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Saümerstrasse 4, 8803 Rüschlikon, Switzerland

2 School of Industrial Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

September 15, 2010

Abstract

We study a system consisting of one repair shop and one stockpoint, where spare parts of re-
pairables are kept on stock to serve an installed base of systems. Part requests are met from
stock if possible, and backordered otherwise. Our objective is to determine initial stock levels
and a policy for scheduling repair jobs such that holding and backorder cost are minimized. We
propose two dynamic scheduling rules, compare their performance with the static priority rule,
and show that even when stock levels and static priorities have been optimized simultaneously,
dynamic scheduling rules often reduce total cost by more than 10%.
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1 Introduction

In this paper, we study the provisioning of repairable spare parts for critical components of ad-

vanced technical equipment, such as airplanes, military systems, and large computer systems. Such

equipment is often critical for the primary processes of its users, and thus high fractions of up-time

are required. For high-tech systems, usually a large part of the total support cost consists of spare

parts cost. This is for spare parts usage, for having spare parts on stock in locations at close

distance of the installed systems, for repair of failed parts, and for transportation of the parts.

The inventory control for spare parts may have a large effect on the total spare parts cost.

What has been studied extensively is the so-called system approach, in which the inventory control

is directly focused on availability of systems instead of target service levels for individual Stock

Keeping Units (SKU-s). This has been studied in single-location and multi-echelon settings, and it

has been shown that, under given system availability constraints, the system approach may lead to

large reductions in holding cost compared to the straightforward item approach; see Thonemann et

al. (2001), and Rustenburg et al. (2002). In these comparisons, leadtimes for repair of failed spare

parts are considered as given. Obviously, the optimal holding cost decreases if one would be able

to reduce these repair leadtimes. Unfortunately, reducing repair lead times for all SKU-s usually

requires additional investments in the logistics network and/or the capacity and productivity in

the repair facility. An interesting research direction is however to investigate how one can schedule

work at the repair facility such that the holding cost can be reduced without additional investments

in repair capacity. A recent contribution of Adan et al. (2009) examined this challenging problem

and showed that, in comparison to FCFS scheduling, large cost reductions (around 40%) can be

obtained by static priorities (and simultaneous optimization of the base stock levels). In this paper

we study the same problem setting and build upon their results and observations.

The goal of this paper is to study the benefits of dynamic scheduling rules on the total system

performance. We study a spare parts supply system consisting of one repair facility, one stockpoint,

and multiple repairable SKU-s. Ready-for-use parts are kept on stock in a single stockpoint to serve

an installed base of technical systems. When a part of one of the technical systems fails, the failed

part is immediately sent to the repair facility and at the same time a ready-for-use part is requested

at the stockpoint. Such a request is fulfilled immediately if there is a part of the requested SKU

on stock and otherwise the request is backordered and fulfilled later. Each backordered request

corresponds to a technical system that is down. The objective of our model is to minimize the sum

of annual holding cost and expected annual down-time cost.

The motivation behind this research is that we expect to be able to further improve the system

approach by using dynamic priorities instead of static priorities as proposed by Adan et al. (2009).

We are encouraged by studies in Make-to-Stock (MTS) literature that show that dynamic scheduling

rules often outperform static scheduling rules (see e.g. Perez and Zipkin, 1997).
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To minimize the expected annual total cost, we must provide solutions for two types of problems:

a tactical planning problem (calculating appropriate base stock levels), and an operational planning

problem (calculating an appropriate dynamic scheduling policy). In this paper we focus on the

operational planning problem and ’borrow’ existing methods to obtain solutions for the tactical

planning problem. We assume that there is only one opportunity to decide upon the base stock

levels. This means that it is not allowed to acquire additional parts (or to sell off excess stock)

later. We assume that the failure rates for all SKU-s are constant over time and known when the

base stock levels must be calculated.

In this paper we introduce two dynamic scheduling rules that use online stock level information

to schedule work at the repair facility. To examine the performance of our scheduling rules, we first

investigate its optimality gap. We are able to do this for sufficiently small problem instances by

formulating the problem as a Markov Decision Problem (MDP). Then, we examine the performance

of our dynamic scheduling rules on problems with many SKU-s. For this, we use the same test bed

as described in Adan et al. (2009). As we are not able to evaluate the performance our dynamic

scheduling rules analytically, we will use discrete event simulation.

Our work contributes to a rich literature on spare parts inventory models. The literature

that is most related to the work in this paper, comes from three streams: In the first stream

of literature, ample repair capacities are assumed, the models are focused on optimal control for

multiple items in multi-echelon systems, and targets are typically set in terms of system availability.

This stream started with the seminal paper of Sherbrooke (1968) on the METRIC model. Since

then, numerous extensions and variants have been developed such as MOD-METRIC (Muckstadt,

1973), and VARI-METRIC (Slay, 1984). For a comprehensive overview of this stream, see the

references in Sherbrooke (2004) and Rustenburg et al. (2003). The assumption of ample repair

capacities in this research stream facilitates the analysis and enables that systems with many SKU-

s can be optimized. However, the assumption of ample repair capacity is not always justified. It

can lead to a poor estimation of system performance and a poor allocation of stocks in systems

with highly utilized repair facilities (cf. van Harten and Sleptchenko, 2003, and Sleptchenko et al.,

2002).

Therefore, in a second stream of literature, various ways to model finite repair capacities have

been studied. Most papers in this stream are based on queuing type models with exponential

servers and First-Come First Served (FCFS) scheduling discipline; see Gross et al. (1983), Albright

and Gupta (1993), Zijm and Avsar (2003). In much of this work, the focus is on the development

of approximate evaluation algorithms, and if optimization is applied, this is generally limited to

systems with limited numbers of SKU-s only.

