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Chapter

1
Introduction

1.1 Background

Nature comprises a lot of examples of fluid flows around objects. Most of these
examples are characterized by wakes involving the chaotic motions of eddies, which
attracted scientists for many centuries. An illustration of such a wake flow in nature
is the von Kármán vortex street observed in the atmosphere as shown in Figure 1.1a.
The flow patterns around the Alejandro Selkirk Island of the Juan Fernandez Islands
(also known as Robinson Crusoe Islands) are made visible by the clouds. The wind
blowing above the ocean surface is disturbed by a 1640m high mountain on the
island and a vortex street is created.

Knowledge of bluff body wake flows has a great importance for many enginee-
ring applications. Therefore, it has become a favorite topic of research for centuries.
For example, the pioneering work of Leonardo da Vinci provided insight into fluid
dynamics through many sketches of vortical patterns around bridge legs as shown
in Figure 1.1b and initiated the development of fluid dynamics as a scientific field
[2].

One reason for the importance of wake flow analysis is due to the vortex induced
vibration at a particular frequency. A classical example of this phenomenon is the
Tacoma Bridge incident happened in 1940. The bridge collapsed because the wake
caused the bridge structure to oscillate at its natural frequency, see Figure 1.2(left).
The influence of the wakes on transport properties, such as heat and momentum, is
another important aspect of wake flow analysis. For example, placing another cylin-
der in proximity can influence the heat transfer from a cylinder, a typical configura-
tion found in electronic cooling systems, see Figure 1.2, and heat exchangers. Wake
interactions also affect the fluid forces acting on a body as well as they can enhance
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(a) (b)

Figure 1.1: Flow behind bluff bodies; (a) Cloud visualization of von Kármán vortex street around
the Alejandro Selkirk Island. (Figure is reproduced from DeFelice et al. [1]) (b) The sketches of
Leonardo da Vinci showing the eddies passing bridge legs.

Figure 1.2: Two examples for importance of wake analysis for engineering applications; Left:
Tacoma bridge, Right: A typical electronic circuit board with several bluff body structures.

noise generation. Race cars and aircraft landing gears are two typical examples of
such type of configurations. Therefore, the knowledge about wake vortices is im-
portant in the design of a wide range of structures, such as the ones given above,
submarine periscopes, chimneys, skyscrapers etc.

Due to its simple geometry, the flow around circular cylinders has become a cen-
tral topic in many researches. One of the first studies on the stability of cylinder
wake flows was performed by von Kármán at the beginning of the twentieth century.
He modeled the wake using a point vortex approach and determined the necessary
criterion for the stability of the wake. von Kármán ’s approach was discussed in
detail by Lamb [3]. Roshko [4, 5] performed extensive experimental studies on cy-
linder wakes using hot-wire anemometry. He measured the shedding frequencies at
a wide range of Reynolds numbers and suggested a universal relation between the
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Reynolds number and the shedding frequency. A lot of effort was made to explain
the physics of circular cylinder wake dynamics. The physical mechanism of two-
dimensional vortex shedding is discussed in the works of Gerrard [6, 7], Green and
Gerrard [8]. They showed that vortex shedding for low Reynolds numbers can be
characterized by vortex splitting and high shear stress occurring in the near-wake.
Unal and Rockwell [9] investigated the near wake vortex formation from the context
of absolute instability and showed that the shear layer separating from the cylinder
shows an exponential variation of fluctuating kinetic energy with distance downs-
tream of the cylinder.

However, the above mentioned studies were limited to the two-dimensional as-
pects of the flow. The three-dimensional aspects of wake flows behind circular cy-
linders are thoroughly reviewed and discussed by Williamson [10, 11]. He grou-
ped the circular cylinder flow into various regimes according to the Reynolds num-
ber. The laminar vortex shedding regime extends from a Reynolds number of 49 to
140 − 194 and the flow regime between Re = 190 and 260 is denoted as the three-
dimensional wake transition regime. This regime is associated with two modes of
shedding, Mode-A and Mode-B.

It is shown in various studies that under the influence of ’disturbances’ cylinder
wake flows exhibit different flow structures. For example, Ren et al. [12] showed that
by heating the cylinder a different transition regime can be found which was named
as Mode-E. Zhang et al. [13] studied the influence of the presence of a wire in the
vicinity of a cylinder on transition and characterized the wake transition regime as
Mode-C, which shows different properties than Mode-A and Mode-B. For the case of
a rotating cylinder, it was shown by Stojkovic et al. [14] that there exist two shedding
modes, Shedding Mode I and Shedding Mode II. Shedding Mode I is associated with
a deflected von Kármán vortex street while Shedding Mode II shows the formation
of a single vortex shed with a much lower frequency than for Shedding Mode I.

1.2 Classification of secondary flows in cylinder wakes

In cylinder wake terminology, ’primary instability’ usually refers to the instability
which results in the formation of von Kármán vortex shedding. The term ’secondary
instability’ is attributed to the instability mechanism which occurs in the transition
of a cylinder wake from two-dimensions to three-dimensions by the generation of
streamwise, i.e. secondary, vortical structures.

1.2.1 Mode-A and Mode-B

The wake transition of a circular cylinder was originally described by Roshko [4]. His
study was mainly based on hot-wire measurements of a cylinder wake. He identified
the Reynolds number range 150 < Re < 300 as the ’transition range’ based on the
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Figure 1.3: Strouhal number Reynolds number relationship in laminar and transition regimes.
(Figure is reproduced from Williamson [11])

irregularities in the velocity signals. Hama [15] showed that in this Reynolds num-
ber range the von Kármán vortices are forming three-dimensional wavy structures.
However, not until Williamson [16], the transition regime was associated with the
discontinuities in the Strouhal-Reynolds number (St-Re) curve as shown in Figure
1.3. Experiments of Williamson [16] showed that the cylinder wake transition occurs
via the generation of secondary vortices in the wake at the corresponding Reynolds
number of the discontinuities. He suggested two different modes for the cylinder
transition regime, namely Mode-A and Mode-B, each having distinct properties.

Mode-A is associated with the first discontinuity in the St-Re curve where there
is a drop in shedding frequency. At this stage of the flow, the primary vortices de-
form in a wavy fashion along their length during the shedding process. This results
in the local spanwise formation of vortex loops, which become stretched in the braid
region of the primary vortices to form streamwise vortex pairs, as shown in Figure
1.4 (left). This type of wake transition can be seen over the Reynolds number range
of 160 < Re < 240 with a characteristic spanwise wavelength of 3 − 4 cylinder dia-
meters. Mode-A transition also exhibits dislocations and complex temporal behavior
[11, 17]. Williamson [11] proposed that Mode-A originates from an elliptic instability
of the vortex cores in the near-wake. This theory was further investigated in Leweke
and Williamson [18] and Thompson et al. [19]. Another approach of describing the
onset of the vortex loops is provided by Brede et al. [20]. They identified a centri-
fugal instability of the braid region between the primary vortices using the analysis
of particle image velocimetry data. The conclusion of Brede et al. [20] was that the
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Figure 1.4: Top-views of Mode-A (left) transition at Re = 200 and Mode-B (right) transition at
Re = 270. (Figure is reproduced from Williamson [10]).

interaction of the primary vortices in this braid region is the main amplification me-
chanism.

On the other hand, for Reynolds numbers Re ≥ 240, the flow goes into a different
state named as Mode-B, see Figure 1.4 (right). This state is characterized by forma-
tion of fine-scale streamwise vortices with a spanwise wavelength of approximately
one cylinder diameter. Mode-B is associated with the second discontinuity in the St-
Re curve where there is an increase in the shedding frequency. The onset of Mode-B
transition was discussed as the manifestation of a hyperbolic instability in the braid
shear layers [11, 18, 19]. Brede et al. [20] concluded that Mode-B vortices originate
from the instability of the separating shear layer in the near-wake which results in a
different topology of the Mode-B vortices than those in Mode-A.

Furthermore, linear [21] and nonlinear [22, 23] numerical stability computations
have provided quantitative data by establishing precise stability limits for the two-
dimensional flow. Mode-A appears at Re = 189 where the two-dimensional wake
becomes linearly unstable to three-dimensional disturbances with a spanwise wave-
length of λz/D = 3.96 [21, 23]. Mode-A instability is subcritical with a small range
of hysteresis [16, 21]. Later, Barkley et al. [24] showed that this hysteresis of Mode-A
extends down to Re ' 180.

Stability results of Mode-B shedding indicate that the two-dimensional wake be-
comes linearly unstable at Re = 259 with a spanwise wavelength λz = 0.82 [21].
Unlike Mode-A, this bifurcation is supercritical and without a hysteresis [23]. The
branch of Mode-B solutions bifurcates in the direction of increasing Reynolds num-
ber and pure Mode-B states do not exist below this Reynolds number as shown in



6 1.2 Classification of secondary flows in cylinder wakes

Figure 1.5: Bifurcation diagram for amplitude equations. Shown are the steady states for these
equations with solid lines indicating stable states. The 2D branch has A = B = 0. The A branch
has B = 0, the B branch has A = 0, and the A + B branch is a mixed-mode branch with both
A,B 6= 0. The norm is

√
A2 +B2. (Figure and caption are reproduced from Barkley et al. [24].)

Figure 1.5.
The transition from Mode-A to Mode-B occurs over the Reynolds number range

Re = 210 − 270. During this transition, the flow energy is shifting gradually from
Mode-A to Mode-B [11, 16, 23]. The low-dimensional model of Barkley et al. [24] on
mixed-mode transition scenario showed that the transition is not hysteretic, rather
it is a reversible interpolation between Mode-A and Mode-B, see Figure 1.5. The
consequence of this interaction is that Mode-A has a destabilizing effect on Mode-B
and Mode-B has a stabilizing effect on Mode-A.

Besides Mode-A and Mode-B, another quasi-periodic three-dimensional insta-
bility of the circular cylinder wake was predicted by Barkley and Henderson [21].
Subsequently, Blackburn et al. [25] showed that this instability is the third state to bi-
furcate from a two-dimensional base state with increasing Reynolds number, which
shows itself as a traveling wave in the weakly nonlinear case. The quasi-periodic
bifurcation occurs at Re ≈ 377 with λz/D ≈ 1.8 [25].

1.2.2 Mode-E

By heating the cylinder a different transition regime can be found in the wake of a
circular cylinder which was named as Mode-E by Ren et al. [12].

Maas et al. [26] showed that for a horizontally placed heated cylinder a three-
dimensional transition in the wake flow occurs at Richardson number Ri > 0.3 and
Re = 117. The transition takes places in the wake via escaping thermal plumes
from the primary vortices as exemplified for Ri = 1 in Figure 1.6. Maas et al. [26]
measured the average spanwise wavelength of the vortical structures around 1.8 D.
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Figure 1.6: Top-view of Mode-E transition in heated cylinder wake with Ri = 1.0, λz = 1.8D,
Re = 117. The cylinder is located at the bottom and the flow is from left to right. (Figure is
reproduced from Maas et al. [26])

Further physical description of the wake was made by Ren et al. [27]. They sho-
wed that the vortex formation process is different for the ’in-plume’ position (where
the plume escapes further downstream) and the ’out-of-plume’ position. For the
’in-plume’ positions an upward motion occurs directly behind the cylinder, which
separates the vortices from the cylinder wall and enhances the formation of the up-
per vortices and weakens the formation of the lower ones.

The three-dimensional transition by escaping mushroom type structures, i.e. ther-
mal plumes, was also found for Re = 85 and Ri = 1 [12]. Ren et al. [12] further dis-
cussed the transition mechanism for Mode-E as the manifestation of mushroom-type
structures in the far-wake and Λ-shaped structures in the near-wake. At the interme-
diate stage a characteristic lift-up process takes place in the center region between the
legs and head of the Λ-shaped structures which results in the extraction of hot fluid
out of the upper vortex core. Due to this lift-up process, mushroom-type structures
are generated in the form of escaping vortex rings in the far-wake. Furthermore,
Ren et al. [12] showed that the whole Mode-E transition is a self-sustaining cyclic
process which starts with the generation of streamwise vorticity due to a spanwise
temperature gradient.

1.2.3 Mode-C

There is an other three-dimensional transition pattern observed in bluff-body wakes.
This mode is named as Mode-C after Zhang et al. [13] and has been observed in
several flow configurations, such as wire disturbed cylinder wakes, flows behind
rings, cylinder-cylinder interactions.

The first evidence of Mode-C appeared in the computations and experiments of
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Figure 1.7: Flow visualization (left) and numerical simulation(right) of Mode-C transition in
wired cylinder wake. The cylinder is located at the top and the flow is from top to bottom. (Figure
is reproduced from Zhang et al. [13])

Zhang et al. [13] when a tiny wire was placed close to a circular cylinder, see Fi-
gure 1.7. In their flow visualization experiments, they observed that Mode-C tran-
sition takes place over a Reynolds number range of 170 < Re < 270. Numerical
simulations at Re = 210 displayed a spanwise periodicity of 1.8 cylinder diame-
ters. They found a larger decrease in shedding frequency than Mode-A at the same
Reynolds number when compared to their corresponding two-dimensional flows.
Furthermore, based on the velocity spectra obtained from hot-film measurements,
they proposed that the Mode-C flow goes into a three-dimensional periodic stage
at Re = 170 and into a quasi-periodic stage at Re = 200. To clarify the effect of a
symmetric disturbance, Zhang et al. [13] performed numerical simulations for the
case of symmetrically placed wires, which showed a Mode-C transition pattern with
a spanwise wavelength of 2.2 cylinder diameters.

Another flow type where Mode-C transition takes place is the flow behind circu-
lar rings as shown in Figure 1.8. Using Floquet stability calculations, Sheard et al.
[29] identified this mode as the primary transition mode in the aspect ratio (AR)
range of 3.9 . AR . 8, with a spanwise wavelength of approximately 1.7 ring cross-
section diameters. They suggested that a subharmonic Mode-C instability occurs
as a result of the asymmetry about the wake centerline imposed by the curvature
of the wake. Further nonlinear characterization of Mode-C was made by Sheard
et al. [28] using Direct Numerical Simulations. They showed that for the flow past
a ring with AR = 5, Mode-C instability produces a period-doubling in the wake
through supercritical and non-hysteretic transition. A typical vorticity pattern for
Mode-C transition is shown in Figure 1.8b. Subsequently, Sheard et al. [30] provi-
ded additional computational results and first experimental observations about the
existence of the subharmonic mode Mode-C. Later, Sheard et al. [31] showed that
the period-doubling nature of the wake is maintained by a cycle of convection of the
perturbation vorticity from the near-wake.
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(a) (b)

Figure 1.8: Flow behind rings. (a) Diagram for flow behind rings. Aspect ratio is defined as
AR = D/d (b) Mode-C transition in ring flow with AR = 5, λd = 2d, Re = 170. (Figure is
reproduced from Sheard et al. [28])

Carmo et al. [32] also found Mode-C in the wake transition of the flow around
staggered arrangements of equi-diameter circular cylinders for different relative po-
sitions. The structure and onset characteristics of Mode-C were analyzed using li-
near and non-linear stability analyses as well as Direct Numerical Simulations. They
showed that Mode-C appears in the near-wake of the downstream cylinder with
an intermediate spanwise wavelength between Mode-A and Mode-B with a period-
doubling character.

1.2.4 Rotating cylinder wake

The rotation of a cylinder in a uniform flow modifies the wake flow patterns and
vortex shedding. The rotation effect results in an acceleration of the flow on one
side and a deceleration on the other side. Hence, the pressure on the accelerated side
becomes lower than that on the decelerated side, resulting in a mean lift force. Such a
phenomenon is referred to as the Magnus effect and rotating cylinder configuration
has been subject of interest for many researchers [14, 33–38].

Previously, it has been shown numerically and for low rotation rates also experi-
mentally that for a rotating cylinder there exist two instability areas where the vortex
shedding is not suppressed [14, 33, 35, 37, 38]. These instability areas are indicated
as Shedding Mode I and Shedding Mode II. Shedding Mode I shows the classic von
Kármán Vortex Street, which becomes asymmetric when the cylinder is rotating. On
the other hand, Shedding Mode II is associated with single shed vortex which has
one-order-of-magnitude lower shedding frequency and is found numerically only
in a narrow range of the rotation rate [14]. There is no experimental evidence of the
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existence of this mode.

1.3 Objectives

On the basis of previous investigations, it is clear that disturbances alter the vor-
tex shedding patterns in the transitional regime of a circular cylinder. The natural
modes of shedding, namely Mode-A and Mode-B, have been investigated extensi-
vely by many researchers. In the last decade, Mode-C transition around rings has
drawn much attention due to its unique characteristics and there is a comprehensive
numerical literature about it. However, a detailed knowledge of the flow physics ba-
sed on experimental observations is lacking for the case of a cylinder with a control
wire nearby, for which Mode-C is originally shown by Zhang et al. [13], as well as
for Shedding Mode II of the rotating cylinder case. This thesis aims to scientifically
contribute to the knowledge of wake modification of circular cylinders in those areas.

Therefore, the main objectives of this thesis are as follows:

• Characterizing the laminar two-dimensional wake flow for the wired cylinder
case, investigating its vortex characteristics and vortex shedding process.

• Investigating the wake flow for the wired cylinder case in the transition regime,
verifying Mode-C type transition, examining its period-doubling character and
establishing a physical explanation for the existence of period-doubling.

• Characterizing the wake transition using fluctuating flow properties and energy
content of the wake as well as vortex characteristics.

• Investigating the secondary instability region of rotating cylinders and experi-
mentally validating the so-called Shedding Mode II.

1.4 Thesis outline

Chapter 1 gives a brief introduction on the secondary instabilities in circular cylinder
wakes.

In Chapter 2, an overview of methodology used in the research is given. After
introduction of the problem and governing equations, a brief introduction of the
Spectral Element method is given. The experimental part of this research involves
the usage of Electrolytic Tin-precipitation method and Particle Image Velocimetry to
obtain qualitative and quantitative information, respectively.

Chapter 3 focuses on the effect of a wire on the laminar two-dimensional flow.
For that purpose the flow at Re = 100 has been investigated numerically. The ef-
fect of different wire positions on velocity fluctuations and shedding frequency is
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given. Vortex dynamics of wired cylinder wake is examined using the Point Vortex
approach. Individual vortex strengths and trajectories are presented.

In Chapter 4, analysis of period-doubling mechanism in Mode-C transition is
presented. The wire is fixed at a position of (xw/D, yw/D) = (0.75, 0.75)with respect
to the cylinder center. Experimental results are used to examine the period-doubling
character of the wake and to establish a physical explanation for the existence. The
results are assessed using velocity fluctuation characteristics, shedding frequency
and vorticity patterns.

Chapter 5 concentrates on the characterization of the Mode-C wake transition.
The discussion of Chapter 4 is extended by investigating the fluctuating flow pro-
perties and energy characteristics of Mode-C wake. Discrete energy components of
Mode-C wake at particular frequencies are calculated using the energy spectrum ob-
tained from PIV experiments. Vortex strengths and trajectories are presented for the
transition regime. Furthermore, the change in shedding frequency is associated with
the wire effecting the separating shear layer.

In Chapter 6, experimental results of the Shedding Mode II are presented. The
flow field is investigated qualitatively using flow visualization experiments and quan-
titatively using side-view PIV measurements. Instantaneous vorticity patterns are
used to evaluate vortex shedding. Shedding frequencies are compared to the litera-
ture values.

Finally in Chapter 7, the conclusions of this study are summarized and recom-
mendations for future research are presented.
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Chapter

2
Research Methodology

2.1 Problem definition

The present investigation mainly focuses on the wake flow of a circular shaped cy-
linder with a near-wake wire disturbance. The configuration consists of two circular
cylinders with diameters D and d, respectively, as shown in Fig. 2.1a. The corres-
ponding diameter ratio is D/d = 50 in the numerical simulations and D/d = 100 in
the experiments. Since the diameter ratio is quite large, the smaller cylinder will be
denoted as a wire throughout the text.

The position of the wire is determined in a Cartesian coordinate system (x, y, z)

whose origin is at the center of the main cylinder. The coordinates (xw, yw) represent
the position of the wire with respect to the center of the cylinder. The freestream
velocity U∞ is in the +X direction which is denoted as the streamwise direction in
Figure 2.1b. The figure also shows the global coordinate system with corresponding
axis labels as well as the vorticity vector ω = (ωx, ωy, ωz) with corresponding rota-
tion directions.

The Reynolds number Re = DU∞/ν for the main cylinder is Re ≈ O(102) in
this study. Considering the diameter ratio between the cylinder and the wire, the
Reynolds number for the wire is Re ≈ O(1) which indicates that no vortex shedding
occurs from the wire itself.

In the remainder of this chapter, the methodology used in the present research
will be discussed briefly. Firstly, the governing equations are summarized. Secondly,
a summary of the numerical method, including temporal and spatial discretization
and computational details, is presented. Thirdly, a brief overview of the experimen-
tal system, measurement configurations and techniques is given. Finally, the basics
of the Point Vortex model are summarized.
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(a) (b)

Figure 2.1: Presentation of (a) Cylinder-wire configuration, (b) Global coordinate system and axis
labels.

2.2 Governing equations

The flow around a cylinder is governed by the Navier-Stokes equation for an incom-
pressible and Newtonian fluid. The differential form of the mass and momentum
conservation equations are:

∇ · u = 0 (2.1)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u (2.2)

In the equations u = (u, v, w) = ui+ vj + wk is the velocity vector, ρ represents the
density, p the pressure, t the time and ν the kinematic viscosity.

The Equations 2.1 and 2.2 can be converted into non-dimensional form by intro-
ducing the following dimensionless variables;

x∗ =
x

D
, t∗ =

tU∞

D
,u∗ =

u

U∞

, p∗ =
p− p∞
ρU2

∞

(2.3)

Substituting these dimensionless variables into Equations 2.1 and 2.2 results in the
non-dimensional form of the convervation equations:

∇ · u = 0 (2.4)

∂u

∂t
+ (u ·∇)u = −∇p+

1

Re
∇2u (2.5)

For simplicity the asterisks have been removed from the non-dimensional variables
in the equations.

The vorticity is defined as the curl of the velocity, ω = ∇ × u. The result of this
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operation is the vorticity vector of the form ω = (ωx, ωy, ωz) = ωxi+ωyj +ωzk. The
vorticity components can be written as:

ω =

(
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)

(2.6)

The vorticity components represent the local rotation of a fluid element with respect
to the corresponding axis which are shown in Figure 2.1b.

