

Approximation of discrete-time polling systems via structured
Markov chains
Citation for published version (APA):
Beekhuizen, P., & Resing, J. A. C. (2009). Approximation of discrete-time polling systems via structured Markov
chains. (Report Eurandom; Vol. 2009042). Eurandom.

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/764f302b-a5d5-4b66-b584-7b7effac63c0

Approximation of discrete-time polling systems via

structured Markov chains

P. Beekhuizen

Philips Research

and

Eurandom

beekhuizen@eurandom.tue.nl

J.A.C. Resing

Eindhoven University of Technology

resing@win.tue.nl

Abstract

We devise an approximation of the marginal queue length distribution in discrete-time
polling systems with batch arrivals and fixed packet sizes. The polling server uses the Bernoulli
service discipline and Markovian routing. The 1-limited and exhaustive service disciplines are
special cases of the Bernoulli service discipline, and traditional cyclic routing is a special case of
Markovian routing. The key step of our approximation is the translation of the polling system
to a structured Markov chain, while truncating all but one queue. Numerical experiments
show that the approximation is very accurate in general. Our study is motivated by networks
on chips with multiple masters (e.g., processors) sharing a single slave (e.g., memory).

1 Introduction

In this paper, we devise an approximation of the queue length distribution of a discrete-time
polling system with batch arrivals, fixed packet sizes, Bernoulli service, and Markovian routing.
Bernoulli service means that after service of a packet from queue i, the server serves queue i again
with probability q(i) and moves to another queue with probability 1 − q(i). Markovian routing
means that if the server moves to another queue, it moves to queue j with probability P (i, j) for
j 6= i, independently of everything else.

Our study is primarily motivated by networks on chips. Networks on chips are an emerging
paradigm for the connection of on-chip modules like processors and memories. Such modules
are traditionally connected via single buses, but because these buses cannot be used by multiple
modules simultaneously, communication difficulties arise as the number of modules increases.
Networks on chips have been proposed as a solution (see [12]). In networks on chips, routers are
used to transmit packets to their destination, so that multiple links can be used at the same time
and communication becomes more efficient.

We are in particular motivated by networks on chips where all traffic has the same destination.
Such networks occur for instance if multiple masters (e.g., processors) share a single slave (e.g.,
memory). In this case, multiple queues in a router share a single destination link, so the routers
can be seen as polling systems.

Routers in networks on chips often use a round robin scheduler, which, in polling terminology,
corresponds to cyclic routing and 1-limited service. We are therefore mostly interested in the cyclic
1-limited model, a special case of our model, but our approximation is aimed at the more general
polling system with Bernoulli service and Markovian routing. This also implies that, although
we are primarily motivated by networks on chips, the range of applications of our approximation
extends beyond them.

Recently, it was shown that a network of polling systems can be reduced to a single station
while preserving queue lengths [1], provided the service and routing discipline are HoL-based, which
is a class that contains Bernoulli service combined with Markovian routing. Most importantly,

1

this implies that such networks can be analysed by means of single-station results [2], as provided
in this paper.

The essential part of our approximation is the translation of the polling system to a Structured
Markov Chain (SMC) of the M/G/1 type (see [23]). An SMC of M/G/1 type is a Markov chain
of which the states can be described as tuples (l, φ), where l, called the level, is an element from
{0, 1, . . .} and φ, called the phase, an element from some finite set (the phase space). The Markov
chain has a transition probability matrix of the following block-partitioned form (hence the name
structured):




B0 B1 B2 B3 . . .
C0 A1 A2 A3 . . .
0 A0 A1 A2 . . .
0 0 A0 A1 . . .
...

. . .
. . .

. . .
. . .




. (1)

The matrix A0 describes transitions where the level decreases by one, A1 describes transitions
within a level, and so on. The behaviour of the Markov chain at the boundary l = 0 may be
different from that in the interior l > 0, which is reflected by the matrices Bk, k = 0, 1, . . ., and
C0.

The idea behind our approximation is simple yet very effective: Instead of analysing the queue
contents of all queues at the same time, we focus on the precise contents of one queue. For the
other queues we only keep track of whether there are 0, 1, . . . , B− 1, or ‘B or more’ packets in the
queues. By also keeping track of the index of the queue that is being served, we obtain an SMC
of the M/G/1 type.

The truncation of queue lengths implies that we have to introduce additional parameters
representing the probability that the contents of a queue go from ‘B or more’ to B − 1. The
values of these unknown parameters are determined iteratively. In each iteration the equilibrium
distribution of the SMCs is used to update the values of these parameters, until the values have
converged. As B → ∞, our approximation becomes exact. However, setting B = 2 already leads
to an accurate approximation.

This paper is organised as follows: In Section 2 we describe our model in more detail and
in Section 3 we give an overview of the relevant literature. We describe our approximation in
Section 4 and its accuracy is studied in Sections 5 and 6: In Section 5 we perform a detailed
analysis of a single case, and in Section 6 a global analysis of multiple cases. We present our
conclusions in Section 7.

In the implementation of our approximation, we used Kronecker products to determine the
transition probability matrix. However, for the sake of readability, we describe our approximation
without Kronecker products in Section 4. In Appendix A, we show how the transition probability
matrix can be obtained using Kronecker products, which makes the computations significantly
faster.

2 Model description

We assume that all packets have the same size, which we assume to be 1. Packets arrive to the
queues according to independent Bernoulli batch arrival processes (i.e., the numbers of arrivals in
each time slot are i.i.d.).

Because networks on chips operate in the discrete-time domain, our polling model does so too.
The model for which we derive our approximation is thus a discrete-time polling model with N
infinite queues and the following characteristics:

1. Batch Bernoulli arrival processes.

2. Deterministic service times, equal to 1.

2

3. Bernoulli service discipline, i.e., after service of queue i the server serves queue i again with
probability q(i) and moves to another queue with probability 1 − q(i).

4. Markovian routing, i.e., if the server moves, it moves from queue i to queue j 6= i with
probability P (i, j). We assume P (i, i) = 0.

5. Zero switch-over times.

The Bernoulli service discipline and Markovian routing dictate that, after a service completion
at queue i, the server moves to queue j 6= i with probability (1− q(i))P (i, j) and stays at queue i
with probability q(i) (in which case we say j = i). If queue j is empty, but not all queues are
empty, the server immediately moves to another queue according to the routing matrix P , and
again if this queue is empty too, and so on, until it finds a non-empty queue. If all queues are
empty the server remains at queue j. When new packets arrive to any of the queues, the server
again moves according to the routing matrix P , until it moves to one of the non-empty queues.
All of these movements happen instantaneously.

