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Fermionic superfluidity with positive scattering length
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Superfluidity in an ultracold Fermi gas is usually associated with either a negative scattering length or the
presence of a two-body bound state. We show that none of these ingredients is necessary to achieve superflu-
idity. Using a narrow Feshbach resonance with strong repulsive background interactions, the effective interac-
tions can be repulsive for small energies and attractive for energies around the Fermi energy, similar to the
effective interactions between electrons in a metallic superconductor. This can result in BCS-type superfluidity
while the scattering length is positive.
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I. INTRODUCTION

The crossover between Bardeen-Cooper-Schrieffer �BCS�
type superfluidity and Bose-Einstein condensation �BEC� is a
fundamental and challenging problem in physics. In ultra-
cold Fermi gases, both types of superfluidity are related to
the condensation of atom pairs, which can be regarded as
composite bosons. A crossover between the BCS and BEC
regimes, which was predicted theoretically already several
decades ago �1–3�, can be achieved by changing the strength
of the interactions. While several experiments have studied
certain aspects of this strongly interacting state �4–7�, only
recently has the existence of superfluidity in the crossover
regime been unambiguously demonstrated by experiment
�8�.

Experimentally the crossover is realized by changing the
strength of the two-body interactions via an s-wave Feshbach
resonance �9,10�. A measure for this interaction strength at
zero collision energy is provided by the scattering length a,
which is the first parameter in the effective range expansion
of the scattering phase shift �11�. It has been suggested that
the physical properties in the crossover only depend on the
parameter �kFa�−1, with kF the Fermi wave number. This has
the strong implication that exactly on resonance, where a
goes through infinity, all thermodynamic and superfluid
properties are independent of the microscopic details of the
interactions and therefore should be universal quantities for
all atomic systems under study �12–15�.

However, the microscopic physics that gives rise to the
Feshbach resonance reveals that more than one parameter is
needed to describe the scattering phase shift. Apart from the
scattering length, the width of the Feshbach resonance is the
most important parameter. In order to understand the origin
of this width, we have to separate the resonance from the
background interactions. At large relative distance, the two
interacting atoms are sensitive only to the background inter-
action potential. At short distance, this potential is coupled to
another potential with a different internal spin configuration.
The latter potential is energetically closed at long distance
and exhibits a molecular state close to the collision threshold
�9,10�. The coupling strength between these two potentials
can be related to an energy width which, in comparison to
the Fermi energy of the system, categorizes a Feshbach reso-
nance in terms of its broadness. This width can be converted

into an effective range coefficient, which is the second pa-
rameter in the effective range expansion �11�. Using this ap-
proach, it has been pointed out in several papers that univer-
sality does not hold for narrow Feshbach resonances
�16–19�.

It should be noted that in these papers the background
interactions were taken to be small and the Feshbach reso-
nance was described using an effective range coefficient in-
dependent of magnetic field or momentum. However, in case
the background interactions do have a resonant character—
which is indicated by a large background scattering length,
as for example in some resonances in 6Li, 133Cs, and
85Rb—the scattering phase shift shows a nontrivial energy
dependence beyond the effective range approximation, due
to the interplay between the background and Feshbach
resonance �20�.

In this paper we investigate the BCS-BEC crossover for a
Feshbach resonance which allows for a large background
scattering length. We show that we can mimic a situation
well known from condensed-matter physics, where Cooper
pairs can be formed due to an effectively attractive interac-
tion for relative wave numbers around kF, while for smaller
wave numbers the interaction is effectively repulsive. For
electrons in a metal such an interaction exists due to the
combined effect of the Coulomb and electron-phonon inter-
actions �21�, while in atomic systems this can be achieved by
the interplay of a Feshbach and a background resonance.

