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Summary

Most of the materials produced and utilized in industry are heterogeneous on one or
another spatial scale. Typical examples include metal alloy systems, porous media,
polycrystalline materials and composites. The different phases present in such materi-
als constitute a material microstructure. The (possibly evolving) size, shape, physical
properties and spatial distribution of the microstructural constituents largely determine
the macroscopic, overall behaviour of these multi-phase materials.

To predict the macroscopic behaviour of heterogeneous materials various homoge-
nization techniques are typically used. However, most of the existing homogenization
methods are not suitable for large deformations and complex loading paths and cannot
account for an evolving microstructure. To overcome these problems a computational
homogenization approach has been developed, which is essentially based on the solu-
tion of two (nested) boundary value problems, one for the macroscopic and one for the
microscopic scale. Techniques of this type (i) do not require any constitutive assumption
with respect to the overall material behaviour; (ii) enable the incorporation of large de-
formations and rotations on both micro and macrolevel; (iii) are suitable for arbitrary
material behaviour, including physically non-linear and time dependent behaviour; (iv)
provide the possibility to introduce detailed microstructural information, including a
physical and/or geometrical evolution of the microstructure, in the macroscopic analy-
sis and (v) allow the use of any modelling technique at the microlevel.

Existing (first-order) computational homogenization schemes fit entirely into a stan-
dard local continuum mechanics framework. The macroscopic deformation (gradient)
tensor is calculated for every material point of the macrostructure and is next used to
formulate kinematic boundary conditions for the associated microstructural representa-
tive volume element. After the solution of the microstructural boundary value problem,
the macroscopic stress tensor is obtained by averaging the resulting microstructural
stress field over the volume of the microstructural cell. As a result, the (numerical)
stress-strain relationship at every macroscopic point is readily available. The first-order
computational homogenization technique proves to be a valuable tool in retrieving the
macroscopic mechanical response of non-linear multi-phase materials.

However, there are a few severe restrictions limiting the applicability of the first-
order computational homogenization scheme (as well as conventional homogenization
methods). Firstly, although the technique can account for the volume fraction, distribu-
tion and morphology of the constituents, the results are insensitive to the absolute size
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of the microstructure. As a consequence, effects related to variations of this size cannot
be predicted. Secondly, the approach is not applicable in critical regions of intense de-
formation, where the characteristic wave length of the macroscopic deformation field
is of the order of the size of the microstructure. Moreover, if softening occurs at a
macroscopic material point, the solution obtained from a first-order computational ho-
mogenization leads to a mesh dependent macroscopic response due to ill-posedness of
the macroscopic boundary value problem.

In order to deal with these limitations, a novel, second-order computational ho-
mogenization procedure is proposed. The second-order scheme is based on a proper
incorporation of the gradient of the macroscopic deformation tensor into the kinemat-
ical micro-macro framework. The macroscopic stress tensor and a higher-order stress
tensor are retrieved in a natural way based on an extended version of the Hill-Mandel
energy balance. A full second gradient continuum theory appears at the macroscale,
which requires solving a higher-order equilibrium problem by a dedicated finite ele-
ment implementation.

The most important property of the second-order computational homogenization
method is in fact that the relevant length scale of the microstructure is directly incor-
porated into the description on the macrolevel via the size of the representative cell.
This size should reflect the scale at which the relevant microstructural deformation
mechanisms occur. Including the size of the microstructure allows to describe certain
phenomena that cannot be addressed by the first-order scheme, such as size effects
and macroscopic localization. Several microstructural analyses show that the second-
order computational homogenization framework captures changes of the macroscopic
response due to variations of the microstructural size as well as variations of macro-
scopic gradients of the deformation. If the microstructural size becomes negligible with
respect to the length scale of the macroscopic deformation field, the results obtained by
the second-order modelling coincide with those from the first-order approach. This im-
portant observation demonstrates that the second-order computational homogenization
scheme is a natural extension of the first-order framework. In problems which exhibit
macroscopic localization, the microstructural length scale determines the width of the
localization band, thus providing mesh independent results. Furthermore, the second-
order framework allows the modelling of surface layer effects via the incorporation of
higher-order boundary conditions. Higher-order continuum modelling becomes consid-
erably easier with the use of the second-order computational homogenization scheme
because the second-order response is directly obtained from a microstructural analysis,
rather than by closed-form constitutive relations which are difficult to formulate and
which contain a large number of parameters.

Computational homogenization provides a versatile strategy to establish micro-ma-
cro structure-property relations for materials for which the collective behaviour of their
evolving, multi-phase structure cannot be predicted by any other method.



Notation

Vectors and tensors

Tensors and tensor products are used in a Cartesian coordinate system, with �ei, i = 1, 2, 3
a set of unit base vectors. Summation convention is applied over repeated indices.

Quantities

a scalar

�a = ai�ei vector

A = Aij�ei�ej second-order tensor
3A = Aijk�ei�ej�ek third-order tensor

nA = Aijk...n�ei�ej�ek...�en nth-order tensor

Operators

�a�b = aibj�ei�ej dyadic product

A ·B = AijBjk�ei�ek inner product

A : B = AijBji double inner product

3A
... 3B = AijkBkji triple inner product

∇�a = ∇iaj�ei�ej gradient operator

∇ · �a = ∇iai divergence operator

Ac, Ac
ij = Aji conjugate

3ARC , ARC
ijk = Aikj right conjugate

3ALC , ALC
ijk = Ajik left conjugate

A−1 inverse

det(A) determinant
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Matrices and columns

Quantities

a scalar

a~ column

A matrix

Operators

AB matrix product

AT transpose

A−1 inverse



Chapter 1

Introduction

1.1 Metals, classical and modern multi-phase materials

Industrial and engineering materials, as well as natural materials, are heterogeneous
at a certain scale. This heterogeneous nature has a significant impact on the ob-
served macroscopic behaviour of multi-phase materials. Various phenomena occurring
on the macroscopic level originate from the physics and mechanics of the underly-
ing microstructure. The overall behaviour of micro-heterogeneous materials depends
strongly on the size, shape, spatial distribution and properties of the microstructural
constituents and their respective interfaces. The microstructural morphology and prop-
erties may also evolve under a macroscopic thermomechanical loading. Consequently,
these microstructural influences are important for the production routes and the life
performance of the material and products made thereof.

From a historical point of view, metals have been exploited to make optimal use
of their multi-phase nature, even though much of the findings long remained empiri-
cal. Contributing to the fundamental understanding of the collective behaviour of the
assembly of phases is one of the main objectives of this work. Among examples of
multi-phase materials are metal alloys, with an additional second phase in the form of
precipitates or voids. These second phases are essential for the properties of the alloy
and may lead to significant enhancement in the material overall performance or serve
as an onset of damage. Moreover, almost all industrially used metals have a polycrys-
talline structure with grains of different orientations and grain boundaries. Another
widely used heterogeneous industrial material is a metal matrix composite. For ex-
ample, in aluminum metal matrix composites, silica fibres, fine stainless steel wires or
small ceramic particles may be distributed throughout the aluminum matrix. This can
produce vastly improved properties such as an increased strength, enhanced toughness
and weight reduction. Also metal foams, acquiring considerable attention in the past
decade, belong to the category of multi-phase materials. The enhanced properties (e.g.
the low weight, high energy absorption etc.) of these materials are primarily due to
their foamed microstructure. In some cases a heterogeneous structure is specifically
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(a) (b)

(c) (d)

Figure 1.1: Examples of metallic heterogeneous microstructures: (a) SEM image of steel
T67CA; the white spots are cementite particles; (b) SEM image of steel
T61CA; voids are located around cementite particles; (c) light microscope
image of an aluminum polycrystalline microstructure; (d) light microscope
image of a shadow mask.

created for a particular product or application. An example of such a small scale hetero-
geneous structure is a shadow mask (used for colour separation in colour picture tubes),
which has variably inclined through-thickness holes. Some examples of heterogeneous
metallic microstructures are shown in Figure 1.1.

Determination of the macroscopic overall characteristics of heterogeneous media is
an essential problem in many engineering applications. Studying the relation between
microstructural phenomena and the macroscopic behaviour not only allows to predict
the behaviour of existing multi-phase materials, but also provides a tool to design a
material microstructure such that the resulting macroscopic behaviour exhibits the re-
quired characteristics. An additional challenge for multi-scale modelling is provided by
ongoing technological developments, e.g. miniaturization of products and increasing
complexity of forming operations. In micro and submicron applications the microstruc-
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ture is no longer negligible with respect to the component size, thus giving rise to a
so-called size effect. Furthermore, advanced forming operations force a material to
undergo complex loading paths. This results in varying microstructural responses and
easily provokes an evolution of the microstructure. From economical (time and costs)
points of view, performing straightforward experimental measurements on a number
of material samples of different sizes, for various geometrical and physical phase prop-
erties, volume fractions and loading paths is a hardly feasible task. Hence, there is a
clear need for modelling strategies that provide a better understanding of micro-macro
structure-property relations in multi-phase materials.

1.2 Modelling strategies for multi-phase materials

The simplest method leading to homogenized moduli of a heterogeneous material is
based on the rule of mixtures. The overall property is then calculated as an average
over the respective properties of the constituents, weighted with their volume fractions.
This approach takes only one microstructural characteristic, the volume ratio of the
heterogeneities, into consideration and, strictly speaking, denies the influence of other
aspects.

A more sophisticated method is the effective medium approximation, as established
by Eshelby (1957) and further developed by a number of authors, see, e.g. Hashin
(1962); Budiansky (1965); Mori and Tanaka (1973). Equivalent material properties are
derived as a result of the analytical (or semi-analytical) solution of a boundary value
problem for a spherical or ellipsoidal inclusion of one material in an infinite matrix
of another material. An extension of this method is the self-consistent approach, in
which a particle of one phase is embedded into the effective material (the properties of
which are not known a priori), Hill (1965); Christensen and Lo (1979). These strategies
give a reasonable approximation for structures that possess some kind of geometrical
regularity, but fail to describe the behaviour of clustered structures. Moreover, high
contrasts between the properties of the phases cannot be represented accurately.

Although some work has been done on the extension of the self-consistent approach
to non-linear cases (originating from the work by Hill (1965) who has proposed an
“incremental” version of the self-consistent method), significantly more progress in es-
timating advanced properties of composites has been achieved by variational bound-
ing methods, Hashin and Shtrikman (1963); Hashin (1983); Willis (1981); Ponte Cas-
tañeda and Suquet (1998). The variational bounding methods are based on suitable
variational (minimum energy) principles and provide upper and lower bounds for the
overall composite properties.

Another homogenization approach is based on the mathematical asymptotic homog-
enization theory, documented in Bensoussan et al. (1978); Sanchez-Palencia (1980).
This method applies an asymptotic expansion of displacement and stress fields on the
“natural length parameter”, which is the ratio of a characteristic size of the hetero-
geneities and a measure of the macrostructure, see, e.g. Tolenado and Murakami
(1987); Devries et al. (1989); Guedes and Kikuchi (1990); Hollister and Kikuchi (1992);
Fish et al. (1999). The asymptotic homogenization approach provides effective overall
properties as well as local stress and strain values. However, usually the considerations
are restricted to very simple microscopic geometries and simple material models, mostly
at small strains. A comprehensive overview of different homogenization methods may
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be found in Nemat-Nasser and Hori (1993).

The increasing complexity of microstructural mechanical and physical behaviour,
along with the development of computational methods, made the class of so-called unit
cell methods more attractive. These approaches have been used in a great number
of different applications (e.g. Christman et al. (1989); Tvergaard (1990); Bao et al.
(1991); Brockenbrough et al. (1991); Nakamura and Suresh (1993); McHugh et al.
(1993a); van der Sluis et al. (1999a); van der Sluis (2001)). A selection of exam-
ples in the field of metal matrix composites has been collected, for example, in Suresh
et al. (1993). The unit cell methods serve a twofold purpose: they provide valuable
information on the local microstructural fields as well as the effective material prop-
erties. These properties are generally determined by fitting the averaged microscop-
ical stress-strain fields, resulting from the analysis of a microstructural representative
cell subjected to a certain loading path, on macroscopic closed-form phenomenological
constitutive equations in a format established a priori. Once the constitutive behaviour
becomes non-linear (geometrically, physically or both), it is extremely difficult to make
a well-motivated assumption on a suitable macroscopic constitutive format. For exam-
ple, McHugh et al. (1993b) have demonstrated that, when a composite is characterized
by power-law slip system hardening, the power-law hardening behaviour is not pre-
served at the macroscale. Hence, most of the known homogenization techniques are
not suitable for large deformations nor complex loading paths, neither do they account
for the geometrical and physical changes of the microstructure (which is relevant, for
example, when dealing with phase transformations in metals).

In recent years, a promising alternative approach for the homogenization of en-
gineering materials has been developed, i.e. multi-scale computational homogeniza-
tion, also called global-local analysis. The basic ideas of this approach have been pre-
sented in papers by Suquet (1985); Guedes and Kikuchi (1990); Terada and Kikuchi
(1995); Ghosh et al. (1995, 1996) and further developed and improved in more recent
works by Smit et al. (1998); Miehe et al. (1999b,a); Michel et al. (1999); Feyel and
Chaboche (2000); Terada and Kikuchi (2001); Ghosh et al. (2001); Kouznetsova et al.
(2001a); Miehe and Koch (2002). These micro-macro modelling procedures do not
lead to closed-form overall constitutive equations, but compute the stress-strain rela-
tionship at every point of interest of the macrocomponent by detailed modelling of the
microstructure attributed to that point. Techniques of this type (i) do not require any
constitutive assumption on the macrolevel, (ii) enable the incorporation of large de-
formations and rotations on both micro and macrolevels, (iii) are suitable for arbitrary
material behaviour, including physically non-linear and time dependent, (iv) provide
the possibility to introduce detailed microstructural information, including the physical
and geometrical evolution of the microstructure, into the macroscopic analysis and (v)
allow the use of any modelling technique on the microlevel, e.g. the finite element
method (Smit et al. (1998); Feyel and Chaboche (2000); Terada and Kikuchi (2001);
Kouznetsova et al. (2001a)), the Voronoi cell method (Ghosh et al. (1995, 1996)), a
crystal plasticity framework (Miehe et al. (1999b,a)) or numerical methods based on
Fast Fourier Transforms (Michel et al. (1999); Moulinec and Suquet (1998)).

Although the fully coupled micro-macro technique is still computationally rather
expensive, this concern can be overcome by parallel computation (Feyel and Chaboche
(2000)). Another option is selective usage, where non-critical regions are modelled
by continuum closed-form homogenized constitutive relations or by the constitutive
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tangents obtained from the microstructural analysis but kept constant in the elastic
domain, while in the critical regions the multi-scale analysis of the microstructure is
fully performed (Ghosh et al. (2001)). Despite the required computational efforts, the
numerical homogenization approach seems to be a versatile tool to establish micro-
macro structure-property relations in materials, where the collective behaviour of an
evolving multi-phase heterogeneous material is not yet possible to predict by any other
method. Moreover, this micro-macro modelling technique is useful for constructing,
evaluating and verifying other homogenization methods or micromechanically based
macroscopic constitutive models.

The computational homogenization techniques developed until now are built en-
tirely within a standard local continuum mechanics concept, where the response at a
(macroscopic) material point depends only on the first gradient of the displacement
field. Thus, throughout the present work, the classical computational homogenization
methods will be referred to as “first-order”.

Two major disadvantages of the existing first-order micro-macro computational ap-
proaches (as well as conventional homogenization methods), which significantly limit
their applicability, are to be mentioned. First, even though these techniques can account
for the volume fraction, distribution and morphology of the constituents, they cannot
take into account the absolute size of the microstructure and consequently fail to ac-
count for geometrical size effects. Another difficulty arises from the intrinsic assumption
of uniformity of the macroscopic (stress-strain) fields attributed to each microstructural
representative cell. This uniformity assumption relies on the concept of separation of
scales and is not appropriate in critical regions of high gradients, where the macroscopic
fields can vary rapidly.

To address these problems, a second-order computational homogenization proce-
dure, that extends the classical computational homogenization technique to a full gra-
dient geometrically non-linear approach, is proposed in this thesis (Kouznetsova et al.
(2002)). In this framework, leading to a second gradient macroscopic continuum, the
macroscopic deformation tensor and its gradient (i.e. the first and the second gra-
dient of the displacement field, thus the name “second-order”) are used to prescribe
the essential boundary conditions on a microstructural representative volume element
(RVE). For the RVE boundary conditions, the well-known periodic boundary conditions
are generalized. At the small RVE scale all microstructural constituents are still treated
as an ordinary continuum, described by standard first-order equilibrium and constitu-
tive equations. Therefore the microstructural boundary value problem remains actually
classical, so that the solution is readily obtained without any complications. From the
solution of the RVE boundary value problem, the macroscopic stress tensor and a higher-
order stress tensor are extracted by exploiting an enhanced Hill-Mandel condition. This
automatically delivers the microstructurally based constitutive response of the higher-
order macrocontinuum, which deals with the macroscopic size effects and macroscopic
localization phenomena (high deformation gradients) in a natural way.

1.3 Scope and outline

The aim of this thesis is to develop a computational homogenization technique for the
multi-scale modelling of non-linear deformation processes of evolving multi-phase ma-
terials.
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In chapter 2 the classical first-order computational homogenization approach is in-
troduced. Details on the formulation of the microscopic boundary value problem and
the micro-macro coupling in a geometrically and physically non-linear framework are
given. The implementation of the first-order computational homogenization scheme in
a finite element framework is briefly discussed. An example of the first-order computa-
tional homogenization modelling is presented, followed by a discussion of the classical
concept of a representative volume element. Finally, some intrinsic limitations of the
first-order framework are pointed out.

In order to eliminate these limitations, in chapter 3 the novel second-order compu-
tational homogenization scheme is presented. The microstructural boundary conditions
and the relations for the determination of the averaged stress measures are elaborated.
The extraction of the macroscopic constitutive tangents from the microstructural stiff-
ness is treated in detail. The solution scheme of the coupled second-order multi-scale
computational analysis is outlined. Chapter 3 ends with some remarks on the notion
of a representative volume element in the second-order computational homogenization
approach.

In the framework of the second-order computational homogenization a proper de-
scription of the macroscopic homogenized continuum requires a full second gradient
equilibrium formulation. In chapter 4 the continuum description for the second gra-
dient medium is presented and the finite element computational strategy is developed
and validated.

Chapter 5 presents some illustrative examples of the second-order computational
homogenization analysis. The main focus is on the comparison of the performance of
the first- and second-order techniques, which allows a definition of their range of appli-
cability and indicates when the second-order scheme is necessary to obtain physically
meaningful results.

Finally, chapter 6 gives a brief summary of the conclusions and recommendations
on the practical use of the computational homogenization techniques given attention
in this thesis. Perspectives of future developments in computational homogenization
strategies are shortly discussed.



Chapter 2

First-order computational
homogenization

In this chapter the first-order computational homogenization strategy is presented. The
key components of the computational homogenization scheme, i.e. the formulation of
the microstructural boundary value problem and the coupling between the micro and
macrolevel based on the averaging theorems, are treated in detail. Some aspects of
the numerical implementation of the framework, particularly the computation of the
macroscopic consistent tangent operator based on the total microstructural stiffness,
are discussed. The performance of the method is illustrated by the simulation of pure
bending of porous aluminum. The classical notion of a representative volume element is
introduced and the influence of the spatial distribution of heterogeneities on the overall
macroscopic behaviour is investigated by comparing the results of multi-scale modelling
for regular and random structures.

2.1 Introduction

Computational homogenization is a multi-scale technique, which is essentially based
on the derivation of the local macroscopic constitutive response (input leading to out-
put, e.g. stress driven by deformation) from the underlying microstructure through the
adequate construction and solution of a microstructural boundary value problem.

The basic principles of the classical first-order computational homogenization have
gradually evolved from the concepts employed in other homogenization methods and
may be fit into the four-step homogenization scheme established by Suquet (1985):
(i) definition of a microstructural representative volume element (RVE), of which the
constitutive behaviour of individual constituents is assumed to be known; (ii) formula-
tion of the microscopic boundary conditions from the macroscopic input variables and
their application on the RVE (macro-to-micro transition); (iii) calculation of the macro-
scopic output variables from the analysis of the deformed microstructural RVE (micro-
to-macro transition); (iv) obtaining the (numerical) relation between the macroscopic
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input and output variables. The main ideas of the first-order computational homoge-
nization have been established in papers by Suquet (1985); Guedes and Kikuchi (1990);
Terada and Kikuchi (1995); Ghosh et al. (1995, 1996) and further developed and im-
proved in more recent works by Smit et al. (1998); Smit (1998); Miehe et al. (1999b);
Miehe and Koch (2002); Michel et al. (1999); Feyel and Chaboche (2000); Terada and
Kikuchi (2001); Ghosh et al. (2001); Kouznetsova et al. (2001a).

Among several advantageous characteristics of the computational homogenization
technique the following are worth to be mentioned: (i) no explicit assumptions on the
format of the macroscopic local constitutive response are required at the macroscale,
since the macroscopic constitutive behaviour is obtained from the solution of the as-
sociated microscale boundary value problem; (ii) the macroscopic constitutive tangent
operator is derived from the total microscopic stiffness matrix through static condensa-
tion; (iii) consistency is preserved through this scale transition; (iv) the method deals
with large strains and large rotations in a trivial way, if the microstructural constituents
are properly modelled within a geometrically non-linear framework. Different phases
present in the microstructure can be characterized by arbitrary physically non-linear
constitutive models. The RVE problem is a classical boundary value problem, for which
any appropriate solution strategy can be used.

Despite rather high computational efforts involved in the fully coupled multi-scale
analysis (i.e. the solution of a nested boundary value problem), the computational ho-
mogenization technique has proven to be a valuable tool to establish non-linear micro-
macro structure-property relations, especially in the cases where the complexity of the
mechanical and geometrical microstructural properties and the evolving character pro-
hibit the use of other homogenization methods.

This chapter presents the essential ingredients of the first-order computational ho-
mogenization technique. The basic underlying hypotheses and general concepts are
summarized in section 2.2. The microstructural boundary value problem is defined in
section 2.3. Section 2.4 deals with the coupling between micro and macrovariables. In
the large deformation framework the importance of a careful choice of the deforma-
tion and stress measures, at the macroscopic level obtained as the volume average of
the microstructural counterparts, is emphasized. Numerical extraction of the macro-
scopic consistent constitutive tangent from the microscopic overall stiffness is treated in
section 2.4.4. Some implementation details and the solution scheme are briefly summa-
rized in section 2.5. A numerical example, the first-order computational homogeniza-
tion analysis of bending of voided aluminum is presented in section 2.6. Section 2.7
discusses the classical notion of a representative volume element and investigates the
influence of the spatial arrangement of the microstructural heterogeneities on the over-
all response for different material models and loading histories. The chapter concludes
with a discussion, addressing some intrinsic limitations of the first-order framework.

2.2 Basic hypotheses

The material configuration to be considered is assumed to be macroscopically suffi-
ciently homogeneous, but microscopically heterogeneous (the morphology consists of
distinguishable components as e.g. inclusions, grains, interfaces, cavities). This is
schematically illustrated in Figure 2.1. The microscopic length scale is much larger
than the molecular dimensions, so that a continuum approach is justified for every



First-order computational homogenization 9

Figure 2.1: Continuum macrostructure and heterogeneous microstructure associated
with the macroscopic point M.

constituent. At the same time, in the context of the principle of separation of scales,
the microscopic length scale should be much smaller than the characteristic size of the
macroscopic sample or the wave length of the macroscopic loading.

Most of the homogenization approaches make an assumption on global periodicity of
the microstructure, suggesting that the whole macroscopic specimen consists of spatially
repeated unit cells. In the computational homogenization approach a more realistic
assumption on local periodicity is proposed, i.e. the microstructure can have different
morphologies corresponding to different macroscopic points, while it repeats itself in
a small vicinity of each individual macroscopic point. The concept of local and global
periodicity is schematically illustrated in Figure 2.2. The assumption of local periodicity
adopted in the computational homogenization allows the modelling of the effects of a
non-uniform distribution of the microstructure on the macroscopic response (e.g. in
functionally graded materials).

(a) local periodicity (b) global periodicity

Figure 2.2: Schematic representation of a macrostructure with (a) a locally and
(b) a globally periodic microstructure.

In the first-order computational homogenization procedure, a macroscopic deforma-
tion (gradient) tensor FM is calculated for every material point of the macrostructure
(e.g. the integration points of the macroscopic mesh within a finite element environ-
ment). Here and in the following the subscript “M” refers to a macroscopic quantity,
while the subscript “m” will denote a microscopic quantity. The deformation tensor
FM for a macroscopic point is next used to formulate the boundary conditions to be im-
posed on the RVE that is assigned to this point. Upon the solution of the boundary value
problem for the RVE, the macroscopic stress tensor PM is obtained by averaging the re-
sulting RVE stress field over the volume of the RVE. As a result, the (numerical) stress-
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deformation relationship at the macroscopic point is readily available. Additionally, the
local macroscopic consistent tangent is derived from the microstructural stiffness. This
framework is schematically illustrated in Figure 2.3.

Figure 2.3: First-order computational homogenization scheme.

The micro-macro procedure outlined here is “deformation driven”, i.e. on the local
macroscopic level the problem is formulated as follows: given a macroscopic deforma-
tion gradient tensor FM, determine the stress PM and the constitutive tangent, based
on the response of the underlying microstructure. A “stress driven” procedure (given
a local macroscopic stress, obtain the deformation) is also possible. However, such
a procedure does not directly fit into the standard displacement-based finite element
framework, which is usually employed for the solution of macroscopic boundary value
problems. Moreover, in case of large deformations the macroscopic rotational effects
have to be added to the stress tensor in order to uniquely determine the deformation
gradient tensor, thus complicating the implementation. Therefore, the “stress driven”
approach, which is often used in the analysis of single unit cells, is generally not adopted
in coupled micro-macro computational homogenization strategies.

In the subsequent sections the essential steps of the first-order computational ho-
mogenization process are discussed in more detail. First the problem on the microlevel
is defined, then the aspects of the coupling between micro and macrolevel are consid-
ered and finally the realization of the whole procedure within a finite element context
is explained.

2.3 Definition of the problem on the microlevel

The physical and geometrical properties of the microstructure are identified by a rep-
resentative volume element (RVE). An example of a typical two-dimensional RVE is
depicted in Figure 2.4. The actual choice of the RVE is a rather delicate task. The
RVE should be large enough to represent the microstructure, without introducing non-
existing properties (e.g. undesired anisotropy) and at the same time it should be small
enough to allow efficient computational modelling. Some issues related to the concept
of a representative cell are discussed in section 2.7. Here it is supposed that an appro-
priate RVE has been already selected. Then the problem on RVE level can be formulated
as a standard problem in quasi-static continuum solid mechanics.

The RVE deformation field in a point with the initial position vector �X (in the refer-
ence domain V0) and the actual position vector �x (in the current domain V ) is described
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Figure 2.4: Schematic picture of a typical two-dimensional representative volume ele-
ment (RVE).

by the microstructural deformation gradient tensor Fm = (∇0m�x)
c, where the gradient

operator ∇0m is taken with respect to the reference microstructural configuration.
The RVE is in a state of equilibrium. This is mathematically reflected by the equilib-

rium equation in terms of the Cauchy stress tensor σm or, alternatively, in terms of the
first Piola-Kirchhoff stress tensor Pm = det(Fm)σm · (Fc

m)
−1 according to (in the absence

of body forces)

∇m · σm = �0 in V, or ∇0m ·Pc
m = �0 in V0, (2.1)

where ∇m is the the gradient operator with respect to the current configuration of the
microstructural cell.

The mechanical characterizations of the microstructural components are described
by certain constitutive laws, specifying a time and history dependent stress-deformation
relationship for every microstructural constituent

σ(α)
m (t) = F (α)

σ {F(α)
m (τ), τ ∈ [0, t]}, or P(α)

m (t) = F (α)
P {F(α)

m (τ), τ ∈ [0, t]}, (2.2)

where t denotes the current time; α = 1, N , with N the number of microstructural
constituents (e.g. matrix, inclusion, etc.) to be distinguished.

The actual macro-to-micro transition is performed by imposing the macroscopic de-
formation gradient tensor FM on the microstructural RVE through a specific approach.
Probably the simplest way is to assume that all the microstructural constituents un-
dergo a constant deformation identical to the macroscopic one. In the literature this is
called the Taylor (or Voigt) assumption. Another simple strategy is to assume an iden-
tical constant stress (and additionally identical rotation) in all the components. This is
called the Sachs (or Reuss) assumption. Also some intermediate procedures are possi-
ble, where the Taylor and Sachs assumptions are applied only to certain components of
the deformation and stress tensors. All these simplified procedures do not really require
a detailed microstructural modelling. Accordingly, they generally provide very rough
estimates of the overall material properties and are hardly suitable in the non-linear de-
formation regimes. The Taylor assumption usually overestimates the overall stiffness,
while the Sachs assumption leads to an underestimation of the stiffness. Nevertheless,
the Taylor and Sachs averaging procedures are sometimes used to quickly obtain a first
estimate of the composite’s overall stiffness. The Taylor assumption and some interme-
diate procedures are often employed in multi-crystal plasticity modelling.
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More accurate averaging strategies that do require the solution of the detailed mi-
crostructural boundary value problem transfer the given macroscopic variables to the
microstructural RVE via the boundary conditions. Classically three types of RVE bound-
ary conditions are used, i.e. prescribed displacements, prescribed tractions and pre-
scribed periodicity.

In the case of prescribed displacement boundary conditions, the position vector of a
point on the RVE boundary in the deformed state is given by

�x = FM · �X with �X on Γ0, (2.3)

where Γ0 denotes the undeformed boundary of the RVE. This condition prescribes a
linear mapping of the RVE boundary.

For the traction boundary conditions it is prescribed

�t = �n · σM on Γ, or �p = �N ·Pc
M on Γ0, (2.4)

with �n and �N the normals to the current (Γ) and initial (Γ0) RVE boundaries, respec-
tively. However, the traction boundary conditions (2.4) do not completely define the
microstructural boundary value problem, as discussed at the end of section 2.2. More-
over, they are not appropriate in the deformation driven procedure to be pursued in the
present computational homogenization scheme. Therefore, the RVE traction bound-
ary conditions are not used in the actual implementation of the coupled computational
homogenization scheme; they were presented here for the sake of generality only.