The equation for the rate of change of vorticity is obtained by taking the curl of
Equation 2.5. After some vector manipulations and in the absence of the density
effects, the equation for vorticity transport then becomes

∂ω

∂t
+ (u · ∇)ω

︸ ︷︷ ︸

I

= (ω · ∇)u
︸ ︷︷ ︸

II

+
1

Re
∇2ω

︸ ︷︷ ︸

III

(2.7)

where the terms I-III have the following physical significance:

Term I: This term describes the material derivative of vorticity. The rate of change
of vorticity of a fluid element corresponds to the angular acceleration of the
fluid particle, which can change due to the unsteadiness in the flow or due to
the motion of the fluid particle as it moves from one point to another.

Term II: This term represents the rate of change of vorticity due to vortex stretching
and tilting. This term vanishes in two-dimensional flows.

Term III: This term represents the rate of change of vorticity due to diffusion.

2.3 Numerical method

Two-dimensional numerical simulations are used for the flow assessment in the
laminar two-dimensional flow regime. The unsteady Navier-Stokes equations are
solved using an operator splitting approach in combination with a pressure correc-
tion method. In this solution technique velocity and pressure terms are decoupled,
yielding a convection-diffusion problem for the velocity terms u and v (in the two-
dimensional case) and a Poisson equation for the pressure related correction term
p∗. This solution procedure was proposed and implemented by Timmermans [39]
and Timmermans et al. [40]. Later, this procedure was used by Kieft et al. [41] and
extended by Ren et al. [12] for mixed-convection problems. A brief overview of the
temporal and spatial discritization techniques is given below. Further details and
the step-by-step solution procedure can be found in Timmermans [39], Timmermans
et al. [40], Kieft [42] and Ren [43].
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(a) (b)

Figure 2.2: Domain and grid properties. (a) Quadrilateral elements, domain size and boundary
locations of the whole domain, (b) Quadrilateral elements and calculation points around the wire.
The solution in each element is approximated with 6th-order polynomials.

2.3.1 Temporal discretization

For the temporal discretization the operator splitting approach is used [43]. The
governing discretized set of equations is integrated forward in time using different
time steps. The convection term is treated differently than the diffusion and pressure
terms due to its nonlinear nature. The convection equation is integrated forward in
time by an explicit third-order Taylor-Galerkin scheme, which contains three explicit
time steps within one implicit time step. The diffusion equation is treated implicitly
using a second-order Backward Difference scheme. Because of the memory storage
limitations, an iterative technique is used and the solution of the linear system is
obtained using a pre-conditioning conjugate gradient method.

The pressure term is treated using a pressure-correction method. An interme-
diate velocity is calculated taking the pressure at the former time step. However,
the calculated velocity field is not divergence-free. Hence, it is used to determine a
pressure related correction term, p∗. For this, a pressure Poisson equation is formed
for p∗, by taking the divergence of the equation for the pressure difference of the last
two time steps and by enforcing the incompressibility constraint. Later this pressure
related correction term is used to calculate a corrected divergence-free velocity field.
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inflow u = 1 v = 0 ∂p∗/∂n = 0
outflow ∂u/∂n = 0 ∂v/∂n = 0 p∗ = 0
upper & lower ∂u/∂n = 0 v = 0 ∂p∗/∂n = 0
cylinder & wire u = 0 v = 0 ∂p∗/∂n = 0

Table 2.1: Boundary conditions for the calculation domain. u and v denote, respectively, the
horizontal and vertical velocity components and p∗ is the pressure related correction term. ∂/∂n
denotes the normal derivative.

2.3.2 Spatial discretization

A high-order Spectral Element Method (SEM) is used for the spatial discretization of
the conservation equations [44]. A typical grid is shown in Figure 2.2. SEM can be
considered as a combination of a Finite Element Method (FEM) and a Spectral Me-
thod (SM). It combines the advantages of FEM and SM. FEM brings its advantage of
flexibility in the decomposition of complex domains into elements. The use of high-
order approximation functions within such an element as in SM results in spectral
convergence and high accuracy [42].

The principle of SEM is rather straightforward. The matrix equations for the
approximate solution at the nodal points are constructed using the Galerkin Finite
Element Method. The integrals of the flow equations are multiplied by the local
weighting functions and evaluated using Legendre-Gauss-Lobatto quadrature [45].

2.3.3 Boundary conditions

The boundary locations are shown in Figure 2.2a and the prescribed boundary condi-
tions are summarized in Table 2.1. Dirichlet boundary conditions are used for the
velocity components at the inflow. A no-slip constraint is applied for the cylinder
and wire surfaces. The normal velocity at the upper and lower boundaries is set to
zero, v = 0. In combination with ∂u/∂n = 0, this implies a zero tangential stress
at these boundaries. At the outflow boundary, homogeneous Neumann boundary
conditions are applied for both of the velocity components.

The pressure correction scheme requires the use of homogeneous Neumann boun-
dary conditions for the pressure Poisson equation except for the outflow where the
use of stress-free boundary conditions for the velocity imposes p∗ = 0.

2.3.4 Computational details

The configuration that has been studied consists of two circular cylinders with dia-
meters D and d respectively, as given in Figure 2.1a. The corresponding diameter
ratio in the numerical simulations is D/d = 50. This diameter ratio is two times
the experimental value due to the computational consideration. The domain size



18 2.3 Numerical method

Re Nelem Npoint U∞ ∆t
80 1230 44766 0.8 0.03
100 1230 44766 1.0 0.03
120 1230 44766 1.2 0.03

Table 2.2: Computational details for the non-wired cases.

xw/D yw/D Nelem Npoint U∞ ∆t
0.75 0.5 932 33965 1.0 0.004
0.75 0.625 932 33965 1.0 0.004
0.75 0.75 932 33965 1.0 0.004
0.75 0.875 932 33965 1.0 0.004
0.75 1.0 982 35765 1.0 0.004
0.75 1.5 946 34457 1.0 0.004
0.75 2.0 984 35837 1.0 0.004
0.5 0.875 1378 50117 1.0 0.004

0.625 0.875 1288 46865 1.0 0.004
0.875 0.875 1362 49541 1.0 0.004
1.0 0.875 1400 50909 1.0 0.004

Table 2.3: Computational details for the wired cases. [Re = 100].

is chosen such that the wake flow region under consideration is not influenced by
the boundaries. Ren [43] performed an extensive study on the effect of the domain
size on the accuracy of solution. Based on his study, the dimensions of the two-
dimensional calculation domain are chosen as 60D × 48D, as shown in Figure 2.2a.
The cylinder has been placed 24D downstream of the inflow and 24D away from
the upper and lower boundaries. The same domain size is used for all of the two-
dimensional simulations.

The simulation parameters are presented in Tables 2.2 and 2.3 for non-wired
and wired cases, respectively. The calculation domain is decomposed into Nelem =

O(103) quadrilateral elements for the non-wired case and the wired cases. For each
element the solution is approximated by using a sixth-order polynomial expansion.
Thus, within each element there are 7 × 7 calculation points resulting in a total
number of calculation points of Npoint = O(105). After a trial simulation for the
(xw/D, yw/D) = (0.75, 0.75) case, it is concluded that increasing grid resolution to
Nelem ≈ 60000 does not change the accuracy of the results much. Due to the neces-
sity of using a smaller time step for the wired case, a lower grid resolution is used
to keep the computational costs reasonable. Non-dimensional time steps of 0.03 and
0.004 are used for the non-wired and wired cases, respectively. These time steps
correspond to a Courant number of approximately 0.3 for both cases.
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Reference Method Strouhal number
St = fshedD/U∞

Williamson [46] experimental 0.165
Williamson and Brown [47] experimental, curve fit

St = 0.2665− 1.018/
√
Re 0.165

Mittal and Raghuvanshi [48] numerical 0.168
Present study numerical 0.166

Table 2.4: Comparison of Strouhal numbers for flow past a circular cylinder for a Reynolds num-
ber of Re = 100.

In addition, special care was taken for the elements on the surface of both the
main cylinder and the wire in order to represent the geometry accurately. Especially
the grid around the wire had to be fine enough to resolve the shear layers around
it, as seen in Figure 2.2b. From Table 2.3, it can be seen that for the wired cases of
(xw/D, yw/D) = (0.5− 1.0, 0.875) larger number of elements are used. This is due to
the fact that for those cases embedding a relatively fine mesh into a relatively coarse
mesh needed better special treatment to keep the element aspect ratio close to 1.

As an extra validation of the simulation results, the non-dimensional shedding
frequency is compared to the values in literature [46–48] as shown in Table 2.4. The
comparison has been performed for the shedding frequency of the non-wired single
cylinder flow for Re = 100. From the table it is seen that the result of present simu-
lation is consistent with the results from literature.

2.4 Experimental system and techniques

The experimental study involves the application of two different experimental tech-
niques to different flow configurations. Both the electrolytic tin-precipitation me-
thod and Particle Image Velocimetry (PIV) are used for qualitative and quantitative
evaluation of the flow behind the non-wired cylinder, the wired cylinder and the
rotating cylinder.

2.4.1 Flow system and set-up

Towing tank

The experiments are performed in a towing tank with dimensions of L ×W ×H =

500 cm × 50 cm × 75 cm as shown in Figure 2.3 [42, 43]. The towing tank walls made
of 15mm thick single piece glass which provides optical accessibility from all di-
rections. The bottom and the side walls are insulated using foam to prevent heat
transfer and hence convective motions in the tank.
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Figure 2.3: Sketch of the towing tank used for experiments. (Figure is reproduced from Ren [43].)

The test model is mounted on a moving carriage system which is placed on the
top of the side walls. The carriage is pulled along the guiding rails by an electric
motor. The speed of the carriage is controlled by setting the rotational speed of the
electric motor. This towing system has the capability of reaching a maximum for-
ward speed of 20mm s−1.

The speed of the carriage corresponds to the free-stream velocity U∞ in the cylin-
der coordinate system. The water temperature is measured before every experiment
to accurately calculate the kinematic viscosity value. This kinematic viscosity value,
along with the desired Reynolds number, is used to calculate the corresponding free-
stream velocity. The experiments were conducted at flow velocities ranging from
6mm s−1 to 16mm s−1, corresponding to Reynolds numbers of 100 to 250 based on
the diameter of the cylinder.

Experimental models

A cylinder with diameter D = 15mm is used for the non-wired and wired experi-
ments. The cylinder diameter is chosen considering the speed range of the towing
system and Reynolds number range of the transition regime. The wire used in the
experiments has a diameter of d = 0.15mm, corresponding to a diameter ratio of
D/d = 100.



Research Methodology 21

(a) (b)

(c)

Figure 2.4: Measurement configurations. (a) Three-dimensional flow visualization configuration,
(b) Side-view configuration, (c) Back-view configuration.

The cylinder is mounted parallel to the bottom and perpendicular to the side
walls. Two circular perspex end plates with a diameter of 180mm are attached to the
end of the cylinder. The end plates are rotated towards the middle of the tank with
an angle of 18◦ with respect to the free-stream direction to ensure parallel shedding
of the primary von Kármán vortices. The length of the cylinder is L = 450mm.
However due to the inward rotated end plates the length of the middle section of
the cylinder, which faces the free-stream directly, is L = 320mm. This corresponds
to an aspect ratio of L/D = 21.3. The cylinder is placed in the middle of the water
level so that top and bottom surface effects are negligible. The distance from the
cylinder center to the top free surface and bottom wall equals 20 D.

Measurement configurations

Figure 2.4 shows the three different measurement configurations which are used
throughout the experiments. The first configuration is used for the three-dimensional
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flow visualization experiments, see Figure 2.4a. The flow field behind the cylinder
is illuminated using a slide projector. A camera is placed at the top of the set-up for
recording the images.

Figure 2.4b illustrates the second configuration, which is used for the investiga-
tion of the evolution of the primary, i.e. spanwise, vortices. This configuration is
used for both flow visualization experiments and PIV measurements. The flow field
is illuminated by a vertical laser sheet in the XY − plane with a thickness of 3mm.
In the PIV experiments, the images are recorded synchronously with two side-by-
side cameras to cover a larger field-of-view. The data obtained from the two-camera
configuration is combined in the post-processing stage.

The third configuration is used for the investigation of the evolution of the secon-
dary, i.e. streamwise, vortices. The layout of this configuration is shown in Figure
2.4c. The laser plane is located in the Y Z − plane with a thickness of 3mm. The
images are recorded through a mirror placed in the downstream of the wake. The
size of the mirror is 100mm × 100mm and is placed at an angle of 45◦ with respect
to the free-stream direction. The effect of the mirror on vortex shedding is evaluated
using top-view flow visualization experiments as shown in Figure 2.5. At the mirror
position of xm = 10D, parallel shedding of von Kármán vortices could not be achie-
ved, as indicated with an arrow in Figure 2.5a. On the other hand, when the mirror
center is located xm = 16D downstream of the cylinder, a clear parallel shedding is
seen for both low, Re = 100, and high, Re = 215, Reynolds number flows as shown
in Figure 2.5b and 2.5c, respectively. At this position, the generation of secondary
vortices is not affected by the mirror.

2.4.2 Electrolytic tin-precipitation method

Flow visualization is a powerful technique to locate flow structures and analyze
them qualitatively. For this purpose an electrolytic tin-precipitation method is used
[49]. The method is previously used in visualizations of flow structures behind hea-
ted cylinders [26, 43]. The implementation of the method is straightforward and
illustrated in Figure 2.6.

The technique is implemented by covering the surface of the cylinder with a tin
foil of thickness 0.07mm. The tin foil is connected to the positive pole (anode) of a
power supply. A conducting plate is connected to the negative pole and acts as a
cathode. In the present experiments, the cathode is a copper plate positioned at the
downstream side of the towing tank where it does not effect the flow.

When a voltage difference is applied, the following electrolysis reaction occurs
resulting in production of white tin(II)-hydroxide particles.

Sn(solid)− 2e− −→ Sn2+

Sn2+ + 2OH− −→ Sn(OH)2(solid) (2.8)
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(a) Re = 100, xm/D = 10 (b) Re = 100, xm/D = 16 (c) Re = 215, xm/D = 16

Figure 2.5: Top-view flow visualization experiments to test the effect of the presence of the mirror
on the near-wake structures behind the cylinder.

Figure 2.6: Experiment model and technique of electrolytic-tin-precipitation method.
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Figure 2.7: Configuration of a typical Particle Image Velocimetry experiment. (Figure is repro-
duced from Raffel et al. [52])

The production of particles is directly proportional to the applied voltage and the
conductivity of the water. Depending on the free-stream velocity, a voltage diffe-
rence of 12V to 15V is applied during the experiments. To enhance the amount of
particles, the conductivity of the water is increased by adding approximately 250g of
table salt to 2m3 water. The tin(II)-hydroxide particles have a diameter of O(1µm)

and are not dissolvable in pH-neutral water. Since they are emitted from the surface
of the cylinder directly into the boundary layer, the method becomes very useful as
a non-intrusive technique to visualize the vortical structures in the wake.

2.4.3 Particle Image Velocimetry

Particle Image Velocimetry (PIV) method is used for the quantitative evaluation of
the flow field. In this method the instantaneous velocity distribution is measured by
evaluating the motion of tracer particles present in the flow [50–52]. Among several
methods of PIV, the two-dimensional two-component PIV (2D-2C PIV) method is
used in this research. A brief overview of the PIV technique is given below.

Overview

A typical PIV configuration is presented in Figure 2.7 where the major components
of such a configuration are shown. PIV measures the local flow velocity indirectly
using tracer particles added to the fluid. These particles need to be small enough to
move with the local fluid flow velocity and big enough to reflect enough light for an
accurate recording. The tracer particles are illuminated twice using two laser pulses
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Measurement plane XY − plane Y Z − plane (xl/D = 4)
Freestream velocity U∞ = 11.2mm s−1 U∞ = 12mm s−1

Kinematic viscosity ν = 0.9333mm2 s−1 ν = 1.0047mm2 s−1

Number of cameras 2 (side-by-side) 1
Magnification M = 14.53 px/mm M = 15.49 px/mm
Field of view (single camera) Sx = 110.12mm Sy = 77.47mm

Sy = 82.59mm Sz = 103.29mm
Field of view (after merging) Sx = 211.29mm -

Sy = 82.59mm -
Lens focal length f = 50mm f = 50mm
Lens aperture f# = 2.8 f# = 2.8
Exposure time texposure = 25ms texposure = 25ms
Pulse delay ∆t = 1/15 s ∆t = 1/15 s
Number data files Nf = 3500 Nf = 2700

Table 2.5: Summary of PIV experiment details for side-view (XY −plane) and back-view (Y Z−
plane) wired cylinder measurements. [Re=180]

with a time delay of ∆t in between. The images of the particles are recorded using a
high-resolution digital camera.

The local velocity vectors are derived by applying special correlation algorithms
to the recorded image frames. The evaluation of the PIV images is carried out by
dividing them into smaller sub-domains called ’interrogation windows’. Applying
image cross-correlation for each interrogation window gives the local displacement
vector ∆x over time ∆t for the each corresponding interrogation window, assuming
that all the tracer particles in one interrogation window have moved homogeneously
between the two laser pulses. Afterwards, the calculation of the local measured
velocity is rather straightforward using Equation 2.9.

u =
∆x

∆t
(2.9)

Further details about the PIV method can be found in Adrian [50], Westerweel [51],
Raffel et al. [52].

Image acquisition

Prior to the experiments, 20µm diameter Polyamid Seeding Particles (PSP) are ad-
ded into the water of the towing tank. The seeded flow is illuminated using a single
pulsed 200mJ, 532nm Nd-YAG laser. The time between the two laser pulses is fixed
to 1/30 s. The TTL signal of the laser is used to trigger the camera system.

Instantaneous flow field images are captured using an image acquisition system
which includes two 12-bit MegaPlus ES 2020 cameras, a Redlake Megaplus II Ca-
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Measurement plane XY − plane Y Z − plane (xl/D = 4)
Image resolution 1600 px × 1200 px 1600 px × 1200 px
Interrogation window size 32 px × 32 px 32 px × 32 px
Overlap 50% 50%
Number of vectors(per frame) Nx = 98, Ny = 73 Ny = 73, Nz = 98

Ntotal = 7154 Ntotal = 7154
Spatial resolution ds = 1.10mm ds = 1.03mm

ds = 0.0733 D ds = 0.0689 D
Replaced vectors ≈ 0.5% ≈ 0.5%

Table 2.6: Summary of PIV data processing parameters for spanwise (XY-plane) and streamwise
(YZ-plane) wired cylinder measurements. [Re=180]

mera Control Console and a computer with NI-PCIe-1430 data acquisition card. The
camera has an interline, progressive scan CCD chip with an active area of 11.8mm×
8.9mm and a resolution of 1600 px × 1200 px, which corresponds to a pixel size of
7.4µm × 7.4µm. It has the capability of recording images with 30 frames/s (fps).
However, due to the large data flow in combination with computer recording limi-
tations, the data acquisition rate is limited to 15Hz during PIV experiments.

A summary of the experimental details for two types of experiments is given
in Table 2.5. As one can notice the camera field of view in both side-view and back-
view experiments is close to each other and corresponds to approximately (Sx, Sy) ≈

(7.3D, 5.5D) and (Sy, Sz) ≈ (5.2D, 6.9D) in terms of cylinder diameters, respectively.
However, in the side-view experiments two cameras in side-by-side arrangement is
used to cover a larger field of view which resulted in field of view of approximately
(Sx, Sy) ≈ (14.1D, 5.5D). The remaining recording parameters are the same in both
of the experiment types.

Image processing

The processing of the images is done using PIVview 3.0 ( c© PIVTEC GmbH) soft-
ware. The images of each camera are processed separately using the same method
and parameters. A summary of the PIV processing parameters for two different
type of experiments is presented in Table 2.6. As one can notice, the major difference
between the two types of experiments is the spatial resolution due to different mag-
nification factors. A snapshot of a superposed image pair before image processing is
shown in Figure 2.8a.

The images are processed using a multi-grid (grid refinement) algorithm. This
method uses a pyramid approach starting with larger interrogation windows on a
coarse grid and refining the interrogation windows and grid on each pass. In each
pass a cross-correlation with least squares Gaussian sub-pixel peak fitting is per-
formed. Outlier detection is used for filtering the intermediate vector fields. In
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(a) (b)

Figure 2.8: An example of image processing procedure; (a) Superposition of two consecutive
images, (b) Corresponding vector field of these images. [Re = 180]

the present experiments, the initial and final interrogation window sizes are set to
96 px× 96 px and 32 px× 32 px with 50% overlap in each direction, respectively. This
final grid resolution corresponds to a vector field of size Nx ×Ny = 98× 73 vectors.

Sub-pixel image shifting is enabled in all passes of the multi-grid algorithm. This
technique uses a second order method to deform the image data using the displa-
cements values of the previous interrogation passes. In the present work, 3rd-order
B-splines are used for sub-pixel image shifting.

The resulting velocity vectors from the interrogation process are validated using
a normalized median test with a threshold value of 2 [53]. The detected so-called
bad vectors are then replaced by using first low order peaks in the correlation plane,
second interpolation and third re-evaluation with larger window size. The second
and third methods are used only if the previous one did not fulfill the validation
criteria. Finally, Gaussian weighted smoothing operation is carried out to remove
the possible experimental noise from the resulting data field. The corresponding
vector field of the image pair in Figure 2.8a is shown in Figure 2.8b.

Merging of two vector fields

As stated above, during the side-view (XY-plane) PIV measurements two image
frames are recorded synchronously. After separate processing of the data, the ob-
tained vector fields are merged in the post-processing stage to get a larger vector
field. A sample merging procedure is demonstrated in Figure 2.9 showing an ins-
tantaneous spanwise vorticity field for a wired case experiment at Re = 180. The
overlapping region between the two frames is 6 data points (≈ 130 px) long in the
x-direction. Hence, the final merged data field has a size of Nx ×Ny = 190× 73 data
points. The figure represents a challenging example where a vortex is present in the
overlapping region. Part of the vortex is measured by two cameras and the velocity
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Figure 2.9: Instantaneous spanwise vorticity contours after merging, [Re = 180]. Two different
frames are labeled as frame 1 and frame 2 and indicated with arrows. To assess the averaging
methods which are given on the right hand side velocity and vorticity data is extracted along the
indicated line.

field needs to be continuous through the frame boundaries.