II. FESHBACH RESONANCES WITH LARGE
BACKGROUND SCATTERING LENGTH

Feshbach resonances are presently an indispensable tool
to control the atomic interactions in cold atomic physics. By
simply changing the magnetic field the interactions can be
tuned from weak to strong and from effectively attractive to
repulsive. We consider a two-component Fermi gas in the
dilute limit; i.e., the density n satisfies nr0

3�1, where r0
��mC6 /16�2�1/4 �22� is the range of the potential, with m
the atomic mass and C6 the van der Waals coefficient. The
Fermi wave number kF is related to the density of a single
spin component as n↑=n↓�n=kF

3 /6�2.
Feshbach resonances originate from the coupling of scat-

tering atoms in an energetically open channel to one �or sev-
eral� bound state�s� in energetically closed channels. When
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the energy of a closed-channel bound state is close to the
energy of the scattering atoms, the scattering process be-
comes resonant. The effect of two-body interactions on the
atomic wave functions can be summarized by the energy-
dependent scattering phase shift ��k�, where k=�mE /�2,
with E the relative collision energy. The scattering matrix is
related to the phase shift by S�k�=exp 2i��k�, and for the
cold alkali-metal gases under consideration its most general
form is given by �20�

S�k� = SP�k�
E − �bare − ��E� −

i

2
��E�

E − �bare − ��E� +
i

2
��E�

. �1�

The direct part of the scattering matrix SP�k� describes the
interactions in the open channel, and ��E�− i

2��E� is the
complex energy shift, which describes the dressing of the
closed-channel bound state with bare detuning �bare due to
the coupling with the open-channel atoms.

In scattering systems with a background scattering length
abg�r0, the direct interactions are nonresonant and the en-
ergy shift takes the simple form �− iCk. The bare detuning is
dressed by the constant term � such that the dressed detun-
ing is given by �=�bare+�. The scattering length diverges for
�=0. The term iCk describes the finite lifetime of the bound
state coupled to the continuum, where the coupling strength
C is a constant related to the magnetic field width of the
resonance �see below�.

In scattering systems with a background scattering length
�abg � �r0, the open channel in general has a bound or virtual
�nearly bound� state close to the zero-energy collision thresh-
old. In this case, the resonant energy dependence of the
open-channel propagator gives rise to a nontrivial energy de-
pendence of the energy shift. Explicitly taking into account
the resonance poles of both the closed-channel bound state
and the open-channel bound �or virtual� state, the energy
shift can be written as ��E�− i

2��E�=�− iCk�k
−1 �20�. Here

the complex energy shift is written as its value at zero colli-
sion energy, ����E=0�, which is real, and an additional
term that accounts for the energy dependence of both the real
part of the complex energy shift ��E�−�, as well as the
imaginary part ��E�. The coupling strength C is related to
the magnetic field width �B=B0�−B0 as C=�	mag�BaP, �
=�	mag�B−B0� is the dressed detuning, �	mag is the mag-
netic moment difference between the open and closed chan-
nels, and �k=1+ ikaP with aP=abg−r0 describes the addi-
tional energy dependence related to the resonant direct
interactions. B0 is the field where a�B� diverges, and B0� is the
field where a�B�=r0. The interplay between the two reso-
nances is thus described by the scattering phase shift:

��k� = − kr0 − arg �k − arg�E − � + iCk�k
−1� . �2�

From Eq. �2� it follows that the total scattering length is
related to these parameters by

a�B� = r0 + aP	1 −
�B

B − B0

 . �3�

In the following, we will discuss scattering systems with a
resonant direct interaction between the fermions. In this case
the nonresonant interaction terms related to r0 will generally
have a small effect compared to the resonant terms and will
be ignored in the remainder of this paper.

The system can be described equivalently by taking into
account the scattering poles of the T matrix of both the mo-
lecular and background bound �or virtual� states �11�, which
can be shown to correspond to solutions of

1/a + ik − Re�k,B�k2 = 0, �4�

where Re�k ,B�=�2�1+ ikaP� / �maP�	mag�B−B0��� is a gener-
alized energy- and field-dependent effective range parameter.
These poles determine the two-body T matrix and scattering
phase shift uniquely. In contrast to previous work �16–19�,
where Re was taken to be a constant, here Re depends on both
energy and magnetic field and describes the most general
Feshbach resonance that can be found in ultracold alkali-
metal gases. Note that for magnetic fields where a�r0, the
effective range parameter Re actually diverges and cannot be
neglected even in the case of a broad resonance. The usually
considered expressions for Feshbach resonance scattering
without an open-channel resonance �10� can be seen as a
limit of the general expression, Eq. �2�, for small abg.

