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ABSTRACT  

 

Modeling multi-day planning has received scarce attention today in activity-based transport 

demand modeling. Elaborating and combining previous work on event-driven activity 

generation, the aim of this paper is to develop and illustrate an extension of a need-based 

model of activity generation that takes into account possible influences of pre-planned 

activities and events. This paper describes the theory and shows the results of simulations of 

the extension. The simulation was conducted for six different activities and parameter values. 

The results show that the model works well and that the influences of the parameters are 

consistent, logical and have clear interpretations. These findings offer further evidence of face 

and construct validity to the suggested modeling approach. 



Nijland, Arentze and Timmermans 

 

3 

INTRODUCTION 
 

Behavioral processes underlying the (re-)planning and (re-)scheduling of activities have been 

studied in a relatively small but accumulative stream of research. Most of this research has 

been conducted in the context of computer-assisted data collection instruments. Perhaps the 

first of these has been MAGIC (1) which has been used to record travelers response to 

external scenarios as reflected in changes in a planned single-day activity schedule. Chase (2) 

developed a similar data collection instrument but added the important feature that the 

planning and rescheduling of activities across a much longer time horizon could be traced, 

offering very important and unique opportunities to analyze and better understand the 

underlying dynamics. Later, similar data collection tools with similar functionalities were 

developed. 

 Chase and similar instruments led to behaviorally very interesting research on the re-

planning and rescheduling of activities. For example, Doherty (3,4) and Doherty and 

Mohammadian (5) found that the distinction between fixed and flexible activities, which is 

often made in activity-based modeling, is not necessarily reflected in the activity scheduling 

process. Similarly, evidence for priority-based scheduling is limited (6,7).  

 This work is related to explicit attempts of modeling short term dynamics. In an 

attempt to elaborate seminal work of Garling and co-workers, Timmermans et al. (8) and Joh 

et al. (9) developed Aurora (see Joh et al. for an overview). This model assumes an S-shaped 

utility function for activity duration. Dynamics (rescheduling) are modeled by allowing 

travelers to adjust one or more facets of their activity-travel schedule. Although the model is 

based on utility functions and a utility maximization objective, it is not based on exhaustive 

evaluation of solutions but rather various decision operations are assumed. The first estimates 

of the model were based on aggregate data. More recently, stated adaptation experiments were 

used to validate the assumptions underlying the model (10,11,12). These results suggest that 

individuals first tend to adjust those aspects that require least effort (e.g., duration), and if this 

is insufficient, change other facets of their schedule. Similar results were reported by Roorda 

and Andre (13). 

Although this research offers highly relevant food for thought and is particularly 

relevant for modeling rescheduling decisions, research on modeling the dynamic generation 

of activity agendas, to the best of our knowledge, is even scarcer. Mohammedian and Doherty 

(14) used neural networks and logit models to analyze the time horizons between planned and 

executed activities. This work offers a more rigorous and integral approach to the problem at 

hand, but still these statistical models primarily serve for analysis; it is not readily evident 

how these can be used in the context of a dynamic activity-based model of transport demand. 

Habib and Miller (15,16) suggested a model for activity generation. They assumed that the 

utility of an activity is split into two parts: the goal utility (gained by the end state 

accomplished by the activity) and the process utility (gained by the execution process of the 

activity). They argue that the goal utility of activity episode is important for modeling activity 

program generation, while the process utility component may primarily influence activity 

scheduling and rescheduling trade-offs.  

To contribute to this emerging line of research, this paper reports the findings of the 

next step of developing a dynamic activity agenda generator. It integrates two lines of 

previous research. First, it is based on the need-based theory to the problem of dynamic 

activity generation, suggested by Arentze and Timmermans (17,18). This theoretical 

framework is based on the assumption that activities are driven by a limited and universal set 

of subjective needs at the person and household level. The needs grow autonomously over 

time according to a logistic curve with parameters depending on the nature of the need and 

characteristics of the individual and the household. In the model, the utility of conducting an 
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activity is equal to the sum of satisfied needs minus the sum of induced needs. The theory also 

takes into account interactions between activities and the allocation of household tasks.  