Remark 2.1. The model described above is not equivalent to a model where the server always
moves according to a matrix R, with R(i, i) = q(i) and R(i, j) = (1 − q(i))P (i, j), until it finds a
non-empty queue. With the exhaustive service discipline, R(i, i) = 1, which means that the server
stays at queue i indefinitely, even after it has become empty. Such behaviour cannot occur in our
model because P (i, i) = 0.

To prevent a situation where the server cannot reach some non-empty queues, we assume P
is irreducible. Furthermore, we assume that arrivals and service completions happen at the end
of time slots, and that packets arriving to an empty queue at the end of time slot [t − 1, t) may
be served in time slot [t, t + 1). Finally, we assume the polling system is stable. Because the
switch-over times are zero, the polling system is work-conserving and therefore stable if the total
load is less than 1. We thus assume

∑
k,l lxk(l) < 1, where xk(l) denotes the probability that l

arrivals occur to queue k.

3 Relevant literature

In this section, we review the literature relevant to our study of polling systems with Bernoulli
service and Markovian routing. The Bernoulli service discipline was introduced by Keilson and
Servi [17] in a single-queue vacation system where after each service completion the server takes
a vacation with probability p. Tedijanto [28] later analysed a multi-queue polling system with the
Bernoulli service discipline.

Markovian routing was analysed by Boxma and Weststrate in [10]. They derive the pseudo-
conservation law for Markovian routing combined with the traditional service disciplines (exhaus-
tive, gated, and 1-limited), see also Weststrate [30]. Independently of Boxma and Weststrate,
Srinivasan [27] considers a similar system, but in a slightly more general setting.

More important to our work, however, are results on queue lengths. Resing [24] established that
polling systems satisfying a certain ‘branching property’ can be viewed as branching processes and
exact results can be obtained. For polling systems that do not satisfy the branching property, such
as systems with the Bernoulli service discipline, even mean queue lengths are unknown, except for
special cases such as 2-queue and symmetric systems. The 2-queue system with Bernoulli service
was analysed by Feng et al. [13]. The symmetric case with 1-limited service and a special case
of Markovian routing, namely where P (i, j) is independent of i, was analysed by Kleinrock and
Levy [18].

Since exact results are known only for special cases, and their derivation gives little hope
for extensions to more general cases, we focus on approximations instead. In research of polling
systems, the continuous-time domain receives far more attention than the discrete-time domain.
One of the few examples of discrete-time approximations is the approximation by Frigui and
Alfa [14], where a polling model with time-limited service is studied.

3

In the continuous-time domain, the queue length distribution in a polling system with the
Bernoulli service discipline and cyclic routing was analysed using the power series approximation
of Blanc [5–8]. For the cyclic 1-limited system, the most important special case of our model, other
approximations of the queue length distributions exist: First, Van Vuuren and Winands [29] use
structured Markov chains to approximate queue lengths in a ki-limited polling system with cyclic
routing. Their approach, however, is very different from ours since they use structured Markov
chains to approximate visit and intervisit periods. Second, Leung obtains an approximation for a
polling system with the probabilistically limited service discipline (which includes 1-limited) using
discrete Fourier transforms [21]. Third, Lee and Sengupta approximate queue length distributions
in a polling model with a reservation mechanism using an iterative approximation of visit and
intervisit periods [20].

Most of these approximations can probably be extended to the discrete-time domain. However,
doing so often involves subtleties and requires careful checking of each step. Furthermore, the
approximations mentioned above, except Blanc’s, are aimed at models with positive switch-over
times. It is unclear whether good approximations can be obtained for the model without switch-
over times by taking a limit where switch-over times tend to 0. Especially if the queue length
approximation makes use of an approximation of visit and intervisit periods, such an approach
seems problematic as both are 0 with probability 1 in the limit.

Other authors, such as Boxma and Meister [9], Fuhrmann and Wang [15], Levy and Groe-
nendijk [16], and Srinivasan [26], only approximated mean waiting times in cyclic 1-limited polling
systems (and by Little’s law, mean queue lengths). Of those, we found that the Boxma-Meister [9]
and Levy-Groenendijk [16] approximations could be extended to the discrete-time domain with-
out much additional effort. We will compare our approximation with these two approximations in
Section 5.

4 The algorithm

In this section we describe our algorithm in more detail. First, we introduce the phase spaces and
derive the transition probability matrices. The iterative determination of the probabilities that
the contents of the truncated queues go from ‘B or more’ to B − 1 is discussed at the end of this
section.

For every queue, we construct an SMC such that the exact contents of that queue are stored in
the level. The truncated contents of the other queues, as well as the index of the queue in service
(called the service index) are stored in the phase. The SMC where the contents of queue i are
stored in the level, is called the ‘SMC of queue i’. All SMCs describe the state of the system at
integral times t, so immediately before the start of the service of a packet and immediately after
arrivals, departures and server movements.

Every phase of the SMC of queue i is described by a vector (j, n1, . . . , ni−1, ni+1, . . . , nN),
where j is the service index, nk = 0, . . . , B−1 means there are nk packets in queue k, and nk = B
means there are B or more packets in queue k, k 6= i. The phase space of level ni > 0 consists
of all such combinations, except that the service index cannot be j if queue j is empty. We thus
obtain

Φi = {1, . . . , N} × {0, 1, . . . , B}N−1\
{(j, n1, . . . , ni−1, ni+1, . . . , nN) : nj = 0 (for j 6= i)}

as the phase space for level ni > 0.
The phase space of level ni = 0, is different: First, queue i cannot be served because it is

empty. Second, if all queues are empty, the server waits at queue j until new packets arrive to any

4

of the queues. Hence, the phase space of level ni = 0 is

Φ̃i = {1, . . . , N} × {0, 1, . . . , B}N−1

\ {(j, n1, . . . , ni−1, ni+1, . . . , nN) : j = i or nj = 0 }
∪ {(j, 0, . . . , 0) : j = 1, . . . , N},

where (j, 0, . . . , 0) means that the server is waiting at queue j until new packets arrive.

