

An incremental prefix filtering approach for all pairs similarity
search
Citation for published version (APA):
Hoang, T. L., Dinh, V. D., Perego, R., & Silvestri, F. (2010). An incremental prefix filtering approach for all pairs
similarity search. In Proceedings of the 12th International Asia-Pacific Web Conference (APWeb, Busan, Korea,
April 6-8, 2010) (pp. 188-194). IEEE Computer Society. https://doi.org/10.1109/APWeb.2010.30

DOI:
10.1109/APWeb.2010.30

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/APWeb.2010.30
https://doi.org/10.1109/APWeb.2010.30
https://research.tue.nl/en/publications/2f94bb95-557b-4ccd-9c97-dabd7281a3ea

An Incremental Prefix Filtering Approach for the
All Pairs Similarity Search Problem

Hoang Thanh Lam, Dinh Viet Dung
University of Pisa Italy

Email: {lam,dinh}@di.unipi.it

Raffaele Perego, Fabrizio Silvestri
ISTI, CNR Pisa Italy

Email: {raffaele.perego,fabrizio.silvestri}@isti.cnr.it

Abstract—Given a set of records, a threshold value t and a
similarity function, we investigate the problem of finding all pairs
of records such that similarity between each pair is above t.
We propose several optimizations on the existing approaches to
solve the problem. Our algorithm outperforms the state-of-the-art
algorithms in the case with large and high-dimensional datasets.
The speedup we achieved varied from 30% to 4-x depending on
the similarity threshold and the dataset properties.

I. INTRODUCTION

There are plenty of real-world applications of solving the
similarity search problem (formal definition is given in the
following section). For instance, consider some examples
listed in the paper [2]: Near duplicate document detection
and elimination [3], [5] or Collaborative filtering and Query
recommendation. Although all the aforementioned problems
are well-known in the database community but solving them
under online contexts with large corpus is very challenging. A
brute force algorithm with quadratic complexity is infeasible in
practice. Many approaches proposed in the past were focusing
on the approximation techniques [3], [4]. On this manner, non-
trivial amount of error is allowed. However, recent work from
the database community [1], [8], [2], [6], [7] has considered
exact solutions for this problem.

In this paper, we proposed two optimization techniques
based on prefix extension and early termination of overlap
computing. The proposed optimizations can be integrated into
the existing prefix filtering-based approaches to form hybrid
solutions that solve the all-pairs similarity search problem
efficiently. We have validated our algorithm against the most
recently proposed algorithms with 5 different data-sets. The
preliminary results showed that the proposed algorithm out-
performed the other algorithms in the case with large data-sets
and high dimensionality.

Paper outline: The paper is organized as follows. The
formal definition of the all pairs similarity search is given
in section 2. Section 3 revisits some techniques used to solve
the problem. Section 4 discusses our proposals for solving
the problem. Results of the experiments conducted with the
5 collections are discussed in Section 5. Some concluding
remarks and directions for future work are finally outlined.

II. PROBLEM STATEMENT

Given a set of records R = {r1, r2, · · · , rn}, where each
record is a set of tokens taken from a finite universe U =

{t1, t2, · · · , tm}. A function sim(·, ·) measures the similarity
of two records. Given a threshold value t ∈ <, the all pairs
similarity search problem is aimed at finding all pairs of
records x, y ∈ R such that sim(x, y) ≥ t.

Prior work [8] considered each record as a multiset1 allow-
ing duplicated tokens . We denote |x| as the number of tokens
in the record x - or record length, the following functions
can be used to measure the similarity between two non-empty
records x and y:
• Cosine similarity: C(x, y) = |x∩y|√

|x|.|y|

• Jaccard similarity: J(x, y) = |x∩y|
|x∪y|

• Overlap similarity: O(x, y) = |x ∩ y|
• Dice similarity: D(x, y) = 2.|x∩y|

|x|+|y|
All the aforementioned functions are commutative and can

be transformed to the Overlap Similarity easily. For example,
we can present the Jaccard similarity as a function of the
overlap O(x, y) and the record lengths as follows: J(x, y) =

O(x,y)
|x|+|y|−O(x,y) . As a results, J(x, y) ≥ t if and only if
O(x, y) ≥ α, where α = t

1+t ∗ (|x|+ |y|).
Similarly, from the equation C(x, y) = O(x,y)√

|x|.|y|
we can

imply that C(x, y) ≥ t if and only if O(x, y) ≥ α, where α =
t.
√
|x|.|y|. In this paper, we are focusing on the commonly

used Jaccard similarity and the Cosine similarity, however, it
is easy to extend our approach for the rest similarity functions.