This theory provides an explanation for drives of regularly recurring activities such as 

shopping, social visits, recreation etc. It does not take into account, however, that planned 

future activities may influence the activity scheduling decisions of individuals. Such activities 

will occur frequently as individuals will participate in many socially and culturally induced 

events, such as Christmas, birthdays etc. For example, if a person has planned to go to a 

birthday party next day, the person may postpone the satisfaction of the social need. In the 

survey described in Nijland et al. (10) the respondents were asked, for eight flexible activities 

that are conducted out-of-home, when they usually plan the concerned activity. The results 

show that especially in cases of a sports activity, visiting relatives/friends, visiting a café, bar 

or discotheque and buying clothes, the activity is often planned earlier than a day before. 

Similarly, Chen and Kitamura (19) found that 30% to 45% of the executed activities were 

scheduled a day before or earlier. This has consequences for the scheduling of other activities 

that satisfy or induce the same needs. Furthermore, planned activities seem to be less flexible 

for adjustment in case of delay (11). They are less often skipped or postponed when there is 

less time available to conduct the activity. In most of the cases, planned activities are 

performed together with other persons (friends/relatives) and are therefore more difficult to 

adapt. 

The purpose of the present paper is thus to bring these lines of research together and 

address the question how rhythms in needs-driving activities are blended with pre-planned 

activities and events. The structure of the remainder of this paper is as follows. Section 2 

describes the theory and models first in terms of the existing need-based framework and next 

regarding the extension proposed here. The extended model is implemented in an agent-based 

system for simulating activity patterns of individuals for a multi-day period. Section 3 

describes results of simulations carried out to test the face-validity of and illustrate the model. 

Finally, the last section discusses the major conclusions and implications of the new model for 

planning and policy support in areas of transportation and urban planning, and identifies 

remaining problems for future research. 

 

 

THEORY AND MODELS 
 

Before describing the proposed extension, we first briefly summarize the basic need-based 

model for activity generation that was proposed in Arentze et al. (20). 

 

The Basic Model of Dynamic Activity Generation 

The model predicts a multi-day activity pattern for a given person for a period of arbitrary 

length. Rather than solving some resource allocation optimization problem, the model 

assumes that individuals make activity-selection decisions on a daily basis. Although the 

model is able to take into account interactions between activities and between persons (in a 

household context), we will consider here a more limited situation where an individual is 

faced with a decision to conduct an activity i on a current day d given that the last time the 

activity was conducted was on day s < d (this means that the time elapsed equals d – s days). 

To simplify notation, we leave an individual specific subscript out of consideration in the 

equations below.  

 In the basic model, the utility of conducting an activity of type i on a given day d is 

defined as: 

sdidisdiisdi VVVU ε+++=  (1) 
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where d is the current day, s is the day activity i was conducted the last time before d, Vi  is a 

utility constant of implementing activity i, Vsdi is the utility of satisfying the need for activity i 

built-up between s and d, Vdi is a (positive or negative) preference for conducting activity i on 

day and εsdi is an error term. 

 The utility components can be interpreted as follows. Vi represents the utility that is 

always attained independent of the length of elapsed time (i.e., the time between s and d). If 

this component is large relative to the need growth rate, then the activity does not depend on 

dynamic needs, but will always be conducted on the preferred day (Vdi) provided that it 

generates sufficient utility given a utility-of-time requirement on that day. The second term 

(Vsdi) represents the amount of the need that has been built up across the elapsed time and that 

will be satisfied if the activity is implemented. The fourth term (Vdi) represents a correction of 

utility related to day of implementation (e.g., going out on Saturday). Note that events that are 

not driven by needs, but rather take place on a certain fixed day, can be modeled as activities 

with zero need growth (Vsdi = 0) and a relatively high utility for the day (Vdi >> 0) when the 

event is to take place. 