Remark 4.1. The meaning of phase (i, 0, . . . , 0) depends on whether it is combined with level
ni > 0 or ni = 0. If ni > 0 phase (i, 0, . . . , 0) means that a packet from queue i will be served in
the next time slot and that all other queues are empty. If ni = 0 it means that the entire system,
including queue i, is empty and the server is waiting at queue i.

In order to describe the transition probability matrix of the SMC of queue i, we divide the
movement of the server from one queue to another into two parts: First, the server chooses a
queue it would like to serve, regardless of whether this queue is empty or not, i.e., the server stays
at queue j with probability q(j) and moves to queue k with probability (1− q(j))P (j, k). Second,
the server keeps moving according to matrix P until it finds a non-empty queue (provided the
server was not already at a non-empty queue, and not all queues are empty).

The transition probability matrix of the SMC of queue i is now given by




Bi,0Ψ̃i Bi,1Ψi Bi,2Ψi Bi,3Ψi . . .

Ai,0Ψ̃i Ai,1Ψi Ai,2Ψi Ai,3Ψi . . .
0 Ai,0Ψi Ai,1Ψi Ai,2Ψi . . .
...

. . .
. . .

. . .
. . .


 . (2)

Here, the matrices Ai,l and Bi,l describe arrivals, departures, and the first part of the server

movements. The matrices Ψi and Ψ̃i describe the second part of the server movements. Because
queue i is empty if and only if the process is in level ni = 0, there are different matrices for level
ni = 0 and levels ni > 0, denoted by Ψ̃i and Ψi respectively. These matrices are specified in more
detail below. The elements of matrices Ai,l are denoted by Ai,l(·, ·), and likewise for Bi,l.

Remark 4.2. The matrices Ai,l give probabilities of transitions from phases in the phase space Φi

to all possible vectors (j, n1, . . . , ni−1, ni+1, . . . , nN) with j = 1, . . . , N and nk ∈ {0, 1, . . . , B}, es-
pecially including those where the server is positioned at an empty queue. The matrix Ψi describes
transitions from such vectors to phases in Φi, where the server is not allowed to be positioned at
empty queues. The products of these matrices thus indeed give transition probabilities on the phase
space Φi.

Determination of Ψi and Ψ̃i

The matrices Ψi and Ψ̃i can be determined as follows: Suppose that the server is positioned at
an empty queue, but not all queues are empty. Define I and J as the subsets of empty and
non-empty queues, respectively. The matrix P constitutes a Markov chain on {1, . . . , N}. The
probability that the server moves from i ∈ I to j ∈ J is equal to the probability that the first visit
of that Markov chain to set J occurs at state j, given that the Markov chain starts in state i. The
matrices Ψi and Ψ̃i follow from computing that probability for all phases (see e.g. [25, Sec. 2.11]
for details).

Determination of Ai,l and Bi,l

In order to identify the contents of Ai,l and Bi,l, l = 0, 1, . . ., we introduce matrices R describing
changes in the service index, Xk describing changes in the contents of queue k 6= j, where j is the
queue in service, and Yi,j and Ỹi,j describing changes in the contents of queue j for level ni > 0
and ni = 0 respectively.

5

We define R(j, j′) as the probability that, after service of queue j, the server moves to queue j′:

R(j, j′) =

{
(1 − q(j))P (j, j′), if j 6= j′,
q(j), if j = j′.

The matrix Xk is such that Xk(nk, n′
k) is the probability that the contents of queue k go from

nk to n′
k, with nk, n′

k ∈ {0, . . . , B} given queue k is not in service. We have:

Xk =




xk(0) xk(1) . . . xk(B − 1) 1 −
∑

l<B
xk(l)

0 xk(0) . . . xk(B − 2) 1 −
∑

l<B−1
xk(l)

...
...

. . .
...

...
0 0 . . . xk(0) 1 − xk(0)
0 0 . . . 0 1




,

where xk(l) is the probability that l packets arrive to queue k.
We define the matrix Yi,j , such that Yi,j(nj , n

′
j) is the probability that, in level ni > 0, queue j

goes from nj to n′
j , with nj ∈ {1, . . . , B} and n′

j ∈ {0, . . . , B}. Here, nj ≥ 1 because service of
queue j implies that queue j is non-empty.

For queue j, we make the approximation assumption that its contents go from ‘B or more’ to
B − 1 with a fixed probability denoted by ζ̃i,j and ζi,j for level ni = 0 and ni > 0 respectively.
The rationale behind this level dependence is that, due to correlation between queue lengths, if
queue i is empty it is more likely that the contents of queue j are small, and hence it is also more
likely that queue j goes from ‘B or more’ to B − 1. The parameters ζi,j and ζ̃i,j , j 6= i, are called
the truncation parameters of queue i. The values of these parameters are determined iteratively,
as will be described in more detail at the end of this section. For now, we simply assume that
they have a certain value.

It follows that Yi,j is given by

Yi,j =




xj(0) . . . xj(B − 2) xj(B − 1) 1 −
∑

l
xj(l)

...
. . .

...
...

...
0 . . . xj(0) xj(1) 1 −

∑
l
xj(l)

0 . . . 0 ζi,jxj(0) 1 − ζi,jxj(0)


 ,

where the last element of each row is such that the row sums to 1.
Likewise, Ỹi,j(nj , n

′
j) is the probability that the contents of queue j go from nj to n′

j , for level

ni = 0. The matrix Ỹi,j is identical to Yi,j , except that ζ̃i,j is substituted for ζi,j .
The matrix Ai,l describes changes where queue i goes up by l − 1 levels. This happens if

there are either l − 1 arrivals and no service completion, or l arrivals and a service completion.
It follows that the probability of going from phase ω = (j, n1, . . . , ni−1, ni+1, . . . , nN) to phase
ω′ = (j′, n′

1, . . . , n
′
i−1, n

′
i+1, . . . , n

′
N) and going up by l − 1 levels is given by

Ai,l(ω, ω′) = xi(l − 1)R(j, j′)Yi,j(nj , n
′
j)

∏

k 6=j
k 6=i

Xk(nk, n′
k),

for j 6= i, with xi(−1) := 0, and

Ai,l(ω, ω′) = xi(l)R(j, j′)
∏

k 6=j

Xk(nk, n′
k)

for j = i. Here, the probability that the service index changes from j to j′ is given by R(j, j′).
The probability that the contents of the queues that are not in service change from nk to n′

k are
given by Xk(nk, n′

k). Finally, the probability that the contents of the queue in service change from
nj to n′

j is Yi,j(nj , n
′
j).