Moreover, from the aforementioned facts, both Jaccard and
Cosine similarity functions can be presented as a function of
overlap similarity and the records lengths. In other words, our
interested similarity functions is able to be represented with a
general form : sim(x, y) = f(O(x, y), |x|, |y|), where f is a
real-value function admitting three arguments.

III. PRELIMINARY BACKGROUND

In this section, we try our best to cover the recently proposed
techniques for solving the all pairs similarity search problem.
However, due to limit space the readers can refer to the proper
references [2], [8] for more details and explanations.

A. A Naive Approach

A brute force solution of the all pairs similarity search
problem is shown in Algorithm 1. The NaivePair function

1A multiset treats different occurrences of a word in a record as different
tokens. For example, the record {to be or not to be} can be considered as
a multiset {to1, be1, or, not, to2, be2} by re-enumerating the duplicates

2010 12th International Asia-Pacific Web Conference

978-0-7695-4012-2/10 $26.00 © 2010 IEEE

DOI 10.1109/APWeb.2010.30

188

Algorithm 1 NaivePair(R, t)
1: Input: a set of records R = {r1, r2, · · · , rn}, a similarity function

sim(·, ·) and a similarity threshold t ∈ [0, 1]
2: Output: All pairs of records (x,y), such that sim(x, y) ≥ t
3: S ← ∅
4: for all i = 2→ n do
5: for all j = 1→ i− 1 do
6: sim(ri, rj)← f(Overlap0(ri, rj), |ri|, |rj |)
7: if sim(ri, rj) ≥ t then
8: S ← S ∪ {(ri, rj)}
9: end if

10: end for
11: end for
12: return S

Algorithm 2 Overlap0(r1, r2)
1: Input: two records r1 and r2; each record has been sorted by a global

ordering Ω
2: Output: the overlap O(x, y)
3: overlap← 0
4: i← j ← 0
5: while i ≤ |r1| AND j ≤ |r2| do
6: if r1[i] == r2[j] then
7: overlap← overlap+ 1
8: i← i+ 1
9: j ← j + 1

10: else
11: if r1[i] < r2[j] then
12: i← i+ 1
13: else
14: j ← j + 1
15: end if
16: end if
17: end while
18: return overlap

subsequently calls the Overlap0(·, ·) function described in
Algorithm 2 to calculate the overlap between every possible
pairs of records (line 6) and check against the threshold value
(line 7) to return the feasible pairs in S.

The pseudo-code of the Overlap0(r1, r2) function comput-
ing the intersection between two lists is shown in Algorithm 2
in which r1 and r2 are presumed to be sorted by a global order-
ing. The typical procedure for computing intersection of two
sorted lists is very well-known and its complexity is as many
as the record lengths: Θ(|r1|+|r2|). Therefore, the complexity
of the NaivePair function is quadratic, i.e. Θ(C.n2), where
C is a constant and as big as the average length of the records.
The quadratic complexity of the NaivePair algorithm makes it
infeasible for applications with large amount of data. Thus,
in the subsequent sections we will consider some approaches
avoiding exhaustively computing pairwise similarity.

B. A Basic Inverted Index-based Approach

An Inverted Index is a well-known data structure adopted
in large-scale information retrieval systems to answer full-
text queries quickly. Several work [1] has adopted this data
structure to solve the all pairs similarity search problems.
According to these approaches, the algorithm is generally
divided into three phases:
• Indexing Phase: incrementally constructs the inverted

index.

• Candidate Generation Phase: by traversing the index it
generates candidate pairs that have potential of meeting
the similarity threshold.

