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Summary

The identification of the mechanical behaviour of metals is generally based on presup-
posed homogeneous deformation and stress fields, while possibly available information
with respect to the actual heterogeneous deformation at the scale of the microstructure
is hardly used. This severely limits the capability of predicting the constitutive behaviour
in the cases that the product dimensions are of the same order as the length scale of
the microstructure, i.e. the size of the grains. Correspondingly, scale dependent phe-
nomena such as grain size dependence, or the material’s behaviour under an applied
heterogeneous load at a global scale, can only be understood, modelled and predicted if
the microstructure is considered while the response becomes inherently strain gradient
dependent. It is therefore the objective of this research to develop a crystal plasticity for-
mulation that includes these characteristics. Hereby, the bridge from the microstructure
and the strain gradients to the mechanical response is the consequence of geometrically
necessary dislocations (GND’s), which originate from microstructural incompatibilities
and cause short- and long-range effects on the constitutive behaviour.

On the polycrystal scale, a crystal plasticity model has been developed, which considers
each grain as a single crystal core, surrounded by a collection of bi-crystals representing
the grain boundaries. Here, the lattice orientations of the neighbouring grains is incorpo-
rated in the outer part of the bi-crystals. The transition of the behaviour of all individual
grains (considered in the particular material point) at the microscale to a macroscopic
response, is taken into account by an adapted Taylor averaging procedure. When en-
forcing deformation compatibility and stress equilibrium at the bi-crystal interfaces, the
deformation inside the grain becomes heterogeneous (the core and the inner part of the
bi-crystals will deform differently), the amount of which depends on the size of the grain.
This heterogeneity gives rise to the generation of GND’s in order to maintain compatibil-
ity of the crystallographic lattice. These GND’s act as obstacles to themotion of the gliding
dislocations which carry the plastic deformation, also referred to as statistically-stored dis-
locations (SSD’s). An enhanced slip resistance is formulated which incorporates this ad-
ditional hardening effect. Accordingly, decreasing the grain size increases the flow stress
response, a dependence which is also observed experimentally and which is called the

vii



viii SUMMARY

Hall-Petch effect. Simulations under uniaxial loading conditions on a collection of grains
with an adaptable grain size result in the numerical prediction of empirically-found grain
size dependent stress-strain curves.

With respect to the model above, several restrictions have been introduced, of which
some can be overcome at the polycrystal scale, yet others require the consideration of
heterogeneities within the grains at a single crystal level. In a finite element context,
this involves the subdivision of each grain into sufficient finite elements. Such a frame-
work has been developed next, in which a number of aspects have been improved. First,
in the polycrystal approach, the GND densities only follow from plastic deformation in-
compatibilities in an indirect fashion, whereas in the single crystal framework, a direct
geometrical coupling is made between different crystallographic slip gradients and cor-
responding edge and screw GND densities. Because the determination of all (edge) SSD
densities explicitly follows from an appropriate evolution equation, the ambiguous choice
of adding the SSD and GND strengths or their effective densities does not have to be
made any more. Furthermore, the GND’s do not only influence the mechanical response
in a short-range sense, i.e. through the local slip resistance, but also the geometrical char-
acteristics of the GND’s at a larger length scale are regarded, considering their dislocation
sign and the GND density gradients. This long-range influence is included through the
consideration of a GND related back-stress contribution, opposite to the resolved shear
stress. Besides, at the grain boundaries, more adequate micromechanical constraints
(obstruction of crystallographic slip) can be enforced than could previously be prescribed
at the bi-crystal interfaces, whereas the additional incorporation of grain boundary dislo-
cation (GBD) densities, accounting for the initial lattice mismatch, provides for a grain
size dependent yield point, both in accordance with experimental observations. Finally, a
second ambiguous choice, concerning the volume fraction of the bi-crystals with respect
to the crystal core, is circumvented using the single crystal approach. The latter approach
actually provides the opportunity to assess how that volume fraction should be suitably
selected.

The developed crystal plasticity approach has been used to simulate the simple shear be-
haviour of a fictitious single crystal –having two slip systems– under plane strain condi-
tions. Here, the crystallographic slip in the normal direction is obstructed at the boundary
interfaces, initiating a deformation heterogeneity which is related to the strip thickness.
A size dependent flow stress is accordingly encountered, which, together with the slip
and GND density profiles across the strip, are in qualitative agreement with results found
in the literature. The model has also been applied to simulate the constitutive behaviour
of a polycrystal (consisting of a limited number of grains) under plane stress tension,
where the specimen size has also been varied, resulting in varying intragranular hetero-
geneities. Next to the flow stress, also the (initial) yield stress depends on the grain size.



Notation

In the following definitions, a Cartesian coordinate system with unit vector base
{e1, e2, e3} applies and following the Einstein summation convention, repeated indices
are summed from 1 to 3.

Quantities

scalar α, a, A

vector a = ai ei

second order tensor α = αi j ei e j, A = Aij ei e j

higher (nth) order tensor nA = Aij...n ei e j . . . en

column a
~

matrix A

Operations

multiplication c = ab, c = ab, C = aB

dyadic product C = a b = aib j ei e j

cross product c = a× b

inner product c = a · b = aibi, C = A · B = AijBjk ei ek

double inner product C = 4A : B = AijklBlk ei e j, c = A : B = AijBji

conjugate / transpose CT = Cjiei e j

inverse A−1

determinant det (A) = (A · e1) · (A · e2) × (A · e3)
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x NOTATION

trace tr (A) = A : ei ei = Aii

deviatoric part Ad = A− 1
3 tr (A) ei ei

gradient operator ∇ = ei
∂

∂xi

tensor derivative
dA
dB

=
dAij

dBlk
ei e j ek el

absolute value |a|
euclidean norm ‖a‖ =

√
a · a

time derivative ȧ

Crystallographic notation

crystallographic direction, family [uvw], 〈uvw〉
crystallographic plane, family (hkl), {hkl}
slip system, family (hkl)[uvw], {hkl}〈uvw〉



CHAPTER ONE

Introduction

Abstract / The basic principles behind the general crystal plasticity modelling are explained, as
well as themotivation for incorporating different types of dislocation densities. An overview of
the main characteristics and differences of the two developed strain gradient crystal plasticity
approaches is given.

1.1 Physics of crystal plasticity

Crystallographic materials, such as metals, are characterised by a specific periodic ar-
rangement of their atoms. This thesis focuses on the so-called “face-centered cubic”
(FCC) arrangement, a structure which is common for widely used metals as aluminium
and copper. In the constitutivemodelling, the plastic deformation is typically based on the
physical process of crystallographic slip, which is favourable along the most close-packed
directions on the most close-packed crystallographic slip planes. Based on the specific
atom arrangement, these directions and planes are set unambiguously, i.e. for FCC met-
als this leads to 3 dedicated slip directions on each of the 4 slip planes, resulting in 12
so-called “slip systems”. Next to the plastic deformation, it is assumed that the (small)
elastic deformation can be accommodated by stretching the crystallographic lattice.

As the intrinsic strength of a perfect crystal is theoretically two to four orders of magni-
tude higher than the actually observed strength, this discrepancy can only be resolved by
the introduction of the concept of dislocations (Orowan, 1934). Orowan reasoned that the
actual mechanism of crystallographic slip must be the movement of dislocations. Under
an applied stress, the lattice deforms elastically until the stretched bonds near a disloca-
tion break down and new bonds are formed. During this repeating process, a part of the
crystal slips one interatomic distance with respect to the other part, typically in the direc-

1



2 1 INTRODUCTION

tion and over a distance of one Burger’s vector. Instead of the ideal strength associated
with the movement of an entire slip plane, the dislocations enable only sections of the
slip plane to shear, resulting in the observed decimated strengths necessary for plastic
deformation.

Next to their role of accommodating the plastic deformation in crystalline materials, the
work hardening behaviour of metals can also be attributed to the dislocations, namely
by means of their multiplication with ongoing plastic deformation and their mutual in-
teractions that impede the motion of gliding dislocations (i.e. strengthening by obstacle
formation). The evolution mechanism can be split into two parts, i.e. the accumulation of
the statistically-stored dislocations (SSD’s) and the formation of geometrically-necessary
dislocations (GND’s) (Ashby, 1970). The SSD’s accumulate by a statistical trapping pro-
cess during plastic slip and are therefore randomly oriented, i.e. not having any deforma-
tional effects. On the other hand, once the applied load, or the material structure itself,
involves any gradient of plastic deformation, a certain amount of GND’s are required to
preserve lattice compatibility and to accomplish the required lattice rotation. Because of
their inherent geometrical nature, the GND densities can often be determined explicitly,
together with their orientation (dislocation sign). Conventional crystal plasticity theories,
however, do not take into account these effects. This results in the fact that their strength-
ening mechanisms are inherently incapable of predicting scale dependent behaviour, i.e.
different mechanical responses due to varying plastic strain gradients.

1.2 Objective, strategy and outline

This thesis presents the development of both a polycrystal and a single crystal strain
gradient crystal plasticity model that is capable of predicting length scale dependences,
based on the hypothesis

Predicting the scale dependent behaviour in a physically realistic manner can be ac-
complished by taking into account the GND densities and their constitutive influence
in the crystal plasticity framework, along with the introduction of several appropriate
physical length scales.

Especially, the attention is focused on prediction of the Hall-Petch relation (Hall, 1951;
Petch, 1953; Armstrong et al., 1962). This relation describes the flow stress increase once
the metal’s grain size decreases, which is a well-known consequence of material induced
plastic inhomogeneities, caused by the fact that grain boundaries –next to dislocation
interactions– can also act as obstacles to crystallographic slip.

In the next chapter, a polycrystal approach is presented, i.e. an approach which considers
a collection of grains that is assumed to be present in a single material point. The effects
of grain boundaries are taken into account by bi-crystal volume elements, each having
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the crystallographic lattice orientation of the adjacent crystal, whereas single crystal vol-
ume elements represent the grain cores. The GND densities can then be determined
by implementation of the restrictions at the grain boundaries through deformation com-
patibility and stress equilibrium requirements at the bi-crystal interfaces representing
those boundaries. The plastic deformation incompatibilities between the crystal core and
the bi-crystal boundaries are exploited as a measure for the required GND densities to
preserve lattice continuity. However, several ambiguous choices have to be made using
the presented polycrystal approach, concerning the proper dimensional ratio between the
crystal core and the grain boundary region and concerning the correct incorporation of
the additional GND density strength in the phenomenological slip resistance description
at hand.

Therefore, in Chapter 3 and 4, an assembly of grains is considered and for each individual
grain, a detailed single crystal approach is developed, with an internally inhomogeneous
distribution of relevant quantities. In the context of a finite element elaboration, each
grain is subdivided into an appropriate number of finite elements in order to be able to
describe the intragranular inhomogeneities. The GND densities, which are now directly
related to the gradients of crystallographic slip, are considered as additional nodal de-
grees of freedom in the finite element formulation, offering several advantages. First, the
associated additional boundary conditions provide the opportunity to obstruct the crystal-
lographic slip at the grain boundaries in a way which is substantially more appropriate
with respect to reality than the bi-crystal obstructions. Furthermore, a certain distribu-
tion of initial grain boundary dislocation (GBD) densities can be introduced, related to
the different lattice orientations of neighbouring grains. A simplified procedure for the
determination of these GBD density fields is also presented. Next to the slip resistance
as caused by the (short-range) interactions of all SSD’s and GND’s, any heterogeneity in
the GND density field also causes a long-range influence on crystallographic slip, namely
through a resulting back-stress contribution. This second influence of the GND densities
is caused by the fact that at a length scale of several orders of magnitude larger than the
individual dislocation size, in contrast to the SSD densities, the net effect of the GND
densities does not vanish.

In Chapter 3, the entire framework is discussed in detail, after which it is applied to
simulate the size dependent behaviour of a single crystal strip under plane strain shear,
which is micromechanically clamped at the shear loaded edges. Next, in Chapter 4, the
numerical implementation of the developed strain gradient crystal plasticity framework
is outlined, which is succeeded by the modelling of the grain size dependent mechanical
behaviour of a polycrystal strip under plane stress tension. Finally, in Chapter 5, the
ambiguous choice of identifying the grain boundary region while using the polycrystal
approach is reconsidered with the aid of single crystal simulations.
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CHAPTER TWO

Polycrystal model1

Abstract / A strain gradient dependent crystal plasticity approach is used to model the consti-
tutive behaviour of polycrystal FCC metals under large plastic deformation. Material points
are considered as aggregates of grains, subdivided into several fictitious grain fractions: a
single crystal volume element stands for the grain interior whereas grain boundaries are rep-
resented by bi-crystal volume elements, each having the crystallographic lattice orientations
of its adjacent crystals. A relaxed Taylor-like interaction law is used for the transition from the
local to the global scale. It is relaxed with respect to the bi-crystals, providing compatibility
and stress equilibrium at their internal interface. During loading, the bi-crystal boundaries
deform dissimilar to the associated grain interior. Arising from this heterogeneity, a geomet-
rically necessary dislocation (GND) density can be computed, which is required to restore
compatibility of the crystallographic lattice. This effect provides a physically based method to
account for the additional hardening as introduced by the GND’s, the magnitude of which is
related to the grain size. Hence, a scale-dependent response is obtained, for which the nu-
merical simulations predict a mechanical behaviour corresponding to the Hall-Petch effect.
Compared to a full-scale finite element model reported in the literature, the present polycrys-
talline crystal plasticity model is of equal quality yet muchmore efficient from a computational
point of view for simulating uniaxial tension experiments with various grain sizes.

2.1 Introduction

It is well known that the grain size has a dominant influence on the mechanical be-
haviour of polycrystalline metals and alloys. This dependence is not taken into account
by approaches as proposed by Taylor (1938). In the past, many applications of Taylor-
type models (e.g. Asaro and Needleman, 1985) have been used for describing the be-
haviour and texture evolution of FCC polycrystals during large plastic deformation. Ad-
ditionally, Bronkhorst et al. (1992) showed that the Taylor model provides an acceptable

1This chapter is reproduced from Evers et al. (2002).
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6 2 POLYCRYSTAL MODEL

description of the behaviour of single-phase FCC polycrystals under pure slip deforma-
tion. However, in this model, a homogeneous deformation field across grain boundaries
and within grains is assumed, neglecting differences in structure from grain to grain
and within grains. Nevertheless, the continuity across grain boundaries could also be
upholded when the deformation inside a grain was inhomogeneous, in other words if
the crystal boundary region deformed dissimilar from the crystal interior (Kochendörfer,
1941). This hypothesis initiated the suggestion by Nabarro (1950) and Boas (1950) that the
flow stress might depend on the grain size. In fact, it is this hypothesis which constitutes
the basis of the presented micromechanical model.

Hall (1951) and Petch (1953) first examined the grain size dependence and found an em-
pirical relationship between the crystal size d and the yield stress, which was extended
by Armstrong et al. (1962) to include the entire flow stress region σ(ε) by expressing
the parameters σ0 and k to be dependent on the strain level ε in a relation known as the
(extended) “Hall-Petch relation”

σ(ε) = σ0(ε) + k(ε)d−n. (2.1)

In literature, values for the exponent n in the range of 0.3 to 1 show the best resemblance
with experimental findings, whereas n = 1

2 is the most reported value. The Hall-Petch
slope k characterizes the transfer of slip through the grain boundaries. For a more de-
tailed discussion of the flow stress dependence on the grain size, see Hansen (1982) and
Narutani and Takamura (1991), and references therein.

Three different models can be distinguished (Gavriljuk et al., 1999) which explain the
strengthening effect of smaller grains. First, the “dislocation pile-up models” state that
the propagation of plastic deformation is obstructed at the crystal boundaries by stress
concentrations as caused by the pile-up of dislocations, which on their term activate dis-
location sources in neighbouring grains (Hall, 1951; Petch, 1953; Cottrell, 1958; Nakanishi
and Suzuki, 1974; Suzuki and Nakanishi, 1975). These models focus on the restricted
dislocation movement across grain boundaries, which affect the flow stress in Eq. (2.1)
through d−

1
2 . The main objection against this explanation is that in metals with a BCC

crystal structure, no pile-ups are observed while the Hall-Petch relation is nevertheless
retrieved. Second, the “dislocation interaction models” (or “work hardening models”)
(Ashby, 1970; Hirth, 1972; Conrad, 1963; Dai and Parks, 1997; Dai, 1997; Arsenlis and
Parks, 2000) emphasize the increased concentration of dislocations by affirming that the
dislocation density accumulated in a grain at a certain strain is higher once the grain size
decreases, which is inherent to the increased inhomogeneous deformation (i.e. strain
gradients) within the grain and the accompanying decreasing mean free path of the dis-
locations. These models predict values for the exponent n in the total range mentioned.
Finally, the “grain boundary source model” (Li and Chou, 1970) emphasizes on the capac-
ity of grain boundaries to emit dislocations under loading, which does not require a stress
concentration created by a pile-up. However, up till now, no clear experimental evidence
has been able to support the exclusive validity of either of these models.
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The dislocation interaction approach has been extended by Ashby (1970). Hardening,
i.e. resistance to dislocation motion, is caused by secondary dislocations piercing the slip
planes, which multiply during plastic deformation and increase the slip resistance. In
that work, a distinction is made between statistically-stored dislocations (SSD’s), accumu-
lating during a uniform deformation, and geometrically necessary dislocations (GND’s),
which are required to preserve lattice compatibility in case of unevenly distributed plastic
slip (non-uniform plastic deformation, such as in the presence of lattice curvature). As
suggested by Kocks (1970) and sustained by Thompson et al. (1973), geometrically neces-
sary dislocations are largely concentrated in the grain boundary regions where the lattice
mismatch is most pronounced. Supporting this, Kazmi and Murr (1979) highlighted the
formation of high dislocation densities in the vicinity of grain boundaries by means of
transmission electron microscopy.

Several strain gradient models have been developed in order to numerically capture scale
size effects (e.g. Aifantis, 1987; Fleck et al., 1994; Fleck and Hutchinson, 1997; Gao et al.,
1999; Huang et al., 2000; Shu and Fleck, 1999; Dai and Parks, 1997; Dai, 1997; Shi
et al., 2000). Such approaches incorporate a length scale in the analytical plasticity for-
mulation, thereby enabling the prediction of e.g. particle size effects and indenter size
effects. The underlying physics is sometimes related to the SSD and GND generation
(Gao et al., 1999). However, limitations are met with respect to two-dimensional ideal-
izations of double slip and the consideration of global strain gradients instead of intra-
granular strain gradients, respectively absent and present in a macroscopically uniform
deformation mode. In the present chapter, a scale-dependent theory of plastic strain gra-
dient induced production of GND’s is elaborated, based on the work of Arsenlis and Parks
(2000), in the context of which intragranular strain gradients can be accounted for.

In the presented model (see also Evers et al., 2001), each crystallographic orientation in
a material point is associated with a grain. This grain is considered to have a material
volume fraction assigned to its core, whereas the remaining volume fraction is covered
by its boundary volume elements. The heterogeneous deformation within a crystal, typi-
cally occurring between the crystal core and the grain boundaries, initiates the generation
(either through nucleation or dislocation motion) of geometrically necessary dislocations
to maintain lattice compatibility. These GND’s cause in their turn the slip resistance near
the grain boundaries to increase, as experimentally shown by Worthington and Smith
(1964). This extra hardening is merely assigned to the boundary volume elements. De-
spite of the fact that in this way the dislocations are practically “stored” (piled up) near the
boundaries, this model mainly lies in the range of the “dislocation interaction models”.

Note that the grain diameter is a model parameter used to determine the measure of in-
homogeneity. No explicit flow stress relation depending on the grain diameter (according
to e.g. Eq. (2.1)) is included in themodel (cf. Thompson et al., 1973). Furthermore, the ap-
proach of Meyers and Ashworth (1982) and its extension by Fu et al. (2001) also relied on
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a subdivision of grains into an interior section and a surrounding grain boundary region.
The grain subdivision is based on the increased hardening rate near the grain boundaries
(experimentally verified by Gray III et al. (1999)), an observation which is expected to be
the result of the compatibility requirements near those boundaries. Subsequently, Fu
et al. took this effect into account through different evolution coefficients of the disloca-
tion densities in the core and near the boundaries. Moreover, again, a flow stress relation
was required in which the diameter dependence entered explicitly (in this case through
geometrical considerations). In the approach presented in this contribution, on the other
hand, the constitutive material parameters are kept equal in the core and in the grain
boundary layer (the bi-crystals) and the increased hardening term in the grain boundary
section only arises to the extent in which it is physically motivated, i.e. only when there
is -and in proportion to- a deformation incompatibility.

The constitutive crystal plasticity framework is based on the work of Bronkhorst et al.
(1992) and Kalidindi et al. (1992). However, in such local continuum constitutive models,
no explicit attention is paid to the presence of GND’s and no absolute length scale enters
the formulations. Therefore, they implicitly assume that the accumulation of SSD’s is
the only driving force behind the work hardening, which is related to the history of the
crystallographic plastic shear strains.

As mentioned before, Taylor-type models assume deformation uniformity within grains
and across grain boundaries, violating the stress equilibrium condition at the interfaces.
Alternatively, their counterpart, the Sachs-type models, assume the stress to be uniform,
neglecting kinematical compatibility. In the case of intermediate models, the consider-
ation of intergranular processes accounts for both the consistency conditions of grain
boundary compatibility and traction equilibrium to be satisfied. This makes intermediate
models, such as for example the self-consistent models, more rational. Self-consistent
approaches, however, involve severe assumptions in order to simplify the formulations
and to reduce the computation time (Molinari et al., 1997). The present contribution con-
tains an alternative intermediate model, which is based on a relaxed form of the Taylor
assumption. Unlike the classical assumption, here, one grain consists of several frac-
tions (i.e. representative volume elements). The crystal interior is modelled by one single
crystal volume element, whereas several bi-crystal volume elements represent the grain
boundaries. The Taylor assumption is now applied to the deformation of the single crystal
core and the average deformation of each bi-crystal component. Additionally, at the inter-
face within the bi-crystals, the consistency conditions of deformation compatibility and
stress equilibrium are imposed. In this way, the above-mentioned intragranular deforma-
tion heterogeneity arises, which is here concentrated between the core and the bi-crystals
of each grain.

