
 

A wearable earpad sensor for chewing monitoring

Citation for published version (APA):
Amft, O. D. (2010). A wearable earpad sensor for chewing monitoring. In Proceedings of IEEE Sensors
Conference 2010, 1-4 November 2010, Waikoloa, Hawaii (pp. 222-227). Institute of Electrical and Electronics
Engineers. https://doi.org/10.1109/ICSENS.2010.5690449

DOI:
10.1109/ICSENS.2010.5690449

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/ICSENS.2010.5690449
https://doi.org/10.1109/ICSENS.2010.5690449
https://research.tue.nl/en/publications/1ec7dd3c-b574-4dcb-a18a-e0ca97ce5637


A Wearable Earpad Sensor for Chewing Monitoring

Oliver Amft ∗,†

∗ACTLab, Signal Processing Systems, TU Eindhoven, The Netherlands
†Wearable Computing Lab., ETH Zurich, Switzerland

Email: amft@ieee.org

WWW: http://www.actlab.ele.tue.nl

Abstract—Today dietary assessments require manual infor-
mation sampling in paper or electronic questionnaires on food
type and other diet-related details. Low accuracies of 50%
are confirmed for self-reporting, which weakens diet coaching
effectiveness and is a major limitation for today’s diet programs.
Automatic Dietary Monitoring (ADM) using ubiquitous sensors
was proposed to alleviate this problem.

In this work, we present implementation and analysis results
of a novel acoustic earpad sensor device to capture air-conducted
vibrations of food chewing. In contrast to previous works, our
new device reduces ear occlusion compared to laboratory setups
by using wearable earpad headphones. We investigate the sensing
principle, perform a spectral sound analysis, and compare food
classification performance to a classic lab-based sensor setup. We
present novel food texture clustering results for 19 foods, spurring
the understanding of food texture structure. In addition, we detail
findings of a recent exhibition installation, were 375 food samples
were analysed using the new sensor prototype.

Keywords-Dietary monitoring, chewing sound, mastication,
food intake.

I. INTRODUCTION

Food selection and food consumption patterns are vital

elements for describing an individual’s dietary behaviour.

Monitoring dietary behaviour is a prerequisite for effective

diagnosis, prevention, and intervention [1]. As an example,

most weight management programs use some form of di-

etary behaviour monitoring to support personal food selec-

tion and consumption behaviour coaching. These monitoring

assessments have a long tradition in questionnaires, where

respondents are asked to either recall consumptions, imme-

diately annotate food intake, or describe typical consumption

frequencies [2], [3]. Recalls often address the last 24 hours.

The scope of frequency questionnaires is in weeks to months.

In contrast to those, the method of immediate annotation

intends to acquire actual intake timing and details on food

type. Modern versions of this assessment use PDAs and mobile

phones to let users record their intake information [4]. Such

computerised questionnaires can relieve the diet counsellor

from digitising and interpreting diaries. However, both paper

and computerised diet questionnaires are known to achieve low

accuracies in food intake reporting [3], [5]. Often accuracy

was found to be hampered by the respondent’s motivation,

memorising, literate capabilities, or influenced by changing

perceptions of desirability and increasing self-awareness due

to the reporting itself [6]. Thus, approaches that could alleviate

the respondent from the manual annotation task could provide

a substantial improvement over questionnaires.

Novel ubiquitous sensing and computing technologies could

enable more accurate and robust assessments of dietary be-

haviour. Specifically, monitoring systems that could acquire

user behaviour without manually recording of food intake,

an approach termed Automatic Dietary Monitoring (ADM)

could lead to novel assessments [7], [8]. One essential element

of ADM-based systems are unobtrusive sensors that could

continuously acquire dietary behaviour by observing users.

Due to complexity and variability of dietary behaviour, food

consumption can hardly be captured by a single sensing

approach. However, individual sensing concepts can provide

important information on dimensions of dietary behaviour [9],

such as on the daily intake schedule and food type. In particu-

lar, measuring vibrations during food chewing could become a

vital sensing concept for ADM systems. This sensing concept

had been introduced previously [7], however its potential

to identify different foods and food categories is not yet

sufficiently understood.

This paper investigates chewing sound using a novel

headphone-housed acoustic transducer to capture vibration and

study signal patterns under minimal ear occlusion conditions.

While a high ear occlusion helps to maintain good signal

quality, a reduced occlusion is expected to result in a lower

SNR and thus reduced recognition performance. However, this

earpad design allows the sensor device to be used continuously

and in natural non-stationary living environments.