• Verification Phase: the generated candidate pairs are
checked against the threshold similarity to form a result
set in a process called the

In practice, several heuristic techniques have been proposed
to filter out the pairs that we know for sure never meet the
similarity threshold. Hence, the number of pairwise similarity
comparisons can be reduced significantly compared with the
Naive approach. A simple prototype of the inverted index
based methods is presented in the paper by Bayardo et. al.
[2], the readers can refer to the All-Pairs-0 algorithm in their
paper for more details.

C. A Prefix Filtering Based Approach

The inverted index-based methods reduce the total number
of promising candidates sent to the final verification phase.
Even so, in practice this number is still high, for example,
[8] empirically showed that the candidate set was quadratic
growth along with the collection size. The reason is that the
inverted lists of the stop-words (very frequent words) are very
long contributing a lot of promising candidates. This leads to
expensive index construction and maintenance [8] . Some work
has been proposed to deal with this issue, we will discuss a
technique that reduces the number of candidates significantly.

Concretely, we discuss the prefix filtering technique utilized
in the most of the recent work on the all pairs similarity search
problem. This technique is based on the observation that if all
the records are sorted by a global ordering, some fragments
of them must share several common tokens with each other in
order to meet the threshold similarity. The following lemma
(proof will be given in the following sections) formally states
the idea behind the approach:

Lemma 1: Assume that all the tokens in each record are
ordered by a global ordering Ω . Let p-prefix of a record x
be the first p tokens of the record. If O(x, y) ≥ α then the
(|x|−α+1)-prefix of x and the (|y|−α+1)-prefix of y must
share at least one token.

The positive effect of lemma 1 is that when we consider a
pair of records for meeting a predefined threshold similarity
it is not necessary to consider the entire records but only the
prefixes of them. If their prefixes with the given lengths are not
intersected we can safely prune them out from the promising
candidate set. Besides, in practice, instead of indexing the
entire corpus we just need to index the prefixes resulting in a
very compacted inverted index.

The lemma is formulated for the overlap similarity O(x, y),
however, it is able to extend the lemma for the other functions
as well. Concretely, for the Jaccard similarity, if |x| ≥ |y| and
J(x, y) ≥ t then the (|x| − d 2t

1+t |x|e+ 1)-prefix of x and the
(|y| − dt|y|e + 1)-prefix of y must share at least one token.
Besides, similar proposition can be made for Cosine function:
the (|x|−dt2|x|e+1)-prefix of x and the (|y|−dt|y|e+1)-prefix
of y share at least one token if C(x, y) ≥ t [2].

189

D. A Prototype of Prefix Filtering Approach

Bayardo et. al. [2] adopts prefix filtering based technique
to conduct an algorithm called the AllPairs algorithm2. The
pseudo-code of the Allpairs algorithm for Cosine similarity
is shown in Algorithm 3. In the Indexing Phase, the Allpairs
function subsequently loads the records from disk and incre-
mentally builds every posting list Ii corresponding to each
token ti occurring in the record prefixes (line 5-11). Every
variable pi (line 7) is assigned an appropriate record prefix
length. Only tokens in the prefixes are indexed (line 8-9).
Besides, Allpairs calls the FindMatches(r, I1, · · · , Im, t) to
generate candidate pairs having high potential of meeting the
similarity threshold. Further more, in this function, the gener-
ated candidates are checked against the similarity threshold.

In order to generate candidate set the FindMatches func-
tion (Algorithm 4) subsequently scans every posting list of
the tokens occurring in the prefix of r(line 6). It adopts a
heuristics known as the size filtering [2], [8] to filter out
candidates by considering the candidates in increasing orders
of their lengths and filter the records whose lengths are shorter
than the minsize (line 7). In the next step, partial similarity
scores of the candidates are accumulated in a hashmap A. The
accumulated similarity scores are the actual similarity of the
prefixes. Based on the partial similarity and information about
suffix length, an upper bound on the similarity of the records
is checked against the threshold similarity (line 14). Only
candidates passing this check are sent to the verification phase
in which similarity value is finally evaluated and checked
against the similarity threshold again.(line 15-18).