The approach of using a bi-crystal in combination with Taylor’s assumption originates
from the work of Ahzi et al. (1990), where a two-phase composite inclusion was used
as a representative volume element of crystalline lamella and its associated amorphous
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layer in two-phase semi-crystalline polymers (see also Van Dommelen et al., 2003). The
extension of this approach for the modelling of grain boundaries of FCCmetals by choos-
ing the composite inclusion to be a bi-crystal, having the lattice orientations of the two
neighbouring crystals, was first performed by Lee et al. (1999). However, in their contri-
bution, only the crystal interfaces are taken into account, leaving the crystal interiors un-
considered. Furthermore, Delannay et al. (1999) refers to a similar approach of bi-crystal
modelling by means of the “Lamel model”. An empirical examination of the presence of
GND’s near the grain boundaries of an aluminium bi-crystal, measured through lattice
curvatures, can be found in Sun et al. (2000).

First, the general crystal plasticity constitutive framework and its time integration are
outlined in Section 2.2. Next, in Section 2.3, the subdivision of a grain into a core and
several bi-crystal boundaries is discussed, along with the complementary time integra-
tion procedure. In Section 2.4, the deformation incompatibility between the core and
the boundaries is considered, which induces the production and accumulation of GND’s.
This extra dislocation density obstructs the dislocation motion and hence introduces en-
hanced hardening. Further, in Section 2.5, the computational results of uniaxial tensile
tests are compared to experimental results obtained by Hansen (1979) and to numerical
results obtained by Arsenlis and Parks (2000), both describing Hall-Petch-like behaviour.
Arsenlis and Parks considered a collection of grains, where each grain is discretized in
finite elements. Hereby, the strain gradients arise from the deformation heterogeneity
between the different finite elements, i.e. between elements near the core and elements
near the boundary. From those strain gradients, the enhanced hardening arises and the
corresponding slip resistance can be determined after consideration of the GND densi-
ties. Finally, concluding remarks are made in Section 2.6.

2.2 Crystal plasticity framework: single crystal approach

2.2.1 Kinematics

The kinematics commonly used in the field of crystal plasticity may be traced back to
the works of Lee (1969), Rice (1971), Hill and Rice (1972), and Asaro and Rice (1977).
The basic feature is the distinction between two physical mechanisms, represented by
the multiplicative decomposition of the deformation gradient tensor

F = Fe · Fp. (2.2)

The elastic part Fe comprises the small lattice deformation and possibly large rigid body
rotation. The plastic part Fp corresponds to the isochoric and stress-free intermediate
configuration, in which the crystallographic lattice is unaltered and unrotated with re-
spect to the reference configuration (Mandel, 1974), as illustrated in Fig. 2.1. It is as-
sumed that this part results solely from continuous plastic shearing (dislocation motion)
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on well-defined slip systems. For FCC metals, 12 favourable (octahedral) systems can be
characterized by the Miller indices {111}〈110〉, where each system α (α = 1, 2, . . . , 12)
is represented in the reference configuration by the two time-independent orthonormal
vectorsmα

0 and nα0 , the slip direction and slip plane normal, respectively. Now, the evolu-
tion of the plastic deformation can by definition be expressed as the superposition of all
crystallographic slip rates γ̇α (Rice, 1971)

Ḟp = Lp · Fp, Lp = ∑
α

γ̇α Pα
0 , Pα

0 ≡ mα
0 n

α
0 , (2.3)

where Lp is the plastic velocity gradient tensor and Pα
0 is known as the non-symmetric

Schmid tensor.

n
m

α
α

n0
α

mα
p

e p

= F

= F

0 mα
0

mα

nα

.

e

e

.

. n0
α

mα
0

−T

FeF = F  F

F
n0

α

Figure 2.1 / Multiplicative decomposition of the deformation gradient tensor.

2.2.2 Constitutive model

The second Piola-Kirchhoff stress measure defined with respect to the relaxed configura-
tion

τ ≡ det (Fe) F−1
e ·σ · F−T

e , (2.4)

withσ the Cauchy stress tensor, is taken to be related to its work conjugated elastic Green
strain measure Ee through

τ = 4C : Ee, Ee ≡ 1
2

(Ce − I) , Ce ≡ FTe · Fe, (2.5)

where Ce is the elastic right Cauchy-Green tensor and I is the second-order unit ten-
sor. The fourth-order isotropic elasticity tensor 4C is defined by Young’s modulus E and
Poisson’s ratio ν

4C = νE
(1+ν)(1−2ν)

(
I I + 1−2ν

ν
4I
)
, (2.6)

where 4I is the symmetric fourth-order unit tensor.
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To arrive at an elasto-viscoplasticmaterial model, the plastic shearing rate γ̇α is expressed
as a power law function of the slip system resolved shear stress τα and deformation
resistance sα according to the flow rule (Hutchinson, 1976; Peirce et al., 1982)

γ̇α = γ̇0

{ |τα|
sα

} 1
m

sign
(
τα) , (2.7)

where γ̇0 andm are material parameters representing the reference plastic strain rate and
the rate sensitivity exponent, respectively. The “Schmid stress” τα is defined such that
∑
α

τα γ̇α is precisely the rate of plastic work per unit volume in the relaxed configuration

(Asaro and Rice, 1977; Bronkhorst et al., 1992)

τα ≡ Ce · τ : Pα
0 . (2.8)

For metallic materials, the elastic strains are usually negligibly small. For this situation,
the resolved shear stress τα in Eq. (2.8) may be approximated by

τα .= τ : Pα
0 . (2.9)

The slip resistance sα in Eq. (2.7) is taken to evolve according to the expression (Asaro,
1983; Kalidindi et al., 1992)

ṡα = ∑
β

hαβ |γ̇β|, sα(t = 0) = τ0, (2.10)

where τ0 is the initial slip resistance, which is considered to be equal for each slip system.
The hardening moduli hαβ give the rate of strain hardening on slip systemα due to slip
on slip system β. For now, this occurrence of self and latent hardening is phenomeno-
logically described by

hαβ = qαβ hβ (no sum on β), (2.11)

where qαβ equals unity for coplanar slip systems and the scalar value q for non-coplanar
systems. This choice has been motivated by experimental observations performed by
Kocks (1970). Finally, the following specific form for the single-slip hardening rate, hβ in
Eq. (2.11) is adopted, which was originally motivated by the work of Brown et al. (1989)

hβ = h0

(
1−

sβ
s∞

)a

, (2.12)

with the slip system hardening parameters h0, a and s∞.
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2.2.3 Time integration

For each single or bi-crystal volume element of each grain, each having a unique lattice
orientation(s), the constitutive response as well as the history-dependent variables differ
from those of other volume elements with a different orientation, undergoing the same
deformation. Therefore, the proposed computational procedure is performed per volume
element. First, in this section, the single crystal elements are considered. Next, in Sec-
tion 2.3.2, the complementary time integration procedure for bi-crystal components is
given.

Such as typical in implicit finite element codes, for each time increment, an estimated
displacement field is used to calculate the stress and to update the state variables in each
integration point. This process is repeated for a number of iterations until equilibrium
of the global forces is realized for the particular time increment. Consequently, at each
new time step (tn+1 = tn + ∆t, in the remainder of this chapter, associated variables are
denoted with the subscript n+ 1), the plastic deformation and the slip restrictions at the
previous time (tn, variables with subscript n) are known state variables. Furthermore, the
time-independent material parameters and slip system orientations of the grain under
consideration are known.

The implicit integration procedure (Eqs. (2.13)–(2.21)) is based on the contributions of
Bronkhorst et al. (1992) and Kalidindi et al. (1992) and starts with the time integration of
Eq. (2.3)

Fp n+1 = exp
(
∆t Lp n+1

) · Fp n , (2.13)

which can be approximated by

Fp n+1

.=
(
I + ∆t Lp n+1

) · Fp n . (2.14)

Correspondingly, the first-order estimation of the inverse of Fp n+1 can be written as

F−1
p n+1

.= F−1
p n

· (I −∆t Lp n+1

)
. (2.15)

To compute the stress at the end of the time step, Fe n+1, determined by

Fe n+1 = Fn+1 · F−1
p n+1

, (2.16)

is substituted into Eq. (2.5), which after employing Eq. (2.15) leads to

τn+1 = 4C :
{
1
2

(A− I) − 1
2
∆t
(
A · Lp n+1 + LTp n+1

· A
)}

, (2.17)

with

A ≡ F−T
p n

· FTn+1 · Fn+1 · F−1
p n
. (2.18)
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When the plastic velocity gradient tensor is written in the crystallographic form of
Eq. (2.3), Eq. (2.17) ends up like

τn+1 = τ tr − ∑
α

∆t γ̇α
n+1

(
τn+1, sαn+1

)
Bα , (2.19)

with the trial stress (elastic prediction)

τ tr ≡ 4C :
{
1
2

(A− I)
}

(2.20)

and

Bα ≡ 4C :
{
1
2

(
A · Pα

0 + PαT

0 · A
)}

. (2.21)

Using this approach, the introduced variables (A,τ tr and Bα) are known at time tn+1,
leaving only the stress τn+1, slip rates γ̇α

n+1 and slip resistances sαn+1 to be computed.

The slip rates are computed using Eq. (2.7) and substituting the implicit time integration
of Eq. (2.10) into this equation leads to

γ̇α
n+1 = γ̇0






|τα
n+1|

sαn + ∆t∑
β
hαβ |γ̇β

n+1|






1
m

sign
(
τα
n+1

)
. (2.22)

Of all slip systemsα and at time tn+1(for the sake of clarity, the incremental indices n+ 1
will be omitted in the remainder of this section), the slip rates and stress components
in Eq. (2.22) are placed in the columns γ̇

~
and τ

~
, whereas the right-hand side will be

referred to as Γ
~
(γ̇
~
, τ
~
). The column τ

~
contains the 6 independent components of the

stress measure τ , resulting in the Schmid stresses τα after employing Eq. (2.8). At a
given stress state, the 12 slip rates in γ̇

~
are solved by Newton-Raphson iterations

Φ
~

(
γ̇
~
, τ
~

)
= γ̇

~
− Γ

~

(
γ̇
~
, τ
~

)
= 0

~
. (2.23)

To actually determine the stress column τ
~
, Eq. (2.19) is also solved using a Newton-

Raphson iteration procedure. With respect hereto, a distinct formulation of the deriva-

tives of the slip rates with respect to the stress components of τ
~
(
dγ̇
~dτ
~
) is required to con-

struct a consistent tangent. For this purpose, the ansatz is that Eq. (2.23) must remain
satisfied for all variations of τ

~
dΦ
~dτ
~

= 0, (2.24)

with 0 the zero matrix (12× 6). This can be expanded to

dΦ
~dτ
~

=
(

∂Φ
~∂τ
~

+
∂Φ
~∂γ̇
~

dγ̇
~dτ
~

)
= 0. (2.25)
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The derivatives
dγ̇
~dτ
~
are released through rearrangement of this linear equation

dγ̇
~dτ
~

= −
(

∂Φ
~∂γ̇
~

)−1 ∂Φ
~∂τ
~

. (2.26)

Now, the system can be solved for both the slip rates γ̇
~
and the slip system resistances.

Recapitulating, this iteration procedure (for solving the slip rates and resistances) is per-
formed for each stress state, i.e. during each iteration of the Newton-Raphson procedure
of the overall system of equations.

2.3 Intragranular decomposition: bi-crystal approach

2.3.1 Modified Taylor approach

As an interaction strategy for relating the mechanical behaviour of the microstructure to
macroscopically imposed deformation conditions, following Taylor’s model, the stress at
each macroscopic continuum material point is determined by the averaged response of
the microstructural constituents comprising that material point.

However, the classical Taylor assumption enforces the deformation of each individual
grain in a material point to be uniform and equal to the macroscopic deformation, disre-
garding any interactions between grains or inside grains. In reality though, the intragran-
ular deformation in general is heterogeneous, and at the grain boundaries, equilibrium
of mechanical forces must hold (Becker and Panchanadeeswaran, 1995). Therefore, in
the presented intermediate model, these discrepancies are partially amended by relaxing
the Taylor approach.

Each grain is fictitiously subdivided into a core and several grain boundary fractions,
represented by a single crystal and bi-crystals, respectively. This subdivision is shown
two-dimensionally in Fig. 2.2. The crystal lattice orientation of the bi-crystal fragment
situated next to the core (interior-side part “i”) initially resembles that of the core, whereas
the exterior-side part “e” of the bi-crystal has the same initial crystallographic orientation
as its neighbouring crystal.

At the end, for each grain “k”, the Cauchy stressσ k is computed by volume-averaging the
stresses of each of the constituents, i.e. the stress in the single crystal core σ k,c and the
stresses in the Nk

b bi-crystalsσ k,b

σ k = ϑσ k,c + (1− ϑ)
1
Nk
b

Nk
b

∑
b=1

σ k,b, (2.27)

where ϑ (0 ≤ ϑ ≤ 1) is the volume fraction of the crystal core (cf. Eq. (2.35) in Section 2.4).
In this fashion, the contribution of each bi-crystal of grain k is weighted equally. Finally,
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Figure 2.2 / From a polycrystal assembly, each crystal is decomposed into constituent
parts, representing its core and its boundaries.

in parallelism to Asaro and Needleman (1985), for the determination of the macroscopic
stress, all grains are assumed to be equally sized.

σ̄ =
1
Nk

Nk

∑
k=1

σ k, (2.28)

where Nk is the number of grains with an independent crystallographic orientation con-
sidered in the material point under investigation. In the following, the attention is fo-
cussed on the entire crystal, including the core and the associated bi-crystals (the super-
script “k” is omitted as from now).

Considered more thoroughly, the deformation of the grain interior is still imposed to
be uniform and equal to the macroscopic deformation gradient F̄, in accordance to the
classical Taylor assumption

Fc = F̄ . (2.29)

On the other hand, only the average of the two individually uniform deformation gradients
of the bi-crystal fragments, Fb,i and Fb,e, is enforced to equal themacroscopic deformation
gradient

f b,i0 Fb,i + f b,e0 Fb,e = F̄ , f b,i0 + f b,e0 = 1, (2.30)

where f b,i0 and f b,e0 are the initial volume fractions of the interior and exterior sections of
the bi-crystal element “b”, respectively.

For the calculation of the stress in the crystal coreσ c, the relations of Sections 2.2.2 and
2.2.3 are to be used. For the computation of the two bi-crystal stresses, σ b,i and σ b,e,
additional restrictions have to be formulated. In the plane of the interface between the
two crystals in the bi-crystal, state variables are enforced to be uniformly distributed, i.e.
only variations of quantities perpendicular to the interface are of interest. First, at the
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bi-crystal interface, the condition of kinematical compatibility must hold, only admitting
variations between the deformation gradients Fb,i and Fb,e in the direction of the initial
outward interface normal nb0, cf. Fig. 2.2. After consideration of Eq. (2.30), the deforma-
tion gradients can be written according to

Fb,i = F̄ + f b,e0 a nb0 (2.31)

Fb,e = F̄ − f b,i0 a nb0,

with a an a priori unknown vector. Second, in addition to compatibility, stress equilib-
rium at the interface in the deformed state is enforced through the condition

(
σ b,i −σ b,e) · nb = 0, nb = F̄−T·nb

0

‖F̄−T·nb
0‖
. (2.32)

Note that this equation includes the instantaneous interface orientation nb, whereas in
Eq. (2.31), the initial orientation nb0 is used.

2.3.2 Time integration

Regarding the time integration, besides solving the Piola-Kirchhoff stresses in both bi-
crystal fragments using the approach given in Sections 2.2.2 and 2.2.3, the internal defor-
mation gradient variation an+1 has to be determined simultaneously. The set of equations
is therefore naturally completed by the traction equilibrium condition (2.32). The entire
system of coupled equations is then solved using the Newton-Raphson iterative proce-
dure. Finally, the bi-crystal stress (at time tn+1), as required in Eq. (2.27), is taken equal
to the (uniform) stress of the interior-side part,σ b,i.

2.4 Enhanced hardening

The potential existence of heterogeneous intragranular deformations is the point of de-
parture for this section. Within each grain, the deformation incompatibility between the
core and the interior bi-crystal parts, sections with initially equal lattice orientations, re-
quires the generation of geometrically necessary dislocations (GND’s). First, the densities
of GND’s between the core and each bi-crystal component are determined. Next, in ad-
dition to the “conventional” slip resistance sα in Eq. (2.10), an extra term is introduced,
based on the GND densities.

The evolution of the statistically-stored dislocations (SSD’s) has no geometric conse-
quences and is recognised as the motive behind the conventional slip system strength
sα. From now on this strength will be denoted as sαSSD, while the extra term related to the
GND’s will henceforth be denoted as sαGND.
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2.4.1 GND density

In this section, the GND densities between the core of a particular grain and one of its bi-
crystal boundary elements are scrutinized. The same approach applies to the remaining
bi-crystals as well as the other grains in the material point. A measure for the plastic
deformation incompatibility is given by Nye’s dislocation tensor (cf. Nye, 1953; Mura,
1987), which is defined as the curl of Fp (Dai, 1997)

Λ ≡ −
(
∇0 × FTp

)T
. (2.33)

Physically, this tensor can be interpreted as a measure for the closure failure (cumulative
Burger’s vector) of the contour enclosing an infinitesimal surface when the inner product
of Nye’s tensor with the surface unit normal vector is integrated over that surface. That
closure failure is caused by the type and quantity of dislocations piercing the enclosed
surface.

As due to the in-plane homogeneity of the bi-crystal interfaces only variations in the di-
rection perpendicular to that interface are considered, in this particular case, Nye’s tensor
can be written as a function of the interface normal nb0 and the gradient of Fp between
the core and the bi-crystal (cf. Fig. 2.3)

Λ = −
(

nb0 ×
∆FTp
l

)T

, ∆Fp = Fb,ip − Fcp, (2.34)

with l a length parameter representing the width of the intercrystal dislocation dominated
transition zone.

nb

ρ
GND

pF iFp

0
c

b,

Figure 2.3 / Between the single crystal core and each bi-crystal boundary, GND densities
(ρGND) are necessary to maintain the crystallographic lattice compatible.

The parameter l is geometrically related to the core volume fraction ϑ of Eq. (2.27) and
to the grain diameter d. Suppose each grain is, for the moment, represented by a sphere
with diameter d. The centre of the sphere is occupied by the core volume fraction ϑ.
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According to Eq. (2.27), the volume of the shell surrounding the core is attributed to the
bi-crystals. The thickness of that shell represents the grain boundary region

l =
(
1− 3

√
ϑ
) d
2
. (2.35)

Note that this relation also holds for cubical grain representations.

It is assumed that this region stores the geometrically necessary dislocations, i.e. the
variation of Fp is accommodated in this region only. At a constant ϑ, l varies proportional
to the grain size. The GND’s are then stored in an increased volume for larger grains,
which will lower the free energy of the grain. Other choices in this respect are varying
ϑ as a function of d while keeping l fixed or a more sophisticated ansatz incorporating
the deformation history. However, there are no clear physical arguments to support these
choices. Furthermore, it turns out that these alternative choices do not show a Hall-Petch-
like behaviour as well as the adverted approach with a constant core fraction.

Once Nye’s tensor has been computed, the related dislocation densities are determined
by representing Nye’s tensor as the cumulative contribution of all 18 (12 edge and 6
screw, cf. Kubin et al. (1992)) types of GND densities ρξ

GND (ξ = 1, 2, . . . , 18) following
the approach of Arsenlis and Parks (1999)

Λ0 = ∑
ξ

ρξ
GNDb

ξ
0 t

ξ
0 , (2.36)

where bξ
0 and t

ξ
0 are the (initial) Burger’s and tangent vector of each dislocation type ξ,

respectively. Because of the fact that Nye’s tensor only has 9 independent components,
various combinations of dislocation densities may compose the incompatibility of plastic
deformation between the core and the boundary. Without knowledge of the crystallo-
graphic dislocation density evolution or additional constraints, it is impossible to deter-
mine the exact dislocation structure. Two procedures have been proposed by Arsenlis
and Parks (1999) to find a lower bound of GND densities accommodating a given Nye
tensor. The approach of minimizing the sum of the squares of the dislocation densities
is favoured over the minimization of the total dislocation line length.

The motion of gliding dislocations on a slip plane is obstructed by forest dislocations
piercing that slip plane. The GND’s contribute to this crystalline strengthening by
creating additional pile-ups and by augmenting the forest dislocation density. The
strengths and densities of those obstacles depend on the dislocation densities in all di-
rections and their mutual interactions. Through a set of interaction coefficients Aαξ

and the dislocation density magnitude
∣
∣ρξ

GND

∣
∣, the effective density of point obstacles

to mobile dislocation motion on slip system α can be determined, as proposed by
Franciosi and Zaoui (1982) (as the dislocation profile on the slip systems is unknown,
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the interaction coefficients are solely based on the dislocation Burger’s vectors). The en-
hanced slip system strength sαGND is related to the square root of that effective density
following Ashby (1970)

sαGND = cµb
√

∑
ξ

Aαξ
∣∣
∣ρξ

GND

∣∣
∣, (2.37)

where c is a constant, µ is the shear modulus and b is the length of the Burger’s vector.

Information on the densities of SSD’s is only implicitly available through the slip system
strength sαSSD. Hence, individual densities of SSD’s, for the 18 dislocation types, is not
possible. This makes a direct addition of the densities of SSD’s and GND’s in an explicit
fashion quite ambiguous. Alternatively, the overall slip strength sα is taken as a coupling
between the corresponding contributions of both dislocation types

sα =
((
sαSSD

)p +
(
sαGND

)p) 1
p
, (2.38)

where p = 1 represents a straightforward addition of both strengths and p = 2 implies
summing the attributive dislocation densities in an effective way. In this chapter, both
choices are reviewed.