The need for an activity grows over time. There are several functional forms 

conceivable for a need’s growth curve. Although a logistic growth function may describe this, 

a logarithmic form has more favorable properties for estimation and has therefore been 

typically applied in time use (21). It can be expressed as: 

)1ln( += iisdi tV β  (2) 

where βi is a growth rate and ti is the need growth period between s and d. (Unity is added to t 

to make sure that calculated need after one day growth is non-zero).  

A decision heuristic that appears to generate rational behavior states that the activity should 

be conducted on day d if d is the earliest moment when the following condition holds (again, s 

is the day the activity was conducted the last time):  

*

d

di

sdi u
D

U
>  (3) 

where Ddi is a normal duration of activity i on day d, ud
*
 is a utility-of-time requirement 

imposed by the individual for day d. The utility-of-time threshold imposes a constraint on 

activity generation and represents an individual’s scarcity of time. The smaller a time budget 

for activities, the larger the threshold needs to be. When the threshold is well adjusted, the 

rule leads to fully use of available time (i.e., the budget is exhausted). At the same time, the 

rule ensures that every activity generates approximately an equal utility per unit of time when 

it is conducted. In that sense, the heuristic, even though it is very simple, is consistent with an 

objective to maximize the utility of activities across a longitudinal period.  

As for activity duration, we assume that the time spent on an activity when it is 

implemented is an increasing function of the current size of the need and a decreasing 

function of time pressure on the day concerned (i.e., doing the activity in a more efficient way 

when time pressure is higher). Formally, this can be represented as follows: 

didsdididi ugVfDD ε+++= )()( *0
 (4) 

where Ddi
0
 is a constant,  f is an increasing function, g is a decreasing function and ε is an 

error term. In the present study, we conveniently assume that duration depends on day only, 

so that (4) reduces to: 
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dididi DD ε+= 0
 (5) 

 

Anticipation of the Future 

A shortcoming of the existing decision heuristic (Eq. 3) is that it does not anticipate the 

future. There are two ways in which this could lead to a suboptimal result: 1) a future day is 

more attractive in terms of an intrinsic preference and/or available time, such that it would be 

rational to postpone the activity, and 2) an event in the near future would be able to satisfy the 

same or similar needs, so that costs of conducting the activity can be saved. In this section, we 

extend the basic heuristic (Eq. 3) to take future conditions into account in terms of these two 

cases. First, we consider postponement decisions and next the influence of future events. 

Methods proposed in both sections rely on a concept of opportunity costs. In the last section, 

we propose a possible operationalization of this concept. 

 

Case 1: Activity Postponement 

In this section, we consider the question: under which circumstances is it rational to postpone 

an activity one or more days? The general answer to this question is: postponing one or more 

days is rational when this increases the pattern utility of an activity and is allowed by the 

utility-of-time requirement. Pattern utility is the long-term utility of an activity, i.e., the utility 

over a (long enough) multi-day period. On the one hand, postponement means a gain, because 

the time left can be used for other activities. On the other hand, it is a loss in that the utility 

gained by the activity will not be available until at a later point in time. If the circumstances 

are more favorable at the later moment (e.g., in terms of time pressure and day preferences), 

the profit possibly may be higher than the loss. The (net) utility of conducting the activity on 

current day d can be written as: 

ddidsdi ZDcU =−  (6) 

where cd is the utility of a unit of time when spent in another way than on activity i on day d. 

