 for e < e
1 

and e > e
2

, 

in order to describe internal damping in solid materials. The reduced 

relaxation function of a generalized standard linear solid, having a 

continuous relaxation spectrum S(e), is given by 

t 

+ f S(e)e 6 de 

G( t) e=O 

+ f S(6)de 
e=O 

whereas, for the starage and loss modulus it applies that 

and 

E (v) = C ~ + ! j S(v)v2 dv] 
s Rl w v=O l+v 2 

w 
f S(v)v dv 

v=O l+v2 

(3.8) 

(3.9) 

(3.10) 

where v = we is a dimensionless frequency, w denotes the radial 

frequency and CR represents the so-called quasi-static stiffness, i.e. 

the stiffness exhibited by the material under quasi-static laad or 

strain. Substitution of (3.7) into (3.8) 

and 
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G( t) 

E (v) 
s 

I + K{E 1 (f;) - E1 (~)} 

62 
1 + K ln(S) 

1 

to (3.10) inclusive yields 

(3. 11) 

(3. 12) 



ER,(v) (3. 13) 

with: v1, 2 

-x 
f _e __ dx the exponential integral function. 

x ' z 

An example of the storage and loss modulus according to (3.8) and 

(3.9) is given in fig. CS (Appendix C). The results of an analysis, 

based upon the reduced relaxation function (3.7), of experimental 

data obtained from aortic valve tissue are presented in the next 

chapter. 
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CHAPTER 4 

EXPERIMENTS 

4.1. Introduetion 

In the preceding chapter some of the available data on the mechanica! 

properties of aartic valve tissue were discussed. It appeared that 

most studies reported in literature were only concerned with the 

nonlinear elastic properties of the valve leaflets, determined from 

constant strain rate experiments. Only limited use was made of a 

mathematica! model in analysis and discussion of the results. 

In the uniaxial tensile experiments described in the present 

chapter the mechanica! properties of the different valve parts, i.e. 

the leaflets, the sinus wall and the aartic wall have been dealt with. 

Tissue strips cut in different directions were investigated. Two 

aspects of viscoelastic behaviour were examined: the strain rate 

sensitivity of the stress-versus-strain curves and the relaxation 

behaviour. In analyzing the relaxation behaviour use was made of the 

relaxation model proposed by Fung [1972]. The methad used for the 

analysis, is outlined in sectien 4.2. 

During the experiments, care was taken to maintain the applied 

deformations in the physiological range. To this end the literature 

on the subject was reviewed (section 4.3). An experimentalset-up was 

developed in which a specimen could be strained at constant strain 

rates and subsequently kept at a constant elangation (section 4.4). 

In sectien 4.5 the test procedure is outlined while the results are 

presented in sectien 4.6. Although the stress-versus-strain curves of 

the various valve parts showed pronounced differences, they were found 

to be rather insensitive to the strain rate. The relaxation model used 

proved to be a useful tool in descrihing the time-dependent material 

properties (section 4.7). 

4.2. TheoreticaZ considerations 

In order to give a quantitative description of the relaxation behaviour 

of the valve tissues, the reduced relaxation function proposed by Fung 

[1972] (see sectien 3.5) was used 
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G( t) (3. 11) 

-x 
with E1 (y) J _e __ dx the exponential integral function. x , 

x=y 

Strictly speaking, G(t) can only be determined from the load response 

of the specimen to a step change of the length. As it is physically 

impossible to realize a true step change, the response to a change in 

length imposed within a finite time interval ts (fig. 4.1) was 
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considered. Therefore an "experimental reduced relaxation function" 

G* was defined as 

with !;:= t - t 
s 

* I + K 

for t 2: t • 
s 

( 4, I ) 

In preliminary experiments it was found that the main part of the 

relaxation took place in the first 100 seconds of t ts' i.e. for 

i; < 100 s. In most cases the load decay for i; > 100 s was hardly 

measurable. The approximation 

(4. 2) 

* * was therefore assumed to be reasonable. In assessing values of K , e1 
and.e; the following method was used (see also fig. 4.7): starting 

from expression (4.1) for the reduced relaxation function and using 

e* 
(1 + K* ~n( ;n-1 

(4. 3) 

eI 

the constant a and the function H(l;) are defined as 

(4.4) 

* * H(l;):= G (!;) -*G (oo) u 

I - G (oo) 
( 4. 5) 

* * If 6
1 

<< i; << a
2

, the following approximation applies 

(4.6) 

where the series expansion of E1 (!;*) has been employed and y is the 
6 

Euler's constant. From (4.6) it is 2 seen that H(~) can be approximated 
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* by a linear function of ~n(s) in the range 8 1 << s << 

* * a sealing factor T with 8 1 << T << 8 2 and defining 

* 8 2. Introducing 

x 
* 82 

~n(T) - y (4.7) 

(4.6) can be written as 

(4. 8) 

Using an interactive computer program, on a visual display the straight 

portion of the H(s)-versus-~n(s) curve was specified by choosing two 

values s 1 and s 2 àt its beginning and end, respectively (an example of 

such a plot is given in fig. 4.7a). With the sealing factorTin the 

range [s 1, s 2J and using (4.7) and (4.4), the constants 8; and 8; were 

found from 

* 8 2:= T exp(y + X) (4.9) 

* * 8 I : = 8 2 exp (-a) . ( 4. I 0) 

Finally, the value of K* results from (4.3) and (4.4) tagether with 

the assumption (4.2), that is 

( 4. 11) 

4.3. Physiological values of strain 

In order to obtain relevant information from the experiments, the load 

and deformation values should be in the physiological range. As the 

specimen length is the controlled variable in our experiments, we will 

mainly discuss strain values as determined under physiological 

circumstances. 

In in vivo experiments on dogs Brewer et al. [1977] studied the 

length variations in the leaflet lunula along its free edge during the 

cardiac cyc le. Using the length in diastole at 10.7 kPa pressure 

difference across the valve as a reference, they observed a strain of 
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about 0.02 from the beginning to the end of diastole (fig. 2.11), 

Between the end of diastole and peak systole a shortening in the 

same order of magnitude was found. As discussed in sectien 3.3, 

Missirlis and Chong [1978] investigated local strains in porcine valve 

leaflets when pressurizing (16 kPa) an entire aortic root in vi tro . In 

the load-bearing leaflet portion they observed strains ranging from 

0.05 to 0.1 in the circumferential direction and from 0.1 to more 

than 1.0 in the radial direction. From in vivo experiments on clogs 

Thubrikar et al. [1980] concluded that the leaflet length of the 

load-bearing portion in the circumferential direction decreased by 

about 10% from diastole to systole. Pressure differences across the 

valve ranged from about 13 kPa to 24 kPa. 

In presenting typical stress-strain curves for human aortic and 

sinus tissue, Missirlis [1973] considered the range between 0.5 and 

0.7 as the physiological range of strains (axial and circumferential) 

in these tissues. In cernparisen with the data reported by ether 

authors, these values seem rather high. In i n vitro experiments on 

pressurized human and porcine valves Trenkner et al. [1976] observed 

circumferential strains of about 0.4 in the aortic wall at the level 

of the commissures, the pressure difference across the valve being 

about 14 kPa. Similar findings were reported by Swanson and Clark 

[1974] for human valves. 

No values for the strain in the axial direction in the aortic wall 

were given by the above mentioned authors. We therefore performed a 

simple experiment to get some information on the order of magnitude of 

these values. Using the set-up described in sectien 2.3.2, two entire 

porcine aortic roots in a 0 . 9% saline salution were pressurized at 

pressures up to \6 kPa. Pressure increments of about 4 kPa were 

applied slowly (about 10 seconds per increment) whereupon the pressure 

was kept constant for several minutes. Using a cathetometer, strains 

were determined from the changes in distance between two pairs of ink 

dots deposited at a distance of about S mm from each ether on the 

aortic wall in the unloaded situation. The circumferential and axial 

strains were found to be about 0.4. 

From the above-mentioned data it was decided to use strain values 

of about 0.1 for leaflet strips cut in the circumferential direction. 
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Strains of 0.4 to 0.5 were imposed when testing radial leaflet strips 

as well as circumferential and axial strips from the sinus and aortic 

walls. 

Hardly any data could be found in literature on the physiological 

range of strain rates in the valve tissue. Only Missirlis [1973] gave 

an estimate of the strain rate to be expected in the leaflets. On the 

assumption that valve closure takes place within 0.04 seconds and that 

the strains in the leaflets areabout 0.1 he found a strain-rate value 

of 2.5 s-I. 

4.4 ExperimentaZ set-up 

All specimens used in the experiments were strips approximately 3 mm 

in width and varying from 10 to 20 mm in length. The average thickness 

of the leaflet, sinus and aortic strips was, respectively, 0.5, 2.1 

and 3.1 mm. They were obtained with a cutter having two parallel razor 

blades. 

The design of the clamping equipment allowed the specimen to be 

mounted outside the actual experimentalset-up (see fig. 4.2). Befere 

mounting the specimen, the aluminium clamps were fixated in a helder. 

A parallel strip of known dimensions which was part of the helder, 

kept the jaws at a known distance from one another. On mounting the 

specimen care was taken to prevent tensile forces in the specimen by 

ensuring a slack configuration of the tissue strip. The specimen was 

clamped between jaws with milled surfaces. The two surfaces of each 

jaw matched each ether, the tops of the notches being rounded so as to 

restriet damage to the tissue. The helder, clamps and specimen were 

then mounted in the actual testing apparatus. After removal of the 

holder the elongation of the specimen was continuously measured. An 

outline of the total experimental set-up is given in fig. 4.3. 

Load was measured with a piezoelectrical lead cell (Kistler type 

9203, measurement error ~ + 3% of the actual lead value), For the 

measurement of the elongation of the specimen, i.e. the displacement 

of the moving clamp, a capacitive displacement-measuring system 

(Boersma CVM VI; measurement error ~ ~ 2 ~m) was used. The 

displacement of the moving clamp (the lower one, see fig. 4.3) was 

induced by a electrodynamic exciter (Ling Dynamic, type 200). In the 

experiments the exciter was controlled by the output signal of a ramp 

generator. The principle of this device is the conversion of square 
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pulses produced by an oscillator (Krohn-Hite, model 4100), into analog 

voltage increments. In this way an analog ramp signal was generated, 

Fig. 4.2. 
Clamping equipment used in the experiments. 
l: aluminium clamp; 2: brass holder; 3: parallel .strip, keeping the 
end surfaces of the jaws (4) at a known distance when the clamps are 
fixated in the holder; 5: specimen; 6: tapes for mounting the 
clamping equipment in the testing apparatus. 

the slope of which could be chosen by adjusting the frequency of the 

pulse generation. The maximum value of the ramp signal was adjusted 

by setting a camparator to the desired value. Once this value had been 

reached, the level of the analog output signal was kept constant. The 

analog signals representing force and elangation were recorded on 

magnetic tape together with a trigger signa!, using an instrumentation 

recorder (Hewlett-Packard, type 3968A). During an experiment the 

signals were visualized on the display of an oscilloscope (Tektronix 

type 7313). After digitizing and pre-processing the signals on a 

MINC-11 minicomputer, the final analysis of the data wasdoneon a 

Burroughs B8700 computer. 
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Outline of the experimental set-up. 

4.5. Testing procedure 

The experiments were conducted on porcine aortic valve tissue. Prior 

to a test series the tissue was preserved in a 0. 9% saline solution at 

10°C . All specimens were tested within 8 hours after death of the 

animal. The experiments were performed at room temperature, the tissue 

being kept in a wet condition by physiological saline dripping on it. 

After mounting as described in sectien 4.4 the specimen was elongated 

so that approximately physiological strain values were reached (see 

sectien 4.3). During the experiments, the specimen length corresponding 

to this first elangation was never exceeded. On returning slowly 

(within about one minute) to the unloaded configuration of the tissue 

strip, the reference length ~ref was determined as the length at which 

the load was seen to be zero from visual inspeetion of the force s ignal 

displayed on the ~scilloscope screen using a high s ensitivity . 

54 



Subsequently the specimen was "preconditioned" in ten loading and 

unloading cycles between the reference length and the predetermined 

elongation level. These cycles were followed by a 120-second rest 

period. 

The meaning of this preconditioning is still rather vague; it is 

probably required to rearrange tissue structures, which are disturbed 

during the process of preparing and mounting the specimen. In 

lirerature the effects due to the preconditioning process, often are 

confounded with the actually viscoelastic aspects of the material 

properties of soft tissues. In previous experiments in our laboratory 

the preconditioning phenomenon was stuclied [Rousseau, 1980]. The main 

requireroent for establishing repeatable characteristics was found to 

be not to exceed the first elongation in subsequent cycles. It was 

observed that aortic valve tissue is then preconditioned after a 

series of ten cycles maximum. The preconditioning phenomenon turned 

out to be insensitive to the rate of loading and unloading . 

Fig. 4.4. 
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The specimen length as a function of time and the corresponding load 
response in one experiment. 

After the preconditioning procedure the actual experiments were 

started. They involved straining of the specimen at a constant 

velocity of the moving clamp, followed by roaintaining the specimen 

length at a predetermined level ~s (fig. 4.4) for !20 - 140 seconds 

(see also sectien 4.2). Between two successive experiroents a resting 

period of 120- 140 seconds was maintained, with the specimen at the 
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reference length. All experiments on a specimen were performed within 

one hour, during which period no significant alterations in the 

response of the specimen were observed. After a series of experiments, 

the thicknes s and width of the specimen, taken out of the clamps, were 

determined using a microscope with a calibrated eyepiece and a 

micrometer. 

4.6 . ResuZts 

4.6.1. Introduetion 

Specimens excised from the non-coronary region of 6 valves were 

investigated. From the histological observations, discussed in the 

sections 2.3.3 and 2.3.4, in the different valve parts different 

mechanica! properties were expected. Three tissue strips were 

therefore taken from each valve: from the leaflet, the corresponding 

sinus wall and the adjacent portion of the aortic wall. Specimens 

were cut out of three valves in the circumferential direction, in the 

three others radial leaflet strips and axial sinus and aortic strips 

were taken (for the definitions of the directions see fig. 2.1). The 

circumferential leaflet strips were taken just below the lunula and 

the radial strips along the line of leaflet symmetry. The 

circumferential sinus strips were cut at the level of the 

commissures and the axial strips along the line of symmetry of the 

sinus. The axial aortic and sinus strips were cut along the same 

symmetry line. The circumferential aortic specimens were taken just 

above the top of the sinus wall (fig. 2.1). 

The s train definition used in analyzing the results was 

c = (4.12) 

where t is the length at a given moment . The stress a was defined by 

F 
a = A (4.13) 

where F represents the force on the specimen and A the cross-sectional 

area of the unloaded specimen, measured after conclusion of the 

experiments. 
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4.6.2. The a-t characteristics of the various valve parts 

Figure 4.5 gives some characteristic a-E curves obtained from 

specimens tested at constant strain rates. In the circumferential 

direction (fig. 4.5a) there was a remarkable difference between the 

characteristics of the leaflet tissue on the one hand and the sinus 

and aartic tissue on the other. The slope of the leaflet curve 

rapidly increased with increasing strain and became almast constant 

for strain values greater than 0.05. The curves of the sinus and the 

aartic tissue were similar. They showed only a slight increase in 

slope with increasing strain. The slope of the almast linear phase of 

the leaflet curve was greater by about a factor 30 than the average 

slope of the curves of the sinus and the aorta. The differences 

between the characteristics of the specimens cut from one valve in the 

axial (sinus and aorta) and the radial (leaflet) direction (fig. 

4.5b), were less pronounced than the differences when the specimens 

were cut in the circumferential direction. Nevertheless, the. slope of 

the curve of the radial leaflet specimen shows the most rapid increase 

with increasing strain. A comparison of the curves in figures 4.5a and 

4.5b shows that the stress values neerled to produce a certain strain 

in the leaflet tissue were much lower in the radial than in the 

circumferential direction. The aartic and sinus tissues showed 'no 

pronounced differences in their stress-strain characteristics both in 

the circumferential and axial directions. The possible relations of 

these results to the histological observations (section 2.2) will be 

discussed in the next section. 