2.5 Numerical results

The presented model, including enhanced work hardening by GND’s, has been imple-
mented in order to simulate the stress-strain behaviour of a FCC polycrystal composition
during uniaxial tension for different grain sizes. The grain size dependence of the flow
stress, also known as the Hall-Petch effect (cf. Eq. (2.1)), in this context is treated as
the result of the increase of GND densities for maintaining lattice compatibility with de-
creasing grain sizes (Ashby, 1970). Consequently, small grained polycrystalline materials
exhibit more resistance to an applied deformation than larger grained ones.

The computations are compared to numerical and experimental results found in liter-
ature. First, the constitutive response is confronted with detailed finite element com-
putations on polycrystalline copper by Arsenlis and Parks (2000). The finite element
mesh used by Arsenlis and Parks, consisting of 27 randomly-oriented cubic grains, is
transformed into a morphologically similar material point representation, using 27 sin-
gle crystals, having similar lattice orientations and being arranged in the same spatial
directions, with 54 bi-crystals. This representation is (partly) depicted in Fig. 2.4. In
both simulations, uniaxial tension is applied in the z-direction. The strain rate is fixed
at 0.001 s−1.

For copper, many contradictory experimental results exist, in which quite often the Hall-
Petch relation fails as a result of the intersection of stress-strain curves of fine grained
copper with the stress-strain curves of coarse grained copper. This effect is often at-
tributed to texture developments. Therefore, the experimental findings of Hansen (1979)
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Figure 2.4 / The finite element mesh of the polycrystal composition under considera-
tion is transformed into a similar material point representation, consisting of 27 single
crystals and 54 bi-crystals.

have been chosen for comparison with the simulations. In that work, parallel stress-strain
curves are determined, which is achieved by preparing large-grained specimens by reduc-
ing the amount of deformation prior to recrystallization. Moreover, the ratio between the
specimen diameter and the grain size was taken to be larger than 15 to minimize the
effect of surface grains. Hansen performed tensile tests on polycrystalline copper strips
with average in-plane grain diameters of 14, 33 and 220 µm.

In the simulation, the diameter (d in Eq. (2.1)) is varied similar to the experiments (14, 33
and 220 µm), whereas the crystallographic orientations are left identical. The core volume
fraction is set constant to ϑ = 0.5 (Evers et al., 2000). The initial internal bi-crystal
fractions are taken according to f b,i0 = f b,e0 = 0.5 for each bi-crystal “b”. The constitutive
parameters are given in Table 2.1.

The dislocation interaction coefficients of the matrix Aαξ depend on the interaction
types between dislocations on different slip systems, as documented by Franciosi and
Zaoui (1982). They classify those interactions according to whether the dislocations
belong to the same slip system (self hardening, interaction coefficient a0), belong to
coplanar slip systems or form Hirth locks (interaction coefficient a1), form glissile junc-
tions (interaction coefficient a2) or Lomer-Cottrell locks (interaction coefficient a3), with
a0 ≤ a1 ≤ a2 ≤ a3. Finally, the initial density of GND’s is taken to be zero on all slip
systems and in all bi-crystals of the material point.

In the numerical procedure, the stresses in the single crystal interiors and in each half
of all bi-crystals are computed independently. Successively, the stress of each of the 27
grain compositions (σ k) is determined by evaluation of Eq. (2.27), and conventional Taylor
averaging of all compositions by Eq. (2.28) (since, in this example, all grains are equally
sized) yields the macroscopic stress in the material point, σ̄ , which is evaluated next.
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Table 2.1 / Constitutive parameters of copper (Dai, 1997; Arsenlis and Parks, 2000); the
parameter c is determined in this analysis; the coefficients a0, a1, a2 and a3 are entries

in the dislocation interaction matrix Aαξ , which is documented by Franciosi and Zaoui
(1982) and quantified for copper by Cuitiño and Ortiz (1992).

Parameter Magnitude Used in Eq.

Young’s modulus E 144 GPa (2.6)
Poisson’s ratio ν 0.33 – (2.6)
Reference plastic strain rate γ̇0 0.001 s−1 (2.7) (2.22)
Strain rate sensitivity m 0.012 – (2.7) (2.22)
Initial slip resistance τ0 8 MPa (2.10)

Latent hardening ratio q 1.4 – (2.11) (in qαβ)
Hardening parameter h0 250 MPa (2.12)
Saturation value s∞ 190 MPa (2.12)
Hardening rate exponent a 2.5 – (2.12)
Adjustable parameter c 0.3a and 0.7b − (2.37)
Shear modulus µ 41.5 GPa (2.37)
Burger’s vector length b 0.25 nm (2.37)

GND interaction coefficient a0 0.06 – (2.37) (in Aαξ )

GND interaction coefficient a1/a0 5.7 – (2.37) (in Aαξ )

GND interaction coefficient a2/a0 10.2 – (2.37) (in Aαξ )

GND interaction coefficient a3/a0 16.6 – (2.37) (in Aαξ )

acombined with p = 1 in Eq. (2.38)

bcombined with p = 2 in Eq. (2.38)

In the evaluation, two options are examined. First, the contributions of the SSD and GND
densities are combined by linear addition of their corresponding slip system strengths,
sαSSD and sαGND in Eq. (2.38), respectively. Second, following the finite element simulations
of Arsenlis and Parks, the choice of effectively adding SSD and GND densities is regarded,
which is reflected by setting p = 2 in Eq. (2.38). This can be stated when conferring the
relation between strength and dislocation density in Eq. (2.37), which is also implicitly
assumed for the case of SSD’s, where the relation at issue actually originates from. Cor-
respondence to the experiments (Hansen, 1979) could be achieved by the adjustment of a
single parameter (c in Eq. (2.37)) in either case of dislocation strength or density addition.
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2.5.1 Stress-strain behaviour

The simulated and experimentally determined uniaxial stress-strain curves are given in
Fig. 2.5a and 2.5b. In both figures, no considerable grain size effect is predicted at the
onset of yielding, which is not in line with experimental findings in general. This ob-
servation is attributed to the numerical assumption that no initial GND densities are
present in the material, which contradicts with reality, as during the processing of the
polycrystalline material, certain amounts of GND densities are introduced (i.e. next to
the GND’s comprising the grain boundaries themselves). Furthermore, from the figures,
it can be concluded that both the detailed simulations of Arsenlis and Parks and the simu-
lations encompassing the summation of the dislocation densities show an almost perfect
agreement with the experimentally observed grain size dependent behaviour, whereas the
simulations encompassing the dislocation strength addition show a small deviation for
the large grained specimen. Nevertheless, the intragranular inhomogeneities between
the core and the bi-crystals as effectuated by the adapted Taylor assumption bring about a
similar effect as the inhomogeneity between the finite elements of the two regions in the
case of the discretized grains when, for both cases, the enhanced hardening approach is
applied. Therefore, the presented advanced polycrystal model appears to be an adequate
alternative for the fully discretized finite element simulations for applications where the
(macroscopic) length scale at issue is large with respect to the size of the individual grains
(i.e. when such a polycrystal approach is valid).
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(a) Results using the assumption of
SSD and GND strength addition.
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Figure 2.5 / Uniaxial stress versus uniaxial strain for average grain diameters of 14, 33
and 220 µm, represented by the upper, middle and lower curves (of each type), respec-
tively. The dashed lines represent results from finite element calculations (Arsenlis and
Parks, 2000) and the bullets are experimental results (Hansen, 1979).
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2.5.2 Hall-Petch parameters

The magnitude of σ0(ε) in the Hall-Petch equation (2.1) can be recovered by performing
an additional simulation. In that simulation, by excluding sαGND from Eq. (2.38), virtually,
grains of infinite dimension are modelled and σ0(ε) is determined.

The two remaining Hall-Petch parameters, i.e. the Hall-Petch slope k and the exponent n
(cf. Eq. (2.1)) are determined in such a way that the total accumulated difference between
the simulated stress-strain curves and the curves following from the Hall-Petch relation
is minimized in a least squares sense. For this, it is assumed that n is a constant and
that k may vary as a function of the strain ε. This strain domain is discretized, using N
supporting values εi(i = 1, 2, . . . ,N), and at each point εi, the difference between the
stress σ i

HP according to Eq. (2.1) and the simulated uniaxial stress σ i, is computed.

min
{n, ki}

{
3

∑
j=1

N

∑
i=1

(
σ i
HP(dj) −σ i(dj)

)2

(σ i(dj))2

} 1
2

. (2.39)

Accordingly, N values of the Hall-Petch slope ki as well as the constant n, which together
with σ i

0 and the fixed diameters dj (14, 33 and 220 µm) basically determine σ i
HP(dj), are

simultaneously quantified through the minimization.

For the cases of dislocation strength addition versus dislocation density addition, the re-
sulting n reads 0.50 and 0.94, respectively. These values originate from the way in which
the geometric effects are incorporated into the slip system resistance (and, correspond-
ingly, the flow stress), i.e. the incorporation of sαGND in sα according to Eq. (2.38). The rea-
son behind this is the intrinsic diameter dependence of sαGND through Eqs. (2.34)–(2.37).
Through these –one could say physically based– equations, the influence of the diameter
on the constitutive behaviour is retrieved. Furthermore, Arsenlis and Parks determined
n to be in the range of 0.88 to 0.93 in their simulations incorporating dislocation density
addition.

In Figs. 2.6a and 2.6b, for the assumptions of SSD and GND strength addition and den-
sity addition, respectively, the agreement of the Hall-Petch relation using the correspond-
ing computed Hall-Petch parameters with the simulated stress-strain curves is shown. In
both cases, the Hall-Petch relation is perfectly suited to describe the grain size dependent
response.

For comparison, the Hall-Petch parameters based on the experimental results by Hansen
also have been computed. After minimization of expression (2.39), the Hall-Petch ex-
ponent is determined to be 0.80. Based hereon, the stress-strain curves are constructed
for all diameters such as they are predicted by the Hall-Petch relation. These curves are
compared to the experimental data in Fig. 2.7.
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Figure 2.6 / Simulated stress-strain curves of all diameters (solid lines) and the Hall-
Petch fits (cf. the marks) to that data, where the Hall-Petch parameters n and k(ε) are
determined through minimization of (2.39).
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Figure 2.7 / Comparison of the experimental data of Hansen (cf. the marks) to the curves
which are computed by applying the computed parameters n and k(ε) to the Hall-Petch
relation for all diameters (solid lines).

From the present analysis, it can be concluded that the determination of the actual Hall-
Petch exponent n is very sensitive to minor changes in the material response. This also
explains why various values of the exponent can be found in literature for the same ma-
terial, but possibly with minor changes in their processing history. The best correspon-
dence with the particular experimental findings of Hansen is achieved using the assump-
tion of summing the SSD and GND densities (p = 2 in Eq. (2.38), cf. Fig. 2.5).
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2.6 Conclusions

A local plastic strain gradient-dependent crystal plasticity model has been developed, de-
scribing the grain size dependent behaviour of a polycrystal material (i.e. an aggregate
of grains is considered attributed to a material point). Intragranular incompatible defor-
mations, which arise as a result of the consideration of grain boundaries (represented by
bi-crystals), are used to determine the amount of additional –geometrically necessary–
dislocations. The density of these dislocations determines the amount of enhanced hard-
ening through the formation of additional obstacles, obstructing the propagation of slip.

As the intragranular heterogeneous deformation is intrinsically related to the grain size,
so is the magnitude of the enhanced hardening term. Furthermore, the conventional
slip system hardening by the statistically-stored dislocations is described by a system of
phenomenological equations, covering the effects of both self and latent hardening. Both
SSD and GND slip resistances are combined in two different ways, one in which they
are simply summed and one in which, implicitly, their accompanying forest dislocation
densities are added.

Both approaches of the presented local polycrystal material model have been compared
to full-scale finite element simulations considering the addition of dislocation densities
and, moreover, to experimentally determined tensile curves dealing with several (average)
grain sizes. For these simulations, an analogous representation of the finite element
mesh with respect to crystallographic and morphological orientations has been applied in
the polycrystal material point representation. The resulting grain size dependent tensile
curves, as computed by the enhanced Taylor approach at hand, agree well with the finite
element computations and with the experimental data. The agreement is almost perfect
for the case of dislocation density addition and good for the case of dislocation strength
addition. Therefore, the polycrystalline crystal plasticity model is found to be a worthy
substitute for the full-scale finite element model from a computational point of view.

It has been shown that the applied model is well suited to describe the grain size effect
in a physically interpretable manner (i.e. without explicitly introducing grain size depen-
dence in a flow stress relation). Moreover, additionally, the morphological texture can be
incorporated through the orientation of the grain boundaries and their mutual weight
(Evers et al., 2000). Therefore, it is believed to be one of the most sophisticated models
available nowadays at the polycrystal level.

The present model focused on the elaboration of a polycrystalline model that includes a
physically based dependence on the grain size. In order to make well founded choices
concerning the combination of several dislocation types, a crystal plasticity formulation
which is completely based on dislocation densities should yet be developed. This gives
also the opportunity to consider substructuring inside the grains, which is believed to
dominate strain hardening at intermediate strains.
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CHAPTER THREE

Single crystal model
application to constrained simple shear1

Abstract / A strain gradient dependent crystal plasticity approach is presented to model the
constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to
be capable of predicting scale dependence, the heterogeneous deformation-induced evolution
and distribution of geometrically-necessary dislocations (GND’s) are incorporated into the
phenomenological continuum theory of crystal plasticity. Consequently, the resulting bound-
ary value problem accommodates, additional to the ordinary stress equilibrium condition,
a condition which sets the additional nodal degrees of freedom –the edge and screw GND
densities– proportional (in a weak sense) to the gradients of crystalline slip. Next to this direct
coupling between microstructural dislocation evolutions and macroscopic gradients of plastic
slip, another characteristic of the presented crystal plasticity model is the incorporation of the
GND-effect, which leads to an essentially different constitutive behaviour than the statistically-
stored dislocation (SSD) densities. The GND’s, by their geometrical nature of locally simi-
lar signs, are expected to influence the plastic flow through a non-local back-stress measure,
counteracting the resolved shear stress on the slip systems in the undeformed situation and
providing a kinematic hardening contribution. Furthermore, the interactions between both
SSD and GND densities are subject to the formation of slip system obstacle densities and ac-
companying hardening, accountable for slip resistance. As an example problem and without
loss of generality, the model is applied to predict the formation of boundary layers and the ac-
companying size effect of a constrained strip under simple shear deformation, for symmetric
double slip conditions.

3.1 Introduction

This chapter focuses on the constitutive behaviour of FCC metals under large deforma-
tion, with an explicit emphasis on a physically based incorporation of plastic strain gra-

1This chapter is reproduced from Evers et al. (2003a).

27



28 3 SINGLE CRYSTAL MODEL: APPLICATION TO CONSTRAINED SIMPLE SHEAR

dient effects. Generally speaking, gradients of plastic deformation on the scale of the
microstructure may arise due to any externally applied gradients of plastic slip, associ-
ated with a macroscopically imposed non-uniform deformation field. But even if the
macroscopically imposed deformation field is uniform in the context of the classical con-
tinuum theory, due to the presence of grain boundaries (Becker and Panchanadeeswaran,
1995), microscopically heterogeneous deformation structures may arise. In both cases,
one could speak of a non-uniform deformation at a small length scale characterising the
heterogeneity of the material. For plastic deformations, this is the length scale associated
with dislocation structures (Needleman and Gil Sevillano, 2003), causing the plastic flow
to be size dependent, with an increasing hardening for decreasing grain or specimen
sizes. Additionally, a possible mechanism for the occurrence of heterogeneous deforma-
tion is the formation of dislocation structures at large strains, which is beyond the scope
of this work.

The non-uniform plastic deformations give rise to the development of so-called
geometrically-necessary dislocation (GND) densities (Ashby, 1970), which are required to
preserve crystallographic lattice compatibility. The more general concept of dislocations
constitutes the underlying basis for the phenomenological description of single crystal
plasticity, where the plastic deformation, carried by crystallographic slip on the distinct
slip planes, is inherently caused by the flow of so-called statistically-stored dislocations
(SSD’s). Of the total dislocation density, the GND density is defined as the minimum
density that is required to accommodate a given strain gradient, and the SSD density
is just the remainder (see also Gao and Huang, 2003). However, the GND density can
equally well be considered as the local surplus of a certain sign (i.e. positive or negative)
of the total dislocation density.

Herewith, one of the two characteristics of GND’s is indicated, namely they do not di-
rectly contribute to plastic straining in the way the SSD’s do, but they originate as a result
of spatial plastic strain variations (cases of non-zero net Burger’s vector). Their second
characteristic is the fact that, as a consequence of their task of accommodating lattice
curvatures, within a length scale substantially larger than their spacing, they have equal
orientations, which is denominated as having equal dislocation signs. Whereas the SSD’s
do not contribute to any spatial inhomogeneities at that length scale, their signs per defi-
nition cancel out at the continuum level and therefore are not taken into consideration.

In practice, it is impossible to identify an individual dislocation as being geometrically
necessary or not, and to detect the switching of specific SSD’s to GND’s and vice versa.
Moreover, each dislocation locally accommodates a plastic strain gradient and leads to a
local lattice curvature, but the SSD and GND measures –their densities– are really based
on the properties of a population of dislocations within a certain volume. Therefore,
of all dislocations present in the material, one can define the density of both groups by
their characteristics as described above and use these quantities as input parameters in
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the SSD and GND density based crystal plasticity model at issue, together with their
specific distinct influences on the constitutive behaviour. In such a way, the discrete
atomic structure of metals is described by a continuum theory in a homogenised fashion
without disregarding the governing physical processes at the atomic scale.

Several strain gradient models have been developed in order to capture scale size effects
(e.g. Aifantis, 1987; Fleck et al., 1994; Fleck and Hutchinson, 1997; Shu and Fleck, 1999;
Gao et al., 1999; Huang et al., 2000). Such approaches introduce an intrinsic mate-
rial length scale in an analytical plasticity formulation, thereby enabling the prediction
of e.g. particle size effects (Ashby, 1970), indenter size effects (Nix and Gao, 1998; Gao
et al., 1999) and size effects under micro-torsion (Fleck et al., 1994). The underlying
physics is sometimes more directly related to the generation and distribution of disloca-
tions (Groma, 1997; Gao et al., 1999) or to the plastic or elastic incompatibilities (Dai
and Parks, 1997; Dai, 1997; Steinmann, 1996; Sluys and Estrin, 2000; Acharya, 2001;
Bassani, 2001; Gurtin, 2002). However, approximations and limitations are often met
as two-dimensional idealisations of double slip, the consideration of global strain gradi-
ents instead of intragranular strain gradients, and the evaluation of global incompatibility
measures (the curl of the elastic or plastic deformation gradient tensor) instead of slip sys-
tem related ones (e.g. Acharya and Beaudoin, 2000; Acharya, 2001; Evers et al., 2002).
Moreover, the GND’s –or at least their influences– are superimposed on the hardening
or slip resistance, disregarding their distinct physical contribution compared to SSD’s.
On the other hand, discrete dislocation predictions are increasingly capable of simulat-
ing scale dependent behaviour (Shu et al., 2001; Bassani et al., 2001; Bittencourt et al.,
2003). The numerical benchmark analyses of simulating a constrained strip under sim-
ple shear for the case of double slip (Shu et al., 2001; Bittencourt et al., 2003), as well as
similar simulations performed by Svendsen (2003), are here used to compare the present
SSD and GND density based crystal plasticity model to existing theories.

Conventional homogeneous constitutive models, such as published by Bronkhorst et al.
(1992) and Kalidindi et al. (1992), fail to accurately predict scale dependent behaviour. In
such local continuum crystal plasticitymodels, no explicit attention is paid to the presence
of strain gradients and no absolute length scale enters the formulations. The presence,
motions, and interactions of dislocations are not explicitly recognised. Their effects are
often modelled indirectly by a phenomenological flow rule and hardening evolution, for
which it is implicitly assumed that the accumulation of SSD’s is the (only) driving force,
leaving any long-range effects unconsidered. Notwithstanding, also in such conventional
local plasticity theories strain gradients arise, however, these are not considered to induce
a GND population, which is the required additional assumption that leads to a size effect.
In this chapter, a phenomenological theory of plastic flow (adopted from Evers et al.,
2002) is extended by introducing the strain gradient related production of GND’s, in
order to be able to predict size dependent behaviour under global as well as intragranular
strain gradients.
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During the process of plastic deformation, dislocations have to overcome both short-
range and long-range obstacles (Kocks et al., 1975). For FCC metals, the primary short-
range barriers are other dislocations which intersect the slip plane and impede themotion
of gliding dislocations. The evolution of SSD’s during crystallographic slip increases the
number of short-range interactions and accordingly results in isotropic hardening of the
metal. Furthermore, the absolute GND densities equally well contribute to this short-
range effect. The resistance to crystallographic slip due to short-range obstacles can be
overcome by thermal activation, whereas effect of the long-range obstacles is essentially
independent of the temperature, and can be overcome with the aid of the applied resolved
shear stress (Nemat-Nasser et al., 1998). It is recognised in this work that the GND’s are
responsible for the long-range contribution. They originate from any macroscopically in-
homogeneous plastic deformation after removal of external loads, a scale dependent effect
which was first quantified by Nye (1953). A non-uniform GND distribution brings about
additional residual stresses, entering the formulations through so-called back-stress con-
tributions, counteracting the local resolved shear stress and therefore obstructing the
crystallographic slip in an essentially different fashion (long-range effects provide a kine-
matic hardening). This fully complies with the statement of Mughrabi (2001) that a sim-
ple superposition of the GND density on the SSD density does not suffice for an accu-
rate modelling of scale dependent behaviour. The above outlines the main differences
of the presented framework compared to the modelling of length scale effects in crystal
plasticity by e.g. Dai (1997), Shu and Fleck (1999), and Acharya and Beaudoin (2000).
Moreover, Steinmann (1996), Gurtin (2002), and Cermelli and Gurtin (2002) also make
a discrepancy of dislocation contributions to different types of hardening, based on ther-
modynamical considerations.

