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1 Introduetion 

After a general description of the PIXE technique, a brief comparison with 
other analytical techniques is presented. Different calibration methods for 
PIXE are then discussed, with the emphasis on the analysis of thick targets. 
Finally a.n outfine of this thesis is given. 

Introduetion to PIX.E 

N owadays, there are many analytical techniques based on the use of partiele accel­
erators. One of these techniques is Partiele Induced X-ray Emission (PIXE). With 
this technique, particles from the accelerator ( usually protons of a few Me V) are 
used to ionize atoms of the sample. The created vacancies in the inner electron 
shells are tilled by electrous from the outer shells. During this process, energy is 
released that is used for the emission of charaderistic X-rays, Auger electrous or 
both. The energy of the X-ray is characteristic for the energy difference between 
two electron states and this in turn identifies the atom ionized. Each allowed tran­
sition results in X-rays with a specific energy; this is called an X-ray line. There 
are many X-ray lines per element possible and the number of X-ray lines per el­
ement increases with increasing atomie number. The emphasis in the analysis is 
almost exclusively on ionization of the K- and 1-shell. 

Th ere are two methods to measure the energy of the X-rays. One method uses 
a wavelength dispersive (WD) system, the other an energy dispersive (ED) system. 
In a WD system the X-rays emitted from the sample are selected hy refl.ected on 
a Bragg crystal and then detected with a detector, usually a proportional counter. 
The angle of the scattering on the Bragg crystal determines the energy of the 
X-rays. This system has a superior energy resolution (2-40 eV) for X-ray energies 
helow 20 keV, but only one X-ray line can he measured at the time. The energy 
resolution is improved when the X-rays are better collimated. Therefore, the 
detection efficiency of a WD system is not very high due to limitations in the solid 
angle. In an ED system the energy of the X-rays is measured directly, usually with 
a Si(Li) detector. This has the advantage that many X-ray lines can be measured 
simultaneously. The solid angle can also be made large and the detection efficiency 
is high (except for low energy X-rays, see Section 4.6). The energy resolution is 
not so good as for a WD system (ahout 160 eV for the Fe Ko: line). However, 
the advantages outweigh the disadvantages and the ED system is widely used in 
PIXE. 

From the measured X-ray intensities the amounts or concentrations of the 
elements in the sample under investigation can he determined. The analysis of 
thick targets is complicated hy the occurrence of two so-called thick target effects: 
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(1) The particles are slowed down in the sample because of the Coulomb interaction 
with, mainly, the electrous of the atoms in the sample. The ionization cross section 
becomes a function of depth in the sample because it is a function of partiele energy, 
which decreases with increasing depth. (2) The X-rays produced at a certain depth 
in the sample have a probability of being absorbed in the sample instead of reaching 
the detector. Both effects are mainly determined by the elements in the sample 
with the largest concentrations, the so-called matrix elements. For thin targets, the 
X-ray yield is a simple product of several quantities. For thick targets, this changes 
into an integration over the depth of the product of the ionization cross-section 
and the X-ray transmission through the sample. Because of this complication, 
PIXE on thick targets is often considered as a separate category of PIXE called 
TT-PIXE (thick-target PIXE). Calibration methods to obtain quantitative results 
are described below. 

An advantage of PIXE is the high sensitivity, which means a high X-ray yield 
for a given amount of material and a given number of bombarding particles. This 
can be translated into short measuring times (2-10 min.), in (relatively) low de­
tection limits (0.1-1 ppm (Joh 92]), or in a very small amount of material needed 
for the analysis (0.01-1 mg). Other advantages are that little sample prepara­
tion is needed and that for many applications PIXE is a nondestructive analysis 
technique, enabling the analysis of such diverse samples as aerosols and valuable 
paintings in situ. In combination with a microbeam, a partiele beam focussed to a 
spot of a few J..tm diameter, PIXE becomes a really powerfut analytica! technique, 
making it possible to obtain two-dimensional concentration maps of the sample. 
The current state-of-the-art microbeamis a microbeam with a diameter of 0.3 J..tm 
FWHM and a beam current of 100 pA [Gri 93]. In micro-PIXE amounts as low as 
10-15g or 107 atoms of an element can still be detected in in-situ samples which 
makes this an unique analytica! technique. The fundamentals of PIXE and its ap­
plication to many fieldsof interest are covered extensively in a hook by Johansson 
and Campheil [Cam 88]. 

Comparison of PIXE with other analytica! techniques 

As described above, PIXE can be classified as an accelerator based technique. It 
can also be classified as an X-ray detection technique. Other analytica! techniques 
in this category are Electron Probe Micro Analysis (EPMA) and X-ray Fluo­
rescence spectroscopy (XRF). These methods are all based on the same detection 
principles, only the ionization mechanism is different. In EPMA, the sample atoms 
are ionized by electrons. This has the advantage that the production of an electron 
beam is widespread as it is used in electron microscopes and this makes it a much 
cheaper and more readily available technique than PIXE. Furthermore, the elec­
tron beam can be focussed to a spot of a diameter of about 50 Á. A disadvantage of 
EPMA is a high background in the spectrum caused by a high level of primary elec­
tron Bremsstrahlung, resulting in high detection limits. Furthermore, the range of 
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electrans is very short making EPMA only suitable for very thin samples (of a few 
hundred nm). The beam dimensions also quickly increase with increasing sample 
depth due to scattering of the electrons. The main detection-system in EPMA is 
the ED system. 

In XRF the ionization is caused by a beam of X-rays. The simplest way to 
produce au X-ray beam is to use a radionuclide emitting X-rays or low-energy 
gamma-rays. This is also very cheap but the intensity of a souree is not very 
high, resulting in high detection limits. Another X-ray souree is an X-ray tube. 
With an X-ray tube much higher intensities eau he obtained and it can he used 
in several configurations. In one configuration, the exciting X-rays have many 
different energies, resulting in a good sensitivity for many elements. This so-called 
braadband excitation is obtained by using the X-rays produced in the tube directly. 
Disadvantages of this metbod are a high background and an increased complexity 
of the theoretica! calculations of the X-ray intensities emitted from the sample. 

This can he remedied by using a mono-chromatic X-ray source. The X-ray 
spectrum of the tube can he modified in this way by placing a filter between the 
X-ray tube and the sample. Another metbod to obtain mono-chromatic X-rays is 
the methad of secondary fl.uorescenee. The X-rays of the tube are impinged on a 
mano-elemental sample. The resulting charaderistic X-rays are used to excite the 
sample. Note, that also a proton beam can he used to produce a mono-chromatic 
X-ray souree in this way. A disadvantage of this technique is that good sensitivity 
can only he obtained fora few elements. The reasou for this is that the cross section 
ofthe ionization by X-rays decreases rapidly with increasing difference between the 
ionization energy and the X-ray energy. Generally, tlie detection limits for XRF 
are about the same or slightly worse than the detection limits for PIXE. Both 
PIXE and XRF can be used for in-situ measurements but the radiation damage 
caused by XRF is much less than that caused by PIXE. However, XRF is mueh less 
suited for obtaining two-dimensional eoncentration maps because an X-ray beam 
is much more difficult to focus than a proton beam. There has been progress in 
this field making it possible to produce X-ray beams with a diameter of about 
10 pm [Rin 93]. 