Thus, the second term on the left-hand-side of the equation represents opportunity costs, 

which occur because conducting the activity takes Ddi units of time which then cannot be 

spent in another way. On the other hand, the utility of conducting the activity on some later 

day d + m is given by (for any m > 0): 

mdimddimdmdimds ZVDcU +++++ =−− ,,,,,   (7) 

This equation has the same structure except for an additional term: the last term on the left-

hand-side of the equation. This additional term is included for the sake of pattern utility: by 

postponing the activity m days, a need growth of m days is lost for the next period and should 

be discounted. Postponement is rational only if there is an m > 0 such that: 

*

,

,,
  and  md

imd

imds

dmd u
D

U
ZZ +

+

+

+ >>  (8) 

The first condition, Zd+m > Zm, of this proposition comes down to (substituting (6) and (7) in 

(8) and rearranging terms): 

0)()( ,,,,, >−−+− ++++ imddimdmddidsdiimds VDcDcUU  (9) 
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Replacing the utility variables by their definition (Eq. 1) gives: 

0)(

)(

,,,

,,,,,,,,

>−−+

+−−−−+++

+++

+++

imddimdmddid

sdiididsiimdsimdimdsi

VDcDc

VVVVVV εε
 (10) 

and this reduces to: 

0)()(

)()(

,,,,,

,,,,,,

>−+−−+

+−+−

++++

++

sdiimdsimddimdmddid

idimdidsimds

VDcDc

VVVV

εε
 (11) 

This derivation shows that error terms do not play a role in decisions to postpone an activity. 

Furthermore, it is noted that the last term (Vd,d+m,i) is always larger than the first term between 

brackets (Vs,d+m,i – Vsdi) because growth rate is ever decreasing in a logarithmic growth curve. 

This means that, if time is homogeneous in terms of day preferences and opportunity costs, 

then postponing is never rational or, to put it another way, then it is rational to conduct the 

activity always at the earliest moment when it exceeds the threshold. Thus, postponing will be 

considered only in cases where gains in terms of day preferences or opportunity costs possibly 

can be achieved. 

 

Case 2: Future Event 

Now consider the case where there is some event on day d + m that is able to satisfy the same 

need as an activity considered for a present day d. An example is a birthday party (event) that 

could satisfy the same (social) need as a certain social activity. The event is fixed and given. 

The question is: under which conditions would it be rational to abstain from conducting the 

activity and wait until the event? We will first consider the case where the event is scheduled 

for the next day, i.e. where m = 1 and then focus on the general case where m ≥ 1. 

 
The event takes place the next day (m = 1) 

 

The utility of not waiting and conducting the activity now equals: 

waitnotiddids ZUU −+ =+ ,1,,,  (12) 

The first term indicates the utility derived from the activity on day d and the second term 

indicates the utility derived from the event on day d + 1 (with respect to the need addressed by 

the activity) given the activity was lastly conducted on day d. Note that at the time of the 

event the need satisfied is as small as the grown need over one day. On the other hand, when 

the agent would wait until the event, the total utility becomes: 

waitidsdid ZUDc =+ + ,1,  (13) 

where cd is the utility per unit time spent on other activities on day d and other terms are 

defined as before. The first term represents opportunity gains on day d, i.e., the utility of an 

alternative way of spending the time freed by not conducting the activity and the second term 

indicates the utility at the time of the event (regarding the need related to the activity 

concerned). Note that the size of the need at the time of the event has increased by one day in 

this waiting scenario. 

 Clearly, it is rational to wait if Zwait > Znot-wait. This means that waiting until the event 

is rational if: 
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iddidsidsdid UUUDc ,1,,,,1, ++ +>+     (14) 

Rewriting and rearranging terms gives: 

0)()( ,1,,1,,. >−+− ++ iddidsidsdid UUUDc  (15) 

The two terms between brackets indicate utility gains of waiting measured on two moments in 

time: on day d and at the time of the event, respectively. For day d, the gain equals the utility 

of spending freed time in an alternative way minus the utility of spending time on activity i. 

At the moment of the event, the gain equals the difference between utility growth over a 

prolonged period by one day (from s to d+1) and the utility growth of just one day (because it 

was conducted on the day before the event in case of not waiting). Note that, whereas the 

second gain is always positive (growth is positive), the first gain will become negative when s 

is far enough in the past. So, in the relevant range of elapsed time, a decision to wait involves 

a trade-off between, on the one hand, a loss of not conducting the activity on day d (there are 

no better ways of spending time) and, on the other, a gain of increased need at the time of the 

event (and, hence, a higher utility). 
 