The SSD densities are governed by a differential equation, covering both the generation
and annihilation of SSD’s on each slip system. Annihilation events take place when dis-
locations of opposite sign meet if the distance between them is smaller than a certain
critical value, i.e. the annihilation length (Essmann and Mughrabi, 1979). Furthermore,
the strength differences of the various dislocation junctions are also taken into account
(Franciosi and Zaoui, 1982). It has been shown by Tabourot et al. (1997) that the evolution
law at hand, in combination with the applied hardening by short-range interactions, ade-
quately describes the first three hardening stages of copper. On the other hand, the GND
evolution is coupled –in a finite element context– to the incompatibility of the plastic
deformation by an expression which relates the nodal GND densities to the appropriate
gradients of crystalline slip. With knowledge of the crystalline orientation in relation to
the plastic strain gradients, the type of dislocation (edge or screw) needed to maintain
lattice continuity is also determined. The framework is suitable for incorporating any
number or type (edge or screw) of dislocations, depending on the number of existing slip
systems.
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As all of the relations in the resulting framework are based on physical considerations,
the corresponding material parameters have a physical meaning. The intrinsic material
length scale is the most fundamental quantity characterising plastic deformation in a
crystalline material, i.e. the length of the Burger’s vector. One could argue that, for
polycrystals, the grain size is equally well a basic –or secondary– length scale, yet the
present model is intended to be used on a subgrain level, where all grains are individually
discretised, and the grain boundaries are modelled as described above. This allows for
the occurrence of strain gradients, the development of which depends on the grain size,
the grain boundary interactions, and the lattice misfit. Therefore, that secondary length
scale does not explicitly enter the model, yet it enters the simulations. In the test problem
of this contribution, the height of the constrained strip serves as the secondary length
scale.

The chapter is organized as follows. First, the constitutive crystal plasticity framework
is presented in Section 3.2.1. In that framework, an extended slip law is introduced to
enable the account for short- and long-range effects. These effects, i.e. the slip system
strength and the back-stress contributions, both being input variables for the extended
slip law, are determined in Section 3.2.2. This also involves a newly developed derivation
of the particular back-stress relations, which is considered in more detail. Subsequently,
the relations for determining the necessary (edge) SSD’s and (edge and screw) GND’s are
presented in Section 3.2.3. Next, the finite element formulation of the entire framework
is outlined in Section 3.3. Until that point, all formulations are suitable for FCC metals
with 12 slip systems in a 3D setting. Finally, in Section 3.4, the FEM implementation is
applied to simulate the mechanical behaviour of a constrained strip under plane strain
simple shear, an example problem for which the model is reduced to a two slip system
configuration. For this particular example, comparison with published results is possible.

3.2 Constitutive framework

3.2.1 Fundamentals

The kinematics adopted in this chapter is commonly used in the field of crystal plasticity.
The basic feature is the distinction between two physical mechanisms, represented by
the multiplicative decomposition of the deformation gradient tensor into an elastic and a
plastic part (Lee, 1969)

F = Fe · Fp, (3.1)

where Fe comprises the small lattice deformation and a possibly large rigid body rota-
tion of the intermediate configuration (Mandel, 1974), which is applied to arrive at the
deformed configuration. The intermediate (or relaxed) configuration results from the
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isochoric and externally stress-free deformation of the reference configuration by Fp. It
is assumed that the latter part results solely from continuous plastic shearing (driven and
obstructed by dislocations) on well-defined slip planes in well-defined slip directions. For
FCC metals, 12 favourable (octahedral) systems can be characterised by the Miller in-
dices {111}〈110〉, where each systemα (α = 1, 2, . . . , 12) is represented in the reference
configuration by the two time-independent orthonormal vectors mα

0 and nα0 , the slip di-
rection and slip plane normal, respectively. Now, the evolution of the macroscopic plastic
deformation can –by definition– be expressed as the superposition of all crystallographic
slip rates γ̇α (Rice, 1971)

Ḟp = Lp · Fp, Lp = ∑
α

γ̇α Pα
0 , Pα

0 ≡ mα
0 n

α
0 , (3.2)

where Lp is the plastic velocity gradient tensor and Pα
0 is known as the non-symmetric

Schmid tensor.

With respect to the intermediate configuration, the elastic second Piola-Kirchhoff stress
measure τ ≡ det (Fe) F−1

e ·σ · F−T
e is taken to be related to its work conjugated elastic

Green strain measure Ee through

τ = 4C : Ee, Ee ≡ 1
2

(Ce − I) , Ce ≡ FTe · Fe, (3.3)

whereσ is the Cauchy stress tensor, Ce is the elastic right Cauchy-Green tensor and I is
the second-order unit tensor. The fourth-order isotropic elasticity tensor 4C is defined by
Young’s modulus E and Poisson’s ratio ν. For further details regarding the constitutive
setting, the reader is referred to Evers et al. (2002).

The fundamental connection between the single crystal basis and the underlying disloca-
tion density development is realized by relating the plastic shearing rate γ̇α of each slip
system to the corresponding “effective” shear stress τα

eff and the actual deformation resis-
tance sα through a viscoplastic power law (Hutchinson, 1976; Peirce et al., 1982) which
has been reformulated in consideration of the contribution by Nemat-Nasser et al. (1998)

γ̇α = γ̇0

( |τα
eff|
sα

) 1
m

exp
{
−∆Gα

kT

}
sign(τα

eff), (3.4)

where γ̇0 and m are material parameters representing the reference plastic strain rate
and the rate sensitivity exponent of the original power law function, respectively. Em-
ploying small values of m implies an almost purely plastic behaviour, where γ̇α remains
negligible unless τα

eff is close to sα . The extension of the powerlaw by the exponential
multiplier, varying in the range of 0 to 1, characterises the thermally-induced dislocation
motion. Moreover, it is expected to effectuate an improved description of low temperature
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behaviour (Harder, 1999). In that exponential multiplier, k is Boltzmann’s constant and
T is the absolute temperature. The activation energy ∆Gα is given by (see also Kocks
et al., 1975; Kocks, 2001)

∆Gα = G0

(
1− |τα

eff|
sα

)
. (3.5)

Here, the threshold shear stress, required by a dislocation to pass a barrier without any
assistance from thermal activation, is represented by the slip system strength sα . Further-
more, G0 is the total free energy needed to overcome the barrier without the aid of external
work, here regarded to be a constant. The accompanying shape of the energy-barrier pro-
file for this process can also be included in this formulation but remains unconsidered
here.

The resolved effective stress τα
eff is regarded to be the driving force behind the movement

of dislocations on slip systemα. It is defined as the difference between the resolved shear
stress τα (also known as “Schmid stress”) and the resolved back-stress τα

b

τα
eff = τα − τα

b , (3.6)

which are taken as the projections of the macroscopic stress tensor τ (Asaro and Rice,
1977; Bronkhorst et al., 1992) and the back-stress tensor τb (Harder, 1999) on slip system
α, respectively

τα ≡ τ : Pα
0 (3.7)

τα
b ≡ τb : Pα

0 . (3.8)

The above leaves the slip system strengths and the back-stress tensor unspecified. As
already mentioned in the introduction, the back-stress τα

b (i.e. τb) should include the
influence of long-range stresses that are caused by GND density variations, whereas the
remaining variables, the slip resistances sα, are a measure for the impeding of disloca-
tion movement by the formation of short-range interactions between all dislocations, i.e.
both SSD’s and GND’s. The most obvious difference with respect to e.g. the model of
Harder, is the consideration of geometrically induced GND densities in the back-stress
formulation, instead of using a phenomenological evolution law. It is believed that it is
essential to properly incorporate the geometric characteristics and effects of the GND’s
in the back-stress relations, as motivated by the experimentally observed strain gradient
dependence. Note that these geometrical considerations are not applicable to the SSD’s,
as their density implies both positive and negative dislocations, with a length scale of
variation considerably smaller and therefore having no net impact on a resulting stress.
The precise determination of these variables as a function of the dislocation densities is
discussed in the next subsection.
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For a certain deformation state, the macroscopic stress depends on that state modulo the
plastic part (Eqs. (3.1) and (3.3)). This plastic part is coupled to the slip rates through
Eq. (3.2), where the slip rates are again coupled to the macroscopic stress through
Eqs. (3.4), (3.6) and (3.8), as well as to the GND density variations through τα

b , and to
the SSD and GND densities through sα (Section 3.2.2). As discussed in Section 3.2.3, the
GND densities are coupled to the crystallographic slip distribution, and the SSD density
rates are coupled to the slip rates and the absolute SSD densities. Therefore, the evolution
of stress, strain, and deformation state with the deformation history are strongly coupled.
This entire framework is solved implicitly (combined with time integrations of the rate
formulations in Eqs. (3.4) and (3.17) by use of the trapezoidal scheme), partly on the inte-
gration point level and partly on the finite element (subgrain) level, as will be outlined in
Section 3.3.

3.2.2 Dislocation interactions

In this subsection, it is assumed that the SSD and GND densities, as well as the spatial
distribution of the latter, are known. The precise determination is addressed in Sec-
tion 3.2.3. Moreover, it is implicitly assumed that all SSD densities are of the edge-type,
whereas for the GND densities, both edge- and screw-types are evaluated. No dislocations
of a mixed-type are considered. This implies that for an FCC metal, 12 edge SSD den-
sities are taken into account, next to 12 edge and 6 screw GND densities (Kubin et al.,
1992). Each screw dislocation is permitted to move on either of the two slip planes in
which it can reside. More generally, the total GND distribution may be considered to be
composed of two populations. The screw densities represent the fraction of the popula-
tion that may cross-slip, while the edge densities represent the fraction of the population
that cannot cross-slip (Arsenlis and Parks, 2002). A complete listing of the different dis-
location densities, including their type, orientation, and corresponding slip system, is
given in Table 3.1.

Dislocations travel in the slip direction mα
0 in order to carry the crystallographic slip.

Furthermore, if the dislocation line direction is parallel to pα0 (where pα0 = mα
0 × nα0 ),

the dislocation is called pure edge, and if it is parallel tomα
0 , the dislocation is pure screw.

In both cases, the Burger’s vector is directed parallel to mα
0 , where the case whether or

not this is in the same or in the opposite direction defines the sign of that dislocation
to be positive or negative, respectively. This corresponds to the Burger’s circuit around
the dislocation in the deformed situation to be drawn in the direction clockwise along the
dislocation line direction, and the Burger’s vector closing this circuit directed from the
starting point to the end point.
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Table 3.1 / List of indices and vectors for dislocation densities and slip systems used in
the simulation of FCC metals; the Schmid and Boas notation is discussed in Franciosi
and Zaoui (1982); b is the length of the Burger’s vector b.

Dislocation density
ξ type

Slip sys-
temα m or bb n Schmid

& Boas

1 edge 1 1√
2
[1̄10] 1√

3
(111) B5

2 edge 2 1√
2
[101̄] 1√

3
(111) -B4

3 edge 3 1√
2
[01̄1] 1√

3
(111) B2

4 edge 4 1√
2
[1̄1̄0] 1√

3
(11̄1̄) A6

5 edge 5 1√
2
[101] 1√

3
(11̄1̄) -A3

6 edge 6 1√
2
[011̄] 1√

3
(11̄1̄) A2

7 edge 7 1√
2
[110] 1√

3
(1̄11̄) -D6

8 edge 8 1√
2
[1̄01] 1√

3
(1̄11̄) -D4

9 edge 9 1√
2
[01̄1̄] 1√

3
(1̄11̄) D1

10 edge 10 1√
2
[11̄0] 1√

3
(1̄1̄1) -C5

11 edge 11 1√
2
[1̄01̄] 1√

3
(1̄1̄1) -C3

12 edge 12 1√
2
[011] 1√

3
(1̄1̄1) C1

13 screw – 1√
2
[110] 1√

3
(11̄1̄) or 1√

3
(1̄11̄) -A6 or -D6

14 screw – 1√
2
[101] 1√

3
(11̄1̄) or 1√

3
(1̄1̄1) -A3 or C3

15 screw – 1√
2
[011] 1√

3
(1̄11̄) or 1√

3
(1̄1̄1) -D1 or C1

16 screw – 1√
2
[1̄10] 1√

3
(111) or 1√

3
(1̄1̄1) B5 or C5

17 screw – 1√
2
[101̄] 1√

3
(111) or 1√

3
(1̄11̄) -B4 or D4

18 screw – 1√
2
[01̄1] 1√

3
(111) or 1√

3
(11̄1̄) B2 or -A2

Short-range effect

In contrast to many “conventional” crystal plasticity models, which relate the slip resis-
tance to the history of plastic shear on all slip systems in a quite phenomenological fash-
ion, here, the movement of mobile dislocations on slip system α is impeded by point
obstacles, the strength and density of which are determined by the type and number of
short-range interactions that might occur between dislocations of coplanar or intersect-
ing slip systems. Both the SSD and GND dislocations (on all slip systems) are considered
to participate in this process of mutual interactions, and for the determination of the ef-
fective density of obstacles through a set of interaction coefficients, both their (absolute)
densities are added. The classification of the experimentally determined entries of the
interaction matrix Aαξ was performed by Franciosi and Zaoui (1982), who distinguish
between dislocations belonging to the same slip system (interaction coefficient a0), fail to
form junctions (interaction coefficient a1), form Hirth Locks (interaction coefficient a1),
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co-planar junctions (interaction coefficient a1), glissile junctions (interaction coefficient
a2), or sessile Lomer-Cottrell locks (interaction coefficient a3), with a0 ≤ a1 ≤ a2 ≤ a3.
The slip system strength sα is proportional to the square root of the effective obstacle
density following Ashby (1970)

sα = cµb
√

∑
ξ

Aαξ
∣
∣
∣ρξ

SSD

∣
∣
∣+ ∑

ξ

Aαξ
∣
∣
∣ρξGND

∣
∣
∣, (3.9)

where c is a constant ranging from 0.05 to 2.6 for different materials (Lavrentev, 1980),

µ is the shear modulus and b is the length of the Burger’s vector. Furthermore, ρξSSD and

ρ
ξ
GND stand for the SSD density (ξ = 1, 2, . . . , 12 for FCC metals) and GND density (ξ =
1, 2, . . . , 18 for FCC metals), respectively. As the dislocation profiles on the slip systems
are unknown, the interaction coefficients are solely based on the dislocation Burger’s
vectors. This especially holds for the 6 screw-type GND densities, whose slip plane is
ambiguous (cf. Table 3.1).

Long-range effect

As mentioned already in the introduction, the contribution of the GND’s to the consti-
tutive response of FCC metals is related to the spatial lattice curvature distribution and
coherent stress concentrations, obstructing crystallographic slip in a way which is sub-
stantially different from the influence (cf. Section 3.2.2) of the short-range barriers to
dislocation movement as induced by the densities of all dislocations (SSD’s and GND’s).
The effect of the heterogeneity in the distribution of GND’s in Eqs. (3.4–3.6) is taken
into account through the back-stress tensor in Eq. (3.8), which is determined next. To-
gether with the GND densities (cf. Section 3.2.3), the back-stress tensor is defined in the
reference configuration.

First, the attention is focused on a slip system α and its set of orthonormal vectors
(mα

0 , n
α
0 , p

α
0 ), which serves as a base coordinate system and where the evaluation point

for determining the back-stress is situated in the origin. The required stress formulas
have been derived by Cottrell (1961) and are based on linearly elastic representations of
edge and screw dislocations in a fictitious continuum. An individual positive edge (i)
or screw dislocation ( j) at position x0 causes a shear stress on each slip system α in the
evaluation point equal to

(
τα
e

)i = − µb
2π (1− ν)

xα0
(
xα0

2 − yα0
2
)

(
xα0

2 + yα0
2
)2 (3.10)

(
τα
s

) j =
µb
2π

zα0(
zα0

2 + yα0
2
) , (3.11)
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where xα0 = mα
0 · x0 , yα0 = nα0 · x0 , and zα0 = pα0 · x0 , respectively. It is assumed here

and in the following, that the remote dislocations are situated on a slip system with the
same lattice orientation as the slip system α under consideration and, therefore, a lattice
rotation between the base coordinate system and the remote dislocation orientation is
disregarded. This assumption might seem contradictory to the entire motivation of the
GND’s as being present to account for such rotations, however the current reasoning is
performed in the (imaginary) undistorted reference configuration. Both stresses decrease
with increasing distance from the evaluation point and become infinite as that distance
approaches zero (which is in fact never the case in reality, because a crystal is a discrete
atomic structure, not a continuum).

For the understanding of the entire back-stress concept on slip system α, first, consider
the case of a uniform lattice curvature with respect to the undeformed configuration. In
that case, the GND’s are also uniformly distributed (cf. Section 3.2.3) and, consequently,
the resulting long-range shear stress in a single material point as caused by the uniform
field of GND’s around that point completely cancels out. It is therefore not the GND
density that contributes to a resulting long-range shear stress, but its spatial variation (in
the reference configuration).

To quantify this dependence, a population of individual GND’s within a circular region of
radius R around a material point is considered to participate in the resulting long-range
shear stress on slip system α. The number of dislocations and their distribution within
that region depends on the local dislocation density, which is approximated to be spatially
linear. Herewith, it is deemed ambiguous to consider linear dislocation density varia-
tions in the dislocation line directions (i.e. pα0 and mα

0 for edge and screw dislocations,
respectively), whereas any linear variations in the normal direction nα0 appear to vanish.
After multiplying Eqs. (3.10) and (3.11) with this local dislocation density approximation,
straightforward analytical integration over the circular area then leads to the following
resulting long-range shear stress relations for (non-uniform) edge and screw dislocation
density fields, respectively

τα
e =− µbR2

8 (1− ν) ∑
ξ

dαξ
e

(
∇0ρ

ξ
GND ·mα

0

)
(3.12)

τα
s =

µbR2

4 ∑
ξ

dαξ
s

(
∇0ρ

ξ
GND · pα0

)
, (3.13)

where dαξ
e and dαξ

s equal−1, 0, or 1, according to the way the dislocation typeξ spatially
relates to the slip systemα (cf. Table 3.1)

dαξ
e =

{
1 forα = ξ = 1, 2, . . . , 12
0 for all other cases

(3.14)

dαξ
s =






−1 for d(4,13)
s , d(6,18)

s , d(8,17)
s , d(9,15)

s , d(10,16)
s , d(11,14)

s

1 for d(1,16)
s , d(2,17)

s , d(3,18)
s , d(5,14)

s , d(7,13)
s , d(12,15)

s

0 for all other cases.
(3.15)
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The only parameter which remains to be chosen is the radius of the evaluation area, R,
which is considered to be a material parameter. Note that for both Eqs. (3.12) and (3.13),
changing the sign of the dislocation density gradient changes the sign of the resulting
stress, corresponding to either counteracting crystallographic slip or promoting. More-
over, only the resulting shear stresses are taken into consideration, apart from any normal
stresses. Besides, the mutual influences of all remaining edge or screw GND’s in the dis-
location field are disregarded, and so are any influences of the SSD’s and the dislocations
on other slip systems thanα.

In order to account for the macroscopic cross-effect of a shear stress acting on one system
to all other slip systems, the scalar values of τα

e and τα
s are exploited to compose a global

back-stress tensor (Harder, 1999)

τb = ∑
α

− (
τα
e + τα

s

) (
Pα
0 + Pα

0
T
)
, (3.16)

where the minus sign is included due to the fact that, here, the resulting shear stresses of
the edge and screw dislocation fields are converted to a back-stress measure, cf. Eq. (3.6).
The resulting shear stresses may develop independently on all slip systems, yet, the re-
sulting resolved back-stresses after projecting through Eq. (3.8) turn out to be dependent,
i.e. the effect of a shear stress on slip system α has the largest effect (one-to-one) on that
same slip system and has a smaller effect on the other slip systems.

When considering again the essential starting point of this dislocation density based crys-
tal plasticity model, i.e. Eq. (3.4), it can be concluded that both the slip resistance and the
effective stress can be determined from the SSD and GND density fields. The next sub-
section gives an outline of the evaluation of these fields.

3.2.3 Dislocation density evolutions

SSD density

The determination of the slip system strength according to Eq. (3.9) requires the SSD
density distribution as one of the input variables. As already pointed out in the intro-
duction of the previous subsection, it is assumed that for modelling the main physical
processes, the evaluation of solely edge SSD’s suffices, the densities of which are there-
fore indexed by slip system indicating α’s instead of the ξ’s in Eq. (3.9). For these edge
SSD densities, a commonly used evolution equation is proposed

ρ̇
ξ
SSD =

1
b

(
1

dαξ
e Lα

− 2ycρ
ξ
SSD

)

dαξ
e

∣∣γ̇α∣∣ , ρ
ξ
SSD (t = 0) = ρSSD 0

, (3.17)

which is a generalisation of the relation originally proposed by Essmann and Mughrabi
(1979). This equation is derived from the balance between accumulation and annihilation
rates of dislocation densities, up to the point of saturation taking place (i.e. the point
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where the average distances between the dislocations are of the same order of magnitude
as the annihilation length). Note that the sign of the slip rate has no influence on the sign
of the SSD density, which is considered to remain always positive.

For the annihilation rate (second term in the right-hand side of Eq. 3.17), thermal recovery
is neglected because of the moderate temperature range for which this framework is
fit. Instead, the annihilation is described by the dynamic recovery term in Eq. (3.17). It
is assumed to be controlled by a constant yc. This material parameter represents the
critical annihilation length, i.e. the average distance beneath which two dislocations of
opposite sign cancel each other out spontaneously by decomposition into invisible debris
(Essmann and Mughrabi, 1979). Furthermore, only annihilation between statistically-
stored dislocations is considered.

The accumulation rate (first term in the right-hand side of Eq. 3.17) is linked to the average
dislocation segment length of mobile dislocations (SSD’s) on system α, Lα , which is
determined by the microstructure, i.e. the current dislocation state, through (Tabourot
et al., 1997; Arsenlis and Parks, 2002)

Lα =
K

√

∑
ξ
Hαξ

∣
∣
∣ρξ

SSD

∣
∣
∣+ ∑

ξ
Hαξ

∣
∣
∣ρξGND

∣
∣
∣
. (3.18)

Here, K is a constant and the coefficients Hαξ indicate the mutual immobilisation be-
tween dislocations of different slip systems. The same convention as for the coefficients
Aαξ in Eq. (3.9) applies here, which is based on the type of interactions anticipated
between the gliding SSD densities and the forest SSD and GND densities. Nevertheless,
the values of the coefficients Hαξ are independent of the values in the strength interaction
matrix Aαξ . In this fashion, when the forest dislocation density increases, more sections
of the mobile dislocation loops may get trapped and the average length of a dislocation
segment decreases.