The merging approach of two independently measured vector fields is similar
to the one used in Herpin et al. [54] where they have used a simple averaging in
the overlapping region. In their method it is assumed that a flow variable ϕ in the
overlapping region can be simply calculated by taking a linear combination of the
data from frame 1 and frame 2 as follows.

ϕ = a1ϕ1 + a2ϕ2 (2.10)

with a1 and a2 being the corresponding weighting coefficients. To find the opti-
mum averaging method two methods are tested; simple averaging and weighted
averaging. The results are assessed by plotting the extracted spanwise vorticity and
velocity profiles on the wake centerline which is indicated in Figure 2.9 as ’extracted
profile’.

In the first method, the weighting coefficients are assumed to be equal and constant,
a1 = a2 = 0.5. These coefficients correspond to a simple averaging operation and
the result is presented in Figure 2.10. It is clear from the figure that close to the
frame boundaries, deviations are present in the merged vorticity and velocity pro-
files. This deviation is much more severe in the vorticity profile than in the velocity
profiles. The major cause of the deviation is the effect of image boundaries on PIV
interrogation and data calculations.

To minimize these boundary effects, a linear weighted averaging method is used.
The weighting coefficients a1 and a2 are taken as linear functions of the horizontal
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Figure 2.10: Extracted spanwise vorticity, horizontal and vertical velocity profiles after simple
averaging in the overlapping region. Each symbol in the figures corresponds to a PIV grid point.

distance within the overlapping region, as shown in Figure 2.9 and formulated as

a1 =
−x

x2 − x1
+

x2

x2 − x1

a2 = 1− a1 (2.11)

The results of the merging are presented in Figure 2.11 which clearly shows that the
boundary effects are minimized in the merged profiles.

Vortex identification

Vortices are defined using the λ2-method. The variable λ2 is

λ2 =

(
∂u

∂x
+

∂v

∂y

)2

− 4

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)

, (2.12)

which is the discriminant of the non-real eigenvalues of the velocity gradient tensor.
It has been shown that regions with negative values of λ2 indicate the presence of

vortical structures, see Jeong and Hussain [55], Vollmers [56]. Therefore, a vortex can
be defined as a region that is bounded with a closed λ2 contour line. Although the
numerical value that defines the contour level is free to choose, in this analysis the
value is set to be −0.1. So, any closed contour region where λ2 ≤ −0.1 is defined as a
vortex. Figure 2.12 shows the comparison of a PIV experiment and a SEM calculation
for the Re = 100 wired case. The contour plots indicate non-dimensional spanwise
vorticity and solid lines indicate λ2 = −0.1 contours. There is a clear similarity
between the measurement and the simulation.

Once the vortex is defined, the calculation of its strength and location is straight-
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Figure 2.11: Extracted spanwise vorticity, horizontal and vertical velocity profiles after weighted
averaging in the overlapping region. Each symbol in the figures corresponds to a PIV grid point.

forward. The circulation, i.e. strength, of a vortex is given by the area integral:

Γ =

∫

A

ωz dA (2.13)

where the area A is encircled by the constant λ2 contour line. An unstructured tri-
angular grid within a vortex area is used to perform the numerical integration. The
position of a vortex is determined by the location of its center, the coordinates of
which are calculated as:

xc =
1

Γ

∫

A

ωzxdA (2.14)

yc =
1

Γ

∫

A

ωzy dA (2.15)

Trajectories are extracted by tracking the vortex centers after formation. Each tra-
jectory was plotted by tracking one single vortex from formation until its exit of the
calculation domain. Two vortices were tracked individually for each case, i.e. one
from the upper row and one from the lower row. The wake orientation was then
calculated by taking the mean of upper and lower vortex trajectories.

Experimental uncertainty

A first estimation of the uncertainty is performed according to Raffel et al. [52]. They
have provided possible error sources of PIV experiments and approximate order of
magnitude of errors. Based on their analysis, the random measurement uncertainty
in PIV analysis is found to be σrms ≈ 2.23% for XY −plane experiments and σrms ≈
4.94% for Y Z − plane experiments.
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Figure 2.12: Definition of a vortex using λ2-method. Upper and lower figures show PIV mea-
surement and SEM calculation, respectively. Solid lines represent the contour line of λ2 = −0.1.
[Re = 100]
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inflow region

Figure 2.13: Point vortex model used for the analysis of the wake behind the inflow region.

A second approach for calculating the random error is given by Herpin et al. [54]
for the merged velocity fields. During the merging procedure the root-mean-square
(rms) values of the differences between the two velocity fields in the overlapping
region are calculated. These rms values can be thought of as a random error or mea-
surement uncertainty of two independent experiments. Based on their approach,
the rms value is calculated as (uframe1 − uframe2)rms

≈ 0.95%U∞ for the horizontal
velocity component and (vframe1 − vframe2)rms

≈ 1.22%U∞ for the vertical com-
ponent in side-view (XY-plane) measurements. These values are on the same order
of magnitude with the uncertainity values of Herpin et al. [54].

2.5 Point Vortex Model

The interaction of different vortices in the circular cylinder wake determines the be-
havior of the wake as a whole. A simple approach to model these interactions is the
Point Vortex Model. The vortex arrangement and configuration of the Point Vortex
Model is shown in Figure 2.13. In this model, every single vortex located at (xj , yj) in
the wake is assumed to be a point vortex with strength Γj . The vortices are assumed
to be away from the formation region. The velocity of a point vortex at the location
(xj , yj) is equal to the summation of velocities induced by other vortices [57]. This
formulation under a constant horizontal free-stream velocity U∞ takes the form:

uj = U∞ − 1

2π

∑

i( 6=j)

Γj(yj − yi)

(xi − xj)2 + (yi − yj)2
(2.16)

vj =
1

2π

∑

i( 6=j)

Γj(xj − xi)

(xi − xj)2 + (yi − yj)2
(2.17)

The derivation of the Point Vortex equations is made under the assumption of
infinitely long vortex rows. Due to the finite size of the calculation domain in this
research, the vortex rows are of finite length. This situation creates fluctuations in
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the trajectories at both ends of the calculation domain. In order to overcome this
problem, an inflow region is defined. This region has a constant number of vortices
which are positioned according to the stability criterion of von Kármán , a/δ1 =

0.281. The vortices in the inflow region are allowed to move only in the x−direction

with the velocity of u = U∞−Γ/(δ1
√
8). As soon as a vortex leaves the inflow region

all the restrictions on its position and motion are removed.
The relative position of vortices with respect to each other is determined by the

spacing ratio of δ1/δ2. The ratio δ1/δ2 for a specific upper vortex is defined as the dis-
tance to the previously shed upper vortex divided by the distance to the previously
shed lower vortex, see Figure 2.13.
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Chapter

3
Vortex dynamics in a

wire-disturbed cylinder
wake for Re = 100

∗

3.1 Introduction

Parallel to the studies of single cylinder flow, many researchers have conducted flow
control studies with the aim of suppressing vortex shedding. The most recent review
on flow control studies can be found in Choi et al. [58]. One of the methods for
vortex shedding suppression is using an external control cylinder in the near-wake.
Most of the studies of this wake control method consist of the investigation physical
mechanisms of wake interaction between the cylinder and a control cylinder.

Strykowski and Sreenivasan [59] studied the mechanism of flow suppression by
using an external control cylinder for low Reynolds numbers in the laminar, two-
dimensional periodic flow regime. They performed experiments at different Rey-
nolds numbers with different sizes and positions of the control cylinder. They dis-
cussed that for small Reynolds numbers there exists a region in which the control
wire can be placed, which leads to maximum effectiveness in damping and vor-
tex shedding suppression. This region is in the near-wake of the cylinder, outside
the maximum vorticity line of the steady wake and its shape depends on the Rey-
nolds number of the main cylinder flow and the diameter ratio. Although, they did
not achieve a suppression for Re > 80, they obtained considerable reduction of the

∗This chapter is adapted from: I. Yildirim, C.C.M. Rindt, A.A. van Steenhoven. Vortex dynamics in a
wire-disturbed cylinder wake. Physics of Fluids, 22:094101, 2010.
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shedding frequency. They concluded their experiments with an explanation of the
suppression mechanism using the approach of interacting shear layers as introduced
by Gerrard [6]. By placing the control cylinder in the near-wake the concentrated
vorticity diffuses such that the attraction force between the opposing shear layers
decreases. This reduction results in a lower shedding frequency. The configuration
at low Reynolds numbers was further studied by Mittal and Raghuvanshi [48], Di-
pankar et al. [60], Kuo et al. [61], Marquet et al. [62].

Several studies concentrated on the control and analysis of high Reynolds num-
ber flows. Sakamoto and Haniu [63] performed wind tunnel experiments at Rey-
nolds number of 65000 and diameter ratio of approximately 18. Their study concen-
trated on the effect of the control cylinder on fluid forces and shedding frequencies
by placing the control cylinder very close to the main cylinder. Dalton et al. [64]
used flow visualization studies in addition to numerical simulations to study the
suppression of vortex shedding at moderate Reynolds numbers. They noted that the
minimum values for drag and lift coefficients depend on the gap ratio between the
two cylinders and the angle of attack of the main flow.

The afore mentioned studies on the effect of a control cylinder all focus on the
near-wake dynamics like vortex formation mechanisms, drag and shedding charac-
teristics. However, little attention has been paid to the dynamics and properties of
the shed vortices in the far-wake. Ahlborn et al. [65] used empirical methods to
derive relations between the drag, shedding frequency and some properties of the
wake of a single cylinder. However, their study did not include any discussion about
the wake trajectories. The behavior of the wake trajectories in the heated cylinder
case was studied by Kieft et al. [41, 66] by means of Particle Tracking Velocimetry
and SEM simulations. The observed downwards deflection of the wake was explai-
ned using the Point Vortex Model.

Our initial flow visualization experiments showed that the presence of a wire mo-
difies the vortex trajectories in the laminar, two-dimensional periodic flow regime.
Sample images from these preliminary experiments are shown in Figure 3.1 where a
downwards tendency of the wake axis for the xw/D = 0.75 case and an upwards ten-
dency for the xw/D = 1.0 case are observed. The top-figure shows the visualization
result for the non-wired case. A regular staggered pattern of the shed vortices is ob-
served. For yw/D = 0.75 case, the upper vortex row is shifted downwards. This also
seems to hold for the lower vortex row although to a lesser extent. For yw/D = 1.0

case, the whole vortex street seems to show a widening where the upper vortices are
shifted upwards and the lower vortices downwards. Because the upward motion
appears to be larger than the downwards one, the wake axis moves up. Therefore,
the present chapter mainly focuses on the wake deflection phenomenon of the wire
disturbed cylinder wake.

The flow assessment has been performed at Reynolds number of Re = 100 as
function of various wire positions using SEM simulations, as summarized in Table
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Figure 3.1: Flow visualization images of wire disturbed circular cylinder wake. [Re = 100,
xw/D = 0.75]

2.3 in Chapter 2. Firstly, the effect of the wire on the temporal characteristics, such as
fluctuating velocity and vortex shedding frequency, are investigated. Secondly, the
effect of the wire on the wake behavior is presented by comparing the downstream
variation of vortex trajectories, wake centerlines and vortex strengths at different
wire positions. A Point Vortex Model is used to understand the relationship between
the wake trajectories and vortex properties. Thirdly, the assessment of the vortex
strengths and wake deflection is performed. Investigating vorticity flux properties in
combination with vortex shedding frequencies provides information about sources
of strength differences. Finally, the possible correlation between the wake deflection
and lift-drag characteristics of the main cylinder is investigated.

3.2 Temporal characteristics of the wake

3.2.1 Time-averaged streamwise velocity fluctuations

The time averaged streamwise velocity fluctuations urms for various wired and non-
wired cases at Re = 100 are shown in Figure 3.2. The results are obtained from
two-dimensional SEM simulations which are summarized in Chapter 2. In Figure
3.2, the "no wire" case represents the single cylinder flow without the effect of the
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Figure 3.2: Time-averaged streamwise velocity fluctuations, urms, contours obtained from SEM
simulations. [Re = 100, xw/D = 0.75].



Vortex dynamics in a wire-disturbed cylinder wake for Re = 100 39

Figure 3.3: Positions of the wire in the time mean vorticity field of the non-wired cylinder flow.
The contours represent the mean vorticity in the upper shear layer, while the solid line is the
maximum vorticity line, i.e. centerline for the upper shear layer. [Re = 100, xw/D = 0.75].

wire in the near-wake. Detailed observation of Figure 3.2 reveals that placing a wire
at one side of the cylinder has two consequences for the urms results; the change of
the fluctuation levels and the change of symmetry of the contours.

For the wire locations of yw/D = 0.75, 0.875 and 1.0, the differences from the re-
ference non-wired case are clearly noticeable. It is evident from the contour levels
for the cases yw/D = 0.75, 0.875 and 1.0 that the level of horizontal velocity fluctua-
tions is reduced. These observations are quantified by probing the maximum values
of the time averaged horizontal velocity fluctuations in the wake for each case, see
Table 3.1. The negative values for the difference indicate a reduction of velocity fluc-
tuations. The velocity fluctuation levels are reduced in all cases. However, for the
cases yw/D = 0.75, 0.875 and 1.0, the damping is larger than 10% with yw/D = 0.875

having a maximum of 15.29%. For the rest of the wire positions the damping is on
the order of a few percent. All the three wire positions with high damping values
are above the maximum vorticity line of the non-wired cylinder wake as shown in
Figure 3.3, where the wire positions are superposed with the time mean vorticity
field of the non-wired cylinder wake. It is likely that the wire-induced vorticity is
diffused in the upper shear layer of the main cylinder due to the interaction of the
wire generated positive vorticity and cylinder generated negative vorticity for these
three wire positions. The trend in the fluctuation difference with respect to the wire
position in Table 3.1 indicates that there is an optimal position for the wire where
the highest damping of the velocity fluctuations is achieved. This optimal position
is yw/D = 0.875 in the present study and above the maximum vorticity line, which
is consistent with the conclusions of Strykowski and Sreenivasan [59].

Another effect of the wire is breaking the symmetry in the urms contour plots. In
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Wire position urms |max Difference
no wire 0.3205
yw/D = 0.5 0.3174 -0.97 %
yw/D = 0.625 0.3046 -4.96 %
yw/D = 0.75 0.2844 -11.26 %
yw/D = 0.875 0.2715 -15.29 %
yw/D = 1.0 0.2826 -11.83 %
yw/D = 1.5 0.3181 -0.75 %
yw/D = 2.0 0.3182 -0.75 %

Table 3.1: Maximum levels of velocity fluctuations urms obtained from SEM simulations. The
last column shows the difference with respect to the reference single cylinder case. The negative
values indicate reduction in fluctuation levels.

the reference non-wired case, the urms contours are perfectly symmetric with respect
to the wake center line y/D = 0. However, when Figure 3.2 is examined in detail, it
can be seen that for all other cases the symmetry is broken. This effect of breaking
the symmetry is most pronounced for the cases of yw/D = 0.875 and 1.0. For the
yw/D = 0.875 situation, the fluctuation contours in the lower part of the wake are
elongated and its maximum point is closer to the cylinder than the maximum point
in the upper part. For the yw/D = 0.75 case, the elongated contours are located in
the upper part of the wake and the maximum points in the upper and lower parts
are located nearly at the same downstream position. These asymmetries in the urms

fields suggest that there might be a difference in the formation process of the upper
and lower vortices.

3.2.2 Shedding frequency

For further evaluation of the flow field, the vortex shedding frequencies are extracted
from the horizontal velocity data u which is obtained by data probing at the position
(x/D, y/D) = (2, 0) in the time dependent flow field. The non-dimensional shedding
frequency of the vortices is represented by the Strouhal number which is defined as
St = fshedD/U∞. The values of the Strouhal numbers for different wire positions are
presented in Figure 3.4. The Strouhal number for the non-wired case is calculated to
be St = 0.166. This value is indicated as a dashed line in Figure 3.4. Placing the
wire at a position of yw/D = 0.5 does not change the shedding frequency. This is in
line with the former results for the velocity fluctuations, where for this case a very
small reduction was observed. The Strouhal number takes its minimum value when
the wire is placed at the position of yw/D = 0.875. This corresponds to a shedding
frequency reduction of 9.64% compared to the non-wired case. One can recall from
Table 3.1 that this wire position is the one where maximum damping of the velocity
fluctuations is found. From that position on, the shedding frequency rises again up
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Figure 3.4: Non-dimensional shedding frequency, St, as a function of the vertical position, yw/D.
[Re = 100, xw/D = 0.75.]

to the value for the non-wired case.
In order to determine the effect of the streamwise coordinate of the wire, also

simulations were performed at the vertical position of yw/D = 0.875, for which
shedding frequency of the main cylinder was found to be most affected. It was
found that the effect of the horizontal position has a minor effect on the shedding
frequency when compared to the effect of the vertical position. In Strykowski and
Sreenivasan [59], it was shown that the optimum position of the second cylinder for
the wake control lies within boundaries of a closed elliptical region which is stret-
ched in streamwise direction and this region shrinks to a very small area for high
D/d ratios at a certain Reynolds number. From their conclusions it can be unders-
tood that shedding frequency of the main cylinder is more sensitive to the vertical
position of the control cylinder than for the horizontal position for a specific confi-
guration. Therefore, the wake dynamics analysis is only performed and reported for
the horizontal wire position of xw/D = 0.75.

3.3 Analysis of wake behavior

The analysis of the wake behavior is performed by investigating the trajectories and
strengths of vortices defined by constant λ2 = −0.1 contour. As an example, the vor-
ticity field, vortex boundaries and trajectories of the vortices for the wire positions
of yw/D = 0.75, 1.0, 2.0 are shown in Figure 3.5. The figure represents the instants
at which the upper vortices are formed. The downward deflection of the wake is
noticeable for yw/D = 0.75 in Figure 3.5a. However, the tendency of the wake is
upwards in Figures 3.5b and 3.5c in which the wire is positioned at yw/D = 1.0 and
yw/D = 2.0, respectively. Moreover, the interaction of the wire-generated vorticity
in the upper vortex formation area is seen in Figure 3.5a and 3.5b where the wire is
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positioned in or close to the upper shear layer. For the yw/D = 2.0 situation, the wire
is clearly out of the shear layer and does not show any vortex shedding.

3.3.1 Vortex trajectories and strengths

In order to elucidate the effect of the wire on the cylinder wake behavior, it is neces-
sary to look into the trajectories and strengths of the vortices for the simulated cases.
The simulated cases are categorized into three groups according to the tendency of
trajectories. In order to be remote of the formation dynamics region and the nume-
rical influences of the outflow boundary, the trajectories are plotted for the domain
8 ≤ x/D ≤ 32.

The results for the first group are presented in Figure 3.6. In the cases yw/D = 0.5

and 0.625, the vortices follow almost the same trajectories with a minor downwards
deflections when compared to the single cylinder case. Figure 3.6a shows the vortex
trajectories. The deflection is so low that it can be accepted as there is no wake deflec-
tion at all for the afore mentioned cases. This is also evident from Figure 3.6b where
the wake centerlines are shown. The comparison of the vortex strengths also shows
that there is no apparent strength difference between the considered cases and the
reference no-wire case, see Figure 3.6c. After these observations one may conclude
that placing the wire at the positions of yw/D = 0.5 and 0.625 do not bring any si-
gnificant difference by means of vortex trajectories and vortex strengths. However,
as stated in the previous section, the velocity fluctuations and the Strouhal numbers
are reduced.

The second group contains the cases with wire position yw/D = 0.75 and 0.875

in which the wake tendency is downwards. The wake properties of these two cases
are shown in Figure 3.7. Examining the trajectories in Figure 3.7a shows that there
is a uniform downward shift of both upper and lower vortex trajectories for the
yw/D = 0.75 case. On the other hand, the trajectories for the yw/D = 0.875 case are
not as uniform as for the yw/D = 0.75 case. Despite the downward tendencies of
both wakes, it is seen that they show different behaviors when the wake centerline
curves for both cases are compared. As shown in Figure 3.7b, the wake centerline
shows a linear downward path for the yw/D = 0.75 case. On the other hand, the
upward tendency of the upper vortices for x/D > 17 in Figure 3.7a is because of the
widening of the vortex street which is also seen in the no-wire case.

On the contrary, the wake for the yw/D = 0.875 case shows different characteris-
tics throughout the domain of interest. Firstly, the upper row shows higher upwards
deflection for downstream positions of x/D > 17. Secondly, the lower vortices are
constantly moving downwards with decreasing vertical velocity. This results in a
convex trajectory. The combination of these two differences end in a parabola-like
wake centerline curve with a minimum vertical position around x/D ≈ 19, see Fi-
gure 3.7b. Therefore the upwards trajectory of the upper vortex row can’t be solely
because of vortex street widening. When the strengths of these vortices are compa-
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(a) yw/D = 0.75

(b) yw/D = 1.0

(c) yw/D = 2.0

Figure 3.5: Flow field characteristics for the sample cases obtained from SEM simulations.
Contour plot indicates the vorticity field, solid lines are λ2 = −0.1 contour lines and dashed lines
represent the vortex trajectories for the upper and lower vortex rows. [Re = 100, xw/D = 0.75].
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(a) (b)

(c)

Figure 3.6: Wake properties obtained from SEM simulations at the wire positions of yw/D = 0.5
and yw/D = 0.625. (a) Vortex trajectories, (b) Wake centerlines, (c) Vortex strengths. [Re =
100, xw/D = 0.75].
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(a) (b)

(c)

Figure 3.7: Wake properties obtained from SEM simulations at the wire positions of yw/D =
0.75 and yw/D = 0.875. (a) Vortex trajectories, (b) Wake centerlines, (c) Vortex strengths.
[Re = 100, xw/D = 0.75].
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(a) (b)

(c)

Figure 3.8: Wake properties obtained from SEM simulations at the wire positions of yw/D = 1.0,
yw/D = 1.5 and yw/D = 2.0. (a) Vortex trajectories, (b) Wake centerlines, (c) Vortex strengths.
[Re = 100, xw/D = 0.75].
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red, one can see that both the upper and lower vortices in the yw/D = 0.75 case have
almost the same strength as the reference non-wired case, as shown in Figure 3.7c.
On the other hand, the upper vortices for yw/D = 0.875 case are weaker and the
lower vortices are stronger than their counterparts in the non-wired case. A down-
ward deflection of the vortex street can be caused by a strength difference between
the upper and lower vortex rows, as observed for the heated cylinder case in Kieft
et al. [41]. This possibly explains the downward deflection for the yw/D = 0.875

case. However, such a strength difference is not found for the yw/D = 0.75 case.
This point will be elucidated in more detail using Point Vortex simulations.