In a third stream of literature, dynamic priority rules have been studied. These are rules that

use the state of the system (e.g. online stock level information and work-in-progress information)

when making scheduling decisions. Dynamic priority rules lie between static policies such as FCFS
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and dynamic programming approaches that are interesting from a scientific point of view but

impractical for real-life use because of their computational intractability. Several studies pointed

out that scheduling rules that use online stock level information outperform scheduling rules that

do not; see e.g. Hausman and Scudder (1982), and Pyke (1990).

A significant part of relevant papers in this stream comes from the multi-product, finite capacity,

make-to-stock literature: Hax and Meal (1973) describe the development of a hierarchical planning

and scheduling system for a multi-location multi-item seasonal demand environment. They consider

(among many other things) the problem of calculating appropriate production quantities for all

products for the next time period and propose to allocate production capacity among items in the

same product family such that the expected run-out times are equalized. Perez and Zipkin (1997)

develop myopic allocation rules for a stochastic production-inventory system where several products

share a single processor of limited capacity. Johnson and Scudder (1999) study a scheduling problem

in an MTS environment where several different products compete for production time on a single

assembly line. They indicate that scheduling rules which consider the inventory position and

demand forecast information outperform traditional fixed cycle rules. Their problem formulation

is related to the well-known Stochastic Economic Lot sizing and Scheduling Problem (Stochastic

ELSP). For a comprehensive survey on Stochastic ELSP we refer to Winands et al. (2011).

Two recent and very relevant contributions in this third stream have been made by Caggiano

et al. (2006), and Kat and Avsar (2009). Caggiano et al. (2006), develop an integrated model

for making real-time repair and inventory allocation decisions in a two-echelon repairable spare

parts system with one central repair facility. Their model is a finite-horizon, periodic-review,

mathematical programming model. The capacity of the repair facility is a decision variable and

is expressed as a maximum on the number of parts that can be repaired during one time period.

They propose to use their model in a rolling horizon setting, solving the mathematical model at the

beginning of every new time period. Kat and Avsar (2009), study a problem similar to ours. An

important difference is however that they incur a fixed backorder cost for each backordered request

regardless of the time needed to satisfy the backordered demand. Based on numerical investigations,

they show that the optimal policy to minimize the sum of holding cost and expected backorder cost

is a stationary base stock policy with switching curves and fixed (not state-dependent) base-stock

levels. Both Caggiano et al. (2006), and Kat and Avsar (2009) do not focus on optimizing base

stock levels, and their analysis is limited to small numbers of SKU-s.

Our work fits in the third stream of research, and our main contribution consists of two parts:

• We present two new dynamic scheduling rules for a repairable spare parts system with one

stocking location and an arbitrary number of SKU-s where the objective is to minimize the

sum of holding cost and expected backorder cost: the Equalization of Backorder Times rule

(EBT-rule), and the Myopic rule (M-rule). We compare these two scheduling rules with
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the optimal scheduling rule and show that the optimality gap is small (< 1 %) for most

problem instances. For ’unbalanced’ problem instances we show that the optimality gap of

the EBT-rule can become big, whereas the M-rule still performs well. For technical reasons,

this comparison is limited to relatively small problem instances, but there is no reason to

believe that the conclusions would change for larger problem instances.

• We propose a new solution method for optimizing base stock levels and scheduling decisions.

The solution consists of two parts: For calculating base stock levels, we use the method for the

joint calculation of base stock levels and static priorities as proposed by Adan et al. (2009).

For calculating scheduling decisions we do not use the optimized static priorities, but plug in

one of our two dynamic scheduling rules.

We create a test bed of 540 problem instances of real-life size and show that the dynamic

scheduling rules outperform the static priority rule. We find average reductions of the annual

total cost of 8.9% for the EBT-rule and 9.6% for the M-rule. The cost reductions follow

from reductions in the expected number of backorders of 31.2% and 34.9%, respectively.

Obviously, further improvements might be possible when we optimize the base stock levels

for our proposed dynamic scheduling rules. We leave this for future research.

The organization of this paper is as follows. In Section 2, we formulate our model. Next, in

Section 3, we describe all basic techniques in the development and evaluation of all algorithms

and heuristics. In Section 4, we execute numerical experiments to test the effectiveness of various

algorithms and heuristics. Finally, we conclude in Section 5.

2 Model

In this section we first describe the spare part supply system and formulate our model.

2.1 System Description

We consider a single location with one repair facility and one stockpoint, where spare parts of

multiple, critical repairables are kept on stock to serve a set of technical systems installed in a

certain region; this set of technical systems is also called the installed base. We distinguish N

repairables SKU-s, which are numbered 1, ..., N . These SKU-s occur in the configurations of the

technical systems and are subject to failures. When a part fails in a technical system, a demand

is immediately placed for a ready-for-use part of the same SKU at the stockpoint and the failed

part is sent to the repair facility. If the requested ready-for-use part is on stock, then the demand

is immediately fulfilled. Otherwise, the demand is backordered and fulfilled as soon as a ready-for-

use part of the requested SKU becomes available from the repair facility. In the latter case, the
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technical system where the part failed is down until a ready-for-use part is delivered. This is of

course a situation we like to prevent.