The general case (m ≥ 1) 

 

The above equations assume a case where m = 1, i.e., where the event takes place one day 

later in time. In general, an event may take place m days later. To generalize the above 

decision rule, we should take into account that an activity could be conducted multiple times 

in the period between now and the event. We therefore compare a scenario of waiting until the 

event with a scenario where the individual does not wait and conducts the activity on day d as 

well as every next time d – s days have elapsed before the event. In other words, we assume 

that if it is rational to conduct the activity on this day d, then it will also be rational to conduct 

the activity every other moment when the same amount of time has elapsed. Although this 

assumption may not be valid in cases where time is heterogeneous (e.g., in terms of day 

preferences and opportunity costs), it serves our purpose here to formulate a heuristic which is 

simple and generates rational behavior by approximation. 

  To describe a scenario of not-waiting, therefore, we define the whole number of times 

the activity would fit in the period from now to the day of the event as follows: 










−
=

sd

m
n int  (16) 

where int(x) is the floor of x (i.e., the result of rounding x down to the nearest integer). Now 

the rule given by Equation (15) can be easily extended to cover the general case as: 

0)(

)(

,),(,,

0

),(),)(1(),()(

>−+

+−

+−++

=

−+−−+−+−+∑

imdsdndimds

n

j

isdjdsdjdisdjdsdjd

UU

UDc
 (17) 

The first term indicates the sum of utility gains across all times of not conducting the activity 

in a wait scenario, which is on day d and each time after elapsed time d – s. The second term 

indicates the gain at the day of the event, which now is the difference between the utility 

grown over the full length of the period between days s and d + m and the utility grown over a 
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much smaller period between the last time the activity was conducted and the time of the 

event.  

 Given our purpose to formulate a simple decision heuristic, we propose to simplify 

this rule as follows: 
 

0)())(1( ,),(,,,, >−+−+ +−++ imdsdndimdsidsdd UUUDcn    (18) 

 

Note that this rule reduces to a similar form as the rule derived for the m = 1 case if n is zero, 

since then we get:  
 

0)()( ,,,,,, >−+− ++ imddimdsidsdd UUUDc  if   n = 0  (19) 

 

Finally, to formulate a more operational version of this rule, we replace the utility variables 

(Eq. 19) by their definition (Eq. 1). This results in: 
 

0)(

))(1(

,),(,),(,,,

,,,

>−−−++++

+−−−−+

+−++−+++ imdsdndimdsdndisdiimdimdsi

sdiididsidid

VVVVV

VVVDcn

εε

ε
 (20) 

 

This reduces to: 

0)(

))(1(

,),(,),(,,,

,,,

>−−+++

+−−−−+

+−++−+++ imdsdndimdsdndsdiimdimds

sdiididsidid

VVV

VVVDcn

εε

ε
  (21) 

 

Opportunity Costs 

The specification of opportunity costs in the models described above requires additional 

theory and model development. In this section, we discuss this issue and propose such a 

model. 

Clearly, the utility of spending time in an alternative way on a day d (rather than on 

activity i) is closely related to the utility-of-time on day d and, hence, also to the threshold 

requirement ud
*
. To capture this notion, we propose the following straightforward function: 

*

dd uc ×= τ    (22) 

where tau is a system parameter to be set (0 ≤τ ≤ 1). To explain the impact of this parameter, 

consider an extreme case where we set τ = 1. This setting implies the assumption that at the 

moment an activity is due in the sense of the threshold utility, the individual can always spend 

his or her time just as well in another way than on activity i. Assume for the sake of argument 

that day d corresponds exactly to the moment when the activity first exceeds the threshold 

utility. This means that the activity will not be conducted before day d, given the basic rule 