A state-af-the-art application of XRF is total refl.ection XRF (TRXRF). With 
this technique the angle between the X-ray beam and the sample surface is only 
a few mrad so that the X-ray beam is almast completely reflected. This impraves 
the detection limits because the background from scattered X-rays is reduced. The 
technique is most useful for solutions, but it imposes strict demands on the surface 
quality substrate on which the salution is deposited. With a synchrotron ring, very 
high intensities of the primary X-rays can he achieved. This is very useful for the 
X-ray microbeams but it can also he used for TRXRF and other applications. A 
disadvantage of the synchrotron ring is the cost of using such a source. Most XRF 
systems use the WD detection system. A more detailed comparison of PIXE and 
XRF is given in [Wil88]. 
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Fig. 1.1: Comparison of the detection range of several analytica! techniques. The 
techniques in this comparison are: AMS = accelerator mass spectrometry, RBS 
= Rutherford backscattering spectroscopy, XRF = X-ra.y :lluorescence, PIXE = 
partiele induced X-ray emission, TRXRF = total re:llection X-ray :lluorescence, 
INAA = instrumental neutron activation analysis, ETA = electrothermal atom­
izer, AAS =atomie absorption spectrornetry, ICP = inductively coupled plasma, 
AES = Auger electron spectrornetry, IDMS = isotape dilution rnass spectrometry. 
Reproduced from Ref [Ma.i 90] by permission of North-Holland Physics Publish­
ing. 

Next to the two categories of analytical techniques already described (accel­
erator based techniques and X-ray detection techniques), there are also many 
other analytica} techniques. A comparison of the detection ranges of a number of 
techniques is given in Fig. 1.1. This comparison is expressed in concentrations. 
Detection limitsin mass, however, are much more favourable for PIXE because 
PIXE requires only very little amounts of material, especially micro-PIXE. This 
comparison is of course only very global. The detection limit can vary from el­
ement to element and for the same element it can vary from sample to sample. 
For single elements, the measurement conditions can he further optimized and 
e.g. preconcentration techniques can he used to decrease the detection limit. An­
other question along with this comparison is the accuracy and precision of the 
analytica} techniques. Generally, IDMS and NAA are considered the most accu­
rate techniques. The question of the accuracy of PIXE is also the question to he 
further investigated in this thesis. 

The detection limits are not the only important aspect of an analysis. It 
often is also important to obtain information about the 2D-spatial distribution 
of the elements in the sample. This makes demands not only on the abilities of 
the analytica! technique, but also on the preparation of the sample, because the 
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structure of the sample should remain intact. Micro-PIXE is particularly suited for 
this type of measurement. The proton microbeam can also be used in combination 
with other ion beam techniques such RBS. Only a few other techniques have 
comparable abilities. One of them is EPMA, which has smaller spot sizes but 
higher detection limits. A comparison of several microprobes is given in [Bir 89, 
Chapter 10]. Of these mieroprobe techniques, micro-PIXE (or micro-RBS) has the 
best prospects for quantitative results. 

Quantitative analysis using TT-PIXE 

To answer the question on the accuracy of PIXE, first the calibration methods for 
obtaining quantitative results have to be studied. There is a range of calibration 
methods for quantitative analysis using PIXE [Joh 88, chapters 4&6]. In genera!, 
obtaining quantitative results is much easier for thin targets because the thick 
target effects can be neglected. 

At one end of the range is the use of external standards. This metbod is espe­
cially useful for thin targets because no information about the matrix composition 
is needed. Both target and standards have to be thin and the standards have to 
contain the elements of interest. Straightforward comparison of the normalized X­
ray yields for the same element directly gives the the mass thickness of the element 
of interest. Combined with the target thickness, this gives the con centration in the 
target. For thick targets there are however some complications. First, the matrix 
composition has to match closely the matrix composition of the sample of interest. 
If this is not true, the thick-target effects have different infiuences. Secondly, it is 
very difficult to correct for secondary processes when using standards. Ideally, it 
would require a set of standards with different matrix compositions and concen­
trations for the elements of interest. Then an interpolation in a multidimensional 
graph would be needed to obtain the correct value of the concentration of the 
elements of interest in the sample. This method of using external standards relies 
on precise charge measurement for the comparison of the X-ray yields of standard 
and target. The metbod depends completely on the standard, its availability and 
the accuracy with which the concentrations of the elements in the standard are 
known. These conditions are more difficult to fulfill for thick targets then for thin 
targets. 

At the other end of the range of calibration methods is the absolute calibration 
procedure (or absolute calculation). This metbod uses no standards but it uses a 
physical model of the PIXE process. Thè)concentration is then calculated from the 
measured X-ray yield using equations derived from the model. For the calculation, 
values of all quantities in the equations are necessary. These quantities include 
both physical quantities, such as the ionization cross-section and experimental 
quantities, such as the detector efficiency. Once a set of values is collected, this is 
a very flexible metbod since there are no restrictions on sample composition and 
thickness. A disadvantage is that for thick targets, the concentrations of all matrix 
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elements are also needed for the calculation. Some of the work on this subject is 
reported in [Cla 81, Cam 83, Smi 84, Coh 87J. 

At an intermediate position of the range is the use of a.n interna.l standard, 
for both thin a.nd thick samples. This is a combination of the use of standards 
a.nd absolute calculations. The internal standard is a well-known amount of an 
element added to the sample. Of course, the element should be present in the 
sample only in negligible concentrations a.nd it cannot be determined due to the 
addition of the internat standard. The concentratien is then calculated relative 
to the concentration of the internal sta.ndard. Using this metbod beam charge 
and detector solid angle are not needed for the calculation of the X-ray yield but 
knowledge of production cross-section, detector efficiency and (for thick samples) 
self absorption of X-rays in the sample is necessary. The values for the sample of 
the above quantities are only needed rela.tive to the valnes for the ihternal sta.ndard, 
thus reducing the influence of errors. The addition of the internat standard bas 
to he done so that its distri bution in the sample is homogeneous. However, it is 
not always possible to put extra material uniformly into the sample and it may 
introduce additional impurities in the sample. 

There are several other intermediate methods relying on combinations of the 
above described methods. For example, thick single-element sta.ndards, consisting 
of the element of interest, can he used in combination with thick samples. This is a 
combination of the use of external standards and absolute calculations. The valnes 
for the quantities in the equations still have to be used but only in a relative way 
since the outcome of the calculation for the sample is divided by the results of the 
calculation for the standard. Experimental quantities such as detector efficiency 
and detector solid angle are no longer needed. 

In view of its flexibility and versatility the absolute calibration procedure is 
an attractive method. This metbod can be assisted by the measurement of thin 
standards for checking the reproducibility of the experimental set up. The absolute 
calibration metbod is particularly suited for micro-PIXE because it often deals 
with inhomogeneons targets and very little amounts of materiaL This makes it 
very difficult to obtain and use exterual standards. 

As stated above, the matrix composition has to be known when using the ab­
solute calibration metbod for thick targets. However, PIXE is not very suitable for 
the detection of (matrix) elements with Z::; 10. This has two reasons. First, there 
is the fundamental reasou that the fraction of vacancies in the K-shell tilled under 
emission of X-rays, the so-called fluorescence yield, becomes very small. Secondly, 
there is a more practical reasou that the low-energy X-rays ( < 1 keV) emitted by 
these elements are difficult to detect with suitable efficiency. Nowadays, it is pos­
sibie to detect elements down to nitrogen but this is with low efficiency [Wil 91]. 
To obtain information about the light elements, other a.nalytical techniques have 
to be used. We have chosen to use Nuclear Backscattering Spectroscopy (NBS) 
for this purpose. The a.dvantage of this technique is that it can often be done 
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simultaneously with PIXE. Like PIXE, NBS is also an accelerator based tech­
nique but in this case the particles scattered on the sample nuclei are detected. 
In the classica} situation, the callision can be described by solid hoclies and the 
scattering cross-section can he calculated using classica! mechanics. This process 
is called Rutherford Backscattering Spectroscopy (RBS). When the energy of the 
bombarding particles increases, nuclear thresholds can be exceeded and resonances 
in the scattering cross section can occur, resulting in the so-called non-Rutherford 
scattering cross sections. We have therefore used the term NBS instead of RBS. 
The energy loss caused by the collision depends on the scattering angle and the 
nuclei involved in the collision. By measuring the energy of the scattered particles 
at a fixed angle, the atomie mass of the target atoms can be determined. Energy 
loss is also caused by the interactions of the particles with the sample electrons. 
This makes the measured energy of the scattered particles a function both of the 
scattering depth and of the atomie mass of the target atom. This duality can be 
useful in some cases in that it allows the determination of the thickness of the sam­
ple. In other cases, it can obstruct the detection of light elements in the presence 
of heavier elements. This technique is especially suited for light elements because 
the mass resolution is best for light elements. However, the sensitivity of NBS is 
not so high as that of PIXE. RBS ( or NBS) is an analytica! technique in its own 
right that is widely used for many applications. In our case, however, we only use 
it as a supplemental technique for the determination of the light matrix elements 
( Z < 10) and for the determination of the sample thickness, if needed. 