In most cases the a-E curves of the various valve parts were found 

to be only slightly sensitive to the strain rate È. The force neerled 

to produce a certain strain, showed a relatively slight increase with 

increasing strain rate. The experiments in which the highest rate 

sensitivity was observed, are shown in figure 4.6. 
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Fig. 4. 5. 
Stress-strain characteristics of the various parts of one valve: 
a: circumferential direction; b: axial (radial) direction. Note the 
different sealing factors in a. and b. 

58 



0.6 
Ë {s-1) 

valve 3 0.8 

1 

leaflet circumferential 
0.08 

0.4 0.008 
N"' 
E -z 
~ -t:l Q2 

00 0.02 0.04 0.06 0.08 0:10 
a E 

E: [s-1] 
valve 6 2.7 

sinus axial 

1 
0.04 021 

0.027 
~ 

N 

E -z 
6 
t:l 0.02 

0:1 02 03 
E----<-

Fig. 4. 6. 
Stress-strain characteristics for different constant strain rates: 
a: leaflet circumferential; b: sinus axial. 

59 



4.6.3. The relaxation behaviour of the various valve parts 

In all the specimens tested, relaxation phenomena were observed when 

the length of the specimens was kept fixed after a certain amount of 

stretch had been applied. 

The relaxation phenomena were analyzed by determining the 

* * * parameters K , e1 and e2, using the method outlined in section 4.2, 

T 

t 0.5 
§ 
I 

0 

a 10"2 161 101 102 

g[sl-

Q9 

0.8 
- -- theory - ·- theory 
- experiment -experiment 

i 0.6 t 
'E Ë 0.8 z z 
!;. 04 

!;. 
t> t> 

02 
0.7 

0 0 20 40 60 80 100 0 0.35 070 105 140 
b t[sl- c t[sJ-

Fig. 4.7. 
a. H(~) as defined by (4.5) and calculated from_measurement data. 
b. Experimental and theoretical relaxation curves over 100 seconds. 
c. Zoom plot of the first 1.4 seconds of fig. 4.7b. 
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Table 4.1. 
Relaxation parameters K*, e; and e; according to (4.1) as obtained in 
13 experiments on tissue strips from the various valve parts and cut 
in different directions. The mean values of 3 series of measurements 
in one experiment are given (unless otherwise stated). The numbers in 
italics represent the average of the means. Between parentheses the 
total range covered by the individual values is stated. 

Valve part 
e; (s) e ;(s) 

. 
c*(J20s) and K rise time Valve 

direction t s 
(ms) 

Leaflet 0.0005 12B o. OB04 0.499 59 ~I) 
circumferential 0.0026 36 0.0610 0.631 SI 

0. 0025 67 O.OB52 0. 534 74 3 

o. 0019 77 0. 0755 0. 555 
10.0003 - 0 . 0035) I32-1J3) 10.05?5- 0.0877) 10.489- 0.633) 

Leaflet radial 0. 0004 30 o. OB59 0.517 116 
41) 

0. 0001 76 0. OB94 0.57B 57 62) 

0. 00025 53 0. 0877 o. 548 
10.0001 - 0 . 0007) 124 - 76) 10.0827 - 0. 0894) 10.495 - 0.578) 

Sinus wall 0.0320 3B6 0.0367 0. 742 244 
circumferential IO. 0144 - 0. 0488) 1259 - 493) 10 . 0358 - 0 . 0384) 10.732 -·0.755) 

Sinus wall 0. 0007 -5 17 0. 044B 0.6BB lOB 
axial 2. 9 x I 0 6B 0. 0445 0.611 45 

0.0001 36 0. 05B4 0. SBO 63 

0 . 0003 -5 40 0.0492 0.626 
12.4 x 10 .• 0.0007) 114 - 140) 10.0426- 0 . 0602) (0.574 - 0.688) 

Aortic wall 0.0002 187 0.0395 0.646 94 
circumfereLtial 0.0006 SI o. 0525 0.62B 120 

o. 0004 119 0 . 0460 o. 637 
(0,0001 - 0.0007) 145 - 190) 10.0380- 0.0546) 10.620- 0.655) 

Aortic wall 0.0012_5 22 o. 0334 _0. 752 BB 
ax.ial 3 x 10 IB2 0.022B 0. 737 6B 

0.0006 -5 102 o. 0281 0. 744 
12.7 x JO - 0. 0014) 115 - 204) 10.0220 - 0.0340) (0. 730 - 0. ?56) 

I) only two series of measurements available j 2) only one series of 
measurements available. 

and the theoretica! and experimental findings were compared. From 30 

sets of ~I' ~ 2 and T-values (see section 4.2), chosen in the ranges 

indicated in figure . 4.7a, the following mean values and standard 

deviations (between parentheses) were found in this particular case 

(valve 2, circumferential leaflet strip): e; = 0.0029 s (0.0004), 

a;= 37 s (4), K* = 0.0624 (0,0016), The agreement between the 

experimental and theoretica! curves is demonstrated in figures 4.7b 

and c. 

Relaxation data, obtained from measurements on 13 specimens, are 

listed in Table 4.1, The values of t ranged from 50 to 250 

milliseconds. The order of magnitudesof thee; values was 10-
2 

s for 
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the sinus in the circumferential direction and 10-J s for both the 

leaflets in the circumferential direction and the aortic wall in the 
* . -4 axial direction. 8
1
-values 1n the order of magnitude of 10 s were 

observed for the radial direction in the leaflets and in the ether 

* valve parts in both directions. The values of 8 2 showed no tendencies 

which allowed for a differentiation as to valve part and direction. 

* The 8
2
-values were in the order of magnitude of 10 to 100 s, the 

actual values showing a broad scatter. 

As to the long-term relaxation behaviour (G*(~=I20s)), a difference 

was seen between the leaflet tissue and the ether valve parts. Within 

some 120 seconds of a certain elangation with a high strain rate being 

applied, the load on both the radial and the circumferential leaflet 

strips showed a decrease of some 457. of its initia! value at ~ = 0. 

For the strips of the aortic and sinus walls this decrease ra~ged from 

about 257. to 377.. This difference was also reflected by the values of 

* K • For the leaflet tissue they ranged from about 0.061 to 0.089, 

whereas for the ether valve parts values were found, ranging from 

0.023 to 0.058. 

4. 7. Discussion 

4. 7.1. The o-E characteristi cs 

The strains used in the experiments in the present study are 

summarized in Table 4.2. These data show that the used strain values 

were within the physiological ranges (see sectien 4.3). 

Table 4.2. 
Ranges of the maximum strains used in the experiments. 

Leaflet 
radial 

0.18 - 0.47 

circumf . 

0.07-0.11 

Sinus Aorta 
axial circumf. axial circumf. 

0.34 - 0.59 0.49 0.42 ._ 0.57 0.41 - 0.49 

The o-E characteristics, shown in figure 4.5, agree fairly well with 

the assumptions based upon the histological structure (section 2.3.4). 

To produce a certain strain, a considerably larger stress is required 

in the leaflets than in the aortic and the sinus walls which was 
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expected from the high elastin content in the latter. The 

characteristics of the leaflet tissue show a directional dependency, 

reflecting the stiffening function of the mainly circumferentially 

oriented collagen bundles. Already at small strains the slope of the 

circumferential o-E curves becomes steep and approximates the value 

reported for collagen fibres [Haut and Little, 1972] as will be seen 

in the following. The radial o-E curves show much more the t ypical 

three-phase characteristic as outlined in fig. 3.1. The increase of 

their slope with increasing strain can be explained by the fact that 

the collagen bundles are not exactly oriented in the circumferential 

direction, thus gradually more contributing to force transmis sion 

with increasing strain. However, even the largest slopes of the radial 

curves are much smaller than those of the circumferential o-E 

characteristics. In the present investigation no marked differences 

were observed between the o-E characteristics of tissue strips, taken 

in different directions from the aortic and sinus walls. This is in 

agreement with the histological observation that there is no preierred 

orientation of the elastin fibres in the sinus wall. 

In all valve parts the stress at a given strain was only slightly 

influenced by the strain rate. A hundredfold increase of the strain 

rate resulted in an increase of the stress in a circumferential 

leaflet strip and an axial sinus strip of 50 (at E = 0.1) and 40% (at 

E = 0.3), respectively (fig. 4.6). In the greater part of the 

experiments significantly less variations in stress were found when 

the strain rate was varied over two decades or more. These 

observations indicate that the aortic valve tissue is rather 

insensitive to the strain rate. 

Fig. 4.8 shows the largest slopes of the o-E curves measured in 

the present investigations. In Table 4.3 they are tabulated rogether 

with similar data for porcine and human specimens as reported by 

Missirlis and Chong [1978] and Missirlis [ 1973], respectively . The 

circumferential leaflet specimens exhibit the largest slope, 20 to 40 

MN/m2 , at relatively small strains (E ~ 0.1). These values areabout 

a factor 10 larger than the corresponding values found in the 

literature (Table 4.3). The values found in the present work agree 

rather well with the value of 45 MN/m
2

, determined from the data of 

Haut and Little [1972 ] as the average slope of the o-E curves of 

collagen fibres. This indicates that the circumferential leaflet 
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Fig. 4.8. 
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specimens exhibit mainly the properties of the collagen bundles as 

was expected from the histological observations (section 2.3.4). The 

leaflet tissue is much more compliant in the radial direction. The 

slopes of the o-E curves agree fairly well with similar data in 

literature (Table 4.3). The curves for the sinus and aortic tissues 

Table 4.3. 2 
Slopes (MN/m ) of the o-E curves of aortic valve tissues. 

leaflet 
circf. radial 

sinus 
circf. axial 

aorta 
circf. axial 

this work 1) 20- 40 I .0- 1.8 0.5- 0.65 0.4- 0.8 0.1 - 0.15 0.1 - 0.5 porcine 
valve 

Missirlis & 2) 
Chong ( 1978] 

MissirHs 
(1973] 

3.35 

3.52 

1.09 

2.27 0.12 0.10 0. 24 0.18 

I) the corresponding strains are given in fig. 4.8; 2) no strains given. 

porcine 
valve 

human 
valve 

show no evident directional dependency with respect to their slopes. 

From Table 4.3 it is seen that the slopes of the sinus curves, found 

in the present work, are a factor 4 to 8 larger than these reported 

for human sinus tissue [Missirlis, 1973]. Our values for the aortic 

wall agree fairly well with similar data on human aortic tissue. Hass 

[1942] reported a tangent modulus (slope of the o-E curve) of 0.3 

MN/m2 for elastic tissue, isolated from the human aortic wall. The 

values in Table 4.3 for the intact aortic wall as well as the sinus 

wall indicate that the characteristics of these tissues are mainly 

governed by their elastic components. 

Despite the similarities of the trends which can be seen in our 

results and the data in literature, the discrepancies between the 

numerical values are often substantial. This applies especially to the 

leaflet tissue. A comparison of the o-E curves as such of aortic 

leaflet tissue, obtained in the present investigation, with similar 

data in literature reveals considerable differences (figs. 4.9 and 

4.10). Apart from the "physiological spread", these differences may 

result from such factors as uncertainties involved with the 
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o-e characteristics of circumferential aortic leaflet specimens. 1: 
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definitions of stress and strain (see also sectien 3.3) and clamping 

effects. 

The stress definition used, 

F o = A (F: force; A: cross-sectional area) (3. I) 

is significant only if the force F leads to a homogeneaus stress 

~ 0.10 
z 
E 
0 

0.05 

Fig. 4.10 

02 0.4 
E-

o-E characteristics of radial aortic leaflet specimens. 

3 

0.6 

1: Missirlis [1973], human valve; 2: Clark [1973], human valve; 3: 
M~ssirlis ~fd Chong [1978], porcine valve; 4: this study, valve 6 
( E = 3.2 S ), 

67 



distribution over the cross-sectional area A. It is questionable 

whether this applies when testing leaflet strips, taking into account 

their coarse bundle structure. Moreover, the effect on the o-E 

characteristics of cutting bundles in preparing the specimen is not 

known. Another souree of uncertainty involved in the computation of 

stresses is the cross-sectional area. In the present investigation the 

cross-sectional area was computed using the mean thickness and width 

as determined from measurements at 5 to 8 positions in the unloaded 

specimen after performing all experiments on that specimen. In the 

leaflet and sinus specimens standard deviations of 10% of these mean 

values were observed. The stress values should therefore be considered 

with caution. 

The strain values computed according to the definition 

E = (3.2) 

depend strongly on the reference length 2ref' In earlier 

investigations on aartic valve tissue [Sauren and Van Hout, 1979] it 

was observed that a permanent elangation always resulted from the 

first stretch. This elangation was in the order of magnitude of 5 to 

10% of the length at which the load-measuring device showed 

application of load on the specimen. In the present experiments the 

reference length was determined after applying an initia! elangation 

(see sectien 4.5). In this way the permanent elangation contributed to 

the reference length and thus was accounted for in the strain 

computations. 

Finally it is noted that, in consequence of the inhamogeneaus 

tissue structure as well as clamping effects, the strain in a segment 

away from the clamped ends is likely to differ from the end-to-end 

strain, as was observed, for instance, by Pinto and Patitucci [1980] 

in rabbit papillary muscle. 

4.7.2. The reZaxation behaviour 

* At first sight, the values of e
1 

for the leaflet tissue in the 

circumferential and radial directions differ by one order of 

magnitude. The higher values are observed in the circumferential 

direction. In view of the braad scatter in the 8~-values in the radial 
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direction, however, more experiments are needed to decide whether this 

parameter is direction-dependent. The values of c*(oo) reveal no 

pronounced differences. In any case, the directional dependenee of the 

viscoelastic behaviour of the leaflet tissue is negligible 1n 

cernparisen with that of the elastic behaviour found in the constant 

strain rate experiments. This could point to a negligible importance 

of the collagen-bundle structure with respect to the time-dependent 

behaviour of the leaflet tissue. 

Among the different valve parts, the leaflets tend to reveal the 

greatest relaxation. This might be explained as fellows. Consirlering 

the histological structure of the leaflets on the one hand and the 

sinus and aortic wall on the ether, two marked differences can be 

observed. The leaflet tissue contains many more collageneus 

components and there is a loosely structured layer in this tissue. As 

was stated before, the collageneus components are not very likely to 

govern the time-dependent behaviour. The presence of the loosely 

structured layer, however, might allow a repositioning of the 

collageneus and elastic fibre networks with respect to each ether as 

well as a rearrangement of fibres within each netwerk. In addition to 

fluid movements between the fibres, these two mechanisms might account 

for the more pronounced relaxation observed in the leaflets. 

As to the values of e~ for the sinus and the aortic tissue, it 

should be noted that for the sinus wall only one experiment on a 

circumferential strip was available and that the values for the axial 

strips show a broad scatter. It is therefore difficult to decide from 

the available data whether the sinus and aortic tissues show evident 

differences in their time-dependent behaviour with respect to each 

ether as well as to the directions. 

Relaxation parameters, as found in literature for different 

tissues and in the present werk for aortic valve tissue, are 

summarized in Table 4.4. The parameter values for the different 

tissues vary greatly. The values for canine aorta, reported by Tanaka 

and Fung [1974], are most suitable for a comparison with the data for 

the aortic and sinus walls found in the present investigation. The 

* order of magnitude of the K values for canine aorta agree remarkably 

well with that of the values for the porcine sinus and aortic walls 

found in the present study. 

* The e
1
-values, on the contrary, differ significantly. For the 
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Table 4.4. 
Relaxation parameters as found in literature for various tissues and 
in the present study for aortic valve tissue. 

e ~ (s) e; ( s) K * tissue t s 

I0-5 
I 04 

(ms) 
Chen and 1.7352 x I. 8693 x 0.02657 rabbit mesentery 
Fung [1973] 

Tanaka and 0 .367 434 0. 0424 arch circf. 
I) ., 

"' Fung [1974] 0.431 451 0.0311 arch axial
2 .~ ... ... 