Based on the assumption of microstructural periodicity presented in section 2.2,
periodic boundary conditions are introduced. The periodicity conditions for the mi-
crostructural RVE are written in a general format as

�x + − �x − = FM · ( �X+ − �X−), (2.5)
�p+ = −�p −, (2.6)

representing periodic deformations (2.5) and antiperiodic tractions (2.6) on the bound-
ary of the RVE. Here the (opposite) parts of the RVE boundary Γ−

0 and Γ+
0 are defined

such that �N− = − �N+ at corresponding points on Γ−
0 and Γ+

0 , see Figure 2.4. The pe-
riodicity condition (2.5), being prescribed on an initially periodic RVE, preserves the
periodicity of the RVE in the deformed state. Also it should be mentioned that, as has
been observed by several authors (e.g. van der Sluis et al. (2000); Terada et al. (2000)),
the periodic boundary conditions provide a better estimation of the overall properties,
than the prescribed displacement or prescribed traction boundary conditions (see also
the discussion in section 2.7.1).

For the two-dimensional RVE depicted in Figure 2.4 the periodicity condition (2.5)
may be recast into the following constraint relations (more suitable for the actual im-
plementation)

�xR = �xL + �x2 − �x1, (2.7)
�xT = �xB + �x4 − �x1, (2.8)

where �xL, �xR, �xB and �xT denote a position vector on the left, right, bottom and top
boundary of the RVE, respectively; �xi, i = 1, 2, 4 are the position vectors of the corner
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points 1, 2 and 4 in the deformed state. These position vectors are prescribed according
to

�xi = FM · �Xi, i = 1, 2, 4. (2.9)

Other types of RVE boundary conditions are possible. The only general requirement
is that they should be consistent with the so-called averaging theorems. The averaging
theorems, dealing with the coupling between the micro and macrolevels in an energet-
ically consistent way, will be presented in the next section. The consistency of the three
types of boundary conditions presented above with these averaging theorems will be
verified.

2.4 Coupling of the macroscopic and microscopic levels

The actual coupling between the macroscopic and microscopic levels is based on aver-
aging theorems. The integral averaging expressions have been initially proposed by Hill
(1963) for small deformations and later extended to a large deformation framework by
Hill (1984) and Nemat-Nasser (1999).

2.4.1 Deformation

The first of the averaging relations concerns the micro-macro coupling of kinematic
quantities. It is postulated that the macroscopic deformation gradient tensor FM is the
volume average of the microstructural deformation gradient tensor Fm

FM =
1

V0

∫
V0

Fm dV0 =
1

V0

∫
Γ0

�x �N dΓ0, (2.10)

where the divergence theorem has been used to transform the integral over the unde-
formed volume V0 of the RVE to a surface integral.

Verification that the use of the prescribed displacement boundary conditions (2.3)
indeed leads to satisfaction of (2.10) is rather trivial. Substitution of (2.3) into (2.10)
and use of the divergence theorem with account for ∇0m

�X = I gives

FM =
1

V0

∫
Γ0

(FM · �X) �N dΓ0 =
1

V0
FM ·

∫
Γ0

�X �N dΓ0 =
1

V0
FM ·

∫
V0

(∇0m
�X)c dV0 = FM. (2.11)

The validation for the periodic boundary conditions (2.5) follows the same lines except
that the RVE boundary is split into the parts Γ+

0 and Γ−
0

FM =
1

V0

{∫
Γ+

0

�x + �N+ dΓ0 +

∫
Γ−

0

�x − �N− dΓ0

}
=

1

V0

∫
Γ+

0

(�x + − �x −) �N+ dΓ0

=
1

V0
FM ·

∫
Γ+

0

( �X+ − �X−) �N+ dΓ0 =
1

V0
FM ·

∫
Γ0

�X �N dΓ0 = FM.

(2.12)

In the general case of large strains and large rotations, attention should be given
to the fact that due to the non-linear character of the relations between different kine-
matic measures not all macroscopic kinematic quantities may be obtained as the volume
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average of their microstructural counterparts. For example, the volume average of the
Green-Lagrange strain tensor

E∗
M =

1

2V0

∫
V0

(Fc
m · Fm − I) dV0 (2.13)

is in general not equal to the macroscopic Green-Lagrange strain obtained according to

EM = 1
2
(Fc

M · FM − I). (2.14)

2.4.2 Stress

Similarly, the averaging relation for the first Piola-Kirchhoff stress tensor is established
as

PM =
1

V0

∫
V0

Pm dV0. (2.15)

In order to express the macroscopic first Piola-Kirchhoff stress tensor PM in the mi-
crostructural quantities defined on the RVE surface, the following relation is used (with
account for microscopic equilibrium ∇0m ·Pc

m = �0 and the equality ∇0m
�X = I)

Pm = (∇0m ·Pc
m)
�X +Pm · (∇0m

�X) = ∇0m · (Pc
m
�X). (2.16)

Substitution of (2.16) into (2.15), application of the divergence theorem and the defi-
nition of the first Piola-Kirchhoff stress vector �p = �N ·Pc

m gives

PM =
1

V0

∫
V0

∇0m · (Pc
m
�X) dV0 =

1

V0

∫
Γ0

�N ·Pc
m
�X dΓ0 =

1

V0

∫
Γ0

�p �X dΓ0. (2.17)

Now it is a trivial task to validate that substitution of the traction boundary conditions
(2.42) into this equation leads to an identity.

After the solution of the microstructural RVE boundary value problem with an appro-
priate solution technique (i.e. finite elements) the macroscopic stress PM is obtained
by numerical evaluation of the boundary integral (2.17). For the case of prescribed
displacement boundary conditions this simply leads to

PM =
1

V0

Np∑
i=1

�fi �Xi, (2.18)

where �fi are the resulting external forces at the boundary nodes and �Xi the position
vectors of these nodes in the undeformed state; Np is the number of the nodes on the
boundary. Using the periodicity conditions (2.7)-(2.9) for the two-dimensional con-
figuration depicted in Figure 2.4, it can be verified that the only contribution to the
boundary integral (2.17) is offered by the external forces at the three prescribed corner
nodes

PM =
1

V0

∑
i=1,2,4

�fi �Xi. (2.19)
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The volume average of the microscopic Cauchy stress tensor σm over the current
RVE volume V can be elaborated similarly to (2.17)

σ∗
M =

1

V

∫
V

σm dV =
1

V

∫
Γ

�t �x dΓ. (2.20)

Just as it is the case for kinematic quantities, the usual continuum mechanics relation
between stress measures (e.g. the Cauchy and the first Piola-Kirchhoff stress tensors)
is, in general, not valid for the volume averages of the microstructural counterparts
σ∗

M �= PM · Fc
M/ det(FM). However, the Cauchy stress tensor on the macrolevel should

be defined as

σM =
1

det(FM)
PM · Fc

M. (2.21)

Clearly, there is some arbitrariness in the choice of associated deformation and stress
quantities, whose macroscopic measures are obtained as a volume average of their mi-
croscopic counterparts. The remaining macroscopic measures are then expressed in
terms of these averaged quantities using the standard continuum mechanics relations.
The specific selection should be made with care and based on experimental results and
convenience of the implementation. The actual choice of the “primary” averaging mea-
sures: the deformation gradient tensor F and the first Piola-Kirchhoff stress tensor P
(and their rates) has been advocated by Hill (1984), Nemat-Nasser (1999) and Miehe
et al. (1999b) (in the first two references the nominal stress SN = det(F)F−1 · σ = Pc

has been used). This particular choice is motivated by the fact that these two measures
are work conjugated, combined with the observation that their volume averages can
exclusively be defined in terms of the microstructural quantities on the RVE boundary
only. This feature will be used in the next section, where the averaging theorem for the
micro-macro energy transition is discussed.

2.4.3 Internal work

The energy averaging theorem, known in the literature as the Hill-Mandel condition
or macrohomogeneity condition (Hill (1963); Suquet (1985)), requires that the macro-
scopic volume average of the variation of work performed on the RVE is equal to the
local variation of the work on the macroscale. Formulated in terms of a work conju-
gated set, i.e. the deformation gradient tensor and the first Piola-Kirchhoff stress tensor,
the Hill-Mandel condition reads

1

V0

∫
V0

Pm : δFc
mdV0 = PM : δFc

M, ∀δ�x. (2.22)

The averaged microstructural work in the left-hand side of (2.22) may be expressed
in terms of RVE surface quantities

δW0M =
1

V0

∫
V0

Pm : δFc
mdV0 =

1

V0

∫
Γ0

�p · δ�x dΓ0, (2.23)

where the relation (with account for microstructural equilibrium)

Pm : ∇0mδ�x = ∇0m · (Pc
m · δ�x)− (∇0m ·Pc

m) · δ�x = ∇0m · (Pc
m · δ�x),
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and the divergence theorem have been used.
Now it is easy to verify that the three types of boundary conditions: prescribed

displacements (2.3), prescribed tractions (2.4) or the periodicity conditions (2.5) and
(2.6) all satisfy the Hill-Mandel condition a priori, if the averaging relations for the
deformation gradient tensor (2.10) and for the first Piola-Kirchhoff stress tensor (2.15)
are adopted. In case of the prescribed displacements (2.3), substitution of the variation
of the boundary position vectors δ�x = δFM · �X into the expression for the averaged
microwork (2.23) with incorporation of (2.17) gives

δW0M =
1

V0

∫
Γ0

�p · (δFM · �X) dΓ0 =
1

V0

∫
Γ0

�p �X dΓ0 : δF
c
M = PM : δFc

M. (2.24)

Similarly, substitution of the traction boundary condition (2.4) into (2.23), with account
for the variation of the macroscopic deformation gradient tensor obtained by varying
relation (2.10), leads to

δW0M =
1

V0

∫
Γ0

( �N ·Pc
M) · δ�x dΓ0 = PM :

1

V0

∫
Γ0

�Nδ�x dΓ0 = PM : δFc
M. (2.25)

Finally, for the periodic boundary conditions (2.5) and (2.6)

δW0M =
1

V0

{∫
Γ+

0

�p + · δ�x + dΓ0 +

∫
Γ−

0

�p − · δ�x − dΓ0

}
=

1

V0

∫
Γ+

0

�p + · (δ�x + − δ�x −) dΓ0

=
1

V0

∫
Γ0

�p +( �X+ − �X−) dΓ0 : δF
c
M =

1

V0

∫
Γ0

�p �X dΓ0 : δF
c
M = PM : δFc

M.

(2.26)

2.4.4 Consistent tangent stiffness

When the micro-macro approach is implemented within the framework of a non-linear
finite element code, the stiffness matrix at every macroscopic integration point is re-
quired. Because in the computational homogenization approach there is no explicit
form of the constitutive behaviour on the macrolevel assumed a priori, the stiffness
matrix has to be determined numerically from the relation between variations of the
macroscopic stress and variations of the macroscopic deformation at such a point. This
may be realized by numerical differentiation of the numerical macroscopic stress-strain
relation, for example using a forward difference approximation as has been suggested
by Miehe (1996). Another approach is to condense the microstructural stiffness to the
local macroscopic stiffness. This is achieved by reducing the total RVE system of equa-
tions to the relation between the forces acting on the RVE boundary and the associated
boundary displacements. Such a procedure in combination with the Lagrange multi-
plier method to impose boundary constraints has been recently elaborated by Miehe and
Koch (2002). In the present work an alternative scheme, which employs the direct con-
densation of the constrained degrees of freedom, as has been presented in Kouznetsova
et al. (2001a), is used.

First, consider the case of fully prescribed boundary displacements (2.3). The total
microstructural system of equations is rearranged to the form[

Kpp Kpf

Kfp Kff

] [
δu~p

δu~f

]
=

[
δf
~p

0~

]
, (2.27)
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where δu~p and δf
~p are the columns with iterative displacements and external forces

of the boundary nodes and δu~ f the column with the iterative displacements of the
remaining (interior) nodes; Kpp, Kpf , Kfp and Kff are the corresponding partitions of
the total RVE stiffness matrix. The stiffness matrix in the formulation (2.27) is taken at
the end of a microstructural increment, where a converged state is reached. Equation
(2.27) may be rewritten to obtain the reduced stiffness matrix KM relating boundary
displacement variations to boundary force variations

KMδu~p = δf~p, with KM = Kpp −Kpf(Kff )
−1Kfp. (2.28)

Next, the case of the periodic boundary conditions is elaborated. Here the two-
dimensional RVE, as depicted in Figure 2.4 is considered, so the periodic boundary
conditions in the form (2.7)-(2.9) are used. In the following it is (implicitly) supposed
that the finite element discretization is performed such that the distribution of nodes on
opposite RVE edges is equal. In the discretized format, (2.7) and (2.8) may then easily
be written as δu~d = Cdiδu~i, with u~i the independent degrees of freedom (to be retained
in the system) and u~d dependent degrees of freedom (to be eliminated from the system);
Cdi is the dependency matrix. Elimination of the dependent degrees of freedom from
the total system of equations is a standard procedure in structural mechanics, see for
example Cook et al. (1989). Following this procedure the total linearized RVE system
of equations, which is partitioned according to[

Kii Kid

Kdi Kdd

] [
δu~i

δu~d

]
=

[
δr~i

δr~d

]
, (2.29)

is condensed to a system where only the independent degrees of freedom are retained

K�δu~i = δr~
�, (2.30)

with K� = Kii +KidCdi + C
T
diKdi + C

T
diKddCdi, (2.31)

δr~
� = δr~i + C

T
diδr~d. (2.32)

Next, system (2.30) is further split, similarly to (2.27), into the parts corresponding
to the variations of the prescribed degrees of freedom δu~p, which in this case are the
varied positions of the three corner nodes prescribed according to (2.9), variations of
the external forces at these prescribed nodes denoted by δf

~
�
p, and the remaining (free)

displacement variations δu~f :[
K�

pp K�
pf

K�
fp K�

ff

] [
δu~p

δu~f

]
=

[
δf
~

�
p

0~

]
. (2.33)

Then the reduced stiffness matrix K �
M in case of periodic boundary conditions is ob-

tained as

K�
Mδu~p = δf~

�
p, with K�

M = K�
pp −K�

pf(K
�
ff )

−1K�
fp. (2.34)

Note that K�
M is [6× 6] matrix only (in the two-dimensional case).

Condensation of the RVE stiffness matrix in case of the prescribed boundary tractions
(2.4) is left out of consideration here.

Finally, the resulting relation between displacement and force variations (relation
(2.28) if prescribed displacement boundary conditions are used, or relation (2.34) if
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periodicity conditions are employed) needs to be transformed to arrive at an expression
relating variations of the macroscopic stress and deformation tensors

δPM = 4CP
M : δFc

M, (2.35)

where the fourth order tensor 4CP
M represents the required consistent tangent stiffness

at the macroscopic integration point level.
In order to obtain this constitutive tangent from the reduced stiffness matrix KM

(orK�
M), first relations (2.28) and (2.34) are rewritten in a specific vector/tensor format∑
j

K
(ij)
M · δ�u(j) = δ �f(i), (2.36)

where indices i and j take the values i, j = 1, Np for prescribed displacement boundary
conditions (Np is the number of boundary nodes) and i, j = 1, 2, 4 for periodic bound-
ary conditions on the two-dimensional configuration depicted in Figure 2.4. In (2.36)
the components of the tensors K

(ij)
M are simply found in the tangent matrix KM (for

displacement boundary conditions) or in the matrix K�
M (for periodic boundary condi-

tions) at the rows and columns of the degrees of freedom in the nodes i and j. Next, the
expression for the variation of the nodal forces (2.36) is substituted into the relation for
the variation of the macroscopic stress following from (2.18) or (2.19)

δPM =
1

V0

∑
i

∑
j

(K
(ij)
M · δ�u(j)) �X(i). (2.37)

Substitution of the equation δ�u(j) = �X(j) · δFc
M into (2.37) gives

δPM =
1

V0

∑
i

∑
j

( �X(i)K
(ij)
M
�X(j))

LC : δFc
M, (2.38)

where the superscript LC denotes left conjugation, which for a fourth-order tensor
4T is defined as TLC

ijkl = Tjikl. Finally, by comparing (2.38) with (2.35) the consistent
constitutive tangent is identified as

4CP
M =

1

V0

∑
i

∑
j

( �X(i)K
(ij)
M
�X(j))

LC . (2.39)

If the macroscopic finite element scheme requires the constitutive tangent relating
the variation of the macroscopic Cauchy stress to the variation of the macroscopic de-
formation gradient tensor according to

δσM = 4Cσ
M : δFc

M, (2.40)

this tangent may be obtained by varying the definition equation of the macroscopic
Cauchy stress tensor (2.21), followed by substitution of (2.18) (or (2.19)) and (2.38).
This gives

δσM =

[
1

V

∑
i

∑
j

(�x(i)K
(ij)
M
�X(j))

LC +
1

V

∑
i

�f(i)I �X(i) − σMF−c
M

]
: δFc

M, (2.41)

where the expression in square brackets is identified as the required tangent stiffness
tensor 4Cσ

M. In the derivation of (2.41) it has been used that in case of prescribed
displacements of the RVE boundary (2.3) or of periodic boundary conditions (2.5), the
initial and current volumes of an RVE are related according to JM = det(FM) = V/V0.
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2.5 Nested solution scheme

Based on the above developments the actual implementation of the first-order compu-
tational homogenization strategy may be described by the following subsequent steps.

The macroscopic structure to be analyzed is discretized by finite elements. The ex-
ternal load is applied by an incremental procedure. Increments can be associated with
discrete time steps. The solution of the macroscopic non-linear system of equations
is performed in a standard iterative manner. To each macroscopic integration point
a discretized periodic RVE is assigned. The geometry of the RVE is based on the mi-
crostructural morphology of the material under consideration.

For each macroscopic integration point the local macroscopic deformation gradient
tensor FM is computed from the iterative macroscopic nodal displacements (during the
initialization step, zero deformation is assumed throughout the macroscopic structure,
i.e. FM = I, which allows to obtain the initial macroscopic constitutive tangent). The
macroscopic deformation gradient tensor is used to formulate the boundary conditions
to be applied on the corresponding representative cell. In the present implementation
the periodic boundary conditions according to (2.7)-(2.9) are used.

The solution of the RVE boundary value problem (outlined in section 2.3) employing
a fine scale finite element procedure, provides the resulting stress and strain distribu-
tions in the microstructural cell. Using the resulting forces at the prescribed nodes, the
RVE averaged first Piola-Kirchhoff stress tensor PM is computed according to (2.19) and
returned to the macroscopic integration point as a local macroscopic stress. From the
global RVE stiffness matrix the local macroscopic consistent tangent 4CP

M is obtained
according to (2.39).

When the analysis of all microstructural RVEs is finished, the stress tensor is avail-
able at every macroscopic integration point. Thus, the internal macroscopic forces can
be calculated. If these forces are in balance with the external load, incremental con-
vergence has been achieved and the next time increment can be evaluated. If there is
no convergence, the procedure is continued to achieve an updated estimation of the
macroscopic nodal displacements. The macroscopic stiffness matrix is assembled using
the constitutive tangents available at every macroscopic integration point from the RVE
analysis. The solution of the macroscopic system of equations leads to an updated es-
timation of the macroscopic displacement field. The solution scheme is summarized in
Table 2.1. It is remarked that the two-level scheme outlined above can be used selec-
tively depending on the macroscopic deformation, e.g. in the elastic domain the macro-
scopic constitutive tangents do not have to be updated at every macroscopic loading
step.

2.6 Computational example

In order to evaluate the presented computational homogenization approach, pure bend-
ing of a rectangular strip under plane strain conditions has been examined. Both
the length and the height of the sample equal 0.2m, the thickness is taken 1m. The
macromesh is composed of 5 quadrilateral 8 node plane strain reduced integration ele-
ments. The undeformed and deformed geometries of the macromesh are schematically
depicted in Figure 2.5. At the left side the strip is fixed in axial (horizontal) direction,
the displacement in transverse (vertical) direction is left free. At the right side the rota-
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Table 2.1: Incremental-iterative nested multi-scale solution scheme for the first-order
computational homogenization.

MACRO MICRO

1. Initialization
� initialize the macroscopic model
� assign an RVE to every integration

point
� loop over all integration points Initialization RVE analysis

set FM = I FM−−−−−−−−−→ � prescribe boundary conditions
� assemble the RVE stiffness

tangent←−−−−−−−−− � calculate the tangent 4CP
Mstore the tangent

� end integration point loop
2. Next increment

� apply increment of the macro load

3. Next iteration
� assemble the macroscopic tangent

stiffness
� solve the macroscopic system
� loop over all integration points RVE analysis

calculate FM FM−−−−−−−−−→ � prescribe boundary conditions
� assemble the RVE stiffness
� solve the RVE problem

PM←−−−−−−−−− � calculate PM
store PM

tangent←−−−−−−−−− � calculate the tangent 4CP
Mstore the tangent

� end integration point loop
� assemble the macroscopic internal

forces
4. Check for convergence

� if not converged⇒ step 3
� else⇒ step 2

tion of the cross section is prescribed. As pure bending is considered the behaviour of
the strip is uniform in axial direction and, therefore, a single layer of elements on the
macrolevel suffices to simulate the situation.

In this example two heterogeneous microstructures consisting of a homogeneous
matrix material with initially 12% and 30% volume fractions of voids are studied. To
generate a random distribution of cavities in the matrix with a prescribed volume frac-
tion, maximum diameter of holes and minimum distance between two neighbouring
holes, for a two-dimensional RVE, the procedure from Hall (1991) and Smit (1998)
has been adopted. The microstructural cells used in the calculations are presented in
Figure 2.6. It is worth mentioning that the absolute size of the microstructure is irrel-
evant for the first-order computational homogenization analysis (see also discussion in
section 2.8).
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(a) (b)

Figure 2.5: Schematic representation of the undeformed (a) and deformed (b) configu-
rations of the macroscopically bended specimen.

(a) (b)

Figure 2.6: Microstructural cells used in the calculations with 12% voids (a) and 30%
voids (b).

The matrix material behaviour has been described by a modified elasto-visco-plastic
Bodner-Partom model. This choice is motivated by the intention to demonstrate that the
method is well-suited for complex microstructural material behaviour, e.g. non-linear
history and strain rate dependent at large strains. A brief summary of this model may be
found in appendix A.3. In the present calculations the material parameters for annealed
aluminum AA 1050 determined by van der Aa et al. (2000) have been used; elastic
parameters: shear modulus G = 2.6 × 104 MPa, bulk modulus K = 7.8 × 104 MPa and
viscosity parameters: Γ 0 = 108 s−2, m = 13.8, n = 3.4, Z0 = 81.4 MPa, Z1 = 170 MPa.

Micro-macro calculations for the heterogeneous structure, represented by the RVEs
shown in Figure 2.6 have been carried out, simulating pure bending at a prescribed
moment rate equal to 5 × 105 N m s−1. Figure 2.7 shows the distribution plots of the
effective plastic strain for the case of the RVE with 12% volume fraction voids at an
applied moment equal to 6.8 × 105 N m in the deformed macrostructure and in three
deformed, initially identical RVEs at different locations in the macrostructure. Each
hole acts as a plastic strain concentrator and causes higher strains in the RVE than
those occurring in the homogenized macrostructure. In the present calculations the
maximum effective plastic strain in the macrostructure is about 25%, whereas at RVE
level this strain reaches 50%. It is obvious from the deformed geometry of the holes in
Figure 2.7 that the RVE in the upper part of the bended strip is subjected to tension and
the RVE in the lower part to compression, while the RVE in the vicinity of the neutral
axis is loaded considerably milder than the other RVEs. This confirms the conclusion
that the method realistically describes the deformation modes of the microstructure.

In Figure 2.8 the moment-curvature (curvature defined for the bottom edge of the
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Figure 2.7: Distribution of the effective plastic strain in the deformed macrostruc-
ture and in three deformed RVEs, corresponding to different points of the
macrostructure.
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Figure 2.8: Moment-curvature diagram resulting from the first-order computational ho-
mogenization analysis.

specimen) diagram resulting from the computational homogenization approach is pre-
sented. To give an impression of the influence of the holes also the response of a ho-
mogeneous configuration (without cavities) is shown. It can be concluded that even
the presence of 12% voids induces a reduction of the bending moment (at a certain
curvature) of more than 25% in the plastic regime. This significant reduction in the
bending moment may be attributed to the formation of microstructural shear bands,
which are clearly observed in Figure 2.7. This indicates that in order to capture such an
effect a detailed microstructural analysis is required. A straightforward application of,
for example, the rule of mixtures would lead to erroneous results.
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2.7 Concept of a representative volume element

2.7.1 General concept

The computational homogenization approach, as well as most of other homogenization
techniques, are based on the concept of a representative volume element (RVE). An
RVE is a model of a material microstructure to be used to obtain the response of the
corresponding homogenized macroscopic continuum in a macroscopic material point.
Thus, the proper choice of the RVE largely determines the accuracy of the modelling of
a heterogeneous material.

There appear to be two significantly different ways to define a representative vol-
ume element (Drugan and Willis (1996)). The first definition requires an RVE to be a
statistically representative sample of the microstructure, i.e. to include virtually a sam-
pling of all possible microstructural configurations that occur in the composite. Clearly,
in the case of a non-regular and non-uniform microstructure such a definition leads
to a considerably large RVE. Therefore, RVEs that rigorously satisfy this definition are
rarely used in actual homogenization analyses. This concept is usually employed when
a computer model of the microstructure is being constructed based on experimentally
obtained statistical information (e.g. Shan and Gokhale (2002)).

Another definition characterizes an RVE as the smallest microstructural volume that
sufficiently accurately represents the overall macroscopic properties of interest. This
usually leads to much smaller RVE sizes than the statistical definition described above.
However, in this case the minimum required RVE size also depends on the type of ma-
terial behaviour (e.g. for elastic behaviour usually much smaller RVEs suffice than for
plastic behaviour), macroscopic loading path and difference of properties between het-
erogeneities. Moreover, the minimum RVE size, that results in a good approximation
of the overall material properties, does not always lead to adequate distributions of
the microfields within the RVE. This may be important if, for example, microstructural
damage initiation or evolving microstructures are of interest.

The latter definition of an RVE is closely related to the one established by Hill (1963),
who argued that an RVE is well-defined if it reflects the material microstructure and if
the responses under uniform displacement and traction boundary conditions coincide.
If a microstructural cell does not contain sufficient microstructural information, its over-
all responses under uniform displacement and traction boundary conditions will differ.
The homogenized properties determined in this way are called “apparent”, a notion in-
troduced by Huet (1990). The apparent properties obtained by application of uniform
displacement boundary conditions on a microstructural cell usually overestimate the
real effective properties, while the uniform traction boundary conditions lead to under-
estimation. As has been verified by a number of authors (van der Sluis et al. (2000); Ter-
ada et al. (2000)), for a given microstructural cell size, the periodic boundary conditions
provide a better estimation of the overall properties, than the uniform displacement and
uniform traction boundary conditions. This conclusion also holds if the microstructure
does not really possess geometrical periodicity (Terada et al. (2000)). Increasing the
size of the microstructural cell leads to a better estimation of the overall properties,
and, finally, to a “convergence” of the results obtained with the different boundary
conditions to the real effective properties of the composite material, as illustrated in
Figure 2.9. The convergence of the apparent properties towards the effective ones at
increasing size of the microstructural cell has been investigated by Huet (1990, 1999);
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Figure 2.9: (a) Several microstructural cells of different sizes. (b) Convergence of the
apparent properties to the effective values with increasing microstructural
cell size for different types of boundary conditions.

Ostoja-Starzewski (1998, 1999); Pecullan et al. (1999); Terada et al. (2000).

2.7.2 Regular versus random representation

In practice, instead of a representative volume element, a unit cell is often used as a
microstructural model, since it requires substantially less computational effort. This
section examines the possible error, which is made in the obtained overall response of
a multi-phase material, if the analysis is performed on a unit cell instead of an RVE.

As the simplest unit cell, a piece (for example a square or cube) of the matrix mate-
rial containing a single heterogeneity (e.g. inclusion or void) could be suggested. The
use of such a unit cell implicitly assumes a regular arrangement of the heterogeneities
in the matrix, which contradicts the observations that almost all materials have a non-
periodic or even spatially random microstructural composition. Examples are precipi-
tates in metal alloys arranged randomly by their nature and artificial fiber reinforced
composites, possessing a non-regular distribution of the fibers due to the production
process. At the same time, several experimental evidences exist showing that the spa-
tial variability in the microstructure significantly influences the overall behaviour and
particularly the fracture characteristics of composites, as reported by Mackay (1990);
Barsoum et al. (1992).

Different authors, e.g. Brockenbrough et al. (1991); Nakamura and Suresh (1993);
Ghosh et al. (1996); Moulinec and Suquet (1998), have performed a comparison of
the overall composite responses resulting from the modelling of regular and random
structures. They have found a significant response difference in the plastic regime,
while there is almost no deviation in elastic regime. Also it has been shown by Smit
et al. (1999), that softening behaviour of a regularly composed structure may change
to hardening in the case of a random composition. Most of these considerations, except
for the latter, have been performed for small deformations, very simple elasto-plastic
behaviour and relatively stiff inclusions (fibers). In this section the overall behaviour
of regular and random structures is compared at large deformations, non-linear history
dependent material behaviour, for voided material (an appropriate approximation for
material with soft inclusions). Apart from the calculations on the microstructural cell
(tensile configuration), also a full multi-scale analysis (pure bending) of both regular
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and random structures is presented.
A material with a 12% volume fraction of voids is considered. The regularly stacked

structure is modelled by a square unit cell containing a single hole (Figure 2.10a). For
the modelling of a random structure 10 different unit cells with non-regular arrange-
ments of voids with a distribution of void sizes have been generated (Figure 2.10b). The
averaged behaviour of these 10 unit cells is expected to be representative for the real
random structure with a given volume fraction of heterogeneities. Using several small
non-regular unit cells instead of one larger RVE also allows to estimate the amount
of deviation of the apparent properties obtained by the unit cell modelling, from the
effective values for different types of material models and loading histories.

(a)

(b)

Figure 2.10: Unit cell with one hole (a), representing a regular structure, and 10 ran-
domly composed unit cells (b).

In the subsequent sections a comparison is performed for three different constitutive
models of the matrix material: hyper-elastic, elasto-visco-plastic with hardening and
elasto-visco-plastic with intrinsic softening. First uniaxial extension (under plane strain
conditions) of a macroscopic sample is considered. Because in this case the macroscopic
deformation field is homogeneous a full micro-macro modelling is not necessary and an
analysis of an isolated unit cell with adequate boundary conditions (periodic) suffices.
In the last section the results of a micro-macro simulation of bending using random and
regular microstructures are compared.



26 Chapter 2

Elastic behaviour, tension

First a comparison of the overall behaviour of regular and random structures is carried
out for the case of hyper-elastic behaviour of the matrix material, modelled as a com-
pressible Neo-Hookean material as defined in appendix A.1. The material parameters
used in the calculations are K = 2667 MPa, G = 889 MPa.