This paper provides the following contributions to confirm

viability of the chewing sensor prototype:

1) The sensing principle is discussed and analysed from

spectral properties of different foods. This analysis is

relevant for sensor design considerations and selection

of features according to their spectral bandwidth.

2) A food type clustering approach is presented to analyse

vibration pattern similarities among 19 foods and study

acoustic relations of foods. This investigation provides

insight into the feature-based grouping of food textures.

3) Using the headphone-housed sensor, a food recognition

system was developed and evaluated in a museum. The

prototype implementation and food classification results

of this system are presented.

II. ACOUSTIC FOOD INTAKE MONITORING

During chewing strokes (jaw opening and closing) food

pieces (bites) are crushed between teeth as a first step in
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food decomposition. During this breakdown process, vibra-

tions are generated and conducted through teeth, mandible,

and the skull [10]. This breakdown is partly audible since

the crushing vibrations are emitted through air conduction

as well. However, the transmission path through bones is

more robust against environmental noises [7]. The ear canal

forms a natural cavity where the propagated vibrations are

eventually audible. Acoustic transducers can be used to capture

the food breakdown sound in close proximity of the ear and

ear canal [11].

Sound modulation and energy during the breakdown depend

on the inner structure of the food material and its textural

properties. Cell arrangement, impurities, and cracks were

expected to influence sound production [12]. According to the

cellular structure many foods can be categorised into dry and

wet-crisp groups. Dry-crisp foods have air inclusions in their

structure, such as in potato chips, whereas wet-crisp foods

contain fluid compartments, as e.g. in apples [13]. However,

many food products exist, where these categories do not fully

apply. Thus, an important goal of this work is to determine

the robustness in grouping different foods according to dry and

wet-crisp categories, as well as to investigate the unsupervised

grouping of foods.

Besides the vibration sensing concept, several further ap-

proaches to chewing monitoring exist. Jaw opening and closing

during food breakdown in the mouth can be sensed from

masseter and temporalis muscle activations using surface

Electromyography (EMG) and jaw-attached movement sen-

sors [14]. Since electrodes and sensors are exposed in facial

regions, those measurement techniques are too obtrusive to

be applied in natural environments. Although head and hyoid

motion during chewing were observed to correlate with food

piece size and food hardness [15], no robust relation and signal

interpretation outside laboratories had been found yet. Dental

implants were used to assess load during chewing with strain

gauges [16], however these oral implants can be expected to

alter oral sensation and may be infeasible for long-term food

intake monitoring.

Initial recordings of acoustics during chewing were per-

formed by Drake [11] for consuming crisp and hard foods.

Subsequent studies focused on relating chewing sounds to

sensory perception of foods and to food assessments, e.g.

in [17]. Attempts to classify foods using pattern recognition

techniques were initially performed by DeBelie et al. [18]

and in the scope of ADM in [7]. These latter works showed

that a low number of foods (below ten) can be classified in a

laboratory setting using foam-based ear sensors, which result

in high ear occlusion.

Moreover, these investigations found that chewing sound

patterns changed during the breakdown process of several

chewing cycles. This observation was later confirmed using an

automatic unsupervised sequence searching technique to group

chewing strokes [19]. In contrast, the current work aims to

establish the viability of a reduced occlusion sensor prototype.

A. Potential of the ADM approach

The development of intelligent monitoring technologies that

support healthy dieting is a promising research topic in the

field of Ambient Intelligence and Ubiquitous Computing.

ADM systems could permanently accompany patients in di-

etary and weight management programs. They may be used to

derive eating behaviour details during daily activities as well

as providing personalised feedback and coaching assistance.

Eventually, ADM systems could complement questionnaire-

based assessments and replace them.

Designing effective dietary monitoring solutions and ubiqui-

tously implementing intelligent monitoring assistants is nev-

ertheless challenging, as eating behaviour patterns are very

diverse and frequently changing even for one particular indi-

vidual. Such modifying circumstances include different loca-

tions, e.g. eating in a restaurant, at home, or while commuting,

food consumptions in social groups, as well as eating under

different emotional conditions.

In the ADM concept, various sensing options are considered

to acquire a rich set of relevant information details. These

include intake motion, which could be used to distinguish

food categories (such as using fork and knife or a spoon),

chewing sounds, as discussed in this work, and swallowing,

which relates to intake schedule and food consistency (as

swallowing rate is increased during meals). While for these

sensing concepts early research prototypes were realised they

are not yet comfortable enough for long-term (months and

years) of continuous use, which is needed to achieve sus-

tained behavioural changes [20]. The approaches nevertheless

highlight profound benefits of the ADM concept. Manual

diaries are no viable option due to their required effort and

errors. Hence any type of automatically derived information

on eating behaviour can be valuable for diet coaching. Further

discussions and a taxonomy of the various diet monitoring

approaches can be found in [9].