The matrices Bi,l are slightly different. First, if all queues are empty, the server remains at
the same queue. Second, there is never a service completion at queue i, because queue i is empty.

6

Third, the transitions of the queue in service, queue j, are not given by Yi,j but by Ỹi,j . We
obtain:

Bi,l(ω, ω′) = xi(l)
∏

k 6=i

Xk(0, n′
k),

if ω = (j, 0, . . . , 0), and

Bi,l(ω, ω′) = xi(l)R(j, j′)Ỹi,j(nj , n
′
j)

∏

k 6=j
k 6=i

Xk(nk, n′
k),

otherwise.
We have specified all the matrices needed to determine the equilibrium distribution of the SMC

of queue i. To compute the equilibrium distribution, we use the software tools of Bini et al. [3,4].
For more details on how to compute the equilibrium distribution, the reader is referred to [23].

Determination of ζi,j and ζ̃i,j

In the description of the SMCs, we introduced the truncation parameters of queue i, ζi,j and ζ̃i,j .
We use an iterative procedure to compute the values of these parameters and we denote their

value in step m of the iteration by ζ
(m)
i,j and ζ̃

(m)
i,j .

In each step of the iterative procedure, we determine new values for the truncation parameters
of one queue by means of the most recently computed equilibrium distributions of the other queues:
We first determine the values of the truncation parameters of queue 1 and compute the equilibrium
distribution of queue 1 with these values. We determine the truncation parameters of queue 2
using the newly computed equilibrium distribution of queue 1, as well as the previous equilibrium
distributions of queues 3, 4, . . . , N . We then compute the new equilibrium distribution of queue 2,
and, with that, new values for the truncation parameters of queue 3, and so on, until the values
of all truncation parameters have converged.

The truncation parameters of queue i describe the probability that, without arrivals to queue j,
the contents of queue j 6= i go from ‘B or more’ to B−1, given that a service completion occurs at
queue j. Without arrivals and with a service completion, a transition from ‘B or more’ to B − 1
occurs if the contents of queue j are in fact equal to B. If we denote the length of queue j by Qj ,
and the service index by S, the probability of such a transition is thus given by

P(Qj = B|Qj ≥ B, Qi > 0, S = j), j 6= i, (3a)

for level ni > 0 and

P(Qj = B|Qj ≥ B, Qi = 0, S = j), j 6= i, (3b)

for level ni = 0.
We denote the equilibrium distribution of the SMC of queue i in step m of the iteration by

π
(m)
i (j, n1, . . . , nN). By evaluating the conditional probabilities in (3a) and (3b) and substituting

the corresponding most recently computed equilibrium probabilities of the SMC of queue j, we
obtain

ζ
(m)
i,j =





∑
nj=B,ni≥1

π
(m)
j

(j,n1,...,nN)

∑
nj≥B,ni≥1

π
(m)
j

(j,n1,...,nN)
, for j < i,

∑
nj=B,ni≥1

π
(m−1)
j

(j,n1,...,nN)

∑
nj≥B,ni≥1

π
(m−1)
j

(j,n1,...,nN)
, for j > i,

, (4a)

7

and

ζ̃
(m)
i,j =





∑
nj=B,ni=0

π
(m)

j
(j,n1,...,nN)

∑
nj≥B,ni=0

π
(m)

j
(j,n1,...,nN)

, for j < i,

∑
nj=B,ni=0

π
(m−1)
j

(j,n1,...,nN)

∑
nj≥B,ni=0

π
(m−1)

j
(j,n1,...,nN)

, for j > i,

(4b)

as the values for the truncation parameters of queue i in step m ≥ 1. All sums are taken over
0 ≤ nk ≤ B, for k 6= i, j.

For i < j, Equations (4a) and (4b) express ζ
(1)
i,j and ζ̃

(1)
i,j in terms of π

(0)
j (.), which is not defined.

In this case, we choose

ζ
(1)
i,j = ζ̃

(1)
i,j = 1, for j > i. (4c)

Numerical experiments indicate that setting the initial values of the truncation parameters to 1
is important. Small values of the truncation parameters indicate that there are many packets in
the other queues requiring service. If the initial truncation parameters are (much) smaller than 1,
the SMC of queue i might even be transient, though in reality the polling system is recurrent. If
the SMC of queue i is transient, its equilibrium distribution cannot be determined and new values
for the truncation parameters cannot be found.

If the initial values are chosen equal to 1, the value of the truncation parameters converged in
all our examples, though we cannot formally prove convergence. Choosing the initial parameters
less than 1 and closer to their limiting values might speed up convergence, at the risk that no
convergence occurs at all if the initial values are too small.

Our algorithm is summarised below:

Algorithm 4.3.

0. Fix ε (for instance ε = 10−8) and set m = 1.

1. Determine Ψi and Ψ̃i for i = 1, . . . , N .

2. For i = 1, . . . , N :

(a) Use Equation (4a), (4b), or (4c) to determine ζ
(m)
i,j and ζ̃

(m)
i,j .

(b) Determine Ai,l and Bi,l with ζi,j = ζ
(m)
i,j and ζ̃i,j = ζ̃

(m)
i,j .

(c) Determine the equilibrium distribution of queue i, π
(m)
i (.).

3. Stop if m ≥ 2 and maxi,j{|ζ(m)
i,j − ζ

(m−1)
i,j |, |ζ̃(m)

i,j − ζ̃
(m−1)
i,j |} < ε. Otherwise, set m = m + 1

and repeat step 2.

Finally, after convergence of the truncation parameters, the approximation of the marginal
distribution of the length of queue i follows from the equilibrium distribution of the SMC of
queue i. Namely, P(Qi = l) is approximated by the sum of the equilibrium probabilities of all
phases at level ni = l.

5 Numerical results

In this section, we study the accuracy of our approximation for a single case with 4 queues, 1-limited
service and cyclic routing. The batch sizes are governed by a Poisson distribution with parameter
ρi, where (ρ1, . . . , ρ4) = (0.1, 0.2, 0.3, 0.4)ρ. The approximated queue length distributions are
compared with simulation outcomes in Table 1 for ρ = 0.5, ρ = 0.7, and ρ = 0.9.