Figure 2.11 shows the stress-strain curves for the unit cells with regular and random
void stacking. For small deformations there is almost no difference in the responses
originating from the regular and random void distributions. This result is in agreement
with the experiences reported in the literature for small deformations, see, e.g. Brock-
enbrough et al. (1991); Nakamura and Suresh (1993); Moulinec and Suquet (1998).
For large deformations the stiffer behaviour of the regular structure becomes a little bit
more pronounced, however, the deviations remain small. The difference between the
response of the regular structure and the response averaged over the random unit cells
does not exceed 2%. This small deviation is explained by Figure 2.12, presenting the
distribution of the equivalent von Mises stress in the regular unit cell and in a random
unit cell for 20% macroscopic strain. The stress field around any hole of the random
structure is almost the same as around the hole of the regular structure, which indicates
little interaction between voids. If only the averaged elastic constants are of interest,
it is concluded that calculations performed on the simplest regular unit cell usually
provide an answer within an acceptable tolerance.
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Figure 2.11: Tensile stress-strain responses (unit cell averages) of the regular and ran-
dom structures in a voided hyper-elastic matrix material.

Elasto-visco-plastic behaviour with hardening, tension

The influence of the randomness of the microstructure on the macroscopic response be-
comes more significant when plastic yielding of one or more constituents occurs. This
section investigates the responses of the regular and random unit cells under tensile
loading when the matrix material exhibits elasto-visco-plastic behaviour with harden-
ing. The constitutive description is given by the Bodner-Partom model specified in ap-
pendix A.3. The material parameters are the same as those used in section 2.6. The
unit cells are subjected to uniaxial tension at a constant strain rate of 0.5 s−1.

In Figure 2.13 the stress-strain curves are presented. In this case the difference
between the overall response of the regular structure and the averaged response of the
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(a)

0  200 400 600 800

(b)

Figure 2.12: Distribution of the equivalent von Mises stress (MPa) in the deformed regu-
lar (a) and random (b) structures in a voided hyper-elastic matrix material.

random structures reaches 10%. The rather large scattering in the responses of different
random cells is due to the small number of voids included. As has been demonstrated
by Smit (1998), the scattering is significantly reduced if microstructural cells contain
more heterogeneities. The averaged response is, however, hardly affected, provided
that a sufficient number of random realizations has been considered.
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Figure 2.13: Tensile stress-strain responses (unit cell averages) of the regular and ran-
dom structures for an elasto-visco-plastic matrix material with hardening.

The fundamental mechanism that governs the difference between the response of
the regular structure and the averaged response of the random structures is illustrated
in Figure 2.14, where the distribution of the effective plastic strain in the deformed
regular and random unit cells at 15% applied macroscopic strain is presented. In the
regular unit cell the ligaments yield simultaneously rather than sequentially with in-
creasing macroscopic strain, which is the case for the random unit cell. As a result,
at the same value of the macroscopic strain the regular unit cell is deformed relatively
smoothly, while some ligaments in the random unit cell have already accumulated a sig-
nificant amount of plastic strain. Consequently, the regular unit cell (in fact a structure
with a periodic stacking of heterogeneities) has a larger overall stiffness than a random
configuration.
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(a)
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(b)

Figure 2.14: Distribution of the effective plastic strain in the deformed regular (a) and
random (b) structures for an elasto-visco-plastic matrix material with hard-
ening.

Elasto-visco-plastic behaviour with softening, tension

The difference in yielding mechanisms for regular and random microstructures outlined
in the previous section causes not only a quantitative deviation in the responses of
these structures (as illustrated by Figure 2.13), but in some cases also the qualitative
character changes, as has been shown by Smit et al. (1999). For example, such a
phenomenon can be observed when the matrix material is described by a generalized
compressible Leonov model with intrinsic softening and subsequent hardening. The
model is designed for the plastic deformation of polymers and incorporates a stress
dependent Eyring viscosity extended by pressure dependence and intrinsic softening
effects. Details of this model can be found in Baaijens (1991); Tervoort (1996); Govaert
et al. (2000).

The resulting stress-strain curves for uniaxial tension of polycarbonate at a constant
strain rate of 0.01 s−1 are given in Figure 2.15. The overall behaviour of the regular
structure in the plastic regime exhibits some initial softening followed by hardening.
The response of the regular structure is, in fact, similar to the response of one single lig-
ament, that softens according to the intrinsic material behaviour. A completely different
response can be observed for the random configurations. Although some of the random
unit cells also demonstrate some softening behaviour, originating from the relatively
simple composition of the unit cells used in the calculations, the average response of
the random unit cells does not show any softening but exhibits continuous hardening.
This is caused by the sequential appearance of elastic, softening and hardening zones
within the random microstructure.

This example illustrates that the overall response of heterogeneous materials, when
determined from a modelling by a regular structure, should be interpreted with great
care, particularly in the case of complex material behaviour (e.g. in case of softening
followed by hardening or vice versa).

Elasto-visco-plastic behaviour with hardening, bending

The comparison of the overall behaviour of the regular and random microstructures
performed above has been based on the averaged behaviour of a single unit cell sub-
jected to a particular loading history (uniaxial tension). The question remains how the
randomness of the microstructure does influence the overall behaviour when a macro-
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Figure 2.15: Tensile stress-strain responses (RVE averages) of the regular and random
structures for an elasto-visco-plastic matrix material with intrinsic soften-
ing and subsequent hardening.

scopic sample is deformed heterogeneously, so that potentially every material point of
the sample is subjected to a different loading history. In order to investigate this item
the computational homogenization approach is a helpful tool.

As an example the influence of the spatial composition of the microstructure on
the overall moment-curvature response of the voided material under pure bending is
studied. The behaviour of the matrix material is described by the Bodner-Partom elasto-
visco-plastic model with hardening. The macrogeometry and the material parameters
are the same as these used in section 2.6.

Figure 2.16 shows the moment-curvature diagram resulting from the full micro-
macro analysis of pure bending of the material using the regular and the random mi-
crostructures. Again, the regular structure exhibits a stiffer response than the averaged
random result, while the maximum deviation is only about 5%, which is considerably
less than for the tensile test with the same material behaviour (Figure 2.13). This
smaller deviation originates from the fact that in case of bending all the unit cells as-
signed to the various macroscopic points over the height of the bended strip are loaded
differently, see Figure 2.7. The unit cell at the top of the bended strip experiences ten-
sion, so that the observations dealt with in the previous examples apply. At the same
time, there are also unit cells that are stretched less or still are in elastic regime, like
for example the one in the vicinity of the neutral line, so that in average for the whole
bending process the influence of randomness can be expected to be smaller than for
uniaxial extension.

2.8 Discussion

In this chapter the first-order computational homogenization strategy, which provides
an approach to determine the macroscopic response of heterogeneous materials with
accurate account for microstructural characteristics and evolution of the morphology,
has been presented. When using this micro-macro strategy there is no necessity to
specify the homogenized macroscopic constitutive behaviour, which in case of large
deformations and complex microstructures, would be generally a hardly feasible task.
Instead, the constitutive behaviour at macroscopic integration points is determined by
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Figure 2.16: Moment-curvature responses of the regular and random structures for an
elasto-visco-plastic matrix material with hardening.

averaging the results of a detailed modelling of the microstructure. This enables the
straightforward application of the method to geometrically and physically non-linear
problems, thus being a particularly valuable tool for the modelling of evolving highly
non-linear heterogeneous microstructures under complex macroscopic loading paths.

Despite a number of attractive characteristics, there are a few strong limitations
of the first-order computational homogenization framework. The shortcomings of the
first-order scheme originate from the fundamental implicit assumption (also accepted in
most other classical homogenization approaches) that the microstructural length scale
is negligible in comparison with the macrostructural characteristic length (determined
by the size of the macroscopic specimen or the wave length of the macroscopic load).
Based on the concept of separation of scales it is justified to assume macroscopic uni-
formity of the deformation field over the microstructural cell. As a result, only simple
first-order deformation modes (tension, compression, shear or combinations thereof) of
the microstructure are found. As can be noticed for example in Figure 2.7, the typical
bending mode, which from a physical point of view should appear for small, but finite,
microstructural cells in the macroscopically bended specimen, is not found. Moreover,
the dimensions of the microstructural heterogeneities do not influence the averaging
procedure. Increasing the scale of the entire microstructure then leads to identical re-
sults. All of this is not surprising, since the first-order approach is fully in line with the
standard continuum mechanics theory, where one of the fundamental points of depar-
ture is the principle of local action. In fact this principle states that material points are
local, i.e. are identified with an infinitesimal volume only. This infinitesimal character is
exactly represented in the behaviour of the microstructural RVEs, which are considered
as macroscopic material points. This implies that the size of the microstructure is consid-
ered as irrelevant and hence microstructural and geometrical size effects are not taken
into account. Furthermore, the assumption on uniformity of the macroscopic deforma-
tion over a representative microstructural cell is not valid in zones of large gradients
of the deformation field, thus it is questionable whether macrostructural localization
phenomena can be modelled within the first-order framework. The limitations of the
first-order homogenization framework motivate the development of the second-order
homogenization approach, which is presented in the next chapter.
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Second-order computational
homogenization

This chapter presents the second-order computational homogenization framework, as
an extension of the classical first-order computational homogenization framework,
which aims at a modelling of macroscopic localization and microstructural size effects.
In the second-order homogenization approach the macroscopic deformation gradient
tensor and its gradient are imposed on a microstructural representative volume ele-
ment. Every microstructural constituent is modelled as a classical continuum. On the
macrolevel, however, a full second gradient equilibrium problem appears. From the
solution of the underlying microstructural boundary value problem, the macroscopic
stress tensor and the higher-order stress tensor are derived based on an extension of the
Hill-Mandel condition. This automatically delivers the microstructurally based consti-
tutive response of the second gradient macrocontinuum. In this chapter the theoretical
development of the second-order computational homogenization scheme is presented
and some issues of its implementation are discussed.

3.1 Introduction

In the previous chapter the first-order computational homogenization technique has
been presented. The first-order micro-macro modelling framework, based on classical
homogenization approaches, has been proven to be a versatile tool to establish micro-
macro structure-property relations in materials, especially in those cases that the col-
lective behaviour of a multi-phase heterogeneous material cannot be predicted by any
other method, e.g. for a geometrically and physically non-linear material behaviour,
complex loading paths or evolving microstructures. However, as has been pointed out
at the end of the previous chapter, two major disadvantages of the existing (first-order)
micro-macro computational approaches (as well as the conventional homogenization
methods), which significantly limit their applicability, can be mentioned. In spite of the
fact that these techniques do account for the volume fraction, distribution and morphol-
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ogy of the constituents, they do not incorporate the absolute size of the microstructure,
thus making it impossible to address geometrical size effects. (Microstructural size ef-
fects, which are triggered through small-scale deformation mechanisms, and which can
be captured in a local stress-strain response, do not fall into this category.) Another
difficulty arises from the intrinsic assumption of uniformity of the macroscopic (stress
or strain) fields attributed to each microstructural representative cell. This uniformity
assumption relies on the concept of separation of scales and is not appropriate in critical
regions of high deformation gradients, where the macroscopic fields can vary consider-
ably.

To solve the problems mentioned, different authors proposed to use generalized con-
tinua (e.g. Cosserat, couple-stress, strain-gradient, non-local) to describe the behaviour
of either the microstructural constituents or the homogenized macrostructure, or to em-
ploy generalized continuum models at both levels simultaneously. This has the effect of
introducing a material length scale into the constitutive description, providing a natural
way to obtain a dependence of the overall response of composites on the absolute size
of the constituents and to achieve a realistic description of a microstructurally initiated
macroscopic localization.

Bounds and estimates of the effective properties of two-phase composites with a
linear couple-stress constitutive law for each phase have been obtained by Smyshlyaev
and Fleck (1994). Later these results were applied to bound the overall non-linear
behaviour of the composites with a plastic strain-gradient constitutive model for the
phases (Smyshlyaev and Fleck (1995)) and of a polycrystalline aggregate of single
crystals with a strain-gradient constitutive law for each slip system (Smyshlyaev and
Fleck (1996)). Drugan and Willis (1996) developed a non-local effective constitutive
equation for a class of linearly elastic composites by formally solving the equilibrium
equation in terms of stress polarization and subsequent ensemble averaging. For peri-
odic, linearly elastic media an asymptotic solution technique has been used to obtain
the homogenized higher-order gradient material behaviour, for which effective moduli
up to an arbitrary order may be determined based on the properties and morphology
of the phases (Boutin (1996); Triantafyllidis and Bardenhagen (1996)). Smyshlyaev
and Cherednichenko (2000) have combined the asymptotic method with a variational
technique, which allowed them to minimize the difference between the real and homog-
enized behaviour and to ensure that the higher-order homogenized equations remain
elliptic. This approach has been extended to the full three-dimensional case and was
used to numerically obtain (by solving a set of microstructural boundary value prob-
lems) the effective higher-order moduli of a fiber-reinforced composite by Peerlings and
Fleck (2001).

Recently, some work has been done to extend the unit cell based homogenization
approaches to higher-order continuum models. Zhu et al. (1997) used strain-gradients
in the expression for the flow stress of the matrix material to obtain particle size de-
pendent overall flow properties of metal matrix composites. Forest and Sab (1998)
proposed a methodology to derive an effective Cosserat continuum for a heterogeneous
material, every constituent of which was described by a classical continuum model.
They presented a scheme that consists of a representation of the macroscopic displace-
ment field by a polynomial basis field with a periodic perturbation. Within a similar
framework, van der Sluis et al. (1999b) presented the homogenization of an elasto-
visco-plastic heterogeneous material on the microlevel towards a Cosserat elastic con-
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tinuum on the macrolevel. Ostoja-Starzewski et al. (1999) and Bouyge et al. (2001)
used the unit cell modelling with different types of boundary conditions to calculate the
overall moduli and the characteristic length of a homogenized couple-stress medium,
composed of classical linearly elastic constituents. De Felice and Rizzi (1997) and Yuan
and Tomita (2001) extended the classical homogenization scheme of Suquet (1985)
based on the Hill-Mandel macrohomogeneity condition to the Cosserat continuum. For-
est et al. (1999) obtained the effective properties of a heterogeneous linearly elastic
Cosserat material, by also considering the microstructural constituents as linearly elas-
tic Cosserat media. In Forest et al. (2001), the asymptotic homogenization method,
classically used for periodic heterogeneous materials, has been applied to linearly elas-
tic Cosserat microstructural constituents. It was shown that depending on the ratio of
the microstructural intrinsic Cosserat length and the macrostructural size, the homoge-
nized material should be treated either as a classical (Cauchy) continuum with volume
couples or as a Cosserat medium. These developments have been used by Forest et al.
(2000) to model the behaviour of a polycrystalline material consisting of elasto-visco-
plastic Cosserat single crystals.

The above works were limited to geometrically linear kinematics in the framework
of the Cosserat and the couple-stress theories and were mostly concerned with obtaining
the homogenized material parameters for certain cases rather than providing a general
computational homogenization procedure. To the knowledge of the author, the second-
order computational homogenization framework, dealt with in the present chapter, is
the first attempt to develop a systematic procedure to obtain the constitutive response of
a second gradient continuum, based on the behaviour of the underlying microstructure.

In this chapter a second-order computational procedure, that extends the classical
computational homogenization technique to a full-gradient geometrically non-linear ap-
proach, is developed (Kouznetsova et al. (2002)). The procedure, leading to a higher-
order macroscopic continuum model, uses the macroscopic deformation tensor and its
gradient to prescribe the essential boundary conditions on a microstructural representa-
tive volume element (RVE). For the RVE boundary conditions, the well-known periodic
boundary conditions are generalized. In this framework all microstructural constituents
are treated as a classical continuum, described by standard first-order equilibrium and
constitutive equations. The reason for this is that for geometrically and physically non-
linear material behaviour, the formulation of constitutive equations and experimental
procedures for material parameter identification are sufficiently developed and verified
for single phases considered as a classical continuum; for the higher-order models, these
are still to be developed. Therefore, in this theory, the microstructural boundary value
problem remains classical, so that its solution is readily obtained without any complica-
tions. From the solution of the RVE boundary value problem, the macroscopic stress ten-
sor and a higher-order stress tensor are extracted employing an enhanced Hill-Mandel
condition. This automatically delivers the microstructurally based constitutive response
of the higher-order macrocontinuum, which deals with the microstructural size in a nat-
ural way. The higher-order macroscopic constitutive response, which poses a difficult
problem in closed-form homogenization techniques, is thus found in a straightforward
manner without any additional assumptions.

This chapter is organized as follows. First in section 3.2 the general framework of the
second-order computational homogenization is presented. Then section 3.3 discusses
the micro-macro kinematics, which leads to the formulation of the boundary conditions
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to be imposed on a microstructural representative cell. The relations for the determina-
tion of the macroscopic stress tensor and the higher-order stress tensor are elaborated
in section 3.4. Some aspects of the implementation of the second-order computational
homogenization scheme in a finite element framework are discussed in section 3.5. Spe-
cial attention is given to the extraction of the macroscopic constitutive tangents from
the microstructural stiffness. Finally, the solution scheme for the coupled second-order
micro-macro computational analysis is outlined in section 3.6.

3.2 General framework

Let the non-linear deformation map, describing the transformation from the unde-
formed macroscopic state (position vector �X) to the deformed state (�x) at time t, be
defined as �x = �φ( �X, t). For an infinitesimal material line element, classical continuum
mechanics leads to the linear mapping

d�x =

(
∂�φ

∂ �X

)c

· d �X = FM · d �X, (3.1)

where the deformation gradient tensor FM is given by

FM =

(
∂�φ

∂ �X

)c

= (∇0M�x)
c. (3.2)

As in chapter 2, the subscript “M” refers to a macroscopic quantity, while the subscript
“m” will denote a microscopic quantity.

The linear relation (3.1) is used as the point of departure in the first-order compu-
tational homogenization, described in chapter 2. When dealing with line elements in
volumes of a finite size, relation (3.1) does not apply any more, and an expression for
a finite material vector ∆�x in the current macroscopic configuration may be obtained
using a Taylor series expansion

∆�x = FM ·∆ �X + 1
2
∆ �X · 3GM ·∆ �X +O(∆ �X3), (3.3)

where the third-order tensor 3GM is introduced as

3GM =
∂

∂ �X

(
∂�φ

∂ �X

)c

= ∇0MFM. (3.4)

Although ∆ �X (and ∆�x) is a finite vector, this vector is assumed to be sufficiently small,
so that the terms, which contain deformation gradients higher than the second-order,
may still be neglected, and the Taylor series expansion (3.3) can be truncated after the
second term. The higher-order (in this case the second-order) computational homog-
enization approach uses both the macroscopic deformation tensor FM and its gradient
3GM = ∇0MFM to prescribe kinematic boundary conditions on an RVE. A scheme of the
gradient-enhanced computational homogenization is presented in Figure 3.1 (cf. Fig-
ure 2.3). In the general case that an RVE is subjected to a non-zero gradient of the
deformation, the classical periodic boundary conditions cannot be applied and there-
fore a new type of “generalized” periodic boundary conditions will be introduced (see
section 3.3). These boundary conditions complete the boundary value problem on the
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Figure 3.1: Second-order computational homogenization scheme.

RVE level, which is formulated as a standard problem of quasi-static equilibrium in a
classical continuum. The equilibrium equation for the microstructural RVE (in the ab-
sence of body forces) takes the form

∇0m ·Pc
m = �0, (3.5)

where Pm is the first Piola-Kirchhoff stress tensor, related to the Cauchy stress tensor by
Pm = det(Fm)σm · (Fc

m)
−1. The material behaviour of each microstructural constituent

α (e.g. matrix, inclusion etc.) is described by its constitutive law, specifying a time and
history dependent stress-strain relationship

P(α)
m (t) = F (α) {Fm(τ), τ ∈ [0, t]}. (3.6)

It is emphasized that the present framework is not specifically designed for any partic-
ular constitutive law; the microstructural material behaviour may be very complex and
include a physical and/or geometrical evolution of the microstructure, when modelled
on the microstructural level. After the solution of the RVE boundary value problem, a
macroscopic stress tensor (in the actual case the first Piola-Kirchhoff stress tensor PM)
and a higher-order stress tensor 3QM (a third order tensor), defined as the work conju-
gate of the gradient 3GM of the deformation gradient tensor, are derived exploiting the
Hill-Mandel energy condition. Further details are discussed in section 3.4.

Contrary to the microstructural problem, which remains a classical one, macroscop-
ically, a full gradient second-order equilibrium problem appears. The formulation and
the associated finite element implementation are outlined in chapter 4. In contrast
to most higher-order theories, the framework presented here does not bring in com-
plicating factors in terms of an a priori quantification of the higher-order constitutive
response. Macroscopic quantities are obtained from the microstructural analysis accord-
ing to a straightforward multi-scale mathematical derivation.

3.3 Micro-macro kinematics

In order to construct a boundary value problem for a microstructural RVE the point of
departure is the Taylor series expansion (3.3), truncated after the second-order term

∆�x = FM ·∆ �X + 1
2
∆ �X · 3GM ·∆ �X +∆�w. (3.7)



36 Chapter 3

The extra term ∆�w represents a microstructural fluctuation field, added here to ac-
count for the effect of a local microdisplacement field that is superimposed on the local
macroscopic displacement field. From (3.7) the microscopic deformation tensor Fm is
determined as

Fm = (∇0m∆�x)
c = FM +∆ �X · 3GM + (∇0m∆�w)

c, (3.8)

where the minor symmetry GMijk = GMkji of the tensor 3GM, following from its defini-
tion (3.4), has been used. Integrating (3.8) over the undeformed volume V0 of the RVE
and scaling by this volume leads to

1

V0

∫
V0

FmdV0 = FM +

(
1

V0

∫
V0

∆ �XdV0

)
· 3GM +

1

V0

∫
V0

(∇0m∆�w)
cdV0. (3.9)

Preserving one of the averaging theorems of the classical homogenization theory
(see for example Suquet (1985) and section 2.4.1), the macroscopic deformation tensor
FM is required to be equal to the volume average of the microstructural deformation
tensor Fm

FM =
1

V0

∫
V0

FmdV0. (3.10)

Applying (3.10) to the kinematical relation given in equation (3.9) and choosing

1

V0

∫
V0

∆ �X dV0 = �0, (3.11)

leads to the additional requirement

1

V0

∫
V0

(∇0m∆�w)
c dV0 =

1

V0

∫
Γ0

∆�w �N dΓ0 = 0, (3.12)

where the divergence theorem has been used to transform the volume integral to an
integral over the undeformed boundary Γ0 of the RVE, with outward normal �N .

Relation (3.11) is easily satisfied by placing the geometric center of the undeformed
RVE at the origin of a Cartesian vector basis, i.e. �Xc = �0 (this always can be done
without loss of generality) and writing equation (3.7) with respect to the center of the
RVE. Hence ∆�x = �x − �xc and ∆ �X = �X − �Xc = �X. From a physical point of view
the center of the RVE is identified as the macroscopic point, at which the macroscopic
deformation gradient tensor FM and its gradient 3GM are calculated. The RVE volume
represents the underlying microstructure in a finite vicinity of this point.

Constraint (3.12) necessitates complementary considerations. This equation may
be satisfied in many alternative ways. In similarity with chapter 2, the following three
approaches can be used

1. ∆�w = �0, ∀ �X ∈ V0. This does not allow for any microstructural fluctuations and
enforces the entire volume to deform precisely according to the prescribed FM and
3GM. For the first-order theory this is usually referred to as the Taylor (or Voigt)
assumption.
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Figure 3.2: An initially periodic two-dimensional rectangular-shaped RVE.

2. ∆�w = �0, ∀ �X ∈ Γ0. With this condition the displacement of the boundary of the
RVE is fully prescribed, while leaving the microstructural fluctuations inside the
volume yet undetermined. For the first-order case this is equivalent to uniform
displacement boundary conditions.

3. Consider an initially periodic (two-dimensional) rectangular-shaped RVE, see Fig-
ure 3.2, so that for every two corresponding points on opposite boundaries
�NL(s) = − �NR(s) or �NB(s) = − �NT(s), where the subscripts L, R, B and T de-
note quantities corresponding to the left, right, bottom and top boundary of the
RVE, respectively, and s is a local coordinate along the edges. For this case (3.12)
is satisfied if

∆�wL(s) = ∆�wR(s) and ∆�wB(s) = ∆�wT(s), (3.13)

which, in the first-order case, is equivalent to the frequently used periodic bound-
ary conditions.

The same types of boundary conditions have been presented previously in the con-
text of the first-order computational homogenization (see section 2.3) based on differ-
ent arguments. The concept of a microstructural fluctuation field, however, seems to be
rather general and allows the selection of other types of boundary conditions.

As has been mentioned in the previous chapter (section 2.7.1), use of periodic
boundary conditions provides a better estimate of the overall properties than the uni-
formly prescribed displacement boundary conditions and the uniformly prescribed trac-
tion boundary conditions (van der Sluis et al. (2000); Terada et al. (2000)). Thus, the
concept of a periodic fluctuation field according to (3.13) is also applied in the present
approach. However, it is important to notice that in the second-order framework the
macroscopic part of the deformation is definitely not periodic. In the general case of
a non-zero gradient of the deformation gradient tensor, 3GM �= 30, a non-periodic RVE
shape will be found. Therefore, the notion of periodicity is employed here in a “gener-
alized” sense, a concept that will be clarified in the following.

A two-dimensional initially rectangular RVE, schematically depicted in Figure 3.3,
is considered, a choice which can easily be made without severe restrictions. However,
without entering in details, the approach can also be extended to an initially periodic
(but not necessarily rectangular) shape of the RVE and to three-dimensional configura-
tions. In the undeformed reference state the RVE has boundary normals �NL = − �NR and
�NB = − �NT, width W and height H.
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Figure 3.3: Schematic picture of an undeformed RVE for the second-order computa-
tional homogenization.

Applying (3.7) to the left and right boundary of the RVE and subtracting the results,
with account for the periodicity conditions (3.13), eliminates the unknowns �xc and ∆�w.
A kinematic constraint between the left and right boundary is recovered according to

�xR = �xL +A · �XL + �a, (3.14)

where the tensor A and the vector �a are related to the macroscopic deformation quan-
tities by

A = W �NR · 3GM, (3.15)

�a = WFM · �NR +
W 2

2
�NR · 3GM · �NR. (3.16)

Similarly, for the bottom and top edge

�xT = �xB +B · �XB +�b, (3.17)

with

B = H �NT · 3GM, (3.18)

�b = HFM · �NT +
H2

2
�NT · 3GM · �NT. (3.19)

The equations (3.14) and (3.17) in fact reflect a linear relation between the de-
formed shapes of the opposite edges of the RVE, hereby deviating from the conven-
tional periodic boundary conditions, where the shapes of opposite edges remain iden-
tical. Consequently, in contrast to the first-order case, the deformed RVE is no longer
geometrically periodic. Furthermore, it is remarked that with 3G = 30, the relations
(3.14)–(3.19) lead to �xR = �xL + �x2 − �x1 and �xT = �xB + �x4 − �x1 (with �xi denoting
the current position vector of node i, Figure 3.3) in the deformed state, which are pre-
cisely the standard periodic boundary conditions on a two-dimensional periodic RVE
(cf. equations (2.7) and (2.8)).

Note that the microstructural fluctuation vectors of the corner nodes ∆�wi, i = 1, 4
are constrained to be all identical in order to satisfy the periodicity conditions (3.13).
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Considering that the fluctuation field on the RVE is in fact determined up to a constant
value, expressing a rigid body displacement, which is generally suppressed, the fluctu-
ation vectors of the corner nodes are set to zero, so that the displacements of the four
corner nodes are fully prescribed

∆�xi = FM ·∆ �Xi +
1
2
∆ �Xi · 3GM ·∆ �Xi, i = 1, 4. (3.20)

By making use of the local coordinate system (ξ, η) defined in Figure 3.3, the con-
straints (3.14) and (3.17) can be elaborated yielding

�xR = �xL +WFM · �NR +
WH

2
η �NR · 3GM · �NT, (3.21)

�xT = �xB +HFM · �NT +
WH

2
ξ �NT · 3GM · �NR. (3.22)

Because of the minor symmetry of 3GM, �NT · 3GM · �NR equals �NR · 3GM · �NT. This means
that the kinematic equations (3.14)–(3.19) derived above in fact involve only two of the
six (independent) components of 3GM additional to the four components of FM (in 2D).
Thus a modified set of boundary conditions is needed in order to subject the RVE to the
full gradient 3GM. Moreover, it is remarked that the above relations are derived only
by identifying the macroscopic deformation tensor FM with the volume average of its
microstructural counterpart Fm. Therefore the next step in constructing the kinematic
framework for the higher-order RVE attempts to relate the macroscopic gradient of the
deformation 3GM to microstructural quantities.

To relate the macroscopic gradient of the deformation 3GM = ∇0MFM to microstruc-
tural variables, first the microstructural gradient of the deformation gradient
3Gm = ∇0mFm is obtained from (3.8) and integrated over the initial RVE volume. This
gives

1

V0

∫
V0

∇0mFm dV0 =
3GM +

1

V0

∫
V0

∇0m(∇0m∆�w)
c dV0. (3.23)

If equality of the macroscopic gradient of the deformation gradient 3GM and the volume
average of its microstructural counterpart 3Gm = ∇0mFm is enforced, the last term in
(3.23) should be set to zero

1

V0

∫
V0

∇0m(∇0m∆�w)
c dV0 =

1

V0

∫
Γ0

�N(∇0m∆�w)
c dΓ0 =

30, (3.24)

where the divergence theorem has been applied. The above relation provides an addi-
tional constraint on the fluctuation field along the RVE boundary.

Splitting the gradient∇0m∆�w into a normal gradient �ND0m∆�w ≡ �N �N ·∇0m∆�w and
a surface gradient ∇s

0m∆�w ≡ (I− �N �N) · ∇0m∆�w, leads to

1

V0

∫
Γ0

�N( �ND0m∆�w)
c dΓ0 +

1

V0

∫
Γ0

�N(∇s
0m∆�w)

c dΓ0 =
30. (3.25)

Using the requirement of periodicity of the microfluctuation field (3.13), for an ini-
tially rectangular RVE, the second integral in (3.25) is identically zero. An additional
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constraint should prescribe the normal gradient of the fluctuation field in such a way
that the first term in (3.25) is also zero. Therefore, higher-order boundary conditions
would have to be prescribed on the RVE and consequently the microstructural formula-
tion would also become of the higher-order type. This, however, is not consistent with
the intention to preserve the microstructural RVE problem as a classical boundary value
problem.