GND density

In order to obtain a closed set of constitutive relations, the geometrically-necessary edge
and screw dislocation densities remain to be determined. These are directly and geo-
metrically coupled to the gradients of plastic slip and are computed in the undeformed
situation

ρ
ξ
GND = ρ

ξ
GND 0

− 1
b ∑

α
dαξ
e

(∇0γ
α ·mα

0

)
+
1
b ∑

α
dαξ
s

(∇0γ
α · pα0

)
, (3.19)

based on the observations by Nye (1953), Kröner (1962), Ashby (1970) and the exten-
sion to three dimensions by Arsenlis and Parks (2002). In agreement with the model of
Ashby, any gradient of slip in the direction normal to the glide plane (nα0 ) does not result
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in the formation of GND’s, i.e. those gradients do not affect the lattice. The initial GND

density ρ
ξ
GND 0

will be used in future work to specify initial grain boundary dislocation
(GBD) densities, without disturbing the initial plastic strain field. Here, the coefficients
dξα
e and dξα

s are again given by Eqs. (3.14) and (3.15), again indicating the relations be-
tween slip systemsα and dislocation densities ξ, related to the specifications in Table 3.1.
Each of the 6 screw dislocation densities is determined by addition of the appropriate slip
gradients on both the glide planes in which they can reside. This is in analogy with the
assumption in Section 3.2.2 that the screw dislocations are free to cross slip and their
corresponding slip plane remains an ambiguous choice.

It is clear that the formulation above leads to a dislocation density with a certain polar-
ity, depending on the direction of the plastic gradients in relation to the crystallographic
orientation, all independent of the mechanism that actually caused the strain gradient.

3.3 Finite element implementation

In this section, the incorporation of the presented theoretical framework into a finite
element formulation is discussed, in order to systematically compute an approximate
solution of the entire set of strongly non-linear and coupled equations, for arbitrary ge-
ometries and boundary conditions. As can be seen in Eq. (3.19), the spatial variation of
crystallographic slip throughout the domain is required in order to determine the GND
densities. Moreover, the evolution of the crystallographic slip field is again governed by
the spatial gradients of the GND densities through Eqs. (3.4), (3.6), (3.8), (3.16), (3.12),
and (3.13). When, next to the deformation gradient, the GND density field is known,
all relevant quantities can be determined. The GND densities are therefore chosen to
be additional nodal degrees of freedom, accompanied by just as many additional state
equations as given by Eq. (3.19).

In order to be able to use C0-continuous finite elements, the differentiability require-
ments on the GND densities over the element boundaries have to be relaxed, as usually
done for the primary nodal degrees of freedom, i.e. the displacements. Accordingly, a
similar –geometrically non-linear– approach as commonly used to solve the stress equi-
librium condition is adopted, which is described next.

The first Piola-Kirchhoff stress tensor T ≡ det (Fe)σ · F−T is used for specifying stress
equilibrium in the undeformed situation

∇0 · TT = 0. (3.20)

Besides, Eq. (3.19) is generalised to

ρ
ξ
GND = ρ

ξ
GND 0

+ dξα
0 ·∇0γ

α ∀ ξ , (3.21)

in which Einstein’s summation convention is used and where the indices dαξ
e and dαξ

s ,
the vectors mα

0 and pα0 , the factor
1
b , and the corresponding signs are all properly stored

in the vectors dξα
0 .
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In order to obtain a variational form of the governing equations given above, they aremul-
tiplied by weighting functions wu and wξ

ρ , respectively, and integrated over the volume
V0 of the body in its reference (undeformed) configuration. Next, the divergence theo-
rem is applied and a Newton-Raphson iterative procedure is introduced, which provides

for the iterative corrections (δT , δρ
ξ
GND, and δγα) to be expressed by linearised functions

of the solution estimates (T∗, ρ
ξ
GND∗ , and γα∗ ) of the previous iteration

∫

V0

(∇0wu)
T : δTT dV0 =

∫

S0

wu · t∗ dS0 −
∫

V0

(∇0wu)
T : TT

∗ dV0 (3.22)

∫

V0

[
wξ

ρ δρ
ξ
GND +

(
∇0wξ

ρ

)
· dξα

0 δγα
]
dV0 =

∫

S0

wξ
ρ Γξn∗ dS0 − . . .

∫

V0

[
wξ

ρ

(
ρ
ξ
GND∗ − ρ

ξ
GND0

)
+
(
∇0wξ

ρ

)
· dξα

0 γα
∗
]
dV0 ∀ ξ ,

(3.23)

where t∗ is the current traction with respect to the free surface S0 and Γξn∗ is a mea-
sure for the crystallographic slip in the outward normal direction of S0. Either these
additional boundary conditions have to be specified, or the displacements and dislocation
density values at S0 have to be assigned, corresponding to Neumann (natural) or Dirichlet
(essential) boundary conditions, respectively.

The volume V0 of the body is now subdivided in finite elements, where the unknown
fields of the nodal variables and the weighting functions within each element (e) are ap-
proximated by their (global) nodal values multiplied by interpolation functions (stored
in Ne

u and Ne
ρ), following the standard Galerkin approach. The contributions of all el-

ements (having initial volume Ve
0 and boundary surface Se0) are added and, taking into

account that both equations must be satisfied for all admissible weighting functions, this
results in a system of equations constituting the discrete force balance, completed by the
discretised GND density evolution conditions

∑
e

∫

Ve
0

Be
T

u δT
~
e dVe

0 = ∑
e

∫

Se0

NeT
u t~

e
∗ dS

e
0 − ∑

e

∫

Ve
0

Be
T

u T
~
e
∗ dV

e
0 (3.24)

∑
e

∫

Ve
0

[
NeT

ρ Ne
ρ δρ

~GND
+ Be

T

ρ De δγ
~
e
]
dVe

0 = ∑
e

∫

Se0

NeT
ρ Γ
~
e
n∗ dS

e
0 − . . .

∑
e

∫

Ve
0

[
NeT

ρ Ne
ρ

(
ρ
~
e
GND∗

− ρ
~GND0

)
+ Be

T

ρ De γ
~
e
∗

]
dVe

0,
(3.25)

where Beu and Beρ contain the spatial derivatives of Ne
u and Ne

ρ in the reference config-

uration, respectively. Furthermore, the components and indices of dξα
0 are stored per

element in De and the boundary terms t
~
e
∗ and Γ

~
e
n∗ only have to be specified on element

boundaries Se0 coinciding with the surface of the body S0.
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In the system above, two quantities have not been evaluated yet, i.e. the first Piola-
Kirchhoff stress tensor and the crystallographic slips. However, based on the iterative
(nodal) values for the displacements u

~∗
and the dislocation densities ρ

~GND∗
, their estima-

tions T
~
e
∗ and γ

~
e
GND∗

in the right-hand side can be computed in a straightforward manner
using the constitutive relations presented in Section 3.2, whereas the iterative corrections
in the left-hand side, δT

~
e and δγ

~
e, can be determined by means of consistent linearisation

of that same constitutive framework

δT
~
e = Ce

1 B
e
u δu

~
+
(
Ce
2 N

e
ρ + Ce

3 B
e
ρ

)
δρ
~GND

(3.26)

δγ
~
e = Ce

4 B
e
u δu

~
+
(
Ce
5 N

e
ρ + Ce

6 B
e
ρ

)
δρ
~GND

, (3.27)

where δu
~
and δρ

~GND
are the iterative corrections for the nodal displacement and GND

density values. The required time integration processes of γ̇α in Eq. (3.4) and ρ̇α
SSD in

Eq. (3.17) can be chosen arbitrarily between fully explicit and fully implicit schemes, with-
out disturbing the linearisation.

The entire set of discretised iterative equations to be implemented in a finite element
frame can now be summarised by the following matrix representation

[
Kuu Kuρ

Kρu Kρρ

] [
δu
~δρ

~GND

]
=
[
r
~ur
~ρ

]
, (3.28)

where

Kuu = ∑
e

∫

Ve
0

Be
T

u Ce
1 B

e
u dV

e
0 (3.29)

Kuρ = ∑
e

∫

Ve
0

Be
T

u

(
Ce
2 N

e
ρ + Ce

3 B
e
ρ

)
dVe

0 (3.30)

Kρu = ∑
e

∫

Ve
0

Be
T

ρ De Ce
4 B

e
u dV

e
0 (3.31)

Kρρ = ∑
e

∫

Ve
0

[
NeT

ρ Ne
ρ + Be

T

ρ De (Ce
5 N

e
ρ + Ce

6 B
e
ρ

)]
dVe

0. (3.32)

The columns r
~u

and r
~ρ are equal to the right-hand sides of Eqs. (3.24) and (3.25), respec-

tively. This system is solved by iteratively updating the nodal estimations u
~∗

and ρ
~GND∗

with corrections δu
~
and δρ

~GND
, a process which is repeated until an appropriate conver-

gence criterion is satisfied, i.e. until the right-hand side becomes sufficiently small. Note
that only the first-order derivatives of the primary unknown quantities u

~
and ρ

~GND
ap-

pear in the final set of equations, which indicates that their fields are only required to be
piece-wise differentiable, indeed justifying the use of C0-continuous finite elements.
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3.4 Application

The FEM formulation as described in Section 3.3 has been implemented for plane strain
conditions. For this elaboration, the full three dimensional formulation of the FCC con-
stitutive behaviour presented in Section 3.2 remains unaltered. However, in order to
further decrease the computation time and to compare the present model with non-local
continuum and discrete dislocation approaches as can be found in the literature (Shu
et al., 2001; Svendsen, 2003; Bittencourt et al., 2003), the application in this section is re-
stricted to double slip and self-hardening. Following the discrete dislocation simulations
by Shu et al., only edge dislocations are considered in this case. Additionally, in confor-
mity with these contributions, the numerical analysis concerns the simple (isothermal)
shear of a single crystal strip of thickness H. The plastic deformation (i.e. dislocation
motion or crystallographic slip) is constrained at the upper and lower boundaries, as
graphically represented in Fig. 3.1.
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+
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Figure 3.1 / Geometry and boundary conditions for the simple shear deformation of a
constrained strip of thickness H having two slip systems (with orientations φ1 and φ2
with respect to the x1-direction); on each slip system, the corresponding edge dislocation
signs are depicted.

This boundary-value problem is believed to represent the plastic constraints which are
found at the grain boundaries of a polycrystal, exhibiting the key features associated with
the accumulation of GND’s, i.e. size effects and long-range stresses (Van der Giessen and
Needleman, 2003). Furthermore, whereas the simple shear loading conditions classically
admit the possibility of a homogeneous deformation field, in this particular case, due to
the obstruction of plastic deformation near the walls, plastic strain gradients can develop,
an effect which is locally quite similar to the case of (quasi-)homogeneous deformation of
a polycrystal. Accordingly, in general, the resulting plastic flow is not uniform, as bound-
ary layers develop in which the slip is reduced (i.e. the dislocation motion is hindered).
As the thickness of the boundary layers remainsmore or less the same for a certain mate-
rial, a size effect is expected for various strip heights H. In those boundary layers, a GND
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density profile develops as a result of slip gradients, which are triggered by the micro-
clamping of plastic shear in the direction normal to the walls. This boundary condition

is effectuated by setting the generalised slip contribution in the interface direction, Γξn in
Eq. (3.23), equal to zero for both ξ = 1 and ξ = 2, providing an evident physical interpre-
tation of the non-local boundary conditions (cf. Section 3.3). Moreover, it is qualitatively
similar to the obstruction of any dislocation motion through impenetrable walls at the
top and bottom surface of the strip, a boundary condition which is also applied in the dis-
crete dislocation simulations of Shu et al. (2001). The ensemble of boundary conditions
is given by

u1 = 0, u2 = 0, Γ 1n = 0, Γ 2n = 0 along x2 = 0

u1 = H Γ̇ t, u2 = 0, Γ 1n = 0, Γ 2n = 0 along x2 = H,
(3.33)

where Γ̇ is the prescribed shear rate, taken to be 0.001 s−1 for this particular problem,
and t is time.

Next to the plane strain conditions (no variations in the x3-direction), the strip is supposed
to be infinitely extended in the x1-direction, modelled by means of periodic boundary
conditions for both displacements and GND densities. Resultingly, in order to arrive at
a sufficiently accurate description of any variations in the x2-direction, a 1 × 80 finite
element mesh is used for all heights considered, with square linear elements and full
integration. The mesh size has been validated not to influence the numerical results in a
pathological fashion.

Simulations are performed for double slip with slip system orientations φ1 = 60◦ and
φ2 = 120◦, as well as for strip heights H equal to 10−

11
3 m, 10−

10
3 m, 10−3 m, and 10−

8
3 m

(equivalent to 0.22 mm, 0.46 mm, 1.0 mm, and 2.2 mm, respectively). Furthermore,

the initial GND densities ρ
ξ
GND 0

in Eq. (3.19) are taken to be zero and the temperature in
Eq. (3.4) equals 300 K. Because of the inherent differences of the present framework with
respect to non-local and discrete dislocation theories, distinct material parameters have
to be adopted. As the results will be only compared in a qualitative perspective, instead
of aluminium (Shu et al., 2001), the parameters in Table 3.2 are a double slip and self-
hardening generalisation of the parameters best describing the constitutive response of
FCC copper (12 slip systems).

First, the shear profile along the dimensionless x2-direction is considered for a strip
height equal to H = 0.46 mm in Fig. 3.2a. In order to gain a representative picture
of the actual development of the boundary layer during the deformation, the profiles are
normalised with the corresponding applied macroscopic total shear (Γ = Γ̇ t). Initially,
the boundary layer width clearly increases with ongoing deformation, until it practically
stabilises near Γ = 0.01, approaching a parabolically shaped shear pattern, insensitive
to a further increase of Γ . Such a thickening of the boundary layer during deformation
is consistent with the results of Shu et al. (2001) and Svendsen (2003), but is not pre-
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Table 3.2 / Constitutive parameters of copper, generalised for double slip; partly adopted
from (Evers et al., 2002) or fitted on the data in that work, and partly taken from else-
where (cf. the footed references); the coefficients a0 and h0 are entries on the diagonals

of Aαξ and Hαξ , respectively.

Parameter Magnitude Used in Eq.

Young’s modulus E 144 GPa (3.3)
Poisson’s ratio ν 0.33 – (3.3) (3.10) (3.12)
Reference plastic strain rate γ̇0 0.001 s−1 (3.4)
Rate sensitivity exponenta m 0.05 – (3.4)
Boltzmann’s constant k 1.38× 10−23 J K−1 (3.4)
Reference activation energyb G0 4.54× 10−20 J (3.5)
Strength parameter c 0.3 – (3.9)
Shear modulus µ 54.2 GPa (3.9) (3.10) (3.12)
Burger’s vector lengthc b 0.256 nm (3.9) (3.10) (3.12)

(3.17) (3.19)

Interaction coefficient a0 0.06 – (3.9) (in Aαξ )
Radius GND evaluation area R 1.0× 10−5 m (3.12)
Critical annihilation lengthd yc 1.6 nm (3.17)
Initial SSD density ρSSD 0

7.0× 1012 m−2 (3.17)
Material constant K 26 – (3.18)

Immobilisation coefficient h0 1.0 – (3.18) (in Hαξ )

aTabourot et al. (1997)

bAshmawi and Zikry (2000)

cCuitiño and Ortiz (1992)

dEssmann and Mughrabi (1979)

dicted by simulations using the non-local strain gradient crystal plasticity theory of Shu
and Fleck (1999), where the shape of the distribution is almost insensitive to the shear
level Γ (Shu et al., 2001).

In order to investigate the effect of the strip height, the same normalised shear profile
is plotted for various heights at a fixed total shear of Γ = 0.01 in Fig. 3.2b. The de-
formation inhomogeneity becomes more pronounced at decreasing height and, below
H = 0.46 mm, the boundary layer develops over the full height of the strip. This cor-
responds to the notion that the absolute boundary layer width remains close to constant.
This observation is also in agreement with the findings of Svendsen (2003) and of Shu
et al. (2001), as well as with computations using the non-local plasticity theory of Gurtin
(2002), which has been evaluated for this specific application by Bittencourt et al. (2003).
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Figure 3.2 / Shear profiles along the dimensionless x2-direction; the shear component
F12 of the deformation gradient tensor is normalised by the applied macroscopic shear Γ ,
i.e. the average shear.

When considering the SSD density distributions along the strip height in Fig. 3.3a, an
almost similar curve as the corresponding normalised shear profiles for the same heights
in Fig. 3.2b can be observed, indicating the strong coupling between the SSD evolution
and the crystallographic slip through Eq. (3.17), starting off at the initial value ρSSD 0

near
the walls, where the slip rates stay negligibly small.
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Figure 3.3 / Slip system 1 (φ1 = 60◦) dislocation densities along the dimensionless x2-
direction at a constant shear of Γ = 0.01 for various strip heights H; the results for slip
system 2 (φ2 = 120◦) do not differ significantly.
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On the other hand, the GND density clearly concentrates near the walls in Fig. 3.3b. The
boundary layers accommodating these distinct peaks are comparable to the ones in the
shear profiles in Fig. 3.2b. This perception has also been found in Shu et al. (2001),
where the dislocation density profile –computed from discrete dislocations– for only one
strip size is highlighted. Moreover, again a strong coupling is evident, not with the slip
rates, but with the slip gradients through Eq. (3.19). Note that the SSD density saturates at
the point where the accumulation and annihilation rates become equal, while the GND
density continues to increase with persisting deformation.

The macroscopic shear stress (τ = σ12) is normalised with τ0 = cµb
√
h0ρSSD 0

(cf.
Eqs. (3.9) and (3.17)) and plotted against the applied shear (Γ ) in Fig. 3.4a for various
heights. After a relatively sharp and constant yield point (since there are no gradient ef-
fects in the elastic regime), the normalised stress increases almost linearly with shear,
exhibiting a clearly observable size effect, i.e. higher strengths for smaller H’s.

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

applied macroscopic shear, � (–)

no
rm

al
is

ed
sh

ea
r

st
re

ss
,

τ τ 0
(–

)

H = 0.22 mm
H = 0.46 mm
H = 1.0 mm
H = 2.2 mm
H = ∞ mm

(a) Normalised shear stress τ
τ 0

for
various strip heights H.

0 0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

current crystal plasticity model
discrete dislocation theory     
non−local plasticity theory     

√
d
H or

√
l
H (–)

no
rm

al
is

ed
flo

w
st

re
ss

,
τ F τ 0

(–
)

(b) Normalised flow stress τ
τ 0

versus
several Hall-Petch parameters.

Figure 3.4 / Size dependence of shear stress and flow stress.

In order to gain more insight into this dependence, the normalised flow stress (τF) is

plotted against the so-called “Hall-Petch ratio” (
√

d
H or

√
l
H ) in Fig. 3.4b, where d and

l represent length scales (additional to b and H) specifically related to the model con-
cerned. Here, this length scale is taken to equal the radius of the GND evaluation area,
l = R, indeed having a value substantially larger than the individual dislocation spacing.
Following Shu et al. (2001)2, the flow stress is defined as the value of the shear stress

2In Shu et al. (2001), τ0 represents the mean dislocation nucleation strength and the length scale pa-
rameter d is the slip plane spacing.
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at a macroscopic shear Γ = 0.002. In the figure, also the predictions using the discrete
dislocation theory and the non-local plasticity theory (Shu and Fleck, 1999) have been in-
cluded, as adopted from Shu et al. (2001). According to the Hall-Petch relation, the slope
of the lines is expected to be constant and approximately equal to one. For the current
model, the latter is only true in an average sense, because of the progressive increase
with decreasing height. This corresponds to a Hall-Petch exponent larger than 1

2 . This
additional hardening can be explained by the fact that for smaller H values, together with
the increasing slip gradients, the GND densities increase and approach the order of the
SSD densities, such that they do not longer have a negligible effect on the slip resistance
(cf. Eq. (3.9)), as is the case for larger heights H.

3.5 Conclusions

A crystal plasticity framework has been outlined with a clear distinction between the dif-
ferent evolutions and effects of the statistically-stored and geometrically-necessary dislo-
cation densities. The actual framework incorporates relevant physical aspects necessary
for consistently describing the scale dependent behaviour which is not captured using
standard crystal plasticity models. Main characteristics and potential further improve-
ments of the presented model can be summarised as follows:

• Short-range effects:
For this issue, a conventional framework has been selected, depending on the dif-
ferent dislocation (both SSD and GND) interactions, the types of which are based
on the orientations of their distinct slip systems. Yet, because it is believed that the
resistance due to the short-range obstacles can be overcome by thermal activation,
as a future improvement, it would be illustrative to explicitly include the tempera-
ture influence in the relations.

• Long-range effects:
Only GND’s were expected to play a significant role, essentially caused by their kine-
matic hardening contribution. Based on the consideration of a field of individual
(edge) dislocations, each with a specific contribution to the resulting shear stress,
it was possible to construct a generalised relation for that stress, governed by the
gradients of the GND density field. A macroscopic back-stress measure has been
constructed from the resulting stresses on all slip systems.

• SSD density evolution:
A classic evolution equation has been adopted, where the description of the dislo-
cation segment length was improved by considering both SSD and GND densities
while using a similar formulation as for their interactions. As a possible future



3.5 CONCLUSIONS 49

improvement of the physical validity, the distinction between mobile and immobile
dislocations, together with evolution equations dependent on generation, interac-
tion, trapping, and recovery (Zikry and Kameda, 1998; Ashmawi and Zikry, 2000)
can be included, as well as screw SSD densities, together with annihilation terms
due to cross slip (Arsenlis and Parks, 2002).

• GND density evolution:
Based on geometrical considerations, the edge and screw GND densities were di-
rectly related to the crystallographic slip gradients in different directions.

The implementation of the entire SSD and GND density based crystal plasticity frame-
work has been established by means of a weak formulation, consistent linearisation and
discretisation of the governing equations, i.e. the ordinary stress equilibrium condition
completed with the GND evolution expression, resulting in a global system of equations
to be solved iteratively. Additional boundary conditions allow the prescription of GND
densities or crystallograpic slip, of which the latter can be used in future applications to
constrain slip in the normal direction of a grain boundary.