8

Table 1: Queue length distributions

ρ = 0.5 P(Qi = 0) P(Qi = 1) P(Qi = 2) P(Qi = 3) P(Qi = 4) P(Qi = 5) P(Qi = 6)

i = 1
B = 2 0.9362 0.0612 0.00249 0.000092 0.000003 0.000000 0.000000
Sim 0.9362 0.0612 0.00249 0.000093 0.000004 0.000000 0.000000

i = 2
B = 2 0.8709 0.1179 0.01029 0.00084 0.000071 0.000006 0.000001
Sim 0.8709 0.1179 0.01028 0.00084 0.000071 0.000006 0.000001

i = 3
B = 2 0.8055 0.1681 0.0230 0.00295 0.00040 0.00006 0.000008
Sim 0.8054 0.1681 0.0230 0.00297 0.00040 0.00006 0.000008

i = 4
B = 2 0.7412 0.2109 0.0395 0.0069 0.00126 0.00024 0.000047
Sim 0.7411 0.2109 0.0395 0.0069 0.00127 0.00024 0.000049

ρ = 0.7 P(Qi = 0) P(Qi = 1) P(Qi = 2) P(Qi = 3) P(Qi = 4) P(Qi = 5) P(Qi = 6)

i = 1
B = 2 0.8953 0.0969 0.00722 0.00052 0.000039 0.000003 0.000000
Sim 0.8952 0.0970 0.00725 0.00052 0.000039 0.000003 0.000000

i = 2
B = 2 0.7840 0.1798 0.0300 0.00504 0.00090 0.00017 0.000032
Sim 0.7838 0.1800 0.0301 0.00509 0.00091 0.00017 0.000034

i = 3
B = 2 0.6724 0.2401 0.0636 0.0171 0.00484 0.00142 0.00043
Sim 0.6720 0.2400 0.0637 0.0172 0.00493 0.00148 0.00046

i = 4
B = 2 0.5661 0.2756 0.0994 0.0361 0.0137 0.0054 0.00218
Sim 0.5655 0.2754 0.0994 0.0362 0.0139 0.0056 0.00228

ρ = 0.9 P(Qi = 0) P(Qi = 1) P(Qi = 2) P(Qi = 3) P(Qi = 4) P(Qi = 5) P(Qi = 6)

i = 1
B = 2 0.8302 0.1474 0.0195 0.00253 0.00034 0.000047 0.000007
B = 3 0.8298 0.1477 0.0196 0.00255 0.00034 0.000048 0.000007
Sim 0.8297 0.1477 0.0196 0.00256 0.00035 0.000049 0.000007

i = 2
B = 2 0.6362 0.2479 0.0779 0.0251 0.0084 0.0029 0.00100
B = 3 0.6350 0.2480 0.0783 0.0254 0.0086 0.0030 0.00105
Sim 0.6345 0.2481 0.0784 0.0256 0.0087 0.0031 0.00109

i = 3
B = 2 0.439 0.2669 0.1350 0.0710 0.0387 0.0215 0.0121
B = 3 0.437 0.2654 0.1346 0.0713 0.0393 0.0222 0.0127
Sim 0.435 0.2644 0.1343 0.0713 0.0397 0.0226 0.0131

i = 4
B = 2 0.267 0.2159 0.1438 0.0993 0.0712 0.0520 0.0384
B = 3 0.265 0.2129 0.1413 0.0974 0.0701 0.0517 0.0387
Sim 0.263 0.2109 0.1394 0.0959 0.0690 0.0510 0.0383

For loads 0.5 and 0.7 the approximation is very accurate even with B as small as 2. The
differences in individual probabilities occur only in the 4th decimal or later. For ρ = 0.9 and
B = 2, the approximation is less accurate, but still quite good. If B = 3, the approximation again
becomes more accurate.

The probabilities obtained from simulation are the average probabilities of 10 simulation runs
of 25 · 106 time slots each. Furthermore, each probability in the table is rounded according to the
value of the standard deviation σ in the simulation outcomes of that probability. If the first four
digits of σ/

√
10 are zero, but the fifth is nonzero, then 4 digits are shown, etc.

It will be convenient to express the error of the approximation as a single number for each
queue. To this end, we use the total variation distance between the approximated and simulated
queue length distribution, which, for queue i, is defined as

di =

∞∑

k=0

|qi,k − q̂i,k|, (5)

where qi,k and q̂i,k denote simulation and approximation values for P(Qi = k). The values of di

can be found in Table 2.

Table 2: Total variation distances

Queue 1 Queue 2 Queue 3 Queue 4

ρ = 0.5 0.0000 0.0001 0.0001 0.0002
ρ = 0.7 0.0003 0.0005 0.0009 0.0015
ρ = 0.9 (B = 2) 0.0011 0.0035 0.0138 0.0410
ρ = 0.9 (B = 3) 0.0002 0.0011 0.0055 0.0191

Because we can approximate the mean waiting times using Little’s law, we can also compare our
approximation with the existing mean waiting time approximations of Boxma and Meister [9] and

9

Table 3: Mean waiting times

ρ = 0.5 Queue 1 Queue 2 Queue 3 Queue 4

B = 2 0.329 0.413 0.499 0.586
Sim. 0.329 0.413 0.500 0.587
BM 0.346 0.423 0.500 0.577
LG 0.299 0.396 0.498 0.604

ρ = 0.7 Queue 1 Queue 2 Queue 3 Queue 4

B = 2 0.615 0.854 1.138 1.462
Sim. 0.618 0.858 1.145 1.475
BM 0.709 0.938 1.167 1.395
LG 0.539 0.830 1.152 1.503

ρ = 0.9 Queue 1 Queue 2 Queue 3 Queue 4

B = 2 1.172 1.98 3.50 6.46
B = 3 1.179 2.01 3.59 6.84
Sim. 1.181 2.02 3.66 7.21
BM 1.590 2.71 4.70 5.97
LG 1.168 1.94 3.04 7.71

Groenendijk and Levy [16]. We do so in Table 3. Again, our approximation is very accurate. In all
cases, except queue 4 and ρ = 0.9, our approximation is more accurate than the Boxma-Meister
and Levy-Groenendijk approximations. Both Boxma and Meister [9, Rem. 5.2] and Groenendijk
and Levy [16, Sec. IV] give suggestions to improve their approximations for high loads. These
suggestions were taken into account in Table 3.