Outline of this thesis 

Because of the strict conditions placed on standards for thick targets, the absolute 
calibration is especially attractive for TT-PIXE and this was the main reason 
for starting the present studies. The aim of the study is the evaluation of the 
achievable accuracy and of the underlying sourees of înaccuracy for the absolute 
calibration method, especially for thick targets. To accomplish this aim, several 
subjects have to be treated. 

The first subject is the theoretica! description. In Chapter 2, the equations are 
derived that are necessary for the calculation of the elemental concentrations in 
thick targets from the X-ray yield. In contrast to literature, these equations are 
derived starting from an infinitesimal volume element withno a-priori conditions 
on the target. This approach is indispensible for micro-PIXE on targets with a non­
uniform matrix composition. From this starting point, a general formula can be 
derived that can easily be adapted to different types of target, target orientations, 
etc. Formulas for thin and intermediate-thick targets as well as homogeneaus 
targets are then derived from the general formula. X-rays absorbed in the sample 
can also ionize sample atoms that in turn can emit new (secondary) X-rays. This 
is the main secondary effect and it is called Secondary Fluorescence (SF). The 
equations needed to calculate this effect are also derived in Chapter 2. Special 
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attention is given to the physical interpretation of these equations. As for the 
· Thick-Targets (TT) calculations, the values of all quantities have to he known for 
the absolute calibration. For the accuracy evaluation, the uncertainties in these 
values for both TT and SF calculations have also to be known. The quantities 
can he divided in two groups: experimental quantitîes and theoretica! quantities. 
Experimental quantities are variables determined by the experimental setup and 
they can be changed according to need; examples are the partiele beam energy 
and the detector solid angle. Theoretica! quantities are fundamental variables 
determined by physical properties; examples are the ionization cross section and 
the stopping power. The current knowledge about the physical quantities and 
their accuracy is analyzed in the third section of Chapter 2. 

The next chapter (Chapter 3) presents the total uncertainty in the X-ray yield 
or the calculated concentration derived from uncertainties in all the quantities in 
the TT-PIXE and SF formulas. Sofar, such a systematic treatment for PIXE has 
not been presented in literature. A new quantity, the error propagation factor 
is introduced to quantify the influence of the uncertainty in one quantity on the 
uncertainty in the X-ray yield or the calculated concentration. In Chapter 3, the 
error propagation factors for the non-trivia! cases are calculated. Examples are 
given for various sample compositions to obtain insight in the physical processes 
involved. This is clone for both the TT and the SF calculations. 

In the next chapter (Chapter 4), the experimental setup is discussed. The 
PIXE setup has been renovated to a.Ilow the measurement of thick targets. For 
this purpose, several new systems have been added, which are described in Chap­
ter 4. It should be noted that the aim of the renovation has not been to imprave 
the detection limits. The main subject of Chapter 4 is the determination of the 
experimental quantities as well as the uncertainties in these quantities. The exe­
cution of the complete analysis is described in this chapter as well as the software 
needed for this analysis. 

In Chapter 5, the absolute calibration metbod is evaluated. Part of the evai­
nation is clone by a discussion of the models and the underlying conditions and 
assumptions. Another part is done by performing some experiments. Several types 
of reference materials are analyzed to obtain a general impression of the validity of 
the absolute calibration method. These materials indude targets in which no SF 
can occur and targets in which SF plays a relatively strong role. Finally, Section 5.8 
discusses the results of the comparison of the theoretica! description and experi­
mental data, the contribution to the total uncertainty of various error sources, as 
well as an outlook on prospects for the absolute calibration method. 



2 Theory 

The theoretica! description for the primary PIXE yield is presented. A new 
aspect is that this treatment starts from first principles and that the condi­
tions and assumptions are clearly stated. This allows greater flexibility in 
that the equations for different applications can all he derived from one cen­
tral formula. Next, the theoretica! description for the secondary fluorescence 
yield is presented. A new aspect is that the theory is presented in such a 
way that the physical interpretation of the formulas is transparant. Finally, 
a data base is presented for calculations based on this theory. 

2.1 Thick Target Yield 

In this section, the formula for the PIXE yield of a thick target is derived from the 
yield of a small volume dAdx of the sample. In the first subsection, the derivation 
is as general as possible even allowing for inhomogeneons targets. In the next sub­
section, some applications under extra conditions are given and only here is the 
condition of homogeneity first introduced. Partienlar attention is paid to the con­
ditions and assumptions under which the formulas are valid. A distinction is made 
between conditions and assumptions: A condition has to be satisfied before using 
the formula, whereas an assumption states that a condition is satisfied without 
hard proof or that a real effect can be neglected. However, no distinction between 
the two is made for the numbering. The reader can skip the first subsection if only 
interested in formulas that are directly applicable. 

2.1.1 Derivation of the general Thick Target PIXE formula 

First, let us consider a volume dAdx of a sample under nuclear partiele bombard­
ment. The orientation of this volume is chosen in such a way that the depth x is 
in the samedirection as the partiele movement (see Fig. 2.1). The subdivision of 
the volume in an area dA and a depth dx is made because different effects occur 
for both variables. The most widely used particles are protons, but deuterons, 
a-particles and heavier particles can be used as welL The atoms in this volume 
can emit characteristic X-rays under partiele bombardment, often severallines for 
one element Z. The number of X-rays of one line of an element Z, produced under 
partiele bombardment, is called the yield Y0 and is given by the following formula: 

aP;<1(Ep(x)) 
Y0(Xz,A,x) == np(A,x)dA nz(A,x)dAdx ' dA (2.1) 

with 
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Xz X-ray line of element Z, e. g. Kal or Lr;3 , 

number of bombarding particles per unit area (cm- 2), 

number of atoms of element Z per unit volume (cm-3 ), 

np(A,x) 
nz(A,x) 
a-P{,'t (E p(x)) cross section for the production of an X-ray (cm2), it is a func­

tion of the energy Ep of the bombarding particle, which is in 
itself a function of the depth a: (to he explained later). 

The partiele beam is called inhomogeneous, if n p is a function of area A. The 
dependenee of the number of projectiles on a: is a physical process, since part of 
the projectiles is scattered when going through the sample. 

partiele 

surface 

Fig. 2.1: Schematic drawing of the production of X-rays in the volume dx dA of 
the sample with thickness t. 

From nz, the concentration of element Zin the volume at position (A, x) can 
he extracted, 

nz(A,x) = ~v p8 (A,x)cz(A,x) (2.2) 
z 

with 
NAv 

Mz 
Ps(A,x) 
cz(A, x) 

Avogadro constant (mol- 1), 

atomie mass of element Z (g/mol), 
total density of the sample (g/ cm3 ), 

mass fraction of elementZin the volume dAdx (g/g). 