0.260 192 0.0399 prox.thor. )circf. " 0 

"' "' 0.137 93.9 0.0297 prox. thor. axial u 

Woo et al. 0.006 8.38 2.02 250 articular cartilage 
[ 1980 J 

Pinto and 0.015 1058 0.093 100 rabbit papillary muscle 
Patitucci 0.020 3!51 0 .081 100 cat papillary musc le 
[1980] 

this study)) 0.0019 77 0.0755 61 leaflet circf. '" 0.00025 53 o. 0877 86 leaflet radial "' 
..:: 

0.0320 386 0.0367 244 sinus circf. c "' ... > 
0.0003 40 o. 0492 72 sinus axial u u ... 
0.0004 119 0 . 0460 I 07 circf. 0 ... 

aorta Q, ... 
0.0006 !02 0 . 0281 78 axia l 

... 
aorta 0 

"' 
I) 

circumferentia l; 2) 
proximal thoracic; 

3) 
average va lues of the 

means i n Table 4.1 are given. 

canine aortic arch and the proximal thoracic aorta these values were 
-I 

reported to be in the order of magnitude of 10 s, whereas values of 

10-
4 

s were found for the sinus and aortic walls. The simplest 

explanation for this difference is that these values reflect the 

actual differences in the time-dependent properties of these tissues. 

Apart from this possibility they might be due to different rise times 

used in performing the experiments. As discussed in sectien 6 of 

Appendix C, the longer the rise time, the less relaxation will be 

observed during the phase of constant elongation. Unfortunately, data 

on the rise times used by Tanaka and Fung [1974] are not available. 

* As to the a2-values, no clear trends are observed. In the case of 

the canine aorta as well as the porcine aortic valve they show a wide 

spread. In this regard some remarks have to be made on the method 
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* * used to determine the e
1 

and e
2 

values. As stated by equation (4.10), 

* * e
1 

can be determined only if * e2 is known, so inaccuracies in el will, 

at least partly, be governed by . * these 1n e
2

. This is a disadvantage of 

the method fellewed in the present study. It should be noted, however, 

that the parameters * e 1 and * e2 correspond to experiments where the 

specimen length is net a step function of time. * * Thus e 1 and e 2 are 

only approximations of the parameters e
1 

and e
2 

which describe the 

response to a true step change in the length. Because of the 

* * approximative character of e
1 

and e
2 

the advantage of the simplicity 

in their determination was considered to outweigh the above-mentioned 

disadvantage. 

Assuming linearly viscoelastic properties, Lim and Boughner [1976] 

determined the loss angle ~ in human aortic valve leaflets by applying 

sinusciclal pressure variations at frequencies between 0.5 and 5 Hz. 

This loss angle ~ governs the description of the viscous losses during 

sinusciclal straining. From the definition of the loss angle (see also 

sectien 3 of Appendix C) 

(4. 1 2) 

and using (3.9) and (3.10) for the storage and loss modulus Es and E~, 

respectively, an indication as to the frequency-dependent behaviour 

of the aartic valvetissue can be obtained. Figure 4.11 illustrates 

the ~ values for the aortic valve tissues computed in this way 

tagether with the values reported by Lim and Boughner [1976]. In the 

calculations the following relaxàtion-parameter values were chosen as 

being representative 

* * * e 1 (s) e 2 ( s) K 

Leaflet I0-3 10
2 

0.08 

Sinus and aortic wall 10-4 
10

2 
0.04 

The ~-values for the leaflet tissue, predicted by the present 

relaxation model, are twice as large as these reported by Lim and 

Boughner [1976]. Cernparisen of the predicted values for the leaflets 

on the one hand and the sinus and aortic walls on the ether, indicates 

that the largest viseaus losses are to be expected in the leaflet 
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0 porcine leaflet: el = 10 s; 82 2 * 10 s; K = 0.08. 

= 10-4 s; a; = 102 s; K* 0.04. . * • porcine sinus and aort1c walls: e
1 

ó human leaflet [Lim and Boughner, 1976]. 

tissue. This is consistent with the greater stress relaxation in the 

leaflets as observed in our experiments. It should be noted, however, 

that a proper investigation of the frequency-dependent behaviour 

should include sinusoidal-straining experiments in order to test 

these conclusions. 

The general conclusions to be drawn from the foregoing are: The 

elastic properties of the different valve parts differ considerably. 

In the physiological strain range the sinus and aartic tissues show a 

maximum tangent modulus (slope of the stress-strain curve) in the 

order of magnitude of 0.1 MN/m
2

, regardless from the direction 

(circumferential or axial) in which the specimens are taken. This 

value is in reasonable agreement with data found in literature for 

human specimens (Table 4.3). The mechanica! properties of the leaflet 

tissue show a distinct directional dependenee (anisotropy). In the 

circumferential direction, i.e. the direction of preferred orientation 
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of the collagen bundles, the leaflet tissue reflects mainly the bundle 
2 

properties, resulting in tangent-modulus values of 20 to 40 MN/m . In 
2 

the radial direction values ranging from 1.0 to 1.8 MN/m are found. 

The latter values agree fairly well with comparable data in literature 

(Table 4.3). The tangent-modulus values, found in the present s tudy 

for circumferential specimens, are about a factor 10 higher tha1 

similar data reported in literature for human as well as porcine 

specimens. The stress-strain curves of the aortic valve tissues 

appear to be only sli~htly sensitive to strain rate. 

The relaxation model used has proven to be a useful tool in 

descrihing the relaxation behaviour of the different valve part s . In 

the leaflet tissue more stress relaxation is observed than in the 

sinus and aortic tissues. Predietiens based on the mathematica! model 

indicate that in the leaflets greater viscous losses have to be 

expected than in the sinus and aortic walls. This aspect should be 

investigated further. It is likely to be of importance as to valve 

functioning in dynamica! situations as, for instance, at the moment 

of valve closure. 
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CHAPTER 5 

A THEORETICAL MODEL OF THE AORTIC VALVE 

5.1. Introduetion 

The main objective of the present study was to gain insight into the 

general features of the mechanica! behaviour of the natura! valve. A 

review of the literature on this subject (section 5.2) showed that 

almast all studies dealt mainly with the stress analysis of the 

leaflets in their closed configuration whereas no attention was paid 

explicitly to their bundle structure (see sections 2.3.3 and 2.3.4). 

Furthermore no clear information was encountered on the importance of 

the sinus and aartic walls . 

The development of the present model, as described in section 5.3, 

was prompted by the consideration that these aspects should be stuclied 

befare rnadelling leaflet geometry and material properties in detail. 

It was assurned that in the situation, in which the valve is closed and 

subject to an approxirnately time-independent pressure-load, the 

bundles in the leaflets are of specific irnportance in the transmission 

of farces. In exploring the function of these bundles, detailed 

rnadelling of the mechanica! properties of the leaflet tissue as well 

as the boundary conditions is of minor irnportance. For instance, the 

time-dependenee of the mechanica! properties does not s eem to be very 

relevant in such an investigation. This will not apply when studying 

dynamic phenomena, as in the valve-closing process. Leaving thi s 

subject to future research, the present study focussed on the function 

of the collagen-bundie structure in the leaflets in their closed 

configuration. 

The results of the model calculations corroborated the hypothesis 

that the bundle structure in the leaflets has a distinct mechanica l 

function (section 5.4), Insection 5.5 the results are discussed. 

Suggestions as to further investigations are made in Chapter 6. 

5. 2. Revi ew of the Ziterature on stress anaZysis of t he aortic vaZve 

The stress analyses which were found in literature, were static and 

dealt with the load-bearing leaflet portion in the closed 

configuration. 
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Chong et al. [1973] using membrane theory, analyzed the valve 

leaflets. The leaflets were assumed to be attached to a rigid cylinder 

representing the aartic wall. From measurements on silicone rubber 

casts of closed human valves (the pressure difference across the 

valve was not given) they concluded that a valve leaflet could be 

· closely approximated by a surface with two constant principal radii 

of curvature. With a ratio of radii of curvature, R d' 
1 

I ra 1a 
Rcircumferential' ranging from 0.6 to 0.9 (for the definition of the 

directions see fig. 2.1), their model predicted that the highest 

stresses would occur in the radial leaflet direction, contrary to the 

findings in other investigations (e.g. Gould et al;, 1980). This 

discrepancy can be explained by the fact that the geometrical data 

obtained by Chong et al. [1973] are essentially different from the 

data used by others [Swanson and Clark, 1974; Trenkner et al., 1976] 

who'found the load-bearing leaflet portion to be approximately 

cylindrical, with the slighter curvature in the radial direction. The 

latter findings were confirmed by our own observations on pressurized 

valves (see fig. 2.8). 

Another analytica! stress analysis of the valve leaflets, based 

upon membrane-shell theory, was reported by Missirlis and Armeniades 

[1976]. Their work centred on the influence of leaflet geometry on 

the computed stress values. Using two geometries, a sphere and an 

ellipsoid of revolution, with zero displacements at the boundaries, 

they found that small changes in geometry brought about considerable 

changes in the stress values. The need for realistic geometrical data 

was therefore emphasized by the authors. The stress analysis of Gould 

et al. [1973] also emphasized the importance of leaflet geometry. 

Employing a thin-shell finite-element model and assuming small 

deformations and linearly elastic and isotropie material properties, 

they analyzed different leaflet geometries: an elliptical paraboloid, 

a paraboloid of revolution and a sphere. Their conclusions were 

similar to those of Missirlis and Armeniades [1976]. 

Also using a thin-shell f inite-element model, Cataloglu et al. 

[1975] compared the results of geometrically linear shell theory with 

the results of finite deformation shell theory. In bath cases linear 

elasticity, isotropy and homogeneity were assumed. In addition, two 

different valve models were used. One model contained only the 

load-bearing leaflet portion. At the boundaries , i.e. along the aartic 
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ring and the coapting edge (the line between the lunula and the 

load-bearing leaflet portion), they suppressed displacements bu t 

allowed rotations. The other model involved the leaflet, the aortic 

ring and the sinus wall, using the above mentioned boundary conditions 

at the coapting edge. No information was given on boundary conditions 

in the sinus region or on whether the material properties of the 

aortic ring and the sinus wall were different from those of the 

leaflets. Geometrical data obtained from photogrammetric studies were 

used for both models. It was observed that the linear theory predicted 

higher maximum stresses and higher normal displacements than t he 

geometrically nonlinear theory. Besides, in both theories, 

incorporation of the aortic ring and the sinus wall resulted in 

slightly higher values for the maximum stresses and considerably 

higher values (40 - 50%) for the normal displacements in the leaflets. 

From these findings the authors surmised that "the increased 

curvatures, produced by the pressure loading, distort the geometry to 

a more efficient load-resisting configuration and, therefore, the 

linear analysis is conservative" . Moreover, it was concluded that 1n 

a stress analysis of the valve only the leaflets had to be taken into 

consideration . As a continuatien of the above-mentioned study and 

using the same geometrically linear thin-shell fini te-element model, 

Gould et al. [1980] observed the maximum principal stress resultants 

to be oriented mainly in the circumferential direction. Maximum 

stresses were found near the centre of the load-bearing leaflet 

port ion. 

Chong and Missirlis [1978] presented a stress analysis of the 

leaflets of ene porcine valve, based on a modifica tion of membr ane 

stress theory. Modifications were made to model the leaflets as 

inhomogeneous, non-linearly elastic and orthotropic membranes with 

the radial and circumferential directions as main directions for 

orthotropy . Geometrical data and strains, occurring under static 

pressure loading, were obtained from stereo-photogrammetric studies on 

a pressurized, entire valve. From these data the corresponding r adial 

and circumferential stresses were calculated using the nonlinear 

stress-strain characteristics as determined in uniaxial tensile 

experiments on specimens cut out of another valve in the corresponding 

directions (Missirlis and Chong [1978 ] ; s ee also section 3 . 3). The 

calculated radial stresses were considerably larger than the 
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circumferential stresses. The areas of highest stress concentrations 

were found near the node of Arantius (see fig. 2.1) while a 

progressive increase of radial stresses was observed from the aartic 

ring towards this node. 

The literature review reveals that the stress analyses performed 

deal mainly with the valve in the statie, closed situation. Besides, 

these studies centre on the leaflets alone, consiclering them to be 

attached to a rigid, cylindrical wall representing the aorta. Only 

Cataloglu et al. [1975] considered the aartic ring and the sinus wall 

too, in one of their models. Unfortunately, the data on material 

properties and boundary conditions employed in rnadelling the aartic 

ring and the sinus wall, were inadequately described. Owing to the 

lack of these data it is difficult to judge their conclusion that 

these valve parts do not necessarily have to be included in analyzing 

the mechanica! properties of a valve. 

As to the material properties, homogeneity, linear elasticity and 

isotropy were assumed by most authors. Only Chong and Missirlis [1978] 

employed inhomogeneity, orthotropy and nonlinear elastic properties in 

their study. 

Most of the analyses were based on geometrically linear membrane or 

thin-shell theories (i.e. allowing only small deformations). Only · 

Cataloglu et al. [1975] compared the results obtained with a linear 

and a nonlinear thin shell theory. They concluded the linear theory 

to be appropriate because it yielded conservative results and the 

calculations were cheaper and less time-consuming. 

With respect to the geometrical descriptions used, the studies can 

be divided into those using idealized geometries [Chong et al., 1973; 

Missirlis and Armeniades, 1976; Gould et al., 1973] and studies using 

detailed geometrical data obtained from photogrammetric studies 

[Cataloglu et al., 1975; Gould et al., 1980; Chong and Missirlis, 

1978]. 

5.3. Description of the model 

5.3.1. Introduetion 

In developing the present valve model the following considerations 

served as directives: None of the studies which were found in 

literature has taken into account explicitly the possible mechanica! 
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function of the collageneus bundle structure in the valve leaflets 

(see sections 2.3.3 and 2.3.4). Furthermore, the mechanica! role of 

the other valve parts, i.e. the aortic ring, the sinus walls and the 

adjacent portion of the aortic wall, remains rather vague. It is felt 

to be premature to put considerable effort into detailed modelling of 

the geometry and the material properties of the leaflets alone, so 

long as the importance of the above-mentioned aspects to the general 

features of mech~nical behaviour of the valve is not known, 

The finite element model, used in the present work, was meant to 

explore the general features of the mechanics of the closed valve. 

Special attention was paid to the bundle structure in the leaflets. 

The model is based upon the theory of nonlinear continuurn mechanics. 

It is therefore capable of representing geometrical nonlinearities. 

This was considered to be of importance because relatively large 

deformations were expected to occur which considerabTy influence the 

equations of equilibrium. Although linearly elastic material 

properties were assumed in the present investigations, nonlinearly 

elastic or viscoelastic properties can also be implemented in the 

model without drastic modifications. Both membrane and cable elements 

were used in modelling the leaflets. Because the leaflets are thin, 

flexible structures having no bending stiffness, membrane rather than 

shell elements seemed appropriate in descrihing the elastin layer. The 

cable elements represented the collagen bundles. An extensive 

treatment of the theory of general continuurn mechanics as well as the 

numerical methods used in the calculations, would far exceed the scope 

of the present study. Therefore, only a brief outline of the theory 

and the derivation of the properties of the elements used, is 

presented in Appendix D. A more extensive treatment of the elements 

is given by De Wilde [1981]. 

5.3.2. Geometry 

The valve geometry was assumed to have 120° symmetry. In defining the 

geometry, the characteristic dimensions at zero pressure difference 

across the valve as reported by Swanson and Clark [1974] and 

summarized in Table 2.1 (see also fig. 2.10), were used. Modelling 

the aorta as a cylinder, the ventricular and aortic valve radii rv 

and r were both assigned a value of 13 mm [Sands et al., 1969; 
a 
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Swanson and Clark, 1974]. Since the radial curvature of the leaflets 

in the loaded contiguration is negligible (see sectien 2.4), the 

load-bearing leaflet portion was schematized by a segment of a cone. 