Because the state spaces of the SMCs are exponential in N , it is clear that our approximation
can only be applied to polling systems with few queues. For our application, networks on chips,
however, this does not pose a problem since the switches there typically have only few queues,
usually 4 or 5. If N = 4 and B = 2, the running time of our approximation for one value of ρ and
all four queues is only about 2 or 3 seconds. If B = 3, the running time increases to roughly 50
seconds. For comparison, the ten simulation runs that give the level of accuracy presented in this
section require about 15 to 20 minutes in total, per value of ρ.

6 Large-scale numerical study

In this section, we perform a numerical experiment on a larger scale to study the accuracy of our
approximation. We vary the following six characteristics of the polling system over a number of
values: The total load ρ, the number of queues N , the service discipline, the level of symmetry,
the arrival processes, and the routing matrix. We consider all possible combinations, i.e., every
possible load is combined with every possible value of N , every possible service discipline, and
so on. An overview of the values of these characteristics can be found in Table 4. In total, the
experiment comprises 5 · 4 · 4 · 3 · 3 · 2 = 1440 polling systems.

Table 4: The numerical experiment.

ρ 0.5 0.6 0.7 0.8 0.9
N 2 3 4 5
q 0 0.3 0.7 1

Symmetry Symmetric Asymmetric Very asymm.
Arrival process Bernoulli Poisson Geometric

Routing Cyclic Uniform

We assume that q(i) = q, i.e., within one polling system considered in the experiment, all

10

Table 5: Systems with the highest errors

ρ 0.5 0.6 0.7 0.8 0.9

0 0 0 0 100

N 2 3 4 5
26 27 25 22

q(i) 0 0.3 0.7 1

12 13 21 54

Symmetry Symmetric Asymmetric Very asym.
59 25 16

Arrival process Bernoulli Poisson Geometric

6 40 54

Routing Cyclic Uniform
53 47

queues have the same service discipline. We further assume that ρi = νiρ, where
∑

i νi = 1. The
constants νi are determined by the level of symmetry, which is either symmetric, asymmetric, or
very asymmetric: In the symmetric case, every queue gets a fraction 1/N of the load; νi = 1/N . In
the asymmetric case, (ν1, . . . , νN) ∼ (1, 2, . . . , N), where ∼ means ‘proportional to’. For example,
if N = 2, (ν1, ν2) = (1/3, 2/3), if N = 3, (ν1, ν2, ν3) = (1/6, 2/6, 3/6), and so on. In the very
asymmetric case each queue receives a fraction 0.1 of the load, except queue N which gets the
rest.

The distribution of the number of packets arriving to queue i is from the same family for all i,
but its mean ρi depends on i. The distribution can be Bernoulli with parameter ρi, Poisson with
parameter ρi, or geometric with parameter 1/(1 + ρi). Here the parameter is 1/(1 + ρi) so that
the mean number of packets arriving each time slot is ρi. Note that the geometric distribution we
use has positive mass at 0.

Finally, the routing discipline used is either cyclic or uniform. With uniform routing, if the
server leaves a certain queue, it selects one of the other queues at random, each with the same
probability, i.e., P (i, j) = 1/(N − 1) for i 6= j.

We compare our approximation with B = 2 with simulation outcomes. For every queue of a
polling system, the error of the approximation is defined as the total variation distance between
the approximated and simulated queue length distributions, cf. (5).

Table 5 shows the characteristics of the 100 systems with the largest average error (averaged
over the queues). This table should be read as follows: The 100 systems all have ρ = 0.9, 26 have
two queues, 27 have three, etc.

Table 5 reveals that the first and foremost cause of a high error is a high load. Related to this
observation, Table 5 shows that a higher variance of the arrival process also leads to a higher error.
The variances of the Bernoulli, Poisson, and Geometric arrival processes are given by ρi(1 − ρi),
ρi, and ρi(1 + ρi) respectively. The cause of this error is the truncation of queue lengths. As the
load or the variance of the arrival processes increases, queue lengths increase as well, and hence
the error induced by truncation.

Second, Table 5 indicates that the error increases if exhaustive service is used. The pivotal
assumption of our approximation is that the contents of the truncated queues go from ‘B or
more’ to B − 1 with a fixed probability. With exhaustive service, the time spent serving one
queue consecutively is larger than with 1-limited service. As a result, when the server finally
starts serving one of the truncated queues, this queue will have B or more packets with a larger
probability. The error of our approximation is therefore larger if exhaustive service is used.

Third, Table 5 suggests that the average error is largest if the system is symmetric. Indeed we
found that, on the whole, the average error decreases as the system becomes more asymmetric.
Consider, as an extreme example, a polling system where one queue receives almost the entire load,
and other queues receive only a very small fraction. In this case, the approximation is indeed very
accurate, since the lightly loaded queues hardly ever have ‘B or more’ packets.

In Fig. 1, we show Fρ(x), which is defined as the fraction of queues in systems with load ρ,

11

whose error, defined by (5), is less than x. Fig. 1 indeed shows that the most important cause of
a high error is a high load.

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
F

ρ
(x

)

ρ = 0.9
ρ = 0.8
ρ = 0.7
ρ = 0.6
ρ = 0.5

Figure 1: The function Fρ(x).

Likewise, Fig. 2 shows the function Gq(x), which is defined as the fraction of queues in systems
with service discipline parameter q, whose error is less than x. Fig. 2 clearly illustrates that
the error is the largest for exhaustive service, whereas there is only a small difference between
1-limited, Bernoulli with parameter 0.3, and Bernoulli with parameter 0.7.

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

G
q
(x

)

q = 1 (exh.)

q = 0.7

q = 0.3
q = 0 (1-lim.)

Figure 2: The function Gq(x).

We conclude that for B = 2 the error is certainly acceptable for loads up to 0.7 or 0.8, depending
on for instance the service discipline and the variance in the arrival process. For higher loads, B
should be increased to reduce the error if computationally feasible.

7 Conclusions

We devised an algorithm that approximates the marginal queue length distributions in a discrete-
time polling system with Bernoulli service and Markovian routing. The key step in this approx-
imation is the translation of the queue length process to a structured Markov chain, where the
contents of one queue are stored in the level and truncated contents of the other queues in the
phase, i.e., we store whether there are 0, 1, . . . , B − 1, or ‘B or more’ packets in the other queues.
We furthermore use an iterative procedure to determine the probability that the contents of the
other queues go from ‘B or more’ to B − 1.