The wake behavior for the last three cases yw/D = 1.0, 1.5 and 2.0 belong to the
third group, where the overall tendency is upwards, see Figure 3.8a. The trajectory
analysis shows that the highest deviation from the reference case occurs for the wire
position of yw/D = 1.0. The upper vortices follow a higher path than for the other
cases. Although the position of the wire is out of the upper shear layer of the cy-
linder, the effect on the trajectories is prominent. Especially in the trajectories of the
upper row vortices there is a considerable deviation observed from the reference si-
tuation. The vortex centerlines which are shown in Figure 3.8b confirm the upwards
deflection of the wakes for the three cases. It can easily be noted that the highest up-
wards deflection is for the yw/D = 1.0 case, which has much stronger lower vortices
than the other cases, see Figure 3.8c. The lower vortices in all three cases have almost
the same strength but are weaker compared to the reference case.

In Figure 3.9 a comparison of the numerical and experimental results is shown.
Figure 3.9 is obtained by superposition of the numerically calculated vortex trajecto-
ries and the flow visualization results as shown in Figure 3.1. The top-figure shows
the comparison for the non-wired case. Both the numerical and experimental re-
sults show the same trajectory patterns. For the yw/D = 0.75 case, the downwards
deflection of the upper vortex row in the experimental results is larger than in the
numerical result, see Figure 3.9b. The lower vortex row trajectory matches the flow
visualization results quite well. For yw/D = 1.0, the wake-axis moves upwards in
both the experiments and the calculations, Figure 3.9c. Also the individual vortex
trajectories show the same trend, although the negative deflection in the lower vor-
tex row is somewhat larger in the experiments.

3.3.2 Assessment of vortex strengths

The effect of a wire on the strength difference is further analysed by defining two
additional parameters; local period averaged vorticity flux and total period avera-
ged vorticity flux. The local period averaged vorticity flux is defined as the flux of
vorticity passed through cross-stream line x/D = 1 and is formulated as:

φωz
(y) =

1

Tshed

∫

Tshed

u(y)ωz(y)dt (3.1)
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(a) no wire

(b) yw/D = 0.75

(c) yw/D = 1.0

Figure 3.9: Snapshots from flow visualization experiments and vortex trajectories obtained from
SEM simulations (solid lines). [Re = 100, xw/D = 0.75].

Wire position |ΓU | ΓL

no wire 1.633 1.633
yw/D = 0.5 1.671 1.636
yw/D = 0.625 1.666 1.598
yw/D = 0.75 1.596 1.648
yw/D = 0.875 1.267 1.963
yw/D = 1.0 1.273 1.980
yw/D = 1.5 1.347 1.745
yw/D = 2.0 1.340 1.735

Table 3.2: Circulation values of vortices at downstream position x/D = 15.
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where Tshed is the shedding period. The integration of φωz
(y) over the cross-section

x/D = 1 gives the total period averaged vorticity flux Φ, which is a measure of all
upstream produced vorticity which possibly ends up in the vortex structures. For
the upper half of the wake the integration domain is taken as y = [0, L]. The total
period averaged vorticity flux ΦU then becomes:

ΦU =
1

L

∫ L

0

φωz
(y)dy (3.2)

Similarly, for the lower half of the wake the total period averaged vorticity flux ΦL

is based on the integration domain y = [−L, 0].

From Figures 3.7c and 3.8c, it can be seen that the presence of a wire has a relati-
vely large impact on the circulation values for both the upper and lower vortex rows.
In Table 3.2 the circulation values are presented for downstream position x/D = 15.
From this table it can be seen that for wire position values yw/D ≥ 0.875 the up-
per vortices become weaker due to the presence of the wire and the lower vortices
become stronger, and the question could rise why that is. To answer this question
further assessment of the effect of the wire on the vortex strengths can be done by
evaluating the vorticity produced by the main cylinder and the wire. For this pur-
pose the total period averaged vorticity flux defined in Equation 3.2 is used.

In Figure 3.10a, the values of ΦU and ΦL are shown with respect to the wire
position. It is obvious that despite the asymmetry in the wake, the total circulation
entering the wake from both sides of the cylinder is constant, i.e. Φ ≈ |ΦU | ≈ ΦL, and
this constant depends on the position of the wire. Assuming that all the circulation
transported into the wake during one shedding period ends up in a vortex, one
would expect the quantity ΦTshed to be directly proportional to the average vortex
strength Γave = (|ΓU | + ΓL)/2, i.e. ΦTshed ∝ Γave or Φ ∝ Γavefshed. From Figure
3.10a and 3.10b it can be seen that there is indeed a high correlation between the
two curves of Φ and Γavefshed. As a measure of the vortex strengths, the circulation
values from Figures 3.6c, 3.7c and 3.8c at the downstream position of x/D = 15 are
taken, as presented in Table 3.2.

As can be seen from the Figures 3.4 and 3.10a, for each wire position Φ and fshed
are highly correlated for both the upper and lower halves of the wake. Thus, when
ΓU is reduced by the effect of the wire, then ΓL should increase in order to fulfill the
condition Φ ∝ Γavefshed. This explains the increase of the lower vortex strengths for
the yw/D = 0.875 and 1.0 cases. On the other hand, as concluded from Table 3.2 for
the yw/D = 1.5 and 2.0 cases, the upper vortices are weaker as compared to the non-
wired case but now the lower ones remain almost at the same strength. This looks
in contradiction with the discussion above. However, examining the instantaneous
vorticity fields in Figure 3.11 for these two cases reveals that the vorticity generated
by the wire does not directly contribute to the vortex formation. On the other hand,
the negative vorticity originating from the wire seems to interact with the upper
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(a) (b)

Figure 3.10: The effect of wire position on: (a) Total period averaged vorticity flux at cross section
x/D = 1 [|ΦU |: upper half of the wake, ΦL: lower half of the wake.]; (b) Circulation times
shedding frequency at x/D = 15 [ΓU : upper vortices, ΓL: lower vortices].

vortex which is shed from the main cylinder at some distance after its formation.
Probably this explains why the Strouhal number for these two cases is almost the
same as for the non-wired case. It is likely that this interaction causes the upper
vortices to become weaker without affecting the strengths of the lower vortices.

3.4 Analysis of vortex arrangement in the wake

The vortex arrangement in the wake can be a factor for the wake deflection. To
evaluate the effect of the wire on the vortex arrangement the Point Vortex approach is
used. For that purpose, each vortex which is out of the formation region is assumed
as a point vortex. In Figure 2.13 the layout of the wake was shown. The vortex
arrangement is assessed using the vortex distance ratio δ1/δ2. For the von Kármán
vortex street configuration, obvoiusly the ratio of δ1/δ2 is equal to 2 as shown in
Figure 3.12a. Other possible vortex arrangements are also shown in Figures 3.12b
and 3.12c for different values of the distance ratio.

In Figure 3.13 the distance ratio δ1/δ2 as deduced from SEM calculations is shown
for the different cases. The distance ratio is equal to 2 for the single cylinder case
where there is no deflection at all. Throughout the domain the δ1/δ2 ratio is slightly
above 2 for the yw/D = 0.5 and 0.625 cases. For the yw/D = 0.75 case the ratio is
substantially larger than 2 but slowly decreasing downstream. For the yw/D = 0.875

case, the curve crosses the δ1/δ2 = 2 line around x/D = 15. This point corresponds
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(a) (b)

Figure 3.11: Instantaneous vorticity fields of (a) yw/D = 1.5; (b) yw/D = 2.0.

(a) δ1/δ2 = 2 (b) δ1/δ2 < 2 (c) δ1/δ2 > 2

Figure 3.12: Point Vortex layouts for different spacing ratios.

more or less to the point where the wake deflection changes from downwards to
upwards. For the cases yw/D ≥ 1.0 the distance ratio curves always remain below 2.
The most severe trend is for the yw/D = 1.0 case where the divergence of the δ1/δ2
curve is the highest.

Point Vortex simulations are done for the assessment of the vortex arrangement
and strength difference on the wake deflection. The quantitative values used in the
model are in the same order of magnitude as the values coming out of the numerical
simulations discussed above. Firstly, the behavior of vortices with equal strengths
and then the arrangement with stronger upper vortices are evaluated.

3.4.1 Equal vortex strengths

First part of the simulations comprises evaluation of the vortex distance ratio. For
this purpose, the vortex strengths are taken to be |ΓU | = |ΓL| = 2, where ΓU and
ΓL are the strengths of upper and lower vortices respectively. The point vortices are
initially distributed according the spacing ratio of a/δ1 = 0.281 for which the von
Kármán vortex street is considered to be stable. As shown in Figure 3.14a, the simu-
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(a) (b)

(c)

Figure 3.13: Downstream variation horizontal distance ratio δ1/δ2. Note that δ1/δ2 = 2 cor-
responds to stable von Kármán vortex street. The results are obtained from SEM simulations.
[Re = 100, xw/D = 0.75].
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lation results for the von Kármán Vortex Street show that there is no deflection in the
trajectories. However, when the upper vortices are moved downstream in the initial
vortex arrangement, i.e. to the right in Figure 2.13, and the simulation is repeated the
trajectory of the vortices show a downwards deflection. It should be noted that in
this configuration the spacing ratio is δ1/δ2 = 2.4 and the vortex arrangement is as
in Figure 3.12c. Similarly, when they are moved upstream the wake goes upwards
and the spacing ratio is δ1/δ2 = 1.6, as shown in Figure 3.12b. The Point Vortex si-
mulation results which are presented here, show that modified vortex arrangement
and wake deflection can be achieved without having strength difference between
the vortices. In the modified wake vortex arrangement, the induced vertical velo-
city components vj of Equation 2.17 are not canceled out anymore. Because of this
non-zero vertical velocity component wake deflection is seen.

3.4.2 Stronger upper vortices

In the second part of the Point Vortex Simulations the initial vortex configuration
is fixed in order to evaluate the effect of the strength difference. The configuration
has an initial vortex distribution of a/δ1 = 0.281 like the von Kármán Vortex Street
configuration. The simulations are done for the values ΓU = −2 and ΓL = 1.2. The
resulting vortex trajectories are shown in Figure 3.14b where the tendency of the
wake is downwards.

This situation is explained as follows. In the Point Vortex model, the resultant
horizontal velocity of the lower vortices, uj |lower in Equation 2.16, is calculated as
the free-stream velocity minus the total induced velocity. When the upper vortices
are stronger, they will induce a higher negative horizontal velocity on the lower
vortices. An increased induced negative horizontal velocity of the lower row makes
the lower vortices to move slower than the upper vortices. Thus, the lower vortices
become closer to the upstream upper vortices as they move downstream. This results
in a point vortex arrangement with a spacing ratio δ1/δ2 > 2 as in Figure 3.12c. In
the modified wake vortex arrangement, the induced vertical velocity components vj
are not canceled out anymore. A negative vertical velocity is induced for each vortex
in the array, which makes the wake to move downwards. The opposite conclusion
is also true. When the lower vortices are stronger, the upper ones move slower and
become closer to the upstream lower vortices and the wake moves up. A detailed
analysis for the similar situation of heated cylinder wake can be found in Kieft et al.
[66] and Kieft et al. [41]. In that case the upper vortices are stronger than the lower
vortices and the wake trajectory moves downwards.
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(a) (b)

Figure 3.14: Point Vortex Simulations for various cases. (a) Effect of position change of upper
vortices, |ΓU | = |ΓL|. (b) Effect of strength difference, |ΓU | > |ΓL|.

3.5 Lift and drag characteristics of main cylinder

In addition to its wake characteristics, lift and drag characteristics of the main cy-
linder are also evaluated for different positions of the wire for which the results are
illustrated in Figure 3.15. The lift and drag of the cylinder are calculated by integra-
ting the stress components on the surface of the cylinder.

The comparison of time averaged drag coefficients in Figure 3.15a shows that a
drag reduction is obtained for all wire positions. The highest reduction compared
to the single cylinder case is 6.4% and seen at wire position of xw/D = 0.75. This
value is much lower than the value reported by Dalton et al. [64] for the same Rey-
nolds number but for a different configuration. They found a drag reduction of 33%
when the vortex shedding was suppressed. The variation of the Strouhal number
as presented in Figure 3.4 and the mean drag coefficient show a similar behavior as
function of the wire position, however with slightly different location for the mini-
mum value. The correlation in the trend is in good agreement with the conclusions
of Strykowski and Sreenivasan [59] who stated that mean drag reduction can also be
seen in some cases where the vortex shedding frequency is reduced or suppressed.
The fluctuating lift coefficient in Figure 3.15b is following the same trend as the mean
drag coefficient. Similarly, the highest damping of the fluctuating lift coefficient oc-
curs again at the same location with 46.9% reduction when compared to the single
cylinder case.

Breaking the symmetry of the circular cylinder flow with a wire clearly shows its
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(a) (b)

Figure 3.15: Comparison of lift and drag characteristics of the main cylinder. (a) Mean drag
coefficient CDmean . (b) Mean lift coefficient CLmean and fluctuating lift coefficient CLrms .

effect on mean drag coefficients and fluctuating lift coefficients as well as on mean lift
coefficients. It should be recalled from the previous sections that the highest uniform
downward deflection occurs at a wire position of yw/D = 0.75, where minimum
mean drag and fluctuating lift coefficients are seen. This position also corresponds
to the wire location where the highest positive mean lift coefficient is found, Figure
3.15b. It is likely that a downwards deflection is the signature of a mean positive lift
acting on the main cylinder.

It is known from basic fluid dynamics theory that a positive lift is related to a
negative circulation around the cylinder [57]. This negative circulation on its turn
results in downwards deflected streamlines, i.e. a negative deflection of the vortex
street. This global picture seems to hold for wire position yw/D = 0.75. For other
positions of the wire less clear or even conflicting results are observed.

3.6 Concluding remarks

In this chapter, the two-dimensional case of a wire disturbed cylinder wake flow at
Re = 100 is studied. SEM simulations and flow visualization experiments are used
to evaluate the effects of the wire on wake. The primary effect of the wire is reducing
the velocity fluctuations in the vortex formation region of the cylinder. Additionally,
the shedding frequency is also reduced. The amount of reduction depends on the
position of the wire. The results indicate that there is an optimal point for maximi-
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Configuration St number |ΓU | − |ΓL| Deflection
no wire 0.1660 δ1/δ2 = 2 0.000 no deflection
yw/D = 0.5 0.1658 δ1/δ2 > 2 0.035 downwards
yw/D = 0.625 0.1624 δ1/δ2 > 2 0.064 downwards
yw/D = 0.75 0.1532 δ1/δ2 > 2 -0.063 downwards
yw/D = 0.875 0.1503 δ1/δ2 > 2 -0.714 downwards
yw/D = 1.0 0.1569 δ1/δ2 < 2 -0.644 upwards
yw/D = 1.5 0.1656 δ1/δ2 < 2 -0.341 upwards
yw/D = 2.0 0.1671 δ1/δ2 < 2 -0.351 upwards

Table 3.3: Summary of Strouhal number, the distance ratio, the strength difference |ΓU | − |ΓL|
values at x/D = 20 and wake deflection direction for different wire positions. [Re = 100]

zing the effect of the wire, at yw/D = 0.875, which is slightly over the maximum
vorticity line in the shear layer. In agreement with the discussion of Strykowski and
Sreenivasan [59], it can be concluded that the effect of the wire is to damp the growth
of disturbances which in turn results in a lower shedding frequency.

The secondary effect of the wire is seen in the wake of the cylinder, i.e. the ki-
nematics of the vortices. The major findings on the effect of the wire on the wake
vortex arrangement are summarized in Table 3.3. The wire results in a modified vor-
tex arrangement in the wake and a strength difference between the upper and lower
vortices. For the yw/D = 0.75 case, both the upper and lower vortices have almost
the same strength as compared to the reference single cylinder case. However, the
placement of the wire apparently induces a different formation process for the upper
and lower row vortices, causing the upper vortices to position themselves closer to
the previously shed lower vortices. As shown in the Point Vortex Simulations, the
resulting modification of the vortex arrangement causes the downwards deflection
of the wake. Similarly, the wake goes upwards for the opposite case where the upper
vortices are closer to the subsequently shed lower vortices. .

When the change in vortex arrangement is combined with a strength difference,
the effect of the wire becomes even more severe, as in the yw/D = 1.0 case. In this
situation, the stronger lower vortices induce a higher negative horizontal velocity
for the upper vortex row. This higher induced velocity makes each upper vortex to
move slower and become closer to the subsequently shed lower vortex.

Another interesting result is seen in the yw/D = 0.875 case, where the upper
vortices are positioned closer to the previously shed lower vortices in the formation
region, like in the yw/D = 0.75 case. Because of this, the wake has a downwards
tendency like in the yw/D = 0.75 case. On the other hand, the higher strength of
the lower vortices makes the upper vortices to move slower and become closer to
the subsequently shed lower vortices. Because of this reason the wake in this parti-
cular case changes its tendency in the downstream region of the wake and starts to
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go upwards. This phenomenon can also be seen in the visualization results for the
yw/D = 1.0 case as presented in Figure 3.1.

Based on the observations above a hypothesis about the wake deflection in the
two-dimensional case is formulated: the deflection of the wake is primarily caused by a

modification of the vortex arrangement in the wake. The strength difference between the
upper and lower row vortices is only a tool for achieving a modification of the vortex
street like in the case of a heated cylinder [41, 66]. A repositioning of the vortices is a
necessary and sufficient condition for the wake deflection to occur. The conclusions
from the present study state that;

1. δ1/δ2 = 2: undisturbed von Kármán Vortex Street with no deflection.

2. δ1/δ2 > 2: downwards deflection.

3. δ1/δ2 < 2: upwards deflection.

As concluding remarks, it can be said that placing a very thin wire in the near-wake
of a cylinder not only changes the vortex shedding frequency by effecting the velo-
city fluctuations but also changes the formation process of the vortices. The change
in the formation process results in a modified vortex arrangement which causes the
deflection of the wake.
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Chapter

4
Period-doubling in

Mode-C transition for
Re ≥ 180

4.1 Introduction

In fluid mechanics, several ways are defined for a flow system to go into a turbulent,
i.e. chaotic, state. Drazin [67] discussed that the period-doubling transition is one of
the transition mechanisms of a such a process. Due to the flow system investigated,
the period-doubling transition will be briefly discussed here.

Basically, period-doubling is a transition route to chaos through a subharmonic
cascade, as summarized by Kundu and Cohen [68]. In a typical non-linear system, as
the nonlinearity parameter R is increased, there exists a limit cycle with a frequency
f . However, in a system with period-doubling character, the further increase of R
generates additional frequencies in the form of subharmonic frequency components
of f/2, f/4, f/8, . . .. Each time when a subharmonic is added to the system, the
period is doubled without losing the periodicity of the system.

Libchaber et al. [69] reported that some cases of Rayleigh-Bénard convection
might be an example of a period-doubling type instability. Their results were based
on experiments. They wrote that the rolls of Rayleigh-Bénard convection showed an
oscillatory behavior with frequency f for Ra = 2Racrit. Furthermore, they presented
a spectrum showing subharmonic oscillations at frequencies f/2, f/4, f/8, f/16, f/32
for Ra > 2Racrit.

A second example for period-doubling in fluid flows is the wake behind circular
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rings. Sheard et al. [30] provided computational results and first experimental obser-
vations about the existence of the subharmonic mode Mode-C in the wake of a ring
with aspect ratio AR = 5 at Re = 200. However, their main conclusion was that the
period-doubling bifurcation associated with the development of Mode-C wake does
not initiate a period-doubling cascade in the vortex street.

Another possible example is the wire-disturbed circular cylinder wake in transi-
tion regime. Zhang et al. [13] originally showed that transition of a wired cylinder
wake exhibits a different transition mode and named it as Mode-C. The framework
of this chapter is to analyze the traces of period-doubling behavior in Mode-C tran-
sition in detail.

Firstly, general characteristics of Mode-C transition at Re ≥ 180 are determined
in several different ways. The wire is fixed at position of (xw/D, yw/D) = (0.75, 0.75)

throughout all the experiments mentioned in this chapter. The flow visualization ex-
periments illustrate the global picture of the phenomena and provides a global view
of the physics of wake transition. The point velocity analysis provides information
about local flow characteristics and period doubling nature of the wake. Processing
the point velocity data leads to several other characteristic properties of Mode-C
wake such as phase plots, power spectra and Strouhal numbers.

Secondly, to understand the physical mechanism of the period doubling charac-
ter of the wake, the instantaneous vorticity patterns of the primary and secondary
vortices are shown using PIV vector fields of the near-wake. Image sequences from
flow visualization experiments are used to analyze the time evolution of secondary
vortices. The overall analysis of the physics of the wake and feedback mechanism of
vortices gives insight into the origin of the period-doubling character of the Mode-C
transition.

4.2 General characteristics of Mode-C transition

4.2.1 Overview by flow visualization experiments

As a first step, the influence of a wire on the cylinder wake flow was investigated
by three-dimensional flow visualizations which revealed the general physics of the
Mode-C structures in transition regime. The global effects of a wire on the laminar
wake transition of a circular cylinder are shown in Figure 4.1, which contains snap-
shots taken with the camera placed on top of the setup, see Figure 2.4a. The frees-
tream velocity is in the positive X-direction and the camera axis is in the negative
Y -direction in the global coordinate system. The original images are recorded by a
digital camera and later on processed by image processing software. Each snapshot
in the figure represents the vortex shedding phase at which the upper von Kármán
vortex starts to form. In the snapshots, von Kármán vortices, i.e. primary vortices,
are aligned along the cylinder axis while the Mode-C vortices, i.e. secondary vortices,
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are formed between the primary vortices aligned in the streamwise direction.

The results in Figure 4.1 clearly show the wake transition structure in the case
of a wire-disturbed circular cylinder wake. No apparent three-dimensional vortical
structures are present for Re = 165, despite the existence of two-dimensional von
Kármán vortices emerging from the cylinder. However, forRe ≥ 180 fine-scale three-
dimensional vortical structures appear in the wake, indicating a transition process.
It is obvious that the critical Reynolds number for the transition, Recrit, lies between
Re = 165 and Re = 180. The Reynolds number for the onset of Mode-C instability
is given as Re = 170 by Zhang et al. [13]. However, the experimental setup and
methods used in this study did not allow an accurate determination of Recrit.