The axis of the cone was coïncident with the plane of leaflet 

s~1metry and thus intersected the axis of the aorta. From observations 

on valves, fixated in the closed situation at a pressure laad of about 

13 kPa, we found that point B was situated about halfway up the 

commissural height (fig. 5.1) on the aartic wall, wh~re the 

loaà-bearing leaflet portion merges into the lunula. Given the 

position of this point, the top of the cone and the angle a, the cone 

was fully defined. The top of the cone was chosen so that the radius 

of curvature of the load-bearing leaflet portion along EA ranged from 

3.3 r to 3.6 r . 
V V 

5.3.3. MateriaZ properties 

No detailed rnadelling of the material properties was attempted . For 

the purpose of the present exploratory investigation, linearly elastic 

properties were considered to be appropriate. The numerical values 

actually used in the calculations are given in the sections 5.4.2 

and 5.4.3. 

5.4. Same resuZts of modeZ caZcuZations 

5.4.1. Introduetion 

As discussed in sectien 5.3.1, the main purpose of the calculations 

with the valve model was to find out about the mechanica! function of 

the leaflet bundle structure. Therefore calculations were performed 

on a leaflet with and without a simplified bundle structure. Some of 

the results of these calculations are presented and discussed in 

sectien 5.4.2; 

A simpZe modeZ incorporating the bundZe structure 

In the model used to study the effects of bundle structure on the 

mechanica! behaviour of a valve leaflet, the aorta was represented by 

a rigid cylinder. Therefore all displacements of the leaflet at the 

intersectien of the leaflet and the aorta (the aartic ring) were 

suppressed, but rotatien of the leaflet was still possible at this 

intersection. Because of the leaflet symmetry, the model incorporated 
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Fig. 5.1. 
Outline of the geometry of the leafle t model. 
a. View on the closed valve from the aortic side (the s1nuses ar e 

omitted. 
In figs. S.lb and S.lc the view (in the direction of the arrows in 
fig. S.la) of one half of the leaflet , dissected along its plane of 
symmetry (AED), is shown. 
b. Nomenclature of the dimensions. 
c. Dimensionless values related to the ventricular valve radius and 

used in the leaflet model. 
EDCB: lunula, EAB: load-bearing leaflet portion; ABC: aortic r i ng ; 
AE: generator of the cone; EB : coapting edge; C: commissure. 
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only one half of the leaflet with the usual boundary conditions 

applying at the line of symmetry. The leaflet points lying on the axis 

of the aorta (i.e. on the line DE, fig. 5.2) were allowed to translate 

along this axis only. In the lunula (surface BCDE, fig. 5.2) forming 

part of one of the planes of 120° valve symmetry, displacements 

perpendicular to this plane were suppressed. 

Modelling of the bundle structure was based upon the histological 

observation, discussed in Chapter 2. In order to limit the number of 

elements (the total number of elements was 72), the bundle structure 

was simplified. In the load-bearing leaflet portion six bundles were 

situated. They ran circumferentially in the main, as illustrated in 

fig. 5.2. In the lunula two bundles ran from the commissures C (see 

also fig. 2.3) to the line DE. Along the line BE (transition from the 

load-bearing portion to the lunula) a bundle was situated as well. 

a x is of i AORTA 
aorta 

(-~:'·' 
D B 

Al E 

:r A 

LEFT l VENTRICLE 

a b 

Fig. 5.2. 
The rnadelling of the leaflet bundle structure. The dashed lines 
represent the bundles. 
a. The bundles as seen from the ·aortic side. 
b. View (in the direction of the arrows in fig. 5.2a) of one half of 

the leaflet. 
EDCB: lunula; EAB: load-bearing leaflet portion; ABC: aartic ring; 
EB: coapting edge; C: commissure. 
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2 
The bundle material was assigned a tangent modulus of 45 MN/m , as 

reported for collagen fibres [Haut and Little, 1972], while for the 

membranes a value of 1.5 MN/m
2 

was applied as reported forelastin 

fibres [Carton et al., 1962]. As can beseen from Table 4.3, these 

values are in the order of magnitude of the results of our own 

experiments on the properties of the leaflet tissue in the 

circumferential and radial directions, respectively. The bundles and 

the membranes were assumed to be incompressible. The diameter of the 

circular cross-sectional area of the bundles as well as the thickness 

of the membranes were taken as 0.4 mm. The leaflet was loaded at a 

uniform pressure. 

The behaviour of the leaflet was calculated with and without 

bundles. In order to prevent excessive deformations in the latter case 

and to facilitate the comparison between both situations, in all 

calculations a pressure load of 0.133 kPa was used insteadof the 

physiological value of 13.3 kPa. 

Owing to the presence of the bundles the displacements in the 

z-direction (towards the left ventricle, see fig. 5.2) showed a 

sixfold decrease at line DE. Figure 5.3 illustrates the reaction 

forces on the leaflet with and without bundles. At the aortic ring 

(ABC in fig. 5.2) the presence of the bundles resulted in an increase 

in the forces at their points of attachment to the ring and a 

reduction in the forces on the membraneus parts in between (line 

sectien A'BC). Along the part AA' of the aortic ring no bundles were 

attached to the aortic ring. Here the effect of the bundles was a 

rotation rather than a reduction of the reaction forces so that their 

direction became more perpendicular to the aortic ring. This could 

explain the presence of collagen bundles perpendicular to the aortic 

ring, anchoring the middle portion of the leaflet to the aortic wall 

as was observed in the histological investigations (see sectien 2.3.3, 

figs. 2.4 and 2.5). 

The influence of the bundles on the stresses in the load-bearing 

leaflet portion can be illustrated in a representative manner by 

consiclering the stress distribution along the line of leaflet 

symmetry AE and the line BF (fig. 5.4). The line BF 1s chosen because 

it is directed nearly circumferentially and because at point F 

maximum stresses were found without bundles. The principal stresses 

along AE and BF as well as those in the bundles (at the intersections 

83 



a 

b 

Fig. 5.3. 
Reaction farces on the laad-hearing leaflet portion. 
a. Projection in the (xy) plane. 
b. Projection in the (xz) plane. 
--·---bundle; ~ reaction force with bundles; 
---~reaction force without bundles. 
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Fig. 5.4. 
Illustration of the lines EA and BF in the load-bearing leaflet 
portions along which stress distributions were considered. 

of these bundies with line AE) are given in fig. 5.5. The max1mum 

principal stresses -with and without bundles- were encountered in the 

circumferential direction. 

The bundies were found to have a pronounced influence on the stress 

distribution in the leaflet. Due to the presence of the bundles, the 

maximum principal stress values were reduced almost to the level of 

the minimum principal stresses, the values of the latter remaining 

almost unchanged in comparison with the situation in which bundies 

were absent. In the absence of bundles, compressive stresses were 

found in the vicinity of B (fig. 5.5 ). These compressive stresses 

were negligibly small cornpared with the tensile stresses. In the 

presence of bundles, cornpressive stresses were absent in the 

mernbranes, whereas in the bundle along BE (fig. 5.2) relatively low 

compressive stresses were observed near E (fig. 5.5 ). Thus the ma1n 

effect of the collagen bundles on the stress distribution in the 

membranes was a smoothing of the stress distribution throughout the 

load-bearing leaflet portion. Because the stresses in the principal 

directions were nearly the sarne, almost coinciding, as they did, with 

the radial and circumferential directions, shear stresses were 

negligible. 

In order to investigate the influence of the stiffness of the 

membranes on the stress distribution, the situation without bundies 

was investigated with the membranes having a tangent modulus of 4.5 

and 9 MN/rn 2 (a respectively threefold and sixfold increase in their 
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Fig. 5. 5. 
The stress distributions along EA and BF (see fig. 5.4) and the 
stresses in the bundles at the intersections with AE. 
oe principal stresses with bundles, 
ö4 principal stresses without bundles, 
O stresses in bundles. 
Solid a nd open symbols represent maximum and mi nimum stresses, 
respec tively. 
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stiffness with respect to the situation discussed in the foregoing). 

In the latter case the displacements in the z-direction (towards the 

left ventricle) were about the same as in the situation with bundles, 

discussed above, while they were twice as large in the first-named. 

The effect of the stiffness of the membranes on the stress 

distribution was negligible. 

5.5. Discussion and conclusions 

The results of the investigations on the function of the bundle 

structure in the leaflets reveal that the bundles are of considerable 

importance in the stress distribution in the leaflets. They bring 

about a more homogeneaus stress distribution and reduce the shear 

stresses in the membraneus parts. The assumption, based upon the 

histological observations (section 2.3.4), that the bundles transmit 

the load on the membraneus parts to the aortic wall, is confirmed. At 

the points where several bundles come tagether at the aortic wall (B 

and C, fig. 5.2), stress concentrations are to be expected. It is 

concluded that the anisotropy of the leaflet tissue found in the 

tensile experiments (see Chapter 4), can be modelled by taking the 

bundle structure explicitly into account. We are convineed that 

realistic and workable rnadelling of the bundle structure is one of 

the principal requirements if we are to arrive at an accurate and 

reliable model for the analysis of the mechanica! behaviour of the 

natural aortic valve. 

In the present model the aortic wall is assumed to be rigid. 

Therefore, no conclusions can be drawn on the influence of the 

stiffness of the surrounding structures on the stresses in the 

leaflets. This aspect needs further investigation. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The present study was performed within the framework of an 

interdisciplinary research project on the sortie valve. This project 

was prompted by the fact that biologica! valve prostheses have a 

limited life span. Apart from tissue degeneration, abnormal 

hydrodynamica! and mechanica! factors were recognized as an 

important cause of valve failure. The aim of the project is the 

determination of the parameters which govern the stresses in the 

leaflets of the natural aortic valve. Better insight into these 

parameters may improve the teehoical specifications for the design 

and implantation of artificial triple-leaflet valve prostheses. 

The present investigation was conducted to study the mechanical 

behaviour of the leaflets of an aortic valve in its closed 

configuration. For the design of a theoretica! model, the 

histological structure and the roechanical properties of valve tissue 

were investigated. 

Histological sections of porcine valves were stuclied by light 

microscopy. The valve leaflet appeared to have a triple-layered 

structure: a dense layer composed of mainly collagen fibres and 

bundles, oriented in one particular direction, at the aortic side, 

a grid of randomly oriented elastin fibres at the ventricular side 

and, in between, a loosely structured layer. The sinus walls consist 

of mainly circumferentially arranged smooth muscle cells embedded 1n 

a grid of elastic tissue with no special fibre orientation. The 

attachment of the lesflets to the sinus walls is constituted by the 

aortic ring, a crownlike fibrocartilaginous structure containing 

large amounts of collagen fibres. 

The mechanica! properties of the lesflets as well as the sinus and 

aortic walls were investigated in vitro in uniaxial tensile 

experiments. Tissue strips, taken in different directions from the 

various valve parts, were stretched with constant strain rates and 

subsequently kept at a constant, stretched length. Care was taken not 

to exceed the physiological strain ranges. Considerable differences 
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were found between the stress-strain curves of the leaflet tissue on 

the one hand and · the sinus and aartic tissues on the other. These 

differences can be explained qualitatively by their different 

histological structures. 

In the leaflet-tissue strips, cut in the direction of the collagen 

bundles (circumferential direction), a considerably higher stress is 

required to produce a certain strain than in the specimens taken 

perpendicularly to the bundles (radial direction). The tangent 

moduli in the circumferential direction are by more than a factor 10 

higher than in the radial direction. In the sinus and aartic walls no 

pronounced differences were observed between the stress-strain curves 

of tissue strips taken in two perpendicular directions. These tissues 

appeared to be much more compliant than the leaflet tissue. Their 

tangent moduli are by a factor 2 or to IQ smaller than the 

corresponding values for the radial leaflet specimens. The 

characteristics of the leaflet tissue clearly reflect the stiffening 

function of the collagen bundle structure. The high compliance of the 

sinus and aartic walls is consistent with their high elastin content. 

The insensitivity of their characteristics to direction can be 

explained by the random character of the fibre orientation. 

In almast all specimens a hundredfold increase of the strain rate 

resul~ed in a relatively slight increase of the stress at a given 

strain. This indicates a small strain-rate sensitivity of the stress

strain curves. 

After applying a certain strain with a constant, high strain rate 

the stress in the leaflet specimens decreased by 37 to 50% of its 

maximum value during the constant-length phase of the experiments. In 

the sinus and aartic strips this decrease ranged from 25 to 37%. The 

long-term relaxation behaviour of the specimens showed no distinct 

dependenee on the direction in which they were cut. More experimental 

data are needed to decide whether this applies to the short-term 

behaviour as well. The stress relaxation in the specimens was 

analyzed using a mathematica! model. Predictions based upon this 

model indicate that on cyclic loading the viseaus losses in the 

leaflets are relatively large as eeropared to the losses in the sinus 

and aartic walls. This might be a relevant aspect of the mechanica! 

properties of the valve in dynamic situations and hence should be 

further investigated. 
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The mechanica! significanee of the bundie structure in the leaflets 

of the closed valve was studied in a theoretica! model. Withand 

without bundles the principal stress directions in the membranous 

parts were almost coïncident with the circumferential and radial 

directions. Without bundles maximum principal stresses occurred in 

the circumferential direction. The effect of the bundle structure 

appeared to be. twofold. The bundles transmit the pressure load on the 

membranous parts to the aortic wall. At the same time they cause a 

more homogeneaus stress distribution ~n these parts by reducing the 

maximum principal stress values to the level of the minimum principal 

stresses. The values of the latter remainalmost unchanged in 

comparison with their values in the case without bundles. Because 

with bundles the stresses in the principal directions become nearly 

the same, shear stresses are negligibly smal!. 

As the ultimate soal is to determine the parameters which govern the 

stresses in the leaflets of the natural valve as well as to obtain 

specifications for the design and implantation of artificial triple

leaflet valve prostheses, several aspects remain to future research. 

With the present model of the leaflet as a basis, the model of the 

bundle structure could be refined, for instance, by varying the 

cross-sectional areas of the bundles and introducing cross-links 

between them. The bundles originating at the commissures (C in figs. 

2.3 and 5.2) are relatively thick in the neighbourhood of these 

commissures, but towards the central portion of the leaflet they 

branch out to formameshwork of thinner bundles (fig. 2.3). The 

influence of leaflet geometry on the stress distribution should be 

studied when the bundle structure is present. 

However, extension of the present model to include a deformable 

aartic ring and sinus and aortic walls seems more conducive to 

enlarging our insight into the general features of natura! valve 

mechanics. Moreover, from the results of such investigations it could 

be decided whether these valve parts, at least when the valve is 

closed, are of critical importance with respect to the stresses in 

the leaflets. 

At a final stage of development of the model attention should be 

centred on the dynamic and kinematic aspects involved in the processes 
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of valve closure and aperture. Such investigations should include the 

time-dependenee of both the load on the valve and the mechanical 

properties of the valve tissue. In the present study the mechanical 

properties were stuclied in one-dimensional stress-strain situations. 

An extension to include the mechanical tissue behaviour in two

dimensional stress-strain situations might therefore seem a logical 

subsequent step. We believe, however, that a further investigation 

of the viseaus losses in the leaflets versus those in the sinus and 

aartic walls, be it in one-dimensional stress-strain situations, 

will be of more importance for the development of a realistic model 

of the valve. 

Parallel with the development of the valve model attention should 

be paid to the assessment of criteria which can be used in judging 

the admissibilityof stresses with respect to the life span of the 

valve. Although actually indispensable for the final evaluation of 

stress analyses, untill now such criteria havenotbeen established 

for biological tissue, as far as we know. 
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APPENDIX A 

THE PURPOSE AND SCOPE OF 

THE EINDHOVEN HEART- VALVE RESEARCH PROJECT 

The present study falls within the framework of the Eindhoven 

heart-valve research project, which was itself prompted by the 

limited life span of biologica!, triple-leaflet valve prostheses. 