As B tends to infinity, the approximation becomes exact. However, it was shown through
numerical experiments that, with B = 2, the approximation is already very accurate in general.
Furthermore, it was shown that the accuracy of the approximation decreases if the load increases,
and if the variance in the arrival process increases. In addition to this, it turned out that the
accuracy decreases if q(i) - the probability that after a service completion at queue i, the server

12

serves queue i again - increases. This, for example, implies that the approximation is more accurate
for the 1-limited service discipline (q(i) = 0) than for the exhaustive service discipline (q(i) = 1).
In cases where the inaccuracy reaches an unacceptable level, B can be increased further at the
cost of a higher running time.

The memory and computation requirements of the approximation are exponential in the num-
ber of queues. This clearly entails that the approximation is only practical for polling systems
with few queues. For our application, networks on chips, however, this does not pose a problem
since switches in these networks typically have only few queues.

Throughout this paper, we assumed that all buffers are infinite. For finite buffers, the same
procedure involving queue truncation and iterative determination of the truncation parameters can
still be applied. Another interesting extension of the approximation described here is an extension
to polling systems with Markovian arrival processes. The extension of our approximation to such
systems is straightforward, but the computation time and memory requirements would increase.

References

[1] P. Beekhuizen, T. Denteneer, and J. Resing. Reduction of a polling network to a single node.
Queueing Systems, 58(4):303–319, April 2008.

[2] P. Beekhuizen, T. Denteneer, and J. Resing. End-to-end delays in polling tree networks. In
Proc. of VALUETOOLS, 2008, Athens, Greece.

[3] D. Bini, B. Meini, S. Steffé, and B. Van Houdt. Structured Markov chains solver: Algorithms.
In Proc. of SMCTools, 2006, Pisa, Italy.

[4] D. Bini, B. Meini, S. Steffé, and B. Van Houdt. Structured Markov chains solver: Software
tools. In Proc. of SMCTools, 2006, Pisa, Italy.

[5] J. Blanc. A numerical approach to cyclic-service queueing models. Queueing Systems, 6:173–
188, Dec. 1990.

[6] J. Blanc. The power-series algorithm applied to cyclic polling systems. Stochastic Models,
7:527–545, 1991.

[7] J. Blanc. An algorithmic solution of polling models with limited service disciplines. IEEE
Transactions on Communications, 40:1152–1155, 1992.

[8] J. Blanc. Performance evaluation of polling systems by means of the power-series algorithm.
Annals of Operations Research, 35:155–186, June 1992.

[9] O. Boxma and B. Meister. Waiting-time approximations in multi-queue systems with cyclic
service. Performance Evaluation, 7:59–70, 1987.

[10] O. Boxma and J. Weststrate. Waiting times in polling systems with Markovian server routing.
In G. Stiege and J. Lie, editors, Messung, Modellierung und Bewertung von Rechensystemen
und Netzen, pages 89–105. Springer-Verlag Berlin, 1989.

[11] P. Buchholz. Adaptive decomposition and approximation for the analysis of stochastic Petri
nets. Performance Evaluation, 56:23–52, 2004.

[12] W. Dally and B. Towles. Route packets, not wires: On-chip interconnection networks. In
Proc. of the Design Automation Conference, pages 684–689, 2001.

[13] W. Feng, M. Kowada, and K. Adachi. A two-queue model with Bernoulli service schedule
and switching times. Queueing Systems, 30:405–434, Dec. 1998.

[14] I. Frigui and A. Alfa. Analysis of a discrete time table polling system with MAP input and
time-limited service discipline. Telecommunication Systems, 12:51–77, 1999.

13

[15] S. Fuhrmann and Y. Wang. Analysis of cyclic service systems with limited service: Bounds
and approximations. Performance Evaluation, 9:35–54, Nov. 1988.

[16] W. Groenendijk and H. Levy. Performance analysis of transaction driven computer systems
via queueing analysis of polling models. IEEE Transactions on Computers, 41(4):455–466,
April 1992.

[17] J. Keilson and L. Servi. Oscillating random walk models for GI/G/1 vacation systems with
Bernoulli schedules. Journal of Applied Probability, 23:790–802, Sept. 1986.

[18] L. Kleinrock and H. Levy. The analysis of random polling systems. Operations Research,
36:716–732, Oct. 1988.

[19] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic
Modeling. SIAM, Philadelphia, 1999.

[20] D.-S. Lee and B. Sengupta. An approximate analysis of a cyclic server queue with limited
service and reservations. Queueing Systems, 11:153–178, Mar. 1992.

[21] K. Leung. Cyclic-service systems with probabilistically-limited service. IEEE Selected Areas
in Communications, 9:185–193, 1991.

[22] A.S. Miner, G. Ciardo, and S. Donatelli. Using the exact state space of a Markov model to
compute approximate stationary measures. In Proc. of SIGMETRICS, 2000, Santa Clara,
US.

[23] M. Neuts. Structured Stochastic Matrices of M/G/1 Type and their Applications, volume 5
of Probability: Pure and Applied. Marcel Dekker Inc., New York, 1989.

[24] J. Resing. Polling systems and multitype branching processes. Queueing Systems, 13:409–426,
1993.

[25] S. Resnick. Adventures in Stochastic Processes. Birkhäuser, Boston, 2nd edition, 1994.

[26] M. Srinivasan. An approximation for mean waiting times in cyclic server systems with nonex-
haustive service. Performance Evaluation, 9:17–33, 1988.

[27] M. Srinivasan. Non-deterministic polling systems. Technical Report 88-18, The University of
Michigan, December 1988.

[28] T. Tedijanto. Exact results for the cyclic-service queue with a Bernoulli schedule. Performance
Evaluation, 11:107–115, July 1990.

[29] M. van Vuuren and E. Winands. Iterative approximation of k-limited polling systems. Queue-
ing Systems, 55(3):161–178, March 2007.

[30] J. Weststrate. Analysis and Optimization of Polling Models. PhD thesis, Tilburg University,
1992.

A Kronecker products

In this section, we derive alternative expressions for the matrices Ai,l and Bi,l using Kronecker

products. The matrices Ψi and Ψ̃i describing the server movements from an empty queue to a
non-empty queue are easily determined algorithmically so they will not be dealt with here.

For an nA×mA matrix A and an nB×mB matrix B, the Kronecker product is an nAnB×mAmB

matrix defined as

A ⊗ B =




A(1, 1)B A(1, 2)B . . . A(1, mA)B
...