Themodel has been evaluated by comparison to discrete dislocation simulations and non-
local crystal plasticity predictions for the constitutive behaviour of a constrained strip of
crystalline material under simple shear. A good qualitative agreement has been found for
the development of boundary layers and the related size dependent macroscopic stress-
strain response.



50



CHAPTER FOUR

Single crystal model
application to plane stress tension1

Abstract / The geometrically non-linear scale dependent response of polycrystal FCC metals
is modelled by an enhanced crystal plasticity framework based on the evolution of several dis-
location density types and their distinct physical influence on the mechanical behaviour. The
isotropic hardening contribution follows from the evolution of statistically-stored dislocation
(SSD) densities during plastic deformation, where the determination of the slip resistance
is based on the mutual short range interactions between all dislocation types, i.e. including
the geometrically-necessary dislocation (GND) densities. Moreover, the GND’s introduce long
range interactions by means of a back-stress measure, opposite to the slip system resolved
shear stress.
The grain size dependent mechanical behaviour of a limited collection of grains under plane
stress loading conditions is determined using the finite element method. Each grain is subdi-
vided into finite elements and an additional expression, coupling the GND densities to spatial
crystallographic slip gradients, renders the GND densities to be taken as supplemental nodal
degrees of freedom. Consequently, these densities can be uncoupled at the grain boundary
nodes, allowing for the introduction of grain boundary dislocations (GBD’s) based on the lat-
tice mismatch between neighbouring grains and enabling the obstruction of crystallographic
slip perpendicular to the grain boundary.

4.1 Introduction

The grain size dependent mechanical behaviour of a polycrystal FCC metal has been
modelled physically using a crystal plasticity approach for finite deformations. In most
conventional single and polycrystal plasticity models, e.g. as published by Bronkhorst
et al. (1992) and Kalidindi et al. (1992), the influence of inter– and intragranular inho-

1This chapter is reproduced from Evers et al. (2003b).
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mogeneities is not explicitly incorporated in the constitutive description, whereas it is
the basic origin of scale dependent behaviour and the resulting size effects. In general,
such inhomogeneities at the microscale can be caused by externally applied macroscopic
gradients of plastic deformation, by the presence of grain boundaries locally obstructing
the plastic deformation (Becker and Panchanadeeswaran, 1995), or by a combination of
both. The best-known macroscopic experimental consequence of these effects is the in-
creased flow stress on decreasing average grain size, which is expressed by the so-called
“Hall-Petch relation” (Hall, 1951; Petch, 1953; Armstrong et al., 1962). In particular, the
flow stress is nearly proportional to the inverse square root of the average grain diameter
(see also Hansen, 1982; Narutani and Takamura, 1991; Evers et al., 2003a).

Several suggestions have been proposed to explain this strengthening effect (Gavriljuk
et al., 1999). The “dislocation pile-up models” are based on the perception that dislo-
cations pile-up against grain boundaries and therefore obstruct the crystallographic slip
through stress concentrations. On the other hand, “work hardening models” state that
the overall concentration of dislocations in a grain increases once the volume in which
they reside –which is connected to the grain size– decreases, corresponding to an in-
creased inhomogeneity and a decreased mean free path within the grains. The presented
model actually includes both effects, because dislocations concentrate at the grain bound-
aries and inflict a back-stress to the motion of dislocations carrying the plastic deforma-
tion, while at the same time, the strength of those dislocation concentrations depends on
the heterogeneity within the grain, which increases with decreasing grain size.

Next to the so-called “geometrically-necessary dislocations” (GND’s), which are directly
related to local non-uniform plastic deformations and which are required to preserve the
compatibility of the crystallographic lattice in cases of unevenly distributed plastic slip,
the second type of dislocations to be distinguished are “statistically-stored dislocations”
(SSD’s), a distinction first identified by Ashby (1970). The latter dislocation density ac-
cumulates during (uniform as well as non-uniform) plastic deformation as a result of
interactions between dislocations mutually, and themotion of SSD’s is actually the mech-
anism behind crystallographic (plastic) slip on the distinct slip planes of the material. It
can be expected that the GND’s are concentrated near the grain boundary regions (Kocks,
1970; Thompson et al., 1973), due to the lattice mismatch with neighbouring grains,
whereas the SSD densities mostly evolve in the grain interiors, as a result of the more
intensive and less obstructed plastic flow in that region.

The actual difference between SSD’s and GND’s resides in their role only, i.e. in the
fact that the latter do not directly participate in the local crystallographic slip, yet they
emerge as a (non-local) result of spatial gradients of that slip. A second (resulting) dif-
ference between both types of dislocations is the sign and the variation of that sign in
space. The SSD’s, due to their statistical nature, have a more or less random sign ob-
served at a length scale associated with the grain structures, as a result of which any



4.1 INTRODUCTION 53

bias cancels out and the SSD’s do not contribute to any inhomogeneities. The sign of
the GND densities has a profound geometrical impact and therefore a larger periodicity,
as it is coupled to specific lattice curvatures and distortions. The actual identification of
a certain dislocation as being a statistically-stored one or a geometrically-necessary one,
however, remains rather ambiguous (since at the level of a single dislocation there is no
physical difference), as well as keeping track of the process of dislocations switching be-
tween both types. Nevertheless, when the densities of both types are considered, a clear
distinction can be made based on their characteristics, i.e. the GND density equals the
minimum density (or local surplus of a certain sign) in order to accommodate the local
plastic strain gradients, whereas the remaining density is considered to be statistically-
stored (Gao and Huang, 2003).

After establishing the occurrence of both dislocation types, the entire framework is fur-
nished to account for their distinct effect on the constitutive behaviour, incorporating any
number or type (edge or screw) of dislocations. In general local continuum crystal plas-
ticity models, the presence, motions, and interactions of dislocations are not explicitly
distinguished, as only their effects are modelled indirectly by a phenomenological slip
law and hardening evolution. The present framework (partly adopted from Evers et al.,
2002) still incorporates a phenomenological slip law, however it is enhanced and the
slip resistance is entirely based on short-range interactions between all (SSD as well as
GND) dislocations intersecting the current slip system (Franciosi and Zaoui, 1982). Now,
the accumulation of dislocations –related to the history of crystallographic slip– is the
driving force behind the isotropic hardening term. Furthermore, a second extension is
introduced to account for the distinct influence of the GND densities on the plastic slip in
a long-range sense, i.e. through a back-stress measure, counteracting the local resolved
shear stress and related to the heterogeneity of the GND field after removal of external
loads. This provides for a physically motivated and consistent incorporation of global
as well as local (intragranular) strain gradient effects and hence also of scale dependent
effects such as grain size dependent responses.

Next to grain size effects and related size effects under micro-torsion (Fleck et al., 1994),
the prediction of particle size effects (Ashby, 1970) and indenter size effects (Nix and Gao,
1998; Gao et al., 1999) is still the objective of ongoing study (e.g. Aifantis, 1987; Fleck
and Hutchinson, 1997; Shu and Fleck, 1999), using so-called “strain gradient models”.
Such approaches introduce an intrinsic material length scale in an analytical plasticity
formulation, relying on the underlying generation and distribution of dislocations. Fur-
thermore, continuum theories of dislocations have been formulated to further enhance
those strain gradient models (Dai and Parks, 1997; Steinmann, 1996; Sluys and Estrin,
2000; Acharya, 2001; Bassani, 2001; Gurtin, 2002; Cermelli and Gurtin, 2002) by mak-
ing use of (global) plastic or elastic incompatibilities, based on the work of Nye (1953).
In the present chapter, as a further enhancement, the densities and their influence are
solely and explicitly determined on the FCC slip systems, at a scale that includes global
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as well as local strain gradients. A comparison of simulations using the actual model
to the discrete dislocation predictions of a constrained strip under simple shear for the
case of double slip (Shu et al., 2001) can be found in Evers et al. (2003a). Furthermore,
Gurtin (2002) and Cermelli and Gurtin (2002) have developed a framework that is based
on similar hypotheses as the one presented here, yet based on energetic considerations.

It is emphasized that in the present concept, the grain size does not explicitly enter the
constitutive model and the model parameters can be kept constant throughout the entire
grain. The grain size effect arises naturally as a result of intragranular heterogeneities
affected by incompatibilities and obstructions at the grain boundaries. When the grain
size is taken smaller, the inhomogeneities increase. Nevertheless, the primary length pa-
rameter entering the presented model is the length of the Burger’s vector, which relates
the plastic strain gradients to the GND densities at slip system level. Moreover, limiting
the GND effect to an increased hardening rate or slip resistance near the grain bound-
aries (Worthington and Smith, 1964; Gray III et al., 1999) is not satisfactory, as clearly
remarked by Mughrabi (2001), stating that a simple superposition of the GND density
on the SSD density does not suffice. Microbending tests (Fleck et al., 1994; Stölken and
Evans, 1998) suggest that the GND density can be substantially smaller than the SSD
density, even though their contribution may be quite significant or even dominant.

In the next section, the entire crystal plasticity framework is presented, which covers the
general constitutive formulation including an extended slip law, the determination of the
entries in that slip law, i.e. the slip resistance and the back-stress, and finally the evolution
equations for the SSD, GND, and “grain boundary dislocation” (GBD) densities. Next, in
Section 4.3, the large deformation implementation of the entire model is discussed under
the assumption of plane stress. Regarding the finite element formulation, the complete
algorithmic framework is addressed, i.e. ranging from the integration point solutions up
till the incremental-iterative solution of the global set of nonlinear equations. Finally, in
Section 4.4, the response of a polycrystal FCCmetal (consisting of 12 grains) under plane
stress deformation is simulated, of which the grain size effect on the response and the
intragranular variations of several quantities is demonstrated.

4.2 Crystal plasticity model

4.2.1 Constitutive framework

Point of departure is the classical multiplicative decomposition of the deformation gradi-
ent tensor into an elastic and a plastic part according to (Lee, 1969)

F = Fe · Fp, (4.1)
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where the elastic deformation includes small lattice deformations and possibly
large rigid body rotations. Next, the second Piola-Kirchhoff stress measure
τ ≡ det (Fe) F−1

e ·σ · F−T
e , with respect to the stress-free intermediate configuration

(Mandel, 1974), is taken to be elastically related to its work conjugated elastic Green strain
measure Ee through

τ = 4C : Ee, Ee ≡ 1
2

(Ce − I) , Ce ≡ FTe · Fe, (4.2)

where σ is the Cauchy stress tensor, Ce is the elastic right Cauchy-Green deformation
tensor and I is the second-order unit tensor. The fourth-order isotropic elasticity tensor
4C is defined by Young’s modulus E and Poisson’s ratio ν.

Furthermore, the evolution of the plastic deformation is prescribed by the plastic velocity
gradient tensor Lp, which by definition can be written as the sum of all crystallographic
slip rates γ̇α on the 12 {111}〈110〉 slip systems α of the FCC metal according to (Rice,
1971)

Ḟp = Lp · Fp, Lp = ∑
α

γ̇α Pα
0 , Pα

0 ≡ mα
0 n

α
0 , α = 1, 2, . . . , 12. (4.3)

Here, Pα
0 is the non-symmetric Schmid tensor, represented in the reference configura-

tion as the dyadic product of the two orthonormal vectors mα
0 and nα0 , the slip direction

and slip plane normal, respectively.

The above elastic and plastic parts are coupled through a viscoplastic flow rule (Hutchin-
son, 1976; Peirce et al., 1982), which is defined for each slip system α and specifies the
rate of plastic shearing γ̇α as a function of the associated “effective” shear stress τα

eff and
the current slip resistance sα (see also Nemat-Nasser et al., 1998; Harder, 1999; Kocks,
2001; Evers et al., 2003a)

γ̇α = γ̇0

( |τα
eff|
sα

) 1
m

exp
{
−G0

kT

(
1− |τα

eff|
sα

)}
sign(τα

eff), (4.4)

where γ̇0 andm are material parameters representing the reference plastic strain rate and
the rate sensitivity exponent, k is Boltzmann’s constant, T is the absolute temperature,
and G0 is the total free energy needed for a moving dislocation to overcome a short-range
barrier without the aid of external work. Furthermore, the effective stress τα

eff is defined
as the difference between the resolved shear stress τα (also known as “Schmid stress”)
and the resolved back-stress τα

b

τα
eff = τα − τα

b , τα ≡ τ : Pα
0 , τα

b ≡ τb : Pα
0 , (4.5)

where both resolved stress measures are projections (Asaro and Rice, 1977; Bronkhorst
et al., 1992) of their corresponding stress tensors τ and τb (Harder, 1999) on slip system
α, respectively.
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4.2.2 Dislocation interactions

The concepts above leave the slip system strengths and the back-stress tensor still to be
determined. The back-stress tensor describes the effect of long-range stresses caused by
the heterogeneity of the GND field, whereas the slip resistances are a measure for the
impeding of dislocation movement by the formation of short-range interactions between
both SSD’s and GND’s residing on coplanar or intersecting slip systems. The type and
number of short-range interactions can be quantified through a set of interaction coeffi-
cients, stored in the interaction matrix Aαξ (Franciosi and Zaoui, 1982), after which the
slip system strength sα is taken proportional to the square root of the effective obstacle
density following Ashby (1970)

sα = cµb
√

∑
ξ

Aαξ
∣
∣
∣ρξ

SSD

∣
∣
∣+ ∑

ξ

Aαξ
∣
∣
∣ρξGND

∣
∣
∣. (4.6)

In here, c is a constant ranging from 0.05 to 2.6 for different materials (Lavrentev,
1980), µ is the shear modulus and b is the length of the Burger’s vector. Further-

more, when considering FCC metals, ρξSSD and ρξ
GND stand for the 12 edge SSD densities

(ξ = 1, 2, . . . , 12) and the 12 edge and 6 screw GND densities (ξ = 1, 2, . . . , 18), re-
spectively (Kubin et al., 1992). A complete listing of the different dislocation densities,
including their type, orientation, and corresponding slip system, is specified in Table 4.1.

The global back-stress tensor is defined in the reference configuration and is composed
of the resulting long-range shear stress contributions (τα

e and τα
s of the particular edge

and screw GND density field, respectively) on the respective slip systems α according to
(Harder, 1999)

τb = ∑
α

− (
τα
e + τα

s

) (
Pα
0 + Pα

0
T
)
, (4.7)

where the account for their spatial orientation through Pα
0 (cf. Eq. (4.3)) leads to a

secondary resolved back-stress contribution on the other slip systems after employing
Eq. (4.5). Note that the minus sign in this equation accounts for the transformation of the
resulting long-range shear stress contributions to back-stress contributions in Eq. (4.5).

The determination of the resolved long-range shear stress contributions τα
e and τα

s in
the undeformed configuration originally stems from the equations for the stress concen-
tration near individual edge and screw dislocations by Cottrell (1961). However, when
applying those equations to determine the resulting long-range stress state in a certain
origin as caused by a uniform field of GND’s, it completely cancels out. This is caused by
the fact that each individual dislocation has a counterpart with an exact opposite contri-
bution to the resulting long-range stress. Therefore, not the GND density field itself, but
its spatial variations cause resulting long-range stresses.

In order to quantify that effect, the resulting long-range stress at slip system α for the
edge and screw GND densities is computed by an analytical integration procedure of the
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Table 4.1 / List of indices and vectors for dislocation densities and slip systems used in
the simulation of FCC metals; the Schmid and Boas notation is discussed in Franciosi
and Zaoui (1982); b is the length of the Burger’s vector b.

Dislocation density
ξ type

Slip sys-
temα m or bb n Schmid

& Boas

1 edge 1 1√
2
[1̄10] 1√

3
(111) B5

2 edge 2 1√
2
[101̄] 1√

3
(111) -B4

3 edge 3 1√
2
[01̄1] 1√

3
(111) B2

4 edge 4 1√
2
[1̄1̄0] 1√

3
(11̄1̄) A6

5 edge 5 1√
2
[101] 1√

3
(11̄1̄) -A3

6 edge 6 1√
2
[011̄] 1√

3
(11̄1̄) A2

7 edge 7 1√
2
[110] 1√

3
(1̄11̄) -D6

8 edge 8 1√
2
[1̄01] 1√

3
(1̄11̄) -D4

9 edge 9 1√
2
[01̄1̄] 1√

3
(1̄11̄) D1

10 edge 10 1√
2
[11̄0] 1√

3
(1̄1̄1) -C5

11 edge 11 1√
2
[1̄01̄] 1√

3
(1̄1̄1) -C3

12 edge 12 1√
2
[011] 1√

3
(1̄1̄1) C1

13 screw – 1√
2
[110] 1√

3
(11̄1̄) or 1√

3
(1̄11̄) -A6 or -D6

14 screw – 1√
2
[101] 1√

3
(11̄1̄) or 1√

3
(1̄1̄1) -A3 or C3

15 screw – 1√
2
[011] 1√

3
(1̄11̄) or 1√

3
(1̄1̄1) -D1 or C1

16 screw – 1√
2
[1̄10] 1√

3
(111) or 1√

3
(1̄1̄1) B5 or C5

17 screw – 1√
2
[101̄] 1√

3
(111) or 1√

3
(1̄11̄) -B4 or D4

18 screw – 1√
2
[01̄1] 1√

3
(111) or 1√

3
(11̄1̄) B2 or -A2

equations for individual dislocations (Cottrell, 1961) over a circular domain with radius R
around the origin, while the GND densities are assumed to vary linearly in space.

τα
e =− µbR2

8 (1− ν) ∑
ξ

dαξ
e

(
∇0ρ

ξ
GND ·mα

0

)
(4.8)

τα
s =

µbR2

4 ∑
ξ

dαξ
s

(
∇0ρ

ξ
GND · pα0

)
, pα0 = mα

0 × nα0 . (4.9)

Here, the multipliers dαξ
e and dαξ

s equal−1, 0, or 1, according to the way the dislocation
type ξ spatially relates to the slip systemα (cf. Table 4.1)

dαξ
e =

{
1 forα = ξ = 1, 2, . . . , 12
0 for all other cases

(4.10)

dαξ
s =






−1 for d(4,13)
s , d(6,18)

s , d(8,17)
s , d(9,15)

s , d(10,16)
s , d(11,14)

s

1 for d(1,16)
s , d(2,17)

s , d(3,18)
s , d(5,14)

s , d(7,13)
s , d(12,15)

s

0 for all other cases.
(4.11)
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4.2.3 Dislocation densities

In the remainder of this section, the determination of the SSD, GND and GBD densities
is discussed. First, the evolution of the 12 edge SSD densities of the FCC metal, as
required in Eq. (4.6), is based on the balance between the accumulation and annihilation
rates, expressed by

ρ̇
ξ
SSD =

1
b

(
1

dαξ
e Lα

− 2ycρ
ξ
SSD

)

dαξ
e

∣
∣γ̇α∣∣ , ρ

ξ
SSD (t = 0) = ρSSD 0

, (4.12)

which is a generalisation of the relation originally proposed by Essmann and Mughrabi
(1979). The accumulation rate (first term in the right-hand side of Eq. 4.12) is linked to
the average dislocation segment length of mobile dislocations (SSD’s) on system α, Lα ,
which is strongly related to the current dislocation state through (Tabourot et al., 1997;
Arsenlis and Parks, 2002)

Lα =
K

√

∑
ξ
Hαξ

∣
∣
∣ρξ

SSD

∣
∣
∣+ ∑

ξ
Hαξ

∣
∣
∣ρξGND

∣
∣
∣
. (4.13)

Here, K is a constant and the coefficients Hαξ indicate the mutual immobilisation be-
tween dislocations of different slip systems, following the same convention as Aαξ in
Eq. (4.6), yet having different values. Furthermore, the annihilation rate (second con-
tribution in the right-hand side of Eq. 4.12) is assumed to be controlled by the critical
annihilation length yc, a material parameter characterising the average distance between
two dislocations of opposite sign which triggers spontaneous neutralization.

Next, the GND density is determined from the gradients of the crystallographic slip in the
undeformed situation from geometrical compatibility (Nye, 1953; Kröner, 1962; Ashby,
1970; Arsenlis and Parks, 2002)

ρ
ξ
GND = ρ

ξ
GND 0

− 1
b ∑

α
dαξ
e

(∇0γ
α ·mα

0

)
+
1
b ∑

α
dαξ
s

(∇0γ
α · pα0

)
. (4.14)

For FCC metals, in contrast to the 12 positive SSD densities, the 12 edge and 6 screw
GND densities have a certain polarity which is crucial to ascertain the direction of the
slip system resolved back-stress. As can be clearly seen from Eq. (4.14), the sign of the
GND densities is directly related to the sign of the corresponding crystallographic slip
gradients. Each of the 6 screw dislocation densities is determined by addition of the ap-
propriate slip gradients on both the glide planes in which they can reside, as they are
assumed to be free to cross slip while their corresponding slip plane remains an ambigu-
ous choice. This is consistent with the fact that in Eq. (4.11), each (screw) dislocation
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density (ξ) has two contributing slip systems (α), whose orientations can be found in

Table 4.1. Furthermore, the initial GND density ρ
ξ
GND 0

can be identified with the initial
grain boundary dislocation density field, present before the onset of plastic deformation.
The GBD densities are introduced to account for lattice incompatibilities across grain
boundaries. Because of their geometrical nature, the GBD densities have similar consti-

tutive influences as the GND densities. Therefore, as a part of ρ
ξ
GND 0

, the 12 edge GND
densities are taken equal to the initial grain boundary dislocation (GBD) densities

ρ
ξ
GND 0

≡ dαξ
e ρα

GBD. (4.15)

This contribution is emphasized to be of qualitative nature, as the exact determination of
the GBD densities, including the screw dislocations, is evidently more complicated than
captured by the trends using the present simplified formulation, visualised in Fig. 4.1.

b

grain β 0
nβ

mβ
0

grain α

b
α

b
β

0
nα

αm
0

n0
GB

hαgrain
boundary

Figure 4.1 / A grain boundary lattice mismatch gives rise to additional (GBD) disloca-
tions; the GBD density is determined from the lengths of the grain boundary resolved

Burger’s vector (bα and bβ) and the direction of the grain boundary unit normal nGB
0 .