Hence, an alternative relation between the macroscopic gradient of the deformation
gradient 3GM and the microscopic variables, which does not lead to higher-order bound-
ary conditions, is established in the present framework. For this purpose the following
integral over the initial volume V0 of the RVE is considered:

∫
V0

(Fc
m
�X + �XFm)dV0. (3.26)

The choice of this expression as a point of departure is motivated by its similarity to the
relation between the macroscopic higher-order stress tensor 3QM and microscopic stress
quantities, which will be presented in the next section (eq. (3.47)).

Elaboration of (3.26) by substitution of relation (3.8) for Fm, with account for (3.11)
(which is a particular choice locating the origin at the geometric center of the RVE, made
in the present framework) leads to

∫
V0

(
Fc

m
�X+ �XFm

)
dV0 =

(
3GM ·J+J ·3GM

)
+

∫
V0

[
(∇0m∆�w) �X+ �X(∇0m∆�w)

c
]
dV0, (3.27)

where the tensor J, which may be interpreted as the geometrical inertia tensor with
respect to the center of the RVE, is defined as

J =

∫
V0

�X �XdV0. (3.28)

In fact, equation (3.27) may be considered as a system of linear algebraic equations
relating the components of tensor 3GM to the microstructural quantities Fm and ∆�w.
For the particular case of a square RVE, so that H = W , the geometric inertia tensor has
the form J = (V0W

2/12)I (with I the second-order unit tensor) and tensor 3GM may be
explicitly formulated in terms of the volume averages of the microstructural quantities

3GM =
6

V0W 2

{∫
V0

(
Fc

m
�X + �XFm

)
dV0−

∫
V0

[
(∇0m∆�w) �X + �X(∇0m∆�w)

c
]
dV0

}
. (3.29)

Since the determination of the RVE behaviour should preferably be performed from
a boundary value problem, it is desired to relate the macroscopic kinematic quanti-
ties to microscopic displacements defined only on the RVE boundary. Using the rule
(∇0m�a) �X = ∇0m(�a �X) − (I�a)RC for arbitrary �a, where instead of vector �a, either ∆�x
or ∆�w is substituted (in this relation the superscript RC indicates right conjugation,
which for a third-order tensor 3T is defined as TRC

ijk = Tikj), and applying the divergence
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theorem allows the transformation of the volume integrals in (3.27)

3GM · J+ J · 3GM =

∫
Γ0

( �N∆�x �X + �X∆�x �N)dΓ0 − 2

(
I

∫
V0

∆�xdV0

)RC

−
∫
Γ0

( �N∆�w �X + �X∆�w �N)dΓ0 + 2

(
I

∫
V0

∆�wdV0

)RC

.

(3.30)

Finally, by using (3.7) and (3.11) the components of the gradient of the deformation
gradient tensor 3GM are related to quantities defined on the RVE boundary only

3GM · J+ J · 3GM + (I J : 3GRC
M )RC =

∫
Γ0

( �N∆�x �X + �X∆�x �N)dΓ0

−
∫
Γ0

( �N∆�w �X + �X∆�w �N)dΓ0.

(3.31)

For the case of a square RVE the above relation reduces to

3GM + 1
2
(I I : 3GRC

M )RC =
6

V0W 2

{∫
Γ0

( �N∆�x �X + �X∆�x �N)dΓ0

−
∫
Γ0

( �N∆�w �X + �X∆�w �N)dΓ0

}
.

(3.32)

Since the above relations ((3.31) or (3.32)) are required to be independent of any
particular realization of the fluctuation field, the new additional constraint takes the
form ∫

Γ0

( �N∆�w �X + �X∆�w �N)dΓ0 =
30. (3.33)

Exploiting this constraint enables the RVE problem to be considered as an ordinary
boundary value problem. For the initially rectangular RVE in Figure 3.3 with account
for the periodicity conditions (3.13), the constraint (3.33) reduces to two constraints
along two contiguous boundaries∫

Γ0L

∆�wLdΓ0 = �0 and
∫

Γ0B

∆�wBdΓ0 = �0. (3.34)

Comparable constraints are then automatically satisfied on the remaining opposite bo-
undaries through the periodicity constraint (3.13). From (3.34) it is obvious that these
new constraints enforce the shape of the boundary to approximate the kinematically
fully prescribed boundary in an average sense. In terms of the position vectors of the
boundary points in the deformed state the constraints (3.34) have the form∫

Γ0L

∆�xLdΓ0 = FM ·
∫

Γ0L

�XLdΓ0 +
1
2
3GRC

M :

∫
Γ0L

�XL
�XLdΓ0, (3.35)

∫
Γ0B

∆�xBdΓ0 = FM ·
∫

Γ0B

�XBdΓ0 +
1
2
3GRC

M :

∫
Γ0B

�XB
�XBdΓ0. (3.36)
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To summarize, the RVE boundary value problem to be solved consists of the equi-
librium equation (3.5), the constitutive laws (3.6) and boundary conditions which fully
prescribe the displacements of the four RVE corner nodes and require the periodicity of
the microfluctuation field on opposite boundaries (3.13) and zero averaged fluctuations
along two adjoint boundaries (3.34).

3.4 Stress and higher-order stress

In order to determine RVE averaged stress measures, an extension of the Hill-Mandel
energy condition (also referred to as the macrohomogeneity condition, Hill (1963); Su-
quet (1985), see also section 2.4.3) is used. This condition requires the microscopic
volume average of the variation of work performed on an RVE to equal the local vari-
ation of the work on the macroscale. Taking into account that on the macrolevel the
modelling deals with a full gradient higher-order continuum (definition of the local
work for this case is given in the next chapter, eq. (4.3), see also Fleck and Hutchinson
(1997)), the extended Hill-Mandel condition takes the form (compare to (2.22))

1

V0

∫
V0

Pm : δFc
mdV0 = PM : δFc

M + 3QM
... δ3GM, ∀δ∆�x. (3.37)

It is remarked that (3.37) is in fact the definition of the macroscopic stress tensor PM

and the macroscopic higher-order stress tensor 3QM.
Using the divergence theorem, with incorporation of equilibrium in the microstruc-

ture (3.5), the microstructural work (per unit of volume in the reference state) can be
written as

δW0M =
1

V0

∫
V0

Pm : δFc
mdV0 =

1

V0

∫
Γ0

�p · δ∆�x dΓ0, (3.38)

where �p = �N ·Pc
m represents the first Piola-Kirchhoff stress vector.

Substituting the variation of the position vector δ∆�x according to (3.7)

δ∆�x = δFM · �X + 1
2
�X · δ3GM · �X + δ∆�w, (3.39)

into equation (3.38) leads to

δW0M =
1

V0

∫
Γ0

�p �X dΓ0 : δF
c
M +

1

2V0

∫
Γ0

�X�p �X dΓ0
... δ3GM +

1

V0

∫
Γ0

�p · δ∆�w dΓ0. (3.40)

Since the homogeneous constraints (3.13) do not contribute to the total work and ac-
counting for (3.34) and for the zero microstructural fluctuation field value in the corner
nodes ∆�wi = �0, i = 1, 4, the last term in (3.40) can be proven to disappear∫

Γ0

�p · δ∆�w dΓ0 = 0, (3.41)

manifesting the fact that the microstructural fluctuation field does not affect the average
variation of the microscopic work.
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Comparing (3.40) (with account for (3.41)) and the right-hand side of (3.37) the
relations for the macroscopic first Piola-Kirchhoff stress tensor PM and the macroscopic
higher-order stress tensor 3QM are obtained as

PM =
1

V0

∫
Γ0

�p �X dΓ0, (3.42)

3QM =
1

2V0

∫
Γ0

�X�p �X dΓ0. (3.43)

The above formulas relate the macroscopic stress tensor and the macroscopic higher-
order stress tensor to microstructural variables defined on the RVE boundary. The re-
lations (3.42) and (3.43) can also be transformed into volume integrals, allowing the
macroscopic stress measures to be expressed in terms of volume averages of microstruc-
tural quantities. The macroscopic stress tensor PM again equals the volume average of
the microscopic stress tensor Pm

PM =
1

V0

∫
V0

PmdV0. (3.44)

The proof of this equation is identical to that for the first-order framework (for the
derivation see (2.15)-(2.17)).

The derivation for the higher-order stress tensor 3QM follows the same procedure.
Applying the divergence theorem to transform the boundary integral in (3.43) to a
volume integral gives

3QM =
1

2V0

∫
Γ0

�X�p �XdΓ0 =
1

2V0

∫
Γ0

(( �N ·Pc
m)
�X �X)LCdΓ0

=
1

2V0

∫
V0

(∇0m · (Pc
m
�X �X))LCdV0,

(3.45)

where the superscript LC denotes left conjugation, TLC
ijk = Tjik. Finally using the equal-

ity

∇0m · (Pc
m
�X �X) = (∇0m ·Pc

m)
�X �X +Pm · (∇0m

�X) �X + ( �XPm · (∇0m
�X))LC

= Pm
�X + ( �XPm)

LC ,
(3.46)

where equilibrium has been exploited, the relation between the macroscopic higher-
order stress tensor and microstructural quantities is obtained

3QM =
1

2V0

∫
V0

(Pc
m
�X + �XPm)dV0. (3.47)

It is clear from (3.47) that 3QM can be interpreted as the first moment (with respect to
the RVE center) of the microscopic first Piola-Kirchhoff stress tensor Pm over the initial
RVE volume V0.
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3.5 Finite element implementation

3.5.1 RVE boundary value problem

In the framework of the second-order computational homogenization the RVE boundary
value problem to be solved consists of the equilibrium equation (3.5), the constitutive
laws for the microstructural constituents (3.6) and boundary conditions that include
prescribed positions of the four corner nodes (3.20), kinematic constraints between op-
posite boundaries reflecting periodic microstructural fluctuations (3.14) and (3.17) and
kinematic constraints prescribing zero-averaged fluctuations along two adjoint bound-
aries (3.35) and (3.36). Such a problem is a standard non-linear quasi-static boundary
value problem for a classical continuum. For the solution of this problem any available
suitable solution strategy and associated numerical technique may be used. As it was
the case in the previous section, the attention will be focused on a two-dimensional
rectangular RVE, schematically depicted in Figure 3.3.

Following the standard finite element procedure for the microlevel RVE, the weak
form of equilibrium (after discretization) leads to a system of non-linear algebraic equa-
tions in the nodal displacements u~

f
~int( u~) = f

~ext, (3.48)

expressing the balance of internal and external nodal forces. This system has to be
completed by boundary conditions. Hence, the earlier introduced boundary conditions
(3.20), (3.14), (3.17) and (3.35), (3.36) have to be elaborated in more detail.

First, the unknown position of the center of the RVE in the deformed state �xc (∆�xi =
�xi − �xc, i = 1, 4) has to be eliminated from (3.20). This is easily achieved by spatial
fixation of displacement of one of the corner nodes, say i = 1, (thereby suppressing
rigid body translation of the RVE). Taking into account that �Xc = �0, �xc is obtained as

�xc = �X1 − FM · �X1 − 1
2
�X1 · 3GM · �X1. (3.49)

Then the displacements of the corner nodes can be written as

�uj = (FM − I) · ( �Xj − �X1) +
1
2
3GRC

M : ( �Xj
�Xj − �X1

�X1), j = 2, 3, 4

�u1 = �0. (3.50)

For a given macroscopic deformation gradient tensor FM and its gradient 3GM and a
specified geometry of the RVE, the displacements of the corner nodes are readily calcu-
lated and added to the system (3.48).

For the initially rectangular RVE depicted in Figure 3.3, the constraints (3.14) and
(3.17), reflecting a linear relation between opposite edges, can be recast in terms of
displacements as

�uR = �uL +
1
2
(1− η)(�u2 − �u1) +

1
2
(1 + η)(�u3 − �u4), (3.51)

�uT = �uB + 1
2
(1− ξ)(�u4 − �u1) +

1
2
(1 + ξ)(�u3 − �u2), (3.52)

with η and ξ the local coordinates of the corresponding points on the right-left and
top-bottom boundaries, respectively, see Figure 3.3. The vectors �ui, i = 1, 4 are, as
before, displacements of the four corner nodes expressed in FM and 3GM by (3.50). For
the following it is supposed, as in section 2.4.4, that the finite element discretization is
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performed such that the distribution of nodes on opposite RVE edges is equal. In a dis-
cretized format the relations (3.51) and (3.52) then easily lead to a set of homogeneous
constraints of the type

Ca u~a = 0~, (3.53)

with Ca a matrix containing coefficients in the constraint relations and u~a a column with
the degrees of freedom involved in the constraints.

Boundary constraints prescribing the zero-averaged microstructural fluctuations
(3.35) and (3.36) may be rewritten in terms of displacement vectors of the nodes on
the boundary

NL∑
i=1

αi�uiL = �uL∗(FM,
3GM),

NB∑
i=1

βi�uiB = �uB∗(FM,
3GM), (3.54)

where NL and NB are the numbers of nodes on the left and bottom boundary, respec-
tively; αi and βi are coefficients following from the discretized form of the integrals in
the left-hand sides of (3.35) and (3.36); �uL∗ and �uB∗ are vectors from the right-hand
sides of (3.35) and (3.36) with account for (3.49)

�uL∗ = (FM − I) ·
∫

Γ0L

( �XL − �X1) dΓ0 +
1
2
3GRC

M :

∫
Γ0L

( �XL
�XL − �X1

�X1) dΓ0, (3.55)

�uB∗ = (FM − I) ·
∫

Γ0B

( �XB − �X1) dΓ0 +
1
2
3GRC

M :

∫
Γ0B

( �XB
�XB − �X1

�X1) dΓ0. (3.56)

Consequently, the vectors �uL∗ and �uB∗ are known for any given FM and 3GM and the RVE
geometry. Contrary to the constraints (3.51) and (3.52), which gave rise to the homoge-
neous tying relations (3.53), the constraints (3.54) result in a set of non-homogeneous
constraints of the type

Cb u~b = q~b. (3.57)

Procedures for imposing the constraints (3.53) and (3.57) include the direct elimi-
nation of the dependent degrees of freedom from the system of equations, or the use
of Lagrange multipliers or penalty functions. In the following, the constraints (3.53)
and (3.57) are enforced by elimination of the dependent degrees of freedom. Although
such a procedure may be found in many textbooks on finite elements (e.g. Cook et al.
(1989)), here it is summarized for the sake of completeness but also in the context of
the derivation of the macroscopic tangent stiffness, which will be presented in the next
section.

First, the constraints (3.53) and (3.57) are combined into

Cu~= q
~
, (3.58)

where the column q
~

has non-zero values only at the positions corresponding to the non-
homogeneous constraints (3.57). In the following derivations no distinction is made
between constraints with zero and with non-zero values in q

~
and the right-hand side
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column q
~

is treated as a column containing given values. Next, (3.58) is partitioned
according to

[Ci Cd]

[
u~i

u~d

]
= q

~
, (3.59)

where u~i are the independent degrees of freedom (to be retained in the system) and
u~d are the dependent degrees of freedom (to be eliminated from the system). Because
there are as many degrees of freedom u~d as there are independent constraint equations
in (3.59), matrix Cd is square and non-singular. Solution for u~d yields

u~d =
[
Cdi C−1

d

] [ u~i

q
~

]
, with Cdi = −C−1

d Ci. (3.60)

This relation may be further rewritten as[
u~i

u~d

]
= T

[
u~i

q
~

]
, with T =

[
I O
Cdi C

−1
d

]
, (3.61)

where I is a unit matrix of size [Ni×Ni] and O is a zero matrix of size [Ni×Nd], with Ni

and Nd the number of the independent and dependent degrees of freedom, respectively.
With the transformation matrix T defined such that d~ = T d′~, the common transfor-

mations r′~ = TT r~ and K ′ = TTKT can be applied to a linear system of equations of the
form Kd~= r~, leading to a new system K ′d′~ = r′~.

The standard linearization of the non-linear system of equations (3.48) leads to a
linear system in the iterative corrections δu~ to the current estimate u~. This system may
be partitioned as[

Kii Kid

Kdi Kdd

] [
δu~i

δu~d

]
=

[
δr~i

δr~d

]
, (3.62)

with the residual nodal forces at the right-hand side. Noting that all the constraint
equations considered above are linear, and thus their linearization is straightforward,
application of the transformation (3.61) to the system (3.62) gives

[
Kii +KidCdi + C

T
diKdi + C

T
diKddCdi (Kid + C

T
diKdd)C

−1
d

(C−1
d )T (Kdi +KddCdi) C−1

d KddC
−1
d

][
δu~i

δq
~

]
=

[
δr~i + C

T
diδr~d

(C−1
d )T δr~d

]
.

(3.63)

3.5.2 Calculation of the macroscopic stress and higher-order stress

After the analysis of a microstructural RVE is completed, the RVE averaged stress tensors
have to be extracted. Of course, the macroscopic stress and higher-order stress tensors
can be calculated by numerically evaluating the volume integrals (3.44) and (3.47) or
the surface integrals (3.42) and (3.43). However, for the particular implementation
proposed here, computationally more efficient formulas may be obtained.

As it was the case for the first-order computational homogenization scheme, it may
be verified that all the forces involved in the homogeneous kinematic constraints (3.51)
and (3.52) cancel out from the surface integrals (3.42) and (3.43). The major difference
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with respect to the first-order case is the presence of the additional non-homogeneous
constraint relations (3.54). The forces involved in this constraint have to be properly
accounted for. After somewhat lengthy but straightforward mathematical manipulations
the surface integrals (3.42) and (3.43) can be transformed to

PM =
1

V0

{ 4∑
i=1

�fi �Xi + �fL∗

∫
Γ0L

�XL dΓ0 + �fB∗

∫
Γ0B

�XB dΓ0

}
, (3.64)

3QM =
1

2V0

{ 4∑
i=1

�Xi
�fi �Xi +

(
�fL∗

∫
Γ0L

�XL
�XL dΓ0

)LC

+
(
�fB∗

∫
Γ0B

�XB
�XB dΓ0

)LC
}
, (3.65)

where �fi, i = 1, 4 are the external forces in the four prescribed corner nodes; �fL∗ and �fB∗

are the resultant forces necessary to enforce the non-homogeneous constraints (3.54). If
a Lagrange multiplier technique would have been used to impose the constraints (3.54),
the forces �fL∗ and �fB∗ might be identified as the Lagrange multipliers. If elimination of
the dependent degrees of freedom, as has been outlined in the previous section, is used,
these forces are extracted from the column in the right-hand side of (3.63). In a finite
element program the forces �fi, i = 1, 4 and �fL∗ and �fB∗ are readily available for the
converged solution, from which the macroscopic stress tensor PM and the higher-order
stress tensor 3QM can be easily calculated using the formulas (3.64) and (3.65).

3.5.3 Macroscopic constitutive tangents

For the finite element solution of the macroscopic problem a stiffness matrix at every
macroscopic integration point is required. Similar as in the first-order computational ho-
mogenization scheme, in the second-order homogenization two alternative approaches
can be used to obtain the macroscopic stiffness, i.e. numerical differentiation based on
a perturbation technique and condensation of the total RVE stiffness matrix. For reasons
of efficiency, in the present work the latter method is used.

The derivation of the macroscopic consistent tangent operator for the second-order
computational homogenization largely follows the same steps as for the first-order case
(see section 2.4.4). In the first-order case information on the macroscopic deformation
(components of the macroscopic deformation gradient tensor FM) are transmitted to
the RVE level through the displacements of three prescribed nodes. In the second-order
approach in addition to the macroscopic deformation tensor FM, also its gradient 3GM

is imposed on the RVE. This is done by prescribing the displacement of the four corner
nodes of the RVE (�ui, i = 1, 4) and the vectors �uL∗ and �uB∗ in the right-hand side of the
non-homogeneous constraints (3.54). Components of the vectors �uL∗ and �uB∗ enter the
system of equations (3.63) through the column denoted by q

~
(see section 3.5.1).

In order to obtain the macroscopic stiffness matrix, the system of equations (3.63)
is written as K�δu~= δf

~
� and rearranged to the form[

K�
pp K�

pf

K�
fp K�

ff

] [
δu~p

δu~f

]
=

[
δf
~

�
p

δf
~

�
f

]
≈
[
δf
~

�
p

0~

]
, (3.66)

where the subscript p refers to “prescribed” degrees of freedom (degrees of freedom
through which the macroscopic FM and 3GM are imposed on the RVE). The subscript f
refers to all remaining “free” nodes. System (3.66) is taken at the converged end of the
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microstructural increment, thus the residual force in the free nodes can be neglected
δf
~

�
f ≈ 0~. Condensing u~ f out of the system (3.66) then leads to the definition of

the reduced stiffness matrix K�
M that relates the variation of the prescribed degrees of

freedom to the variation of the associated forces

K�
Mδu~p = δf~

�
p, with K�

M = K�
pp −K�

pf(K
�
ff)

−1K�
fp. (3.67)

Next, relation (3.67) needs to be transformed to arrive at an expression relating vari-
ations of the macroscopic stress to variations of the deformation. Since in the second-
order computational homogenization framework the macrostructure is modelled as a
full second gradient continuum, the linearized constitutive relations are written in the
form

δPM = 4C
(1)
M : δFc

M + 5C
(2)
M

... δ3GRC
M , (3.68)

δ3QM = 5C
(3)
M : δFc

M + 6C
(4)
M

... δ3GRC
M , (3.69)

where the fourth-order tensor 4C
(1)
M , the fifth-order tensors 5C

(2)
M and 5C

(3)
M and the sixth-

order tensor 6C
(4)
M are the macroscopic consistent constitutive tangents. In order to

obtain these constitutive tangents from the reduced matrix K�
M, first relation (3.67) is

rewritten in a vector/tensor format∑
j

K
(ij)
M · δ�u(j) = δ �f(i), i, j = 1, 2, 3, 4, L∗, B∗, (3.70)

where the components of tensors K
(ij)
M are simply found in the tangent matrix KM at

the rows and columns of the degrees of freedom corresponding to i and j. Next, the
expression for the variation of the forces (3.70) is substituted into the relations for the
variations of the macroscopic stress and higher-order stress obtained by varying (3.64)
and (3.65), which leads to

δPM =
1

V0

∑
i

∑
j

(K
(ij)
M · δ�u(j)) �X(i), (3.71)

δ3QLC
M =

1

2V0

∑
i

∑
j

(K
(ij)
M · δ�u(j))Y(i), (3.72)

where the following notation has been introduced

�XL∗ =

∫
Γ0L

�XL dΓ0, �XB∗ =

∫
Γ0B

�XB dΓ0, (3.73)

Y(i) =




�X(i)
�X(i), for i = 1, 2, 3, 4,∫

Γ0L

�XL
�XL dΓ0, for i = L∗,

∫
Γ0B

�XB
�XB dΓ0, for i = B∗.

(3.74)

The vectors δ�u(j) are now obtained as

δ�u(j) = �X(j) · δFc
M + 1

2
Y(j) : δ

3GRC
M . (3.75)
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Substitution of (3.75) into (3.71) and (3.72) gives

δPM =
1

V0

∑
i

∑
j

( �X(i)K
(ij)
M
�X(j))

LC : δFc
M +

1

2V0

∑
i

∑
j

( �X(i)K
(ij)
M Y(j))

LC ... δ3GRC
M ,

(3.76)

δ3QM =
1

2V0

∑
i

∑
j

(Y(i)K
(ij)
M
�X(j))

LC : δFc
M +

1

4V0

∑
i

∑
j

(Y(i)K
(ij)
M Y(j))

LC ... δ3GRC
M .

(3.77)

Comparing (3.76) and (3.77) with (3.68) and (3.69), the consistent tangents are finally
identified as

4C
(1)
M =

1

V0

∑
i

∑
j

( �X(i)K
(ij)
M
�X(j))

LC , 5C
(2)
M =

1

2V0

∑
i

∑
j

( �X(i)K
(ij)
M Y(j))

LC ,

5C
(3)
M =

1

2V0

∑
i

∑
j

(Y(i)K
(ij)
M
�X(j))

LC , 6C
(4)
M =

1

4V0

∑
i

∑
j

(Y(i)K
(ij)
M Y(j))

LC .

(3.78)

3.6 Nested solution scheme

Summarizing the second-order computational homogenization framework, this section
discusses the nested solution scheme for the coupled multi-scale numerical analysis.

The structure of the coupled micro-macro program can be outlined as follows. The
macroscopic structure to be analyzed is discretized by finite elements. To each macro-
scopic integration point a unique microstructural RVE is assigned. The geometry and
material properties of an RVE are based on the microstructure of the underlying ma-
terial. The RVE selected should be “representative”, i.e. it should contain sufficient
information on the microstructural features and basic mechanisms of their interaction.
A discussion on the choice of a microstructural cell in the framework of the second-order
computational homogenization may be found in the next section. In order to initiate
the macroscopic finite element analysis, constitutive tangents at every integration point
are required. To obtain these tangents from the microstructural properties a preparing
microstructural analysis is performed. During this initialization the stiffness matrix of
an undeformed RVE is assembled and used to derive the initial macroscopic constitutive
tangents at a macroscopic integration point.

During the actual analysis the external macroscopic load is applied in increments.
For every step of the macroscopic incremental-iterative procedure, and in each macro-
scopic integration point, the macroscopic deformation gradient tensor FM and its gra-
dient 3GM are calculated based on the current (iterative) macroscopic displacement
field. These deformation tensors and gradients of deformation tensors are sent to the
microlevel, where they are used to define the boundary value problem for the RVE, cor-
responding to the respective macroscopic integration point (see section 3.5.1). Upon
the solution of every RVE problem, the averaged stress tensor PM and the higher-order
stress tensor 3QM are obtained using (3.64) and (3.65). Additionally, the constitutive
tangents are extracted according to (3.78) and returned to the macroscopic program.
When the analysis of all RVEs is finished, the stress tensor, the higher-order stress tensor
and the consistent constitutive tangents are available at every macroscopic integration
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Table 3.1: Incremental-iterative nested multi-scale solution scheme for the second-order
computational homogenization.

MACRO MICRO

1. Initialization
� initialize the macroscopic model
� assign an RVE to every integration

point
� loop over all integration points Initialization RVE analysis

set FM = I and 3GM = 30 FM, 3GM−−−−−−−−−→ � prescribe boundary conditions
� assemble the RVE stiffness

tangents←−−−−−−−−− � calculate the tangents 4C(1)
M , 5C(2)

M ,
5C(3)

M , 6C(4)
Mstore the tangents

� end integration point loop
2. Next increment

� apply increment of the macro load
3. Next iteration

� assemble the macroscopic tangent
stiffness

� solve the macroscopic system
� loop over all integration points RVE analysis

calculate FM and 3GM FM, 3GM−−−−−−−−−→ � prescribe boundary conditions
� assemble the RVE stiffness
� solve the RVE problem

PM,3QM←−−−−−−−−− � calculate PM and 3QM
store PM and 3QM

tangents←−−−−−−−−− � calculate the tangents 4C(1)
M , 5C(2)

M ,
5C(3)

M , 6C(4)
Mstore the tangents

� end integration point loop
� assemble the macroscopic internal

forces
4. Check for convergence

� if not converged⇒ step 3
� else⇒ step 2

point. Hence, macroscopic internal nodal forces can be calculated, higher-order equilib-
rium can be evaluated and, if required, the next macroscopic iteration can be performed.
If equilibrium is achieved the calculations can be continued for the next increment. This
solution scheme is summarized in Table 3.1.

Obviously, the multi-scale algorithm described above is parallel by its nature. All
RVE calculations for one macroscopic iteration can be performed at the same time with-
out any exchange of data between them. So the use of parallel processors for the RVE
analyses would significantly reduce the total micro-macro calculation time. In view of
this, the current implementation is constructed on the basis of parallel computation.
The implementation uses the PVM (Parallel Virtual Machine) software system (Geist
et al. (1994)), which essentially provides the library of routines for functions such as
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Figure 3.4: Scheme of the parallel implementation of the second-order micro-macro
computational homogenization framework; N – number of the integration
points in the macroscopic mesh.

parallel process initiation, data transmission, reception, etc. The micro-macro program
largely follows a classical master-slaves scheme. The multi-scale analysis is fully con-
trolled by the master program. This master program obtains from the macroanalysis the
macroscopic integration point data (deformation gradient tensors and their gradients)
and spawns the RVE calculations on the available slave processors along with the data
for the RVEs. After the RVE analyses have been completed, the master program collects
the RVE averaged stress tensors, the higher-order stress tensors and the constitutive
tangents and sends these data back to the macrolevel. This is schematically depicted in
Figure 3.4.

3.7 RVEs in the second-order computational
homogenization

In the previous chapter the classical notion of a representative volume element has been
considered (section 2.7). In the present section the concept of a representative cell in
the context of the second-order computational homogenization is discussed.

In the second-order computational homogenization two conflicting requirements on
the microstructural representative volume element have to be accommodated. On the
one hand, the accurate determination of the overall behaviour of a multi-phase mate-
rial requires a large representative cell with many (interacting) heterogeneities. On the
other hand, the size of a representative cell used in the second-order computational
homogenization scheme implicitly sets the macroscopic “resolution”. This resolution
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is associated with the macroscopic length scale, which is in fact a length scale of the
macroscopic homogenized higher-order continuum obtained through the second-order
computational homogenization modelling. This length scale parameter should gen-
erally be determined from physical and/or numerical experiments. However, in most
cases it is possible to give a reasonable estimate of the required size of the representative
cell based on a consideration of the basic mechanisms of the underlying microstructural
evolution and interaction.

The representative cell should be selected such that the size is large enough to allow
the development of all governing microstructural physical mechanisms. For example,
when a primary microstructural deformation mechanism is identified by the formation
of microstructural shear bands, the size of the modelling cell should allow for the com-
plete development of these shear bands. Taking the microstructural cell much larger
than the minimum required size will in most cases result in a loss of resolution, i.e. in
smoothing of the macroscopic fields. After the minimum size of the domain, on which
the microstructural phenomena take place, has been defined, a number of different mi-
crostructural realizations of this size should be considered and their overall responses
averaged. In order to reduce the number of analyses with different realizations of the
microstructural cell in some practical cases, different arrangements of the microstruc-
tural heterogeneities within a cell should be made in such a way that the statistical
characteristics of the microstructure are approximated as accurately as possible.

It is important to remark, that the requirement of statistical representativeness was
also present in the definition of an RVE for the classical first-order homogenization
approach. However, there was no restriction on the (maximum) size of a representative
cell (on the contrary, taking an RVE as large as possible, allowed to represent given
statistical characteristics more accurately). This is related to the fact that the classical
first-order computational homogenization scheme (as well as most other conventional
homogenization methods) deals with an ordinary local continuum on the macroscopic
level. Such a continuum does not possess a material length scale and accordingly the
size of a microstructural cell does not play a role. The second-order homogenization
framework models the macrostructure as a higher-order continuum. The length scale
of this continuum is related to the size of the microstructural cell and, consequently, to
the size of the microstructural domain, where the basic microstructural phenomena take
place. The same relationship appears also in other microstructurally based higher-order
constitutive models (e.g. in the mechanism-based strain gradient plasticity theory, Gao
et al. (1999)).