Figure 1 gives a graphical representation of the system.
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Figure 1: The spare parts supply system

The lifetime of the technical systems is assumed to be long (e.g., 20− 30 years). We therefore

formulate a model with an infinite time horizon and policies for the inventory control and the job

scheduling at the repair facility are analyzed via a steady-state analysis. Time is continuous and

the time horizon is [0,∞). We assume that, for the total installed base, failures of an SKU occur

according to a Poisson process with a constant rate. The failure rate for SKU n is given by λn.

Let Sn ≥ 0 be the number of spare parts of SKU n that is taken on stock at time instant

t = 0. We assume that all failed parts can always be repaired. This implies that the inventory

position of SKU n always stays equal to Sn. This means that at any time instant t > 0 it holds

that OHn(t) + IRn(t) − BOn(t) = Sn, where OHn(t), IRn(t), and BOn(t) denote the physical

stock on hand, the number of parts inside the repair facility (under repair or in the queue), and

the number of backorders at time instant t. We call Sn the basestock level for SKU n. The vector

S = (S1, ..., Sn) contains the base stock levels for all SKU-s.

The repair facility is modeled as a single exponential server, which repairs the failed parts of all

SKU-s. All repair times are exponentially distributed and mutually independent. For all SKU-s,

we assume the same repair rate µ. To obtain a stable system, we assume µ >
∑N

n=1 λn. operations

at the repair facility are controlled by a scheduling policy π. This policy may use all available
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information to select the failed part that is put into repair. For the repair facility we assume

preemption, i.e. repair of a failed part can be interrupted (and resumed) at any time. Notice that,

because of the assumption of exponential repair times, the remaining repair time of an interrupted

repair has the same exponential distribution as a new repair.

For the cost, we distinguish holding cost and backorder cost. The holding cost consist of

investment cost and storage cost. The procurement cost are made at time t = 0 and are linear in

the base stock level Sn. These cost may be translated into a linear cost that is paid per spare part

per time unit. The storage costs are paid per time unit and they are linear in the physical stock

on hand. We assume that the procurement costs dominate. Hence, the holding cost for SKU n

are taken equal to hnSn, where hn > 0 is the holding cost parameter of SKU n. We pay a penalty

cost b > 0 per time unit per technical system that is down because of a lack of spare parts. We

assume that different backordered demands correspond to different technical systems. This implies

that the total backorder cost can be measured via the total number of backordered parts. Let

EBOn(S, π) denote the mean number of backordered demands of SKU n in steady state; this mean

only depends on the steady-state number of failed parts of SKU n in the repair facility, which is

determined by the scheduling policy π, and the basestock level Sn. The average backorder cost for

systems that are down due to a temporarily lack of spare parts of SKU n is equal to bEBOn(S, π)

and the total average backorder cost is equal to b
∑N

n=1 EBOn(S, π). Our objective is to choose

the basestock levels Sn and the scheduling rule π such that the sum of the holding cost and the

expected backorder cost is minimized. The mathematical formulation of this optimization problem

is as follows:

(P ) min
S,π

N∑
n=1

[hnSn + bEBOn(S, π)]

The main difficulty in (P ) is the evaluation of EBOn(S, π) for given basestock levels Sn and a

given scheduling rule π. Model (P ) is very similar to the non linear integer optimization problem

formulated by Adan et al. (2009). In fact, their model is a specialization of our model, where they

restrict the analysis to scheduling rules that can be expressed in terms of a mapping from every

SKU to an integer-valued priority. This mapping is calculated once, and during execution their

scheduling rule selects a failed part belonging to the SKU with the highest priority.

3 Analysis

In this section, we describe various methods to calculate base stock levels and/or scheduling rules.

These methods serve as building blocks in our heuristics and algorithms to solve the integrated

problem. We start with formulating the scheduling problem for given base stock levels as an MDP

in order to obtain the optimal scheduling policy. Next, we introduce the EBT-rule and the M-rule

for scheduling work at the repair facility. Then, we shortly describe the method of Adan et al.
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(2009) for joint optimization of base stock levels and static priorities. We conclude this section

with a description on how we have used discrete event simulation to obtain accurate estimates for

the annual total cost for problem instances of real-life size and dynamic scheduling rules.

3.1 Optimal scheduling rule

In this subsection we derive the optimal scheduling rule at the repair facility for given base stock

levels (i.e. solve (P ) for given S). First, we show that the optimal scheduling decision in situations

with at least one outstanding backorder is straightforward. Next, we formulate our problem as an

MDP. Finally, we truncate the state space in order to arrive at an MDP with finite state space.

Once this has all been done, we use relative value iteration to solve the Bellman equations for

optimal control in an MDP with average cost. This gives use the optimal scheduling rule.

Now we take a closer look at the situation where there is at least one backorder (or equivalently:

there is at least one SKU with negative net stock). Assume that SKU n has negative net stock, and

that SKU m has non-negative net stock. Then, it seems attractive to prioritize SKU n over SKU

m as SKU n is causing backorder cost (at a rate of b per time unit) whereas SKU m is not. Under

different assumptions, it might be that scheduling SKU m before SKU n might bring advantages

in the future. In our setting however, all SKU-s have identical backorder cost and repair times

and thus there is no reason to postpone SKU n in favor of another SKU. We now make following

statements regarding the optimal scheduling policy: (i) the optimal scheduling rule will always

prefer an SKU with negative net stock over an SKU with a non-negative net stock, and (ii) the

optimal scheduling rule may use any criterion to prioritize among failed parts belonging to SKU-s

with negative net stock. Both properties can be proven easily using sample path arguments.