E. A Positional Filtering and Suffix Filtering Approach

Prefix filtering technique helps prune out infeasible pairs,
however, in practice the number of pairs surviving after this
filtering phase is still quadratic growth [8]. Following the
prefix filtering technique, the positional filtering (PPJOIN) and
the suffix filtering approaches (PPJOIN+) [8] were proposed
to prune out further the infeasible pairs.

The crucial idea behind the former approach is that infor-
mation about token’s position in every record is used to define
an overlap upper-bound. This upper-bound is then compared
against the similarity threshold to make pruning decision. On
the other hands, the latter approach sets up an overlap upper-
bound by exploiting recursive binary lookups for positions
of elements of one record in another record. In practice,
prefix-based method, position-based method and suffix-based
method are not alternative but can be used together. Since
the suffix-based method adopts recursive binary look-ups it
is very computational demanding. So it usually follows after
other filters when the number of candidates have already been
reduced substantially.

IV. OUR APPROACH

A trade-off should be taken into account when we design
a filter-based approach is that the effective filtering algorithm

2http://code.google.com/p/google-all-pairs-similarity-search/

Algorithm 3 AllPairs(R, t)
1: Input: a set of records R = {r1, r2, · · · , rn}, which has been ordered

increasingly by record lengths, a similarity function cosine C(·, ·) and
a threshold value t ∈ [0, 1]

2: Output: All pairs of records (x,y), such that C(x, y) ≥ t
3: S ← ∅
4: I1, I2, · · · , Im ← ∅ //Posting lists
5: for all i = 1→ n do
6: S ← FindMatches(ri, I1, · · · , Im, t)
7: pi ← |ri| − dt.|ri|e+ 1 //Prefix length
8: for all j = 1→ |pi| do
9: Iri[j]

← S ∪ {i}
10: end for
11: end for
12: return S

Algorithm 4 FindMatches(r, I1, · · · , Im, t)
1: Input: a record r, currently built inverted lists I1, · · · , Im, Cosine

similarity function C(·, ·) and a threshold value t ∈ [0, 1]
2: Output: All the of records y, such that sim(r, y) ≥ t
3: M ← ∅
4: A← empty map from vector id to accumulation score
5: minsize← |r|t2
6: for all i = 1→ |r| do
7: Remove all y from Ir[i] s.t |y| < minsize //Size filtering
8: for all y ∈ Ir[i] do
9: A[y]← A[y] + 1

10: end for
11: end for
12: for all y ∈ A do
13: ys ← the suffix of y
14: if A[y]+|ys|√

|r|.|y|
≥ t then

15: d← A[y]+Overlap0(r,ys)√
|r|.|y|

16: if d ≥ t then
17: M ←M ∪ {r, y}
18: end if
19: end if
20: end for
21: return M

usually requires more computational efforts. In fact, the suffix-
based filter was shown to be very effective in terms of the
number of pairs it prunes. However, it is also very inefficient
because of the recursive binary lookup it adopts [8]. A good
filter should be both effective (prune out a lot of infeasible
pairs) and efficient as well. In this paper, we propose some
optimizations for the existing approaches taking into account
this trade-off.

A. Optimization from the Prefix Extension

Lemma 1 states that the prefixes of two records must
share at least one token in order to satisfy the prefix filtering
principle. Nevertheless, in practice this condition is easily
satisfied, especially with long prefixes. In this section, we will
consider an extended version of lemma 1 which tightens the
lower bound, thus make it more difficult to be satisfied.