The production cross section consists of a number of terms, for the K-shell it 
IS 

(2.3) 



with 
u~o:K(Ep) 

Wz,K 

bz,X(K) 

cross section for ionization of the K-shell of element Z, it is 
dependent on the projectile energy E p (cm 2), 

fluorescence yield for the K-shell, this is the probahility of a 
vacancy heing filled hy an electron from a higher shell under 
emission of an X-ray, 
hranching ratio, which is the fraction of the total K-shell X­
rays in the line Xz(K) (e.g. Ka2 or K1n)· Each line Xz stands 
for a transition of an electron from a sub-shell to the K-shell 
under emission of an X-ray. 

13 

The quantities u~o:K(Ep), wz,K and bz,x(K) are needed for for the calculation 
of the concentratien from the measured yield. Their values can he taken from 
literature. A discussion on the available data is given in Section 2.3. Equations 
for the production cross-section for 1-shells can he found in Appendix A. 

As mentioned previously, the cross section is dependent upon the projectile 
energy. Unfortunately, this energy is in its turn dependent upon the depth zin the 
sample, because the projectile ( an ion) loses energy through Coulomb interaction 
with the surrounding atoms (nuclei and electrons). This is one of the two so called 
thick target effects, the other is discussed below. The measure for the energy loss 
of the ion is called the stopping power and it is defined as 

1 dEp(x) 
St(Ep(x), A)= (A ) d 

Ps ,x x 
(2.4) 

with dEp(x)jdz: the energy lossof the projectiles along their path in the sample. 
The dimension of St is (keV cm2 /g). It is because of this equation that the 
orientation of the volume element is chosen (see Fig. 2.1). The relation between 
depth x in the sample and partiele energy E p now is as follows 

(2.5) 

with E p 0 the initia! partiele beam energy. The depth in the sample perpendicular 
to the s~mple surface is found by multiplying x with cos a. This relation implies 
that there is an unambiguous relationship between the depth x and the partiele 
energy Ep. There are a number of objections against the unambiguity of this 
relationship. The main objection is the energy straggling. Energy straggling 
is caused by the fact that the energy loss is a statistica! process. Even if the 
projectiles entering the sample all have the same energy, the ions have a semi­
Gaussian energy distribution at depth x. This is a fundamental problem that 
cannot be solved. 

Assumption 1 The inftuence of the energy straggling on the re lation between E p 

and the depth x in the sample can be ignored. 
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The other objections against the unambiguity are experimental problems that can 
be minimized to satisfy the following conditions: 

Condition 2 The ion beam energy E p 0 is mono-energetic. 
' 

In a practical situation, there always is a certain energy spread in an ion beam. 
However, for thick samples, the energy straggling is much larger than the beam 
energy spread. Therefore, the error made by not satisfying Condition 2 is for thick 
samples much smaller than the error caused by energy straggling in the sample. 

Condition 3 The projectiles in the beam move in parallel direction. 

Assumption 4 The effect of small angle ion scattering ar multiple scattering on 
cos a can be neglected. 

The cross section for small angle scattering of a few degrees, however, is not 
negligible. This results in a spread in the angle a. If the ion beam is not parallel, 
this also results in a spread in a. The influence of the spread in a on cos a is 
minimal if a is small [Cam 84]. As long as the processes, threatening the validity 
of the above conditions, result in a symmetrical distribution around an average 
value and the standard deviation of this distribution is not very large, the effects 
of these processes averages out. 

Eq. 2.1 describes the total number of X-rays produced in a volume dAdx of 
the sample. This yield is distributed evenly over all directions. In practice, not all 
the X-rays are detected because of limitations in the detector solid angle and the 
detection efficiency and because of absorption of the X-rays in the sample. This 
last reason is the second thick target effect. Thus, the number of X-rays detected 
is : 

(2.6) 

with 

{ 
ltt(Exz,A,x) cos a } 

T5 (Ex ,A, x)= exp - ()p5 (A,x)x 
z Ps cos 

(2.7) 

and with 
Exz 
T5 (Exz,A,x) 

energy of an X-ray in line Xz (keV), 
transmission probability of X-rays with energy Exz through 
the sample from depth x in the direction of the,detector. 
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Tabs(Exz) transmission probability of X-rays with energy Exz through 
an absorber; this probability is dependent on the X-ray energy 
and is calculated with Eq. 2. 7 without the A and x dependenee 
and with cos af cos()= 1, 
detector efficiency, this is the probability, that the energy of 
an X-ray is completely absorbed in the detector crystal; this is 
also dependent on the X-ray energy, 
relative detector solid angle, 
totallinear X-ray absorption coefficient ofthe sample (cm- 1), 

angle between the sample normal and the direction of the 
detector, 

xfQ!!.Q. 
cosfJ distance travelled by the X-ray through the sample in the di­

rection of the detector (cm). 
The absolute detector efficiency e:abs is introduced toshorten the notation: 

n 
eabs(Exz) Tabs(Exz)e:(Exz) 411" (2.8) 

Usually the X-ray absorption coefficient is given in literature as p/ p, the mass 
absorption coefficient, hence this notation in the formula. The X-ray absorption 
coefficient is composed of a number of terms: 

p(Exz) = Ttot(Exz) + ucoh(Exz) + Uincoh(Exz) + 11"(Exz) 

with 
Ttot photo-electric absorption coefficient, which describes the inter-

action whereby the energy of an X-ray is completely absorbed 
u nder ejection of an electron from its shell, thus creating a va­
cancy. For low energy X-rays (a few keV) it is the dominating 
factor. 

ucoh coherent absorption coefficient, which describes the coherent or 
Rayleigh scattering of an X-rayon anatomie electron. During 
this process their is no energy loss for the X-ray. 

uincoh incoherent absorption coefficient, which describes the incoher­
ent or Compton scattering of an X-ray on an electron. During 
this scattering there is an energy loss for the X-ray. 
pair production absorbtion coefficient. This term can be ne­
glected since it can only occur for r-rays with an energy above 
1.5 MeV. 

(2.9) 

In theoretica} computations, all terms are calculated separately to obtain the total 
X-ray absorption coefficient. 

There are a number of conditions underlying Eq. 2.6 and Eq. 2.7: 

Condition 5 There is na variatian in the factor cos B. 

Th ere is always some variation in (), especially, because for low detection limits, 
the solid angle has to he as large as possible. Also, for large beam spots the angle 
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Fig. 2.2: Diagram of the layout of the sample under partiele bombardment. 

(} varies as a function of the position on the sample. By chosing (} = 0°, the 
effects of the variation of (} on the variation of cos () are kept minimaL The use 
of the total X-ray absorption coefficient is only valid for a narrow beam. For a 
typical situation in PIXE, the solid angle is so large that the X-rays travelling in 
the direction of the detector do not form a narrow beam. Therefore, two extra 
assumptions have to be fulfilled to he allowed to use the total X-ray absorption 
coefficient: 

Assumption 6 The number of X-rays emiited in the direction ofthe detector that 
undergo a small angle coherent scattering and still remain within the detector solid 
angle n can be neglected. 

Assumption 7 The number of X-rays emitted in a direction out of the detector 
solid angle that come into the detector solid angle after undergoing a coherent 
scattering, can be neglected. 

Both effects lead to larger number of X-rays detected than expected on the basis 
of the theory. After calculation, it was found that the enhancement due to these 
effects is less than 0.1% for most conditions found in a PIXE setup [Cam 83]. 

To obtain the total number of detected X-rays, we have to integrate equation 
2.6 over the sample volume under ion bombardment. This volume is the area 
AT multiplied by the target thickness in the direction of the beam which may be 
a function of A and is indicated by t(A)/ cos a. In general, the area AT is the 
intersectien of the sample surface As perpendicular to the beam with the beam 
area A8 (see Fig. 2.2). In a practical situation, there are two usefullimits: (i) The 
beam area A8 is larger than the sample surface As so that the beam envelops the 
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sample completely (~=As)· (ii) The sample is larger than the beam, As> AB 
so that AT= AB. 