We now formulate the problem as an MDP. First, we define the state x = {x1, . . . , xN , xN+1}
as an N + 1 dimensional vector that holds the maximum of zero and the net stock level for all

SKU-s, and the sum of all backordered items. Let zn be the net stock of SKU n, then we obtain:

xi =


max(0, zi) 1 ≤ i ≤ N

N∑
j=1

[max(0,−zj)] i = N + 1

(1)

This state definition (and in particular the fact that we do not keep track of negative net stock levels

of individual SKU-s) helps us to limit the number of states to a minimum. In this state definition we

have exploited the two properties we have derived for the optimal scheduling policy. For the state

space S, it holds that S = S1 ∪ S2 with S1 = { (x1, . . . , xN , 0) | xi ∈ {0, 1, . . . , Si}, i = 1, . . . , N },
and S2 = { (x1, . . . , xN , xN+1) | xN+1 ∈ N∧ xi ∈ {0, 1, . . . , Si} ∧ ∃i(xi = 0), i = 1, . . . , N }. Set S1

consists of all states in S with no backorders, whereas S2 consists of all states in S with at least

one backorder. Because the number of aggregated outstanding backorders is unbounded, the state
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space is infinite and we need to truncate the state space in order to use relative value iteration.

State space truncation is discussed at the end of this subsection.

Because both interfailure times and repair times are exponentially distributed and mutually

independent, all information that is relevant for making the optimal decision at a certain point in

time is contained in the state x. This implies that we only need to make a scheduling decision

when a repair job is completed, or a new part failure occurs.

We now define the action space A, and the set of admissible actions A(x) for all states x ∈ S.

The action space for our model is A = {a0, . . . , aN , aN+1}. Here, action an (n ≤ n ≤ N) represents

the decision to repair a part of SKU n, action aN+1 stands for the decision to repair a (random) part

from the backorder queue, and action a0 stands for the decision to repair no part at all. Because

it only makes sense to repair parts that have failed, we have that A(x) = {a0} for all states x with

xi = Si ∀i. Furthermore, A(x) = {aN+1} for all x ∈ S2. And A(x) = {an | 1 ≤ n ≤ N ∧ xn < Sn}
for all other states.

We can now calculate the optimal expected cost per time unit, and the optimal action for every

state x by solving the Bellman equations for an optimal policy for a Continuous Time MDP with

infinite horizon and average cost (see Bertsekas, 1995, p. 268):

h?(x) = min
a∈A(x)

[
g(x, a)τ(x, a)− λ?τ(x, a) +

∑
y∈S

pxy(a)h?(y)
]
∀x (2)

In this system of equations, h? is the optimal differential vector, x and y are system states, and λ?

represents the optimal expected cost per time unit. Furthermore, g(x, a) represents the cost per

time unit if control a is applied in state x. In our setting, this means that g(x, a) = b xN+1.

In the Bellman equation, the transition probabilities from state x to state y under control a are

denoted with pxy(a) and the transition period lengths with τ(x, a). Before we give the transition

probabilities, we introduce the transition operators T+ : S×N → S and T− : S×N → S. Operator

T+(x, n) returns the state we end up with when we start in x and a part of SKU n becomes ready

for use. On the other hand, operator T−(x, n) returns the state we end up with when we start in x

and a part of SKU n fails. Using the transition operators T+ and T+, and defining ek as the unit

vector with a 1 on position k, we can write the transition probabilities pxy(a), and the transition
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period lengths τ(x, a) as follows:

pxy(an) =



µ

µ+
∑N

i=1 λi
if n = N + 1 and y = x− eN+1

µ

µ+
∑N

i=1 λi
if 1 ≤ n ≤ N and y = T+(x, n)

λq

µ+
∑N

i=1 λi
if 1 ≤ n ≤ N and y = T−(x, q)

λq∑N
i=1 λi

if n = 0 and y = T−(x, q)

0 otherwise

τ(x, an) =


1∑N

i=1 λi
if n = 0

1
µ+

∑N
i=1 λi

if n 6= 0

(3)

Now all elements in (2) have been specified and we can try to solve the system of equations, yielding

the optimal policy and the optimal expected annual total cost. An appropriate method for solving

Bellman equations for average cost problems is relative value iteration. Before we can apply this

procedure, we need to truncate the state space S in order to make it finite. We now describe how

we have truncated the state space:

For every non-empty subset J of SKU-s we calculate a threshold LJ such that the probability that

the total number of backorders exceeds LJ and all SKU-s that do not belong to J have positive net

stock, does not exceed a small epsilon (say 10−12). For the part of the state space where xi = 0 for

i ∈ J and xi > 0 for i /∈ J , we truncate the state space by not creating states where the aggregated

number of backorders is bigger than the threshold LJ .

Let us illustrate this procedure on an example with two SKU-s. The system state then consists

of three dimensions: x = (max[0, z1],max[0, z2],max[0,−z1] + max[0,−z2]). First, consider the

situation where x1 = 0, x2 > 0, and x3 > 0. Because we have argued that an optimal scheduling

rule will prefer SKU-s with a negative net stock over SKU-s with a non-negative net stock, we know

that the optimal scheduling rule will select parts of SKU 1 for repair. This means that the number

of failed parts of SKU 1 is now equal to the queue length in an M |M |1 system with demand rate

λ1 and service rate µ. Standard queuing theory tells us that this queue length is geometrically

distributed with parameter ρ = λ/µ. The threshold L1 can now be obtained from the formula

for the cumulative geometric distribution. We can repeat this procedure for the situation where

x1 > 0, x2 = 0, and x3 > 0 to calculate L2 and for the situation where x1 = 0, x2 = 0, and x3 > 0

to calculate L1,2. We only need to replace the demand rate λ1 for the M |M |1 analysis with λ2, and