(Eq. 3). If τ = 1 an individual will always decide to wait, at least if time is homogeneous (no 

preference or time pressure differences), since the gain of conducting the activity will be 

approximately zero (time can be spent just as well in another way) and the gain of additional 

need growth is always positive. If the individual decides to wait on day d, he/she will also 

decide to wait on d + 1, because the growth until the event will be larger than the increment 

since the day before, and so on. Thus, if τ = 1 (and time is homogeneous), the individual will 

always wait until the event no matter how far away the event is located in the future. Now, 

consider the other extreme where τ = 0. In that case there are no opportunity costs and it is 
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easily seen that the individual will always decide to conduct the activity on day d (when it 

exceeds the threshold) given the fact that need grows with declining rate (which is what we 

assume). Opportunity costs also include e.g. location, travel time and transport mode 

variables. If, for instance, the travel time is shorter or the location is better accessible, the 

opportunity costs are lower and this influences the utility of conducting an activity. 

In summary, the model realistically predicts that if opportunity costs are zero (τ = 0), 

an activity will always be conducted when it is due (i.e., exceeds the threshold), irrespective 

of how close a future event satisfying the same need is. If opportunity costs are equal to 

utility-of-time (τ = 1), an activity will always be postponed until the event, irrespective of 

how far away the event is in the future. Although both extremes are not realistic, we have no 

ways of defining the τ parameter a priori. This means that the parameter should be estimated 

empirically. 

 

 

SIMULATION 
 

In this section, we discuss some results of simulations that were carried out to test and 

illustrate the model. Before considering the extended model, we will first look at the behavior 

of the basic model for a range of activities.   

 

Basic model 

The following activities were included in the simulation:  

- Shopping – one store 

- Shopping – multiple stores 

- Service related activities 

- Social activities 

- Leisure activities (other than touring) 

- Touring (by car, bike or foot)  

 

For the simulation the values for the parameters per activity were used as shown in Table 1. 

Those parameters are consistent with results of estimations on a national trip diary data set 

(the MON 2004 survey) (20). This dataset includes one-day diary observations of 46,877 

individuals in total. The β parameter indicates the growth rate of the need for the activity, the 

D parameters relate to the duration function and the V parameters indicate preferences 

(positive or negative) for conducting the activity on a particular day of the week. 

 

TABLE 1  Assumed values of the parameters in the simulation  

 Shopping-

one store 
Shopping-

multiple 

stores 

Service 

related 

activities 

Social 

activities 
Leisure 

activities 
Touring (by 

car, bike or 

foot) 
β 30 32 14 77 45 28 
D 45.90 71.49 42.94 136.76 120.91 60 
D Sat 5.00 -2.07 -2.66 39.21 18.51 0.00 
D Sun 0.76 -0.78 -2.97 33.65 6.57 -0.20 
V Mon -2.38 -0.26 -0.52 -5.58 1.13 0.65 
V Tue -2.19 -0.22 -0.29 -3.98 -1.11 0.40 
V Wed 0.00 0.00 0.00 0.00 0.00 0.00 
V Thu 0.15 -0.47 0.79 -9.20 -3.01 0.26 
V Fri 3.17 0.07 1.27 -15.83 -8.98 -1.10 
V Sat 13.66 0.80 -2.10 27.22 13.68 -1.59 
V Sun -1.15 -0.46 -3.89 29.96 11.08 0.82 
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The period considered in the simulations is 14 weeks. As a simplification, we used error terms 

of the form εsi instead of εsdi. We assumed a normal distribution for the error term with 

average of zero and a standard deviation of 0.25 (the latter standard deviation was taken from 

an earlier empirical estimation study (20)). The results of the simulations are shown in Table 