To determine the GBD density, first, the slip system orientations of two adjacent grains
α and β are evaluated. In order to account for the symmetrics of the FCC lattice, the
slip systems of grain α are related to the particular slip system configuration of grain β,
as indicated in Table 4.2, that provides the best overall correspondence between all slip
systems on either side, i.e. resulting in the smallest amount of GBD densities. Next, the
GBD density is related to the misfit length hα between the slip system under considera-
tion of grain α and its associate slip system of grain β, where hα follows by comparing
the lengths of their grain boundary resolved Burger’s vectors, bα and bβ, respectively,
according to

∣
∣ρα

GBD

∣
∣ ≡ 1

hα2 =
(
1
bα

− 1

bβ

)2

. (4.16)
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Table 4.2 / The slip systems of grain α in the first row correspond to one of the slip
system configurations of grain β in the consecutive rows, in accordance with the best
geometrical match, depending on mutual orientation differences.

grainα 1 2 3 4 5 6 7 8 9 10 11 12

related 1 2 3 4 5 6 7 8 9 10 11 12
slip sys- 2 3 1 11 12 10 5 6 4 8 9 7
tems of 3 1 2 9 7 8 12 10 11 6 4 5
grain β 4 5 6 1 2 3 10 11 12 7 8 9

5 6 4 8 9 7 2 3 1 11 12 10
6 4 5 12 10 11 9 7 8 3 1 2
7 8 9 10 11 12 1 2 3 4 5 6
8 9 7 5 6 4 11 12 10 2 3 1
9 7 8 3 1 2 6 4 5 12 10 11
10 11 12 7 8 9 4 5 6 1 2 3
11 12 10 2 3 1 8 9 7 5 6 4
12 10 11 6 4 5 3 1 2 9 7 8

When considering the grain boundary unit normal nGB0 to be pointed from the grain hav-
ing the largest grain boundary resolved Burger’s vector to the grain having the smallest
one, the sign and magnitude of the GBD density can be expressed by

ραGBD = sign
(
nα0 · nGB0

)
(∣∣nα0 · nGB0

∣∣−
∣
∣∣nβ0 · nGB0

∣
∣∣
)2

b2
. (4.17)

Note that when the two neighbouring grains have the same crystallographic orientation,
the GBD density turns out to be zero.

An overview displaying the dependences of the entire framework presented in this chap-
ter can be found in Fig. A.1 of Appendix A.

4.3 Numerical implementation

4.3.1 Variational formulation

In order to implement the previously discussed crystal plasticity framework in a finite
element framework, first, the governing equations must be identified. From Eq. (4.14),
one can conclude that for the determination of the GND density field, the crystallographic
slip fields for all slip systems are required. On the other hand, in order to determine the
evolution of the crystallographic slip fields through Eq. (4.4), one needs the current back-
stress, which again depends on the GND density field by means of Eqs. (4.8) and (4.9).
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Once those densities are known, all relevant quantities can be determined. The GND
densities are therefore chosen to be additional nodal degrees of freedom, accompanied
by just as many additional evolution equations. Accordingly, the entire set of govern-
ing equations is given by the conventional stress equilibrium condition, evaluated in the
undeformed configuration, and Eq. (4.14), here written in an abbreviated format

∇0 · TT = 0, T ≡ det (F)σ · F−T (4.18)

ρ
ξ
GND = ρ

ξ
GND 0

+ dξα
0 ·∇0γ

α ∀ ξ , (4.19)

where T is the first Piola-Kirchhoff stress tensor and where the multipliers dαξ
e and dαξ

s ,
the vectors mα

0 and pα0 , the factor
1
b , and the corresponding signs are all properly stored

in the vectors dξα
0 , using Einstein’s summation convention.

The continuity requirements on the displacements as well as the GND densities have to
be relaxed over the element boundaries in order to be able to use standard C0-continuous
finite elements. This is accomplished by first multiplying the stress equilibrium and
GND density evolution conditions by weighting functions wu and wξ

ρ , respectively. After
integrating both expressions over the volumeV0 of the body in its reference (undeformed)
configuration, the divergence theorem is applied and a Newton-Raphson iterative proce-

dure is introduced, which provides the iterative corrections (δT , δρ
ξ
GND, and δγα) to be

expressed by linearised functions of the solution estimates (T∗, ρ
ξ
GND∗ , and γα

∗ ) obtained
in the previous iteration

∫

V0

(∇0wu)
T : δTT dV0 =

∫

S0

wu · t∗ dS0 −
∫

V0

(∇0wu)
T : TT

∗ dV0 (4.20)

∫

V0

[
wξ

ρ δρ
ξ
GND +

(
∇0wξ

ρ

)
· dξα

0 δγα
]
dV0 =

∫

S0

wξ
ρ Γξn∗ dS0 − . . .

∫

V0

[
wξ

ρ

(
ρ
ξ
GND∗ − ρ

ξ
GND0

)
+
(
∇0wξ

ρ

)
· dξα

0 γα
∗
]
dV0 ∀ ξ ,

(4.21)

where at the surface S0, t∗ is the (first Piola-Kirchhoff) surface traction and Γξn∗ is a mea-
sure for the crystallographic slip in the outward normal direction. In this weak formu-
lation, the equations for the iterative corrections (T∗ and γα

∗ ) and the iterative updates
(δT and δγα) are to be expressed and solved as a function of the so-called “independent
variables”, i.e. the variables which will be selected as the finite element nodal degrees of
freedom and their spatial variations. This process is discussed in the next subsection.

4.3.2 Iterative updates and tangents

The elaborations (at the integration point level) in this subsection are presented under the
assumption of plane stress loading conditions. Therefore, the total deformation gradient
tensor is written as the additive decomposition

F = F̄ + F̂ , (4.22)
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where F̄ only contains the four in-plane components of F and where F̂ contains the three
non-zero components energetically associated to the stress components which are en-
forced to equal zero

T · e30 = 0. (4.23)

Here, the initial unit base vector e30 is oriented in the out-of-plane direction. Next to the
three degrees of freedom in F̂, and next to F̄, the remaining two components of the defor-
mation gradient tensor equal zero. Now, three sets of variables are distinguished. First,
the components of F̂ constitute, along with all slip rates γ̇α , the entire set of dependent
variables. This set is a priori unknown, yet it can be solved as a function of the indepen-

dent variables F̄, ρξGND, and r
ξ
0 ≡ ∇0ρ

ξ
GND, which are straightforwardly determined from

the intentional nodal degrees of freedom. Together, both sets represent the entire set of
state variables, a set which enables the consistent determination of all remaining relevant
quantities.

In order to determine the dependent variables at the integration point level, accordingly,
the following conditions must be satisfied

f
(
F̄ ,ρξGND, r

ξ
0 , F̂ , γ̇

α
)

= 0 (4.24)

gα
(
F̄ ,ρξGND, r

ξ
0 , F̂ , γ̇

α
)

= 0 ∀ α, (4.25)

where Eq. (4.24) is actually a formal representation of Eq. (4.23), taking into account
that the stress T is a priori unknown and is therefore considered to be related to all
state variables. Furthermore, Eq. (4.25) is a representation of the slip laws in Eq. (4.4),
where Eq. (4.5) is substituted for the effective stress, again depending on the second
Piola-Kirchhoff stress through Eqs. (4.2), (4.1), and (4.3) and depending on the back-
stress tensor via Eqs. (4.7), (4.8), and (4.9), and where Eq. (4.6) is substituted for the slip
system strength, again depending on Eqs. (4.12) and (4.13). Fig. A.1 in Appendix A gives
an overview of the aforementioned mutual dependences.

The system of strongly non-linear equations above –Eqs. (4.24) and (4.25)– requires an it-
erative solution procedure at the material point level. Resultingly, the dependent variables
are unambiguously determined from the independent variables, which can formally be
written as

F̂ = F̂
(
F̄ ,ρξGND, r

ξ
0

)
(4.26)

γ̇α = γ̇α
(
F̄ ,ρξGND, r

ξ
0

)
. (4.27)

The macroscopic iterative updates T∗ and γα
∗ , as required in Eqs. (4.20) and (4.21), are

solved accordingly by the same iteration process at the material point level. Similar to F̂
and γ̇α , T∗ and γα∗ also primarily dependent on the independent variables.
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Now, after consistent linearisation of the crystal plasticity framework and the accompany-
ing plane stress condition, the iterative corrections δT and δγα at the macroscopic level
(cf. Eqs. (4.20) and (4.21)) can be written as a function of the iterative variations of all
independent variables

δT =
∂T
∂F̄

∣
∣∣
∣
ρξ
GND,rξ0

: δF̄ +
∂T

∂ρ
ξ
GND

∣
∣
∣∣
∣
F̄ ,rξ0

δρξGND +
∂T

∂rξ0

∣
∣
∣∣
∣
F̄ ,ρξ

GND

· δrξ0 (4.28)

δγα =
∂γα

∂F̄

∣
∣
∣
∣
ρξ
GND,rξ0

: δF̄ +
∂γα

∂ρ
ξ
GND

∣∣
∣
∣
∣
F̄ ,rξ0

δρ
ξ
GND +

∂γα

∂rξ0

∣∣
∣
∣
∣
F̄ ,ρξ

GND

· δrξ0 , (4.29)

where the subscripts next to the vertical bars indicate that the specified variables are kept
constant. Here, it is acknowledged that the constitutive formulations of the quantities

T and γα primarily depend on the chosen independent variables F̄, ρ
ξ
GND, and r

ξ
0 , yet

secondarily also on the (a priori unknown) dependent variables F̂ and γ̇α. However, this
secondary dependence does not involve explicit formulations that can be extracted (as
already pointed out, Eqs. (4.26) and (4.27) imply the iterative solution of Eqs. (4.24) and
(4.25)). Therefore, in order to explicitly determine the partial derivatives in Eqs. (4.28)
and (4.29), those secondary dependences have to be taken into account.

First, with the purpose of abbreviating the formulations exploiting the secondary depen-
dences, consider the following definitions

Π
~

=
[
T

γα

]
, Ξ

~
=






F̄

ρ
ξ
GND

rξ0




 , Ψ

~
=
[
F̂

γ̇α

]
, Φ

~
=
[
f
gα

]
, (4.30)

where all components of the tensor and vector quantities, and the complete set of the
slip system and dislocation density related quantities, are properly stored in the columns,
incorporating the primary unknowns (Π

~
), the independent variables (Ξ

~
), the dependent

variables (Ψ
~
), and the constitutive conditions (Φ

~
). Eqs. (4.28–4.29) can now be sum-

marised by

δΠ
~

=
dΠ
~dΞ
~

δΞ
~
, (4.31)

where the matrix
dΠ
~dΞ
~

contains all relevant partial derivatives. Next, the components of

this matrix are elaborated by making a clear distinction between the independent vari-
ables and the dependent variables

dΠ
~dΞ
~

=
∂Π
~∂Ξ
~

∣
∣
∣∣
Ψ
~

+
∂Π
~∂Ψ
~

∣
∣
∣∣
Ξ
~

dΨ
~dΞ
~

, (4.32)

an exercise which allows for the explicit determination of the entries in
∂Π
~∂Ξ
~

∣
∣
∣
∣
Ψ
~

and
∂Π
~∂Ψ
~

∣
∣
∣
∣
Ξ
~

.
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The total derivative
dΨ
~

dΞ
~

of the dependent variables with respect to the independent vari-

ables in Eq. (4.32) can not be determined explicitly. Instead, this derivative follows from
the consideration that the requirements in Eqs. (4.24) and (4.25) must be satisfied

δΦ
~

=
dΦ
~dΞ
~

δΞ
~

= 0
~
, (4.33)

that is, for all variations of the independent variables

dΦ
~dΞ
~

=
∂Φ
~∂Ξ
~

∣
∣
∣
∣
Ψ
~

+
∂Φ
~∂Ψ
~

∣
∣
∣
∣
Ξ
~

dΨ
~dΞ
~

= 0, (4.34)

where the partial derivatives in
∂Φ
~∂Ξ
~

∣∣
∣
∣
Ψ
~

and
∂Φ
~∂Ψ
~

∣∣
∣
∣
Ξ
~

can again be derived explicitly, which

were actually already required for the material point Newton Raphson iteration procedure
for the solution of Eqs. (4.24) and (4.25). The remaining derivatives can now be extracted
according to

dΨ
~dΞ
~

= −
(

∂Φ
~∂Ψ
~

∣
∣
∣∣
Ξ
~

)−1
∂Φ
~∂Ξ
~

∣
∣
∣∣
Ψ
~

. (4.35)

Finally, the solution estimates and iterative corrections of the primary unknowns, i.e. T∗,
γα
∗ , δT , and δγα in Eqs. (4.20) and (4.21), are determined as a function of the nodal

degrees of freedom and their spatial variations through Eq. (4.31).

The presented equations are formulated schematically, yet their elaboration only requires

the determination of the partial derivatives in
∂Π
~∂Ξ
~

∣∣
∣
∣
Ψ
~

,
∂Π
~∂Ψ
~

∣∣
∣
∣
Ξ
~

,
∂Φ
~∂Ξ
~

∣∣
∣
∣
Ψ
~

, and
∂Φ
~∂Ψ
~

∣∣
∣
∣
Ξ
~

, which

would be too comprehensive to include here. It is remarked that the time integration
schemes required to compute γα from Eq. (4.4) and ρα

SSD from Eq. (4.12) can be chosen
arbitrarily between fully explicit and fully implicit.

4.3.3 Finite element formulation

In order to systematically compute an approximate solution of the Eqs. (4.20–4.21), for
arbitrary geometries and boundary conditions, the volume V0 of the configuration is sub-
divided in finite elements, whose contributions are subsequently added in a standard
manner. Within each element e (having volume Ve

0 and boundary surface Se0), the un-
known fields of the nodal variables and weighting functions, as well as their spatial vari-
ations, are approximated by their (global) nodal values (stored in u

~
and ρ

~GND
), multiplied

by their corresponding interpolation functions (stored in Ne
u and N

e
ρ) or the spatial deriva-

tives thereof (stored in Beu and B
e
ρ). Furthermore, the components and indices of dξα

0 are
stored per element in De, and following the procedures from Section 4.3.2, the iterative
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estimations of the first Piola-Kirchhoff stress tensor and the crystallographic slips (stored
in T

~
e
∗ and γ

~
e
GND∗

) can be computed in each material point, based on the nodal degrees of
freedom, as well as their iterative corrections (stored in δT

~
e and δγ

~
e)

δT
~
e = Ce

1 B
e
u δu

~
+
(
Ce
2 N

e
ρ + Ce

3 B
e
ρ

)
δρ
~GND

(4.36)

δγ
~
e = Ce

4 B
e
u δu

~
+
(
Ce
5 N

e
ρ + Ce

6 B
e
ρ

)
δρ
~GND

, (4.37)

where δu
~
and δρ

~GND
are the iterative corrections for the nodal displacement and GND

density values, and where the matrices Ce
1, C

e
2, C

e
3, C

e
4, C

e
5, and C

e
6, represent the deriva-

tives as specified in Eqs. (4.28–4.29) or equivalently Eq. (4.31), evaluated separately for
each element.

After following the standard Galerkin approach and taking into account that both
Eqs. (4.20–4.21) must be satisfied for any admissible weighting function, the following
system of equations is established, comprising the discrete force balance and discretised
GND density evolution conditions.

[
Kuu Kuρ

Kρu Kρρ

] [
δu
~δρ

~GND

]
=
[
r
~ur
~ρ

]
, (4.38)

where

Kuu = ∑
e

∫

Ve
0

Be
T

u Ce
1 B

e
u dV

e
0 (4.39)

Kuρ = ∑
e

∫

Ve
0

Be
T

u

(
Ce
2 N

e
ρ + Ce

3 B
e
ρ

)
dVe

0 (4.40)

Kρu = ∑
e

∫

Ve
0

Be
T

ρ De Ce
4 B

e
u dV

e
0 (4.41)

Kρρ = ∑
e

∫

Ve
0

[
NeT

ρ Ne
ρ + Be

T

ρ De (Ce
5 N

e
ρ + Ce

6 B
e
ρ

)]
dVe

0 (4.42)

r
~u

= ∑
e

∫
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NeT
u t~

e
∗ dS

e
0 −∑

e
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T

u T
~
e
∗ dV

e
0 (4.43)

r
~ρ = ∑

e

∫

Se0

NeT
ρ Γ
~
e
n∗ dS

e
0 . . . (4.44)

− ∑
e

∫

Ve
0

[
NeT

ρ Ne
ρ

(
ρ
~
e
GND∗

− ρ
~GND0

)
+ Be

T

ρ De γ
~
e
∗

]
dVe

0, (4.45)

where the boundary terms t
~
e
∗ and Γ

~
e
n∗ only have to be specified on element boundaries (Se0)

coinciding with the outer boundary of the body (S0). This system is solved by iteratively
updating the nodal estimations u

~∗
and ρ

~GND∗
with corrections δu

~
and δρ

~GND
, a process

which is repeated until an appropriate convergence criterion is satisfied, i.e. until the
right-hand side becomes sufficiently small.
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Additionally, the grain boundaries can be regarded to be a part of that outer boundary. To
accomplish this, the local finite elements must be uncoupled by means of placing double
nodes at the grain boundaries, of which the displacements are again tied by specifying
dependences in order to maintain the polycrystal sample consistent. That leaves the GND
densities or the herewith associated forces to be specified, corresponding to Dirichlet
(essential) or Neumann (natural) boundary conditions, respectively.

As the initial GND densities –here representing the GBD densities– can be determined
from the crystallographic lattice mismatch (cf. Section 4.2.3), these can subsequently be
prescribed at the nodes on both sides of the grain boundaries (i.e. Dirichlet boundary
conditions). In order not to disturb the GND density evolution during deformation, the
associated initial GND density field is determined by a separate finite element computa-
tion on beforehand. During that separate computation, the displacements at the outer
boundaries are fixed to zero and at the grain boundary nodes, the GND densities are pre-
scribed to evolve gradually (i.e. linearly, in 15 steps) until the desired value is attained.
The resulting GND density field (integration point values) is adopted to serve as the initial
GND density field in the actual deformation process simulations.

The total amount of individual GBD’s necessary to account for lattice incompatibility
across the grain boundaries is determined by the initial configuration, and is therefore
solely dependent on the initial lattice mismatch. However, during the initial separate fi-
nite element computation, the GBD densities –as being nodal variables– are inherently
spread over a certain area near the grain boundaries. Given the fact that the amount of
individual GND’s should not change, and the numerical observation that the relativeGBD
density variation between the grain boundary and core is size independent, the disloca-

tion density to be prescribed at the grain boundary nodes (ρξ
node 0

) should follow a relation
like (cf. Eqs. (4.15) and (4.17))

ρ
ξ
node 0

=
κ

d

√
ρ
ξ
GND 0

, (4.46)

where κ is a dimensionless material constant and d is the grain diameter.

Next, during the finite element simulations of the deformation process, the plastic shear
in the grain boundary normal directions is enforced to equal zero (i.e. Neumann bound-
ary conditions), which actually corresponds to the obstruction of crystallographic slip
across the grain boundaries. Finally, free boundaries are modelled by enforcing the GND
density to vanish locally. Both boundary conditions are quite realistic and constitute a
physically based description of crystallographic boundaries.
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4.4 Simulations

The computational implementation of the model under plane stress conditions as dis-
cussed in Section 4.3 has been applied to simulate the size dependent constitutive be-
haviour of the polycrystal sample which is depicted in Fig. 4.2. The sample, consisting
of 12 grains, is subdivided into 265 linear finite elements, with 379 nodes (4 nodes per
element) and 20 degrees of freedom per node (2 displacements and 18 GND densities)
resulting in a total number of 7580 degrees of freedom. In addition, the incorporation
of double nodes at the grain boundaries requires the account for 176 displacement de-
pendencies in order to kinematically couple the individual grains. Moreover, the entire
system of equations is solved using full numerical integration, i.e. 4 integration points
per element.
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Figure 4.2 / Geometry and classical displacement boundary conditions with respect to
the simulations of the FCC polycrystal sample with length L and height H in tension; the
remaining boundary conditions and dependences are explained in the text.
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For all simulations, the random crystallographic orientations of the 12 grains are kept
equal for all simulated sample sizes and are visualised in Fig. 4.3. The displacement
boundary conditions are presented in Fig. 4.2, where u1 is prescribed such that the asso-
ciated macroscopic strain rate remains fixed at 0.001 s−1 (up to a total strain of 0.01 in
175 increments). The remaining boundary conditions, related to the additional degrees
of freedom, i.e. the nodal GND densities or alternatively, the corresponding plastic shear
components in the direction perpendicular to the grain boundaries or free surfaces, are
attributed as already explained at the end of Section 4.3. Furthermore, an initial GND
density field is supposed to represent the GBD densities, related to the specific grain
boundary lattice mismatches, a procedure which is also discussed in Section 4.3. The
sample lengths L are taken to equal 10−3 m, 10−

8
3 m, 10−

7
3 m and 10−2 m (equivalent to

1.0 mm, 2.2 mm, 4.6 mm and 10 mm, respectively). Once the sample size decreases,
the intragranular (plastic) inhomogeneities are expected to increase, along with the GND
densities, which then play a significant role in strengthening the specimen through short-
and long-range interactions. Finally, the temperature (in Eq. (4.4)) is taken 300 K and the
material constants of FCC copper (12 slip systems and SSD types, 18 GND types) are
specified in Table 4.3.

In the following, the results for the specimen lengths 1 mm and 10 mm are compared
in order to achieve a clear insight into the various size effects. First, a scalar measure for
the dislocation densities is evaluated, which is taken to equal the Euclidean norm of all
SSD or GND density contributions. Note that the dislocation sign of the GND densities is
not considered in this respect, as such would be too comprehensive for 18 different types.
The distribution of the density measure for the SSD’s is presented in Fig. 4.4, from which
it can be concluded that the difference in order of magnitude between both length scales
remains rather small.
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(a) L = 1.0 mm.
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(b) L = 10 mm.