(λ1 + λ2) respectively. We can now write the truncated state space for this example with 2 SKU-s
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as the union of 4 sub state spaces:

S = {0} × {1, . . . , S2} × {0, 1, . . . , L1} ∪
{1, . . . , S1} × {0} × {0, 1, . . . , L2} ∪
{0} × {0} × {0, 1, . . . , L1,2} ∪
{1, . . . , S1} × {1, . . . , S2} × {0}

A graphical illustration of the (truncated) state space of the example discussed above is shown in

Figure 2. This figure shows the transition rates for the underlying Markov process for base stock

level vector (1, 2), and the scheduling policy that selects the SKU with most failed parts in the

repair queue (in case of ties SKU-1 is selected).
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Figure 2: Truncated state space

In this subsection we have described a method on how to obtain the optimal scheduling rule.

In the remainder of this paper we denote the optimal policy with πOPT . Since the state space

grows exponentially in the number of SKU-s, this method only works for sufficiently small problem

instances. In the remainder of this paper we therefor focus on heuristics and algorithms that can

be applied to any problem instance.
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3.2 EBT-rule

The Equalization of Backorder Times rule (EBT rule) tries to maximize the expected time until

the next backorder. To realize this, the EBT rule selects the SKU with the shortest expected time

until the next backorder (assuming that no new ready-for-use part are made available). Let us

denote the EBT rule with πB and let z be the vector of net stock levels, then we can write:

πB(z) = arg min{ (zn+1)
λn

} (4)

Our EBT-rule is inspired on the Equalization of Runout Times rule (ERT-rule) proposed by Hax

and Meal (1973) for MTS systems. What makes the EBT-rule (and the ERT-rule) attractive is

that it is an intuitive and simple rule that honors the dynamic nature of the scheduling problem.

In Section 4, we will show that in general the EBT rule performs very well. However, a dis-

advantage of the EBT-rule is that it does not take into account the variability in the part failures

process. We can illustrate this with following example that constitutes a motivation for the second

heuristic rule:

Example 1 Take a problem with two SKU-s, SKU-1, and SKU-2, base stock level vector (S1, S2) =

(1, 99), failure rate vector (λ1, λ2) = (1, 100), and utilization rate ρ. It is easy to verify that in

situations where SKU-1 has net stock 0, the EBT-rule will tell to repair a part of SKU-2 inde-

pendent of the net stock of SKU-2. It is obvious that this is not a smart decision when the net

stock of SKU-2 is equal to 98. The simple reason is that there is an immediate danger of getting

a backorder on SKU-1, whereas there are so many part of SKU-2 in stock that it should not hurt

spending one repair time on SKU-1. Of course this argument does not only hold for a net stock

level of 98 for SKU-2, but for a wide range of net stock levels. In particular if we let ρ go to 0, we

can show that the optimality gap for the EBT-rule can get arbitrarily large.

3.3 M-rule

To capture the problem described in the previous example, we have developed the myopic scheduling

rule (M-rule). In Figures Figures 3(a), 3(b), and 3(c) we have shown the optimal scheduling rule,

the EBT-rule , and the M-rule for the example described above. The corresponding expected

number of backorders are 0.000063, 0.001155, and 0.000063 respectively.

The idea behind the myopic scheduling rule (denoted with πM ) is that it selects an SKU such

that the expected backorder cost in the near future are minimized. Suppose that we are at time

t = t0 and we need to make a decision on which part to put into repair. Ignoring preemption, it

is clear that we cannot impact the backorder cost until the repair job (that we need to select now)

is completed. All SKU-s have the same repair time distribution with mean equal to 1/µ. In our

myopic rescheduling rule we try to minimize the expected backorder cost rate (i.e. the expected

12
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(a) Optimal Scheduling rule

z
2

z
1

0

20

1

0

40

60

80

99

w
o
rk
 o
n
 S
K
U
-2

17

(b) EBT-rule
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(c) M-rule

Figure 3: Scheduling policies for Example 1

number of backorders) at time t = t0 + 1/µ. This is equivalent with choosing the SKU which has

the largest probability of reaching a negative net stock level at time t = t0 + 1/µ.

Let us define Pξ(Y > y) as the probability that Y > y where Y follows a Poisson distribution

with mean ξ. Our myopic scheduling rule then reads as:

πM (z) = arg max{Pλn
µ

(Y > zn)} (5)

Our myopic scheduling rule is inspired on the well-known myopic scheduling rule as proposed by

Perez and Zipkin (1997) for MTS systems.

3.4 Procedure for the joint calculation of static priorities and base stock levels

In this subsection we summarize the method presented in Adan et al. (2009) to simultaneously

optimize base stock levels and static priorities. We use this method: (i) to calculate the base

stock level vectors for the dynamic scheduling rules πB and πM , and (ii) as a reference point when

examining the performance of the dynamic scheduling rules. A very important building block in

their work is an analytical procedure, based on steady state behavior for the two-queue preemptive

priority model, to evaluate the expected number of backorders under given base stock levels, and

given static repair priorities. The procedure is described in detail in Sleptchenko et al. (2005).
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Adan et al. also show that under a given assignment of SKU-s to priority classes, the optimal

base stock levels follow from a kind of newsvendor equation. They use the procedure for evaluating

the expected number of backorders, and the newsvendor equation for calculating optimal base stock

levels in a heuristic that determines the static priorities. This heuristic consists of full enumeration

among all ordered priority assignments followed by local search (here, an ordered priority assignment

is an assignment of SKU-s to priority classes such that for each pair of SKU-s (n,m), it holds that

n is assigned to the same or a higher priority class than m if and only if hn ≥ hm). Numerical

experiments showed that their method for joint optimization of static priorities and base stock

levels is fast and accurate. On a test bed with 2 priority classes and up to 15 SKU-s the largest

optimality gap is only 1.1 %.