Condition 8 All X-rays reaching the detector must leave the sample from one 
defined surface. 

For X-rays leaving the sample from a side surface, the transmission Ts is too low. 
When the sample area is larger than the beam area, this assumption always is 
fulfilled. When the sample area is smaller than the beam area, it only is approxi­
mately true when the sample is thin compared to its area under ion bombardment 
tj cos a<< AT. 

The total yield is obtained from eqs. 2.1 and 2.6 by integrating over the sample 
volume: 

Y(Xz) = eabs(Exz) 

1 f!!:l np(A,x)nz(A,x)uP{,t(Ep(x))Ts(Exz'x,A)dx dA 
ArJo 

(2.10) 

Now, it is useful to transfarm this integral over x to an integral over Ep, using 
Eq. 2.4, because the cross section uP{t is only known as a function of Ep. One , 
further assumption can be made to simplify the integration : 

Assumption 9 The number of particles scattered in the sample over a large angle 

can be neglected. 

This means that np is independent of :v. With Eq. 2.2, it then is possible to derive 
a complete and most general formula for the thick target PIXE yield: 

Y(Xz) ~v êabs(Exz) 
z 

cz(A,Ep) z,x P s Xz• P• dEp np(A)dA 1 {lEP,J(A) rr:,rod(E )T (E E A) } 

Ar Epo St(Ep,A) 
(2.11) 

with 

{ 
cos a lEp 1-'t(Exz, A, Ep) 1 1 } 

T8 (Exz,Ep,A)=exp ---0 S(E' A)dEp (2.12) 
cos Ep,o Ps t P• 

w bere EP,/ is the partiele energy on teaving the sample or zero if the sample is too , 
thick. Note that Ep represents the protonenergyin the sample at depth x. This 
does not mean that quantities that depend x now depend on Ep but only that Ep 
represents x. E P,J can vary with the place on the sample because of two reasons. 
The first reason is the inhomogeneity of the sample composition, the second the 
variatien of the sample thickness. To arrive at useful formulas, we introduce the 
following condition: 
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Assumption 10 The infiuence of thickness variations over the sample on the 
yield can be neglected. 

In a later chapter (Ch. 3), it is seen that this condition is valid for thick sam­
ples even if there are some thickness variations. There are two exceptions when 
thickness variations are allowed. They are given in the next subsection. Surface 
roughness, on the other hand, can lead to a decrease in the measured yield of over 
10% in certain cases [Cam 85]. 

In principle, the integral over Ep in Eq. 2.11 can be solved, although only 
numerically, when St(Ep,A), o!'{,"j(Ep), t't(Exz), Ep,o and EP.! are known. The 
last two quantities have to be determined experimentally, the first three quantities 
can be obtained from literature. However, there is one problem: the stopping 
power and the X-ray attenuation coefficient are needed for composite samples 
while in literature they only are found for individual elements. Therefore, the 
values of these two quantities have to be composed from the values for individual 
elements. This can be done using the mass fractions of the elements in the sample. 

St(Ep, A)= L c;(A, Ep)S;(Ep) 
j 

(2.13) 

(2.14) 

with ei the mass fraction of element j in the sample and P.i(::z) the mass ab­
sorption coefficient of element j. The first formula is first proposed by Bragg and 
Kleeman [Bra 05] and is now commonly known as Bragg's rule. Both formulas 
are postulations and, in occasional circumstances, there are deviations from these 
rules. For instance, there are deviations from Bragg's rule for light elements such 
as H, C and 0 (see Section 2.3.2). Nevertheless, we assume that both equations 
can be used (the assumption is that the condition below is satisfied): 

Condition 11 Eqs. 2.13 and 2.14 are valid for all samples. 

This leaves us with a very important quantity, the sample composition, which 
must be known beforehand. Unfortunately, the sample composition is often un­
known and many times even the subject of the investigation. To calculate the 
total stopping power and the total X-ray attenuation coefficient, it is not nec­
essary to know the concentration of all elements in the sample, only the major 
elements must be known. These elements are called the matrix elements. The 
minimum concentration of a matrix element depends on the accuracy wanted for 
the calculation. 

Assumption 12 The infiuence of trace elements with cz < 0.5% on the total 
stopping power St and the total X-ray attenuation coejjicient t't can be neglected. 
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This condition is not always fulfilled. Especially for the X-ray attenuation coeffi­
cient, the influence of small concentrations of heavy elements in an otherwise light 
matrix can be dramatic. For example, in a matrix with 99.5% C and 0.5% Pb, 
1-'t(Ex) is more than a factor of two larger than 1-ldEx) for 13 <Ex < 21. How 
important this effect is for the calculation of the tick-target yield depends on the 
elements of interest but in general the influence of neglecting elements with small 
concentrations on the thick-target yield is reduced. For the example above, the 
thick-target yield increases by a maximum of 5.5% when Pb is also taken as a ma­
trix element. For most cases, the criterium for matrix elements stated in Assump­
tion 12 can be used; in extreme situations, the value of 0.5% has to be decreased. 
For more information about the influence of the matrix composition on the cal­
culation of the concentration of trace elements, see Suhsection 3.3.4. Eqs. 2.11 
and 2.12 can he solved iteratively when all matrixelementscan be measured with 
PIXE. This is the case when the X-rays of the element can still be detected with 
reasanabie efficiency, e.g. for elements heavier than neon (Z > 9) for a detector 
with a 8p.m Be window. Otherwise, the matrix elements must be measured with 
some other technique, e.g. NBS (Nuclear Backscattering Spectrometry), or must 
be known otherwise. A group of samples for which some of the matrix elements 
cannot be measured with PIXE, is the group of biologica! samples. For these 
samples, the matrix constitutes mainly of H, C, N and 0. 

2.1.2 Applications of the general PIXE formula 

So far, there are no limitations made on the A and x dependenee of the various 
quantities. But, in order to he able to separate the integrals over A and x and 
to solve them, we have to do so now. Formulas for different applications can be 
arrived at by making different conditions. We make three different conditions. 

The first condition 

This is the most strict condition and it leads to the most universally used formulas. 

Condition 13 The sample is homogeneous. 

This condition implies that Ps and cz are independent of A and x. In this case, 
the matrix elements are no function of A and x. The integrals over x and A can 
now be separated and the integral over A can he solved: JAT np(A)dA =Np with 
NP the total number of particles deposited on the sample. NP is the total number 
of particles in the beam when the beam area AB is smaller than the sample area 
A5 . The resulting formula is the well known thick target PIXE formula derived 
from eqs. 2.11 and 2.12 : 

N lEP I ~rod(E )T (E E ) 
Y(X ) = N ____Aj!_ (E ) ' Z,X P 8 Xz• P dE 

z P M Czêabs Xz S (E ) P 
Z Ep,o t P 

(2.15) 
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with 

(2.16) 

In this case, it is not necessary that the partiele beam is spatially homogeneons 
beeause the sample is already homogeneous. 

There are two types of sample for whieh eqs. 2.15 and 2.16 can be simpli:fied. 
The distinction is based on a comparison of the sample thiekness with the partiele 
range and the transmission probability of the X-rays. The :first. sample type are 
targets that are so thin that the particles lose little energy when passing through 
the sample and the X-rays pass the sample with little loss of intensity. This can 
be translated in the following conditions: 

Using Eq. 2.5, we can write Eq. 2.15 as: 

(2.17) 

This equation is the, also well known, formula for thin targets. 
Secondly, we can distinguish the intermediate thick targets. In this case, it is 

possible to make some corrections for the thiek target effects without having to 
solve the integral numerically [Alo 86]. The condition for this approach is: 

Assumption 15 It is possible to approximate the cross section at every depth in 
the sample by an average value. 