III. MANY-BODY DESCRIPTION

In order to describe the many-body properties of the sys-
tem, we use the thermodynamic approach introduced by
Nozières and Schmitt-Rink �NSR� �3�. This approach is
based on a simplified description of the full crossover prob-
lem and cannot be expected to give quantitatively precise
results. Therefore, in recent years several directions have
been pursued in order to formulate a more complete cross-
over theory �23–29�. However, the NSR description does
capture the essential physics giving rise to the crossover phe-
nomenon. Especially the very simple relation between the
two-body phase shifts in vacuum and the in-medium phase
shift used in NSR makes this approach a very convenient
framework to study the role of energy-dependent scattering
in a many-body system. In the following, we show how to
generalize this approach in order to include the energy-
dependent phase shift given by Eq. �2�.

Within the NSR approach, the two-body interactions are
taken into account in the ladder approximation. The two-
body interactions are described by the many-body T matrix,
which can be found by solving the Lippmann-Schwinger
�LS� equation

T̃ = U − U
T̃ , �5�

where U is the two-body interaction potential, which gener-
ally depends on the relative collision energy E, and 
 is the
two-particle propagator. In a vacuum, the many-body T ma-
trix should reduce to the two-body T matrix, which is known
analytically and gives rise to the scattering phase shift given
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by Eq. �2�. The bound states and resonances are described by
the poles of the two-body T matrix and uniquely characterize
the scattering properties in the two-body sector. We are thus
faced with constructing a potential U that gives the correct
poles in the two-body limit. Using this potential ensures that
the two-body physics is built correctly into the many-body
theory.

It can be shown from coupled-channels scattering theory
that the effective interaction potential for the fermions in the
open channel is given by

Ukk��E� = Vkk� +
gkgk�

E − �bare
, �6�

where V is related to the direct interactions between fermions
in the open channel and the second term describes the cou-
pling of fermions to and from the closed-channel bound state
�30�. To simplify the equations, it is convenient to replace the
microscopic finite-range interaction potentials with contact
potentials that correctly reproduce the scattering properties
described by Eq. �2� in the two-body limit. However, since
contact potentials do not explicitly depend on the Fourier
momentum, they introduce unphysical ultraviolet diver-
gences which have to be regulated explicitly by renormaliz-
ing the potential and two-body propagator. The appropriate
regularization procedure has been discussed in detail in Ref.
�31�, where it was shown that the T matrix is described by
the renormalized LS equation

T�E� = Ueff�E� − Ueff�E�
̄0�E+�T�E� , �7�

where the renormalized effective interaction is related to the
microscopic parameters of Sec. II by

Ueff�E� =
4��2

m
	aP +

C

E − �

 �8�

and the two-body pair-propagator in vacuum is explicitly
regularized to account for the ultraviolet divergences:


̄0�E+� = �
k
	 1

2�k − E+ −
1

2�k

 , �9�

with E+ approaching the real axis from above and �k
=�2k2 /2m. It can be shown that Eq. �7� with the effective
potential Ueff�E�, Eq. �8�, exactly reproduces the pole equa-
tion �4�.

The many-body T matrix is obtained by replacing the
regulated pair propagator in vacuum by the regulated in-
medium two-particle propagator, which is defined as


�q,�+� = �
k
	1 − f��+� − f��−�

2�k − 2�p
−

1

2�k

 , �10�

where the relative energy of the atoms, E=2�p, defines a
relative momentum p�

�m
�

��+− 1
2�q+2	�1/2, with the total en-

ergy of the scattering atoms �relative to the chemical poten-
tial�, �+, approaching the real axis from above and 1

2�q the
center-of-mass momentum of the scattering particles. The
medium effects are described by the Fermi distribution func-
tions

f��±� =
1

e
��±−	� + 1
, �11�

with 
 the inverse temperature and �±=�q/2±k. The interac-
tions are thus described by the many-body T matrix

T̃�q,�+�−1 = Ueff�2�p�−1 + 
�q,�+� . �12�

This way of replacing the bare interactions by physical
�renormalized� interactions is quite general and closely re-
lated to a method due to Gorkov and Melik-Barkhudarov
�32� and used subsequently in different forms �33,34�.