In their paper, Adan et al. have evaluated four algorithms for optimizing the static priorities.

We use Algorithm 4 (i.e. full enumeration of ordered assignments followed by local search) because

the authors show in their paper that this algorithm outperforms the other three. Finally, we need

to decide on the number of priority classes to use. Adan et al. have carried out experiments with

2, 3, 4, and 5 priority classes. Obviously, the best result were obtained using 5 priority classes.

Nevertheless, we use 3 priority classes because Adan et al. show that using 5 instead of 3 priority

classes leads to an average cost reduction of only 0.6% whereas the computational effort increase

with almost a factor 100 for problem instances with 50 SKU-s.

In the remainder of this paper, we denote the static scheduling rule and the base stock levels

obtained from this joint optimization with πSP , respectively SSP .

3.5 Discrete Event Simulation

Except for sufficiently small problem instances, we are not able to evaluate the dynamic scheduling

rules πB and πM analytically. In order to make a fair comparison between these scheduling rules

and other scheduling rules we use discrete event simulation and the method of batch means. This

allows us to obtain accurate estimates of the average number of backorders and the average annual

cost. For every problem instance that we want to run with one of the two dynamic scheduling rules,

we simulate at least 1,050,000 part failure events. Each simulation run is divided in 21 sub-runs of

equal length. The first sub-run is used as a warming-up period and is not used for calculating key

performance indicators. For all other 20 sub-runs we calculate the average number of backorders

and the average annual total cost. From these 20 samples we calculate sample mean and standard

error of the average annual total cost. If the standard error is smaller than 0.33% of the sample

mean, simulation is terminated. Otherwise, we double the number of part failure events we want

to simulate and merge the current 20 sub-runs into 10 new ones by merging sub-runs 1 with 2, 3

with 4, ..., and 19 with 20.

Under some mild assumptions (batch means are independent and normally distributed), the
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99.7 % confidence interval for the average annual total cost is equal to [ x̂ − 3 ŝ , x̂ + 3 ŝ ],

where x̂ stands for the sample mean of the average annual total cost and ŝ stands for the standard

error of the average annual total cost. Since we simulate until we have reached a point where

ŝ < 1
300 x̂, the 99.7 % confidence interval for the average annual total cost is [ 0.99 x̂ , 1.01 x̂ ]. In

plain words, this means that with a probability of more than 99 % the average annual total cost

as obtained from our simulation does not differ more than 1% from its true value.

4 Numerical Experiments

In this section, we investigate the performance of our two proposed dynamic scheduling rules. In

Section 4.1, we compare our dynamic scheduling rules πB and πM with the optimal scheduling

rule πOPT for problem instances with a small number of SKU-s and given base stock levels. In

Section 4.2, we define a test bed that contains a wide range of problem instances of real-life size.

In Section 4.3, we use this test bed to compare our dynamic scheduling rules πB and πM with the

static scheduling rule πSP for base stock levels that have been optimized for πSP .

4.1 Optimality gap of the dynamic scheduling rules

We first want to gain insights in the optimality gap of the two dynamic scheduling rules. For this

purpose we set up a numerical experiment where we compare the expected number of backorders

for the optimum scheduling rule πOPT with the expected number of backorders for the dynamic

scheduling rules πB and πM . The test bed we use in this experiment consists of problem instances

where the base stock level vector S is a given input (i.e. it is not subject to optimization). Because

we are interested in the stand-alone performance of the scheduling rules, we experiment with various

base stock level vectors. These base stock level vectors are obtained from a calculation scheme that

requires specification of a target fill rate βn for each SKU. Using formulas (2.6), (2.8), and (3.1)

in Adan et al. (2009), and assuming repair jobs are processed in FCFS order, we can calculate

the minimum base stock level Sn for every SKU n such that the target fill rate βn is reached. We

create base stock level vectors for our problem instances by varying the target fill rates βn in the

test bed.

For all problem instances in our test bed the number of SKU-s is equal to 2 and the mean repair

time is equal to 1. We use a factorial design for our test bed. The failure rates λ1 for SKU-1 and

λ2 for SKU-2 are chosen such that the quotient λ2/λ1 is equal to 1, or 4, and the utilization rate

ρ = (λ1 + λ2)/µ is equal to 0.8. 0.9, or 0.95. To obtain appropriate base stock levels we use the

procedure described above. The target fill rates β1 and β2 are taken from the set {0.80, 0.95}. This

gives us problem instances where the base stock levels are low (β1 = β2 = 0.80), problem instances

where the base stock levels are high (β1 = β2 = 0.95), but also problem instances where the base
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stock levels are unbalanced (β1 6= β2). Through this set-up, we want to find out to what extent the

base stock level vector has an impact on the performance of the scheduling rule.

The results of the experiment are shown in Table 1. In this table we have used ∆B (∆M ) to

denote the relative difference between the expected number of backorders under scheduling rule

πOPT and the expected number of backorders under scheduling rule πB (πM ).