III. EARPAD SENSOR DESIGN AND SIGNAL ANALYSIS

A wearable acoustic sensor was developed consisting of a

commercial off-the-shelf headphone housing and an embedded

transducer. The acoustic properties of different foods were

analysed to establish a basis for optimising sensor design and

subsequent signal processing steps.

A. Sensor design

To implement the earpad sensor, an off-the-shelf headphone

housing was used. The housing could be attached to the ear

canal using soft foam cushions. Speaker and cabling were

removed from the original headphone to obtain a housing.

As acoustic transducer a Knowles omnidirectional miniature

electret microphone (type: FG23329) was used. This model

offered a constant sensitivity across the frequency range of

100Hz to 10 kHz, where the relevant signal information was

expected.

The transducer was embedded into the headphone housing

using a modelling material compatible with human skin.

Alignment of transducer and housing was made such that the
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(a) (b) (c)

Fig. 1. Earpad sensor design to monitor chewing sounds. (a): Sensor prototype with earpad cushion. (b): Attachment of the foam cushion to the sensor. (c):
Sensor prototype when worn by a test user.

active sensing area faced centrally outward of the housing.

Thus, when worn this construction could capture sounds

propagating in the ear canal.

For wearing comfort and hygienic reasons, a foam cushion

could be attached to the final sensor design and replaced

by users. The sensor was amplified and sampled at 44.1 kHz

with a resolution of 16 bit for all investigations in this work.

Figure 1 shows the sensor design, cushion attachment, and the

worn prototype.

B. Spectral signal analysis

A spectral analysis was performed for sounds from different

food products. One subject consumed four foods while wear-

ing an earpad sensor and a lab reference probe concurrently,

one at each ear. The recordings were made in a laboratory

environment with low environmental noise while the room

was not damped. Lab reference comprised the same transducer

integrated into a foam enclosure. Thus, this lab reference

achieved a higher ear occlusion level compared to the earpad

sensor.

For each food, one representative chewing stroke from the

first 20% of chewing sequences was selected for this analysis.

The first stroke of a sequence was not considered, since it may

have involved biting instead of chewing. Selected strokes had

a duration of ∼500ms. Spectra were derived using a 512-point

FFT and a Hanning window. Sound pressure was obtained in

dB. Figure 2 shows spectra for all considered foods.

Overall signal power dropped below relevant pressure lev-

els (<-90 dB) at a frequency of ∼8 kHz, where a drop in

power occurred for the earpad sensor. The effect of a higher

occlusion was observed for the lab reference, which captured

pressure levels above -90 dB up to 16 kHz, in particular for

chewing chocolate chunks. For apple slices and lettuce power

differences between earpad sensor and lab reference were

lower, which could be explained by an overall lower sound

pressure in those recordings. Based on this analysis, it can be

concluded that frequencies below 8 kHz should be primarily

considered in chewing sound analyses. The band between

8 kHz and 16 kHz could be relevant for specific foods, however

it was not captured by the earpad sensor. Besides the lower

occlusion, a foam cushion may have damped signals in the

earpad sensor.

IV. FOOD CATEGORY CLUSTERING

An unsupervised clustering approach was investigated to

identify feature-based groupings among food products. This

section details approach and grouping results.

A. Unsupervised food grouping method

For the cluster analysis, chewing sound sequences from

three male individuals (aged between 25 and 30) were

recorded in a laboratory environment. In total 19 foods were

considered in this analysis. Foods were selected such that the

set included frequently consumed foods of participants, while

at the same time maintain wide food texture diversity. Since

participants were used to these foods, no aversion effects were

expected.

From all continuous chewing sounds, 232 spectral fea-

tures were derived in sliding windows of 512 samples size

without overlap. The feature set included subsets of Linear

Predictive Coefficients, Mel-frequency cepstral coefficients,

auto-regressive coefficients, and further features derived from

statistical models. Features were subsequently averaged over

multiple sliding windows in 0.5 s intervals. From each chewing

sequence, the first 30% were considered for this analysis to

maintain stationary food and sound properties.

A Fisher discriminant analysis was applied on the raw

feature set to condensed the set. For the Fisher discriminant

filtering, categories were chosen according to individual foods.