This average cross section can be given by 

(2.18) 

The energy range over which this approximation is valid, depends on the start 
energy Epo and on the dependenee of the cross section on the energy, which 
varies fro~ element to element. The translation of the energy range to the sample 
thickness depends on the sample composition. Using this approximation and using 
Eq. 2.4 totransfarm the integral over Ep to a integral over :r:, we obtain 
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The second condition 

With the next condition, it is not possihle to calculate the concentration, only the 
mass of trace elements. 

Assumption 16 The sample and the partiele beam are spatially homogeneous, 
only the trace element Z can be distributed inhomogeneously over the sample area. 

This condition implies that Ps is almost independent of A and x, and np is inde­
pendent of A. Only trace elements can he distrihuted inhomogeneously otherwise 
it affects Ps· The distrihutions of the trace elementsin the depth have to he ho­
mogeneous since it is otherwise not possihle to seperate the integrals over A and 
Ep, where the integral over Ep is a transformation of the integral over the depth 
x. These conditions can he found in applications where a solution with contami­
nants is deposited on a filter materiaL The filter material then contains the matrix 
elements. The integral over the area can he calculated with the following result : 

Ps { cz(A) dA = m~ JAT (2.20) 

with m~ the mass per unit length of element Z in AT. This is the total mass 
per unit length of the sample if the sample surface As is smaller than the heam 
dimensions. Otherwise, it is the mass per unit length in the sample volume under 
ion homhardment. Multiplying m~ with the sample thickness t gives the total 
mass of element Z in the sample, mz· Eqs. 2.11 and 2.12 can he rewritten with 
Eq. 2.20 to 

N I lEp J af:.rod(E )T (E E ) 
Y(Xz) ~ mzt (E ) , z,x P s Xz' P dE 

np M P t €ab8 Xz S (E ) P 
Z $ Ep,o t P 

(2.21) 

with Ts(Exz• Ep) given hy Eq. 2.16. The formula can he rewritten for the same 
two sample types as given ahove. For thin targets, when Condition 14 is met, 
Eq. 2.21 can he simplified to give 

Y(Xz) = np ~v mzt?i,'t(Ep,o)€abs(Exz) (2.22) 
z 

with mz the total mass of element Z in the sample. In this case, it is no longer 
necessary that Condition 10 must apply. Thus thickness variations are now al­
lowed. The factor NAvmz/Mz is the total numher of atoms of elementZin the 
sample. The factor np is Np/ AB, the total numher of projectiles per unit area. 
For intermediate thick samples, Condition 15 must he valid, the same approach 
can he used as for Eq. 2.19. Eq. 2.21 then hecomes 

y X _ n NAv mz af:.rod€ (E ) cosO (1- Ts(Ex2 ,t)) 
( z)- P Mz Pst z,x abs Xz cosa 1-'t(Exz)/Ps 

(2.23) 
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Table 2.1: Summary of the combinations of the conditions under which the dif­
ferent formulas in this subsection are valid. 

sample beam beam sample results 
uniformity uniformity area thickness 

! homogeneaus inhomo-- smaller thick ->Eq. 2.15 & Eq. 2.16 cz 
(Cond. 13) geneons intermediate-+ Eq. 2.19 cz 

thin ...... Eq. 2.17 cz 
matrix homog. homo- envelopping thick -+Eq. 2.21 & Eq. 2.16 mz 
(Cond. 16) geneons intermedia te-> Eq. 2.23 mz 

thin ..... Eq. 2.22 mz 
inhomogeneons homo- envelopping thick -;. -
(Cond. 17) geneous intermediate-+ -

thin ...... Eq. 2.24 mz 

The third condition 

The last condition is least strict, the resulting formulas also are the least useful. 

Assumption 17 The partiele beam is spatially homogeneaus but the sample is 
not. 

This means that only np is independent of A. Now, it is not possible to separate 
the integrals over A and x. Consequently, it is not possible to arrive at a formula 
which can be used in calculations. Only if Condition 14 for thin targets is valid, 
it is possible to give a useful formula: 

= np NMAtJ t?;a;(Epo)€aba(Exz) j cz(A)ps(A) dAt 
Z ' ' AT 

= NAv prod(E ) (E ) np M mz (jz,x P,O €abs Xz 
z 

(2.24) 

Be awa.re that mz only is the total mass of element Z in the sample if the sample 
is completely enveloped by the partiele beam (A5 CAB). Again, as for Eq. 2.22, 
thickness variations a.re allowed. 

The thick target PIXE formula Eq. 2.15 with Eq. 2.16 is used in the remainder 
of this thesis unless otherwise noted. The sample has to be homogeneous in order 
to be able to use this formula. In other cases, one of the equations 2.22, 2.23 or 
2.24 has to be used. In Table 2.1, the results of this subsection are summa.rized. 

2.2 Secondary Fluorescence Yield 

There a.re several secondary excitation processes able to create additional charac­
teristic X-rays. These processes rely on different mechanism to ionize the sample 
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atoms. There are four possibilities: (1) ionization by other characteristic X-rays, 
(2) ionization by secondary electrons, (3) ionization by Auger electrous and ( 4) 
ionization by Bremsstrahlungs X-rays. The secondary electrous are produced in 
the sample by callision with the protons. The energy of the secondary electrous 
has a continious distribution with a maximum value for a head on collision. For 
3 MeV protons, the maximum energy transfer is about 6 keV. This is also the 
maximum value of the produced X-rays. There are some secondary electrous with 
higher energies due to the binding energy of the electrous in the sample atoms 
before collision. The cross section for the production of secondary electrous is 
considerable, especially for low electron energy, but the range of a few keV elec­
trous in matter is very short. The cross section for ionization by electrous is also 
high but the short range of the electrous limits their effectiveness. There is very 
little relevant data about this subject and it may result in an enhancement of the 
yield for lightelementsof a few percent [Ahl 77]. About the same arguments hold 
for the ionization by Auger electrous as for the ionization by secondary electrons; 
however, there is one extra condition: There has to be an element present that 
produces Auger electrous with higher energies than the ionization energy needed 
for the X-ray lines of interest. In this case, the first secondary process cited above 
is dominant because the range of the X-rays is much longer than the range of the 
Auger electrons. Also, for the ionization by Bremsstrahlungs X-rays, the same 
arguments as for the ionization by secondary electrous hold. The ionization by 
this process is even smaller since Bremsstrahlungs X-rays are mainly produced 
by secondary electrons, which makes this a tertiary process with corresponding 
smaller cross sections. Of the four processes, the ionization by characteristic X­
rays, called Secondary Fluorescence (SF), is the only process with a sufficiently 
high yield that correction for it is necessary [Ahl 77]. This process is treated in 
the rest of this section. 

SF is a process whereby characteristic X-rays produced in the target can, in 
their turn, ionize target atoms that can then produce new X-rays. These last 
X-rays have a lower energy than the ionizing X-rays. In this section, a formula is 
derived for the SF yield. There are several derivations given in literature [Reu 75, 
Smi 85]. In the present derivation, special attention is paid to the physical meaning 
of the final formula. To simplify the derivation, several assumptions are made 
beforehand; they are: 

Condition 1 The sample is homogeneous. 

This means that p5 , St and l't do notdepend on the position on the sample. 

Condition 2 The partiele beam enters the sample parallel to the sample surface 
normal (o: = 0, in Fig. 2.1). 

Also, conditions 1-12 from Section 2.1 must he valid. Assumptions 5 and 6 must 
be valid for the A X-rays. The case for B X-rays is treated later on. The derivation 
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ofthe SF yield is only clone for K-shell X-rays. It can, however, easily he extended 
for L-shell X-rays. 

surface 

x 

L 
L+dL __ .:_ ________ _ 

backside t 

Fig. 2.3: Schematic drawing of the production of secondary X-rays of element A 
in layer (L, L +dL) by primary X-rays of element B produced in layer (x,x + dx). 
The movement ofthe B X-rays to layer ( L, L +dL) is in a cone ofrevolution. The 
top angle of the coneis 2/3 and the azimuthal angle is ifi. The angle 8 defines the 
direction of the detector with respect to the surface normal. 