Another important aspect of the second-order computational homogenization is as-
sociated to the underlying assumption that the macroscopic deformation field varies lin-
early over the microstructural cell (of which the size should allow to capture the main
microstructural deformation mechanisms). If this assumption does not apply (i.e. if the
macroscopic fields vary too strongly on the scale of the microstructural constituents)
a computational homogenization scheme cannot provide accurate results, since a sep-
aration of scales is not recognizable anymore. In such cases the analysis should be
performed by detailed microstructural modelling.



Chapter 4

Second gradient continuum
formulation for the macrolevel

As indicated in the previous chapter, within the framework of the second-order com-
putational homogenization a proper description of the macrolevel requires a full sec-
ond gradient equilibrium formulation. In this chapter the continuum description and
a computational solution strategy for the second gradient medium are developed. The
continuum formulation of the second gradient equilibrium problem is first elaborated.
The weak form, which employs Lagrange multipliers to enforce the kinematic rela-
tion between the displacement and displacement gradient fields, is presented and its
equivalence to the strong form is shown. The finite element formulation includes three
unknown fields: displacements, displacement gradients and Lagrange multipliers. An
incremental-iterative procedure based on a total Lagrangian setting is outlined. Several
quadrilateral isoparametric elements of a mixed type are developed and their perfor-
mance is examined and compared, using the patch test and the so-called boundary
shear layer problem.

4.1 Introduction

The development of higher-order continuum theories started almost a century ago with
the famous work of Cosserat and Cosserat (1909). They introduced a continuum, every
point of which has six degrees of freedom: three degrees of freedom corresponding to
the position in space and three rotational degrees of freedom. Although similar concepts
existed before in various theories of beams and shells, the Cosserats were the first to
give a systematic theory development for a three-dimensional solid. Another novel
feature in the Cosserat theory was the appearance of a non-symmetric stress tensor and
additionally a higher-order couple stress tensor. At that time however, the Cosserat
theory did not receive much attention and applications were not searched after.

Important developments in higher-order theories have been made in the 1960’s.
At that time the Cosserat theory was reconsidered and other theories were developed
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within the same philosophy. The most widely used among them are the couple stress
theory and the full second gradient theory. In the couple stress theory (also called
constrained Cosserat theory, Mindlin and Tiersten (1962); Toupin (1962, 1964); Koiter
(1964)) the rotation field is determined as the curl of the displacement field in the point
of interest. The full second gradient theory (Mindlin (1965); Mindlin and Eshel (1968);
Fleck and Hutchinson (1997)) extends this idea to account not only for local rotations,
but also for stretch gradients. A higher-order stress (also called double stress) enters
the formulation as the work conjugate to the second gradient of the displacement field.

A rather general theory to describe a second-order continuum is the theory of a
medium with microstructure, which has been initially developed by Mindlin (1964) and
is also discussed in Germain (1973) and Chambon et al. (2001). This theory is based
on a continuum concept, in which each point is considered as a deformable medium
itself. The kinematics of a continuum with microstructure is defined by macro- and
microdisplacement fields. The potential energy density of such a continuum is assumed
to be a function of the macrodeformation, the microdeformation and the gradient of the
microdeformation. With the addition of some kinematic constraints, this general theory
recovers the previously mentioned theories as particular cases. If the symmetric part
of the microdeformation vanishes, the Cosserat continuum is obtained. Additionally,
requiring the macrorotation to be equal to the microrotation leads to the couple stress
theory. Alternatively, assuming the microdeformation to equal the macrodeformation
reduces the theory of a medium with microstructure to the full second gradient theory.
Other higher-order continuum theories developed at that time are the micromorphic
theory (Eringen (1964)), the micropolar theory (Eringen (1966)), the multipolar theory
(Green and Rivlin (1964)), etc.

While the attention in the 1960’s was mainly focused on the elaboration of the gen-
eral concepts of elastic higher-order media, the past decades concentrated on various
non-linear (e.g. elasto-plastic) higher-order theories, both phenomenological and mi-
crostructurally based. These theories have found most of their applications in the mod-
elling of localization and size effects, particularly in the fields of geomechanics and
metal plasticity. As has been recognized, the presence of higher-order gradients of kine-
matic quantities and/or internal variables in a formulation prevents loss of ellipticity
of the governing equations and allows for a realistic description of localized deforma-
tions beyond the bifurcation point when the material is far in the softening regime.
Additionally, an intrinsic length scale incorporated in higher-order theories allows for
the modelling of size effects, often observed in experiments. Account of these theories
and their applications may be found among a vast amount of references in e.g. Aifan-
tis (1984); Vardoulakis and Aifantis (1991); de Borst and Mühlhaus (1992); de Borst
et al. (1993); Fleck and Hutchinson (1993); Fleck et al. (1994); Fleck and Hutchinson
(1997); Shu and Fleck (1999); Gao et al. (1999); Huang et al. (2000).

Even more so than for a conventional continuum, analytical solutions for higher-
order continua may be obtained only for a few very simple problems. For the solution
of practical problems one must resort to a numerical analysis, e.g. the finite element
method. If a Cosserat continuum is to be modelled, the finite element implementation
is relatively easy. In this case the classical displacement based formulation is simply ex-
tended by adding the rotational degrees of freedom to every node and properly rewrit-
ing the element matrices (e.g. de Borst (1991)). However, modelling of the constrained
types of higher-order continua requires significantly more effort. The difficulty origi-
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nates from the fact that in this case the higher-order kinematic quantities (e.g. rotation
or the gradient of the deformation) are not independent of the displacement field. This
leads to a virtual work statement, which includes the first- and second-order derivatives
of the displacement. As a consequence, a displacement based finite element formula-
tion should employ at least C1 continuous interpolation functions for the displacement
field. In the framework of the couple stress theory, Xia and Hutchinson (1996) have
proposed C1 continuous elements for anti-plane and plane strain deformation and later
for the axisymmetric case (Begley and Hutchinson (1998)). Another C1 continuous el-
ement for the full second gradient formulation has been recently proposed by Zervos
et al. (2001). However, C1 continuous elements are relatively complicated to formulate
and implement due to the geometrical restrictions that apply to them. Moreover, as
has been pointed out by Xia and Hutchinson (1996), these elements do not always lead
to adequate results for the second-order continuum, even though similar elements are
known to be superior for plate bending.

The lack of robust C1 continuous elements motivated the same authors (Xia and
Hutchinson (1996)) to develop a C0 continuous element based on a mixed formulation
for the couple stress theory, initially proposed by Herrmann (1983). In the mixed for-
mulation the displacement and its gradient are considered as independent unknowns.
The Lagrange multiplier technique is used to impose the kinematic constraints between
these independent variables. Later Shu and Fleck (1998) have used a similar couple
stress formulation, but they enforced the constraints using penalty functions. Shu et al.
(1999) developed a series of C0 mixed type quadrilateral and triangular elements for
the full second gradient formulation and conducted a comparison of their performance.
Recently also Amanatidou and Aravas (2002) and Matsushima et al. (2002) presented
various types of mixed formulations and elements for the second gradient continuum. It
is also worth mentioning that among all finite element formulations for a higher-order
continuum only a few are developed within a large deformations framework (Shu and
Barlow (2000); Matsushima et al. (2002)).

In this chapter, first the strong form of equilibrium for the full second gradient con-
tinuum is derived. In section 4.3.1 this strong form is recast into a mixed type weak
form and the equivalence between the weak and the strong form is demonstrated. The
finite element discretization of this weak form, which requires a discretization of three
unknown fields: displacement, displacement gradient and Lagrange multipliers, is pre-
sented in section 4.3.2. The linearized form of the discrete system of equations in the
total Lagrange framework is elaborated in section 4.3.3. Next, several types of nine and
eight noded quadrilateral elements for the mixed second gradient formulation are pro-
posed in section 4.3.4 and section 4.4 deals with the assessment and comparison of the
performance of the elements developed. First, Mindlin’s elastic constitutive model for
a second gradient continuum is briefly summarized. Then the patch test is performed,
which allows to indicate poorly behaving elements. Convergence and accuracy of the
elements is further evaluated by comparing the numerical results with an analytical
solution for the so-called boundary shear layer problem. This chapter concludes with
recommendations on the choice of a suitable finite element for solving general bound-
ary value problems for a second gradient continuum and for use within the framework
of the second-order computational homogenization in particular.
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4.2 Second gradient continuum formulation

Kinematics of a classical continuum is defined by the non-linear deformation mapping
�x = �φ( �X, t), which maps the reference configuration position vector �X onto the current
configuration position vector �x at time t. In classical models the internal work is deter-
mined by the gradient of this deformation mapping, i.e. the well-known deformation
gradient tensor

F =

(
∂�φ

∂ �X

)c

= (∇0�x)
c. (4.1)

In the second gradient continuum theory also the gradient of the deformation gradient
tensor

3G =
∂

∂ �X

(
∂�φ

∂ �X

)c

= ∇0F, Gijk = Gkji (4.2)

is included into the mechanical description of a continuum. The internal work is then
assumed to be determined by the deformation gradient tensor F and its (Lagrangian)
gradient 3G. Following the classical arguments of objectivity (frame indifference) the
virtual internal work increment per unit undeformed volume of a solid due to an arbi-
trary virtual variation δ�u of the displacement �u = �x− �X is written as

δwint
0 = P : δFc + 3Q

... δ3G, (4.3)

where the first Piola-Kirchhoff stress tensor P is the work conjugate of the variation of
the deformation gradient tensor δF, and the higher-order stress 3Q (with the symmetry
property Qijk = Qkji, associated to the minor symmetry of the tensor 3G) is the work
conjugate of the variation of the gradient δ3G of the deformation gradient tensor.

The variation of the internal work for an initially undeformed volume V0 equals

δW int
0 =

∫
V0

δw0dV0 =

∫
V0

(
P : δFc + 3Q

... δ3G
)
dV0. (4.4)

By explicitly writing the variation of the deformation gradient tensor and the variation
of its gradient in terms of the displacement variation, (4.4) takes the form

δW int
0 =

∫
V0

(
P : ∇0δ�u+

3Q
... ∇0(∇0δ�u)

c
)
dV0. (4.5)

Using the following identities

P : ∇0δ�u = ∇0 · (Pc · δ�u)− (∇0 ·Pc) · δ�u, (4.6)

3Q
... ∇0(∇0δ�u)

c = ∇0 · (3Q : ∇0δ�u)−∇0 · (δ�u · (∇0 · 3Q)) + (∇0 · (∇0 · 3Q)c) · δ�u,
(4.7)
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and applying the divergence theorem, the work variation (4.5) is transformed into

δW int
0 = −

∫
V0

[
∇0 ·

(
Pc − (∇0 · 3Q)c

)] · δ�u dV0

+

∫
S0

�N · (Pc − (∇0 · 3Q)c
) · δ�u dS0 +

∫
S0

�N · 3Q : ∇0δ�u dS0,

(4.8)

where �N is the unit outward normal to the surface S0 of the body in its reference
(undeformed) configuration. Note, that ∇0δ�u is the full gradient, which cannot be
determined from δ�u on the surface S0 alone. If δ�u is known on the entire surface S0, the
surface gradient of δ�u can be easily determined, but not the full gradient. Thus, in order
to correctly identify the independent boundary conditions in a variational principle,
the gradient ∇0δ�u is decomposed into a surface gradient ∇s

0δ�u and a normal gradient
�ND0δ�u

∇0δ�u = ∇s
0δ�u+

�ND0δ�u, (4.9)

where the surface gradient operator is defined as

∇s
0 = (I− �N �N) · ∇0 (4.10)

and the normal gradient operator as

D0 = �N · ∇0. (4.11)

In order to eliminate the surface gradient ∇s
0δ�u from (4.8) and to retain only the in-

dependent variations δ�u and D0δ�u the following mathematical manipulations are per-
formed.

If A is an arbitrary second-order tensor and �a a vector, then the identity

A : ∇0�a = ∇s
0 · (Ac · �a)− (∇s

0 ·Ac) · �a+ �N ·Ac ·D0�a (4.12)

holds, where (4.9) and a relation similar to (4.6) (with ∇s
0 instead of ∇0) have been

used.
The following integral transformation holds for a continuously differentiable vector

function �f defined on a surface S0 bounded by a closed curve 20 (Brand (1947))∫
S0

∇s
0 · �f dS0 =

∫
S0

(∇s
0 · �N) �N · �f dS0 +

∮
�0

�m · �f d20, (4.13)

where the vector �m satisfies �m = �T × �N , with �T the unit tangent vector along the curve
20 defined such that �m is directed outward viewed from the surface S0. Suppose now
that S0 is a closed surface which is divided into two parts S(1)

0 and S(2)
0 by a curve 20. Let

2
(1)
0 and 2(2)0 be the curves, closing the surfaces S(1)

0 and S(2)
0 , respectively; in fact 2(1)0 and

2
(2)
0 indicate the same curve. According to the above procedure, along the curves 2(1)0 and
2
(2)
0 the following unit vectors are defined: the normals �N (1) and �N (2) (not necessarily

equal), the tangents �T (1) and �T (2) (with �T (2) = −�T (1)), and the vectors �m(1) = �T (1)× �N (1)
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and �m(2) = �T (2) × �N (2). For each surface segment S(1)
0 and S(2)

0 (4.13) applies. For the
whole surface S0 it can be written then∫

S0

∇s
0 · �f dS0 =

∫
S0

(∇s
0 · �N) �N · �f dS0 +

∮
�
(1)
0

�m(1) · �f (1) d2
(1)
0 +

∮
�
(2)
0

�m(2) · �f (2) d2
(2)
0 . (4.14)

The contribution of the line integrals may be further elaborated according to∮
�
(1)
0

�m(1) · �f (1) d2
(1)
0 +

∮
�
(2)
0

�m(2) · �f (2) d2
(2)
0 =

∮
�
(1)
0

(�T (1) × �N (1)) · �f (1) d2
(1)
0 +

∮
�
(2)
0

(�T (2) × �N (2)) · �f (2) d2
(2)
0 =

∮
�
(1)
0

(
(�T (1) × �N (1)) · �f (1) − (�T (1) × �N (2)) · �f (2)

)
d2

(1)
0 =

∮
�
(1)
0

[[�m · �f ]] d2(1)0 ,

(4.15)

where the symbol [[· · ·]] denotes the difference in value of the enclosed quantity as a
given point on an edge 2(1)0 is approached from either side. More generally, a piece-
wise smooth surface S0 can be divided into a finite number of smooth parts. Then the
integral transformation takes the form∫

S0

∇s
0 · �f dS0 =

∫
S0

(∇s
0 · �N) �N · �f dS0 +

∑
n

∮
�
(n)
0

[[�m · �f ]] d2(n)
0 . (4.16)

If S0 is a smooth surface (does not have edges and corners) then the last term in (4.16)
vanishes.

Integrating (4.12) over the surface S0 and using (4.16) with �f = Ac · �a gives∫
S0

A : ∇0�a dS0 =

∫
S0

(∇s
0 · �N) �N ·Ac · �a dS0 −

∫
S0

(∇s
0 ·Ac) · �a dS0

+

∫
S0

�N ·Ac ·D0�a dS0 +
∑
n

∮
�
(n)
0

[[�m ·Ac · �a]] d2(n)
0 .

(4.17)

Now taking in the above relation �a ≡ δ�u and A ≡ �N · 3Q, as present in the last term
of (4.8), substituting the result back into (4.8) and combining terms in the variations
δ�u and D0δ�u, the variation of the internal work becomes

δW int
0 = −

∫
V0

[
∇0 ·

(
Pc − (∇0 · 3Q)c

)] · δ�u dV0

+

∫
S0

[
�N · (Pc − (∇0 · 3Q)c

)
+ (∇s

0 · �N) �N · ( �N · 3Q)c −∇s
0 · ( �N · 3Q)c

]
· δ�u dS0

+

∫
S0

[
�N · 3Q · �N

]
·D0δ�u dS0 +

∑
n

∮
�
(n)
0

[[�m · ( �N · 3Q)c]] · δ�u d2(n)
0 . (4.18)
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According to the principle of virtual work, the work performed by internal forces on
virtual displacements equals the work of external forces on the same virtual displace-
ments. Considering the structure of (4.18) the external work is assumed to be expressed
according to

δW ext
0 =

∫
V0

�b · δ�u dV0 +

∫
S0

�t · δ�u dS0 +

∫
S0

�r ·D0δ�u dS0 +
∑
n

∮
�
(n)
0

�p(n) · δ�u d2(n)
0 , (4.19)

where�b is the body force per unit undeformed volume, while the loading vectors �t, �r and
�p(n) are defined in the following. Combining (4.18) and (4.19), which are valid for any
subdomain of V0 and arbitrary variations δ�u and D0δ�u, results in the local equilibrium
equation

∇0 ·
(
Pc − (∇0 · 3Q)c

)
+�b = �0 (4.20)

and boundary conditions on the part of the surface S0 where tractions are prescribed.
These natural (also called dynamic) boundary conditions consist of the surface traction
�t

�t = �N · (Pc − (∇0 · 3Q)c
)
+ (∇s

0 · �N) �N · ( �N · 3Q)c −∇s
0 · ( �N · 3Q)c (4.21)

and the double stress traction �r

�r = �N · 3Q · �N. (4.22)

In case that S0 is a piece-wise smooth surface on every edge 2(n)
0 the line force �p (n) is

defined as

�p (n) = [[�m · ( �N · 3Q)c]]. (4.23)

On the remaining part of S0, the displacement �u and its normal gradient D0�u should
be prescribed. Like for a classical medium combinations of kinematic and dynamic
boundary conditions (mixed boundary conditions) are also admissible.

In order to complete the system of equations (4.20)-(4.23), constitutive relations
are required. Here, however, no particular constitutive laws are specified. Instead, a
general form of constitutive equations, relating the first Piola-Kirchhoff stress tensor P
and the higher-order stress tensor 3Q to the history of the deformation tensor F and its
gradient 3G, is supposed

P( �X, t) = FP {F( �X, τ), 3G( �X, τ), τ ∈ [0, t]}, (4.24)
3Q( �X, t) = FQ {F( �X, τ), 3G( �X, τ), τ ∈ [0, t]}. (4.25)

4.3 Finite element implementation

The equilibrium equations derived above combined with constitutive equations and
boundary conditions constitute a system of partial differential equations. This system
is often non-linear due to geometrical and/or material non-linearities. Analytical so-
lutions can be obtained only for extremely simple geometries and loading conditions.
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Therefore, for the analysis of practical multi-dimensional problems with complex ge-
ometries and loading conditions approximate, numerical methods are required. Among
other numerical techniques, the finite element method enables to obtain such an ap-
proximate solution in a systematic way. The finite element technique is widely used
for the solution of engineering problems formulated for a classical continuum. The
same methodology can be used for the numerical solution of higher-order continuum
problems.

4.3.1 Weak formulation

The finite element discretization of a boundary value problem is based on a weak form,
also called a weighted residuals form, or a variational form. The straightforward ap-
plication of the weighted residuals approach to equilibrium equation (4.20) results in a
weak formulation expressed as the virtual energy balance δW int

0 = δW ext
0 , with the vari-

ation of the internal work equivalent to (4.4), which includes the first and the second-
order derivatives of the displacement. This immediately indicates that the direct usage
of conventional displacement-based finite elements requires at least C1 continuous in-
terpolation functions, i.e. both the function and its first derivative are required to be
continuous across inter-element boundaries. Several C1 continuous elements have been
proposed for a higher-order continuum (e.g. Xia and Hutchinson (1996); Begley and
Hutchinson (1998); Zervos et al. (2001)). However, development of C1 continuous
elements suitable for general multi-dimensional non-linear problems is not straightfor-
ward, since these elements usually require additional assumptions (e.g. geometrical)
and suffer from various restrictions.

Due to the lack of robust C1 continuous elements, the use of C0 continuous elements
is preferred. Development of C0 continuous elements for higher-order continua is based
on a mixed (also called multi-field) formulation. The strategy is to introduce another
unknown field of the second-order tensor, denoted F̂, in addition to the unknown dis-
placement field �u. The kinematic constraint between these two fields is weakly enforced
by means of Lagrange multipliers, also forming a second-order tensor field.

The weak form, which accounts for the appropriate field equations, (natural) bound-
ary conditions and the relationships F̂ = F in the volume, enforced by the Lagrange
multiplier λ, and F̂s = (∇s

0�u)
c on the surface (with F̂s = F̂− F̂ · �N �N the surface part of

the tensor F̂), enforced by another Lagrange multiplier µ, may be written as (the proof
of this statement is presented in the following)∫

V0

{
P(F, 3Ĝ) : δFc + 3Q(F, 3Ĝ)

... δ3Ĝ + δ
(
λ : (F̂c − Fc)

)}
dV0

+

∫
S0

δ
(
µ : (F̂c

s −∇s
0�u)

)
dS0 =

∫
V0

�b · δ�u dV0 +

∫
S0

�t · δ�u dS0

+

∫
S0

R : δF̂c dS0 +
∑
n

∮
�
(n)
0

�p (n) · δ�u d2(n)
0 ,

(4.26)

In (4.26) the deformation gradient tensor F is obtained from the displacement field �u
via the standard kinematics relation

F = (∇0�x)
c = I+ (∇0�u)

c, δF = (∇0δ�u)
c. (4.27)
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The variable 3Ĝ is a third-order tensor defined as the gradient of the field F̂, sym-
metrized on the first and the last indices

Ĝijk =
1
2
(∇0iF̂jk +∇0kF̂ji), δĜijk =

1
2
(∇0iδF̂jk +∇0kδF̂ji). (4.28)

In the right-hand side of (4.26) R is a double traction tensor, which is related to the
double traction vector �r by

R = �r �N. (4.29)

In the weak form (4.26) the dependence of the stress tensor and the higher-order stress
tensor on kinematic quantities has been explicitly indicated. Thus, when the stress and
the higher-order stress are calculated via the constitutive relations (4.24) and (4.25)
the deformation gradient tensor according to (4.27) is used, while for the gradient of
the deformation gradient tensor (4.28) is employed. This choice has been made in the
present implementation, however, other alternatives are possible.

Only the first-order derivatives of the primary unknown fields �u and F̂ and their
corresponding weighting functions δ�u and δF̂ appear in the weak form (4.26), so they
are only required to be piece-wise differentiable, i.e. C0 continuous. Following Shu
et al. (1999), the unknown F̂ is sometimes called the “relaxed” deformation gradient
tensor. It also should be noted that there are fundamental differences with respect to the
assumed deformation used in mixed formulations for a classical continuum, namely the
continuity requirements and the boundary conditions. No derivatives of the Lagrange
multipliers appear in this weak form, so the Lagrange multipliers should only be piece-
wise continuous functions of �X, so C−1 continuous functions.

In the following it is demonstrated that the weak form (4.26) is equivalent to the
strong form (4.20)-(4.23). First, the first term in the left-hand side of (4.26) is elab-
orated by replacing δFc with ∇0δ�u, using (4.6) and applying the divergence theorem.
This gives∫

V0

P : δFc dV0 = −
∫
V0

(∇0 ·Pc)·δ�u dV0+

∫
S0

�N ·Pc ·δ�u dS0+

∫
St,int

0

[[ �N ·Pc]]·δ�u dS0, (4.30)

where St,int
0 is the “internal boundary”, i.e. the union of all surfaces (lines in two di-

mensions) on which a priori the stresses are allowed to be discontinuous in the body.
Next the second term in (4.26) is transformed in a similar way. Substitution of

(4.28) into this term with account for the differentiation formula (where the symmetry
property of 3Q, Qijk = Qkji is used) according to

3Q
... ∇0δF̂ = ∇0 · (3Q : δF̂c)− (∇0 · 3Q) : δF̂c (4.31)

and application of the divergence theorem yields∫
V0

3Q
... δ3Ĝ dV0 = −

∫
V0

(∇0 · 3Q) : δF̂c dV0 +

∫
S0

�N · 3Q : δF̂c
s dS0

+

∫
S0

�N · 3Q : ( �N �N · δF̂c) dS0 +

∫
Sr,int

0

[[ �N · 3Q]] : δF̂c dS0,
(4.32)
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where δF̂ on the boundary S0 has been split into a tangential and a normal part
δF̂c = δF̂c

s + �N �N · δF̂c; Sr,int
0 is the internal boundary, on which the higher-order stress

might be discontinuous.

For the last term in the volume integral in the left-hand side of (4.26) the variational
rule δ(uv) = δuv + uδv is used, followed by substitution of (4.272), application of (4.6)
(with replacement of P by λ) and the divergence theorem

∫
V0

δ
(
λ : (F̂c − Fc)

)
dV0 =

∫
V0

δλ : (F̂c − Fc) dV0 +

∫
V0

λ : δF̂c dV0

+

∫
V0

(∇0 · λc) · δ�u dV0 −
∫
S0

�N · λc · δ�u dS0 −
∫

St,int
0

[[ �N · λc]] · δ�u dS0.
(4.33)

Similarly, the surface term in the left-hand side of (4.26) is elaborated

∫
S0

δ
(
µ : (F̂c

s −∇s
0�u)

)
dS0 =

∫
S0

δµ : (F̂c
s −∇s

0�u) dS0 +

∫
S0

µ : δF̂c
s dS0

−
∫
S0

(∇s
0 · �N) �N · µc · δ�u dS0 +

∫
S0

(∇s
0 · µc) · δ�u dS0 −

∑
n

∮
�
(n)
0

[[�m · µc]] · δ�u d2(n)
0 ,

(4.34)

where the integral transformation (4.13) has been used.

Finally substituting (4.30)-(4.34) into (4.26) and recombining the terms results in

∫
V0

[
∇0 · (Pc − λc)+�b

]
· δ�u dV0 +

∫
V0

(∇0 · 3Q− λ) : δF̂c dV0 −
∫
V0

δλ : (F̂c − Fc) dV0

+

∫
S0

[
�t− �N · (Pc − λc) + (∇s

0 · �N) �N · µc −∇s
0 · µc

]
· δ�u dS0

+

∫
S0

[
�r − �N · 3Q · �N

]
· ( �N · δF̂c) dS0 −

∫
S0

(µ+ �N · 3Q) : δF̂c
s dS0

−
∫
S0

δµ : (F̂c
s −∇s

0�u) dS0 +
∑
n

∮
�
(n)
0

[
�p (n) + [[�m · µc]]

]
· δ�u d2(n)

0

−
∫

St,int
0

[[ �N · (Pc − λc)]] · δ�u dS0 −
∫

Sr,int
0

[[ �N · 3Q]] : δF̂c dS0 = 0.

(4.35)
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Using the arbitrariness of the variations then gives

∇0 · (Pc − λc) +�b = �0 in V0, (4.36)
λ = ∇0 · 3Q in V0, (4.37)
F̂c = Fc in V0, (4.38)
�t = �N · (Pc − λc)− (∇s

0 · �N) �N · µc +∇s
0 · µc on S0, (4.39)

�r = �N · 3Q · �N on S0, (4.40)
µ = − �N · 3Q on S0, (4.41)
F̂c

s = ∇s
0�u on S0, (4.42)

�p (n) = −[[�m · µc]] on 2
(n)
0 , (4.43)

[[ �N · (Pc − λc)]] = �0 on St,int
0 , (4.44)

[[ �N · 3Q]] = 0 on Sr,int
0 . (4.45)

The above system constitutes the strong form of the equilibrium problem for a second
gradient continuum with kinematic constraints (4.38) and (4.42) and Lagrange multi-
pliers identified according to the relations (4.37) and (4.41). The interior continuity
conditions (4.44) and (4.45) are not a part of the strong form (4.20)-(4.23), unless
physical internal boundaries, e.g. material interfaces, are present. These interior conti-
nuity conditions became a part of (4.36)-(4.45) due to the choice of C0 continuity for
the trial and weighting functions. For smooth trial and weighting functions, the weak
form implies only the equilibrium equation, the traction and double traction boundary
conditions.

Assuming satisfaction of (4.38) in the volume in an averaged sense, ensures that the
surface integral in the left-hand side of (4.26) is negligible, which allows to rewrite the
weak form as∫

V0

{
P : δFc + 3Q

... δ3Ĝ + δ
(
λ : (F̂c − Fc)

)}
dV0

=

∫
V0

�b · δ�u dV0 +

∫
S0

�t · δ�u dS0 +

∫
S0

R : δF̂c dS0 +
∑
n

∮
�
(n)
0

�p (n) · δ�u d2(n)
0 ,

(4.46)

which for a sufficiently fine mesh does not introduce a significant error, while simpli-
fying the finite element implementation. The same assumption has also been made by
other authors (Shu et al. (1999); Matsushima et al. (2002)). However, in Amanatidou
and Aravas (2002) the surface integral term has been retained.

In order to correctly formulate a boundary value problem for a smooth second gra-
dient continuum body, six independent boundary conditions are required for a three-
dimensional problem (four independent boundary conditions for a two-dimensional
problem). A way to prescribe the boundary conditions associated with the primary
unknown fields �u and F̂ has been addressed in Shu et al. (1999). Let a superscript ∗
indicate a prescribed quantity on the surface. If the stress traction �t∗ and the double
stress traction �r∗ are given, the boundary conditions to be prescribed are simply

�t = �t∗ and R = �r∗ �N. (4.47)
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If the displacement �u∗ and the displacement gradient normal to the surface (D0�u)
∗ are

given, the boundary conditions are prescribed as

�u = �u∗ and F̂c = �N(D0�u)
∗ +∇s

0�u
∗, (4.48)

where the surface gradient ∇s
0�u

∗ is known because the displacement �u∗ is given on
the surface. Using these boundary conditions no error is introduced in (4.46) due
to neglecting the boundary integral term in (4.26), since in this case the constraint
F̂c

s = ∇s
0�u is automatically satisfied by (4.48). Mixed boundary conditions are obtained

by combination of the dynamic and kinematic boundary conditions (4.47) and (4.48).

4.3.2 Finite element discretization

The higher-order equilibrium formulation is now discretized using finite elements. The
body of interest is subdivided into Nelem elements with a total number of Kx, KF and
Kλ nodes for the three unknown fields describing the deformed position vector �x, the
relaxed deformation gradient F̂ and the Lagrange multiplier λ, respectively. The finite
element approximations for these unknown fields are written as

�x =

Kx∑
A=1

Nx
A�xA ≡ Nx

A�xA, (4.49)

F̂ =

KF∑
A=1

NF
A F̂A ≡ NF

A F̂A, (4.50)

λ =

Kλ∑
A=1

Nλ
AλA ≡ Nλ

AλA, (4.51)

where Nx and NF are C0 continuous interpolants for the position vector and relaxed
deformation gradient fields, respectively, and Nλ are C−1 continuous interpolants for
the Lagrange multiplier field.