We now proceed to give a description of the many-body
system in the NSR approach. The number density N /V=2n,
with N the total number of atoms in a volume V, is found at
a temperature T �in the normal state� by first calculating the
thermodynamic grand potential � within the ladder approxi-
mation and then taking the derivative to the chemical poten-
tial 	: 2n�	 ,T�=− �

�	
�

V . The grand potential is then found to
be

� = �0 +
1

�
�
q,�

g�����q,�� , �13�

where �0 corresponds to a noninteracting gas of fermions,
g���= �exp�
��−1�−1 is the Bose distribution function, and
the phase of the many-body T matrix, �=�P+�Q, has a
contribution from the resonant background,

�P�q,�� = Im ln	1 +
4��2aP

m

�q,�+�
 , �14�

as well as from the Feshbach resonance,

�Q�q,�� = Im ln	� − 2�p −
4��2C

m
��q,�+�
 , �15�

where ��q ,�+�=
�q ,�+��1+ 4��2aP

m 
�q ,�+��−1
includes the

dressing of the Feshbach molecules due to the resonant back-
ground interactions. Note that we exclude the contribution
from a possible pole associated with the background interac-
tions when aP�0 in the energy integral in Eq. �13�, since we
assume that the corresponding molecular state cannot be
populated. The critical temperature is determined from the

gap equation T̃−1�q=0 ,�=0�=0, which relates the instability
of the gas towards the formation of condensed pairs to a
divergence in the many-body T matrix. Solving the number
and gap equations self-consistently gives the critical tem-
perature Tc and chemical potential 	c at this temperature as a
function of the interaction parameters.

In the vacuum limit, where the two-particle propagator
reduces to imp /4��2 and the energy of the scattering par-
ticles is �=2�k+ 1

2�q−2	, the phase shift ��q ,�� only de-
pends on the relative energy 2�k and is related to the scatter-
ing phase shift, Eq. �2�, by ��q ,2�k+ 1

2�q−2	�=−��k�−�.
Since kFr0�1, we neglect the range of the background po-
tential, and then the effective interaction Eq. �8� exactly re-
produces the nontrivial energy dependence of Eq. �2�.
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IV. RESULTS AND DISCUSSION

We now turn to the numerical results. We first consider
the case of a broad Feshbach resonance, characterized by

C̃�4kFC /3�	F�1 or equivalently �kFRe�0,B0� � �1. We

solved the number and gap equations numerically with C̃
=100 and for different values of −1�kFaP�1. The results
are not sensitive to the actual value of kFaP, and an example
is shown in Fig. 1 �dashed line�. This reproduces the well-
known results previously obtained by NSR and others �3,35�.
In this case the only relevant parameter in the crossover re-
gion is the total scattering length, Eq. �3�, and details of the
interactions at higher energy scales do not enter the phase
integral, Eq. �13�, as they are cut off by the distribution
functions.

In the case of a narrow Feshbach resonance �C̃�1�, de-
tails of the interactions turn out to be essential in the cross-
over region, as well as in the BCS and BEC limits. In Fig. 1
the critical temperature in the crossover region is shown for

several narrow resonances �C̃=1� with different values of the
background interaction strength kFaP �solid, dash-dotted, and
dotted lines�. In the BEC limit �right side of figure�, the
critical temperature approaches the limiting value Tc
�0.218TF and superfluidity is dominated by the condensa-
tion of molecules. Compared to a broad resonance, Tc is
suppressed in the crossover region, while in the BCS limit
�left side of figure�, the critical temperature remains a much
larger fraction of the Fermi temperature TF compared to the
broad resonance case. Somewhat surprisingly, Tc becomes
larger in the BCS limit if the background interactions are
more repulsive.

This leads us to the very interesting situation when the
background scattering length is large and positive, while the
Feshbach resonance is narrow. In Fig. 2 the critical tempera-

ture for a narrow resonance �C̃=1� with strong repulsive
background interactions �kFaP= +1� is shown �solid line�
�36�. The cusp around Tc /TF=0.1 is not physical, but an