Apart from eventual tissue degeneration, abnormal hydrodynamica! and 

mechanica! conditions were recognized as the possible major 

contributing factors to valve failure. It is assumed that such 

failure is due to higher local stresses in the leaflets of the 

presthesis compared to the natural valve. The ultimate goal of the 

present research is twofold: 

(i) to determine by means of theoretica! and experimental modelling, 

the parameters which govern the stress in valve leaflets, and 

(ii) to formulate technical specifications for the design and 

implantation of artificial triple-leaflet valve prestheses 

whose function and life span are much nearer the optimum. 

The research philosophy is based on the view that observation of 

natural aortic valve behaviour gives insight into the relevant 

parameters. This research can be performed in experiments with an 

analogue model as well as in vivo experiments. It is hoped that from 

the resulting insight, specifications can be derived for artificial 

valves. The project has four main topics: 

(i) Hydrodynamic behaviour of the aortic valve 

The aim is to describe the interaction between flow pattern and 

cusp motion. The main subject has been the investigation of 

the closing mechanism of the aortic valve. To this end 

experiments with an analogue model were performed to find a 

physical one [Van Steenhoven and Van Dongen, 1979]. 

Furthermore the valve closure was stuclied in animals [Van 

Steenhoven et al., 1981]. Currently this research programme 

focusses on leaflet instabilities, 
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(ii) Dynamic behaviour of the aartic valve 

The purpose is to study the relationship between movement of the 

valve components on the one hand and the pressures in and across 

the valve leaflets on the other. These relationships are 

formulated in terms of valve compliance. Static and dynamic 

valve compliances are determined from in vitro [Van Renterghem 

et al., 1979] and in vivo experiments, respectively. 

(iii) Mechanical behaviour of the aartic valve 

The aim of this prograunne is to correlate the pressure 

difference across the valve to the local stresses within the 

valve components. To achieve this, valve histology [ Sauren et 

al., 1980] and the mechanical properties of the valvetissue 

have been closely stuclied with the ultimate aim of developing 

a theoretical model of valve mechanics. 

(iv) Application to valve prestheses 
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In order to apply such basic information to better design of 

heart-valve prostheses, the natural stress-reducing mechanism~ 

must be translated into design specifications [Van Steenhoven 

et al., 1979a] . 



APPENDIX B 

A BRIEF OUTLINE OF THE ANATOMY AND 

PHYSIOLOGY OF THE HEART 

Only a concise description of the anatorny and physiology of the heart 

is given here. Cornprehensive treatises on these subjects can be found 

in textbooks on physiology and anatorny (e.g.: Guyton, 1981; Gray, 

1980). 

The heart has four cavities, the left (LA) and right (RA) atria 

and the left (LV) and right (RV) ventricles (Fig. BI). The atria and 

.~ 
_A_ 

Fig. BI. 
Diagram of the heart [Arts, 1978]: 
a. Sectien of the heart in the sagittal plane. 

RA right atrium, LA = left atrium, RV = right ventricle, 
LV left ventricle, TV = tricuspid valve, MV rnitral valve, 
PV pulrnonary valve, AV = aortic valve, PT = pulrnonary trunk, 
AO aorta, PPM = papillary muscles. 

b. Cross-sectien of the ventricle in a plane which is indicated as AA 
in a. 
VS = ventricular septurn. 
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the ventricles are separated by the atr i al and ventricular (VS) septa. 

The systemic ve i ns collect the blood f rom the systemic circulation 

and lead it into the right atrium. The pulmonary veins conduct the 

reoxygenated blood from the lungs into t he left atrium. The right 

atrium i s connected to the right ventricle by way of the tricuspid 

valve (TV), whereas the left atrium is connected to the left ventric le 

over the mitral valve (MV). The leaf l ets of the mitral and tricuspid 

va l ves are connected by the chordae tendineae to a number of 

papillary mu scles (PPM) that emanate from the ventricular walls. The 

pulmonary valve (PV) is situated between the right ventr icle and the 

pulmonary trunk (PT). The aartic valve (AV) connects the left 

ventricle and the aorta (AO). The heart valves are situated in the 

basal plane. The inlet valves to the ventricles (the tricuspid and 

rnitral) are also ca l led the atrio-ventricular (A-V) valves, and the 

outlet valves f rorn these cavities (the pulrnonary and aortic) are also 

known as the s emilunar valves . 

Under normal conditions the human heart contracts and relaxes about 

once a second. The cardiac cycle camprises a period of contrac tion, 

systole, tagether with a period of relaxation, diastole. There is a 

delay of more than one tenth of a secend between contraction of the 

atria and the ventricles. This de lay enables the atria t o ful l y 

di s charge into the ventricles befare they start t o contrac t. 

During the cardiac cycle the following phenomena occur. Blood flows 

into both atria in the course of systol e and diastole. This raises the 

pressures in the atria. Because of this rise and the decreasing 

pressur e i n the re l axing ventric les , t he mitral and tricuspid valves 

open early in dias tol e and the ventricles are filled. This filling i s 

completed by contraction of the atria (atria! systole). 

Thereupon, the ventricles contract, followed by cammencement of 

ventricular s ys tole. The atrio-ventricular valves then close, partly 

a s a result of the increased pressure in the ventricular cav ities. 

In this phas e o f the cardiac cycle the ventricular volumes remain 

cons tant because all va l ves a r e c losed. This phas e is therefore known 

as the isovolumic contraction phase. Next the pulmonary and aortic 

valves open because the right and left ventricular pressures are 

greater than thos e in the pulmonar y trunk and aorta, respectively. 

The ej ection phase ha s s t a rted. At the end of this phase the outflow 

ceases a nd the sernilunar valves c l ose as a result of the relaxation 
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of the heart. The ventricular volumes are again constant, while 

ventricular pressures rapidly decrease. This phase is called the 

isovolumic relaxation phase. As a consequence of complete relaxation 

filling of the atria is completed and diastole starts again . 
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APPENDIX C 

LINEAR VISCOELASTICITY 

1. Introduetion 

This appendix contains a brief outline of linear viscoelasticity 

theory. Only those elements that are indispensable for proper 

understanding of the "quasi-linear viscoelasticity law" proposed by 

Fung (1972) will be discussed. Of the numerous material functions that 

might be used in descrihing the behaviour of linear viscoelastic 

materials, only the elastic response, the reduced relaxation function, 

the complex modulus and the relaxation spectrum will be introduced. 

The physical meaning of these functions will be illustrated with a few 

examples. A more extensive treatment of this matter can be found in 

textbooks on viscoelasticity (e.g. Lockett, 1972; Christensen, 1971). 

2. Reduced relaxation function and eZastic response 

*) . The constitutive equation relating stress a and strain ~ 1n a linear 

viscoelastic material under uniaxial stress/strain can be written in a 

general form as: 

do d
2

a dm a 
( 2 . I ) pQo + pldt + p2--2 + ... + p-= 

dt mdtm 

d~ dn~ 
= qo~ + qldt + qnn' 

dt 

i.e. a linear differential equation with constant coefficients . In 

order to formulate the response o(t) to an arbitrary strain history 

~(t) we take the Laplace transferm **)of (2.1): 

*) The symbols a and ~ denote quantities related to load and 

deformation respectively. Whether they have to be interpreted as 

force or stress and elongation or strain depends on the sealing of 

the coefficients pand q in (2.1). 

**) J -st In the subsequent the Laplace transferm f(t)e dt of a f unction 
0 f(t) will be denoted by fL(s); s and t are complex and real 

variables respectively. 
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or, in a more manipulable form, if p
0

+p
1
s+ ..• +pmsm ~ 0, 

n 
qo+ql s+. · .+qns 

m 
Po+pl s+ .•• +pms 

( 2. 2) 

(2.3) 

By means of back transformation of (2.3) into the time domain we will 

derive a specific formulation of a(t) as a function of E(t) and some 

material functions. First we consider the response to a unit-step 

change of the strain at t=O. This can be derived by substitution of 
I 

EL(s) = s into (2.3), resulting in 

a Lu. st. (s) (2.4) 

By solving EL(s) from (2.4) and substituting the result into (2.3) we 

can write the stress response to an arbitrary strain history as 

(2 .5) 

and, after applying inverse Laplace transformation, as 

t 
a( t) f ( 2. 6) 

T=O 

The functions G(t) and a(e)(E), defined by 

G( t) 
a ( t) 
u.st. ( 2. 7) a (0) 
u.st. 

(2.8) 

are called the reduaed relaxation funation and the elastia response, 

respectively. From these definitions it is seen that 

G(O) = I (2.9) 

and that a(e)(E) is a linear function of E. Differentiation of (2.8) 

yields 
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a (0) 
u.st. 

do(e)(e;) 
de; 

By substituting (2.7) and (2.10) into (2.6) we obtain 

t 
0 ( t) = J 

1:=0 

(e) 
G(t-~)do (e;) de:(1:) 

' de; ~ d't: . 

( 2. I 0) 

( 2. I I) 

This states that the stress response, dependent as it is bath on 

strain and time, can be formulated with a convolution integral. The 

two dependencies then emerge explicitly in terros of the functions 

o(e)(e;) and G(t). 

Because of the linearity of the differential equation (2.1) it can be 

shown that the response ~o a step change of the strain at t=O with 

magnitude e; can be stated as 

0 (t ,e:) st 
e; 0 (t) • 

u. st. 

By using (2.7) and (2.8) this can be rewritten as 

o (t,e:) = o(e)(e;) G(t) , 
st 

( 2. 12) 

( 2. 13) 

showing that both the reduced relaxation function G(t) and the elastic 

response o(e)(e;) can be deduced from the stress responsetoa step 

change of the strain. 

With G(O) c I, equation (2.13) shows that 

(2. 14) 

i.e. the elastic response at a certain value e; is identical with the 

instantaneous stress response to a step change of the strain with that 

same value e;, Partial integration of (2.11), after sorne manipulation 

gives, 

o( t) 
t 

J 
1:=0 

(e) ( ( ))dG(T) d 0 e; t-t ----- t dt ( 2, IS) 

with e; 0 fort ~ 0 and o(e)(O) o. 
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In general G(T) will be a monotonously decreasing function so that 

d~~T) is negative. Consequently (2.14) and (2.15) tellus that the 

stress at time t is equal to the instantaneous response to the strain 

at that time, decreased by a history-dependent amount. 

3. Complex modulus 

A useful material function for descrihing the constitutive behaviour 

in the frequency domain is the so-called complex modulus. In defining 

this function we use the function EL(s) in (2.3) as a starting point. 

For a further investigation of EL(s) we take the Fourier transform*) 

of (2.1): 

(3. I) 

thus introducing the frequency-like parameter w. E(w) is a complex 

function of w and is called the complex or dynamia modulus of the 

viscoelastic material. Writing E(w) in terros of its real and 

imaginary parts yields 

*) 

E(w) = E (w) + iE t (w) IE I eicp (3. 2) 
s 

E Et 
with IEl =~E2 + E2 cos cp s sin cp 0 ::; cp ::; :!! 

s t 
IEl IEl 

t 

The Fourier transforrn of a function f(t) (t is a real variable) is 

defined as 

where w is a real variable. In most cases where f(t) has a physical 

rneaning, it applies that f(t) = 0 if t < 0 . Then the Fourier 

transform 

fF(w) = J f(t)eiwt dt 
0 

can be considered the equivalent of the Laplace transform fL(s) 

under the formal substitution s = -iw. 
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E8 (~) and E~(~) are called storage moduZus and loss modulus, 

respectively, while ~(~) is referred to as the loss angle, and 

tan ~(~) is the loss tangent. 

Another, equivalent, way to introduce the complex modulus, moreover 

one which is more convenient for illustrating its physical 

significance, is the following. Imposing a strain on the material 

varying sinusoidally with time is mathematically simulated by 

substituting 

~ ( t) (3 .3) 

into (2.1). The steady state response then will take the form 

cr(t) (Ö is a complex variable). (3.4) 

From (2.1), (3.3) and (3.4) it fellows that 

:!... =: Ë(~) (3.5) 
E 

For the energy per unit volume to be supplied to a material undergoing 

a one-dimensional deformation E(t), it will generally apply that 

t 

f O(T)È(T)dT • 
T=O 

Expressing ~ in terms of the period time T 

271 
~ = r 

(3. 6) 

(3. 7) 

in the case of a sinusoidally varying strain, described by (3.3), it 

is found after some manipulation that 

In deriving this expression the identities cos ~ 

sin~= E~/IËI have been employed. 

E /IË I and 
s 

(3 .8) 

This expression states that the amount of dissipated energy resulting 

from cyclic loading and unloading of a linear viscoelastic material 
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can be described in terms of the strain amplitude and the complex 

modulus. If we consider a time interval equal to a multiple of T so 

that 

t kT (k is a positive integer) 

it is found that the supply of energy governed by the starage modulus 

E
8

, vanishes and that 

2 
Tike: 0 ER. (w) , (3. 9) 

i.e. the energy dissipated in a whole number of periods can be 

described fully in terms of the strain amplitude and the loss modulus. 

The starage modulus accounts for the elastic energy storage. 

4. Example 

In the examples which fellow, the theory presented in the preceding 

sections will be elucidated. Use will be made of the standard linear 

solid, a spring-and-dashpot model (fig. Cl), consisting of a parallel 

t::::=::>a 

Fig. Cl. 
Standard linear solid. 

arrangement of a spring element (spring constant er) and a 

spring-clashpot series conneetion (spring constant c, damping constant 

b). The behaviour of the spring i s described by 
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er = ce: 

and of the dashpot by 

er = bË: • 

O:C.E: 

1--E 

Fig. C2. 
Linear dashpot (1) and spring element (2) and their constitutive 
equations. 

Reduaed reZaxation funation and elasti e response 

The differential equation relating stress a and strain e: for the 

standard linear solid is given by 

where a is the relaxation time constant, defined by 

a b 
c 

( 4. I) 

(4. 2 ) 

(4.3) 

(4.4) 
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The response to a unit-step change of the strain at t=O (o=O, E=O for 

t <O) is found to be 

0 u. st. (t) c + ce 
r 

t 
-ë 

(4. 5) 

For the reduced relaxation function the definitions given in (2.7) 

and (2.8) yield t 
e c + ce 

G(t) r 
c + c 

r 

and for the elastic response 

From (4.6) we define 

and 

G(oo):= G(t-+«>) 
c 

r 
c +c 

r 

___ c_ =: I - G(oo) • 
c +c 

r 

(4. 6) 

(4.7) 

(4.8) 

(4.9) 

With (4.8) and (4.9) the reduced relaxation function can be written 

as: 

G( t) 

t 

G(oo) + { 1-G(oo),}e 8 

Complex modulus 

(4 .I 0) 

From the Laplace transferm of the unit-step response, given by (2.4), 

the following expression is found for the complex modulus, 

Ë(w) iwaL (w) 
u. st. ( 4. 11) 

where use is made of s iw. Substitution of the Fourier transferm of 

the unit-step response (4.5) for the standard linear solid into (4.11) 

leads to 

Ë(v) 
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or 

E (v) 
s 

2 
C\1 c +--

r l+v~ 
C\1 

--2 
l+\1 

with we =: v, a dimensionless frequency parameter. 

(4. 12) 

By using (4.7) to (4.9) inclusive these quantities may be written as 

ER-(v) 
1-G(oo) dcr(e) 

\) ------
l+\12 dE 

( 4. 13) 

and 

(4. 14) 

These equations illustrate that for an elastic material, for which 

G(oo) = I applies, the loss modulus vanishes and the storage modulus 
dcr(e)(E) 

equals the well-known (tangential) elastic modulus dE . From 

(3.9) we know that maximal energy-dissipation on sinusoidal straining 
dWkT 

from """"d"V'" = 0 or will occur at the frequency v , i.e. the solution v 
e 

dER
~ = 0. For the standard linear solid using (4.13) we have 

\) 
e I. 