Here and in the following capital Latin subscripts indicate a nodal quantity, while
small Latin subscripts will refer to components of vectors and tensors. Summation over
repeated indices is implied in both cases. The range of the capital Latin letters is over
all the nodes (of the mesh or the element, depending on the context); the range of the
small Latin letters equals the number of dimensions of the configuration.

Following the standard Galerkin approach the interpolants Nx, NF and Nλ are also
used for the respective weighting functions

δ�x = δ�u = Nx
Aδ�uA, δF̂ = NF

A δF̂A, δλ = Nλ
AδλA. (4.52)

The discrete approximations to the gradient relations (4.27) and (4.28) are

F = �xA �B
x
A, with �Bx

A =
∂Nx

A

∂ �X
, (4.53)

3Ĝ = �BF
A F̂A, with �BF

A defined such that Ĝijk =
1

2

(
∂NF

A

∂Xi
F̂Ajk +

∂NF
A

∂Xk
F̂Aji

)
.

(4.54)
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Substitution of (4.49)-(4.54) into the weak form (4.46) (assuming for simplicity that
the body has a smooth surface, so that the line integral vanishes) leads to∫

V0

{
P : �Bx

Aδ�uA + 3Q
... �BF

AδF̂A

}
dV0

+

∫
V0

{
Nλ

AδλA : (NF
B F̂c

B − �Bx
B�xB) +N

λ
BλB : (NF

A δF̂
c
A − �Bx

Aδ�uA)
}
dV0

=

∫
V0

�b ·Nx
Aδ�uA dV0 +

∫
S0

�t ·Nx
Aδ�uA dS0 +

∫
S0

R : NF
A δF̂

c
A dS0.

(4.55)

Taking into account that the above equation must be satisfied for arbitrary weighting
parameters δ�uA, δF̂A and δλA results in a system of equations constituting the discrete
force balances and additionally the discretized kinematic constraint∫

V0

P · �Bx
A dV0 + λB · �CAB =

∫
V0

�bNx
A dV0 +

∫
S0

�tNx
A dS0, (4.56)

∫
V0

3Q · �BF
A dV0 + λc

BEAB =

∫
S0

RcNF
A dS0, (4.57)

�CBA�xB + EBAF̂c
B = 0, (4.58)

where the following notation has been introduced

�CAB = −
∫
V0

�Bx
AN

λ
B dV0, EAB =

∫
V0

NF
AN

λ
B dV0. (4.59)

The left-hand side of every equation in the system (4.56)-(4.58) represents the internal
contribution. They must balance the external contributions present in the right-hand
side of the system.

4.3.3 Iterative procedure

Due to the presence of geometrical and/or material non-linearities the system of equa-
tions (4.56)-(4.58) is generally non-linear. This means that the solution of this set of
equations must be determined iteratively. A Newton-Raphson procedure is used for this
purpose. The system of equations is linearized in each iteration with respect to the so-
lution estimate obtained in the previous iteration. Solving the linearized system yields
an iterative correction to the previous estimate. This process is repeated until some
appropriate convergence criterion is satisfied. Thus, for the system (4.56)-(4.58) the
solution estimate at iteration i+ 1 is written as

�x(i+1) = �x(i) +∆�x, (4.60)
F̂(i+1) = F̂(i) +∆F̂, (4.61)
λ(i+1) = λ(i) +∆λ, (4.62)

where ∆�x, ∆F̂ and ∆λ denote iterative corrections for the respective unknowns. Appli-
cation to the stress and higher-order stress tensors gives

P(i+1) = P(i) +∆P, (4.63)
3Q(i+1) = 3Q(i) +∆3Q, (4.64)
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with iterative corrections ∆P and ∆3Q. Consistent linearization of the constitutive re-
lations (4.24) and (4.25) leads to

∆P = 4C(1) : ∆Fc + 5C(2) ... ∆3ĜRC , (4.65)

∆3Q = 5C(3) : ∆Fc + 6C(4) ... ∆3ĜRC , (4.66)

where ∆F and ∆3Ĝ are calculated from the iterative corrections ∆�x and ∆F̂, respec-
tively. In (4.65) and (4.66) the fourth-order tensor 4C(1), the fifth-order tensors 5C(2)

and 5C(3) and the sixth-order tensor 6C(4) are the consistent tangent stiffnesses; the su-
perscript RC indicates right conjugation, which for a third-order tensor 3T is defined
as TRC

ijk = Tikj. When an explicit form of the constitutive relations (4.24) and (4.25) is
specified, the consistent constitutive tangents can be obtained analytically or numeri-
cally. In section 4.4.1 a simple example will be given for an elastic Mindlin model. In
case of computational homogenization the constitutive tangents are obtained numer-
ically, based on the microstructural behaviour (see section 3.5.3). Examples of con-
stitutive tangents for other higher-order constitutive models may be found in Shu and
Fleck (1999) for small deformation rate dependent strain-gradient crystal plasticity, in
Shu and Barlow (2000) for large deformation strain-gradient crystal plasticity, and in
Zervos et al. (2001) and Matsushima et al. (2002) for different types of continuum
strain-gradient elasto-plastic models.

Substitution of (4.60)-(4.66) into (4.56)-(4.58) leads, after linearization, to a linear
system of equations

 K L C
M T E
CT ET O




 ∆u~
∆F̂~
∆λ~


 =


 f~x,ext − f~

(i)
x,int

f
~F,ext − f~

(i)
F,int

− f
~

(i)
λ,int


 , (4.67)

where ∆u~, ∆F̂~ and ∆λ~ are the columns with iterative corrections to the components
of the nodal unknowns. Matrices K, L, M and T are the matrix representations of the
following tensors

KijAB =
∫
V0

Bx
mAC

(1)
imjnB

x
nB dV0, LijkAB =

∫
V0

Bx
mAC

(2)
imjknB

F
nB dV0,

MijkAB =
∫
V0

BF
mAC

(3)
ijmknB

x
nB dV0, TijklAB =

∫
V0

BF
mAC

(4)
ijmklnB

F
nB dV0,

(4.68)

C and E are matrix representations of (4.59); O is a zero matrix of the appropriate size;
f
~

(i)
x,int, f~

(i)
F,int, f~

(i)
λ,int, f~x,ext and f

~F,ext are column representations of the following vector
and tensor expressions

�f
(i)
x,intA =

∫
V0

P(i) · �Bx
A dV0 + λ

(i)
B · �CAB, (4.69)

f
(i)
F,intA =

∫
V0

3Q(i) · �BF
A dV0 + λc

B
(i)EAB, (4.70)

f
(i)
λ,intA = �CBA�x

(i)
B + EBAF̂c

B
(i), (4.71)

�fx,extA =

∫
V0

�bNx
A dV0 +

∫
S0

�tNx
A dS0, fF,extA =

∫
S0

RcNF
A dS0. (4.72)
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Solving the set of linear equations (4.67) gives the corrections ∆u~, ∆F̂~ and ∆λ~,
which can be used to update the nodal unknowns according to (4.60)-(4.62). The
linear system can then be reassembled and solved for a new iteration step. This process
is repeated until convergence has been achieved.

The total number of scalar unknowns in system (4.67) in the 2D case is equal to
2Kx + 4KF + 4Kλ, with Kx, KF and Kλ the number of nodes in the mesh for the
respective unknowns. This is significantly larger than for the standard displacement-
based finite element formulation for a classical continuum. However, taking advantage
of the weaker continuity requirements on the Lagrange multiplier λ, allows to define λ
at element level such that elimination can be performed before assembly. This reduces
the total number of unknowns in the assembled system of equations by 4Ke

λNelem, with
Ke

λ number of Lagrange multiplier nodes per element.
This elimination, however, cannot be performed directly from the element analogy

of system (4.67). Therefore, a penalized form of the system has to be used


 Ke Le Ce

Me Te Ee

CT
e ET

e He




 ∆u~e

∆F̂~e

∆λ~e


 =



f
~x,exte

− f
~

(i)
x,inte

f
~F,exte

− f
~

(i)
F,inte

− f
~

(i)
λ,inte


 , (4.73)

where ∆u~e, ∆F̂~e and ∆λ~e are element unknowns, Ke, Le, M e, T e, Ce, Ee are element
counterparts of the global matrices defined above, and He is a matrix composed of

HABe =
1

α

∫
V0e

Nλ
AN

λ
B dV0, (4.74)

where α is a penalty parameter. The penalized system (4.73) can also be obtained
directly from a perturbed Lagrangian form of the weak statement (4.46)

∫
V0

{
P : δFc + 3Q

... δ3Ĝ + δ
(
λ : (F̂c − Fc)

)
+

1

α
λ : δλc

}
dV0

=

∫
V0

�b · δ�u dV0 +

∫
S0

�t · δ�u dS0 +

∫
S0

R : δF̂c dS0 +
∑
n

∮
�
(n)
0

�p (n) · δ�u d20.
(4.75)

Elimination of ∆λ~e from system (4.73) gives

[
Ke − CeH

−1
e C

T
e Le − CeH

−1
e E

T
e

Me −EeH
−1
e C

T
e Te −EeH

−1
e E

T
e

] [
∆u~e

∆F̂~e

]
=

[
f
~x,exte

− f̌
~

(i)
x,inte

f
~F,exte

− f̌
~

(i)
F,inte

]
, (4.76)

where

f̌
~

(i)
x,inte

=

∫
V0e

BxP~
(i) dV0 − CeH

−1
e

(
CT

e x~
(i)
e + ET

e F̂~
(i)
e

)
, (4.77)

f̌
~

(i)
F,inte

=

∫
V0e

BFQ
~

(i) dV0 − EeH
−1
e

(
CT

e x~
(i)
e + ET

e F̂~
(i)
e

)
, (4.78)
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with P~
(i) and Q

~
(i) denoting columns with the components of the stress tensor and the

higher-order stress tensor; Bx and BF are matrix representations of the material deriva-
tives of the shape functions (4.53) and (4.54). Assembly of the element contributions
(4.76) leads to a global system of equations in the unknowns ∆u~ and ∆F̂~ only.

As usual for large deformation problems, the external load is applied in a number of
loading steps (increments). It is also worth mentioning that in the previous derivations
the total Lagrangian formulation has been adopted, i.e. all the derivatives and integrals
are taken with respect to the Lagrangian (material) coordinates �X. The same theory can
also be formulated in terms of an updated Lagrangian procedure, as has been presented
by Shu and Barlow (2000) and Matsushima et al. (2002). The updated Lagrangian for-
mulation has an advantage over the total Lagrangian formulation when implementing
rate-type constitutive models. However, the actual implementation has been developed
for use in the context of a computational homogenization scheme, where the stress
updates and the consistent tangents are obtained numerically from the microstructural
analysis. As demonstrated in the previous chapters this can be done easier in a total
Lagrangian framework.

4.3.4 Finite elements

In the following the attention is restricted to two-dimensional and plane strain prob-
lems only. Implementation of plane stress problems requires additional developments,
since in this case gradients in the out-of-plane direction have to be taken into account
(Chen et al. (2000)). Six two-dimensional isoparametric elements, which are sketched
in Figure 4.1, have been developed and implemented. The quadrilateral elements, eight
and nine noded as far as displacement degrees of freedom are concerned, differ in the
number and the position of their nodes with the degrees of freedom corresponding to
the displacements u1 and u2, relaxed deformation gradient components F̂11, F̂22, F̂12

and F̂21 and Lagrange multipliers λ11, λ22, λ12 and λ21. The elements are denoted by
a leading letter Q (for quadrilateral) followed by the number of displacement nodes,
deformation gradient nodes and Lagrange multiplier nodes, e.g. element QU8F4L4 has
8 displacement nodes, 4 deformation gradient nodes and 4 Lagrange multiplier nodes.

Elements with nine displacement nodes (QU9F4L4, QU9F4L1, QU9F9L4) use the
standard biquadratic Lagrangian shape functions for the interpolation of the displace-
ment degrees of freedom; the eight displacement node elements (QU8F4L4, QU8F4L1,
QU8F8L4) are based on the conventional quadratic serendipity shape functions. The re-
laxed deformation gradient degrees of freedom are interpolated bilinearly for elements
with four deformation gradient nodes located at the corner nodes (elements QU9F4L4,
QU9F4L1, QU8F4L4, QU8F4L1); elements QU9F9L4 and QU8F8L4 use for the defor-
mation gradient the biquadratic and serendipity shape functions, respectively. In the
elements QU9F4L4, QU9F9L4, QU8F4L4 and QU8F8L4 the Lagrange multiplier is in-
terpolated bilinearly between the nodal values given at the 2 × 2 Gauss quadrature
points; in the elements QU9F4L1 and QU8F4L1 the Lagrange multiplier is assumed to
be constant within the element and evaluated in one node located at the center of the el-
ement. It should also be mentioned that the nine noded elements (QU9F4L4, QU9F4L1,
QU9F9L4) have been originally presented by Shu et al. (1999), who have additionally
developed similar triangular elements. The eight noded element QU8F4L1 has been
used by Matsushima et al. (2002). Amanatidou and Aravas (2002) have proposed an
element similar to QU9F9L4, but with a continuous approximation for the Lagrange
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(a) QU8F4L4 (b) QU8F4L1 (c) QU8F8L4

(d) QU9F4L4 (e) QU9F4L1 (f) QU9F9L4

• – displacements u1, u2

� – deformation gradients F̂11, F̂22,F̂12, F̂21× – Lagrange multipliers λ11, λ22, λ12, λ21

Figure 4.1: Finite elements for the second gradient continuum formulation.

multiplier.

4.4 Validation and choice of elements

In this section the finite element implementation of the second gradient continuum
formulation is tested and the performance of the elements developed is evaluated and
compared. First Mindlin’s elastic constitutive model is briefly summarized. This simple
elastic model has been implemented and used for testing purposes. The patch test is
used to check the completeness and stability properties of the elements. After that, the
accuracy and convergence of the elements is examined by comparing numerical results
with the analytical solution for a boundary shear layer problem.

4.4.1 Mindlin elastic constitutive model

Mindlin has developed a constitutive model for an isotropic linearly hyper-elastic second
gradient solid, see Mindlin (1964); Mindlin and Eshel (1968). In the present work a
simple extension of this linear model to account for geometrical non-linearities is used.
The resulting constitutive model is geometrically non-linear, but physically linear. Not
accounting for material non-linearities in case of large deformations and large gradi-
ents of deformation may be an unrealistic approximation to physical phenomena, but
suffices for testing purposes. In the context of the second-order computational homog-
enization (next chapter) the macroscopic material behavior will be obtained from the
microstructural response and includes both material and geometrical non-linearities.
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The elastic strain energy per unit reference volume is expressed as

W0 =
1
2
λEiiEjj + µEijEij

+ 1
2
a1(GijjGikk +GjjiGkki) +

1
2
a2(GikiGkjj +GikiGjjk) + a3GikiGjkj

+ a4GikjGikj +
1
2
a5(GijkGjik +GijkGjki),

(4.79)

where E is the Green-Lagrange strain tensor E = 1
2
(Fc ·F− I). The material parameters

involved in (4.79) are the standard Lamé constants λ and µ and five additional constants
ai, i = 1, 5 of dimension stress times length squared. In the present implementation
these higher-order constitutive parameters were taken a1 = a2 = a3 = a4 = a5 = 0.5µ22,
with 2 a material length scale parameter. The first Piola-Kirchhoff stress tensor and the
higher-order stress tensor are given by

P =
∂W0

∂F
= F · ∂W0

∂E
= F · S = F · (λI1(E)I+ 2µE) = F · 4C : E, (4.80)

3Q =
∂W0

∂3G
=a1(

3G : II+ II : 3G) + 1
2
a2(

3GLC : II+ 2(3G : II)LC + II : 3GRC)

+ 2a3(
3GLC : II)LC + 2a4

3G + a5(
3GLC + (3GLC)RC) = 6D

... 3GRC

(4.81)

where S is the second Piola-Kirchhoff stress tensor; I1(E) denotes the first invariant of
E; 4C and 6D are tensors with material constants. Linearization of these constitutive
relations is a straightforward operation

δP = (4IRC · S+ F · 4C : 4A) : δFc, (4.82)

δ3Q = 6D
... δ3GRC , (4.83)

with the components of the fourth-order unit tensor 4I defined in terms of the Kronecker
delta as Iijkl = δilδjk; the fourth-order tensor 4A is defined such that δE = 4A : δFc.

4.4.2 Patch test

The patch test has proven to be a valuable test for consistency and stability, which are
the well-known necessary and sufficient conditions for convergence of a finite element
formulation. The methodology of the patch test is well-established and summarized in
many text books on finite elements (e.g. Zienkiewicz and Taylor (2000); Belytschko
et al. (2000), see also research publications by Zienkiewicz and Taylor (1997); Zhang
and Chen (1997); Dvorkin (2001)).

In order to check the stability of a mixed formulation, a rather complex mathematical
inf-sup criterion (better known in the literature as the BB condition) has been formu-
lated (Babuška (1973); Brezzi and Bathe (1990)). However, a very simple constraint
count provides a necessary condition for stability of a mixed form and can immediately
indicate elements that will fail, and others that may perform satisfactorily but require
further testing, Zienkiewicz and Taylor (2000, 1997). This condition states that in the
system of equations with all the boundary conditions enforced, the number of constraint
unknowns (Lagrange multipliers) should not exceed the number of primary unknowns.
Thus, in the context of the mixed formulation for the second gradient continuum devel-
oped above, this condition reads

nu + nF � nλ, (4.84)
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where nu, nF and nλ are the numbers of remaining (after application of the boundary
conditions) degrees of freedom corresponding to �u, F̂ and λ, respectively. Condition
(4.84) is necessary for solvability, if it is not satisfied, the patch test fails. If (4.84) is
satisfied, further tests should be performed to ensure that no zero eigenvalues of the
global stiffness matrix are present.

Condition (4.84) has been checked for the six elements proposed (see Figure 4.1).
Table 4.1 summarizes the results for the count test on an infinite patch.

Table 4.1: Count test. Number of primary unknowns nu + nF vs. number of Lagrange
multipliers nλ per element in an infinite 2D patch.

element nu + nF nλ result
QU8F4L4 10 16 fail
QU8F4L1 10 4 pass
QU8F8L4 18 16 pass
QU9F4L4 12 16 fail
QU9F4L1 12 4 pass
QU9F9L4 24 16 pass

As can be seen from Table 4.1 the elements QU8F4L4 and QU9F4L4 fail the count
test. Element QU8F8L4 passes the test marginally. Although it does pass the count
test on an infinite patch, for many finite patches it will not pass the test. Therefore,
the elements QU8F4L4 and QU9F4L4 (and, in general, QU8F8L4) should be excluded
from further examinations, but nevertheless they are retained for generality. An addi-
tional stability analysis of the elements that pass the count test shows that these ele-
ments provide a non-singular matrix when integrated using a 3 × 3 integration point
scheme. However, when using 2× 2 Gauss quadrature points for numerical integration,
the nine displacement node elements exhibit zero energy modes (just as it is the case
for a classical continuum). The eight displacement node element QU8F4L1 has been
used successfully with 2× 2 integration points.

The second part of the patch test is a consistency check. In this test the patch of
elements depicted in Figure 4.2 has been used. The linear reproduction condition, i.e.
the ability of an element to reproduce (bi)linear displacement and constant deforma-
tion (and stress) fields, is checked by prescribing displacements of all the nodes on the
boundary according to a linear polynomial. The patch test is passed if the finite element
solution for displacements throughout the patch is given by the same polynomial. The
strains should be constant and given by the application of the strain-displacement re-
lations to the prescribed polynomial. All the elements developed pass this linear patch
test.

For elements constructed for a classical continuum usually only the linear patch test
needs to be satisfied. For the elements developed for the second gradient formulation it
may be useful to perform a quadratic patch test, i.e. to check the ability of an element
to reproduce a (bi)quadratic displacement, linear deformation and constant gradient of
the deformation field. For this test the same patch configuration has been used (see
Figure 4.2). Displacement and relaxed deformation gradient degrees of freedom of
the boundary nodes have been prescribed according to a quadratic polynomial and its
gradient, respectively. It is also remarked that an arbitrary quadratic displacement field
will generally not satisfy equilibrium (4.20) in the absence of body forces. Therefore
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• – prescribed node◦ – free node

Figure 4.2: The finite element mesh for the patch test.

in the case of a quadratic patch test, special action should be taken to prescribe body
forces in such a way that equilibrium is satisfied.

For an element size in the patch smaller than the material length scale 2 involved
in the second gradient constitutive model, element QU9F9L4 reproduces the quadratic
displacement field (and the fields of its derivatives) exactly. For element sizes larger
than 2, the solution is approximated with an error, which reduces upon reduction of the
element size. Elements QU8F4L1 and QU9F4L1 reproduce a quadratic displacement
field (and the fields of its derivatives) with a slight error even for element sizes smaller
than 2. This error, however, is within accuracy limits acceptable for most applications.
Therefore, combined with the fact that these two elements have roughly twice less
degrees of freedom than the element QU9F9L4, elements QU8F4L1 and QU9F4L1 are
considered to be good candidates for the solution of practical problems. The other
elements do not pass the quadratic patch test, these, however, are the same elements
that did not pass the count test.

4.4.3 Boundary shear layer problem

In this section the performance of the finite elements developed is evaluated and com-
pared on the basis of a boundary shear layer problem.

Plane strain shear of a two-dimensional strip with height H in the X2 direction and
“infinite” in the X1 direction, is considered, see Figure 4.3.

The boundary conditions are

u1 = 0, u2 = 0, F12 = 0, F22 = 1 on X2 = 0

u1 = U
∗, u2 = 0, F12 = 0, F22 = 1 on X2 = H. (4.85)

For this simple shear boundary value problem all field quantities are independent of
X1. Neglecting displacement u2 (which generally will be non-zero in a higher-order
formulation), the only non-vanishing deformation gradient component is F12 ≡ γ(X2)
and its gradient G212 = ∂γ/∂X2. Adopting Mindlin’s elastic model (see section 4.4.1)
for the material behaviour, with shear modulus µ, and the higher-order constitutive
parameters a1 = a2 = a3 = a4 = a5 = 0.5µ22, with 2 the material length scale, the
non-zero stress and higher-order stress components are

P11 = µγ
2, P12 = P21 = µγ, Q111 =

3
2
µ22G212,

Q122 = Q221 =
3
4
µ22G212, Q212 = 2µ22G212. (4.86)
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Figure 4.3: Geometry, boundary conditions and finite element mesh for the boundary
shear layer problem.

Substitution of (4.86) into the higher-order equilibrium equation (4.20) while account-
ing for the boundary conditions (4.85) yields the following solution for the displacement

u1 =
U∗

A

{
−1 + cosh

(
H

2̂

)
− X2

2̂
sinh

(
H

2̂

)
+ cosh

(
X2

2̂

)
− cosh

(
H −X2

2̂

)}
,

(4.87)

with A = −2 + 2 cosh(H/2̂)−H/2̂ sinh(H/2̂), 2̂ =
√
22.

The distribution of the shear along the height of the strip can easily be obtained by
differentiation of (4.87) with respect to X2. Note that no assumption on small strains
has been made, so (4.87) is also valid for large values of the average shear γ∗ = U∗/H.
Using the formulas (4.21) and (4.22) the non-vanishing components of the traction t1
and the double traction r1 on the surface X2 = H are obtained as

t1 = −µU
∗

2̂A
sinh

(
H

2̂

)
, (4.88)

r1 = µ
U∗

A

(
cosh

(
H

2̂

)
− 1

)
. (4.89)

In the following the analytical solution for the boundary shear layer problem is used
to validate the developed higher-order finite element code and to examine the ability
of the finite elements constructed in section 4.3.4 to predict the analytical results. In
Figure 4.3 the finite element mesh used in the calculations is sketched. The mesh con-
sists of a column of quadrilateral elements. In height direction the layer H is discretized
into Nelem identical elements. In the present analysis, meshes with Nelem = 3, 5, 10, 20
elements have been used. The boundary conditions on the top and bottom edges of the
layer are prescribed according to (4.85) with the derivatives of the displacements writ-
ten in terms of the components of the relaxed deformation gradient tensor F̂. In order
to enforce uniformity in the X1 direction, periodic boundary conditions on every nodal
degree of freedom are applied along the left and right sides of the mesh. The condition
u2 = 0 is prescribed on the left and right boundary nodes. The material and geometrical
parameters used in these test calculations are the shear modulus µ = 2000MPa, the bulk
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modulus K = 5000MPa, the material length scale 2 = 0.05mm, the height of the layer
H = 1mm and a prescribed displacement U∗ = 0.03mm.

The model problem has been solved numerically using all six types of elements intro-
duced in section 4.3.4. Figure 4.4 shows the distribution of the shear component of the
deformation gradient tensor along the height of the layer. Convergence of the numer-
ical solution towards the analytical solution upon mesh refinement is clearly achieved.
Results are presented for the elements QU8F4L4, QU8F4L1 and QU9F9L4. It is clear
from Figure 4.4 that with increasing refinement of the mesh the finite element solution
converges quickly to the analytical solution for these elements. For the other elements
the results are similar. For the elements QU8F4L4, QU8F4L1 the convergence rate is
slower than for element QU9F9L4, which is due to the higher-order of approximation
for the deformation gradient components used in the latter element.
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Figure 4.4: Shear strain distribution along the height of the boundary shear layer. Con-
vergence of the numerical solution to the analytical one upon mesh refine-
ment for different types of elements.

In order to further evaluate the accuracy of the elements, the calculated traction t1
and double traction r1 on the top boundary of the layer X2 = H have been compared
to the analytical values according to (4.88) and (4.89). The results are summarized in
Table 4.2. Again, the elements QU8F4L1 and QU9F9L4 demonstrate good convergence
of the numerically obtained values to the analytical solution, with a higher convergence
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rate for element QU9F9L4. As can be noticed from Table 4.2 element QU8F4L4 pro-
vides traction values that deviate significantly from the analytical solution even for a
rather fine discretization (but still converges). However, it should be recalled that this
element did pass neither the count test nor the quadratic patch test. So the results
for the boundary tractions illustrate once more the relatively bad properties of element
QU8F4L4.

Table 4.2: Comparison between the calculated and analytical values of the tractions and
double tractions on the upper boundary of the shear layer for different ele-
ments and discretizations.

element type mesh, Nelem traction t1, [N/mm] double traction r1, [N]

QU8F4L4

3 79.0500 –9.5250
5 73.4013 –6.7006
10 70.8174 –5.4088
20 70.1209 –5.0605

QU8F4L1

3 71.5500 –5.7750
5 69.8863 –4.9432
10 69.8827 –4.9414
20 69.8828 –4.9414

QU9F9L4

3 69.8633 –4.9316
5 69.8828 –4.9414
10 69.8830 –4.9415
20 69.8830 –4.9415

analytical 69.8829 –4.9415

4.4.4 Choice of elements

Recommendations on the choice of appropriate finite elements for the numerical so-
lution of second gradient equilibrium problems can now be easily formulated. As has
been indicated by the patch test, the elements QU8F4L4, QU8F8L4 and QU9F4L4 can-
not be recommended, since they do not possess acceptable stability and convergence
properties. Based on the tests performed so far, the other three elements developed:
QU8F4L1, QU9F4L1 and QU9F9L4 all seem to be well-suited for practical use. Element
QU9F9L4 provides a better accuracy, however leads to a system of equations, which is
about two times larger than for the other two elements. To avoid the appearance of zero
energy modes, the nine displacement node elements QU9F4L1 and QU9F9L4 should be
used only with a 3× 3 Gauss integration scheme. Element QU8F4L1 also performs well
with a 2×2 Gauss integration scheme. This observation is crucial for the selection of an
element for the second-order computational homogenization analysis, where generally
at every macroscopic integration point a microstructural analysis has to be performed.
The use of a 9 integration points scheme instead of 4 integration points would increase
the number of required microstructural analyses more than twice. Therefore, in this
work all of the coupled second-order micro-macro computations (next chapter) will be
performed using element QU8F4L1.
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Comparative analyses

In the previous chapters the first-order and second-order computational homogeniza-
tion schemes have been elaborated. This chapter focuses on the comparison of the per-
formance of these two techniques. Several examples are discussed. First, in section 5.1
microstructural representative cells subjected to a given macroscopic deformation path
are analyzed. The results obtained from the first-order and the second-order compu-
tational homogenization modelling are compared and the ability of the second-order
scheme to capture size and gradient effects is demonstrated. Two examples of cou-
pled multi-scale computational homogenization are presented. In section 5.2 a bench-
mark problem, which allows an evaluation of the performance of the first-order and the
second-order computational homogenization techniques upon macroscopic localization,
is considered. Finally, in section 5.3 the second-order computational homogenization
approach is used to model a configuration with a boundary shear layer.

5.1 Microstructural analyses

In this section some advanced features of the novel second-order computational ho-
mogenization scheme are illustrated by the analysis of a single representative volume
element subjected to a given macroscopic loading path. The microstructural responses
resulting from the first-order and the second-order scale transition are compared. The
first example deals with the macroscopic deformation corresponding to the upper part
of a specimen under macroscopic bending, so that the deformation field is a superpo-
sition of bending and tension. In the second example, the macroscopic deformation
path is extracted from data describing the deformation in the vicinity of the notch of
a notched specimen under tension. Finally, the ability of the second-order scheme to
capture geometrical size effects and gradient effects is illustrated.

All examples in this section consider voided aluminum (initially 12% volume fraction
of voids) at the microlevel. The undeformed representative volume element (RVE), with
the finite element discretization used in the calculations, is shown in Figure 5.1. The
absolute dimensions of the RVE are chosen such that the second-order deformation
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mode will be clearly visible. The characteristic microstructural size (average size of
voids) will be specified for every particular example. The aluminum matrix is described
by an elasto-visco-plastic Bodner-Partom constitutive model. This non-linear history
and strain rate dependent model is formulated in a finite kinematics context and is
briefly outlined in appendix A.3. In the present calculations the material parameters for
annealed aluminum AA 1050 determined by van der Aa et al. (2000) have been used;
elastic parameters: shear modulus G = 2.6× 104 MPa, bulk modulus K = 7.8× 104 MPa
and viscosity parameters: Γ0 = 108 s−2, m = 13.8, n = 3.4, Z0 = 81.4 MPa, Z1 =
170 MPa.

Figure 5.1: Undeformed representative volume element (RVE), discretized with a finite
element mesh.