The snapshots in Figure 4.1 show that the formed three-dimensional structures
are actually secondary streamwise vortices around the primary von Kármán vor-
tices. These secondary structures indicate the presence of Mode-C type instability
in the wake transition regime, see Zhang et al. [13]. They are uniformly distributed
along the span of the cylinder with a spanwise wavelength of λz ≈ 2D. They are
formed in the near-wake and continue to exist in the far-wake too.

The Reynolds number range of the experiments covers both Mode-A and Mode-
B regions of natural vortex shedding. So, the results presented in Figure 4.1 indicate
the replacement of natural shedding modes with a forced shedding mode (Mode-C)
in the Reynolds number range of 180−300. In this range, Mode-C structures get more
disordered with increasing Reynolds number. However, unlike the natural wake
transition there is no drastic change in the vortex structure with increasing Reynolds
number. When compared to the other shedding modes (Williamson [11], Ren et al.
[12]), the differences in the wake structures suggest that the physical mechanism of
formation is also altered by the wire.

Figure 4.2 shows the image sequence taken during experiments for Re = 195. In
the page coordinate system the cylinder is on the top and the flow direction is from
top to bottom. The time difference between each consequent snapshot from left to
right in the figures is one shedding period which is denoted as Tshed. Examination
of the instantaneous image sequence in Figure 4.2 reveals an interesting feature of
the Mode-C transition. In both the left and middle snapshots, the wake behind the
cylinder has the same three-dimensional structures but with a shift of approximately
1 cylinder diameter in spanwise position. The structures which appear on the line
on the left snapshot appear again on the line after 2 shedding periods. So, effectively,
the shedding period has become 2 shedding cycles. This is an indication that Mode-
C transition has a period doubling character which shows itself as shift in spanwise
position of Mode-C vortices in every cycle. Period doubling behavior is observed in
all of the flow visualization experiments in the wired cylinder transition regime. Ho-
wever, this behavior has been observed neither in non-wired cylinder nor in heated
cylinder wake transition.
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Figure 4.1: Top-view visualizations of circular cylinder wake under the influence of a near-wake
wire. Each picture is the instantaneous snapshot of the flow state taken at the corresponding Rey-
nolds number. Flow direction in the pictures is from left to right.
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Figure 4.2: Top-view visualization of Mode-C structures at Re = 195. Flow direction in the
pictures is from top to bottom.

4.2.2 Point velocity characteristics

The further analysis of Mode-C wake transition is done by examining point velo-
city data in the near-wake. The velocity data is obtained from PIV experiments by
placing a data probe at specific locations and tracing the data through consecutive
vector fields. The velocity fluctuations in the wake identifies the distinct characteris-
tic properties of Mode-C transition.

Figure 4.3 exhibits cross-stream velocity variation that correspond to different
Reynolds numbers of wired-cylinder wake flow. The velocity data is extracted at
the point (x/D, y/D) = (4.5, 1.5) from XY − plane PIV measurements, see Figure
2.4b. For each graph, the velocity and time data are non-dimensionalized using cor-
responding free-stream and shedding period values, respectively. The shortest data
record in term of shedding periods is at Re = 100 where the periodicity of laminar
vortex shedding is apparent. In the transition regime the signal preserves its perio-
dic nature with an irregularity whose level is increasing with Reynolds number. The
nature of this irregularity can be clearly seen in the velocity-time data for Re ≥ 180

where a distinct shape of consecutive ’W’-shaped ’high peak-low peak’ pattern is
displayed.

Figure 4.4 shows two cross-stream velocity signals at Re = 180 but obtained from
different PIV experiments. Figure 4.4a represents data from XY − plane and Figure
4.4b from Y Z−plane measurements. The location of the data probes are shown next
to the corresponding graphs.
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Figure 4.3: Time traces of vertical velocity component v for different Reynolds numbers in
the Mode-C transition regime. Velocity data is obtained by using a data probe located at
(x/D, y/D) = (4.5, 1.5) in PIV vector fields.
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(a)

(b)

Figure 4.4: Time trace of vertical velocity component v in two different experiments. a)
XY − plane PIV experiments, Re = 180, data probe point is (x/D, y/D) = (4.5, 1), b)
Y Z − plane PIV experiments, Re = 180, data probe point is (xl/D, y/D) = (4.5, 1). The
Z − coordinate of the data point is selected to be between two secondary vortices. The time axis
is non-dimensionalized with corresponding shedding periods of each experiment.

’High peak-low peak’ velocity signal

Figure 4.4 presents the typical ’high peak-low peak’ velocity-time signal, as indica-
ted by brackets in both of the graphs. This pattern is much more clear in Figure 4.4b
than in Figure 4.4a due to the data probe location between the two secondary vor-
tices where their effect on the cross-stream velocity is maximum. In Figure 4.4a, due
to the nature of the experiment in XY − plane measurements it was not possible to
put the laser plane, hence data probe point, between the secondary vortices. Despite
this fact, the signal in Figure 4.4a still contains ’high peak-low peak’ pattern. In the
velocity signals of other experiments this characteristic shape is also noticeable. The-
refore, it can be said that ’high peak-low peak’ pattern is actually the characteristic
shape of the velocity time signal in Mode-C transition.



66 4.2 General characteristics of Mode-C transition

(a) vp = vi (b) vp = vV K + vi (c) vp = vV K − vi

Figure 4.5: Analysis of ’high-peak-low-peak’ velocity profile in Mode-C wake. a) Point Vortex
Model, b) Upwards induced velocity, vi > 0, due to secondary vortices, c) Downwards induced
velocity, vi < 0, due to secondary vortices. vV K is vertical velocity component induced by von
Kármán vortices and vV K > 0. Blue (solid line) and red (dashed line) denote positive and negative
streamwise vorticity, respectively.

Figure 4.6: Downstream variation of the vertical velocity v in the upper half of the wake. Re =
180.

The physical explanation for this ’high peak-low peak’ pattern requires the reca-
pitulation of the Point Vortex Model, as shown in Figure 4.5. If a point point p lies on
the mid-line of a vortex pair as shown in Figure 4.5a, then the velocity of the point p

is vp = vi with vi being the total induced velocity by two counter rotating point vor-
tices of equal strength, Γ− and Γ+. Assuming that point p lies between two secondary
vortices in Mode-C wake as shown in Figure 4.5b and Figure 4.5c, vp will consists of
two components; induced velocity of primary von Kármán vortices, vV K , and se-
condary vortices, vi. At the vortex shedding time t = nTshed, when the secondary
vortices are at their uppermost position, vV K is always positive, vV K > 0.

As seen in Figure 4.5b and Figure 4.5c the vorticity of secondary vortices changes
sign after every period Tshed which also affects the direction of induced velocity vi
at point p. Hence, vp = vVK + vi at t0 corresponds to the ’high peak’ in the velocity
signal and vp = vV K − vi at t0 + Tshed to the ’low peak’.

The above discussion shows that the difference between the ’high’ and ’low’
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peaks in the velocity signal is due to the induced velocity of secondary vortices,
which changes sign in every shedding cycle. Figure 4.6 shows that this difference is
decreasing in streamwise direction. This suggests that the induced velocity vi, hence
vortex strengths of secondary vortices, is decreasing and the cross-stream velocity
component is converging to the value of vV K .

Phase plots

(a) (b)

(c) (d)

Figure 4.7: Phase plot of velocity data in Mode-C transition. a) Temporal variation of u velocity,
b) Temporal variation of v velocity, c) Phase plot of the velocity data which is shown in dashed
boxes in the plots (a) and (b). Velocity data is from XY-plane PIV experiments at Re = 180. d)
Phase plot for laminar two-dimensional flow at Re = 100. Data probe point in all experiments is
(u, v)(x/D, y/D) = (4.5, 1.5).

The analysis of point velocity data showed that Mode-C transition regime exhi-
bits a unique repetitive ’high peak-low peak’ velocity signal pattern due to the se-
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Figure 4.8: Spanwise variation of v velocity spectra at Re = 180. The streamwise and transverse
coordinates of the data probe points are (x/D, y/D) = (4.5, 1.5).

condary Mode-C vortices which change sign every vortex shedding cycle. The time
difference between the consecutive high peaks (or low peaks) is twice the period of
the signal, which indicates that the signal has a period-doubling character. Period-
doubling can also be evidenced in the phase plots of the velocity components.

Figure 4.7 presents the time variation of u and v velocities and their plots for
Mode-C transition as well as the phase plot for Re = 100 for comparison. It can be
seen that u velocity signal also demonstrates the typical ’high peak-low peak’ velo-
city pattern. The two velocity components are plotted against each other to obtain
the phase plot of 4.7c. There is a clear difference between the phase plots of Mode-
C transition flow and laminar two dimensional flow. Laminar flow demonstrates a
clear single phase cycle. On the other hand Mode-C flow shows two phase cycles,
one within the other.

Power spectra

Furthermore, spectrum analysis is used to capture the frequency content and to iden-
tify the periodicity in the velocity signal of Mode-C transition. Figure 4.8 shows the
power spectra of cross-stream velocity signals obtained from Y Z − plane PIV mea-
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Figure 4.9: Comparison of velocity spectrum of upper (y/D = 1.5) and lower (y/D = −1.5)
halves of the wake. Re = 180. The streamwise coordinate of the data point is x/D = 4.5.

surements. Reynolds number is Re = 180 and the measurement plane is located at
xl/D = 4.5. The transverse coordinate of the data probe is y/D = 1.5. The spanwise
coordinate changed from (a) to (e) in Figure 4.8 to evaluate the effect of spanwise
location. The horizontal frequency axis is non-dimensionalized so that it represents
the Strouhal number St = fD/U∞.

A clear peak at the von Kármán vortex shedding frequency, f0 ≈ 0.19, is seen in
all spectra. It is evident from graphs (a), (c) and (e) that there is a second frequency
component, f1 ≈ 0.09, at almost half of the shedding frequency. The signals which
have sharp peaks at f1 in their spectra belong to the data probe locations that are
halfway between the two secondary vortices. In conjunction with the discussion of
velocity characteristics, the secondary frequency component f1 can be thought as the
reflection of the ’high peak-low peak’ velocity profile of Figure 4.4 in the frequency
domain. Therefore, it indicates that the period of the secondary vortices in Mode-C
transition is twice the shedding period of von Kármán vortices, Tsecondary = 2Tshed.

The effect of the vertical location of the data probe point on the spectral characte-
ristics is demonstrated in Figure 4.9, which contains the two spectra from upper and
lower halves of the wake. Both spectra show clear peaks at von Kármán shedding
frequency but only upper spectra indicate a secondary subharmonic peak. The peak
values of the spectrum at designated frequencies f0 and f1 are summarized in Table
4.1. It is evident that the frequency ratio of the primary and secondary frequencies is
approximately equal to 2 for the upper half of the wake, see Equation 4.1.

f0
f1

=
0.1894

0.0945
= 2.004 (4.1)

Furthermore, the peaks in the spectrum provides information about the energy
content of the signal at corresponding frequencies. It looks like the corresponding
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y/D = 1.5 y/D = −1.5
f0D/U∞ GU (f0) f1D/U∞ GU (f1) f0D/U∞ GL(f0) f1D/U∞ GL(f1)

0.1894 1.034 0.0945 0.5439 0.1894 2.366 - -

Table 4.1: Peak values in velocity spectra shown in Figure 4.9.

Non-wired experiments Wired experiments
Re St Re St Difference
100 0.173 100 0.163 -5.7 %
185 0.190 180 0.188 -1.1 %
200 0.201 195 0.189 -6.3 %
215 0.198 210 0.193 -2.6 %
230 0.205 225 0.192 -6.3 %
250 0.195 244 0.195 0.0 %

Table 4.2: Strouhal number values obtained from side-view experiments. Difference shows the
percent reduction due to wire.

energy content of the lower wake signal is approximately twice of the upper wake
at this frequency:

GU (f0)

GL(f0)
=

1.034

2.366
≈ 0.437 (4.2)

In flow visualization experiments there are no secondary vortices other than
small scale vortex loops originating from the lower part of the cylinder, see Figure
4.1, and there is not a sharp peak at the secondary frequency in the power spectra of
the velocity signal too, see Figure 4.9 (right panel). Therefore one can assume that all
the contribution to the energy in the lower half of the wake comes from von Kármán
vortices. However in the upper half of the wake there is also the contribution of se-
condary vortices. Therefore, the rough estimation for the ratio of the energy content
of the two halves of the wake can be found as:

GU (f0) +GU (f1)

GL(f0)
=

1.034 + 0.5439

2.366
≈ 0.667 (4.3)

4.2.3 Shedding frequency

The vortex shedding frequency in Mode-C transition is calculated by determining
the corresponding peaks in the power spectra of different experiments. Figure 4.10
shows the Strouhal number values at different Reynolds numbers. The results were
plotted using the values of Mode-A and Mode-B transition which were reproduced
from Williamson [11] for comparison. Figure 4.10a shows the scatter of St values of
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(a) (b)

Figure 4.10: Comparison of Re-St relationship for single cylinder and wired cylinder. The data
for parallel shedding, oblique shedding, Mode-A and Mode-B are reproduced from Williamson [11].
St number for Mode-C transition is obtained from back-view and side-view PIV measurements. a)
Scatter of St numbers of different Mode-C experiments, b) Comparison of non-wired and averaged
St numbers of wired experiments with literature values. Error bars indicate frequency resolution
of each corresponding spectrum.

different experiments for Mode-C transition. The Strouhal numbers of the Mode-C
transition are calculated by simply averaging the values at the corresponding Rey-
nolds number and the results are shown in Figure 4.10b.

Figure 4.10b shows the comparison of non-wired and wired experiments with li-
terature values. It is obvious that there is a deviation in measured Strouhal numbers
for the non-wired case. The order of magnitude of this deviation is also the same for
wired cylinder when the literature values of Zhang et al. [13] and measurements are
compared. Despite this deviation from literature, the experimental data is consistent
within itself and with the trend in literature, showing that there is shedding fre-
quency reduction is Mode-C transition. The reduction in shedding frequency is of
the order of a few percent, as summarized in Table 4.2.

Therefore, one may conclude that the trend of Mode-C experiments is in good
agreement with values of Zhang et al. [13]. Apparently the wire changes the fre-
quency characteristics of von Kármán vortices and it is likely that it suppresses the
instability mechanisms that cause the discontinuities in the St − Re graph for the
non-wired cylinder flow.
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Figure 4.11: Time-averaged streamlines in the near-wake of the cylinder.

4.2.4 Breaking of symmetry

Placing a wire in the near-wake of a cylinder obviously acts as a symmetry breaking
mechanism in the wake structure. This is evident in Figure 4.11 where the time-
averaged streamline topology Ψ for two Reynolds numbers is given. The streamline
are calculated using the time-averaged velocity components u and v.

The Ψ patterns for the non-wired case indicate two symmetric swirl patterns in
the near-wake for both Reynolds numbers. In figure it is clear that the size of these
swirl patterns is decreasing with increasing Reynolds number. There is also a saddle
point S which is located at the wake centerline at the downstream edge of the swirl
patterns. The location of the saddle point actually corresponds to the most downs-
tream point of the recirculation region.

In the wired cases, the two-symmetric-swirl-pattern topology is not seen any
more. For both Re = 180, the upper swirl region appears with a smaller size than
its non-wired (Re = 185) counterpart. The same topology is seen for Re = 225 but
with a swirl region slightly larger size than non-wired (Re = 230) case. Another
difference is that for the wired cases there is no apparent saddle point to identify.
However, the major difference is in the lower part of the wake where there is not a
clear time-averaged swirl pattern. It appears for the wired case that the upper swirl
region is related to the diverted vorticity which extends beyond wake centerline and
smears the vorticity concentration of the lower shear layer. This mechanism seem
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(a) Mode-A (b) Mode-B

Figure 4.12: Time variation of the streamwise vorticity on the line x/D = 4.5 from back-view
PIV experiments of the non-wired cylinder wake at Re = 185 and Re = 215 for Mode-A and
Mode-B, respectively. The time axis is non-dimensionalized with the corresponding shedding per-
iods.

to prevent the formation of lower time-averaged swirl pattern during the Mode-C
transition.

The effect of the symmetry breaking effect of the wire can also be seen by com-
paring Figures 4.12 and 4.13, which represent the symmetry characteristics of non-
wired and wired cylinder wake, respectively. Both figures shows the streamwise vor-
ticity which is evaluated in time along a vertical cross-stream line placed at downs-
tream location of x/D = 4.5 in the corresponding experiments. The vertical line is
placed at the position of secondary vortices so that ωx is tracked easily. The data is
obtained from back-view PIV experiments using the configuration shown in Figure
2.4c.

Figure 4.12 shows the symmetry characteristics of the non-wired cylinder wake in
transition regime associated with Mode-A and Mode-B at Re = 185 and Re = 215,
respectively. The symmetry nature of the Mode-A wake is clearly seen in Figure
4.12a. The positive and negative vorticity appear in a symmetric manner with a
period of Tshed. From the color contrast of the figure one can also conclude that both
the upper and lower streamwise vortices have almost equal vorticity content. Hence,
Mode-A can be characterized by

ωx(x, y, z, t) = −ωx(x,−y, z, t+ T/2) (4.4)

The symmetry of Mode-B can be observed in Figure 4.12b. The spanwise vorticity
in Mode-B has the same sign on both sides of the wake during the vortex shedding
cycle. The Mode-B is also T-periodic. Hence, Mode-B is characterized by

ωx(x, y, z, t) = ωx(x,−y, z, t+ T/2) (4.5)
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Figure 4.13: Time variation of the streamwise vorticity on the line x/D = 4.5 from back-view
PIV experiments of the Mode-C wake at Re = 180. Time axis is non-dimensionalized with the
corresponding shedding period.

However, Figure 4.13 clearly demonstrates that the wake undergoing a Mode-
C transition is not symmetric with respect to the wake centerline and the vorticity
field is 2T-periodic, unlike Mode-A and Mode-B. Actually the streamwise vorticity
patterns change sign at every shedding period. In Mode-C transition the temporal
symmetry of streamwise vorticity can be therefore described by

ωx(x, y, z, t) = −ωx(x, y, z, t+ T ) (4.6)

4.3 Vorticity patterns in the near-wake

4.3.1 Spanwise vorticity

Figure 4.14 shows spanwise vorticity evolution in the near-wake of the cylinder
through two shedding periods for the Reynolds number Re = 180. It demonstrates
the period-doubling nature of Mode-C using the instantaneous spanwise vorticity
ωz snapshots. The phase information of the vortex shedding is obtained from the
time signal of the vertical velocity component at point (x/D, y/D) = (4.5, 1.5).

The image sequence starts with Figure 4.14a which corresponds to the phase at
which upper vortex UV1 is shedding. UV1 is stretched and has two long vorticity
braids. Meanwhile, the lower vortex LV1 has a rather circular shape and is rolling-
up across the wake to cut the vorticity supply of UV1. At this stage, the negative
vorticity from the upper shear layer is directed into the base region. This accumula-
ted vorticity later forms the subsequent upper vortex UV2, indicated by an arrow in
Figure 4.14b.

Figure 4.14c shows the vorticity patterns one shedding cycle after Figure 4.14a.
Despite the similarities of major vortical structures, some differences are still noti-
ceable. Firstly, the upper vortex UV2 does not have long vorticity braids and is more
compact than preceding vortex UV1. Secondly, the lower vortex LV2 has a rather
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elliptic shape compared to LV1. Finally, after the comparison of the snapshots (a)
and (c), it looks like the vorticity accumulation of the following upper vortex UV3

uses wider space in the base region than the preceding UV2. At phase t = 3Tshed/2,
the upper vortex UV3 shows a clear vorticity concentration at around x/D ≈ 1.75

with stretched vorticity braids around it. In this sense UV3 differs from its prede-
cessor UV2 which shows a vorticity spreading during the development stage, Figure
4.14b. These observations show that formation of primary von Kármán vortices in
the Mode-C wake is not T-periodic but 2T-periodic, as evidenced in Figure 4.14a,
Figure 4.14c and Figure 4.14e for upper vortices UV1,UV2 and UV3, respectively.

4.3.2 Streamwise vorticity

To understand the temporal characteristics of the secondary vortices instantaneous
patterns of streamwise vorticity ωx at cross-stream planes xl/D = 1.5 and xl/D = 2.5

are shown in Figure 4.15 along with the corresponding von Kármán vortex shedding
states for three independent experiments. The link between them is the phase rela-
tionship obtained from the vertical velocity signals at the intersection line of the two
perpendicular planes, namely XY − plane and Y Z − plane.

It is evident from the vorticity concentrations in the cross-stream planes that the
secondary vortices are present in the wake and that they originate from the very
near-wake of the cylinder. During the formation of the upper vortex at the phase
t = 0, there are two arrays of concentrated ωx in the xl/D = 1.5 plane. These vor-
ticity arrays are aligned with the upper and lower shoulders of the cylinder and are
out-of-phase with each other. Due to the stretching in the braid shear region where
the vorticity content of the secondary is amplified, Mode-C vortices are more clear
in the xl/D = 2.5 plane. The same vorticity structure is seen after 2Tshed in Figure
4.15e. At the phase t = Tshed, similar vorticity arrays are seen but negative and posi-
tive vorticity structures interchange place. The 2T-periodic nature of the secondary
vortices is apparent in the comparison of the vortex arrays at the phases t = 0, Tshed

and 2Tshed. The wake state at t = 0 is out-of-phase with the t = Tshed state and
in-phase with the t = 2Tshed state.

4.4 Development of period-doubling in Mode-C transi-

tion

4.4.1 Time evolution of Mode-C vortices

The formation process of Mode-C structures for a Reynolds number of Re = 195

throughout two shedding periods is illustrated in Figures 4.17 and 4.18, showing
top-view and side-view flow visualization sequences, respectively. The snapshots
are synchronized qualitatively so that they represent the same vortex shedding phase
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Figure 4.14: Instantaneous non-dimensional spanwise vorticity patterns ωzD/U∞ in the near-
wake of the cylinder. Contour levels are |ωz|D/U∞ = 0.4, 0.8, ..., 4. Solid line and dashed line
contours indicate positive and negative vorticity, respectively. Top-right figure shows the phases of
vorticity fields with respect to the cross-stream velocity from the data probe point (x/D, y/D) =
(4.5, 1) at Reynolds number Re = 180.