Figure 4.4 / Distribution of the SSD density measure for two sample lengths at an equiv-
alent strain of ε = 0.01.
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Table 4.3 / Constitutive parameters for FCC copper; partly adopted from
(Evers et al., 2002) or fitted on the data in that work, and partly taken from elsewhere
(cf. the footed references); the coefficients a0, a1, a2 and a3 are entries in the dislocation

interaction matrix Aαξ , which is documented by Franciosi and Zaoui (1982) and quanti-
fied for copper by Cuitiño and Ortiz (1992); the coefficients h0, h1, h2 and h3 are entries
in Hαξ , whose values for copper are adopted from Tabourot et al. (1997).

Parameter Magnitude Used in Eq.

Young’s modulus E 144 GPa (4.2)
Poisson’s ratio ν 0.33 – (4.2) (4.8)
Reference plastic strain rate γ̇0 0.001 s−1 (4.4)
Rate sensitivity exponenta m 0.05 – (4.4)
Boltzmann’s constant k 1.38× 10−23 J K−1 (4.4)
Reference activation energyb G0 4.54× 10−20 J (4.4)
Strength parameter c 0.3 – (4.6)
Shear modulus µ 54.2 GPa (4.6) (4.8) (4.9)
Burger’s vector lengthc b 0.256 nm (4.6) (4.8) (4.9)

(4.12) (4.14) (4.17)

Interaction coefficient a0 0.06 – (4.6) (in Aαξ )

Interaction coefficient a1/a0 5.7 – (4.6) (in Aαξ )

Interaction coefficient a2/a0 10.2 – (4.6) (in Aαξ )

Interaction coefficient a3/a0 16.6 – (4.6) (in Aαξ )
Radius GND evaluation area R 3.16× 10−6 m (4.8) (4.9)
Critical annihilation lengthd yc 1.6 nm (4.12)
Initial SSD densitye ρSSD 0

1.0× 1012 m−2 (4.12)
Material constantf K 10 – (4.13)

Immobilisation coefficient h0 0.2 – (4.13) (in Hαξ )

Immobilisation coefficient h1 0.3 – (4.13) (in Hαξ )

Immobilisation coefficient h2 0.4 – (4.13) (in Hαξ )

Immobilisation coefficient h3 1.0 – (4.13) (in Hαξ )
GBD parameter κ 0.1 – (4.46)

aTabourot et al. (1997)

bAshmawi and Zikry (2000)

cCuitiño and Ortiz (1992)

dEssmann and Mughrabi (1979)

eCuitiño and Ortiz (1992)

fSabar et al. (2002)
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When regarding the distribution of that same measure, however now evaluated for the
GND densities in Fig. 4.5, a clear distinction between both scales can be observed. In the
case of the small sample, the order of magnitude of the GND densities is roughly 5 times
less than the SSD counterpart, whereas the GND densities of the large sample are almost
negligible. The first explanation for this is the fact that, as a result of Eq. (4.46), the total
amount of GBD dislocations necessary to account for lattice incompatibility across the
grain boundaries is automatically spread over a larger area in Fig. 4.5b, resulting in an
initial difference between both GND density distributions. The second explanation for the
larger GND density magnitude in Fig. 4.5a is the fact that, during deformation, the plastic
inhomogeneity between the grain core and the boundaries –where the slip is obstructed–
has to be overcome within a much smaller distance (factor 10) in the L = 1 mm case.
According to Eq. (4.14), the GND densities automatically increase when the plastic slip
gradients increase, which does not only result in an increased slip resistance through
Eq. (4.6), but also in an increased back-stress contribution via Eqs. (4.8–4.9) and (4.7).
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(a) L = 1.0 mm.
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(b) L = 10 mm.

Figure 4.5 /Distribution of the GND density measure for two sample lengths at an equiv-
alent strain of ε = 0.01.

In order to examine the development of the dislocation density measures during the
course of the deformation and to recover their actual value, they are evaluated along a
cross section at half the sample height for various equivalent logarithmic strain values

ε =
√

2
3ε :ε, where ε = ln (U) and U is the right stretch tensor. Herewith, 5 grain

boundaries are intersected, of which the positions are graphically represented by the
dashed vertical lines. In Figs. 4.6a and 4.6b, it can be clearly observed that the SSD
densities evolve slightly more in the core regions of the grains than in the grain boundary
regions. This can be attributed to the SSD density evolution in Eq. (4.12), which is higher
in regions where the crystallographic slip is less impeded. As already emphasized above,
no significant differences arise between both length scales.
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(b) L = 10 mm.

Figure 4.6 / Profile of the measure for the SSD densities along the x1-direction for in-
creasing deformation ε, evaluated at half the sample height; the vertical dashed lines
indicate the x1-positions of the grain boundary intersections.

The GND density profiles along the intersection for both length scales are shown in
Figs. 4.7a and 4.7b. Here indeed a huge difference is observed, where the GND densities
of the large sample are approximately 7 times smaller than those of the small sample.
In contrast to the SSD profiles, the GND densities increase near the grain boundary and
decrease toward the grain cores and toward the GND-free outer surface, entirely in agree-
ment with the expectations. Moreover, the relative evolution of the GND densities during
deformation is considerably smaller than the evolution of the SSD densities, which trig-
gers the question whether such GND profiles would also arise in absence of any initial
GND densities. As a verification of this, the same simulations have been performed,
yet without the grain boundary dislocation densities. The accompanying profiles of the
GND density measure are shown in Figs. 4.8a and 4.8b. In the right part of the sam-
ple, the GND density measure quickly increases to similar levels, while the densities on
the left remain a little smaller. However, the tendency of the GND densities to increase
toward the grain boundaries remains intact, which can therefore be attributed to the ad-
ditional boundary conditions that obstruct plastic slip in the direction perpendicular to
those boundaries.

Finally, the stress-strain responses for the various sample sizes under consideration are
evaluated. For bulk grains, it is expected that the flow stress will follow the Hall-Petch
relation (Hall, 1951; Petch, 1953; Armstrong et al., 1962)

σ(ε) = σ0(ε) + k(ε)d−n, (4.47)

where ε is the equivalent logarithmic strain measure defined previously and σ is the
equivalent von Mises stress according to

σ =
√
3
2
σd :σd, σd = σ − 1

3
tr (σ) I (4.48)
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(a) L = 1.0 mm.
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(b) L = 10 mm.

Figure 4.7 / Profile of the measure for the GND densities along the dimensionless x1-
direction for increasing deformation ε, evaluated at half the sample height; the vertical
dashed lines indicate the x1-positions of the grain boundary intersections.
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(b) L = 10 mm.

Figure 4.8 / Profile of the measure for the GND densities along the dimensionless x1-
direction for increasing deformation ε, evaluated at half the sample height; in contrast to
Figs. 4.4, 4.5, 4.6 and 4.7, here, the GBD densities have been omitted; the vertical dashed
lines indicate the x1-positions of the grain boundary intersections.

while σ0 is the flow stress in the absence of any size effects, i.e. corresponding to the
imaginary situation of an infinitely large sample (in this case realized by enforcing all
nodal GND densities to equal zero). Furthermore, k and n are the Hall-Petch slope and
exponent, respectively.

The response results are presented in Figs. 4.9a and 4.9b, for both the cases with and
without an initial GND density field, respectively. An obvious size effect can be distin-
guished, not only during plastic deformation, but moreover also at the onset of yielding.
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Figure 4.9 / Stress-strain curves for various sample lengths L; Hall-Petch exponent n =
1.50.

This latter effect is clearly the result of the presence of the GBD densities and is often
observed in reality (e.g. Carreker and Hibbard, 1953). In order to quantify this grain size
effect, the Hall-Petch relation in Eq. (4.47) is considered. However, it is noted that the
particular polycrystal specimen in Fig. 4.2 deals with a much higher free surface fraction
(with respect to the amount of grain boundaries) than the bulk polycrystals for which the
Hall-Petch relation is actually intended. Besides, due to the limited number of grains, the
specific crystallographic orientations may influence the results.

In order to find the Hall-Petch parameters, i.e. the Hall-Petch slope k and the exponent
n, the value of σ0(ε) is taken according to the stress-strain profile as simulated for the
sample of (imaginary) infinitely large dimensions. Next, the parameters are determined
in such a way that the total accumulated difference between the simulated stress-strain
curves and the curves following from the Hall-Petch relation is minimized in a least
squares sense, following Evers et al. (2002). For this procedure, it is assumed that n
is a constant and that k may vary as a function of the equivalent logarithmic strain ε.
The best fit of the Hall-Petch relation on both the data of Figs. 4.9a and 4.9b is achieved
using a Hall-Petch exponent of n = 1.50. Both figures reveal the same Hall-Petch ex-
ponent because of the fact that the influence of the GBD density field is merely a super-
position, which does not significantly disturb the dislocation density evolutions as such.
The value for n achieved is larger than the values mostly reported in the literature, i.e.
0.3 ≤ n ≤ 1.0, but it is remarked again, this might be caused by the enlarged free surface
effect. In order to circumvent this effect, additional simulations have been performed,
which consider the free surfaces to be artificial grain boundaries, i.e. by obstructing the
crystallographic slip contribution in their outward normal direction. The resulting stress-
strain response is presented in Fig. 4.10 and results in a Hall-Petch exponent of n = 1.19.
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Figure 4.10 / Stress-strain curves for various sample lengths L, taking into account GBD
densities and obstructing plastic deformation near the outer surfaces; Hall-Petch expo-
nent n = 1.19.

4.5 Conclusions

A non-local crystal plasticity framework has been developed, which incorporates the dis-
tinct interactions of various types of dislocation densities. This has been accomplished
by including a phenomenological flow rule at the slip system level, which depends on an
effective resolved shear stress and a slip resistance term. The first one is composed of the
ordinary Schmid stress, yet in this case “corrected” by a newly developed back-stress mea-
sure, which represents the long-range interactions that are characteristic of GND density
fields, because of their specific dislocation sign and relatively large range of influence.
Moreover, it brings about a kinematic hardening contribution and includes dependences
between various slip systems based on their spatial orientation. The second term –the
slip resistance– depends on the short-range interactions between all dislocations present
in the material (and therefore capable of obstructing the ongoing plastic deformation).
This term comprises various interactions between SSD’s and GND’s on different slip
systems, i.e. based on their spatial orientation. Whereas the SSD densities are controlled
by a “generation-annihilation” evolution equation adopted from literature, the GND den-
sities follow directly from the spatial gradients of crystallographic slip. Finally, a simpli-
fied formulation has been presented for the determination of grain boundary dislocation
densities, based on the crystallographic lattice mismatch at the grain boundaries. These
densities are used as a qualitative measure for an initial GND density field.
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The implementation of the entire framework in a finite element environment incorpo-
rates the consideration of two governing equations, i.e. the ordinary stress equilibrium
condition and the GND–plastic slip coupling. Next to formulating their variational ex-
pression, linearising them and discretising the governing quantities within a finite ele-
ment context, the solution procedure for solving the strongly non-linear set of equations
at the integration point level has been presented, along with a pragmatic approach for
determining the consistent tangential relations which are necessary to solve the global
system of equations iteratively. The extra nodal degrees of freedom –the GND densities–
allow for the specification of various additional boundary conditions which closely ap-
proach reality, i.e. dislocation free outer surfaces, strongly obstructed plastic deformation
between grains, and an initial GND density field near the grain boundaries.

The mechanical response of a polycrystal sample under plane stress conditions has been
simulated for various sample sizes, where the grain configuration and crystallographic
orientations remain unaltered. The SSD density field appears to be nearly size indepen-
dent, where the largest SSD densities are found in the crystal core, related to the unhin-
dered crystallographic slip in that region. Furthermore, the GND field is strongly size
dependent, as the plastic inhomogeneities between the grain boundaries and the cores
have to be accommodated by the GND field within a varying distance for the different
sample sizes. This strengthening effect manifests itself in a size dependent flow stress,
in addition to which the initial GND density field causes the (initial) yield stress to be size
dependent.
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CHAPTER FIVE

Discussion and conclusions

Abstract / First, the originally formulated hypothesis is repeated, reconsidered and comple-
mented. Next, the single crystal based polycrystal sample simulations of Chapter 4 are used
to verify an assumption that was made in Chapter 2, after which the applicability of both the
polycrystal and the single crystal model is evaluated.

In the introduction of this thesis, it was contended that

Predicting the scale dependent behaviour in a physically realistic manner can be ac-
complished by taking into account the GND densities and their constitutive influence
in the crystal plasticity framework, along with the introduction of several appropriate
physical length scales.

With respect to this hypothesis, after consideration of both the developed polycrystal and
single crystal model, it is clear that one of the physical length scales mentioned must
be strongly related to the grain or specimen size. However, the size effects connected
to those length scales are only sufficiently triggered if a representative (grain) boundary
influence is included in some way. In Chapter 2 this is accomplished by considering bi-
crystals with internal macroscopical constraints and in the Chapters 3 and 4 by imposing
micromechanically constrained boundary conditions at the grain boundaries. Once these
constraints cause sufficient deformation heterogeneity within the grain or the specimen,
according to the hypothesis, the GND densities are adopted as a physically-interpretable
intermediate to couple these deformation gradients to differences in the mechanical re-
sponse. On one hand, the actual determination of the GND densities inherently intro-
duces a second physical length scale, i.e. the Burger’s vector. If, on the other hand, the
GND influence on the material strenghtening involves –next to short range interactions–
also long range influences (as is the case for the single crystal model), a third length scale
reveals, equal to the radius of the GND evaluation area.

77
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Considered more thoroughly, the polycrystal model requires the quantification of the
width of the intercrystal dislocation dominated transition zone, represented by the length
parameter l in Eq. (2.34). For that purpose, it was assumed in Eq. (2.35) that all grains,
irrespective of their size, have a certain volume fraction to be attributed to their core,
whereas the remaining volume fraction is assigned to the bi-crystal boundaries. Now,
consider again the GND density distribution along the cross section of the polycrystal
sample in Chapter 4. When focusing on the qualitative instead of the quantitative differ-
ences in Figs. 5.1a and 5.1b, by adapting the scales of Fig. 5.1b, it can be concluded that
the assumption proposed in Chapter 2 is plausible. That is to say, the absolute “bound-
ary layer” size in the grains of the large specimen is substantially larger, and relatively
considered, the boundary layer sizes in both specimens are quite equal.
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Figure 5.1 / Profile of the measure for the GND densities along the dimensionless x1-
direction for increasing deformation ε, evaluated at half the sample height; no presence
of GBD densities; the vertical dashed lines indicate the x1-positions of the grain boundary
intersections.

Alltogether, it has been shown that both models are capable of predicting a proper size
dependent constitutive behaviour, where the polycrystal approach has been applied to ac-
curately predict experimentally determined tensile curves for several average grain sizes.
Also, the simulations of the constrained single crystal strip show good qualitative agree-
ments when compared to results found in literature. Moreover, the experimentally found
dependence of the (initial) yield stress on the grain size can also be predicted using the
single crystal approach in combination with a decent field of grain boundary dislocation
densities.
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Overview single crystal model
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Figure A.1 / Flow chart of the entire dislocation density based crystal plasticity frame-
work as presented in Chapter 4 (and partially in Chapter 3); the accompanying equation
numbers are also included.
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Samenvatting

De identificatie van het mechanisch gedrag van metalen is doorgaans gebaseerd op
vooronderstelde homogene deformatie- en spanningsvelden, terwijl eventueel beschik-
bare informatie met betrekking tot de feitelijke heterogene deformatie op de schaal
van de microstructuur nauwelijks gebruikt wordt. Dit legt strenge beperkingen op
aan de mogelijkheden om het constitutief gedrag te voorspellen in gevallen waarbij de
productafmetingen van dezelfde orde van grootte zijn als de lengteschaal van de mi-
crostructuur, dat wil zeggen de grootte van de korrels. Daarmee samenhangend kunnen
schaalafhankelijke verschijnselen, zoals het effect van de korrelgrootte, of het materiaal-
gedrag onder invloed van een opgelegde heterogene belasting op globaal niveau, enkel
begrepen, gemodelleerd en voorspeld worden als de microstructuur beschouwd wordt,
terwijl het gedrag inherent rekgradiënt-afhankelijk wordt. Het doel van dit onderzoek is
daarom het ontwikkelen van een kristalplasticiteitsformulering die deze eigenschappen
in rekening brengt. Hierbij is de koppeling van de microstructuur en de rekgradiën-
ten aan het mechanisch gedrag het gevolg van geometrisch-noodzakelijke dislocaties
(GND’s), die ontstaan als gevolg van microstructurele heterogeniteiten en die korte- en
lange-afstandseffecten veroorzaken op het constitutief gedrag.

Op de polykristallijne schaal is een kristalplasticiteitsmodel ontwikkeld, dat elke korrel
beschouwt als een kern bestaande uit een éénkristal, omgeven door een verzameling van
bikristallen die de korrelgrenzen symboliseren. Hierbij zijn de roosteroriëntaties van
de naburige kristallen in de buitenste gedeeltes van de bikristallen ondergebracht. De
overgang van het gedrag van alle individuele kristallen (zoals beschouwd in het betref-
fende materiële punt) op de microschaal naar een macroscopische responsie wordt be-
werkstelligd door een gemodificeerde Taylor middelingsprocedure. Bij het afdwingen van
deformatiecompatibiliteit en spanningsevenwicht op de grensvlakken in de bikristallen,
wordt de deformatie binnen de korrel heterogeen (de kern en de binnenste gedeeltes van
de bikristallen zullen verschillend deformeren), in een mate die bepaald wordt door de
grootte van de korrel. Deze heterogeniteit geeft aanleiding tot het ontstaan van GND’s
om de compatibiliteit van het kristalrooster te waarborgen. Deze GND’s fungeren als
hindernissen voor de beweging van de glijdende dislocaties die behoren bij de plas-
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tische deformatie, ook wel statistisch-opgeslagen dislocaties (SSD’s) genoemd. Dit ex-
tra verstevigingseffect wordt in rekening gebracht door een toenemende slipweerstand.
Het verkleinen van de kristalgrootte leidt dienovereenkomstig tot een verhoging van de
vloeispanning, een verschijnsel dat ook experimenteel wordt geconstateerd en dat be-
kend staat als het Hall-Petch effect. Eénassige simulaties op een verzameling kristallen
met een instelbare kristalgrootte resulteren in de numerieke voorspelling van gemeten
kristalgrootte-afhankelijke trek-rek-krommes.

Met betrekking tot het hierboven beschreven model zijn er enkele beperkingen geïntro-
duceerd, waarvan sommige ondervangen kunnen worden op de polykristallijne schaal,
maar andere de beschouwing van heterogeniteiten binnen de korrels op een enkelvoudig
kristalniveau behoeven. Binnen een eindige-elementenmethode-uitwerking betekent dit,
dat elke korrel in voldoende eindige elementen wordt onderverdeeld en waarbij aan een
aantal aspecten ruimere aandacht wordt gegeven. Allereerst waren in de polykristallijne
aanpak de GND-dichtheden uitsluitend op een indirecte manier aan de heterogeniteiten
in de deformatie gekoppeld, terwijl in de enkelvoudige kristalaanpak een directe geo-
metrische relatie tussen verschillende kristallografische slipgradiënten en de daarmee
samenhangende rand- en schroef- GND-dichtheden wordt gelegd. Daar de bepaling van
alle (rand-) SSD-dichtheden expliciet volgt uit een geschikte evolutievergelijking, hoeft
de niet-eenduidige keuze met betrekking tot het samenvoegen van de SSD- en GND-
sterktes of hun effectieve dichtheden niet meer gemaakt te worden. Bovendien beïn-
vloeden de GND’s niet alleen het mechanisch gedrag op een korte-afstandsmanier, dat
wil zeggen via de locale slipweerstand, maar worden ook de geometrische effecten van
de GND’s op een grotere lengteschaal geïncorporeerd, door hun dislocatieteken en de
GND-dichtheidsgradiënten te verdisconteren. Deze lange-afstandsbeïnvloeding wordt
gerealiseerd door het beschouwen van een GND-gerelateerde tegenwerkende spannings-
bijdrage, tegenovergesteld aan de op een slipvlak werkende schuifspanning. Daarnaast
kunnen er ter plaatse van de korrelgrenzen geschiktere micromechanische beperkingen
worden afgedwongen dan voorheen konden worden voorgeschreven op de grensvlakken
van de bikristallen, terwijl de bijkomende verwerking van korrelgrensdislocatie- (GBD-)
dichtheden, welke de aanvankelijke roosteroriëntatieverschillen voor hun rekening ne-
men, zorgt voor een korrelgrootte-afhankelijk vloeipunt, beide in overeenstemming met
experimentele observaties. Tot slot kan een tweede niet-eenduidige keuze, met betrekking
tot de volumefractie van de bikristallen ten opzichte van de kernen, bij gebruik van deze
enkelvoudige kristalaanpak worden omzeild. Deze laatstgenoemde aanpak geeft zelfs
de mogelijkheid om in te schatten hoe die volumefractie geschikt gekozen zou kunnen
worden.

Het ontwikkelde kristalplasticiteitsmodel is gebruikt om het afschuivingsgedrag van een
denkbeeldig éénkristal met twee slipsystemen onder vlakke-rekcondities te simuleren.
Daarbij wordt de kristallijne slip in de normaalrichting verhinderd bij de grensvlakken,
waardoor een deformatieheterogeniteit wordt veroorzaakt die gerelateerd is aan de strip-
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grootte. Dientengevolge wordt er een afmetingsafhankelijke vloeispanning geconstateerd
die, net zoals de slip- en GND-dichtheidsprofielen over de stripdoorsnede, in kwalitatieve
overeenstemming is met resultaten uit de literatuur. Het model is eveneens toegepast
om het constitutieve gedrag van een polykristal (bestaande uit een beperkt aantal kor-
rels), dat op trek wordt belast onder vlak-spanningscondities, te simuleren. Hierbij is
tevens de proefstukgrootte gevarieerd, al met al resulterend in andere heterogeniteiten
binnen de korrels. Naast de vloeispanning blijkt ook het initiële vloeipunt af te hangen
van de kristalgrootte.
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