Further we note 

lim 
v-+<><> 

Es(v) 

and 

lim E (v) 
v~O s 

that 

dcr(e) 

CiE 

(e) 
G(oo)~ 

dE 

Fig. C3 shows an example of the loss and storage modulus for a 

standard linear solid. 

(4. 15) 

(4. 16) 

( 4. 17) 
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1.0 

0.8 

0.6 

0.4 

0.2 

/ 
I 

I 
I 

I 
I 
I 
I 
I 

---------.,--- E 
/, s 

Cr= 0.1 
( = 1 

0 o~--~2----~4----~6-----+8-----1~0----

_ ____.. we 
Fig. C3. 
Loss and storage modulus for a standard linear solid. 

5. o-E Characteristics f or di f fe rent constant strain rates 

In determining o-E relations of a viscoelastic material it should be 

taken into account that the stress required to produce a certain 

strain, will depend not only on the strain level but also on the 

strain history . Consequently, on subsequently straining a viscoelastic 

material at different but constant strain rates, different o-E curves 

will be found. The stress response for a constant-strain-rate test is 

derived from the convolution integral (2.11) using (4.7) , (4.10) and 

E(t) 0' 0 ( t) 0 for t < 0 

( 5. I) 

E(t) vt for t > 0 
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where the strain rate v is a constant. This yields 

t 
do(e) t e 

o(t) = -- ve (G(co)- + { 1-G(co) }{I - e }) . 
de: e 

( 5. 2) 

Eliminatien of t by writing t = ~ leads to the following expression 
V 

for o explicitly formulated in terms of e; and v 

e; 

o(e:,v) = o(e)(e:)(G(co) + ve {1-G(co) }{l- e ve}). 
e; (5.3) 

From this equation it fellows immediately that the response at low 

strain rates is given by 

o(e:,v~O) G(co)o(e)(e;). (5.4) 

e; 
- ve e; 

Using e ~ I - ve for v ~ ""• the response at high strain rates is 

found to be 

o (e:,v~) (5.5) 

do(e) 
From (5.4) and (4.17) we conclude that G(co)~ can be considered 

the "quasi-statie" stiffness of the material, i.e. the stiffness 

exhibited by the material under quasi-static loading or straining. In 

fig. C4 these results are illustrated for a standard linear solid 

with arbitrarily chosen values of c, c and e. 
r 

3 

2 

0 

I 

b c 

~~ 
b=l2 
c =B.1 
c,=5.9 

0.04 

V=25[s-1J 

O.OB 0.12 
-E Fig. C4. 

o-e; curves of a standard linear solid obtained for diff erent values 
of the strain rate v. 
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6. Stress response to a step-like strain history 

In sectien 2 it was shown that the elastic response and the reduced 

relaxation function can be determined from the stress response to a 

step change of the strain. However, it is impossible to realise a true 

step change in an experiment. The best one can hope for is to succeed 

in performing a step-like strain history,as outlined in fig. es. 

E 

I 
0 l'.t -t 

Fig. es. 
Step-like strain history. 

If E(t) = 0 and o(t) 

(2.11) to be 

0 for t < 0, the stress response is found from 

x do(e) dE 
a( t) f G(t--r)""""d'E d-r d-r for t > 0 ( 6. I) 

-r=O 

with x t for t ~ t>t 

x = 6t for t ~ t>t 

Fort~ öt, substitution of (4.7) and (4.10), of course yields (S.2) 

with v = E0/öt, while fort ~t>t it applies that 

6t 

o(E
0
,t) = o(e)(E 0)(GC~) + {G(t)-G(oo)}~t {ee-- IJ), 

From this equation it fellows immediately that 

a(e) (€ )G(oo) 
0 

( 6. 2) 

(6.3) 

i.e. maintaining a constant strain level over a long period of time 
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will result in a stress response that is independent of the way in 

which this strain level is reached . 

Another relation that can be deduced from (6.2) is 

for l'lt << 6 . (6.4) 

Fig. C6 shows an example of the response of a standard linear solid 

to the strain history of fig. CS for different values of l'l t and one 

value of €
0 

(i.e. for different constant strain rates). It is seen 

that the larger the period l'lt, the more relaxation has taken place 

during the straining phase (t < l'lt). Only if l'lt ~ 0, i.e. a step 

change of the strain, stress relaxation will fully develop during the 

constant strain phase. 

Fig. C6. 

QL0--~------------~5----------------~,0 

-t/M 

Stress response of a standard linear solid to the strain history 
shown in fig. CS for different values of l'lt and one value of .e: 0 . 
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7. Relaxation spectrum 

In the foregoing examples the standard linear solid was used to 

illustrate some characteristics of linear viscoelastic materials. An 

adequate description of real materials, however, would in general 

require the use of quite a large number of standard linear solids. 

The formulation of the constitutive relations for such large 

spring-and-dashpot models becomes rather tedious. Moreover, because 

of the large number of model parameters involved, these models soon 

proof to be hardly suitable for the description of the behaviour of 

real materials. Where a large number of spring-and-dashpot models 

would be required, advantageous use can be made of the "relaxation 

spectrum", which will be introduced in this section. The reduced 

relaxation function and the complex modulus will also be formulated 

in terms of this spectrum. 

Consider a model made up of a large number (N) of standard linear 

solids (SLS) shown in Fig. C7. For the total stress a acting on the 

model it applies that 

N 
a = r (7. I) 

i= I 

where a(i) is the contribution of the i-th SLS to the total stress. 

Fig. C7. 
Model made up of a parallel arrangement of N standard linear solids. 

Further, we will denote the relaxation time constant, the reduced 

relaxation function and the elastic response of the i-th SLS by e(i), 

(') ()(i) 
G ~ (t) and a e (E), respectively. Because of the parallel arrangement, 
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the relation between the strain E of the total model and the strain 

E(i) of the i-th SLS will be 

(i) 
E = E , (7. 2) 

First we derive an expression for the reduced relaxation function. 

Bearing in mind the definition 

G( t) 
0 u.st. (t) 
0 u. st. (O) 

we formulate the unit-step response for the total model 

au. st. (t) 

N 
I: 

i=1 
(](i) (t). 
u. st. 

(2.7) 

(7.3) 

Substitution of (4.7) to (4.9) inclusive into (4.5) yields for the 

contribution o(i) (t) of the i~th SLS to the total response: 
u.st. t 

- -::-rrJ ( i) 
O(i) (t) = (G(i) (oo) + { 1-G(i) (oo) }e 8 ~ J do(e) 
u.st. dE 

( 7. 4) 

yielding 

(] t ( t) = u.s • 
(7. 5) 

As the behaviour of the total model will not be affected by the 

arrangement of the composing SLS, an arrangement is chosen so that 

e(i) ~ e(j) for i> j. 

Further, we define the discrete quantities 

M(i) := 9
(i+1) _ 

8
(i-1} 

2 
(7.6) 

(i) G(i)(oo) 
( e) (i) 

do 
y := 

M(i) dE 

(i) 1-G(i) (oo) 
( e) (i) 

do 
K := 

M(i) dE 

(7.7) 

(7 .8) 
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Combining (7.5) to 

a ( t) = 
u. st. 

(7.8) inclusive we get the total 
t 

~ (/i) + K(i)e- e<i))ll6(i). 

i= I 

response 

Increasing the number of the constituting SLS (N+oo) and assuming 

68(i) ~ 0 for N ~ oo we arrive at an expression for a (t) in 
u.st. 

integral form 

au. st. (t) = J 
6=0 

t 

{y(S) + K(6)e 6}de. 

Next we define the quasi-static stiffness 

CR:= f y(6)d8 
8=0 

and the relaxation spectrum 

S(S):= K~6) 
R 

With these definitions the unit-step response of the model, now 

consisting of an infinite number of SLS, can be written as 

a ( t) 
u. st. 

t 

s(e)e 
8 de) 

which, for the reduced relaxation function, yields 

t 

I + f s (8) e e d8 

G( t) 8=0 

I + f S(8)d8 
8=0 

(7. 9) 

(7. I O) 

(7. 11) 

(7. I 2) 

(7. 13) 

(7. 14) 

The expression for the complex modulus is derived in the following 

.manner: the Fourier transfarm of the constitutive relation for the 

i-th SLS is given by 

a(i) (w) 
F 

(7. 15) 

E(i)(w) being the complex modulus of the i-th SLS. Using (7.1), (7,2) 

and (7.15), the equivalent relation for the total model is found to be 
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(7 .16) 

from which the complex modulus of the total model is found to be given 

by 

N 
.r 

i=l 
(7. 17) 

Replacing w by v and using (4.12) we have for the complex modulus of 

a SLS 

Ë(i) (v) 
(") (") (") 2 . (i) (e) (i) 

(G l. (oo) + { 1-G l. (oo) }{ (v l. ) + l.V }) _;;,do~--
l + (v(i))2 de 

(7. 18) 

By the samemethad as used for the derivation of expression (7.14) 

for the.reduced relaxation function, we get for the complex modulus 

in terms of the relaxation spectrum 

(7. 19) 

"' 2 c "' 
C (1 + l J S(v)Zv dv); E.(v) = _! J S(v)v dv. 

R w v=O l+v ~ w v=O l+v 2 

In fig. CS an example is given of the loss and starage modulus 

corresponding toa relaxation spectrum s(e) = ~ for e1 < e < e2 and 

zero elsewhere. The specific property of this spectrum, proposed by 

Fung [1972] for the description of soft biological tissues, is that 

the corresponding loss modulus keeps its maximal value over a wide 

range of frequencies. 
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I 

I 

0.5 

-----------------

K= 0.08 

e, = 1ö1sl 
92=102[s] 

0+-------------------~--------------------, 
0 25 50 

-f!Hzl 
Fig. es. 
Loss and storage modulus corresponding with a relaxation spectrum 
S(e) = K/6 for eI < e < e

2 
and equal to zero elsewhere, : 

118 



APPENDIX D 

A BRIEF OUTLINE OF THE THEORY OF CONTINUUM MECHANICS 
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Symbols: 

s scalar 
+ 
a vector 

A second-order tensor 

I second-order unit tensor 
41 fourth-order tensor 

.... 
2.~ column matrices, containing scalar and vector components, 

respectively 

I unit scalar matrix · 
.... !•E rectangular matrices, containing scalar and vector components, 

respectively 

Operations: 
........ 

Scalar product: aob = c 

äo IA "' d 
fAo B = C 

Double scal.ir product: á\ooiB a ç 

++ .... 
Vector product: a*b c 

Definitions: 
.... 

Length of a 

inverse scalar matrix 

inverse tensor 

transposed matrix 

transposed tensor 

4 [.oo/A "' C, 1Boo4[. c [) 

lläii Cl cäo!) i 
A-IA"' I 

-) 
A o A a I 

aT A b .. bT ATa 
~ - ~ ~ -T-+ 
ao á\ob a bo IA oa. 
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1. Introduetion 

In this appendix a brief outline is given of the theory of continuum 

mechanics. First, a short treatment of the geometrical and kinematica! 

aspects involved in the description of the deformation of a continuum 

is given (section 2.1). After an introduetion dealing with the stress 

tensor (section 2.2), the equations of motion (section 2.3) and their 

equivalent, the principle of virtual work (section 2.4) are formulated. 

Using standard finite element techniques, this principle is reformulated 

in sectien 2.5 in a discrete farm for one element (section 2.5.2) and 

the incremental salution methad for the discretized model of the 

continuum is outlined (section 2.5.3). Finally, the properties of two 

elements, used in modelling the aartic valve, are formulated in 

sectien 3. For an extensive treatment of the theory of nonlinear 

continuum mechanics the reader is referred to current textbooks (e.g. 

Chadwick, 1976; Sedov, 1972). 

2. General outline of the theoru of continuurn mechanics 

2.1 Geometrical aspects 

2.1.1 Some basic assumptions and definitions 

Consider a continuum B bounded by a surface A in three-dimensional 

space. Due to external interactions (leads, prescribed.displacements 

etc.) its configuration has changed from a known reference configuration 

V T at time T to the current configur.ation V ( t) at time t>T. For the 

mathematica! description of this transformation we choose a fixed point, 

the crigin 0, in space. The position of a point p of B in the current 

configuration V(t) is denoted by the vector ~ and in the reference 

configuration V 
T 

by the vector ~ (fig. 
T 

D.2.1). lt is assumed that 

every point of B is uniquely related to a particular set ( . of material 

coordinates with 

(2.1.1) 

Then ~ will be a function of ~ and t 1 that is 

(2.1.2) 
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Fig. D2.1, 
The reference and the current configuration of a continuurn V. 

and it is assumed that for each t this equation can be solved for ~ so 

that 

+ + + 
~ = ~(x,t); ~(~(x,t),t) + + 

x for V x,t. 

In the current configuration, the vector di from a point P with 

material coordinates ~ to a neighbouring point Q with material 

coordinates ~+d~ is given by 

(2. I .3) 

(2.1 .4) 

~ • ..... ..... -+ 
where n ~sa column matrix with veetors n1, n2 , n

3 
as components, 

defined by 

+ .... y_T 
= [ d~l d d~3 J. n: Y.. x 

df;2 
(2. I. 5) 

Solving (2. I. 4) for d~ results in 

+ +T -1 .... .... 
d~ = <non ) nodx. (2.1.6) 

. . + +T . . 
The square, symmetr~cal and regular matr~x non ~s called the metr~c 

matrix. 

Consider a function y of; and t, Then using (2.1.2) y = y(~,t) can 

be written as a function of ~ and t as given below: 

123 



... 
y y(x, t) 

... 
y(H~,t),t). (2.1.7) 

Using (2.1.4) and (2.1.5), for the difference dy of this function in P 

and Q, it fellows that 

(2.1.8) 

and with (2,1,6) it is found that 

(2.1.9) 

where V is the so-called gradient operator in the current configuration, 

defined by 

:t +T (+ +T)-1 
v: = n non 2· (2.1.10) 

Similarly the gradient operator in the reierenee configuration is 

defined by 

v 
T 

and it can be easily shown that 

v ~ I 
...... 
'Y'x I 

1 T 

where I is the sec.ond-order unit tensor. 

2.1.2 The Lagrangian deformation tensor 
... 

The position vector x of any material point P in the current 

configuration V(t) can he written as a function of t and of the 

position vector ~ of P in the reierenee configuration V • With 
.+ + 1 + T 
x ~ ~(~,t) and ~ = ~(x1 ,1) we get 

... 
x .. r<~ ,t} • 

T 

(2, I • I I) 

(2. I, I 2) 

(2. I. I 3) 

This is the so-called Lagrangian description of V(t), Using (2.1.9), 
... . . . ... 

the vertor dx from a mater~al po~nt P, w~th reference vector x , to a 
T 

material point Q with reierenee vector ~ +d~ (fig. D.2.2) is given by 
· 1 T 
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Vr. 
reference 
contiguration 

Fig. D2.2. + 

Transformation of a differential vector dx 
T 

eh R f och 
T T 

.... 
into dx. 

where f is the Lagrangian deformation tensor, defined as 
T 

(2.1.14) 

(2.1.15) 

Lt can be shown that f is regular and that det( f ) is equal to the 
T T 

ratio J of the volume dV of a material element in the current 
VT 

configuration and the volume dV of that element in the reference 
T 

configuration [Veldpaus et al. 1 J980]. 

J 
VT 

(2.1.16) 

The transformation factor J relating the areas dA and dA of a aT T 
surface element is given by [Veldpaus et al., 1980]. 