Subsequently, a hierarchical agglomerative clustering approach

was used as unsupervised exploration approach. With this

approach, food instances were grouped bottom-up, so that

individual foods would fall together if they obtain similar

feature values. To measure distances between food feature

vectors, the Ward distance metric was used:

dWard(Di, Dj) =

√

ninj

ni + nj

||mi −mj ||2, (1)
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(b) Food: Apple slices
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(c) Food: Chocolate chunks
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(d) Food: Lettuce

Fig. 2. Spectral analysis of the earpad sensor and a lab reference probe for four foods. While the earpad sensor is embedded in a headphone housing, the
lab reference is using a foam enclosure that achieved a higher ear occlusion level.

where Di, Dj corresponds to instances of clusters i and j,

mi and mj are cluster centroids, and ni, nj are instance

counts of each cluster. || · ||2 denotes the Euclidean distance.

Cluster centroids mi and mj were derived according to

mi = 1

ni

∑

x∈Ci
x, where x is an individual instance of the

cluster set Ci.

B. Hierarchical food clustering results

The food grouping analysis revealed three most prominent

clusters. These clusters could be interpreted based on food

properties perceived by subjects as “wet, loud”, “dry, loud”,

and “soft, quiet”. Figure 3 shows a dendrogram of the hi-

erarchical clustering result. By using the Fisher discriminant

feature filtering pure initialisation clusters were obtained with

one food dominating each cluster. Purity is indicated in percent

at the vertical dendrogram axis.

The vertical line marks a subjectively selected grouping

that offers an interpretable result. At this Euclidean distance

level, foods can be attributed according to their origin or

manufacturing process. For example, apple and lettuce are

grouped, relating to their similar wet-crisp cell structure. The

global clustering result into “wet, loud”, “dry, loud”, and “soft,

quiet” shows that the initial assumption of a texture-based

Fig. 3. Dendrogram of the hierarchical food clustering approach. Purity of
clusters is shown at the vertical axis. Vertical line marks a subjectively selected
interpretable grouping (see main text for more details). Overall, three groups
can be identified, of “wet, loud”, “dry, loud”, and “soft, quiet” foods.

structure was confirmed. The “soft, quiet” cluster includes a

mixture of foods that could not be further resolved with this

approach.
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V. EARPAD SENSOR VALIDATION

The earpad sensor design was validated in a exhibition

installation with museum visitors. In this section, system

deployment, and food classification performance results are

detailed that illustrate the exhibition system’s functionality.

A. Exhibition installation

A food recognition system was developed with the aim to

showcase the earpad sensor function in a public experiment.

Participants could chew samples of different self-selected

foods, while a computer-based classification algorithm iden-

tified the food type from acoustic patterns. Food recognition

results were subsequently shown to the participant. The system

was initially installed in the museum Alimentarium at Vevey,

Switzerland.

The food recognition system comprised an Eeebox com-

puter, a sensor acquisition board, a table with an integrated

touchscreen, and the earpad sensor. The computer ran a

specifically developed wizard software that guided participants

through the sensor attachment, food selection, recognition

results, and presented additional explanations of the system’s

purpose. Figure 4 shows the exhibition installation.

Fig. 4. Exhibition installation using the earpad sensor design to monitor
chewing sounds. Exhibition visitors were invited to participate in an ex-
periment where they could freely chose and consume a food piece from a
given food selection. A recognition system captured chewing sounds using
the earpad sensor and presented the system’s food classification result.

Food samples from four different foods were offered to the

users: apple slices, chocolate pieces, potato chips, and carrot

chunks. Pattern models for each food type were developed

before the system deployment.

During several exhibition months, the recognition system

needed several refinement steps to cope with varying environ-

mental noise and to improve mechanical robustness due to the

numerous users. Nevertheless, the exhibition confirmed that

the earpad sensor design is viable to be used continuously.

B. Food classification performance

The food recognition system shown in the exhibition was

developed based on a dedicated dataset of chewing sound

recordings of two subjects and varying environmental con-

ditions. In total 375 chewing sequences were recorded using a

recording setup that matches the exhibition system. About 10%

of these recordings were made in the exhibition environment

and the rest was acquired in the lab with different background

noises.

From these continuous chewing sounds features were de-

rived in sliding windows and averaged in 0.5 s intervals as

detailed in Section IV before. Nevertheless, the complete

chewing sequence was considered in this classification analy-

sis. A combination of a Fisher discriminant filter and a naı̈ve

Bayes classifier was used to perform feature reduction and

food classification respectively. For each instance (chewing

sequence) a majority vote from all classifications was derived

as final class decision.