Period-doubling in Mode-C transition for Re ≥ 180 77

Figure 4.15: Instantaneous patterns of non-dimensional streamwise vorticity ωxD/U∞ in the
near-wake of the cylinder measured at cross-stream planes xl/D = 1.5 (middle column) and
xl/D = 2.5 (right column) at corresponding von Kármán vortex shedding phases (left column).
Contour levels are |ωz|D/U∞ = 0.4, 0.8, ..., 4 and |ωx|D/U∞ = 0.2, 0.4, ..., 2. Blue (solid line)
and red (dashed line) contours indicate positive and negative vorticity, respectively, at Re = 180.
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Figure 4.16: Synchronization of two independent flow visualization experiments. In the top fi-
gure the probable location of the laser plane is shown. Guide lines are used to scale and synchronize
the images.

and lead to the reconstruction of the feedback mechanism of Mode-C shedding. The
illustration of the synchronization procedure is presented in Figure 4.16. The main
cylinder diameter D is used as the reference length scale in the process. Firstly, the
images from the side-view experiments are scaled down in order to make the cylin-
der diameter equal in both experiments. Secondly, guidelines are drawn from the
vortex locations in the top-view images. Thirdly, the corresponding side-view image
is determined using those guidelines for each top-view image. Finally, based on the
location of the vortex loop tails, the probable location of the laser plane of side-view
experiments is estimated in the top-view images.

The period-doubling nature of the process is illustrated in the phase diagram
that is shown at the top-right corner of Figure 4.17. In this phase diagram, the letters
correspond to the image numbers and indicate the vortex shedding phase. The initial
image of the process, Figure 4.17a, is chosen such that it represents the approximate
formation moment of the lower side von Kármán vortex, denoted as L1. Likewise,
the previously shed upper side von Kármán vortex is marked as U1. This vortex
U1 shows spanwise waviness which is the signature of the vortex loops originating
from the upper vortex. Figure 4.18a-d reveals that the vortex loops are parts of the
upper vortex, which are torn from it and stay in the base region. Figures 4.18a-d also
show that these vortex loops originating from the upper vortex stay between the
upper and lower vortices effecting the near-wake dynamics. Moreover, these vortex
loops are further stretched in the braid region, as seen in Figure 4.18c-d, and roll-up
to form streamwise vortex pairs from the sides of the loops, as shown in Figures
4.17a-d. During this half shedding period, the vortex loop tails of U1 stay at position
of approximately ∼ 0.5− 0.7D behind the cylinder, while the rest of the vortex move
downstream.

The vortex loop tails of U1, see Figure 4.18d, are apparently affecting the newly
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forming upper von Kármán vortex U2 by initiating a spanwise waviness at the initial
formation stage, see Figure 4.17d. This wavy deformation in U2 is amplified further
in the recirculating region, see Figure 4.17d-g, and forms vortex loops that are seen in
Figure 4.17g. These vortex loop tails of U2 appear at the spanwise position of vortex
loop heads of U1 in the previous cycle. Therefore, Figure 4.18g does not show any
sign of an emerging vortex loop, as the laser plane is located at the vortex loop head
instead of a vortex loop tail.

In the first shedding period, the lower vortex L1 has formed in a parallel way
to the cylinder, see Figures 4.17a and b, and preserves its shape until its encounter
with the vortex loop tails of U1, as shown in Figure 4.17c. Afterwards,L1 continues to
shed in a slightly wavy pattern. However, despite this waviness, the lower vortex L1

does not develop any vortex loops and hence streamwise vortex pairs. Its waviness
is initiated after approximately 1/3 periods, unlike for example the upper vortices
U2 and U3 in which the waviness has started during the initial stages of formation.

The same physical process discussed above is also seen for the second part of the
vortex shedding process in Figure 4.17g-m. The vortex loops of U2 grow and form
spanwise vortex structures which in turn initiate the formation of vortex loops in U3.
The vortex loop tails of U3 appear at the spanwise position of vortex loop heads of
U2. Hence, the vortex loop tails of U1 and U3 occur at the same spanwise location,
see Figures 4.17a and 4.17m, respectively. This type of occurrence effectively doubles
the shedding period. Hence, the overall examination of the process suggests that the
Mode-C instability is a self-sustaining process with a period of T = 2Tshed.

4.4.2 Feedback mechanism between von Kármán vortices

After the above discussion about the physical process of shedding, one may conclude
that the period doubling is due to the feedback mechanism of streamwise vortices
between two consequent upper vortices. In this section, this feedback process is
discussed further using Figure 4.19. The figure shows three instants from Figure
4.17, each half shedding period apart from each other and each zoomed in to the
near-wake.

The growth of the spanwise waviness and formation of vortex loops can be illus-
trated as if a vortex line is torn from the primary von Kármán vortex and left to de-
form and stretch. The left sketch of Figure 4.19 exhibits the vortex loop 1 originating
from previously shed upper vortex U1 extending up to the cylinder. As shown in Fi-
gure 4.18d, vortex loop 1 lies in between the upper and lower vortices. The upstream
convection of the vortex line, i.e. vortex loop 1, has different effects on the primary
vortices L1 and U2.

Firstly, the tails of vortex loop 1 induce negative horizontal velocity on the lower
vortex L1 via Biot-Savart induction, as illustrated in Figure 4.19. This perturbation
makes the segments of L1, which face the tails of vortex loop 1, move slower than the
neighboring segments causing a wavy pattern along the lower vortex L1. The slow
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Figure 4.17: Formation and evolution of Mode-C structures in the wake of a wire disturbed
circular cylinder wake at Reynolds number of Re = 195. Letters U and L indicate the upper side
and lower side primary von Kármán vortices, respectively, and subscripts show the indices of the
corresponding vortices. Upper right diagram represents the vortex shedding cycles to which the
representing images belong.



Period-doubling in Mode-C transition for Re ≥ 180 81

Figure 4.18: Side-view visualization snapshots showing the evolution of Mode-C structures at
Reynolds number of Re = 195. The snapshots represent approximately the same vortex shedding
phase as in Figure 4.17



82 4.4 Development of period-doubling in Mode-C transition

Figure 4.19: Sketches of the feedback mechanism of Mode-C vortex formation. The vortex line
sketches are presented with the corresponding flow visualization snapshots at Reynolds number of
Re = 195. The flow visualization snapshots are zoomed into the formation region to make the
near-wake vortex structures clear.
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moving segments are at the same spanwise position with the perturbation source,
i.e. tails of vortex loop 1.

The second effect is on the newly forming upper vortex U2. The tails of vortex loop

1 has already extended up to the cylinder where it apparently effects the formation
of U2 at the initial formation stage by inducing a positive horizontal velocity pertur-
bation, see the illustration in Figure 4.19. Due to this perturbation, the segments of
U2 move slightly faster at the position of the vortex loop tails of U1. The segments
which are between the vortex loop tails move slowly and at the later stage form the
new tails of vortex loop 2, as shown in the middle sketch of Figure 4.19. At the later
stage of the vortex shedding, the sides of the vortex loops will roll-up and form a
streamwise vortex array of Mode-C instability.

The middle sketch of Figure 4.19 also represents the effects of the vortex loops on
the formation of lower vortex L2. Although the vortex loops of U1 are still present in
the near-wake, they don’t affect the L2 at its initial formation stage. Considering that
approximately 1.5 shedding periods has passed since the formation of vortex loop 1,
it is likely that they are not strong enough to do so. The waviness of L2 is initiated
when it meets the tails of the following vortex loop 2, as presented in the right sketch
of Figure 4.19.

As discussed by Williamson [11], during the natural transition regime Mode-A,
the feedback mechanism is set between the consecutive primary vortices and this
mechanism is the reason of self-sustaining Mode-A vortex loops at the same span-
wise position. On the other hand, for the Mode-C case, it is shown that the vortex
loops of U2 are not close enough to induce a perturbation on L2 at the initial stage of
the formation process. L2 sheds parallel to the cylinder and does not show any span-
wise waviness until it encounters the vortex loops of U2. This encounter takes place
when it is too late for the lower vortex to generate strong enough vortex loops wi-
thin the next half-cycle. So, L2 can not override the effect of vortex loop 2 on U3. This
process breaks the natural feedback mechanism of two consecutive primary vortices
(lower and upper) in Mode-C transition and establishes a new feedback mechanism
which is apparently between the consecutive upper vortices only.

4.5 Concluding remarks

The major consequence of placing a wire in the near-wake of a cylinder is the re-
placement of Mode-A and Mode-B transitions with Mode-C transition. After careful
examination of flow visualization images at Re > 180, Mode-C structures are found
to have a spanwise wavelength of λz ≈ 2D and to appear at the same spanwise lo-
cation at every two shedding periods instead of one. Hence, the Mode-C transition
has a period-doubling character which shows itself as a shift in spanwise position of
Mode-C vortices in every cycle.

The investigation of velocity-time signals which are obtained from PIV experi-
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ments revealed that they contain a W-shaped ’high-peak-low-peak’ velocity profile.
The reason of having this velocity profile is that secondary vortices change sign every
shedding period. Due to this type of velocity profile the u− v phase plot shows two
phase cycles instead of one, indicating a period-doubling nature of the velocity si-
gnal.

Spectrum analysis showed that the ’high-peak-low-peak’ velocity profile is reflec-
ted as a subharmonic frequency component in the frequency domain. Naturally, this
subharmonic component is associated with the secondary Mode-C vortices, while
the primary frequency peak is associated with von Kármán vortices. A rough esti-
mate of the wake energy from the spectrum indicates that there could be an energy
transfer from the primary vortices to the secondary vortices in the upper shear layer
(the topic of the next chapter). Primary frequency peaks in the spectrum denote the
corresponding Strouhal numbers of Mode-C transition. In the experiments, when
compared with Mode-A and Mode-B transition, the Strouhal numbers for Mode-C
are slightly lower than Mode-A and Mode-B. Unlike the non-wired case, wired cy-
linder transition does not show any discontinuities in the Re− St graph.

Investigation of both symmetry characteristics and instantaneous vorticity pat-
terns showed that the Mode-C transition is 2T-periodic rather than T-periodic. An
analysis of the time evolution of the streamwise vorticity field revealed that the per-
iod of formation of von Kármán vortices do not change. However, due to the in-
teraction with secondary vortices their formation cycle show a 2T-periodic nature.
That is, two shedding periods have to pass to have the same von Kármán vortex
at the same location. Despite their T-periodic nature, the interaction mechanism of
upper and lower vortices during formation changes every period. The 2T-periodic
nature of the Mode-C wake is clearer when the time evolution of secondary vor-
tices is analyzed. The streamwise vorticity and rotation direction of the secondary
vortices change sign every shedding period causing the whole unsteady wake to
become 2T-periodic.

The secondary vortices in Mode-C transition are actually the vortex loops that
originate from the upper vortex. These vortex loops are further stretched in the braid
region and roll-up to form streamwise vortex pairs from the sides of the loops. They
are located between the upper and lower vortices and affect the near-wake vortex
shedding process.

A detailed investigation of flow visualization images showed that Mode-C insta-
bility exhibits feedback of streamwise vortices between the upper primary vortices
only. This works in such a way that vortex loops are generated at the same spanwise
position in every two cycles. Therefore, it is concluded that the period doubling ap-
pears in this type of flow due to the feedback mechanism that appears between two
upper vortices.



Chapter

5
Energy contents and
vortex dynamics in

Mode-C for Re ≥ 180

5.1 Introduction

Several experimental studies have been performed to characterize the secondary
vortices in the circular cylinder wake [11, 70–73]. Williamson [11] reported results
obtained from hot-wire measurements in the transition regime Re > 180, while Lin
et al. [70] and Chyu and Rockwell [71] measured the secondary vortices in a cross-
stream plane using PIV at a Reynolds number of Re = 10000 (in the turbulent flow
regime). Huang et al. [72] also performed PIV experiments to measure secondary
vortices in all three perpendicular cartesian planes. In recent work, Scarano and
Poelma [73] performed time-resolved tomographic PIV experiments in the Reynolds
number range of Re = 180 − 5540. All these experiments focused on non-wired
cylinders.

Regarding the wired cylinder case, it is previously shown in Chapter 4 that Mode-
C transition in a wired cylinder wake at Re = 180− 244 can be characterized by the
formation of secondary vortices with a period-doubling nature. It is also shown that
the shedding frequency in Mode-C transition is lower than the Mode-A and Mode-B
frequencies for the non-wired cylinder in the same Reynolds number range. This
chapter mainly focuses on further experimental characterization of Mode-C transi-
tion regarding the fluctuating flow features, energy characteristics and vortex dyna-
mics using the set-up and experimental techniques discussed earlier.
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The experimental data is obtained from side-view and back-view PIV measure-
ments in the Reynolds number range of Re = 180− 244 for the wired case. The wire
is again fixed at position (xw/D, yw/D) = (0.75, 0.75). Additional side-view experi-
ments in the Reynolds number range of Re = 185− 250 are done for the non-wired
case. The results of the non-wired experiments are used to asses the effect of the wire
on various flow features.

First, the fluctuating velocity characteristics are examined to characterize the ef-
fect of the wire on the temporal behavior of the wake. The energy spectrum analysis
in Chapter 4 showed that there might be an energy transfer from the primary vortices
to the secondary vortices in the upper half of the wired cylinder wake. Secondly,
this observation is further evaluated by calculating discrete energy components at
different frequency components of the energy spectrum. Thirdly, the vortex dyna-
mics in Mode-C transition is investigated. An assessment of the vortex strengths
and trajectories of primary vortices is performed. Also, the strengths and spanwise
wavelength of Mode-C vortices are calculated. Finally, the change in the Strouhal
number, due to Mode-C, is discussed.

For completeness, it is mentioned here that all the results presented are deter-
mined from experiments. Due to the three-dimensional character of the flow, no
numerical results are shown in this chapter.

5.2 Fluctuating velocity characteristics

The shedding frequency of a circular cylinder is closely related to its fluctuating ve-
locity characteristics, such that, if these fluctuation are reduced below some level,
even a vortex shedding suppression can be achieved. The importance of velocity
fluctuations comes from the fact that the vortex shedding frequency depends on the
enhancement or damping of velocity fluctuations in the wake [59]. The fluctuating
wake flow is characterized by its velocity components’ standard deviation from the
mean value (urms). For the analysis only the streamwise component u of the velocity
field is used, since the dominating flow is in that direction.

urms =

√
√
√
√ 1

Nf

Nf∑

i=1

(u′
i)

2 =

√

(u′)2 (5.1)

with u′
i = ui−u being the fluctuating velocity and Nf number of data files. Here, ui is

the instantaneous velocity and u is the mean velocity component which is calculated
from:

u =
1

Nf

Nf∑

i=1

ui (5.2)

Figure 5.1 shows the non-dimensional rms-velocity profiles for the wired case at
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(a) wire: Re = 180, no wire: Re = 185

(b) wire: Re = 225, no wire: Re = 230

Figure 5.1: urms/U∞ profiles in the near-wake at two different Reynolds numbers (Re =
185, 230) and three downstream positions (x/D = 1.5, 4.5, 12).
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Non-wired experiments Wired experiments
Re urms|max/U∞ Re urms|max/U∞ Difference
185 0.446 180 0.400 -10.3 %
200 0.462 195 0.394 -14.8 %
215 0.472 210 0.408 -13.6 %
230 0.490 225 0.407 -16.9 %

Table 5.1: Maximum urms/U∞ values of the upper shear layer at different Reynolds numbers
and percentage difference between wired and non-wired experiments.

two different Reynolds numbers and at three different downstream positions. The
non-wired case is also plotted for comparison. The rms-velocity at Re = 180 for
the wired case is presented in Figure 5.1a. For x/D = 1.5, both wired and non-wired
cases exhibit similar curves with two peaks which are almost symmetric with respect
to the wake centerline (y/D = 0). These two peaks are associated with the upper and
lower vortex rows of the von Kármán vortex street. The locations of maximum urms

values are aligned with the upper and lower shoulder of the cylinder, indicating
that the highest fluctuation values are achieved in the separating shear layer. At this
downstream position, the effect of the wire is evident in reducing the rms-velocity
levels.

On the other hand, at x/D = 4.5 the symmetry breaking effect of the wire is more
apparent (see also Figure 4.11 in Chapter 4). The urms/U∞ profile in the upper half
of the wake is broadened and its peak is slightly at a higher position when compared
to the non-wired case. The urms/U∞ peak of the wired case in the lower half of the
wake is at lower position than its non-wired counterpart. The damping effect of
the wire is not seen anymore at this downstream position. This is evident from the
comparison of the rms-velocity values of wired and non-wired cases.

At a higher Reynolds number Re = 225, the near-wake velocity fluctuation cha-
racteristics of Mode-C transition does not change much from the Re = 180 case. The
shape of the urms/U∞ profile of the wired case has the same curve pattern as the
non-wired cylinder case’s profile. However, at x/D = 1.5, the reduction in the ve-
locity fluctuation level is higher than in the Re = 180 case. The broadening of the
upper wake urms/U∞ profile is also evident.

As seen in Figure 5.1 one of the major effects of the wire on the fluctuating velo-
city characteristics is reducing the rms-velocity levels in the shear layers in the vortex
formation region. Another major effect is the introduction of an asymmetry to the
urms/U∞ profiles. This effect is more pronounced at more downstream position, i.e.
outside of formation region. This asymmetry exhibits itself as a broadening of the
urms/U∞ profile in the upper half of the wake. This broadening of the profile might
be an indication of a spread in the fluctuating velocity, possibly due to the vorticity
braids originating from the upper vortices.
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(a) no-wire (b) wire

Figure 5.2: Downstream variation of maximum levels of urms|max/U∞ in the upper half of the
wake.

The damping effect of the wire on urms/U∞ values can be quantified by compa-
ring the maximum values for the wired and non-wired cylinder wake at different
Reynolds numbers. Figure 5.2 shows the downstream variation of maximum rms-
velocity values urms|max/U∞ in the upper separating shear layer of wired and non-
wired cylinder wakes in the transition regime.

Figure 5.2 mainly demonstrates that urms|max/U∞ levels do not change signifi-
cantly in the wired cases. They stay almost constant throughout the Reynolds num-
ber range Re = 180 − 225. This indicates that in the near-wake the rms-velocity
characteristics of Mode-C transition do not change. As summarized in Table 5.1, the
wire reduces the urms|max/U∞ levels by more than 10% and this amount of reduc-
tion is increasing with Reynolds number, providing an almost constant fluctuation
level in the upper shear layer during the Mode-C transition.

5.3 Energy content of the Mode-C wake

It is previously discussed in Chapter 4 that the energy spectrum in the Mode-C tran-
sition has predominant peaks at von Kármán vortex shedding frequency f0 and at
a subharmonic frequency f1. The subharmonic frequency f1 is associated with the
formation of secondary vortices and points to the period-doubling character of the
Mode-C transition. It is possible to calculate the energy content of Mode-C wake at
particular frequencies by integrating the energy spectrum curve [4, 17, 68]. For that
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purpose the energy intensity e at a point in the flow field is defined as [4];

e =

∫ +∞

−∞

G(f)df

U2
∞

=
u2
rms

U2
∞

(5.3)

with G(f) defining the energy spectrum curve. This shows that G(f)df is the energy
in a frequency interval df centered at f [68]. If the boundaries of the integral cover a
specific frequency interval in the spectrum then the integration is the discrete energy
intensity in that frequency interval. Furthermore, the integration of the energy in-
tensity across the wake gives the total integrated wake energy [17]:
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e d
( y
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d
( y
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(5.4)

There are two ways of calculating the energy intensity and integrated energy. The
first way is to use the rms-velocity calculations and the second way is to use the spec-
trum calculations. Figure 5.4 shows the comparison of the wake energy intensity e

and the integrated energy E obtained from rms-velocity and spectrum calculations
of side-view PIV experiments. The energy intensity plots represent cross-stream data
profiles for wired and non-wired cases at x/D = 4.5 for Re = 180 and Re = 185,
respectively, while the integrated energy plot is for the wired case only. It is evident
from Figure 5.4b that both approaches of calculating wake energy produce very close
results. Therefore, it is concluded that spectrum analysis of PIV velocity data can be
used for further characterization of the wake energy at discrete frequency compo-
nents.

As demonstrated in Figure 5.3, the total energy intensity e can be written as the
sum of energy intensities at discrete frequencies [4].

e = e0 + e1 + eh + en (5.5)

where e0 and e1 are the energy intensities at vortex shedding frequency f0 and sub-
harmonic secondary frequency f1, respectively. eh represents the contributions of
harmonics of f0 and f1. en includes the high frequency noise and the rest of fluctua-
tion energies in the wake.

Figure 5.5a shows each discrete component that contributes to the energy of the
wired cylinder wake during Mode-C transition. It demonstrates the cross-stream
variation of e0, e1, eh and en at downstream position of x/D = 4.5 for the wired
case of Re = 180. The wake is dominated by the von Kármán vortex street which
is reflected as two almost symmetrical peaks in the e0 plot. The upper half of the e0
curve has a wider shape with a lower peak value than the lower half of the curve.
The effect of the wire is clearly evident in the plot of e1 which shows a clear peak
in the upper wake at position of y/D = 1.25. The position of this peak corresponds
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Figure 5.3: Example of an energy spectrum and corresponding discrete energy intensities. Energy
spectrum is obtained from side-view PIV experiment for Re = 180 at data point (x/D, y/D) =
(4.5, 1.0).

(a) energy intensity, e (b) integrated energy, E

Figure 5.4: Comparison of wake energy intensity and integrated energy obtained from rms and
spectrum calculation of side-view PIV experiments. The energy intensity plots show cross-stream
data profiles at x/D = 4.5.
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(a) (b)

Figure 5.5: Discrete energy components in Mode-C wake which are calculated at specific frequen-
cies of the energy spectrum on the cross-stream line at x/D = 4.5.

to the vortex centers of the secondary vortices as shown in Figure 5.6. eh contains
the harmonics of the frequencies f0 and f1. It has a maximum value on the wake
centerline since the wake centerline faces the influence of the von Kármán vortices
from both sides of the wake causing a harmonic frequency of 2f0. On the other hand,
as seen from the plot of en the high frequency noise is constant across the wake. en
is calculated by taking the integral of Equation 5.3 for the frequencies f > 2f0.