artifact resulting from the NSR approach �36,37�. If the sys-
tem is initially on the BCS side of the resonance
�kFa�−0.5� and subsequently tuned away from resonance
towards the point where a becomes close to zero, we find
that the critical temperature can still be a large fraction of the
Fermi temperature. This in contrast with a broad resonance
�dashed line�, where the superfluid state is lost before a
changes sign. Going through the point a=0, the low-energy
interactions become effectively repulsive as a�0. However,
the frequency dependence of the phase shift can still give rise
to attractive interactions close to the Fermi energy. In Fig. 3
the phase ��k� is shown for the same resonance parameters
as in Fig. 2 and with the total scattering length equal to
kFa= +0.3. A positive phase corresponds to effectively repul-
sive interactions, while a negative phase corresponds to at-
tractive interactions. In the case of a broad resonance, we
immediately see that for a�0 the interactions are repulsive
at all relevant energies. For the narrow resonance with strong
repulsive background interactions, although the interactions
are repulsive for low collision energies, the atoms colliding
at energies close to the Fermi energy feel an attractive inter-

FIG. 1. �Color online� Critical temperature Tc in the crossover
region as a function of �kFa�−1 in the case of broad and narrow
Feshbach resonances with different background interaction
strengths kFaP. Dashed line: broad resonance where �kFa�−1 is the
only relevant parameter. Solid, dash-dotted, and dotted lines: nar-

row resonance where C̃=1 and kFaP= +0.5, 0, and −0.5
respectively.

FIG. 2. �Color online� Critical temperature Tc in the BCS limit,
for small negative and positive scattering lengths kFa, in the case of
a narrow Feshbach resonance with kFaP= +1 �solid line� and of a
broad resonance �dashed line�. Inset: chemical potential 	c at Tc for
identical parameters.

FIG. 3. �Color online� Phase shift ��k����q ,2�k+ 1
2�q−2	� for

kFa= +0.3. The resonance parameters are identical to those of Fig.
2. Inset: scattering length as a function of magnetic field. The
shaded area indicates the region where a�0, but there are no mol-
ecules in the system.
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action, which is the reason that the system can still become
superfluid.

From the inset of Fig. 2 we see that for kFa�0.35 the
chemical potential becomes larger than 	F, reflecting the fact
that superfluidity can be retained even when the total system
acts as effectively repulsive. The repulsive behavior is indeed
expected from the positive scattering length for the fermions.
The fact that this system with repulsive interactions can still
form a superfluid is a direct consequence of the energy de-
pendence of the interactions for a narrow Feshbach reso-
nance.

We have done an independent check of our calculation by
comparing this interesting regime to the regular BCS limit.
Since we are in the regime where Tc /TF�0.1 and 	�	F,
the BCS result can be expected to become valid again. We
compared the functional dependence of Tc /TF versus kFa by
using the well-known BCS formula

Tc/TF =
�

�
exp	−

�

2�kFa�p��
 . �16�

Instead of using the scattering length a, we replace it by an
“energy-dependent scattering length” a�p�, related to the
relative collision energy via p=�mE /�2, defined from the
scattering phase shift, Eq. �1�:

a�p� � − tan���p��/p . �17�

We probe this redefined scattering length at relative wave
number p=�2m	 /�2, which corresponds to the relative mo-
mentum of two particles on opposite sides of the Fermi
sphere. In the regime under consideration �using the chemi-

cal potential given in Fig. 2� the value of a�p� will be nega-
tive, and we find from Eq. �16� basically the same ratio of
Tc /TF as in Fig. 2. By probing the energy-dependent interac-
tion at the Fermi sphere, we thus find in the BCS limit a
result that compares excellently with our enhanced NSR
method.

We have studied the presently known Feshbach reso-
nances for 6Li and 40K, which are the atoms currently used to
study the BCS-BEC crossover. However, none of these reso-
nances satisfy the conditions needed to observe the results
presented above. But since there are several bosonic systems
which do satisfy the requirement of having a narrow reso-
nance with large abg, there is no principal reason why a fer-
mionic system could not be in a similar situation. Possible
candidates will be fermionic alkali-metal mixtures, such as
6Li– 40K.

In conclusion, a positive scattering length is usually asso-
ciated with repulsive interactions in the context of ultracold
atomic gases. In the case of a narrow Feshbach resonance,
the interactions are strongly energy dependent. We have
shown that in the special case of a large and positive back-
ground scattering length, the interactions can be repulsive for
small energies, whereas attractive for energies around the
Fermi energy, similar to the effective interactions between
electrons in a metallic superconductor. This results in fermi-
onic superfluidity while the scattering length is positive,
without the presence of bosonic molecules in the system.
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