Lemma 2: Assume that all the tokens in each record are
ordered by a global ordering Ω. Let p-prefix of a record x
be the first p tokens of the record. Let k be a constant. If
O(x, y) ≥ α then the (|x| −α+ k)-prefix of x and the (|y| −
α+ k)-prefix of y must share at least k tokens

190

Proof: Assume that wx, wy are the last tokens in the (|x|−
α+k)-prefix of x and the (|y|−α+k)-prefix of y respectively.
We denote (|x| − α + k)-prefix of x as xl and the suffix as
xr. Similarly, we denote yl and yr with the same meanings.
Assume without loss of generality that wx ≤Ω wy , we have :

O(x, y) = O(xl, y) +O(xr, y) (1)
= O(xl, yl) +O(xl, yr) +O(xr, y) (2)
≤ O(xl, yl) + |xr| (3)
= O(xl, yl) + α− k (4)

From the right hand of equation (2), we can omit O(xl, yr)
because we have assumed that wx ≤ wy resulting in xl∩yr =
∅. A direct consequence of the last inequality is O(xl, yl) +
α − k ≥ O(x, y). On the other hands, since O(x, y) ≥ α we
can imply that O(xl, yl) ≥ k. The lemma is proved.

The extended lemma tightens the lower bound on the
overlap of the prefixes. However, the prefixes are obviously
longer. In practice, it is likely that sharing at least k (k > 1)
tokens is more difficult to be satisfied than sharing only
one token. This hypothesis is theoretically supported by the
following lemma:

Lemma 3: Given two constants k, p and two records x and
y. We assume that all the tokens in each record are ordered by
a global ordering. Let xp and yp be the p-prefixes of x and y
respectively. Let xp+k and yp+k be the extended prefixes, in
other words we assume that they are the p+k-prefixes of x and
y respectively. If O(xp+k, yp+k) ≥ k+ 1 then O(xp, yp) ≥ 1

Proof: This lemma is a direct consequence of lemma 1.
In fact, since O(xp+k, yp+k) ≥ α, where α = k + 1, the
|xp+k| −α+ 1-prefix of x and the |yp+k| −α+ 1-prefix of y
must share at least one token. In other words, O(xp, yp) ≥ 1.
The lemma is proved.

The consequence of lemma 3 is that, if two records satisfy
the condition O(xp+k, yp+k) ≥ k + 1 they also satisfy the
condition O(xp, yp) ≥ 1. As a result, the set of candidate
pairs satisfying the former condition is just a subset of the
set of candidate pairs satisfying the latter condition. Hence,
checking against the the former condition might reduce more
candidates than the latter one.

We empirically show in the experiments that by extending
the prefixes with several tokens we reduce the number of
candidate pairs significantly. The proper choice of the constant
k depends on the average length of the records. For example,
when the average length of the records are long leading to
long prefixes (for instance about 100) indexing 2 or 3 extra
tokens (k = 2, 3) is effective because the size of the extended
inverted index does not increase much compared to the original
index. Reversely, when the records are short, the extension of
the prefixes, even with only 2 or 3 tokens is useless due to
the domination of extra overhead. We will study this issue
carefully in the experiments.

B. Early Termination of Overlap Computing

Our interesting observation on the results of the state-of-
the-art approaches is that even with a very clever filter, the

TABLE I
CANDIDATE SIZES AND RESULT SIZE OF THE TREC-9 MEDLINE

DATASET OVER DIFFERENT COSINE SIMILARITY THRESHOLDS

Algorithms 0.5 0.6 0.7 0.8 0.9
AllPairs 416M 138M 41M 9M 969709
PPJoin 382M 117M 32M 6M 561032

PPJoin+ 345M 96M 22M 3M 92483
Results 100241 32494 8732 4095 2330

number of candidate pairs surviving after filtering is still very
large. Especially, when the similarity threshold is low, the gap
between the number of candidate pairs and the number of
actual results pairs is enlarged. For example, table I shows the
candidate size generated by the state-of-the-art algorithms and
the number of actual result pairs over various values of Cosine
similarity threshold. In this table, the candidates set generated
by the PPJoin+ algorithm with the similarity threshold 0.5
is 3450 times larger that the results set. Since all of these
candidate pairs are then sent to the verification phase the
overhead of verification is high.

In this paper, we propose a method that continues filtering
out further candidate pairs even in the verification phase.
In doing so , we can reduce the overhead of the similarity
verification. This can be done with the help of the following
operation called the probe and check.