The performance of this system was evaluated using a

leave-one-out cross-validation scheme. In each fold all but

one chewing sequence were used as instances for acquiring

food models and the left out sample was used for testing. For

all derived pattern models the dataset was balanced between

classes such that no class skew persisted. For classes that had

more instances available, a random selection was made.
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Fig. 5. Recognition performance analysis of the exhibition system showing
classifier accuracies and the confusion matrix. The evaluation was performed
using a leave-one-out cross-validation scheme. Overall a recognition accuracy
of 86.6% was obtained.

Figure 5 shows the classifier confusion matrix for the

above described setup and methodology. Overall, the system

achieved a recognition performance of 86.6%. This result

confirms that the system performed sufficiently well to be used

in the exhibition. Moreover, this result encourages further in-

vestigations on real-life implementations of the earpad sensor

design.

VI. CONCLUSION AND FURTHER WORK

The new earpad sensor design and implementation showed

promising results, both in laboratory evaluation as well as

in a practical deployment. Although the construction using

headphone housing and foam cushion reduce SNR, recognition

results indicate that the concept could function sufficiently

accurate. Further work will be performed to study additional
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real-life deployment scenarios that could reveal long-term

system robustness.

The food clustering analysis showed that dry and wet

food categories are prominently represented in the considered

feature set. Moreover, it became clear that signal energy

is a critical element in clustering foods. A separate cluster

appeared, which contained foods that had low acoustic energy

content when being chewed. In the presence of loud foods, it

is challenging to discern food properties in this cluster. Further

analysis steps will be directed to isolate acoustic properties to

confirm this grouping. In the current analysis the inclusion of

complete chewing sequences and an arbitrary selection of the

first 30% of each sequence could influence clustering results.
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support in setting up an early version for the food recognition

prototype in the museum. This work was supported in part by

project grants of Nestle Foundation, Switzerland, and the 3TU

federation NIRICT, The Netherlands.

REFERENCES

[1] F. Bellisle, “Why should we study human food intake behaviour?” Nutr

Metab Cardiovasc Dis, vol. 13, no. 4, pp. 189–193, 2003.
[2] B. S. Burke, “The dietary history as a tool in research,” J Am Diet Assoc,

vol. 23, pp. 1041–1046, 1947.
[3] J. C. Witschi, “Short-term dietary recall and recording methods,” in

Nutritional Epidemiology. Oxford University Press, 1990, vol. 4, pp.
52–68.

[4] L. E. Burke, M. Warziski, T. Starrett, J. Choo, E. Music, S. Sereika,
S. Stark, and M. A. Sevick, “Self-monitoring dietary intake: current and
future practices.” J Ren Nutr, vol. 15, no. 3, pp. 281–290, 2005.

[5] J. Beasley, “The pros and cons of using pdas for dietary self-monitoring.”
J Am Diet Assoc, vol. 107, no. 5, p. 739, 2007.

[6] R. J. Hill and P. S. Davies, “The validity of self-reported energy intake
as determined using the doubly labelled water technique.” Br J Nutr,
vol. 85, no. 4, pp. 415–430, 2001.
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[8] O. Amft and G. Tröster, “On-body sensing solutions for automatic
dietary monitoring,” IEEE Perv Comput, vol. 8, no. 2, pp. 62–70, 2009.

[9] O. Amft, “Ambient, on-body, and implantable monitoring technologies
to assess dietary behaviour,” in International Handbook of Behavior,

Diet and Nutrition. Springer, 2011, p. in press.
[10] P. J. Lillford, “The materials science of eating and food breakdown,”

MRS Bulletin, vol. 25, no. 12, pp. 38–43, 2000.
[11] B. Drake, “Food crushing sounds. an introductory study,” J Food Sci,

vol. 28, no. 2, pp. 233–241, 1963.
[12] W. AlChakra, K. Allaf, and A. Jemai, “Characterization of brittle food

products: Application of the acoustical emission method,” J Tex Stud,
vol. 27, no. 3, pp. 327–348, 1996.

[13] J. Edmister and Z. Vickers, “Instrumental acoustical measures of crisp-
ness in foods,” J Tex Stud, vol. 16, no. 2, pp. 153–167, 1985.

[14] J. Dahan and C. Boitte, “Comparison of the reproducibility of emg
signals recorded from human masseter and lateral pterygoid muscles.”
J Dent Res, vol. 65, no. 3, pp. 441–447, 1986.
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