...
. . .

...
A(nA, 1)B A(nA, 2)B . . . A(nA, mA)B


 .

14

Kronecker products are especially useful in describing Markov chain transitions on multidimen-
sional sets; if transitions on a set V ×W can be decomposed into independent transitions on V and
W , then the transition probability matrix on V × W is P ⊗ Q, where P and Q are the transition
probability matrices on V and W respectively, provided V × W is ordered lexicographically.

If, more importantly, transitions on W only depend on the current state in V but do not depend
on the destination state in V (i.e., a transition from (v, w) to (v′, w′) occurs with probability
p(v, v′)qv(w, w′), where p(v, v′) is the probability of going from v to v′, and qv(w, w′) that of going
from w to w′ given v), then the transition probability matrix on V × W is given by




p1 ⊗ Q1

p2 ⊗ Q2

...
...

pm ⊗ Qm


 . (6)

Here, V = {1, . . . , m}, pv is a vector with elements p(v, v′), and Qv is a matrix with elements
qv(w, w′).

In order to give the alternative expressions for Ai,l and Bi,l, we assume that Φi and Φ̃i are
ordered lexicographically. The matrix Ai,l describes changes where queue i goes up by l−1 levels.
This happens if there are either l− 1 arrivals and no service completion, or l arrivals and a service
completion:

Ai,l = xi(l − 1)Di,0 + xi(l)Di,1, for l = 0, 1, . . .,

where xi(−1) := 0, and Di,0 and Di,1 are the transition probability matrices within phases, without
and with a service completion at queue i, respectively.

The matrix Di,0 describes phase transitions without a service completion at queue i. Such
transitions are caused by changes in the service index, arrivals and a service completion at queue j,
and arrivals at the other queues. The changes in the contents of the queues only depend on the
service index through the service completion. In particular, the changes in queue contents do not
depend on the queue the server moves to in the next time slot, so we obtain, conform (6):

Di,0 =




r1 ⊗ Yi,1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

r2 ⊗ X1 ⊗ Yi,2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

...
...

. . .
...

...
ri−1 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Yi,i−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

0 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

ri+1 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Yi,i+1 ⊗ . . . ⊗ XN

...
...

...
...

. . .
...

rN ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ Yi,N




,

where 0 is the length N zero vector.
In the first block row queue 1 is currently in service. The changes in the service index are thus

given by r1, the transitions of queue 1 by Yi,1, and the transitions of the other queues by Xk. In
the second block row, queue 2 is in service so a Yi,2 appears, and so on. The zero vector in the ith
block row represents the fact that a transition without a service completion cannot occur if the
service index is i.

The matrix Di,1 describes phase transitions with a service completion at queue i. Using similar
arguments as in the derivation of Di,0, and observing that a transition with a service completion

15

at queue i can only occur if the service index is equal to i, we obtain:

Di,1 =




0 ⊗ Yi,1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

0 ⊗ X1 ⊗ Yi,2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

...
...

. . .
...

...
0 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Yi,i−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

ri ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

0 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Yi,i+1 ⊗ . . . ⊗ XN

...
...

...
...

...
0 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ Yi,N




.

The matrices Bi,l can be expressed as

Bi,l = xi(l)D̃i, for l = 0, 1, . . .,

where D̃i is the phase transition probability matrix for level ni = 0. Note that, because we are in
level ni = 0, there is never a service completion at queue i.

The matrix D̃i is given by:

D̃i =




e1 ⊗ x1 ⊗ x2 ⊗ . . . ⊗ xi−1 ⊗ xi+1 ⊗ . . . ⊗ xN

r1 ⊗ Ỹi,1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

e2 ⊗ x1 ⊗ x2 ⊗ . . . ⊗ xi−1 ⊗ xi+1 ⊗ . . . ⊗ xN

r2 ⊗ X1 ⊗ Ỹi,2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

...
...

...
...

...
ei−1 ⊗ x1 ⊗ x2 ⊗ . . . ⊗ xi−1 ⊗ xi+1 ⊗ . . . ⊗ xN

ri−1 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Ỹi,i−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

ei ⊗ x1 ⊗ x2 ⊗ . . . ⊗ xi−1 ⊗ xi+1 ⊗ . . . ⊗ xN

ei+1 ⊗ x1 ⊗ x2 ⊗ . . . ⊗ xi−1 ⊗ xi+1 ⊗ . . . ⊗ xN

ri+1 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Ỹi,i+1 ⊗ . . . ⊗ XN

...
...

...
...

...
eN ⊗ x1 ⊗ x2 ⊗ . . . ⊗ xi−1 ⊗ xi+1 ⊗ . . . ⊗ xN

rN ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ Ỹi,N




,

where ej is the jth row of the N ×N identity matrix and xk = (xk(0), . . . , xk(B−1),
∑

l≥B xk(l)).
The first block row (which is a block consisting of one row) represents transitions from state

(1, 0, . . . , 0), which is the state where all queues are empty and the server is waiting at queue 1.
In this state, the position of the server does not change, i.e., its changes are given by e1. The
changes in the contents of the other queues are given by the independent arrivals to those queues,
i.e., by xk.

The second block row describes transitions from states where queue 1 is non-empty and in
service. Like before, changes in the service index are given by r1, and changes in all queues except
queue 1 by Xk. Changes in queue 1 are given by Ỹi,1 because the process is in level ni = 0. By

following similar reasonings for the other block rows, the expression for D̃i follows.

Remark A.1. For the computation of the equilibrium distribution of an SMC of M/G/1 type, one
has to compute the G-matrix. Several algorithms to do so are available (see, for instance, [3]). In
our numerical studies we found that Functional Iterations with the default U-based scheme is the
fastest. In particular, this iterative method allows one to start with an initial G-matrix. Starting
with the G-matrix as computed in the previous iteration speeds up the computations.

Remark A.2. If the arrival processes are ordinary (i.e., non-batch) Bernoulli arrival processes,
we have an SMC of the Quasi-Birth-Death (QBD) type instead of M/G/1 (see, e.g., [19]). In this
case, an R-matrix has to be computed, which considerably simplifies actual implementations.

Remark A.3. The use of Kronecker based matrix representation in conjunction with fixed point
methods has also been used in [11] and [22] in the analysis of large finite Markov chains.

16