Having determined the energy intensities at specific frequencies, it is worth to
further discuss the energy contents of the primary and secondary vortices, namely
e0 and e1, and compare them with the total energy intensity for better understanding.

Figure 5.5b shows the comparison of the total energy intensity e and the sum of
energies at the primary and secondary frequencies e0 + e1. It is clear that the e0 + e1
follows the e curve with an almost constant deviation which is due to the noise and
higher harmonic contributions. The energy intensity e0 at the von Kármán vortex
shedding frequency in the upper half of the wake is less than the energy intensity in
the lower half. It is obvious that the excess energy is stored in e1 in the upper half
of the wake. Thus, some portion of the energy at the von Kármán vortex shedding
frequency f0 is transferred to the subharmonic frequency f1 in the upper half of the
wake. This is due to the fact that the secondary vortices are originating from the
upper von Kármán vortices only. Hence, there is no energy content at secondary
frequency f1, i.e. e1 ≈ 0, for y/D < 0.

Figure 5.7 demonstrates the variation of the integrated wake energy E in the
wake of a wired cylinder for Reynolds numbers Re = 180 and Re = 225 and for
a non-wired cylinder for Re = 185. The downstream decay of the wake energy of
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Figure 5.6: Instantaneous pattern of non-dimensional spanwise ωzD/U∞ (left figure) and
streamwise ωxD/U∞ (right figure) vorticity. Streamwise vorticity is measured at cross-stream
plane x/D = 4.5 at the corresponding von Kármán vortex shedding phase in the left figure.
Contour levels are |ωz|D/U∞ = 0.4, 0.8, ..., 4 and |ωx|D/U∞ = 0.2, 0.4, ..., 2. Blue (solid line)
and red (dashed line) contours indicate positive and negative vorticity, respectively, at Re = 180.

Figure 5.7: Downstream variation of total wake energy E for wired and non-wired cylinders.

Figure 5.8: Downstream variation of total (E0 + E1)/E and discrete energy ratios E0/E and
E1/E in the wake of a wired cylinder at Re = 180 and Re = 225.
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Mode-C shows an exponential behavior for Re = 180 while the non-wired cylinder
wake exhibits a slower decay than Mode-C with a plateau for x/D > 6. The downs-
tream decay of the wake energy of Mode-C also shows an exponential behavior for
Re = 225. However, the decay rate seems to be slightly lower for Re = 180.

However, the discrete energy components show different behaviors, as shown
in Figure 5.8. The downstream variation of the ratio of the sum of discrete energies
to the total wake energy, (E0 + E1)/E, does not seem to change with the Reynolds
number in the Mode-C transition regime. E0/E and E1/E are measures of the contri-
bution of von Kármán vortices and secondary vortices to the total integrated energy.
More than 50− 60% of the wake energy is coming from the von Kármán vortices but
the percentage in the total energy is decreasing with increasing Reynolds number
and downstream position. On the other hand, the percentage of the contribution of
secondary vortices in the total energy is increasing both with Reynolds number and
with downstream position. Thus, one may conclude that the von Kármán vortices
die faster than the secondary Mode-C vortices.

5.4 Vortex strengths and trajectories

5.4.1 Spanwise vortices

The instantaneous spanwise vorticity ωzD/U∞ iso-contours obtained from side-view
PIV experiments at different Reynolds numbers are shown in Figure 5.9. It demons-
trates the vorticity structure at different stages of Mode-C transition. The images are
chosen such that they more or less represent the same phase in the shedding cycle.
The figure shows that the overall layout of the flow structure in Mode-C transition
does not change with increasing Reynolds number in the range 180 ≤ Re ≤ 244. The
vorticity field for Re = 244 is not shown, however it shows the same flow features
in a slightly more disordered manner.

The effect of the wire on the trajectories and strengths of von Kármán vortices
in the transition regime Re ≥ 180 is shown in Figure 5.10. The vortices are defi-
ned using the λ2 method. The details of the method are summarized in Chapter 2.
The boundary of a vortex is represented by a closed contour line of λ2 = −0.1. The
strengths and trajectories are calculated using Equations 2.13 and 2.14. The vortices
are tracked in time for 6−10 shedding periods. The tracking time is different for each
experiment and is determined by the length of the ’high-peak-low-peak’ characteris-
tic of the reference velocity signal, see Chapter 4. The incomplete vortex trajectories
in Figure 5.10 correspond either to the beginning or to the end of the tracking proce-
dure.

The effect of the wire on the vortex trajectories is evident in Figure 5.10. There
are two different trajectories for both upper and lower vortices. They are denoted
in the uppermost left plot of Figure 5.10. UT1 and UT2 point out the trajectories of
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Figure 5.9: Instantaneous non-dimensional spanwise vorticity patterns ωzD/U∞ in the wake
of the wired cylinder. Contour levels are |ωz|D/U∞ = 0.4, 0.8, ..., 4. Solid line and dashed line
contours indicate positive and negative vorticity respectively.
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Figure 5.10: Vortex trajectories and strengths of von Kármán vortices in the wake of a wired
cylinder as a function of Reynolds number. (UT1, UT2: trajectories of upper vortices, LT1, LT2:
trajectories of lower vortices).
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upper vortices and LT1 and LT2 the trajectories of the lower vortices. Despite some
deviations, the same trajectory patterns appear for all Reynolds numbers considered
and UT1, UT2, LT1 and LT2 almost preserve their shapes.

It is noted that all vortices except the ones that follow UT2 are formed almost at
the same downstream position x/D ≈ 2. The vortices of UT1 are formed at a position
approximately 0.6D more upstream and 0.25D higher as compared to the ones of
UT2. They go upwards until x/D ≈ 4 and then downwards until they reach the
trajectory UT2. So, the vortex trajectory UT1 has a curved shape with a high peak in
the near-wake region. On the other hand, the trajectoryUT2 has a rather linear shape.
The vortices following the UT2 trajectory have a steady upward motion for Re = 180

and for x/D > 7 the UT2 trajectory almost coincides with the UT1 trajectory. For the
other Reynolds numbers presented in Figure 5.10, UT2 has a slightly curved shape
but not as pronounced as UT1.

In the lower half of the wake, LT1 has a similar tendency as UT2 but in oppo-
site direction. It has a quasi-linear shape with a steady downwards deflection. LT2

has the same curved shape like UT1 but for the lower half of the wake. Vortices of
LT2 follow a downwards trajectory until x/D ≈ 5.5 − 6.0 and a slightly upwards
trajectory further downstream.

The discussion about the vortex trajectories is further extended in Figure 5.11
which demonstrates how the shapes of the different trajectories are associated with
the von Kármán vortices at Re = 180 in the wake of a wired cylinder. The vortex
trajectories are superposed on the instantaneous spanwise vorticity fields at two ins-
tants which are Tshed apart from each other. The corresponding trajectories of each
von Kármán vortex is marked with an arrow. The snapshots are chosen such that
they show the wake just after the formation of an upper von Kármán vortex. Tra-
jectory UT1 is associated with the upper vortex which has a compact center region
and two elongated braids, as shown in Figure 5.11a. The concentrated vorticity in
the vortex center can be noted from the color contrast in the vorticity contours. The
preceding lower vortex follows the trajectory LT1. At the phase t = t0 + Tshed, the
upper vortex which follows the trajectory UT2 is formed. This vortex has a different
shape than the former one. It does not have long braids and has a more diffused
vorticity concentration in the center. It should be noted that this upper vortex is the
one from which the secondary Mode-C vortices are originating, see Chapter 4. This
upper vortex is succeeded by a lower vortex which follows the curved trajectory of
LT2.

Unlike in the vortex trajectories, the downstream variation of the vortex strength
Γz of the von Kármán vortices does not show a significant difference between the up-
per and lower wakes. Comparison of results from different Reynolds numbers indi-
cate that the tendency of the circulation values as a function of downstream position
x/D is almost the same. However, there is a clear difference between the strengths of
upper and lower von Kármán vortices. The circulation values and the difference bet-
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(a) t = t0

(b) t = t0 + Tshed

Figure 5.11: Vortex trajectories of von Kármán vortices at Re = 180 in the wake of a wired
cylinder. Vortex trajectories are superposed on the instantaneous spanwise vorticity field at two
instants which are Tshed apart from each other. The corresponding trajectory of each vortex is
shown with an arrow. Contour levels are |ωz|D/U∞ = 0.4, 0.8, ..., 4. Blue and red contours
indicate positive and negative vorticity, respectively. Solid lines represent the contour line of λ2 =
−0.1.
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Re |ΓU | ΓL |ΓU | − ΓL Difference
180 1.521 2.284 −0.763 −33.4%
195 1.270 1.938 −0.668 −34.5%
210 1.512 1.773 −0.261 −14.7%
225 1.337 1.518 −0.181 −11.9%
244 1.372 1.624 −0.252 −15.5%

Table 5.2: Circulation values of von Kármán vortices at downstream position x/D = 10. Circu-
lation values in the table are non-dimensionalized with 1/DU∞.

Figure 5.12: Velocity vectors and streamwise vorticity patterns at the cross-stream plane of
x/D = 4.5 at Re = 180. Contour levels of vorticity are |ωx|D/U∞ = 0.2, 0.4, ..., 2. Γ+

x

and Γ−

x indicate secondary vortices with positive and negative circulation, respectively. λz de-
notes the spanwise wavelength of the secondary vortices and is measured between the centers of
vortices of the same sign.

ween upper and lower vortices at downstream position x/D = 10 are given in Table
5.2 for different Reynolds numbers. As quantified in the table, the strength difference
between the upper and lower von Kármán vortices is in the order of O(10%). This
suggests that during Mode-C transition the upper vortices become weaker than the
lower vortices, since some part of the vorticity in the upper shear layer is transferred
into secondary vortices.

5.4.2 Streamwise vortices

The strengths of the secondary vortices of Mode-C transition are calculated from
back-view PIV experiments. Figure 5.12 shows the resulting velocity vectors and
streamwise vorticity distribution at the cross-stream plane of x/D = 4.5 for a Rey-
nolds number of Re = 180. Each vortex is defined with a λ2 = −0.1 contour. The
circulation Γx of the corresponding streamwise vortical structures are calculated in
the same manner as for the spanwise vortices. In Figure 5.12, Γ+

x and Γ−
x indicate

secondary vortices with positive and negative circulation, respectively. Γ+
x implies
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Figure 5.13: Variation of strengths of secondary vortices Γx/DU∞ with Reynolds number Re
and downstream position x/D in the near-wake.

counter-clock-wise and Γ−
x implies clock-wise rotation. The strength of the vortices

is calculated at the instant at which they are at their highest position with respect to
the wake centerline y/D = 0. This instant corresponds to the vortex shedding phase
where the measurement plane is between the upper and lower primary vortices, see
Figure 5.6 for an example. In Figure 5.12, the spanwise distance between the vortices
of the same sign determines the spanwise wavelength λz of Mode-C transition.

Figure 5.13 shows the variation of the strengths of the secondary vortices with
Reynolds number and downstream position. The overall strength Γx is calculated
by taking the average of Γ+

x and |Γ−
x | in several snapshots for each back-view PIV

experiment. The standard deviation of the circulation calculation (σ/DU∞ = 0.057)
is shown as an error bar for a representative case. The data show a clear outlier for
the case Re = 180 and x/D = 3.5. Nevertheless, it might be concluded that Γx is
increasing almost linearly with the Reynolds number for 1.5 < x/D < 4.5 in the
near-wake. The average strengths of the Mode-C vortices are Γx/DU∞ = 0.40 for
Re = 180 and Γx/DU∞ = 0.56 for Re = 244.

The results of the spanwise wavelength calculation of Mode-C transition are
shown in Figure 5.14. Although the data shows a scatter of λz values, it looks
like λz is decreasing slightly with increasing Reynolds number. The standard de-
viation of the calculation of the spanwise wavelength is σ/D = 0.15 and is shown
as an error bar for a representative case in Figure 5.14. The average spanwise wa-
velength values for each corresponding Reynolds number are calculated as λz/D =

2.28, 2.20, 2.17, 2.06, 2.10 for Re = 180, 195, 210, 225, 244, respectively. On the other
hand, λz seems to increase with downstream position x/D. For example, the ave-
rage λz values at each downstream location is λz/D = 2.02, 2.13, 2.21, 2.27 for x/D =

1.5, 2.5, 3.5, 4.5, respectively. Most likely, this increase is caused by the end condi-
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Figure 5.14: Variation of spanwise wavelength of secondary vortices λz/D with Reynolds num-
ber Re and downstream position x/D in the near-wake.

tions imposed by the end plates. The spanwise wavelength of Mode-C transition for
the wired cylinder case is calculated by averaging all the values given in Figure 5.14
and is found to be

λz

D
= 2.16 (5.6)

The quantification of the relationship between secondary and primary vortices
is done by comparing their strengths. In Figure 5.15, the variation of the strength
ratio Γx/Γz with Reynolds number is shown for the downstream positions x/D =

2.5, 3.5, 4.5. The strength of the upper von Kármán vortex is used in the calculations,
since the Mode-C vortices originate from the upper vortices. It can be seen that the
circulation of the secondary vortices is significantly smaller than the circulation of
the primary von Kármán vortices. The strength of the Mode-C vortices is ≈ 20% of
the strength of the von Kármán vortices for Re = 180 and is ≈ 30% for Re = 244.
Discarding the outlier data point at Re = 180 and x/D = 3.5, one may conclude
that Γx/Γz varies linearly with the Reynolds number. This result indicates that the
growth rate of secondary vortices is higher than the growth rate of primary vortices
during Mode-C transition.

5.5 Vortex shedding frequency in Mode-C

The existence of von Kármán vortices during Mode-C transition shows that placing
a wire in the near-wake does not suppress the vortex shedding. However, it is shown
in Chapter 4 that the wire causes approximately 5% reduction in the shedding fre-
quency. These results put Mode-C transition in the framework of the discussion of
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Figure 5.15: Variation of strength ratio Γx/Γz of secondary and primary vortices with Reynolds
number Re and downstream position x/D in the near-wake.

Gerrard [6] and Strykowski and Sreenivasan [59] about the physical interpretation
of the vortex shedding frequency.

According to the classical model of Gerrard [6], the vortex street formation is re-
lated to the interaction of opposite shear layers which has to happen within a certain
distance, the so-called formation length. This interaction basically occurs by dra-
wing each other across the wake centerline. Each shear layer must have sufficient
strength before it draws the opposite shear layer across the wake. Thus, diffusion of
shear layer vorticity over a critical diffusion length or prevention of their interaction
over a critical formation length can result in suppression of vortex street formation
[59]. If the shear layer vorticity distribution is diffused then the shear layers will
not pull each other rapidly, resulting in a reduced shedding frequency, as discussed
by Strykowski and Sreenivasan [59]. They observed that the weakened shear layers
result in a reduced shedding frequency even if vortex shedding is not suppressed.

To investigate the consistency of the above discussion and the current experimen-
tal investigation of Mode-C transition, the time-averaged vorticity contours for the
wired and non-wired cylinder wakes at two different Reynolds numbers in the tran-
sition regime are shown in Figure 5.16. In this figure, Re = 180− 185 represents an
early stage in the transition regime, while Re = 225 − 230 represents a later stage.
The same contour levels are applied in all figures to ease the comparison. Negative
and positive vorticity values are represented with dashed and solid contour lines,
respectively.

The effect of the wire is clearly visible in the PIV experiments. Although the spa-
tial resolution of PIV is not high enough to resolve all the small scale flow structures
around the wire, it is evidently sufficient to resolve the global effect of the wire on
the upper shear layer.
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Figure 5.16: Time-averaged spanwise vorticity contours ωzD/U∞ in the near-wake of the cylin-
der. Contour levels are |ωz|D/U∞ = 0.4, 0.8, ..., 4. Solid line and dashed line contours indicate
positive and negative vorticity, respectively.
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Firstly, the wire breaks the symmetry of the time-averaged vorticity field by di-
verting some portion of the vorticity in the separated upper shear layer into the
near-wake region. Diverted negative vorticity goes slightly below the wake center-
line (y/D = 0) and dissipates positive vorticity of the lower shear layer. This is
seen in the contour lines of positive vorticity close to the wake centerline. They are
slightly flat when compared to the non-wired case.

Secondly, the wire generated vorticity spreads the negative vorticity of the se-
parated upper shear layer of the main cylinder. For the wired case at Re = 180, it
can be seen that a direct effect of the wire on the time-averaged vorticity patterns is
confined to the region of x/D = 0.75 − 1.5 in the upper shear layer. Increasing the
Reynolds number does not much change the effect of the wire on the time-averaged
vorticity. The same vorticity patterns are seen both for Re = 180 and Re = 225 in
the wired cases. For Re = 225, the effect of the wire is also confined to the region of
x/D = 0.75− 1.5. A quantification of vorticity diffusion can be made by considering
the circulation values of the von Kármán vortices, which originate from the separa-
ting shear layers. As given in Table 5.2, for Reynolds number Re = 180 of the wired
cylinder case, the circulation of the upper vortices is O(10%) lower than of the lower
vortices.

The diffusion in the upper shear layer is accompanied by thickening of the shear
layer [6, 59]. It is discussed by Strykowski and Sreenivasan [59] that the shedding
frequency is inversely proportional to the thickness of the separating shear layer. As
a measure of the shear layer thickness, the momentum thickness is used [68]:
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where θu is the upper shear layer thickness and u the time-averaged horizontal ve-
locity.

The results are presented in Figure 5.17 for two Reynolds numbers. From the
figure it is clear that the momentum thickness, i.e. the shear layer thickness, of the
wired cylinder is larger than of the non-wired cylinder, indicating a lower shedding
frequency. For example at x/D = 1, the difference in the shear layer thickness is
0.028D for Re = 180 and 0.016D for Re = 225, which corresponds to an approxima-
tely 26% and 16% increase with respect to the reference non-wired cases.

One may conclude that the wire thickens the shear layer by spreading its vorticity
content. Following the discussion of Strykowski and Sreenivasan [59], the reduction
of the shedding frequency in Mode-C transition can be linked to their conclusion
about weak shear layers which are not strong enough to pull each other across the
wake.
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Figure 5.17: Downstream variation of the upper shear layer momentum thickness for wired and
non-wired cases at different Reynolds numbers.

5.6 Concluding remarks

In this chapter, the discussion of Mode-C transition is extended by investigating and
quantifying some of the observations such as the shedding frequency reduction, the
energy content of the wake, the vortex trajectories of von Kármán vortices and the
spanwise wavelength of Mode-C transition. The analyzes are done mainly by focu-
sing on fluctuating flow features, energy characteristics and vortex dynamics. The
data used in the analyses is obtained from several side-view and back-view PIV mea-
surements.

First of all, the effect of the wire on temporal characteristics is investigated by
evaluating the variation of rms-velocity characteristics of the wake. It is shown that
the urms/U∞ profile in the upper half of the wake is broadened. Peak urms values do
not change significantly in the wired cases but they are reduced by approximately
10 − 15% compared to the non-wired cases. Moreover, they stay almost constant
throughout the Reynolds number range Re = 180− 225.

Secondly, discrete energy components are calculated at different frequencies of
the energy spectrum. The effect of the wire is clearly evident in the cross-stream plot
of energy intensity at subharmonic frequency f1 ≈ f0/2. There is a clear peak in the
energy intensity of f1 in the upper half of the wake around y/D = 1.25. The energy
intensity at the von Kármán vortex shedding frequency in the upper half of the wake
is less than the energy intensity in the lower half, meaning that the excess energy is
stored at subharmonic frequency f1 ≈ f0/2. Furthermore, from the downstream
variation of the discrete integrated energies, one may conclude that von Kármán
vortices die faster than secondary Mode-C vortices.

Thirdly, the vortex dynamics in Mode-C transition is investigated. It is shown
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that the period-doubling nature of the transition also exhibits itself in the vortex
trajectories. In non-wired cylinder flows there is one single trajectory describing
the path of the von Kármán vortices for each half of the wake. However, for the
wired cylinder case (Mode-C transition), there are two different trajectories for both
upper and lower vortices. The strength difference between the upper and lower
von Kármán vortices is in the order of O(10%), which suggests that during Mode-C
transition the upper vortices become weaker than the lower vortices, since some part
of the vorticity in the upper shear layer is transferred into the secondary vortices.

The vortex strength calculations of secondary vortices indicate that the strength
of the secondary vortices, Γx, is increasing almost linearly with Reynolds number
Re. The strength of secondary Mode-C vortices is ≈ 20% of the strength of von
Kármán vortices for Re = 180 and is ≈ 30% for Re = 244. This result suggests
that the growth rate of secondary vortices is higher than the growth rate of primary
vortices during Mode-C transition. Also a quantification of the spanwise wavelength
of Mode-C instability is done. The spanwise wavelength of Mode-C transition for
wired cylinder case is calculated as λz/D = 2.16.

Finally, a physical interpretation of the effect of the wire on the shedding fre-
quency in Mode-C transition is given. The discussion is based on the classical vortex
shedding theory of Gerrard [6] and its discussion by Strykowski and Sreenivasan
[59]. It is concluded that indeed the wire thickens the shear layer by spreading its
vorticity content in Mode-C transition, which results in a reduction of the circulation
of the upper vortices and consequently the shedding frequency.



Chapter

6
Shedding Mode-II in the

wake of a rotating
circular cylinder

6.1 Introduction

In this chapter the transition of the flow behind a circular rotating cylinder is inves-
tigated experimentally. The wake of a rotating cylinder is determined by a stability
diagram showing the flow state with respect to rotation rate α and Reynolds num-
ber, see Figure 6.1. The rotation rate is defined as α = (DΩ)/(2U∞), where D is
the cylinder diameter, Ω the constant angular velocity of the rotating cylinder, U∞

the free-stream velocity. The flow is divided into different stages. Shedding Mode
I is seen at low rotation rates and is associated with a deflected von Kármán vortex
street [35, 37]. El Akoury et al. [37] also showed, using three-dimensional numeri-
cal simulations, that at very low rotation rates secondary streamwise vortical struc-
tures appear in the wake. Their results also indicate that the cylinder rotation has a
stabilizing effect on three-dimensional perturbations acting on shedding vortices in
Shedding Mode I.

When the rotation rate is increased beyond the critical value for Shedding Mode I
the flow goes into a stable region. Using numerical simulations it is shown by Kang
et al. [33] that the rotation of a cylinder can suppress vortex shedding effectively
when the rotation rate exceeds a value of 2. The same results are also reported by
[14, 34–37].