Assume that we want to check if two records x and y have
the overlap satisfying the condition O(x, y) ≥ α. We also
assume that we are at the moment that the records were sent
to the verification phase for full similarity evaluation. Let w
be a token of the record x, assume that w divides x into two
partitions: the left partition denoted by xl containing all the
tokens that less than w and the right partition xr containing all
the tokens greater than w and including w. Similarly, assume
with the same meanings that the token w divides y into two
partitions denoted by yl and yr . We denote Ubound(w, x, y)
as the upper bound on the overlap of x and y estimated by the
result of the probing for token w in y. Thanks to the certain
property of partitions that the left partition of one record does
not intersect with the right partition of the other record we can
estimate the upper bound as : Ubound(w, x, y) = O(xl, yl) +
min(|xr|, |yr|).

Having the upper bound Ubound we check it against the
similarity threshold α. We say that the probe and check
operation is successful if Ubound(w, x, y) ≥ α and failed
otherwise. Thus, the probe and check operation defined in
this way is very similar to the probe operation defined in
[8]. However, our approach does not utilize any binary search
to perform probing. In this paper we show that by using
the certain property of the algorithm computing the overlap
between two lists (Algorithm 2), we can do probe without
necessary binary search. In fact, algorithm 5 is a modified
version of algorithm 2 which computes the overlap between
two records. Consider the point where r1[i] < r2[j] (or
r1[i] > r2[j]), the probe for position of token r1[i] (r2[j])
in y (x) will return exactly the position number j (i). It
turns out that the certain property of algorithm 2 allows us to

191

perform probing without necessary binary search. At this point
a similarity upper bound is estimated and checked against the
similarity threshold. As soon as the check is failed we can
stop the overlap computing early.

It is more likely that when the algorithm scans two records
from the start toward the end, the probe and check will become
more effective. This hypothesis is supported theoretically by
the following lemma:

Lemma 4: Given two records x and y, Assume that, the
tokens in two records are ordered by a global ordering Ω. Let
w1 and w2 be two tokens of the record x, If w1 <Ω w2 then
Ubound(w2, x, y) ≤ Ubound(w1, x, y)

Proof: Let xl1 , xr1 and xl2 , xr2 are the partitions of x
separated by the token w1 and w2 respectively. Similarly, Let
yl1 , yr1 and yl2 , yr2 are the partitions of y separated by the
token w1 and w2 respectively.

Since w1 <Ω w2, we have :
Ubound(w2, x, y)

= O(xl2 , yl2) +min(|xr2 |, |yr2 |)
= O(xl1 , yl1) +O(xl2 − xl1 , yl2 − yl1) +min(|xr2 |, |yr2 |)
≤ O(xl1 , yl1)+min(|xl2−xl1 |, |yl2−yl1 |)+min(|xr2 |, |yr2 |)
≤ O(xl1 , yl1) +min(|xr1 |, |yr1 |)
= Ubound(w1, x, y)

Thus Ubound(w2, x, y) ≤ Ubound(w1, x, y), the lemma is
proved.

A consequence of the lemma is that as we scan the lists
from the beginning to the end, the upper bound on the overlap
monotonically decreases. Hence, if we do the probe and
check subsequently, sooner or latter, we will reach the point
where either the probe and check is failed resulting in early
termination of the overlap evaluation or we successfully finish
computing the overlap.

C. Incremental Prefix Filtering Algorithm

We have already seen two optimization techniques proposed
in the prior sections. These two techniques are not alternative
to the other filtering approaches but can be integrated into
existing algorithms to conduct a hybrid solution. In this
paper, we choose the Allpairs algorithm as the basic platform
to which we integrate our techniques introducing a hybrid
algorithm called the Incremental Prefix Filtering Algorithm or
IPPair for short. The reason we choose Allpairs as the basic
platform is that it consumes less memory compared to the
other techniques, the implementation can scale up to 20M of
records. Moreover, its source code is freely available making
it convenient to be compared with and modified.

The pseudo-code of the IPPair (Algorithm 6) is the same as
the Allpairs with some minor changes. Concretely, we extend
the prefix with k tokens leading to a new check condition.
Moreover, to evaluate similarity in verification phase we call
the Overlap function instead of Overlap0 to enable the early
termination technique.