2 for three different hypothetical individuals having different work hours: 0 hours work a 

week, 40 hours work a week and 24 hours work a week. In the simulation the utility-of-time 

requirement imposed by the individual for day d (ud
*
) was set to a base level of 1 for every 

day. Increases due to time pressure were captured as an additive effect using the equation 

ud
*
=1+δ × Wd (where Wd is work hours on day d). For parameter δ we used the value 0.02, so 

that ud
*
 varied between 1 (0 hours) and 1.2 (10 hours). The simulation starts with conducting 

the activity on Saturday. The first row in the table shows the total number of times the column 

activities were conducted and the next rows the numbers of times per day of the week. The 

second individual considered in Table 2 works 40 hours a week distributed equally across five 

weekdays (i.e., 8 hours each workday) and the third individual works 24 hours a week: 8 

hours on Monday, Tuesday and Thursday. The influences of working hours and day 

preferences are clear and seem logical. For example, in case of 24 hours work a week, the 

activity was conducted more often on Wednesdays and Fridays and the fulltime worker 

conducts the activities during the weekends.  

 

TABLE 2  Simulation results 

 Shopping-

one store 
Shopping-

multiple 

stores 

Service 

related 

activities 

Social 

activities 
Leisure 

activities 
Touring 

(car, bike or 

foot) 

0 hours work a week 
Freq 35 9 6 16 7 12 
n Mon 5 2 2 3 0 4 
n Tue 4 0 0 1 0 0 
n Wed 5 2 0 4 0 3 
n Thu 6 0 2 1 0 1 
n Fri 6 2 1 1 0 0 
n Sat 8 3 1 4 5 1 
n Sun 1 0 0 2 2 3 

       

40 hours work a week 
Freq 28 8 4 11 7 10 
n Mon 2 0 0 0 0 0 
n Tue 3 0 0 0 0 0 
n Wed 7 0 0 2 0 0 
n Thu 2 0 0 0 0 1 
n Fri 5 2 0 0 0 2 
n Sat 8 5 4 7 5 3 
n Sun 1 1 0 2 2 4 

       

24 hours work a week 
Freq 34 12 5 14 7 12 
n Mon 3 0 0 0 0 0 
n Tue 4 0 0 0 0 0 
n Wed 8 4 2 6 0 4 
n Thu 1 0 0 0 0 0 
n Fri 11 4 2 1 0 3 
n Sat 6 3 1 5 5 1 
n Sun 1 1 0 2 2 4 
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Anticipation of the future 

As expected, postponement of the activity as a result of a higher utility on the next day did not 

occur very often. This implies that the basic model works well. Only in case of ‘Shopping – 

one store’ for an individual with 40 working hours a week, the activity was postponed three 

times. This happened on Fridays and is caused by both the relatively high preference for the 

Saturday and the time pressure due to work on Fridays.   

The simulation of the extended model with anticipation of future events also shows 

realistic results. Table 3 shows three different cross-sections of the multi-day activity pattern 

as examples of the influence of the event-based model. All cross-sections relate to a period of 

14 days before an event occurs and the activity considered is shopping-one-store for the 

individual working 40 hours a week. The τ parameter was set equal to 0.5. In the first 

example the basic model wants to conduct the activity four days before the event, but the 

event model waits until the event. In the second example, the basic model conducts the 

activity one day before the event, but the event model waits. These cases refer to rather 

straightforward behavior. The third example however shows unexpected behavior. Here the 

basic model wants to go shopping seven days before the event (Friday), but the event model 

waits. However, rather than waiting until the event, on the next day, a Saturday, it decides not 

to wait and to conduct the activity. This means that in effect the model postponed the activity 

one day. Although postponing is not behavior that was explicitly modeled, it does make sense. 

If all next days until the event were like Friday, then indeed it is rational to wait until the 

event. However, on Saturday conditions are more favorable to an extent that it is not 

beneficial to wait until the event. Thus, this example shows that the presence of an event may 

lead to postponing even if postponing is not rational if the event does not take place. This is 

unexpected but sensible behavior of the model.   
 

TABLE 3  Examples of differences between basic model and event model 
1. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 event 

basic                

event                

 

2. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 event 

basic                

event                

 

3. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 event 

basic                

event                

 

 Conduct activity 
 Basic model wants to conduct, event model waits 
 Not conduct activity 

 

In a next series of experiments we (arbitrarily) focused on the shopping-one-store activity and 

varied the value of τ and frequency of events. Table 4 and Figure 1 indicate the influence of 

the τ parameter on the tendency of waiting for different occurrence frequencies of an event. 