As seen in Figure 6.1a, in a very narrow range of high rotation rates Shedding
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(a) (b)

Figure 6.1: Rotating cylinder flow (a) Stability diagram for different Reynolds numbers and
rotation rates, (b) Development of the vortex street in the second vortex shedding mode behind the
rotating cylinder for Re = 160 and α = 4.7. (Figure is reproduced from Stojkovic et al. [14]).

Mode II takes place. This phenomenon was investigated by Stojkovic et al. [34].
They examined the flow at higher rotation rates for a Reynolds number of Re =

100. They showed the existence of this second shedding mode in a narrow range of
rotation rate 4.85 − 5.15 for the first time. This mode has a shedding frequency of
St ≈ O(10−2), which is one order of magnitude lower than that of Shedding Mode I.
Furthermore, the shedding period is slightly dependent on the value of the rotation
rate. Their work was extended further in Stojkovic et al. [14]. They constructed
a complete stability diagram in the Reynolds number-rotation rate plane which is
sketched in Figure 6.1. Mittal and Kumar [35] performed simulations and a stability
analysis for the flow at Re = 200. They also identified a second instability mode
at α = 4.5. Moreover, numerical studies of several authors indicate that Shedding
Mode II is associated with a single shed vortex, as shown in Figure 6.1b, [14, 35–37].
In addition, the numerical simulations of Mittal [36] show the existence of three-
dimensional centrifugal instabilities in the wake at α = 5 and Re = 200.

In a recent study of rotating cylinder flow, Pralits et al. [38] investigated different
aspects of Shedding Mode II. They studied the linear instability of the flow around
a rotating circular cylinder at Re = 100. They examined the physical mechanisms
using structural sensitivity and a perturbation kinetic energy budget analysis. They
have also identified Shedding Mode II in the rotation rate range of 4.85−5.17, which
is characterized by the shedding of one counterclockwise vortex from the upper part
of the cylinder. In their study, the origin of the instability is identified as the advec-
tion of positive vorticity of the base flow from the low-rear part of the cylinder to the
stagnation point where it accumulates and sheds.
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The objective of the present work is to experimentally verify the existence of
Shedding Mode II and to compare its main features with those obtained in the nu-
merical studies of Stojkovic et al. [14]. To the best of our knowledge Shedding Mode
II has never been identified experimentally. The chapter starts with a brief descrip-
tion of the experimental method and the set-up. Following this brief introduction,
the results from the experiments are summarized. Firstly, the validation of the expe-
rimental method is discussed and secondly, the results about Shedding Mode II are
presented. The final section consists of some concluding remarks about the experi-
mental results.

6.2 Flow configuration and experimental techniques

The rotating cylinder experiments are performed in the towing tank with a counter-
clock-wise rotating cylinder. The details of the towing tank and experimental mo-
del are already given in Chapter 2. The qualitative and quantitative information
about the flow physics is obtained from flow visualization experiments using the tin-
precipitation method and PIV experiments. The rotating cylinder experiments are
performed at a fixed Reynolds number of Re = 100 for various rotation rates which
are presented in Figure 6.2a. Since Shedding Mode II appears in a very narrow range
of the rotation rate α, the experiments were carried out in a very controlled manner.
Several experiments are repeated at different rotation rates until Shedding Mode II
vortices are seen. Here only the results of experiments in the range α = 4.96 − 5.12

are presented, as Shedding Mode II vortices are only found in those experiments.
The cylinder model used for the rotating cylinder experiments has a diameter of

D = 10mm. The end plates have a square shape with a width of 200mm and are
placed parallel to each other due to the imposed restrictions of the rotating bearings
and optical accessibility of the cameras. The length of the cylinder is L = 480mm
and the length of the section that faces the inflow directly is L = 380mm. This
corresponds to a cylinder aspect ratio of L/D = 38 for the rotating case. The cylinder
is placed in the middle of the water level, resulting in a distance of the cylinder
center to the free surface and bottom wall of 30D. The cylinder is connected to a DC
electrical motor via a belt system and rotates in counter-clockwise direction from the
camera point of view.

For the flow visualization experiments the electrolytic tin-precipitation method
is used. The details of the method are summarized in Chapter 2. In the rotating
cylinder set-up, the tin particles are introduced from a vertically placed tin-sheet, as
shown in Figure 6.2b. The tin-sheet is placed in front of the cylinder and its thickness
is approximately 0.6mm. The tin particles are illuminated using a laser plane and
their images are recorded using a CCD camera with wide-angle lens.

The quantitative evaluation of the flow is made by using Particle Image Velo-
cimetry measurements. For this purpose, the water in the towing tank was seeded
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(a) (b)

Figure 6.2: Brief information on rotating cylinder experiments; (a) Reynolds number-rotation
rate values of the performed experiments at Re = 100. The boundaries of the instability modes
are reproduced from Stojkovic et al. [14], (b) Sketch of the tin-precipitation set-up in the rotating
cylinder experiments.

with PSP particles having a diameter of 20µm. The same configuration and set-up, as
used in the side-view experiments for the wired cylinder, is also used for the rotating
cylinder experiments. The details of the side-view experiments for the wired cylin-
der configuration is given in Chapter 2. However, due to the upwards deflection
of the wake, the positions of the cameras are arranged accordingly to cover a larger
field of view. The images obtained from different cameras are denoted as ’frame 1’
and ’frame 2’ in the relevant figures throughout the text.

6.3 Results

As first step of the rotating cylinder experiments, the reliability of the experimental
system is assessed. For that purpose both flow visualization and PIV experiments
are performed at low rotation rates. These rotation rates correspond to three different
flow regimes in the stability diagram shown in 6.2a, i.e. von Kármán vortex street,
Shedding Mode I and stable region.

The flow visualization and PIV results of the validation experiments are shown
in Figure 6.3 and Figure 6.4, respectively. The flow direction is from left to right in
both figures and the cylinder is rotating in counter-clockwise direction. Both figures
exhibit representative instantaneous snapshots of the flow field. In Figure 6.4, the
solid line and dashed line contours indicate positive and negative vorticity, respecti-
vely. The data values in the overlapping region of two frames are averaged using the
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merging method discussed in Chapter 2. The strengths of the vortices are calculated
using the λ2-criterion with λ2 = −0.1 defining the vortex boundary.

6.3.1 von Kármán Vortex Street (α = 0)

For α = 0 and Re = 100, the flow is expected to exhibit two-dimensional von
Kármán vortex shedding patterns. The results from the experiments can be seen
in Figure 6.3 and Figure 6.4, which clearly show a von Kármán vortex street. The
PIV measurements indicate that the vortices are symmetric with respect to the wake
centerline y/D = 0. The Strouhal number calculated from PIV is St = 0.165 which is
in good agreement with the values from the literature [47].

6.3.2 Shedding Mode I (α = 1.6)

Shedding Mode I can be seen at α = 1.6 and Re = 100. From Figure 6.3 it can be no-
ted that the vortex shedding is not suppressed completely but changed due to the ro-
tation. The rotation rate is relatively slow and an upward deflected von Kármán vor-
tex street can be seen, as shown in Figure 6.4. In comparison with the non-rotating
case, the strength of the vortices is reduced, as can be noted from the calculated cir-
culation values in Figure 6.4. The Strouhal number calculated from the PIV image
sequence is St = 0.164. El Akoury et al. [37] showed that in Shedding Mode I region
the Strouhal number does not change significantly from the non-rotating case.

6.3.3 Stable region (α = 3.0)

In the stability diagram shown in Figure 6.2a, α = 3.0 is between the two shedding
modes. In this rotation rate the vortex shedding is completely suppressed and there
is no vortex shedding from the cylinder. This can be clearly seen from the visualiza-
tion and PIV experiment results in Figure 6.3 and Figure 6.4.

Based on the above results, one may conclude that the results of the experiments
are consistent with the results of the literature and the set-up produces reliable re-
sults for both non-rotating and rotating cylinder experiments.

6.3.4 Shedding Mode II

Further increase of the rotation rate of the cylinder puts the flow regime into another
instability region which is known as Shedding Mode II [14]. In this mode, shedding
of a single vortex takes place at a much lower frequency, as shown in Figure 6.5.

Figure 6.5 represents an instantaneous spanwise vorticity snapshot from PIV
measurement at rotation rate α = 5.08 for Re = 100. Increasing the rotation rate
results in a more upward deflected wake. Therefore, to capture the vortical struc-
tures, frame 2 is placed in an upward position compared to frame 1. The existence of
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Figure 6.3: Instantaneous flow visualization images at rotation rates α = 0, 1.6 and 3.0 for
Re = 100.
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Figure 6.4: Instantaneous spanwise vorticity ωzD/U∞ snapshots calculated from PIV results at
rotation rates α = 0, 1.6 and 3.0 for Re = 100.
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Figure 6.5: Instantaneous spanwise vorticity snapshot calculated from PIV results at rotation
rate α = 5.08 for Re = 100. Contour levels are |ωz|D/U∞ = 0.1, 0.1, ..., 1. Blue and red colors
of vorticity indicate positive and negative values, respectively. The vortex of Shedding Mode II is
shown in frame 2. The solid line represents a λ2 = −0.1 contour line.

Figure 6.6: Two out of four captured vortices of Shedding Mode II in flow visualization expe-
riments at α = 4.96 for Re = 100. The shedding period Tshed ≈ 57.4s in this particular
experiment.
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Figure 6.7: Four captured vortices of Shedding Mode II in PIV experiments at α = 5.08 for
Re = 100. Each snapshot shows instantaneous spanwise vorticity ωzD/U∞ contours. Contour
levels are |ωz|D/U∞ = 0.1, 0.1, ..., 1. Blue and red colors of vorticity indicate positive and
negative values, respectively. The shedding period Tshed ≈ 52.5s in this particular experiment.

the vortical structure is determined by applying the λ2-criterion. It is clear that the
area bounded by λ2 = −0.1 reflects a vortex. The single vortex of Shedding Mode II
contains positive vorticity which indicates a counter-clock-wise rotation.

At two different rotation rates (α = 4.96, 5.1) single vortices with large shedding
periods are observed in the flow visualization experiments. Sample snapshots from
the results of flow visualization experiments at α = 4.96 and Re = 100 are presen-
ted in Figure 6.6. The experiments at this parameter value of α made it possible to
identify four single vortices of Shedding Mode II; as example only two of them are
shown in Figure 6.6. At this stage the wake behind the rotating cylinder is not as
stable as it is at α = 3.0. This feature can be seen from the behavior of the tin sheet.
In the lower part of the wake a distinct and counter-clock-wise rotating vortex is ob-
served in both of the images. The period between the vortices is calculated using the
image sequence and is denoted as Tshed. The resulting Strouhal number of the vortex
shedding is St ≈ 0.017. This value of the non-dimensional shedding frequency is of
the same order-of-magnitude as found from numerical simulations of Stojkovic et al.
[14].

Furthermore, Figure 6.7 shows the results of PIV measurements in the Shedding
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Mode II region at α = 5.08 and Re = 100. The figure shows four snapshots of instan-
taneous spanwise vorticity contours ωzD/U∞. There are clear positive ωz concentra-
tions in frame 2 of the snapshots in Figure 6.7. These vorticity concentrations actually
denote the vortical structures of Shedding Mode II. The snapshots in Figure 6.7 are
chosen such that they represent the vortex shedding phase where the single vortex
is at a downstream position x/D = 15. The time difference between each frame is
approximately one shedding period. During the experiment only four vortices were
captured. This indicates that the flow may not be fully developed, which means that
the period between the consecutively shed vortices is not constant. Nevertheless,
the shedding period is calculated by averaging the time passed between consequent
detected vortices. From this average shedding period the Strouhal number is found
to be St ≈ 0.0262.

The formation and shedding process of a single vortex at α = 5.08 and Re = 100

is presented in Figure 6.8. Each plot of instantaneous spanwise vorticity ωzD/U∞

is 0.05Tshed apart from each other. As depicted in the figure, the vortex shedding
is completely different from the non-rotating cylinder case and the rotating cylinder
case in Shedding Mode I. A single vortex is developing and shed from the upper
part of the rotating cylinder. At phase t = 0 there is a clear concentration of po-
sitive vorticity in the upper part of the cylinder. Apparently, when this vorticity
concentration reaches sufficient strength, it detaches from the cylinder and sheds
downstream forming a single vortex. This vortex has a positive vorticity content
and rotates counter-clockwise, i.e. with the same rotation direction as the cylinder.

Further assessment of Shedding Mode II experiments is done by comparing the
Strouhal numbers calculated from experiments and obtained from literature. The re-
sults are presented in Figure 6.9. The error bars in the figure represent the standard
deviation in the calculation of Strouhal numbers. It is clear that the order of magni-
tude of the measured shedding frequencies is the same as compared to the numerical
results in literature [14]. However, there is a scatter in the experimental results, since
in the present experiments it was not possible to realize a fully developed flow for
Shedding Mode II.

6.4 Concluding remarks

In this chapter, the flow past a rotating circular cylinder at Reynolds number Re =

100 has been analyzed for various rotation rates. Since the main objective is to pro-
vide experimental evidence about Shedding Mode II region (4.8 / α / 5.2), the
Reynolds number is fixed at Re = 100 in order to reduce the number of experiments.
For that purpose a rotating cylinder set-up is designed and placed in the towing
tank.

Firstly, experiments are performed to test the configuration and to assess the ex-
perimental results before conducting experiments in the Shedding Mode II region.
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Figure 6.8: Formation and shedding of a single vortex during Shedding Mode II at α = 5.08
for Re = 100. Each snapshot is 0.05Tshed apart from each other shows instantaneous spanwise
vorticity ωzD/U∞ contours. Contour levels are |ωz|D/U∞ = 0.1, 0.1, ..., 1. Blue and red colors
of vorticity indicate positive and negative values, respectively.
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Figure 6.9: Comparison of rotation rate-Strouhal number results of current PIV experiments with
literature values. The literature values are reproduced from Stojkovic et al. [14].

The measurements at lower rotation rates showed that the rotating cylinder set-up
provides results in agreement with the literature values.

Secondly, the existence of Shedding Mode II is proved experimentally. At α =

4.96, 5.1 for flow visualization experiments and at α = 5.08, 5.12 for PIV measure-
ments single vortices with large shedding periods are observed. These vortices are
shown to be Shedding Mode II vortices which contain positive spanwise vorticity
and rotate in counter-clockwise direction.

The period of Shedding Mode II is quite large when compared to the shedding
period of von Kármán vortices and it requires a large time of experiment in order
to see the phenomenon. Therefore, the experimental results show only three or
four distinct vortices shed from the rotating cylinder depending on the rotation rate.
Practically it was not possible to extend the experimental time so the Strouhal num-
bers are calculated based on the averaged shedding period. Nevertheless, based on
the qualitative patterns and the order of magnitude of the shedding frequency, it is
concluded that the vortices observed in the experiments are indeed vortices of Shed-
ding Mode II.



Chapter

7
Conclusions and

recommendations

7.1 Concluding remarks

This thesis presents a detailed experimental characterization of Mode-C transition in
the wake of a wire-disturbed cylinder and experimental evidence of the existence of
Shedding Mode II instability in the wake of a rotating cylinder.

Several methods are used and upgraded to reach the objectives of the research:

• The Spectral Element Method is used for an accurate numerical analysis of
the two-dimensional flow. Special attention is given to the grid resolution to
accurately reflect the effect of the very thin wire on the main cylinder wake.

• Qualitative information of the flow physics is obtained from electrolytic tin
precipitation experiments. The use of a tin foil covering the cylinder provi-
ded a significant improvement of the flow visualization results. It improved
the quality of the images by introducing the tracer particles directly into the
boundary layer of the cylinder.

• Quantitative information about the flow structures is obtained using Particle
Image Velocimetry. Placing the cameras side-by-side provided a larger field-of-
view without losing resolution. The characterization of the secondary stream-
wise vortices is achieved by using a simple mirror set-up which allowed to
perform PIV measurements in the cross-stream plane.

The main conclusions of this thesis are:
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• Based on a detailed numerical analysis a hypothesis about the wake deflec-
tion in the two-dimensional case is formulated. The hypothesis states that the
deflection of the wake is primarily caused by a modification of the vortex ar-
rangement in the wake. A repositioning of the vortices is a necessary and suf-
ficient condition for the wake deflection to occur. This repositioning can be
achieved either by slightly delaying the formation of a vortex or by employing
a strength difference between the upper and lower row vortices.

• A clear and informative observation of the period-doubling phenomenon in
the Mode-C transition regime in the wake of a wire disturbed cylinder is do-
cumented. It is shown that in Mode-C instability the streamwise vortices es-
tablish a feedback mechanism between the upper primary vortices only. This
acts in such a way that vortex loops are generated at the same spanwise posi-
tion in every two cycles. This mechanism is self-sustaining.

• The origin of the secondary streamwise vortices in Mode-C transition is analy-
zed. It is shown that the secondary vortices in Mode-C transition are actually
the vortex loops that originate from the upper vortex. These vortex loops are
further stretched in the braid region and roll-up to form streamwise counter ro-
tating vortex pairs. Therefore, some part of the streamwise vorticity content of
the upper von Kármán vortex is transferred to the secondary vortices. This vor-
ticity transfer results in upper von Kármán vortices which are weaker than the
lower ones. The analysis of the discrete energy content of the wake supports
this justification by showing that the energy intensity at von Kármán vortex
shedding frequency f0 in the upper half of the wake is less than the energy
intensity in the lower half, meaning that the excess energy is transferred to the
subharmonic frequency f1 ≈ f0/2.

• Experimental evidence for the existence of Shedding Mode II in the rotating
cylinder wake is presented. Based on the qualitative and quantitative vortex
patterns and the order of magnitude of the shedding frequency, it is concluded
that the vortices that are observed in the experiments are indeed vortices of
Shedding Mode II.

7.2 Recommendations for further research

Regarding the research performed in this study, several recommendations for future
research are provided:

• Mainly two-dimensional measurements are used here to investigate a three-
dimensional phenomena. The application of two-dimensional measurement
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techniques provided profound information about Mode-C transition. Applica-
tions of advanced three-dimensional measurement techniques such as tomo-
graphic PIV and three-dimensional Particle Tracking Velocimetry can provide
additional information about three-dimensional dynamics and correlations in
the wake.

• The lacking of three-dimensional simulations in this research is due to the fact
that these simulations require large computational power. The increased num-
ber of computational points around the wire made a Spectral Element simula-
tion using the SEPRAN software on a single node unfeasible. Performing an
accurate and feasible three-dimensional numerical study of Mode-C transition
in a wired cylinder wake requires parallelization of the code.

• A thorough analysis of Mode-C transition in the wake of a wired cylinder has
been performed. However, there are still some points that are not addressed
in this thesis. One of them is the stability analysis of the transition. Several
numerical studies addressed this issue by performing a stability analysis of
the wake flow around non-wired cylinders and circular rings. Performing a
stability analysis using PIV data still remains a challenge. Another point is
the effect of the wire location on Mode-C transition. This point has not been
addressed in this thesis since the main objective is the characterization and
physical explanation of the Mode-C wake. Hence, the wire is placed at a fixed
position where Mode-C transition is shown to exist.

• Dynamic Mode Decomposition can also be a useful tool for the analysis of
experimental data. Dynamic Mode Decomposition is a data decomposition
method which allows the extraction of dynamically relevant flow features from
time resolved experimental data [74].

• Regarding the rotating cylinder experiments, longer experimental times are
needed. This is only feasible in a water channel configuration. The quality
of PIV measurements can be improved by using multiple lasers with variable
pulse lengths which are synchronized with multiple cameras to resolve the
flow structures both in the near-wake and far-wake of the rotating cylinder at
the same time.
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Summary

Transition of wire-disturbed cylinder wake flow

The transition of the flow behind bluff bodies has been the main topic of research for
many decades. Despite the efforts of many scientist and engineers, understanding
of the transition mechanism of wake flows behind both streamlined and bluff bodies
is still a challenge.

The focus in this research is the modified flow regime in the wake of a circular
cylinder. The modification is obtained by placing a very thin wire at a particular
position in the cylinder wake. The occurring transitional flow is denoted as Mode-
C transition, in comparison to Mode-A and Mode-B transition for the non-wired
cylinder. The flow structures have been investigated both experimentally and nu-
merically for different Reynolds numbers (Re = 100− 250) using flow visualizations
based on the tin-precipitation method, velocity measurements using Particle Image
Velocimetry(PIV), and numerical simulations based on the Spectral Element method.

In the laminar two-dimensional flow regime (Re = 100), it was observed, both
numerically and experimentally, that the wake of the cylinder is taking different tra-
jectories with respect to the wire position. A hypothesis was formulated about the
reasons of the wake deflection using a Point Vortex Model. The hypothesis is suppor-
ted with the assessment of vortex trajectories, strengths, lift and drag characteristics.
It is concluded that the deflection of the wake is primarily caused by a modification
of the vortex arrangement in the wake. This modified vortex arrangement is cau-
sed by different formation times of the upper and lower vortices, by different vortex
strengths, or by both.

A three-dimensional transition of the wired cylinder flow was observed for Re >

170. This transition is characterized by the so-called Mode-C instability. Analysis
of the experimental results shows that this Mode-C instability consists of secondary
vortices with a period-doubling character, i.e. the secondary vortices alternate sign
from one shedding cycle to the next. It is shown that a feedback mechanism of the
streamwise vortices between the two consecutively shed upper von Kármán vortices
causes the period-doubling character of the wake.

The analysis of Mode-C transition was further extended using the data from com-
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prehensive PIV experiments. The three-dimensional wake structure and vortex dy-
namics were investigated with a particular focus on the energy distribution of the
wake, vortex strengths and vortex trajectories. The secondary vortices are shown to
be counter-rotating vortex pairs with a spanwise wavelength of λz/D = 2.16.

In the final stage of the research, experiments have been performed to evaluate
the wake behind a rotating cylinder, particularly focusing on the so-called Shedding
Mode II regime. In literature only numerical proof is found for the existence of this
Shedding Mode II for which a single vortex is shed with a much lower frequency
compared to the non-rotating case. Both flow visualization and PIV techniques were
used to investigate this kind of flow. Shedding Mode II has experimentally been
detected for a Reynolds number of Re = 100 in the same rotation rate regime as in
the numerical studies.
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