A schematic drawing of the SF process is given in Fig. 2.3. The element that 
produces the secondary X-rays is called element A and the element which produces 
the primary X-rays is called element B. The calculation of the SF process can he 
divided in a numher of steps: 

L Calculate the production of X-rays of element B in layer (a:, a:+ da:). 

2. Calculate the transmission ofB X-rays from layer (a:, a:+da:) to layer (L, L+ 
dL) with augles {3 and </J. 

3. Calculate the production of A X-rays in layer {L, L +dL) hy B X-rays. 

4. Integrate points 1 to 3 over alllayers (x, x+dx) and over allangles /3 and </J to 
ohtain the total numher ofX-rays of element A produced in layer (L, L+dL) 
hy X-rays of element B reaching this layer. 

5. Calculate the transmission of A X-rays through the sample in the direction 
of the detector and the detection in the detector. 

6. Integrate points 4 and 5 over alllayers ( L, L +dL) in the sample. 



25 

Now, these points will be investigated in detail. 

1. The number of X-rays of element B produced in layer (:c, x+dx) dNB(x)) 
can be derived from the formula for the thin target yield (Eq. 2.17) 

N NAv _prod( ) d 
P M CB(TB x x Ps x 

B ' 
(2.25) 

All terms are explained in section 2.1. Note that for rrP;,1 the dependency 
on the depth :c is used rather then the dependency on the partiele energy 
Ep. 

2. There are two possibilities for the transmission probability of B X-rays from 
layer (x, x+ dx) to layer (L, L +dL), namely x < L and :r: > L. These 
transmission probabilities can be calculated with Eq. 2.7 

(2.26) 

(2.27) 

Note that these equations are independent of t/J. Note also that cos a in 
Eq. 2.7 is one, that IJ is replaced by </; and that there is no A and x dependenee 
because the sample is assumed to he homogeneous. 

3. Let us call the probability that an X-ray of element B produces an X-ray of 
element A when passing through a layer (L, L+dL) under angle /3, P(ExB-+ 
Ex A, L, (3). This probability is given by 

7AK(Ex ) dL 
' BW b pe---

Ps A,K A,X s A I cos/31 (2.28) 

with 

TA,K ( E x,B) photo-electric absorption coefficient for ionization of the K-shell 
of element A by a B X-ray (units cm-1). This is divided by Ps to obtain 
the mass absorption coefficient, 

p
8 

cA 1 c~;,6l mass thickness of element A which is encountered by the B X-ray 
on its passage through the layer L, L +dL (gjcm2). 

The other factors are described insection 2.1. The absolute value for cos (3 
is needed when x > L. Alternatively: I cos /31 = cos f3 when x < L and 
I cos /31 = cos( 1r - f3) when x > L. Th is case is analogous to that of the 
production of X-rays by particles except that the scattering cross section 
u~'K is replaced by the absorption coefficient T z,K. In the case of element 



26 Theory 

Fig. 2.4: Gra.ph of the photo-electric absorption coefficient Ttot a.s a function of 
the X-ray energy on arbitrary scales. 

A, TAK(Ex ) is zero when Ex < EAK with EAK the energy of the 
t B B , t 

absorption edge of the K-shell of element A. This leads to the following 
condition, necessary for secondary Huorescence: 

Condition 3 The X-ray energy of element B, EX a, is larger than the K­

shell absorption edge of element A, E A,K. 

It should be noted that since TAK decreases rapidly with increasing B X-ray 
energy the SF yield is only sig~ificant for B X-rays with an energy above 
and near the K absorption edge of element A. A problem in using Eq. 2.28 
is that not TAK is known but TA tot (see Fig. 2.4). These two quantities are 
related according to the following formula : 

3 5 

TA,tot(Exz) = TA,K(Exz) + L TA,Li(Exz) + L TA,Mi(Exz) + ... (2.29) 
i=l i=l 

The number of terms needed in this equation depends on the atomie number 
Z. This equation is not useful for obtaining a value for TA K• so we make 
the following assumption: ' 

This relation is not strictly true but it varies only slowly with energy [Sto 70, 
page 569]. We now introduce the absorption edge ratio for the K-shell of 
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element A, rA K, defined as 
' 

(2.30) 

with TA,tot,+(E A,K) the total photo-electric absorption coeflicient just above 
the absorption edge energy E A K and TA tot _ ( E A K) the total photo-electric 
absorption coeflicient just bel~w E A K· 'No'w, TA ~(E A K) is just the differ-

, I I 

ence between TA
1
tot,+ and TA,tot,-. Combining Assumption 4 with Eq. 2.30, 

we obtain 

TA,K(ExB) ç::; 7A,K(EA,K) = 1 __ 1_ 

TA,tot(Ex8 ) TA
1
tot,+(E A,K) r A

1
K 

Substituting Eq. 2.31 in Eq. 2.28 gives 

(2.31) 

1 dL 
r (E )(1- -)w b c -- (2.32) A,tot X8 r AlK A,X A 1 cos PI A,K 

4. Steps 1,2 and 3 together result in the number of A X-rays 
dYsF,o(XA,XB,x,L,P) produced in layer (L,L+dL) by B X-rays, which 
are produced in (x, x + dx) and are emitted in a direction characterized by 
the angles P and rf;. 

dY < (XA,XB,x,L,J]) 
SF10,x>L 

dNB(x) 
= d dx T < (Ex , x-+L, P)P(Ex -+Ex , L, P) 

X x'?_L B B A 
(2.33) 

This equation has to be integrated over the solid angle and alllayers (x, x + 
dx) to find the total number of A X-rays dY8p,0(XA,XB,L) produced in 
layer (L, L +dL) by B X-rays. The integration order can be changed be­
cause the solid angle ( determined by augles P and rf;) and x are independent 
variables. These integrals have to be clone in two steps because x can be 
larger or smaller than L. First, the integration over the solid angle is per­
formed by integrating dQ = sin PdP drf; with the normalization f dQ 4'11'. 

dY8 F 0(XA,XB,L,x) 
I \ 

1 17r/2 121r 
-
4 

dj] sinp drf;dYsFox<L(XA,XB,x,L,J]) 
'Jr Q Q 1 

I 

1 11( . 121r +-
4 

· df3 smJ] drf;dYsFox>L(XA,XB,x,L,p) 
'Ir 'lf/2 0 I I -

117f/2 2 
0 

df3 sinf3dYsF,O,x<L(XA,XB,x,L,f3) 

111( +-
2 

df3 sinf3dYsFOx>L(XA,XB,x,L,f3) 
1f /2 ' , -

(2.34) 
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Next, we can integrate over x. 

dYsF,o(XA,XB,L) = 

11L 11r/2 . dYsFO:c<L(XA,XB,x,L,/3) 
2 

dx d/3 sm/3---'-' ..:..' -'-----:d-----
o 0 x 

1 jt 1'/r . dYsFox>L(XA,XB,x,L,/3) + 
2 

dx d/3 sm f3 ' ' d 
L 1r/2 X 

(2.35) 

with t the total target thickness. 

5. The transmission probability of the A X-rays in the direction of the detector 
(angle 0) is analog to Eq. 2.7 ,: 

{ 
Pt(Ex ) L } T(Ex , L--+surface) = exp - A p8 --

8 A Ps cos 
(2.36) 

The absolute detection efficiency of the detector, êabs(Ex), is given by 
Eq. 2.8. 