J aT 
dA 11 -T + 11 = --'" J IF on dA VT T T 

T 

(2.1.17) 

where ~ is the outward unit normal vector on the surface element in 
T 

the reference configuration. Moreover, it can be shown that IF 
T 

relates the gradient operators V and V so that 

+ -T + 
V = IF oV • 

T T 

T 

(2. I. 18) 
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2.1.3 The Green strain tensor 

Consider the veetors d~ and d~1 used in the preceding sectien (fig.2.2). 
-+ 

introducing unit 
-+ 

we can write On veetors e and e'l", 

~ "' ds 
-+ 

ds !ld~,, .. 11 IF o d~ \\ e (2. I. 19) 
'l" 

-+ -+ 
11~'1"11 dx ds e ds (2.1.20) 'l" 'l" 'l" 'l" 

where ds and ds'l" represent the distance between the neighbouring 

material points P and Q in the current and the reference configuration, 

respectively. The stretch À is the ratio of these distances, 'l" 

(2.1.21) 

while the Green strain e:· in the direction of 't is defined as 'l" 'l" 

(2.1.22) 

-+ -+ 
With À according to (2.l.2J) and e oe ~ l it is easily seen that e: 

'l" 'l" 'l" 'l" 
can be written as 

-+ -+ 
e: = e o IE oe 

'l" 'l" 'l" 'l" (2.1.23) 

where IE'l", the symmetrie Green strain tensor, is given by 

(2.1.24) 

2. 2 The Cauchy and the seaond PioZa-Kirahhoff stress tensors 
-+ 

The stress vector p on an infinitesimally small surface element with 

·area dA, containing the point with position vector ~ is defined as 

p (~. t) 
-+ -+ 

dK lim "Al< 
dA = M-+0 M (2. 2.1) 

where dK is the laad vector acting on the surface element. 

Consider an infinitesimally small tetrahedron of the continuum in the 

present configuration (fig. D.2.3). The tetrahedron is bounded by 
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Fig. D2.3. 
The stress veetors on a tetrahedron. 

three mutually perpendicular surfaces with areas dA 1,dA2 and dA3 and 
.... .... .... 

outward unit normal veetors v1 , v2 and v3 , 

(2.2.2) 

and by an oblique surface with outward unit normal vector ~ and area 

dA. The areas dAJ' dA2, dA3 and dA are related by 

dA. "' ~. o~dA. 
l. l. 

(2.2.3) 

The stress "ectors on the mutually perpendicular surfaces are denoted 
.... .... .... 

by Plt p2 and p3' 

(2.2.4) 

whereas the stress vector on the oblique surface is p. Assuming a load 

vector per unit volume k, force equilibrium requires 

(2.2.5) 

On diminishing the dimensions of the tetrahedron the last term tends to 

zero and, after dividing by dA, we find 

-+ T-+ -+ p .. (] 0\) .. \)0(] (2.2.6) 
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where ~ is the so-called Cauchy stress tensor, defined as 

(2.2.7) 

This tensor is associated with the current configuration. Another 

stress tensor which is often used, is the secend Piola-Kirchhoff stress 

tensor 

$ 
1 

It should be noted that $ is associat•d with the reference 
1 

configuration. 

2.3 The equations of motion 

(2.2.8) 

The relationships between the change of motion of any part V(t) of a 

continuurn and the external load acting on it are given by the 

Newtonian laws 

.... d! K 
dt 

(2 .3. I) 

and 

.... .... dL 
M dt (2.3.2) 

K and M represent the resulting external lead on V(t) and the resulting 

external moment on V(t) with respect to the crigin 0. The impulse ! of 

V(t) and the impulse moment L of V(t) with respect to the crigin 0 are 

defined by 

! (t) j .... 
d v p V (2.3.3) 

.vet> 

and 

tct> j .... .... 
d v X*pV (2.3.4) 

v(t) 
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whe~e+p represents the specific mass in the current configuration and 

v ~ ddx the velocity. In general, the external laad on V(t) wi ll consist 
t . .... _,. 

of a laad per unlt volume k(x,t) and a laad pc rio~ acting on the 

surface A(t) of V(t) with outward unit normal vector ri. The resulting 

external load is given by 

K"' l lt d v + l .... no41 dÄ (2.3.5) 

vCt} Ä(t) 

whereas, for the resulting moment, it applies that 

M = l _,. 
* lt d v + l _,. 

* (itoCJ} dÄ x x (2.3.6) 

v<t} ÄCtJ 

Substitution of (2,3.3) and (2.3,5) into (2.3.1) and of (2.3. 4) and 

(2.3.6) into (2,3,2) yields after some manipulations [Veldpaus et al., 

1980] the local equations of motion 

V ~ E V(t) A Vt (2.3.7) 

T 
(J c: (J • (2.3.8) 

. 
Here, ~ = ~(~,t) is the so-called material time derivative of the 

velocity and is equal to the acceleration of the material point with 

current posit i on vector ~(tl~ 

Due to (2.3,8) the Cauchy stress sensor CJ must be symmetrical and 

it is clear that the second Piola-Kirchhoff stress tensor 5 will be 
1: 

s~etrical as well, so that 

$ 
1: 

T 
"' s . 

1: 

2, 4 The prinCipLe of virtuql- work 

An equivalent formulation of the equation of motion 

~0~ + k - p~ = 0 V ~ E V(t) A Vt 

(2.3.9) 

(2. 4. 1) 
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is given by the requirement that 

I .. 
(\Jou+ 

.. -+ 
k -pv) o h dV c 0 (2.4.2) 

V ( t) 

applies to each h = h(~,t) for which the integral exists. We now 

interprete h as a variatien of the position vector ~ in the current 

configuration V(t) giving 

.. 
h: a~. (2.4.3) 

.. 
If ox is continuous and piecewise differentiable for all values of t 

and all ~ E V(t) we say that o~ is admissible. For such o~ the integral 

l.n (2.4.2) can be rewritten as 

I u 
-++T 

oo ('Vox) dV I .. -+ + (k-pv)ooxdV + I + .. 
poox dA. (2.4.4) 

V( t) V( t) A(t) 

The requirement that this equation applies to each admissible at, 
represents the principle of virtual work, associated with the current 

configuration. 

In the following we will reformulate this principle in terros of the 

reference configuration. With (2.1 .18) the left-hand side of (2.4.4) 

is seen to be equal to 

± + T uoo(vox) = 
± -+ T -1 

u ••((v ex) c IF ), 
T T 

(2.4.5) 

With the definition (2.2.8) of the secend Piola-Kirchhoff stress 

tensor $ and using some identities of tensor calculus we find 
T 

Using the integral 
........... 
x= F(x

1
,t) and t: 

f • dV(t) 

V( t) 
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---J ($ oF )oo(IJ ox) • 

T T 
VT 

transformations applying to a function a of 

J 'v•' dv,; J • dA(t) 

V A(t) 
T 

f J.,• dA,, 

A 
T 

(2.4.6) 

(2.4.7) 



and_ the equivalentsof ~.; and p with respect to the reference 

configuration 

p : c J p 
1: V.T , 

(2.4.8) 

it can be found from (2.4.4) and (2,4.6) that the principle of virtual 

work in terms of the reference configuration and the second Piola

Kirchhoff stress tensor is given by the requirement that 

I T + + T 
($ oiF ) •• ('7 öx) 

1: T 1: 

V 
1: 

dV = 

applies for each admissible ö~. 

dV1: + j + + 
p o êx dA 

1: 1: 

A 
1: 

In this equation use has been made for the abbreviation 

(2.4.9) 

(2.4.10) 

It should be noted that from the law of mass conservation it follows 

that P, does not depend on t, 

p m p (~ ) ' 
1: 1: 1: 

(2. 4. 11) 

2.5 The finite element method. 

2.5.1 Introduetion 

On using the finite element method the continuurn is divided into a 

- sametimes very large - number of pieces relatively simple in shape, 

the so-called elements, The unknown position veetors of the material 

points in an element in the present configuration are approximated by 

a linear combination of the present position veetors of a number of 

discrete points of the element, the so-called ·nodal points. The 

unknown quantities of state in these points are called the nodal point 

variables. If the relation between the quantities of state at an 

arbitrary point of the element and the nodal point variables is known, 

the element properties can be determined using the principle of virtual 

work, The constitutive equation, i.e. the relation between stresses 

and strains, must therefore also be available. Once the properties of 
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the elements and their mutual connections are known, they are assembled 

and the properties of the ~ontinuum can be approximated. For 

descriptions of the techniques involved in this process, the reader is 

referred to textbooks on the finite element method (e.g. Zienkiewicz, 

1977). In the following, attention will be focussed on the formulation 

of the properties of a single element. 

2.5.2 The prinaiple of virtual work for one element 

Consider an element e (e E {l,2, ..... ,Ne} where Ne is the number of 

elements) with n nodal points. The present position vector of the 
-+e nodal point k is denoted by qk(t) and 

of all nodal points of this element e 

as 

~he set of the position veetors 
-+e is denoted by S (t) and defined 

(2 .5. l) 

The position veetors ~ and ~ of an arbitrary point of the element in, 
T 

respectively, the reference configuration and the current configuration 

are approximated by 

(2.5.2) 

and 

-+ 
x(~, t) (2.5.3) 

where ~T(~) is a set of known interpolation functions: 

(2.5.4) 

As stated by (2.5.2) and (2.5.3), the same interpolation functions 

~(k) are used in both the reference configuration and the current 

configuration. Elements of this type are called iso-parametric. The 

condition to be fullfilled by the interpolation functions emanate 

from two requirements: these functions must be èapable of repreaenting 

all rigid-body motions (i.e. F is a orthonormal tensor, not depending 
T 

on~) as wellas all homogeneaus deformation patterns (i.e.F· at (t), 
T T T 

+) . where tT is an al:'bitrary tensor not depending on xT • In an ~so-
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parametrie three-dimensional continuum element these requirements are 

met by the necessary and sufficient condition 

(2.5.5) 

for each ~ within the element. 

The discrete formulation of the principle of virtual 

derived below. Substitution of (2.5.3) into ~ = (Q ~)T 
T 1 

work will be 

yields 

(2.5.6) 

. .... 
where the column matrLX ! is given by 

(2.5.7) 

For the variatien ö~ of ~ it applies that 

(2.5.8) 

since the interpolation functions ~(~) are known functions of ~· With 

(2.5.6) for ~ , (2.5.8) for ö~ and since ie • ie(~) is a function of t 
T 

alone, we obtain for (2.4.9) 

or, in a condensed form 

e .... 
dV } S = 

T 

(2.5.9) 

(2.5.10) 

The column matrices Qe and Re contain the internal and external force 

veetors at the nodal points of the element. They are defined as 

.... dAe 
PT T 

(2. 5. 11) 
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e e VT and AT denote, respectively, the volume and the boundary surface of 

the element in the original configuration. The mutual connections 

between the elements are accounted for by connecting the common nodal 

points of adjacent elements to the so-called nodes of the original 

system and relating the column matrices qe of all elements to the 

column matrix q of the position veetors ;f these nodes. Using standard 

techniques of finite element methods, the force veetors Qe and Re at 

the nodal points of the elements can be combined to obtain the .. .. 
corresponding, resulting force veetors Q and R of the assembled set of 

elements, i.e. the discretized model of the original continuum. This 

assembling process is based on the fact that the virtual work of the 

resulting forces equals that of the elemental nodal point forces, so 

that 

With these quantities the equations of motion for the discrete model 

of the continuum can be derived as 

(2.5.12) 

2.5.3 The inarementaZ salution methad 

..... 7 ~ 
In the equations of mot~on Q-E = ~ the internal and external forces ~ 

+ • . + 
and E can depend on t and, in general, are nonl~near funct~ons of S• 

which in turn is a function of t. Therefore, an incremental. solution 

method has to be used for the determination of ~. Such a method consists 

of the computation of ~(ti+l) from the known values of S at t
0
,t 1, ••• ti. 

For an arbitrary function a of q(t) and t we define the increment àa of 

a in the time interval [ti,ti+lÏ as 

(2.5.13) 

Using (2.5.11) the increments àQe and àEe of the inteinal and external 

force veetors at the nodal points of elemen~ e can be written as: 
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( 2 .5.14) 

(2.5.15) 

+e Productsof à$ and àS have been omitted in the derivation of (2.5.14) 
T 

assuming that the increments are very small. The second integral in 

(2.5.14) represents the so-called initial stiffness matrix Le• so that 

re= f lo$ o~T dVe, ve ~ T ~ T 
(2.5.16) 

T 

If $ is known at t=t. this matrix can be determined. To elaborate the 
T ~ 

first integral, the relationship between the increments à$T and àET, 

i.e. the constitutive equation, must be known. 

We assume that for this equation it applies that 

(2.5.17) 

where 4L is a fourth-order tensor repreaenting material moduli. In the 
T 

case of time-independènt behaviour (2.5.17) will always apply if àE 
T 

is infinitesimally small. 4L may be a function of E and in actual 
T T 

calculations it must be possible to compute the components of 4L if 
T 

the components of ET are given. Using the linearized relation 

I T T 
àE = -2 (F oàF +àF oF), 

T 1 T T T 
(2.5.18) 

we find with (2.5,14) 

(2.5.19) 

with 

~e f. (lTFT)oo 4Loo(lTFT) dVe, 
Ve ~ T T ~ T T (2.5.20) 

T 
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Again using standard finite element techniques, the increments öQe for 

all elements can be combined to get the increment öQ of the resulting 

force vector g. rrom (2.5.19) it can beseen that the relation between 
~ . ~ . 

this increment and the increment ö~ of the column matr~x ~ w~ll be 

linear if (and in general only if) the time increment öt = t. 1-t. is 
~+ ~ 

sufficiently small. The external force veetors R can be treated in a 

more or less similar way. For a special case we will discuss this in 

the next section, Finally we arrive at a linear set of equations for 

the unknown increments ó~.Solving this set and using ~(ti+l ). "' ~(ti)+öq 
gives the solution for the position veetors of the nodes at time t=ti+l' 

For details of this method and the numerical aspects of the solution 

procedure we have to refer to text books on this subject (e.g. 

Zienkiewicz, 1977; Veldpaus et al., 1980), 

3. For,mulation of the properties of some elements 

3.1 The membrane element 

In formulating the properties of the membrane element it will be 

assumed that the stress vector in each point of the midplane of the 

membrane always lies in the tangent plane at that point. Furthermore, 

the membrane is assumed to have no bending stiffness while stresses 

are constant across the thickness. 

The position vector of a point P in the midplane of the membrane is a 

function of the material coordinates ~l and ~ 2 of P, so that 

(3.1.1) 

In the current configuration two independent tangent veetors of the 

midplane are given by 

(3 .1. 2) 

-+ -+ 
Their cross product n1*n2 is a vector with length _ + 0 and the unit 

normal vector ~ on the midplane follows from 

(3.1.3) 
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Fig. D3.1. 
The membrane in the current configuration. 

Let y=y(~,t) be a function of t that is defined for each point in the 

midplane and let dy be the difference of this function in two 
+ 

neighbouring points P and Q with position veetors x(~,t) and 
+ + + 
x(~+d~,t) = x(~,t) + dx, respectively. Then it is easy to show that 

o:tm+T + 
dy = (V x) odx 

where vm is given by 

In order to formulate the 

we . start from (2.4.9) 

J 
T + + )T (S oiF ) o o (V öx 

1" 'f 1" 

V 
1" 

(3.1.4) 

(3. I. 5) 

principle of virtual work for the membrane 

J + + J + + dV • woöx dV + p,oöx dA . (2.4.9) 
'f 1" 1" 1" 

V A 
1" 1" 

With the given assumptions on the stress vector and the additional 

assumption that one of the principal strain directions is normal to 

the midplane, the second Piola-Kirchhoff stress tensor can be written 

as 

(3.1.6) 

A further elaboration (including the analysis of increments) of the 

left-hand side of (2.4.9) fellows exactly the same lines as in the 
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preceding section. Át the right-hand side of (2.4.9) especially the 

second term is of importance for membranes and, therefore, we 

contentrate on this term for the case that the surface load p is a 

pressure load. Using 

+ + + 
p - pn PT J + 

aT P (3.1.7) 

the virtual work due to the pressure load in the current configuration 

is given by 

éW = 
p I+ + poéx dA, 

A 

For an increment à(éW) of éW it applies that [De Wilde, 1981] 
p p 

. With 

and 

it is 

à(éW ) 
p 

found, 

= Ij-- à(JaTp)oé~ dA. 
A aT 

+ + 
- J n àp - p6(J n) aT aT 

af ter some manipulations, that 

làp 
+ + I vm ............ t.(éW ) + noöx dA ( ot.x)poöx dA + 

p 
A A 

I ........ ~ .... öx pool{ t.x dA. 