V. EXPERIMENTS AND RESULTS

In order to do the experiments and compare the results,
we obtained the source code of the Allpairs algorithm written

Algorithm 5 Overlap(r1, r2, α)
Input: two records r1 and r2; each record has been sorted by a global
ordering Ω and a threshold value α on the overlap
Output: the overlap O(x, y)
Replace lines 11-15 of Algorithm 2 with the following code
if r1[i] < r2[j] then
Ubound(r1[i], r1, r2) = overlap+min(|r1| − i, |r2| − j + 1)
if Ubound(r1[i], r1, r2) < α then

return −∞
end if
i← i+ 1

else
Ubound(r1[i], r2, r1) = overlap+min(|r1| − i+ 1, |r2| − j)
if Ubound(r2[j], r2, r1) < α then

return −∞
end if
j ← j + 1

end if

Algorithm 6 IPPair(R, t, k)
Input: a set of records R = {r1, r2, · · · , rn}, which has been ordered
increasingly by their lengths, a similarity function cosine C(·, ·) and a
threshold value t ∈ [0, 1], and a constant k
Output: All pairs of records ¡x,y¿ s.t. C(x, y) ≥ t
Replace line 7 in Algorithm 3 with
• pi ← |ri| − dt.|ri|e+ 1 + k
Replace line 14 in Algorithm 4 with
• If A[y] ≥ k + 1 AND A[y]+|ys|√

|r|.|y|
≥ t

Replace line 15 in Algorithm 4 with
• α← t.

√
|r|.|y| −A[y]

• d← A[y]+Overlap(r,ys,α)√
|r|.|y|

in C++. We keep the source code of the Allpairs as original
as possible and integrate our modification to implement the
IPPair algorithm. The PPJoin and PPJoin+ are available with
the binary code, so to make it neutrally fair for comparison we
compiled the Allpairs and the IPPair in an Ubuntu machine
with 2GB of RAM, 160GBs hard disk, AMD Turion Dual Core
2GHz. Consequently, all the binary programs were executed
in another Fedora Linux Machine with 4GB of RAM, 500GBs
hard disk, 3GHz CPU. For comparison, all the parameters of
PPJoin and PPJoin+ are set up as the default settings.

A. The Datasets

We used 5 different datasets with different properties de-
scribed in table II. These datasets are those that were used
in the paper [8]. Among the datasets DBLP contains a large
number of documents but the average size of documents is
very small. The other datasets like and the MedLine-4gram
has the largest size and very long documents in average. The
reader can refer to [8] to understand how these datasets are
obtained from raw text.

B. Running Time and Candidate Size

Experiments with Cosine Similarity
First of all we compare the running time and the candidate

size generated by the IPPair with the other algorithms on
figure 1 (due to limit space we include only the results with
Cosine similarity, however, the results with Jaccard similarity
are almost the same). On this figure, the IPPair+1 stands for

192

Fig. 1. The logarithm scale running time (in seconds) and the candidate size generated by the IPPair and the state-of-the-art algorithms over various Cosine
similarity thresholds.

193

TABLE II
THE DATASET STATISTICS

Datasets n avg len Size
DBLP 873524 14.2 53MB

DBLP-3Gram 873524 102 365MB
Enron 504680 274 559MB

MedLine 339217 133 183MB
MedLine-4Gram 339217 866 1.2GB

IPPair with one token prefix extension. In some cases, the
PPJoin and the PPJoin+ were failed to finish or they finished
with wrong estimation of the candidate size due to some bugs
in their implementation, we ignore the errors and leave the
result empty in such cases.

Observing the obtained result, we divide the experimental
results into three groups with different properties. First, con-
sider the results on small dataset DBLP on Figure 1.a and
Figure 1.b. According to these figures, PPJoin+ seems the
best in terms of running time and also the candidate size (the
smaller the better). The obtained results are correlated with the
report by the paper [8]. However, when the similarity threshold
drops down from 0.7 to 0.5, the running time of the IPPair
and the PPJoin+ becomes closer. The behavior of the candidate
size on Figure 1.b confirms again this fact. Overall, for this
dataset, PPJoin+ is the best, our IPPair is slightly better PPJoin
and outperforms Allpairs.