They show for four, six and nine events within a time frame of six months, the number of 

days the model wants to wait divided by the number of events. If τ is smaller than 0.4, there 

hardly is a difference between the event and the basic model. If τ increases, the average 

number of days an individual waits until the event increases. Thus, the value of τ determines 

to a large extent the size of the influence of an event on an activity pattern. As Figure 1 

indicates, the relationship is non-linear and irregular (with a tendency of an S-shaped form). 

This result indicates that the value of τ can be estimated based on an event’s temporal 

influence on activity patterns.  
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TABLE 4  Influence of ττττ: n wait / n events 

τ 

4 events 

(1 every 40 days) 

6 events 

(1 every 30 days) 

9 events 

(1 every 20 days) 

0.2 0 0.17 0 

0.4 1 0.50 0.33 

0.5 0.75 1.50 1.44 

0.6 1.50 3.67 3.33 

0.8 10.75 8.33 7.44 

1 15.25 14.17 8.22 

 

In Table 5 we compare, for different values of τ, the differences in total utility of a 

longitudinal activity pattern between the basic and the event model. The results show higher 

utilities for the event model, even though the frequency of conducting the activity is lower. If 

τ is raised, there is a considerable increase in the difference between the total utilities of the 

models. This results show that the heuristic, even though it is very simple, is consistent with 

an objective of utility maximization (i.e., rational behavior). The negative result in only one 

case is explained by the fact that, indeed, it is a heuristic which does not guarantee optimal 

solutions.  

 

TABLE 5  Influence of ττττ: comparison utilities 

 Number of 

events 

Days between 

events 

Utility basic 

model 

Utility event 

model 

% difference 

τ = 1 9 20 24.41 465.53 95 

 6 30 38.53 421.50 91 

 4 40 85.61 420.53 80 

τ = 0.8 9 20 462.85 668.39 31 

 6 30 476.49 632.41 25 

 4 40 451.77 534.57 15 

τ = 0.6 9 20 901.28 879.60 -2 

 6 30 923.04 922.96 -0.01 

 4 40 868.64 874.19 0.63 

τ = 0.4 9 20 1339.71 1347.86 0.60 

 6 30 1352.42 1354.01 0.12 

 4 40 1266.82 1269.48 0.21 
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FIGURE 1  Influence of ττττ: n wait / n events. 
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DISCUSSION AND CONCLUSIONS 
 

In this study, we extended the dynamic need-based model of activity generation to account for 

future events and conditions. The model employs a simple decision heuristic to determine 

when to postpone an activity to benefit from better conditions or to save opportunity costs. 

The model is able to deal with non-homogeneous time in terms of day-varying preferences 

and time budgets. In this way, the influence of pre-planned activities and events on activity 

scheduling can be included in the need-based model of activity generation. 

 Using estimates derived from a national travel survey, the results of the simulation 

indicate that the model has face validity and that the outcomes are consistent with theoretical 

expectations. It would suggest that we can use the theory of needs-driven rhythms and 

regimes in activity generation, and take into account influences of anticipated future events on 

scheduling decisions as stepping stones to develop an operational model of dynamic activity 

agendas. This can be used to simulate how these regimes are blended with events and pre-

planned activities. At the same time, this approach could also be used fruitfully in the 

discussion about activity planning and scheduling along a longer time horizon.   

The precise value of the suggested approach should however be further explored and 

proven in future research. As for our immediate research agenda, we plan to design 

experiments and a survey to collect data for validating and estimating the model (i.e., the τ 

parameter). Furthermore, an interesting question is whether we can also use this (simplified) 

framework to predict occurrences of events in time and estimate the parameters on the event 

data that were collected in an earlier study (22). This would mean that we have the same set of 

equations describing the timing of activities and events. We plan to report on these further 

elaborations and tests in future papers and publications. 
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