Input parameters EBO opt gap

ρ λ2/λ1 (β1, β2) S πOPT πB πM ∆B ∆M

0.80 1 (0.80,0.80) (4,4) 0.7023 0.7023 0.7023 0.0% 0.0%

0.80 1 (0.80,0.95) (4,8) 0.2948 0.2948 0.2948 0.0% 0.0%

0.80 1 (0.95,0.80) (8,4) 0.2948 0.2948 0.2948 0.0% 0.0%

0.80 1 (0.95,0.95) (8,8) 0.1185 0.1185 0.1185 0.0% 0.0%

0.80 4 (0.80,0.80) (2,6) 0.7014 0.7021 0.7116 0.1% 1.5%

0.80 4 (0.80,0.95) (2,12) 0.1871 0.1878 0.1898 0.3% 1.5%

0.80 4 (0.95,0.80) (4,6) 0.4675 0.4679 0.4779 0.1% 2.2%

0.80 4 (0.95,0.95) (4,12) 0.1187 0.1193 0.1246 0.5% 5.0%

0.90 1 (0.80,0.80) (9,9) 1.3639 1.3639 1.3639 0.0% 0.0%

0.90 1 (0.80,0.95) (9,15) 0.7250 0.7250 0.7250 0.0% 0.0%

0.90 1 (0.95,0.80) (15,9) 0.7250 0.7250 0.7250 0.0% 0.0%

0.90 1 (0.95,0.95) (15,15) 0.3852 0.3852 0.3852 0.0% 0.0%

0.90 4 (0.80,0.80) (4,13) 1.5150 1.5155 1.5280 0.0% 0.9%

0.90 4 (0.80,0.95) (4,24) 0.4756 0.4758 0.4796 0.0% 0.9%

0.90 4 (0.95,0.80) (7,13) 1.1065 1.1068 1.1213 0.0% 1.3%

0.90 4 (0.95,0.95) (7,24) 0.3466 0.3468 0.3519 0.0% 1.5%

0.95 1 (0.80,0.80) (4.6) 3.3287 3.3287 3.3287 0.0% 0.0%

0.95 1 (0.80,0.95) (4,12) 1.7088 1.7088 1.7088 0.0% 0.0%

0.95 1 (0.95,0.80) (7,17) 1.7088 1.7088 1.7088 0.0% 0.0%

0.95 1 (0.95,0.95) (17,30) 0.8772 0.8772 0.8772 0.0% 0.0%

0.95 4 (0.80,0.80) (7,26) 3.5035 3.5036 3.5130 0.0% 0.2%

0.95 4 (0.80,0.95) (7,48) 1.1335 1.1335 1.1366 0.0% 0.2%

0.95 4 (0.95,0.80) (13,26) 2.5754 2.5755 2.5837 0.0% 0.3%

0.95 4 (0.95,0.95) (13,48) 0.8332 0.8333 0.8359 0.0% 0.3%

Table 1: Optimality gap of πB and πM

Table 1 shows that the ERT-rule has excellent performance over all 24 problem instances; the

average optimality gap is only 0.04% and the maximum optimality gap is just 0.5%. The M-rule
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also performs well with an average optimality gap of 0.5% and a maximum optimality gap of 5.0%.

It is a little surprise that the EBT-rule performs better than the M-rule on this test bed, as we

showed that the optimality gap of the EBT-rule can be made arbitrarily large. This might be an

indication that the average-case behavior of the EBT-rule is good, although its worst-case behavior

is bad. We investigate this in the next subsection. In the table we can also see that for both

scheduling rules the optimality gap gets larger when the utilization rate gets smaller, or when the

failure rates are different.

4.2 Test Bed

We use a factorial design for our test bed with a similar setup as in Adan et al. (2009). The

number of SKU-s is chosen equal to 15, 25, and 50. The lowest holding cost (hmin ) is taken equal

to 1, 10, and 100 whereas we fix the highest holding cost (hmax) at 1000. Hence, the ratio between

the highest and the lowest holding cost varies from 10 to 1000, which are common ratios for spare

parts. Regarding the dependence between holding cost parameters and failure rates, we consider a

hyperbolic relation because this usually gives a close match to what is seen in practice. We choose

the failure rates λn for all SKU-s as independent samples from a uniform distribution on [1, 100].

The holding cost parameters hn are obtained by the following function:

hn = max
[
hmin, a 110

10+λn
+ b + ξn

]
(6)

In this function, a = 1/9(hmax − hmin) and b = 10/9hmin − 1/9hmax, and ξn ∈ U [−v, v] with

v = 1/40(hmax − hmin). Further, the mean repair time 1/µ is chosen such that the utilization rate

(ρ) of the repair facility is equal to 0.70, 0.82, 0.90, and 0.95, respectively. For the penalty cost

parameter b, we choose the values 1000, 10000, and 100000.

In Table 2, we have summarized our choices for all parameters. The total number of all possible

combinations for these parameters is 3 x 3 x 1 x 1 x 4 x 3 = 108. We have generated 5 sets of

values for λn and hn, as there are uniform distributions involved in the generation of these values.

This gives us in total 108 x 5 = 540 instances.

4.3 Comparison of the scheduling rules for large instances

In this subsection we describe a numerical experiment to examine the performance our proposed

solution for large problem instances. In our proposed solution we use the base stock level vector

SSP that follows from the method for joint optimization of base stock levels and static priorities.