A 

(3 .I. 8) 

(3. I, 9) 

(3 .I. I 0) 

(3.1.11) 

(3. I. 12) 

The first integral at the right-hand side can be rewritten as the sum 

of a boundary and a surface integral, using the identity 

~~on dr +I (vmo;)(;o~) dA, (3 . 1.13) 

f A 
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where r and ~ represent the boundary of the surface A and the unit 

outward normal vector on the boundary, respectively. For an increment 

of the virtual work due to the pressure load finally this yields 

A(oW ) = -
p j ........ 

Ap noox dA + 

A 

~A~o~ poe~ dr+ 

t 

!.... ........ :tm .... :tm-+ .... 
+ Ax o{- pnn + (V p)n + pV n}oox dA + 

A 

j -+-+-+m-+ :tm-+T-+ .... - [Axo(poV ox) + {(v Ax) op}oöx]dA. 

A 

(3. I. 14) 

It can be shown that the tensor p vm ; in the third integral is 

symmetrical. Therefore, in the case of a constant pressure load(vmp=O) 

and when the boundary integral is equal to zero (e.g. fixed boundary) 

only a symmetrie tensor, represented by the last two integrals, remains 

for the calculations. 

The discretized formulation of the principle of virtual work (2.5.9) 

for a membrane element now becomes 

j Nm -+ e] - PT dA = 0 
e 

A 
T 

(3. I, IS) 

where 

while the column matrix ~m contains the interpolstion functions chosen 

for the membrane element. Because the various quantities are assumed 

to be constant across the membrane thickness h (~) in the reference 
T "" 

configuration, the volume integrals in (3.1.15) can be transformed into 

surface integrals by writing the volume dVT of an infinitesimal small 

element in the reference configuration as 
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dV 
1: 

dA 
1: 

It should be noted that dV = h (1) dA is an approximation. 
'( '( '( 

(3. I. 16) 

After discretizing (3.1.14) and using (3.1.15) the incremental 

formulation of the equations of motion for a pressurized membrane can 

be derived in the same way as in section 2.5.3. 

3.2 The cable element 

The cable element can be characterized by a line. For its geometrical 

description one material coordinate ~ suffices. It will be assumed that 

the element has no bending stiffness and that all stresses, except the 

normal stress in the tangential direction, are zero. For the position 

vector of a point of the cable in the reference and the current 

configuration it applies that 

~ = ~ c~) ; ~ G ~c~.t) 
T T 

.(3.. 2. I) 

and therefore the tangent veetors in the current and the reference 

configuration are given by 

+ 
n (3.2.2) 

As only normal stresses in the tangential direction differ from zero, 

for the Cauchy stress tensor it applies that 

+ + o n n 

Assuming that the tangential direction is a principal strain direction, 

it can easily be shown that for the second Piola-Kirchhoff stress tensor 

we have 
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For 

with 

Fig. D3.2. 
The cable in the current configuration, 

the principle of virtual work for 

oQ1o[! J !'os/f"T dv,}S J ~' 
V T 

T 
~c ~c 

T 

V T 

the cable we obtain 

.... 
dV 

-J 
Ne p dA J w T T T T 

A T 

0 (3.2.4) 

All quantities are assumed to be constant across the cross-sectional 

area. Therefore, for shallow curved cables the volume of an infinite

simally small element in the reference configuration can be described 

by 

dV 
T 

A (f;) lid; 11 =A (f;) ~~~ 11 df; T T T T (3.2.5) 

where A (F;) represents the cross-sectional area in the reference 
T 

configuration. With (3.2.4) and (3.2.5) and on the assumption that 
.... .... 
pT ~ 0 only at the end surfaces (F; = F; 1, F; = F; 2), we find aftersome 

manipulations for the principle of virtual work that 
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samenvatting 

Het in dit proefschrift beschreven onderzoek heeft tot doel het in

zicht te vergroten in het mechanisch gedrag van de natuurlijke aorta

klep. Met name de factoren, die de mechanische spanningstoestand in 

de klepvliezen bij gesloten klep bepalen, zijn onderzocht middels 

analyses met een speciaal daartoe ontwikkeld numeriek model. Bepalend 

bij de ontwikkeling van dit model waren de inzichten, verkregen uit 

histologisch onderzoek, alsmede experimenteel bepaalde gegevens met 

betrekking tot de mechanische weefseleigenschappen. 

De weefselstructuur werd langs lichtmicroscopische weg onderzocht. 

De klepvliezen blijken een gelaagde structuur te bezitten welke glo

baal als volgt is opgebouwd: aan de aortazijde een laag dicht opeen

gepakte collageenbundels die voornamelijk in omtreksrichting verlopen, 

aan ventrikelzijde een netwerk van willekeurig georiënteerde elastine

vezels welke lagen gescheiden worden door een losmazige structuur. De 

wand van de holte achter ieder vlies (de sinus van Valsalva) bestaat 

voornamelijk uit in omtreksrichting verlopende gladde spiervezels die 

zijn ingebed in elastine-weefsel zonder duidelijke vezeloriëntatie. 

De aortaring, een kraakbeenachtige structuur die rijk is aan collage

ne vezels, vormt de overgang tussen de vliezen en de sinusholten. 

Middels in vitro experimenten werden de mechanische eigenschappen 

van strookjes uit de vliezen,· de wanden van de sinusholten en het 

aangrenzende gedeelte van de aorta onderzocht. In êén-assige trek

proeven werden de strookjes met constante reksnelheid opgerekt en 

vervolgens op constante lengte gehouden. De aanzienlijke verschillen 

tussen de spannings-rek krommen voor vliesweefsel enerzijds en die 

voor sinus- en aortaweefsel anderzijds, zijn kwalitatief te verklaren 

op basis van de histologische verschillen tussen deze weefsels. De 

collageenbundels in de vliezen blijken een verstevigend effect te 

hebben en uitgesproken anisotropie te veroorzaken. Het weefsel van 

de sinus- en aortawanden is nagenoeg isotroop en vertoont een veel 

grotere compliantie dan het vliesweefsel. De spannings-rek krommen 

van de diverse klepweefsels zijn slechts in geringe mate gevoelig 

voor de reksnelheid. De spanningsrelaxatie, die in alle onderzochte 
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strookjes optrad, werd geanalyseerd met behulp van een wiskundig mo

del. In de vliezen treedt meer spanningsrelaxatie op dan in de sinus

en aortawanden. Op het mathematisch model gebaseerde voorspellingen 

geven aan dat de visceuze verliezen bij cyclisch belasten in de 

vliezen groter zullen zijn dan in de sinus- en aortawanden. 

In een numeriek model is de invloed van de bundelstructuur op het 

mechanisch gedrag van de vliezen bij gesloten klep bestudeerd. De 

bundels werden geschematiseerd als kabels terwijl de elastinelaag 

werd gerepresenteerd door membranen. Met en zonder bundels vallen de 

hoofdspanningsrichtingen in de membranen nagenoeg samen met de om

treks- en radiale richting. In de situatie zonder·bundels treden de 

grootste hoofdspanningen op in omtreksrichting. Het effect van de 

bundels is tweeledig. Zij le~den de op de membraangedeelten werkende 

drukbelasting door naar de aortawand. Daarnaast bewerkstelligen zij 

een meer homogene spanningsverdeling in de membranen door de waarden 

van de maximale hoofdspanningen te reduceren tot het niveau van de 

minimale hoofdspanningen. De waarden van de minimale hoofdspanningen 

zijn in beide situaties, met en zonder bundels, nagenoeg gelijk. Bij 

aanwezigheid van de bundels zijn de schuifspanningen verwaarloosbaar 

klein omdat de spanningen in de hoofdrichtingen nagenoeg gelijk zijn. 
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nawoord 

Zowel aan de uitvoering van het onderzoek als aan het samenstellen 

van dit proefschrift hebben velen bijgedragen. De gastvrijheid en de 

collegialiteit in de Vakgroep Technische Mechanica hebben in belang

rijke mate bijgedragen aan de prettige sfeer waarin ik de afgelopen 

jaren kon werken. Met name aan Frans Veldpaus ben ik zeer veel dank 

verschuldigd voor de uitermate prettige en inspirerende samenwerking. 

In woord en daad heeft hij vele essentiële bijdragen geleverd, zowel 

aan het onderzoek als aan het samenstellen van dit proefschrift. 

Velen droegen bij aan het experimentele gedeelte. In de eerste 

plaats bedank ik in dit verband Tini van Hout. In de ontwikkeling van 

de meetopstelling en in de uitvoering van de experimenten heeft hij 

een wezenlijk aandeel gehad. Voo~ de vervaardiging van talloze onder

delen van de opstelling droeg Frans v.d. Broek op nauwgezette wijze 

zorg. De vakkundigheid en behulpzaamheid van Jules IJzermans stonden 

er borg voor dat eventuele storingen in de opstelling sne l werden 

verholpen en dat de benodigde randapparatuur altijd beschikbaar was. 

De uitvoering van de in dit proefschrift beschreven snelle trekproe

ven zou niet mogelijk zijn geweest zonder de inventiviteit en de 

spontane medewerking van Karel Koekkoek. De heren Van Loon en Paulus

sen zorgden ervoor dat het ~ateriaal, waarmee proeven werden uitge

voerd, als het ware op afroep beschikbaar was. Jas Banens en Lambert 

van Beukering bedank ik voor hun hulp bij het geschikt maken van de 

meetgegevens voor de uiteindelijke verwerking. Dankzij Thijs Sluiter 

is er een wel zeer gebruikersvriendelijk programma voor de verwerking 

en de analyse van de meetgegevens tot stand gekomen. 

Het geduld en de behulpzaamheid waarmee Dr. W. Kuijpers mij inwijd

de in de beginselen van de histologie en de zorg die hij en zijn mede

werkers besteedden aan de vervaardiging van de talloze preparaten, 

hebben- de waardevolle bijdrage vanuit de histologie aan dit onderzoek 

mogelijk gemaakt. Dhr. J. van Dijck ben ik bijzondere dank · verschul

digd, zowel voor het feit dat ik naar behoeven beslag mocht leggen op 

zijn microscopische en fotografische apparatuur alsook voor de zorg-
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vuldigheid waarmee hij de in dit proefschrift opgenomen foto's heeft 

vervaardigd. 

Anten van Steenhoven, Rob van Renterghem en Ed Rousseau waren fijne 

collega's wier steun, zowel bij de uitvoering van het onderzoek als 

bij het samenstellen van dit proefschrift, van groot belang was. 

In het kader van een afstudeerwerk zijn aan dit onderzoek bijdra

gen geleverd door Jan Wuite, Frans Hoekstra, Toon Peerboom en Ed 

Rousseau. Maurits de Wilde ben ik zeer erkentelijk voor het extra 

werk dat hij verzette bij de berekeningen met het klepmodel. Huub 

Sluijsmans bedank ik voor de volharding waarmee hij werkte aan het 

oplossen van computerproblemen. 

Ton Hamer, Willem Hupjé, Toon Manders, Hans Renserna en Harry 

Sonnemans werkten mee aan het tot stand komen van de figuren in het 

proefschrift. Els van Bommel ben ik veel dank verschuldigd voor de 

snelle en accurate wijze waarop zij het grootste gedeelte van het 

type-werk verzorgde. De spontane hulp van Mieke Barts, Ineke Borg en 

Meta Okken heb ik zeer op prijs gesteld. Wilhelmien en Anten van 

Steenhoven bedank ik voor de nauwgezetheid waarmee zij grote delen 

van de tekst van het proefschrift hebben gecorrigeerd. Ton Geeraedts 

ben ik zeer erkentelijk voor de moeite die hij besteedde aan de uit

eindelijke vormgeving van dit proefschrift. 
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1976-1981 

Geboren te Kerkrade. 

Eindexamen Gymnasium-S, Gymnasium Rolduc te Kerkrade. 

Studie aan de Technische Hogeschool Eindhoven, Afdeling 

der Werktuigbouwkunde. 

Militaire dienst. 

Wetenschappelijk ambtenaar aan de Technische Hogeschool 

Eindhoven, Afdeling der Werktuigbouwkunde, in het kader 

van het Interafdelingsproject Hartklepprothesen. 
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STELLINGEN 

behorende bij het proefschrift 

THE MECHANICAL :BEH.AVIOUR OF THE AORTIC VALVE 

I. Het analyseren van aortaklepvliezen m.b.v. schalen~theoriein leidt 

voorspelbaar tot nièt-rea:listische resultaten. 

Cataloglu, A., Gould, P.L. en Clark, R.E. [1975]: VaZidation of a 

simplified mathematical model for the stress analysis of human 

aartic heart valves. J. Biomech. ~ 347-348. 

GouZd, P.L., Baldini, S.E., RossOliJ, M.P. -en Clark, R.E. [1980]: 

Stress analysis of aartic valves. International Conference 

Proceedings on Finite EZements in Biomechanics ~ 583-604. 

2. De glutaraldehyde-behandeling van vliesweefsel uit varkensaorta

kleppen, zoals toegepast bij de fabricage van bioprothesen, veran

dert de visceuze eigenschappen van het vliesweefsel. Het effect 

hiervan op de levensduur van bicprothesen dient nader onderzocht te 

worden. 

3. De mogelijkheden van gepolariseerd licht bij het zichtbaar maken van 

vezelpatronen in dunne biologische structuren zijn onvoldoende 

onderzocht. 

4. Decraemer e.a. [1980] gebruikt ten onrechte de term "steady state" 

met betrekking tot de respons van biologisch weefsel op een 

cyclisch belastingspatroon. 

Decraemer, W.F., Maes, M.A. en Vanhuyse, V.J. [1980]: An elastic 

stress-strain relation for soft biological tissues based on a 

structural model. J. Biomech. ~ 463-468. 

5. Het ontbreken van een experimenteel onderbouwde mogelijkheid om 

spanningstoestanden in een biologische structuur onderling te ver

gelijken, vormt een belangrijke leemte bij biomechanica-onderzoek. 



6. Het bij veel onderzoekers ontbreken van inzicht in het cyclisch 

gedrag van visco-elastische materialen, heeft geleid tot over

dreven veel aandacht voor zogenaamde preconditioneringsprocedures 

voor biologische weefsels. 

7. Veel onderzoeken op het terrein van de gewrichtskinematica tonen 

gebrek aan inzicht in de relatie tussen de wiskundige beschrijving 

en de experimentele bepaling van rotaties van starre lichamen. 

8. CoÖrdinaat-vrije formulering van o.a. mechanica~theorieën bevordert 

de overzichtelijkheid en is daardoor uitermate geschikt voor alge

mene beschouwingen. 

9. Een onderzoeker op het gebied van de biomechanica anno 1981 moet 

niet-lineaire mechanicatheorieën kunnen toepassen en derhalve de 

snelle ontwikkelingen op dit gebied (kunnen) volgen. 

10. Biomechanica is heel moeilijke technische mechanica. 

11. Het dynamisch gedrag van een wegvoertuig wordt mede bepaald door 

niet-lineaire effecten. Desondanks. kan een analyse op grond van 

lineaire stochastische technieken leiden tot praktisch bruikbare 

resultaten. 

12. Het afronden van een onderzoek met een publicatie of een proefschrift 

doet in veel gevallen meer een beroep op het vermogen van de onder

zoeker om alle tijd-limieten te halen dan op zijn onderzoek-kwali

teiten. 

13. De wet van de "afnemende meeropbrengsten" geldt in ieder geval voor 

de rapportage van onderzoekresultaten. 

Dit proefschrift, pag. 1-142. 

19 juni 1981 A.A.H.J. Sauren 