5.1.1 Macroscopic bending and tension

Bending is probably one of the most appealing cases for which the local gradients of
the deformation are not negligible and significantly determine the deformation pattern.
Therefore in the first example the macroscopic deformation path (deformation gradient
tensor FM and its gradient 3GM) has been taken from a point in the upper part of the
specimen, as indicated in Figure 5.2. The deformation path, which is a superposition
of bending and tension, has been applied on the microstructural voided RVE (shown in
Figure 5.1) with an average size of the voids in the undeformed configuration equal to
6.625µm. The resulting deformed RVE with the equivalent plastic strain distribution is
shown in Figure 5.3a. For a comparison an RVE of the same size but modelled within
the first-order framework, for which only the deformation tensor FM and pure periodic
boundary conditions are prescribed, is depicted in Figure 5.3b.

(a) (b)

Figure 5.2: Schematic representation of the macroscopically bended specimen: initial
configuration (a) and deformed configuration (b). The point at which the
deformation path (deformation gradient tensor FM and its gradient 3GM)
has been recorded for use in the microstructural analysis is indicated.
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(a) (b)

0% 100%80%60%40%20%

Figure 5.3: Distribution of the equivalent plastic strain in the deformed RVEs subjected
to a macroscopic bending-tension deformation path according to the second-
order scheme (a) and the first-order scheme (b).

The macroscopic bending mode is clearly visible for the second-order RVE (Fig-
ure 5.3a). Moreover it can be observed that although the overall bending-tension de-
formation mode is prescribed, due to the “generalized” periodic boundary conditions
(3.14) and (3.17), some freedom is provided to the microstructural fluctuations on the
boundary. It is easy to notice that this fluctuation field is periodic on the boundaries,
while the overall deformation of the RVE is not.

It is emphasized that using the first-order or the second-order approach to prescribe
the deformation mode of the RVE, not only results in different overall deformation
modes (and consequently in different averaged responses), but also reveals consider-
able differences in the deformation patterns within the microstructure. This can be
clearly seen by comparing the local distribution of the equivalent plastic strain in an
RVE undergoing the second-order deformation mode (Figure 5.3a) and the first-order
deformation mode (Figure 5.3b). Apparently, local deformations can be much larger in
the higher-order case. Depending on the non-linear character of the material behaviour
of the microstructure, this difference in local deformations may lead to considerable
differences in the extracted macroscopic stresses. Additionally, the difference in local
microstructural fields obtained from the first and second-order computational homog-
enization modelling is relevant if a local failure criterion is used (e.g. if a critical local
stress and/or strain should be taken into account). Moreover, if the microstructural
constitutive behaviour is gradient-sensitive (e.g. discrete lattices etc.), the response
obtained with incorporation of the gradients (the second-order framework) will sub-
stantially differ from the case without gradients included (the first-order framework).

5.1.2 Macroscopic model of a notched specimen under tension

At the macroscopic level this example deals with a notched tensile specimen. The gra-
dients of the deformation are quite large in the vicinity of the notch. It is characteristic
in this example that stretch gradients prevail over rotation gradients.

The stretch and rotation gradients may be separated by decomposition of the gradi-
ent of the deformation gradient tensor 3GM = ∇0MFM into a symmetric part 3GS

M and
an antisymmetric part 3GA

M, see e.g. Fleck and Hutchinson (1997). The symmetric part,
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representing the stretch gradients is obtained as

GS
Mijk =

1

3

(
GMijk +GMjki +GMkij

)
. (5.1)

Consequently the antisymmetric part, which describes the rotation gradients, is defined
by

3GA
M = 3GM − 3GS

M. (5.2)

This tensor 3GA
M is a third-order tensorial representation of the second-order curvature

tensor, which is the only higher-order deformation quantity in the couple-stress theory,
as given for example in Mindlin and Tiersten (1962); Koiter (1964); Fleck et al. (1994).

In order to investigate the influence of the macroscopic stretch and rotation gra-
dients on the overall microstructural behaviour in the particular case of the notched
tensile specimen, the macroscopic deformation path at the point near the tip of the
notch, as indicated in Figure 5.4, has been extracted from the numerical analysis. First
this deformation path (deformation gradient tensor FM and its full gradient 3GM) has
been applied on the RVE, shown in Figure 5.1, with the average size of the voids in
the undeformed configuration equal to 0.133µm. The deformed shape of the RVE and
the distribution of the equivalent plastic strain are presented in Figure 5.5a. Next, the
deformation path prescribed by the deformation gradient tensor FM and only the ro-
tation gradients, which are represented by 3GA

M and calculated according to (5.2), has
been applied on the same undeformed RVE. The deformed RVE in this case in shown in
Figure 5.5b.

Figure 5.4: Schematic representation of the notched specimen (with dimensions in mm)
under tension (a) and a magnified area near the notch (b). The point at
which the deformation path (the deformation gradient tensor FM and its
gradient 3GM) has been recorded for use in the microstructural analysis is
indicated. Note that the point is located slightly right of the symmetry axis.

The higher-order deformation mode in this example is dominated by stretch gradi-
ents, the contribution of the rotation gradients (although present) remains small. As
a result the RVE subjected to the deformation described by FM and the antisymmetric
tensor 3GA

M (Figure 5.5b) deforms almost periodically, which deviates considerably from
the deformed shape of the RVE subjected to FM and the full tensor 3GM (Figure 5.5a).
This indicates that the well-established couple-stress theories, which include only the
rotational gradients 3GA

M, would not give satisfactory results in this case, since these
theories do not account for the stretch gradients, which are dominant in this case. This
motivates the use of the full second gradient formulation for the description at the
macrolevel within the second-order computational homogenization framework.
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(a) (b)

100%0% 50% 150%

Figure 5.5: Distribution of the equivalent plastic strain in the deformed RVEs subjected
to the deformation path in the vicinity of the notch of the macroscopic
notched tensile specimen; (a) the RVE is subjected to the deformation gra-
dient tensor FM and its full gradient 3GM; (b) the RVE is subjected to the
deformation gradient tensor FM and only the rotational part 3GA

M of its gra-
dient.

5.1.3 Microstructural and size effects

Influence of the size of the microstructural constituents

In this section the capability of the second-order computational homogenization ap-
proach to account for the size of microstructural constituents is demonstrated. For this
purpose, microstructures having a different absolute size are considered. A number of
initially morphologically identical RVEs (Figure 5.1) with a different average size of the
voids, ranging from 0.013µm to 6.625µm, have been subjected to the same macroscopic
bending-tension deformation path as the one used in section 5.1.1. Figure 5.6 shows
the resulting deformed RVEs with different microstructural dimensions.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
increasing size of the microstructure

0% 100%80%60%40%20%

Figure 5.6: Dependence of the overall deformation mode and the local equivalent plas-
tic strain on the size of the microstructure. Average size of the voids in
the initial configuration (from the left to the right): 0.133µm (5 times ex-
tra magnified), 1.325µm, 2.650µm, 5.300µm and 6.625µm. All the RVEs
are subjected to the macroscopic bending-tension deformation path earlier
mentioned.



82 Chapter 5

Clearly, the deformation mode depends on the size of the microstructure. As a
consequence the overall response, extracted from such a model also depends on the
microstructural size, as can be observed in Figure 5.7, where the scalar equivalent val-
ues of the RVE averaged first Piola-Kirchhoff stress tensor P eq

M = (PMijPMij)
1/2 and the

higher-order stress tensor Qeq
M = (QMijkQMijk)

1/2 are considered as a function of the
characteristic size of the microstructure. This figure clearly illustrates the influence of
the size of the microstructural constituents in the second-order computational homoge-
nization framework.
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Figure 5.7: Equivalent measures of the RVE averaged first Piola-Kirchhoff stress tensor
(a) and the higher-order stress tensor (b) vs. the characteristic microstruc-
tural size (averaged size of the voids).

It is important to notice that the second-order approach is a natural extension of the
first-order technique. When the microstructural size becomes negligible (with respect to
the length scale of spatial variations in the applied macroscopic deformation field) the
influence of the higher-order deformation modes vanishes and the structure deforms
periodically, see Figure 5.6 (left). The same conclusion follows from a consideration
of the RVE averaged stress and higher-order stress, Figure 5.7. The result inherently
depends on the size of the microstructure and upon reducing the size, the stress state
converges to the response of the first-order case.

Size effects for a given microstructure

The microstructural size effects discussed in the above section concern changes in the
overall macroscopic response due to variations of the characteristic size of the mi-
crostructural components (in this case prescribed by the average diameter of the voids).
However, when the microstructural size does not change (a material with a given mi-
crostructure is considered), yet another type of size effect may appear. This is the case if
the microstructural size is no longer negligible with respect to the characteristic length
of the macroscopic deformation field. This may occur due to a relatively small size of
the macroscopic configuration (e.g. thin layers, thin wires or miniaturized components)
or when localization of deformation takes place at the macrolevel. These size effects,
which are generally associated with a dominant influence of the microstructure at the
macrolevel, usually manifest themselves through the dependence of the overall mate-
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rial response not only on the value and history of the deformation tensor but also on its
gradient. A collection of examples showing such size effects may be found in Fleck and
Hutchinson (1997). Classical continuum mechanics material models and, consequently,
the first-order computational homogenization scheme, are not able to describe this size
effect, since they do not incorporate a microstructural length scale. The second-order
framework, on the other hand, is well capable to deal with these size effects, due to
the application of higher-order boundary conditions and the straightforward account of
the macroscopic gradient of the deformation tensor. This is illustrated in the following
example.

Identical microstructural RVEs (average size of the voids 13.25µm) have been sub-
jected to different tensile-bending macroscopic deformation histories. In these histories
the deformation tensor FM is the same, but its gradient, while representing the same
deformation mode (bending), has different intensities. This has been achieved by a
component-wise linear increase of the components of the prescribed 3GM, actually re-
flecting bending of macroscopically decreasing samples. The resulting deformed RVEs
(for an equivalent value Geq

M = (GMijkGMijk)
1/2 of the gradient of the deformation equal

to 0mm−1, 0.19mm−1, 0.39mm−1, 0.78mm−1 and 0.98mm−1) are shown in Figure 5.8.
The left picture in Figure 5.8 corresponds to the first-order case, not accounting for
the gradient of the deformation. Clearly, depending on the intensity of the gradient
of the deformation tensor, the overall deformation mode differs, which will result in
different extracted overall responses, thereby capturing the size effect. Also it may be
observed from Figure 5.8 that when the gradient of the macroscopic deformation be-
comes negligible (with respect to the microstructural size) the influence of the higher-
order deformation mode vanishes. This again demonstrates the natural convergence
of the second-order computational homogenization scheme to the first-order scheme at
vanishing gradients of the macroscopic deformation field.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
increasing gradient of the macrodeformation

0% 100%80%60%40%20%

Figure 5.8: Dependence of the overall deformation mode and the local equivalent plas-
tic strain on the intensity of the gradient of the macroscopic deformation
tensor. All the RVEs (initially identical, average size of the voids 13.25µm)
have been subjected to a macroscopic bending-tension deformation history
with the same deformation tensor FM and a different gradient 3GM with in-
tensities (from the left to the right): Geq

M = 0mm−1, 0.19mm−1, 0.39mm−1,
0.78mm−1 and 0.98mm−1.

Although it is recognizable that the two types of size effects considered above, i.e.
due to variations of the size of the microstructure and due to variations of the gradients
of the macroscopic deformation, are, in fact, identical from a conceptual point of view,
it has been found instructive to illustrate them in separate examples, since they both
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can be independently captured within the second-order computational homogenization
framework.

5.2 Computational homogenization modelling of
macroscopic localization

This section investigates the ability of the first- and second-order computational homog-
enization techniques to deal with macroscopic localization phenomena. To this purpose,
an academic benchmark problem will be considered.

A regularly perforated structure (with areas of homogeneous material at the edges)
under tensile loading is modelled. Exploiting the symmetry of the problem only one
quarter, as depicted in Figure 5.9a, will be analyzed. The size of this quarter is 7d by
12d, with d the stacking distance of the void pattern. The diameter of a void is 0.4d,
which results in a volume fraction of voids of approximately 12.5%. In the present
computations the geometrical parameter d has been taken equal to 10µm. Plane strain
conditions are assumed. The behaviour of the matrix material is described by the elasto-
plastic model, summarized in appendix A.2. The material parameters correspond to
commercial steel T67CA, Young’s modulus E = 210 × 103 MPa, Poisson’s ratio ν =
0.3 and the yield stress σy0 = 507MPa, hardening is neglected. In order to trigger
localization, a smooth material imperfection has been introduced. In the imperfection
region the yield stress of the matrix material has been gradually reduced in a range
of 4% to 20%, as depicted in Figure 5.9a. A smooth imperfection has been used in
order to avoid that the width of the localization band depends on the imperfection area
size. To evaluate the results obtained by computational homogenization, also a “direct”
simulation is performed, in which the whole macrostructure is analyzed, using the finite
element mesh shown in Figure 5.9b (note that in the center of the plate the mesh is extra
refined). Results of this direct modelling are considered as a reference solution.

Evidently, the example considered has a coarse microstructure. This benchmark
problem is used to explore limitations of the homogenization methods presented, thus
computational efficiency is not the main issue. Furthermore, as remarked several times
before, the true limiting factor is the ratio of the characteristic length of the deformation
field with respect to the size of the microstructure.

The macroscopic model and the microstructural unit cell for the homogenization
analysis are shown in Figure 5.10. The particular choice of the simplest unit cell for
the actual analysis is motivated by the fact that this unit cell contains all statistical
information and for the truly periodic configuration (which is considered here) it is
known to be a valid representative volume element in the first-order homogenization
framework. It is emphasized that the size d of the square unit cell is important in the
second-order computational homogenization, while this size is irrelevant for the first-
order homogenization analysis. To account for the imperfection zone, the yield stress
of the matrix material of the unit cells, corresponding to macroscopic points within this
zone has been reduced by the respective value.

It is remarked that in the problem described, no material softening of the matrix ma-
terial is present. Possible softening at a macroscopic material point is therefore entirely
due to geometrical softening of the attributed microstructural unit cell. The response of
a single unit cell under uniaxial tension is shown in Figure 5.11. Only a slight geomet-
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(a) (b)

Figure 5.9: (a) The perforated plate (one quarter) under tensile loading; the shaded
area indicates a gradual material imperfection with a reduced yield stress.
(b) The finite element mesh for the reference solution.

(a)

d

d 0.4d

(b)

Figure 5.10: The macroscopic model (a) and the microstructural unit cell with the finite
element mesh (b) for the homogenization analysis.

rical softening can be observed.
The homogenization analysis of this problem has been performed using the first- and

second-order computational homogenization schemes. For the solution at the macro-
scopic level, two finite element discretizations with different sizes of elements in the
imperfection zone have been used, as shown in Figure 5.12. For the purpose of the
following discussion these finite element meshes will be referred to as “coarse” (Fig-
ure 5.12a) and “fine” (Figure 5.12b). For the first-order computational homogenization
analysis standard eight-noded plane strain elements have been used. For the second-
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Figure 5.11: Single unit cell under uniaxial tension. (a) Deformed geometry and dis-
tribution of the equivalent Green-Lagrange strain within the unit cell. (b)
Stress-strain response.

order computational homogenization modelling, which deals with a second gradient
continuum on the macrolevel, the element QU8F4L1 developed in chapter 4 has been
employed (see section 4.3.4 for the description of this element). For both the first- and
second-order finite element analyses a 2×2 Gauss integration scheme has been applied.

(a) coarse (b) fine

Figure 5.12: Finite element discretizations of the macrostructure used in the first- and
second-order computational homogenization analyses.

Note that the finite element size of the macromesh is by no means related to the
underlying microstructure, since this size is only a discretization parameter for the nu-
merical solution of the macroscopic continuum problem. For the considered benchmark
problem it might therefore happen that macroscopic finite elements are smaller than the
coarse microstructural length scale (size of the unit cell). Again, this is not regarded as
a problem, since the macroscopic numerical discretization has to be independent of the
microstructure. At a macroscopic material point the mechanical response is obtained by
averaging over the corresponding unit cell.
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Along the edges of the domain boundary conditions have to be specified. In the
first-order computational homogenization analysis a classical boundary value problem
has to be solved, thus only displacements and/or tractions have to be prescribed on the
boundary. The second-order scheme deals with an equilibrium problem for the second
gradient continuum on the macrolevel. This requires additional higher-order boundary
conditions. In the present implementation the higher-order boundary conditions are
accommodated through prescribed components of the relaxed deformation gradient
tensor F̂ and/or the double stress tensor R (see chapter 4 for the definition of these
quantities). For the problem considered here, the boundary conditions to be imposed
on the macrostructure are taken according to

t1 = 0, u2 = 0, F̂21 = 0, R11 = 0, R22 = 0, R12 = 0 on X2 = 0,

t1 = 0, u2 = U
∗, F̂21 = 0, R11 = 0, R22 = 0, R12 = 0 on X2 = 12d,

u1 = 0, t2 = 0, F̂12 = 0, R11 = 0, R22 = 0, R21 = 0 on X1 = 0,

t1 = 0, t2 = 0, R11 = 0, R22 = 0, R12 = 0, R21 = 0 on X1 = 7d,

where U∗ is the prescribed tensile displacement. The actual choice of the higher-order
boundary conditions made here is rather arbitrary and in fact requires additional inves-
tigations, which are beyond the scope of the present work.

Figure 5.13 presents the macroscopic force-displacement curves (for the quarter
modelled) obtained from the first-order computational homogenization (Figure 5.13a)
and the second-order computational homogenization (Figure 5.13b) using the two finite
element discretizations of the macrostructure. To enable a comparison the reference so-
lution obtained from the detailed modelling of the heterogeneous macrostructure is also
presented.
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Figure 5.13: Macroscopic force-displacement curves obtained from the first-order (a)
and the second-order (b) computational homogenization schemes for
the two finite element discretizations of the macrostructure. The refer-
ence solution resulting from a detailed modelling of the heterogeneous
macrostructure is also shown.

The onset of yielding of the macroscopic heterogeneous structure is slightly better
predicted by the second-order computational homogenization scheme, which is related
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to the participation of the macroscopic gradient of the deformation field in addition to
the deformation field itself. The first-order analysis underestimates the force at the on-
set of yielding a little bit. The initial stage of yielding is described well by both schemes.
However, as the macroscopic localization develops, the difference between the first-
and second-order computational homogenization approaches becomes apparent. The
macroscopic response obtained by the first-order technique clearly exhibits a strong
mesh dependency. Each grade of mesh refinement results in an earlier peak load com-
bined with a higher decrease rate of the force. Moreover, the first-order computations
could not be performed over the whole range of the prescribed macroscopic displace-
ment. As can be noticed from Figure 5.13a, the analyses stopped earlier (especially for
the fine mesh) due to excessive deformation concentrated in the volume related to one
single integration point and the highly distorted mesh of the respective microstructural
unit cell.

The second-order scheme provides mesh independent results. A very small differ-
ence in the responses obtained from the different discretizations is observed at the very
late stage of loading, which can be eliminated through further mesh refinement. As can
be noticed, the response obtained by the second-order approach slightly overestimates
the reference solution. This may be attributed to the fact that at this stage of loading
the macroscopic fields fluctuate strongly over the scale of the microstructure, so that
the underlying assumption in the second-order approach, on a linear variation of the
macroscopic deformation field over the microstructural cell does not exactly apply.

The comparison of the results obtained from the first- and second-order computa-
tional homogenization modelling is continued by an examination of the distributions of
the macroscopic deformation field. Figure 5.14 presents the distribution of the macro-
scopic equivalent total strain resulting from the first-order computational homogeniza-
tion analysis for the two finite element discretizations at a prescribed macroscopic dis-
placement U∗ = 1.76µm. Again, a strong mesh dependency is observed. The deforma-
tion localizes according to the size of the elements used. Observe also the significantly
increasing value of the maximum equivalent strain obtained with refinement of the fi-
nite element mesh. While for the coarse mesh the maximum strain in the localization
zone is about 30%, for the fine mesh it reaches 63%. Since there is no singularity present
in this problem, the increase in the maximum strain upon mesh refinement is purely due
to the localization of the deformation in the decreasing volume related to the size of the
elements.

A noticeably different macroscopic deformation pattern is obtained from the second-
order computational homogenization modelling. Figure 5.15 shows the distribution
of the macroscopic equivalent Green-Lagrange strain resulting from the second-order
computational homogenization analysis for the two finite element discretizations at the
same prescribed macroscopic displacement as for the first-order case, U∗ = 1.76µm.
Clearly, as well as it is the case for the force-displacement response, the local macro-
scopic deformation field pattern obtained by the second-order scheme is mesh indepen-
dent.

The distribution of the equivalent strain obtained from the direct finite element mod-
elling of the heterogeneous macrostructure is shown in Figure 5.16a. However, these
equivalent strain values cannot be compared quantitatively to the values of the macro-
scopic strain obtained from the homogenization analyses, since the former, in fact, apply
to the microscale, while the latter correspond to the deformation field over the macro-
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Figure 5.14: Distribution of the equivalent Green-Lagrange strain resulting from the
first-order computational homogenization modelling for the two finite ele-
ment discretizations: (a) coarse mesh and (b) fine mesh at the prescribed
macroscopic displacement U∗ = 1.76µm. The actual maximum equivalent
strain values are indicated.
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Figure 5.15: Distribution of the equivalent Green-Lagrange strain resulting from the
second-order computational homogenization modelling for the two finite
element discretizations: (a) coarse mesh and (b) fine mesh at the pre-
scribed macroscopic displacement U∗ = 1.76µm. The actual maximum
equivalent strain values are indicated.
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scopic homogenized structure. In order to be able to perform a comparison between
the macroscopic deformation patterns resulting from the homogenization modelling
and the reference solution, the deformation field obtained by the detailed modelling
has been (volume-)averaged over every “unit cell” of the perforated structure and vi-
sualized using the standard interpolation procedure. This results in the macroscopic
deformation pattern of the reference solution presented in Figure 5.16b. Comparison
of this reference solution with the results of the first- (Figure 5.14) and second-order
(Figure 5.15) computational homogenization, reveals that although the deformation
pattern corresponding to the second-order modelling is less sharp compared to the ref-
erence pattern it reproduces the reference solution significantly better than the first-
order scheme. Here again, the slightly “violated” assumption on the linear variation
of the macroscopic deformation field over the microstructural cell may be a possible
explanation of the less sharp deformation pattern obtained by the second-order scheme
compared to the reference solution. Moreover, only the deformation gradient tensor
field was used to plot the distribution of the equivalent strain measure, while the field
of the gradient of the deformation gradient tensor was left out of consideration.

max. eqv. strain 0.907

0 0.2 >0.45

(a)

max. eqv. strain 0.163

0 0.06 >0.12

(b)

Figure 5.16: Results of the direct finite element modelling of the heterogeneous
macrostructure at the prescribed macroscopic displacement U∗ = 1.76µm.
Distribution of the equivalent Green-Lagrange strain. (a) Microscale solu-
tion. (b) Macroscale solution obtained by the volume averaging of the fine
scale solution. The actual maximum equivalent strain values are indicated.

One of the important advantages of computational homogenization techniques over
other homogenization methods is that they provide not only the overall response of
a homogenized macrostructure (in terms of global loading curves and distribution of
the macroscopic fields), but also simultaneously allow insight into the deformation pro-
cesses occurring at the level of the heterogeneous microstructure. Figure 5.17 shows the
distribution of the equivalent strain within the macrostructure and several microstruc-
tural unit cells corresponding to different macroscopic points resulting from the first-
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Figure 5.17: Distribution of the equivalent Green-Lagrange strain in the deformed
macrostructure and several deformed microstructural unit cell, correspond-
ing to different points of the macrostructure, obtained by the first-order
computational homogenization analysis at the prescribed macroscopic dis-
placement U∗ = 1.76µm.

order computational homogenization modelling at the prescribed macroscopic displace-
ment U∗ = 1.76µm. The respective plot obtained from the second-order analysis is
presented in Figure 5.18. Examination of the microstructural strain distribution and the
overall deformation of the microstructural unit cells within the macroscopic localization
zone reveals a significant difference in the microstructural responses resulting from the
first- and second-order computational analyses. An excessive deformation of the mi-
crostructural cell in the localization zone obtained from the first-order computational
analysis can be clearly observed. This is again a manifestation of the ill-posedness of
the first-order macroscopic problem upon softening, which results in localization of the
deformation in the smallest possible volume, i.e. the volume of one element. In case
of the second-order computational homogenization modelling, which results in a mesh-
independent width of the macroscopic localization band, the deformation is distributed
more evenly over the microstructural cells within this band.

To conclude, it is pointed out that the dependence of the results (both the global re-
sponse and the distribution of local fields) on the finite element discretization is typical
when modelling of localization phenomena is attempted within the framework of the
classical (local) continuum theory without appropriate regularization. This is a well-
known fact for closed-form constitutive softening models, as has been extensively in-
vestigated by many authors in the past decade (e.g. Schreyer and Chen (1986); Bažant
and Pijaudier-Cabot (1988); Aifantis (1992); de Borst and Mühlhaus (1992); de Borst
and Pamin (1996); Peerlings et al. (1996); Svedberg and Runesson (1997); Geers et al.
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Figure 5.18: Distribution of the equivalent Green-Lagrange strain in the deformed
macrostructure and several deformed microstructural unit cell, correspond-
ing to different points of the macrostructure, obtained by the second-order
computational homogenization analysis at the prescribed macroscopic dis-
placement U∗ = 1.76µm.

(1998); Engelen et al. (2002)). Not surprisingly, the same observations are made here
in the context of the first-order computational homogenization. Clearly, the first-order
homogenization scheme inherits all the troublesome characteristics of the standard (lo-
cal) softening models. This technique complies with the principle of local action at the
macroscale, for which a softening microstructural cell cannot be used. Note that this
observation even becomes more critical when the size of the finite elements is much
larger than the microstructure (as normally is the case for the first-order analysis). The
dissipated energy in the softening branch is then fully dominated by the (large) size of
the finite elements. The second-order computational homogenization scheme, on the
other hand, deals with a second gradient continuum on the macrolevel. This provides
the necessary regularization and allows a realistic modelling of macroscopic zones of
localized deformation.

Finally, it is repeated, that in this example the softening at a macroscopic material
point was entirely due to geometrical softening of a microstructural cell. The effects
observed in this section will be substantially more pronounced, if, in addition to (or
instead of) geometrical softening of a microstructural cell, one or more microstructural
constituents would exhibit material softening.
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5.3 Computational homogenization modelling of
boundary shear layers

The mechanical response of micro-systems (e.g. in micro-electronics, MEMS etc.) is
known to be definitely sensitive to the characteristics of boundary (or interface) layers.
In this section the modelling of boundary layer effects within the computational ho-
mogenization framework is examined by the analysis of a frequently used example, i.e.
simple shear of a constrained heterogeneous strip. The boundary shear layer problem
was already introduced in section 4.4.3 in the validation of the finite element imple-
mentation for the second gradient continuum, where a closed-form higher-order elastic
constitutive model has been used. Here, the fully coupled multi-scale approach is pur-
sued, with the macroscopic second gradient constitutive response obtained from the
analysis of the underlying microstructure.

On the macroscopic level, plane strain shear of a two-dimensional strip with height
H in the X2 direction and “infinite” in the X1 direction, is considered, see Figure 5.19a.

^^

^^

(a)

d

d

(b)

Figure 5.19: The macroscopic model (a) and the microstructural unit cell (b) for the
computational homogenization analysis of the boundary shear layer prob-
lem.

In order to model the constraints at the (upper and lower) edges (which physically
may be due to, for example, rigid substrates, oxide layers or a hard coating) higher-
order boundary conditions prescribing vanishing shear at the surface are applied. Again,
the selection of the higher-order boundary conditions is a matter of choice. As has been
shown, for example, by Shu et al. (2001), not all of the possible combinations of higher-
order boundary conditions give rise to a boundary layer effect. Appropriate boundary
conditions in the present analysis are

u1 = 0, u2 = 0, F̂12 = 0, F̂22 = 1 on X2 = 0,

u1 = U
∗, u2 = 0, F̂12 = 0, F̂22 = 1 on X2 = H,

where U∗ = γ∗H, with γ∗ the prescribed shear. Instead of the condition F̂22 = 1 also the
normal component of the double stress traction r2 may be set to vanish on the upper
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and lower boundaries, however, this possibility is left out of consideration. The second
gradient plane strain quadrilateral element QU8F4L1, as developed in section 4.3.4, has
been used for the numerical analysis. Since for this simple shear problem all quantities
are independent of X1, one single row of two-dimensional plane strain elements, as
indicated in Figure 5.19a, suffices. Periodicity conditions are applied between the left
and right sides of the mesh, tying the associated degrees of freedom.

The material considered consists of an elasto-plastic matrix with randomly distribu-
ted voids (12% volume fraction). The behaviour of the matrix material is described by
the elasto-plastic model summarized in appendix A.2. The material parameters corre-
spond to commercial steel T67CA, Young’s modulus E = 210× 103 MPa, Poisson’s ratio
ν = 0.3, the initial yield stress σy0 = 507MPa and the (constant) hardening modulus
h = 200MPa.

For the microscopic analysis the unit cell plotted in Figure 5.19b is used. The average
diameter of the voids is 32µm. The size of the square microstructural unit cell is taken
as d = 0.2mm. In the present calculations the height of the macroscopic layer H has
been varied between 1mm and 10mm, while keeping the size of the microstructural cell
d unchanged. This allowed to investigate the influence of the ratio H/d, between the
height of the strip and the characteristic size of the microstructure, on the development
of the boundary layer. Macroscopic shear loading has been applied up to an averaged
shear of γ∗ = 0.01.

When the boundary value problem stated above is modelled in the context of a
classical (local) continuum (with the higher-order boundary conditions left out of con-
sideration), the solution is characterized by a homogeneous shear across the layer. The
first-order computational homogenization is fully consistent with the local continuum
formulation, and thus also predicts macroscopically homogeneous deformation. The
second-order computational homogenization, on the other hand, allows the complete
incorporation of the boundary constraints via the higher-order boundary conditions.
This leads to a non-uniform macroscopic deformation distribution over the strip. Fig-
ure 5.20 shows the distribution of the shear (shear component F12 of the deformation
gradient tensor normalized by the averaged prescribed shear γ∗ ) along the height of the
strip for different ratios of H/d at the final shear value γ∗ = 0.01. Boundary layers with
a vanishing shear can be clearly observed. The width of the boundary layers reduces
with an increasing ratio of H/d. For smaller values of H/d (H/d = 5 and H/d = 10) the
boundary layer extends practically over the full thickness of the strip, while for larger
values of H/d the zones of reduced shear and of homogeneous deformation are clearly
distinguishable.