For the real-time scheduling of repair jobs, we use dynamic scheduling rule πB or πM . We compare

these two solution methods with the traditional static priorities solution method as described in

proposed by Adan et al. (2009) and summarized in Section 3.4.
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No. of

Name of parameter values Values

Number of SKU-s 3 {15, 25, 50}
Lowest holding cost (hmin) 3 {1, 10, 100}
Highest holding cost (hmax) 1 {1000}
Failure rate (λn) λn ∈ U [1, 100]

Holding cost (hn) 1 hn = h(λn) (see equation (6))

Utilization rate (ρ) 4 {0.70, 0.82, 0.90, 0.95}
Penalty cost (b) 3 {1000, 10000, 100000}

Table 2: Parameter choices for the test bed

Since all three solution methods use the same base stock level vector (denoted with SSP ), we

can unambiguously identify a solution method by its scheduling rule. This means that in the

remainder of this subsection we talk about solution methods πSP , πB, and πM . We compare these

three solution methods on all 540 problem instances in the test bed that has been described in the

previous subsection. In contrast to Section 4.1, we are here not so much interested in the isolated

performance of the scheduling rule, but more in the performance of the base stock level vector and

the scheduling rule together. As a consequence we mainly focus on the average total cost and less

on the number of expected backorders.

However, to get some more insights in the performance of the two dynamic scheduling rules,

we first examine the reductions in the average number of backorders for all 540 problem instances.

It is interesting to see if the reductions in the number of expected backorders we can achieve using

a dynamic scheduling rule, are correlated with the fraction of the backorder cost in the total cost.

Let us define wb as the fraction of the backorder cost in the total cost in the solution method πSP .

In Figures 4(a) and 4(c), we have shown how the reduction in the average number of backorders

depends on wb. The two figures clearly show that there is a very strong (negative) correlation. We

see that the reductions in the number of expected backorders ranges from less than 5% (typically for

wb ≥ 0.60) to more than 50% (typically for wb ≤ 0.20). Interestingly enough, the strong correlation

almost disappears if we look at the reductions in annual total cost; see Figures 4(b) and 4(d).

Figures 4(a)-4(d) also show that for realistic problem instances as considered in this section, the

difference between the two scheduling rules is pretty small.

In order to get a better feeling on how the reductions in the average number of backorders

and the total annual cost are distributed, we have shown in Figure 4.3 the cumulative improvement

distribution for the scheduling rule that is based on equalizing backorder times a πB and the myopic

scheduling rule πM . The figures show for example that in approximately 80% of all cases, we achieve

a total cost reduction of 6% for the EBT-rule (πB), and 7% for the M-rule (πM ). Here we see that
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Figure 4: Performance improvements as function of wb

the two dynamic scheduling policies show similar performance. We only see that the EBT-rule has

almost twice as many cases where the total cost could not be reduced with more than 5% than the

M-rule. Interestingly enough, there is even one problem instance where πB does worse than πSP ;

see Figure 4(b).

We conclude this section with an investigation on how the reductions in total cost depend on

the four factors in our test bed: the number of SKU-s (N), the utilization rate (ρ), the minimum

inventory holding cost (hmin), and the penalty cost (b). The results can be found in Tables 6(a)-

6(d). These figures show that the reductions in total cost clearly increase as the utilization rates ρ

gets bigger. This holds for πB and πB. The other three factors only show a weak correlation. The

tables also show that for each subset of the 540 problem instances πM does (slightly) better than

πB.
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Figure 5: Cumulative improvement distribution

15 25 50

πEBT vs πSP 9.0% 9.0% 8.8%

πM vs πSP 9.7% 9.8% 9.4%

(a) Rel. diff. as function of N

0.70 0.82 0.90 0.95

πEBT vs πSP 5.8% 8.2% 10.0% 11.8%

πM vs πSP 6.0% 9.0% 10.6% 12.3%

(b) Rel. diff. as function of ρ

1 10 100

πEBT vs πSP 8.7% 8.6% 9.5%

πEBT vs πSP 9.4% 9.3% 10.1%

(c) Rel. diff. as function of hmin

1000 10000 100000

πEBT vs πSP 8.3% 10.5% 8.0%

πEBT vs πSP 8.3% 10.7% 9.9%

(d) Rel. diff. as function of b

Figure 6: Relative difference between annual total cost obtained by different scheduling rules

5 Conclusions

We studied the use of dynamic scheduling rules in a repairable spare parts system consisting of one

repair shop and one stockpoint. We made simplifying assumptions for the repair shop and repair

times. We proposed two dynamic scheduling rules; one that tries to equalize the time until the

next backorder (EBT-rule) and a myopic one that tries to minimize the expected backorder cost

over a small future time horizon (M-rule).

We showed that the average optimality gap is small (< 1%) for both scheduling rules on a set

of ’reasonable’ problem instances. But we also showed that the optimality gap for the EBT-rule

can be made arbitrarily large. We proposed a solution method for optimizing base stock levels and

real-time scheduling decisions that consists of two steps. In the first step, we use the procedure
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for joint calculation of base stock levels and static priorities as proposed in Adan et al. (2009) to

obtain the base stock levels. In the second step, we replace the static priority rule by the EBT-rule

or the M-rule.

We have compared our solution approach with the traditional static priority solution method on

a test bed of 540 realistic problem instances. We showed that the average annual total cost over all

540 problem instances can be reduced with 8.9 % when applying the EBT-rule and with 9.6% when

applying the M-rule. These cost savings are only caused by reductions in the average backorders as

the inventory holding costs remain unchanged. We showed that the cost reductions do not depend

on the fraction of backorder cost in the total cost, but that they are positively correlated with the

utilization rate.

For future research, we suggest investigate the opportunities to optimize the base stock levels

for dynamic scheduling rules. Another direction for further research is to examine the robustness

of base stock optimization procedures and scheduling rules against forecast errors.
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