In the next step, consider another group of datasets including
the DBLP-3Gram, MedLine and the Medline-4Gram which are
much larger than the DBLP. All of these datasets appear with
big size and long records. A first conclusion can be made:
IPPair outperforms all the other algorithms. Concretely, it can
be from 40% to 2 times faster than the AllPairs and it can
reduce much candidates than the AllPairs algorithm. Besides,
it’s interesting that although still performs well in the cases
with high similarity threshold (t ≥ 0.7), PPjoin+ is the worst
algorithm even compared with her brother PPJoin when t ≤
0.7 (Figure 1.c.g.k). The results are surprising because the
number of candidates that the PPJoin+ can filter is still much
larger than the other algorithms can (Figure 1.d.h.l). A possible
explanation is that the overhead of the filtering technique used
in PPJoin+ is too expensive for long-records collection.

Another conclusion on the results on these datasets is that
the speed-up of IPPair seems higher in the cases with low
similarity threshold. A possible explanation for this behavior
is that when the similarity threshold drops down from 0.7 the
prefix becomes longer. As a result, the prefix extension tech-
nique adopted in IPPair becomes more efficient. Moreover, on
these datasets the candidate set generated by all the algorithms
is far bigger than the results set (hundreds or thousands times
bigger). Under this circumstance, early termination technique
is very effective.

Finally, consider the result reported on the Enron dataset.
Although in this case, the IPPair still outperforms the other
algorithms but the speed-up degrades. Concretely, IPPair
steadily 30% faster than the AllPairs algorithm (Figure 1.e). If
we look at the candidate size figure (Figure 1.f), we can guess

the reason of the speed-up degradation. That is, the generated
candidate size remains bigger than the result size, but it is just
tens times bigger instead of hundreds or thousands times as
in the other tests. In other words, the filtering phase is very
effective thus the verification overhead no longer dominates
the overall running time. Since the IPPair algorithm benefits
from improving the verification phase, the speed-up achieved
in this case is not much.

VI. CONCLUSIONS AND FUTURE WORK

We introduced some optimization techniques integrated into
the existing approaches to solve the all pairs similarity search
problem. The validation with 5 different datasets shows that
the proposed techniques speed up the existing approaches
from 30%. Especially, in the case with large, high-dimensional
datasets and low similarity threshold our approaches can
achieve 2x-4x speedup compared to existing approaches. Al-
though all the state-of-the-art algorithms are proven to be
efficient for small datasets, there are lack of evidences for
them to scale up to bigger collections. All of algorithms are
supposed to run without considering the limit of memory size.
In the future, we propose to consider many optimizations such
as data compression, cache-oblivious algorithm, distributed
and parallel solutions to scale up the algorithm to larger
datasets.

REFERENCES

[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins.
In VLDB ’06: Proceedings of the 32nd international conference on Very
large data bases, pages 918–929. VLDB Endowment, 2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity
search. In WWW ’07: Proceedings of the 16th international conference
on World Wide Web, pages 131–140, New York, NY, USA, 2007. ACM.

[3] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic
clustering of the web. Comput. Netw. ISDN Syst., 29(8-13):1157–1166,
1997.

[4] M. S. Charikar. Similarity estimation techniques from rounding algo-
rithms. In STOC ’02: Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 380–388, New York, NY,
USA, 2002. ACM.

[5] G. S. Manku, A. Jain, and A. Das Sarma. Detecting near-duplicates
for web crawling. In WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pages 141–150, New York, NY, USA,
2007. ACM.

[6] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates.
In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 743–754, New York, NY, USA,
2004. ACM.

[7] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating similarity
measures: a large-scale study in the orkut social network. In KDD ’05:
The eleventh ACM conference on Knowledge discovery in data mining,
pages 678–684, New York, NY, USA, 2005. ACM Press.

[8] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for
near duplicate detection. In WWW ’08: The 17th international conference
on World Wide Web, pages 131–140, New York, NY, USA, 2008. ACM.

194