The overall shear stress-strain response obtained from the second-order computa-
tional homogenization modelling for different ratios H/d is presented in Figure 5.21.
When H/d is reduced from 50 to 5 the elastic stiffness, the yield strength and the hard-
ening rate slightly increase. Thus, the presence of constraint boundaries gives rise to
a size effect, which in this case can be formulated as: “smaller is stronger”. The ap-
pearance of a size effect in the elastic regime is specifically remarked. This is inherent
to the second-order approach which applies to both the elastic and the elasto-plastic
regimes. This clearly differs from some of the gradient plasticity theories, in which the
higher-order boundary conditions are related to the plastic deformation only and thus
no size effect is taken into account in the elastic region.

The development of boundary shear layers is further illustrated in Figure 5.22, which



Comparative analyses 95

12

d
im

e
n

s
io

n
le

s
s

p
o

s
it
io

n
,

x
/H

2

Figure 5.20: Shear strain distribution along the height of the strip for several values of
H/d at the averaged prescribed shear γ∗ = 0.01.
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Figure 5.21: Overall shear stress-strain response of the strip obtained from the second-
order computational homogenization modelling for several values of H/d.

shows the shear distributions over the strip (normalized by the averaged shear γ∗) at
four selected values of the averaged prescribed strain γ∗ in the range of 0.0025 to 0.01 for
different ratios H/d. Clearly, the width of the boundary layer does not only depend on
the ratio H/d, but also on the level of the prescribed averaged shear. At small values of
the prescribed shear the boundary layer is relatively thin, while it widens as the loading
progresses. However, after having reached a certain level of loading the thickness of
the boundary layer does not evolve further. Note that the “peaks” observed in the
shear profile for H/d = 50 at a prescribed shear γ∗ = 0.0025 are purely of a numerical
nature and are due to an element size inappropriate to resolve the high deformation
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gradients occurring near the boundary. Obviously, these “peaks” can be eliminated by
mesh refinement.

12

d
im

e
n

s
io

n
le

s
s

p
o

s
it
io

n
,

x
/H

2

(a) H/d = 5

12

d
im

e
n

s
io

n
le

s
s

p
o

s
it
io

n
,

x
/H

2

(b) H/d = 10
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(c) H/d = 20
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(d) H/d = 50

Figure 5.22: Shear strain distributions along the height of the strip at various values of
the averaged shear γ∗ for several ratios H/d.

The evolution of the shear profiles with ongoing loading may be related to the forma-
tion of microstructural shear bands. Figure 5.23 illustrates the development of a shear
band in the microstructural unit cell located near X2 = H/2 for the case H/d = 20. As
can be seen, at small values of the averaged shear (e.g. γ∗ = 0.0025) the microstructural
cell is deformed only slightly and the overall deformation of the cell can be character-
ized as almost uniform shear (Figure 5.23a). This corresponds to the macroscopic shear
profile in Figure 5.22c with a relatively thin boundary layer and a substantial region of
uniform deformation across the macroscopic strip. With increasing macroscopic shear a
microstructural shear band starts to develop between the voids. At the macrolevel this
corresponds to an extension of the boundary layer. Finally, as the shear band across
the unit cell is fully developed, further deformation of the microstructural cell is almost
completely realized through plastic yielding within this band. As a result the macro-
scopic shear profile does not alter its geometry anymore upon further loading (at least
not in the range of the macroscopic deformation considered).

Figure 5.24 shows the deformed macroscopic finite element meshes (displacements
are 10 times magnified to emphasize the boundary layers) and the distribution of the
equivalent plastic strain in the three microstructural unit cells corresponding to three
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(a) γ∗ = 0.0025 (b) γ∗ = 0.005 (c) γ∗ = 0.0075 (d) γ∗ = 0.01

0.160 0.08

Figure 5.23: Development of a shear band in the microstructural unit cell located near
X2 = H/2 for a ratio H/d = 20 at increasing values of the prescribed
macroscopic shear γ∗; distribution of the equivalent plastic strain.

different points along the macroscopic layer. Figure 5.24a applies for the case H/d = 5
and Figure 5.24b for H/d = 50, both at a prescribed shear γ∗ = 0.01. The constraining
conditions along the boundary of the macroscopic strip result in a very small amount of
deformation in the microstructural cells close to the boundary. The macroscopic shear
is mostly accommodated through the formation of microstructural shear bands in the
bulk of the strip. As has been pointed out already, for H/d = 5 the shear profile is
non-uniform across the whole height of the strip. At the microscale this is reflected by a
varying amount of deformation of the unit cells with varying macroscopic locations. The
microscopic equivalent plastic strain concentration is considerably higher in the unit cell
near the center line of the macroscopic strip, than in a unit cell further away from the
center, see Figure 5.24a. On the other hand, in case ofH/d = 50, the deformation profile
shows a region of uniform shear (as can be seen also in Figure 5.22d). Consequently,
at the microstructural level it can also be observed that the microstructural unit cells
within this region are in a comparable state of loading.

Finally, it is remarked that the formation of boundary layers in a metallic single
crystal strip has been intensively investigated by Shu et al. (2001). The results ob-
tained in this reference and in the present work cannot be directly compared due to
fundamentally different underlying physical mechanisms. Dislocation based simula-
tions typically involve dislocation slip and formation of dislocation pile-ups against a
constrained boundary (where dislocation slip is prescribed to vanish). In the present
analysis the occurrence of microstructural shear bands between voids in the isotropic
elasto-plastic matrix material and the appearance of a boundary layer, originates from
the prescribed higher-order boundary conditions and the interaction between voids.
However, some qualitative comparison of results can still be made. In both cases (i.e.
dislocation dynamics simulations by Shu et al. (2001) and the present second-order
computational homogenization analysis) a comparable size effect and a dependence of
the shear strain profiles on a microstructural length scale parameter, as well as the evo-
lution of the deformation profile with increasing prescribed shear, have been observed.
It has additionally been shown by Shu et al. (2001), that the strain-gradient plasticity
theories generally capture the other effects, but do not always predict the thickening of
the boundary layer with increasing strain.

The example discussed in this section, despite its simplicity, clearly demonstrated the
ability of the second-order computational homogenization scheme to capture higher-
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Figure 5.24: The deformed macroscopic mesh (displacements are 10 times magnified)
and the distribution of the equivalent plastic strain in the deformed unit
cells corresponding to three different points along the macroscopic layer at
the prescribed shear γ∗ = 0.01 for different ratios H/d.

order boundary effects (e.g. the effect of a constrained boundary). The value of the
second-order computational homogenization as a natural way to retrieve a higher-order
continuum response is also worth mentioning. Moreover, as has been illustrated by this
example, a computational homogenization technique allows a direct investigation of the
relation between a macroscopically observed response and microstructural phenomena
(up to the scale at which they are modelled). It is also remarked that the present im-
plementation of a second-order continuum with an underlying microstructure reveals
qualitatively all the features of strain gradient plasticity for the shear layer problem.
This might suggest that the second-order approximation along with its enriched bound-
ary conditions is the adequate method to resolve this type of problems.
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Conclusions and recommendations

The multi-phase nature of almost all technological and biological materials and the in-
creased necessity to exploit the complex micro-macro structure-property relations of
heterogeneous materials, calls for advanced multi-scale modelling techniques. The ob-
jective of the present research was to develop an enhanced computational homogeniza-
tion approach for a multi-scale analysis of non-linear deformation processes in (possibly
evolving) multi-phase materials.

From time and costs viewpoints, performing straightforward experimental measure-
ments on a number of material samples, with various phase properties, volume fractions
and loading histories is a hardly feasible task. On the other hand, due to the usually
enormous difference in length scales involved, it is impossible, for instance, to generate
a finite element mesh that accurately represents the microstructure and concurrently
allows to determine the numerical response of a macroscopic structural component
within a reasonable amount of time on today’s computational systems. To overcome
this problem various homogenization techniques have been created to obtain an ade-
quate constitutive model to be inserted at the macroscopic level. However, most of the
homogenization methods developed are not suitable to deal with large deformations
and complex loading paths nor do they account for evolving microstructures, moreover
they do not allow the use of local failure criteria.

A promising alternative approach for the homogenization of engineering multi-phase
materials is the so-called computational homogenization method, which was the main
topic of this work. This technique is essentially based on the solution of nested boundary
value problems, one for each scale. The most important characteristics of this solution
strategy may be summarized as follows.

• On the macrolevel no constitutive assumptions are required, since the macro-
scopic constitutive response is numerically obtained from the solution of a mi-
croscale boundary value problem. This is especially advantageous when the mi-
crostructural constituents exhibit a non-linear and evolving thermo-mechanical
behaviour, because in this case it is extremely difficult (if possible at all) to make
well-motivated assumptions on the format of a macroscopic constitutive relation,
and even more difficult to account for changes due to a microstructural evolution.
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Additionally, as has been demonstrated in this work, macroscopic constitutive tan-
gent operators, necessary for the solution of a macroscopic problem within, for
example, a finite element framework, can be obtained easily from the microscopic
overall stiffness matrix by static condensation. Importantly, consistency is pre-
served through this scale transition.

• The method deals with large deformations and large rotations on both microlevel
and macrolevel in a straightforward way. The formulation of the micro-macro
transition within a geometrically non-linear framework allows the modelling of
heterogeneous structures under large deformations, which generally causes some
difficulties using most of the other homogenization procedures. Moreover, pos-
sible anisotropy of a microstructure is correctly accounted for upon macroscopic
finite rotations without any additional precautions.

• Different phases in the microstructure can be modelled with arbitrary non-linear
constitutive models. The methodology is not restricted to any particular type of
microstructural constitutive behaviour. Moreover, only the characteristics of each
single phase and of the various interfaces are to be described. Fortunately, there
is a lot more knowledge on the structure and physics of a single phase compared
to the collective behaviour of multi-phase microstructures. As soon as a proper
characterization of the microstructural phases and interfaces has been obtained, it
can be directly included into the computational homogenization scheme without
any limitations. For example, a common cause of material degradation on the
macroscale like microstructural debonding can be analyzed in a straightforward
manner, if the interface behaviour is appropriately modelled.

• The microscale formulation defines a standard boundary value problem, for which
any appropriate solution technique may be applied. In the present work the fi-
nite element method has been used, however other classical and alternative ap-
proaches to the solution of boundary value problems may also be employed, e.g.
the boundary element method, meshless methods, etc. The use of the standard
finite element method for microstructural modelling may require extremely fine
meshes around material interfaces and possibly remeshing. This may be neces-
sary even at moderate macroscopic deformations, since in some cases the maxi-
mum microscopic strain may be an order of magnitude higher than the maximum
macroscopic one. The micro-macro computational homogenization analysis cou-
pled with the standard finite element method easily suffers from an extremely
distorted microstructural mesh, which may limit the calculations unless remesh-
ing is performed. In order to postpone (or avoid) remeshing, use of methods
that do not require the meshing of the internal boundaries, but employ enriched
finite element spaces, e.g. the extended finite element method, could be sug-
gested. Approaches of this type have been recently applied for unit cell modelling
(Strouboulis et al. (2000); Sukumar et al. (2001)). Incorporation of these tech-
niques in the coupled computational homogenization analysis would certainly be
beneficial.

Also it should be noted that, in general, the present computational homogeniza-
tion approach is not restricted to cases where microstructural phases are modelled
as a continuum. Among discrete microstructural models, which can be applied,
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one finds atomistic models, molecular and discrete dislocation dynamics, lattice
and cohesive zone models. For example, the use of a dislocation dynamics model
on the microscale would allow to investigate the relation between the collective
behaviour of dislocations and the phenomena observed at larger scales. Addition-
ally, this would contribute to the validation of existing and the development of
new dislocation based continuum models.

The classical (first-order) computational homogenization scheme fits entirely in a
standard local continuum mechanics framework. The concepts of the first-order com-
putational homogenization have been presented and elaborated in chapter 2. In the
context of the first-order scheme, the macroscopic deformation (gradient) tensor is cal-
culated for every material point of the macrostructure (e.g. an integration point of the
macromesh within a finite element environment). This deformation tensor is used to
formulate kinematic boundary conditions (usually periodic) to be imposed on the mi-
crostructural representative volume element (RVE) that is assigned to the macroscopic
point. Upon the solution of the microstructural boundary value problem, the macro-
scopic stress tensor is obtained by averaging the resulting RVE stress field over the
volume of the microstructural cell. From a macroscopic point of view, a (numerical)
stress-strain relationship at every macroscopic point is readily obtained. The first-order
computational homogenization technique proves to be a valuable tool in retrieving the
macroscopic mechanical response of non-linear multi-phase materials.

However, there are a few severe limitations in the application of the first-order
scheme, which in fact originate from the underlying assumption of locality at the macro-
level. These limitations are summarized in the following.

• The first-order framework is completely insensitive to the absolute size of the mi-
crostructural constituents. Thus, size effects related to the absolute size at the
microscale cannot be dealt with. Note that microstructural size effects (e.g. the
Hall-Petch effect), which are to be modelled at the microscale itself, can be cap-
tured if an appropriate framework is used (e.g. a discrete model or a gradient
dependent model).

• The characteristic wave length of the macroscopic loading must be large compared
to the size of the microstructure, so that uniformity of the macroscopic (stress-
strain) fields over the corresponding microstructural representative cell applies.

• If a macroscopic material point exhibits softening behaviour (due to geometrical
or material softening of the attributed microstructural cell) the solution obtained
from the first-order computational homogenization approach fully localizes ac-
cording to the size of the elements used in the macromesh, i.e. the macroscopic
boundary value problem becomes ill-posed leading to a mesh dependent macro-
scopic response. The example in section 5.2 has demonstrated this feature.

In order to eliminate these limitations, a novel second-order computational homog-
enization procedure has been proposed in this thesis (chapter 3). The second-order
scheme is based on a proper incorporation of the macroscopic gradient of the deforma-
tion tensor into the kinematical micro-macro framework. The macroscopic stress tensor
and the higher-order stress tensor are retrieved in a natural way, based on an extended
version of the Hill-Mandel energy condition. A full second gradient continuum has
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been obtained on the macroscale. The equilibrium formulation and the finite element
implementation for the second gradient continuum has been presented in chapter 4.

The most important property of the second-order computational homogenization
method is, in fact, that it incorporates the length scale of the second gradient contin-
uum via the size of the microstructural representative cell, which is directly related to
the size of the microstructural domain in which the basic microstructural deformation
mechanisms occur. This allows the analysis of certain phenomena, not addressed within
the first-order scheme, such as size effects and macroscopic localization. As has been
observed from several microstructural analyses (section 5.1) the second-order compu-
tational homogenization framework is suitable to capture the change of the macro-
scopic response due to variations of the microstructural size as well as variations of the
macroscopic gradient of the deformation. If the microstructural size becomes negligi-
ble with respect to the wave length of the macroscopic deformation field, the results
obtained by the second-order modelling coincide with those of the first-order analy-
sis. This important observation demonstrates that the second-order computational ho-
mogenization scheme is a natural extension of the first-order framework. Moreover,
the second-order computational homogenization modelling of macroscopic localization
provides mesh independent results with the width of the localization zone determined
by the microstructurally related macroscopic length scale (section 5.2). Additionally,
the second-order framework allows the modelling of surface layer effects via the incor-
poration of higher-order boundary conditions, as has been illustrated on the example in
section 5.3. Finally it should be mentioned, that computational homogenization seems
to make higher-order continuum modelling considerably easier. The second-order con-
stitutive response, which is difficult to capture in a closed-format with many constitutive
parameters to be quantified, is retrieved directly from a microstructural analysis.

Based on the comparative evaluation of the performance of the first-order and the
second-order computational homogenization strategies the following recommendations
may be given with respect to the practical use of one or another technique.

• As long as the principle of separation of scales continues to hold, i.e. macro-
scopic gradients remain small with respect to the size of the microstructure and
no softening occurs at macroscopic points, the use of the first-order computational
homogenization method is recommended.

• If microstructurally related macroscopic localization takes place, it is clear that a
second-order technique is necessary to obtain physically meaningful results.

• Likewise, if the size of the microstructure is not negligible with respect to the
geometry of the macrospecimen, the second-order approach should be used to
capture the occurring geometrical size effects.

• Some of the higher-order boundary effects (e.g. the presence of boundary layers)
also can be analyzed within the second-order framework.

• Moreover, if the microstructural constitutive response is gradient-sensitive, the
second-order computational homogenization framework ensures that a macro-
scopic gradient is passed to the microscale. For example, discrete models often
show gradient-sensitivity (e.g. dislocation models, where the effect of geometri-
cally necessary dislocations is triggered through the gradients of the plastic defor-
mation). As long as the phases are modelled using gradient-insensitive continuum
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approaches, this major advantage of the second-order framework will not become
visible. Typically, linking advanced fine scale models in which gradients generally
have a role through the discrete nature of matter, to a coarse scale cannot be done
without a higher-order homogenization framework.

However, when using the second-order computational homogenization scheme one
should carefully validate the underlying assumption of a linear variation of the macro-
scopic deformation field over the representative microstructural cell. If this condition
is strongly violated (i.e. if the macroscopic fields vary strongly on the scale of the mi-
crostructural constituents) a second-order computational homogenization scheme does
not lead to an accurate approximation. In such cases the analysis should be performed
by embedded scales instead.

The main objection against the use of coupled micro-macro computational homoge-
nization strategies for practical problems, often stated in the literature, is related to the
significantly larger computation time compared to the solution time of a macroscopic
problem with closed-form homogenized constitutive equations. Certainly, a coupled
analysis at higher computational costs should be performed only if an added value is
provided, e.g. (i) in case of a geometrically and/or physically non-linear microstruc-
tural response; (ii) in case of evolving microstructures; (iii) if not only the macroscopic
response, but also information on the local microstructural fields (e.g. for a local fail-
ure criterion) is of interest; (iv) in the cases that second-order computational homoge-
nization is significantly easier than closed-form homogenization towards a higher-order
continuum (especially in the non-linear regime). Moreover, the value of computational
homogenization approaches to validate other homogenization methods and microstruc-
turally based constitutive models should not be underestimated.

Furthermore, the calculation time required for a coupled numerical analysis may be
substantially reduced by the use of parallel computations. One of the possible parallel
implementation schemes has been presented in this work. Another option is selective
usage, where non-critical regions are modelled by continuum closed-form homogenized
constitutive relations (or by the constitutive tangents derived from the microstructure in
case an incremental update of these tangents can be omitted, e.g. if the material hardly
evolves or unloads) while in critical regions a multi-scale analysis of the microstructure
is fully performed.

It should also be mentioned, that, compared to the first-order framework, in the
second-order computational homogenization the only additional computational effort
is the solution of the higher-order equilibrium problem on the macrolevel, since the
microstructural boundary value problem remains classical. The higher computational
requirements for the numerical solution of the second gradient continuum problem
are mostly related to the increased number of degrees of freedom per node in a finite
element mesh. For example, the simplest element for the second gradient continuum
developed in chapter 4 has 36 degrees of freedom. This issue may possibly be resolved
by use of the continuous/discontinuous Galerkin method recently introduced by Engel
et al. (2002). The applicability of this approach within the second-order computational
homogenization framework, however, still has to be evaluated.

Undoubtedly, many aspects, especially those related to the newly developed second-
order computational homogenization, still need to be explored. Among them is the
assessment of macroscopic higher-order boundary conditions based on the response
of the microstructural behaviour close to the boundary and a better understanding of
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the relation between the size of the microstructural representative volume element and
the length scale of the macroscopic higher-order continuum, introduced via the scale
transition. Extension of the second-order computational homogenization to include a
higher-order continuum at the microlevel is also possible. This would allow to bridge
the length scale gap between micromechanical models, capturing well the fine scale
physical behaviour valid in micron-sized domains, and engineering problems that are
formulated on meter-sized domains.

Despite the required computational efforts, multi-scale computational homogeniza-
tion strategies seem to be a versatile tool to establish micro-macro structure-property
relations in materials, where the collective behaviour of an evolving multi-phase het-
erogeneous structure cannot be predicted by any other method.



Appendix A

Constitutive models

In this appendix the constitutive models used for the modelling of microstructural con-
stituents in various numerical examples throughout the dissertation are briefly summa-
rized.

A.1 Compressible Neo-Hookean model

In the isotropic compressible hyperelastic Neo-Hookean model the constitutive relation
is given by

τ = K(J − 1)I+GB̄d, (A.1)

where τ = Jσ denotes the Kirchhoff stress tensor, J = det(F) the volume ratio, B̄d the
deviator of the isochoric left Cauchy-Green (Finger) tensor B̄ = J−2/3B with B = F ·Fc.
The material parameters are the bulk modulus K and the shear modulus G.

A.2 Elasto-plastic model

In this hypo-elasto-plastic model the deformation rate tensor D = 1
2
((∇�v)c +∇�v) (with

�v the velocity of a material point) is additively decomposed in an elastic part De and a
plastic part Dp

D = De +Dp. (A.2)

The elastic part De is coupled to the Cauchy stress σ by the hypo-elastic relation

◦
σ = 4C : De, (A.3)

where a superimposed circle denotes the objective Jaumann rate. The fourth-order
tensor 4C is the usual isotropic elastic Hookean material tensor

4C =
νE

(1 + ν)(1− 2ν)
II+

E

1 + ν
4I, (A.4)
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with E Young’s modulus and ν Poisson’s ratio.
Deformation increments can be either elastic or elasto-plastic. A yield function f is

used to determine whether elastic or elasto-plastic deformation takes place. The defor-
mation rate in a material point is elastic if elastic loading (f < 0) or elastic unloading
(ḟ < 0) occurs. During elasto-plastic deformation f = 0 and ḟ = 0 apply (the latter
condition is known as the consistency relation).

The von Mises yield function, used in the present work, is given by

f(σ, ε̄p) = σ̄
2 − σ2

y , (A.5)

in which the equivalent von Mises stress is defined in the standard way according to

σ̄ =

√
3

2
σd : σd. (A.6)

The current yield stress σy = σy(ε̄p) is a given function (hardening relation) of the
equivalent plastic strain ε̄p, which is defined by the following evolution equation

˙̄εp =

√
2

3
Dd

p : D
d
p. (A.7)

The plastic deformation rate is given by the associated flow rule, which can be written
as

Dp =
3 ˙̄εp
2σy

σd. (A.8)

A.3 Bodner-Partom model

The modified version of the elasto-visco-plastic Bodner-Partom model, used in the pre-
sent work, incorporates a stress dependent viscosity, initially proposed by Bodner and
Partom (1975), supplemented with a hardening contribution to describe the strain rate
dependent yield and post-yield behaviour of metals (at elevated temperatures). In the
present version this Bodner-Partom viscosity is implemented in the framework of a gen-
eralized Leonov model proposed by Baaijens (1991), which is a compressible version of
the model established by Leonov (1976).

Point of departure is the classical multiplicative decomposition of the total deforma-
tion into an elastic and a plastic contribution, the latter assumed isochoric. The elastic
deformation tensor Fe is related to the Kirchhoff stress tensor τ = Jσ according to an
isotropic compressible Neo-Hookean relationship

τ = K(J − 1)I+GB̄d
e , (A.9)

where J = det(Fe) is the volume change ratio, B̄d
e the deviator of the isochoric left

Cauchy-Green tensor B̄e = J−2/3Be with Be = Fe · Fc
e, K the bulk modulus, and G

the shear modulus. The dissipative plastic deformation rate tensor Dp is related to the
deviator of the Cauchy stress tensor σd according to a generalized Newtonian flow rule

Dp =
σd

2η
, (A.10)
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with the stress dependent viscosity η defined as

η =
σ̄√
12Γ0

exp

(
1

2

[
Z

σ̄

]2n
)
, (A.11)

where the equivalent von Mises stress σ̄ is defined by (A.6). The material parameters
Γ0 and n reflect the smoothness of the elastic-to-plastic transition and the strain rate
sensitivity, respectively. The state variable Z controls the hardening as the resistance to
plastic flow, which is defined here by the following evolution equation

Z = Z1 + (Z0 − Z1)e−mε̄p , (A.12)

where the constants Z0 and Z1 denote the lower and upper bounds of Z, respectively,
and m is a material constant controlling the rate of hardening. The internal variable
ε̄p represents the equivalent plastic strain, which is defined according to the evolution
equation (A.7).

A summary of this model and the material parameter identification procedure may
be found in van der Aa et al. (2000).
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Samenvatting

De meeste materialen die worden geproduceerd en toegepast in de industrie zijn he-
terogeen op een of andere ruimtelijke schaal. Typische voorbeelden zijn metaallege-
ringen, poreuze media, polykristallijne materialen en composieten. De verschillende
fasen waaruit dergelijke materialen bestaan vormen een microstructuur. De (eventu-
eel veranderende) grootte, vorm, fysische eigenschappen en ruimtelijke verdeling van
de microstructurele bestanddelen bepalen in hoge mate het macroscopische, globale
gedrag van deze meerfasige materialen.

Het macroscopische gedrag van heterogene materialen kan worden voorspeld door
middel van een aantal homogenisatiemethoden. De meeste van deze technieken zijn
echter niet geschikt voor grote vervormingen en gecompliceerde belastingspaden en
houden geen rekening met veranderingen in de microstructuur tijdens de deformatie.
Om deze beperkingen op te heffen is een numerieke homogenisatiemethode ontwik-
keld, die in feite neerkomt op het oplossen van twee gekoppelde randwaardeproble-
men: één op de macroscopische en één op de microscopische schaal. Dit soort tech-
nieken (i) vereist geen veronderstellingen ten aanzien van het globale gedrag; (ii) staat
grote vervormingen en rotaties toe op zowel micro- als macroniveau; (iii) is geschikt
voor willekeurig welk materiaalgedrag, met name ook fysisch niet-lineair en tijdsafhan-
kelijk gedrag; (iv) maakt het mogelijk gedetailleerde informatie over de microstructuur
en de ontwikkeling daarvan in rekening te brengen in de macroscopische analyse en (v)
kan gebruik maken van elk soort model op het microniveau.

Bestaande (eerste-orde) numerieke homogenisatiemethoden passen geheel in het
standaard, lokale continuümsmechanica-raamwerk. In ieder materieel punt van de ma-
crostructuur wordt de macroscopische deformatietensor berekend, welke vervolgens
gebruikt wordt om kinematische randvoorwaarden te formuleren voor een microstruc-
tureel representatief volume-element dat toegekend is aan het betreffende punt. Nadat
het microstructurele randwaardeprobleem is opgelost, wordt de macroscopische span-
ningstensor verkregen door middeling van het microstructurele spanningsveld over het
volume van de representatieve cel. Op deze manier kan voor ieder macroscopisch punt
de (numerieke) spanning-rekrelatie gegenereerd worden. Eerste-orde numerieke ho-
mogenisatie heeft zich bewezen als een waardevol gereedschap om de mechanische
respons van niet-lineaire, meerfasige materialen te analyseren.

Echter, de eerste-orde numerieke homogenisatiemethode kent ook enkele belang-
rijke beperkingen ten aanzien van haar toepasbaarheid (die ook gelden voor conventio-
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nele homogenisatiemethoden). Ten eerste houdt de methode weliswaar rekening met
de volumefracties, verdeling en vorm van de bestanddelen, maar zijn de resultaten on-
gevoelig voor de absolute afmetingen van de microstructuur. Als gevolg hiervan kunnen
effecten die gerelateerd zijn aan variaties van deze afmetingen niet worden voorspeld.
Ten tweede kan de methode niet worden toegepast in gebieden met sterk gelocaliseerde
vervormingen, waar de karakteristieke golflengte van het macroscopische deformatie-
veld van dezelfde orde van grootte is als de afmetingen van de microstructuur. Verder
leidt, in de eerste-orde aanpak, verzwakking in een macroscopisch punt tot resultaten
die afhangen van de ruimtelijke discretisatie als gevolg van het niet correct gesteld zijn
van het randwaardeprobleem.

Om deze beperkingen weg te nemen wordt een nieuwe, tweede-orde homogenisatie-
methode voorgesteld. Bij deze tweede-orde methode wordt de gradiënt van de macro-
scopische deformatietensor betrokken in de kinematica van het micro-macro raamwerk.
De macroscopische spanningstensor en een hogere-orde spanningstensor worden ver-
volgens verkregen door middel van een uitbreiding op de Hill-Mandel energiebalans.
Aldus wordt een volledige tweede-orde continuümtheorie geformuleerd, die het op-
lossen van een hogere-orde evenwichtsprobleem vereist door middel van een speciale
eindige-elementenimplementatie.

De belangrijkste eigenschap van de tweede-orde numerieke homogenisatiemethode
is in feite dat de relevante lengteschaal van de microstructuur op directe wijze in reke-
ning wordt gebracht op het macroniveau door middel van de grootte van de representa-
tieve cel. Deze grootte dient een afspiegeling te zijn van de schaal waarop de relevante
microstructurele deformatiemechanismen zich voordoen. Dankzij het opnemen in de
modellering van de afmetingen van de microstructuur kunnen fenomenen zoals schaal-
effecten en macroscopische localisering beschreven worden, waarvoor de eerste-orde
theorie faalt. Door middel van een aantal microstructurele analyses wordt aangetoond
dat de tweede-orde aanpak een andere respons laat zien wanneer de absolute afmetin-
gen van de microstructuur worden veranderd of wanneer macroscopische gradiënten
van de deformatie worden aangebracht. Indien de afmetingen van de microstructuur
verwaarloosbaar zijn ten opzichte van de lengteschaal van het macroscopische deforma-
tieveld, vallen de resultaten verkregen met de tweede-orde modellering samen met die
van de eerste-orde aanpak. Deze belangrijke constatering toont aan dat de tweede-orde
homogenisatiemethode gezien kan worden als een natuurlijke uitbreiding op het eerste-
orde raamwerk. In problemen waarin macroscopische localisering optreedt wordt de
breedte van de localisatiezone bepaald door de microstructurele lengteschaal, waar-
door resultaten onafhankelijk zijn van de numerieke discretisatie. Verder kunnen met
de tweede-orde methode grenslaageffecten gemodelleerd worden door het aanbrengen
van hogere-orde randvoorwaarden. Modelleren met behulp van hogere-orde continua
wordt met de tweede-orde homogenisatie methode aanzienlijk eenvoudiger omdat de
tweede-orde respons direct uit de micromechanica volgt in plaats van uit gesloten con-
stitutieve relaties, welke moeilijk te formuleren zijn en die een groot aantal parameters
bevatten.

Numerieke homogenisatie is een breed toepasbare strategie voor het bepalen van
relaties tussen microstructuur en macroscopische eigenschappen van materialen met
een evoluerende, meerfasige samenstelling waarvoor andere methoden falen.
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