6. Finally, eqs. 2.35 and 2.36 have to be integrated over alllayers (L, L +dL) 
to obtain the total number of detected A X-rays produced by B X-rays: 

YsF(XA,XB) 

ft dYsFo(XA,XB,L) 
Jo dL ' dL T(ExA' L--+surface)eabs(ExJ (2.37) 

To obtain the full equation, Eq. 2.37 has to be combined with eqs. 2.26, 2.27, 
2.32, 2.33, 2.35, 2.36. 

YsF(XA,XB) 

1 7 A,tot(ExB) 1 
=-2 (1---)wAKbAxPsCAêabsCEx) 

Ps r A,K ' ' A 

r dL ex {- Pt(ExJ __!:..__} Jo p Ps Ps cosO 

(1

Ld 11r!2
dR sin/3 dN8 (x) { Pt(ExB) L- x} x fJ-- exp - p8 -- + 

o o cos f3 dx Ps cos/3 

j
t dx 111' d/3 sin/3 dNB(x) exp {-Pt(ExB) Ps x- L }) (2.38) 

L 11'/2 cos(1r- /3) dx Ps cos(1r- /3) 

with dN8 (x) given by Eq. 2.25. This threefold integral can be simplified and 
one integral can be solved analytically. The full calculations can be found in 
Appendix B. The result of these calculations is a final formula for the SF yield : 

YsF(XA,XB) = 
{EP,J dN (E ) { } 

fA(ExA' ExB) JE :E P TosLsx(x) + TxsL9(x) dEp 
P,O p 

(2.39) 
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with 

(2.40) 

dNB(Ep) _ N NAv prod(E ) 1 
dE - p M CB(jB,X p s (E ) 

P B t P 
(2.41) 

1 q 100 exp( -qxy) 
To<L<x(x)=-exp(-px)ln(l I)+ ( )dy - - p - p + q 1 y p - qy 

(2.42) 

and 

T ( ) _1 (- )I (p+q)-1
00

exp(-q(t-x)y-pt)d 
x<L<t x - exp px n ( ) y - - p q 1 y p + qy 

(2.43) 

Here, p stands for and q for ttt(ExB) Ps· Wben given intbis form, it is 
PS PS 

easy to see tbe pbysical meaning of the various terms. The variabie dN B (Eq. 2.41) 
gives tbe total number of X-rays witb energy ExB producedat proton energy Ep 
tbus at deptb x in tbe sample, it is dimensionless. The quantity fA (Eq. 2.40) 
describes tbe production cross section for tbe production of an X-ray with energy 
Ex A by an X-ray ofline X B multiplied by tbe absolute detector efficiency (detector 
efficiency times solid angle) and by tbe con centration of element A. Tbe dirneusion 
of fA is cm- 1. Tbe two transmission correction terms (Eq. 2.42 and 2.43) represent 
tbe transmission of the X-ray ofline XB from layer (x, x+ dx) at angle (3 to layer 
(L, L+dL) and tbe transmission oftbe X-ray ofline XA from layer (L, L+dL) to 
tbe detector at an angle 0. The quantity To<L<x gives tbis transmission integrated 
over all deptbs L, lying between the sample surface and tbe dep tb x, and integrated 
over all angles (3. Tbe quantity Tx<L<t is analogous to tbe first transmission but it 
is integrated over tbe deptbs L between dep tb x and tbe back si de t of the sample. 
Tbe dirneusion of tbe two transmission correction terms is cm. Tbe integration over 
L introduces tbe dimension. Tbe tbickness t can be replaced by oo if tbe sample is 
tbick enougb. Tbe last term in Eq. 2.43 tben beoomes 0. Tbe last term in Eq. 2.42 
can give problems wben it bas to be integrated numerically because tbe function 
of y to be integrated contains an asymptote between tbe integration bounderies 1 
and oo wben p > q. A salution totbis problem of numerical integration is given 
in Appendix B. 

In addition to the assumptions given in the beginning of this section, tbere 
is one extra assumption necessary for the validity of Eq. 2.39. In step two, we 
have used the total X-ray attenuation coefficient f..tt(ExB) for the calculation of 
the transmission of B X-rays to layer (L, L +dL). This is not completely justified 
because a part of tbe B X-rays is coherently scattered and then remaîns in the 
sample with the same energy although moving in a different direction. These X­
rays still can ionize atoms of element A but at a different place. It is therefore 
better to use J..t- (jeoh in Eq. ??. For incoherently scattered X-rays, the case is 
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somewhat different since the energy of the B X-rays after scattering has decreased. 
There still is the condition that the energy of the X-rays after scattering must be 
higher than the ionization energy for element A. The following equation gives the 
X-ray energy Eine after scattering by a single free electron [Com 35]: 

E. = Eo (2.44) 
me 1 + m~~2 (1 - COS 6) 

with 
Eo 
(J 

2 m0c. 

X-ray energy before scattering 
scattering angle 
= 511 keV 

For X-rays with an energy up to 40 keV, the energy after scattering lies in the 
interval [0.86E0,E0]. For small scattering augles and low X-ray energies Einc is 
close to E0 • Therefore, the argument used for coherent scattering is also valid and 
it is better to use J,t- u coh - uincoh in Eq. ?? . Nevertheless, we give the following 
assumption: 

Assumption 5 The total X-ray attenuation coefficient p can be used instead of 

J.t- (jcoh- (J'incoh· 

It is possible to do this because in the case of an X-ray with an energy below 40 keV 
the photo-electric absorption coefficient is the dominant factor. Both scattering 
terms only make up a few percent of the total X-ray attenuation coefficient. 

It should be noted that there is a possibility for a more complicated form of 
secondary :fluorescence. It is possible that B X-rays produce X-rays of element C 
which in turn produce the X-rays of element A. This is called the third element 
effect. This effect will usually he very small except for special combinations of 
elements and concentrations. 

In a practical situation, the total yield of an X-ray line (Y(X A)) is measured. 
This is a combination of the primary yield for that line (Yp(X A)) and all the 
possible combinations of SF yields (Y8 p(X A• XB)) according to 

Y(Xz) = Yp(XA) + LYsF(XA,XB) (2.45) 
XB 

The summation has to he carried out over all X-ray lines able to excite the K­
shell of element A when X A is an X-ray line from the K-shell. A new quantity 
R(SF/P) = ExB Y8 p(XA,XB)/Yp(XA) is introduced to be able to establish the 
importance of the SF yield in comparison with the primary PIXE yield. 

2.3 The Data Base 

2.3.1 Introduetion 

To he able to solve the thick target PIXE formula (Eq. 2.15 with Eq. 2.16), the 
values for various physical quantities are needed. A set of these values is generally 
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called the data base. The quantities in the data base are the stopping power S( EP), 
the ionization cross section <ï!;K-(Ep), the fluorescence yield wz K• the branching 

' ' 
ratio bz,x• the Coster-Krenig transition rate ft1 and the linear mass absorption 
coefficient p.z(Ex)· The values ofthese quantities must either be calculated from 
theory or be determined experimentally. 

There are several general reviews about the relevant data bases (Joh 88, Coh 87, 
Cam 83] as well as many reviews of only one specific physical quantity [Cam 89, 
Che 89, Coh 85, Cre 87, Zie 85] etc .. Shorter discussions about the data base are 
presented in articles concerning programs for the calculation of the thick target 
yield [Max 89, Orl 90]. The purpose of this sectien is finding the best or most 
useful values of the quantities in the data base and establishing the uncertainties 
in these values. We therefore do not give a general review but we limit ourselves 
to the most recent information. In view of its use in PIXE, the following limits 
for our data base are imposed: 

• particles : protons, 

• partiele energy range : 0.1- 10 MeV, 

• X-ray energy range : 1- 40 keV, K-shell X-rays, 

• target atomie number: 11- 92 and forstopping powers only: 1- 92. 

The values for the L-shell are treated in Appendix A. The data base is extended 
with the data for the non Rutherford scattering cross sections for several elements 
beause in many cases NBS is used for the determination of the thickness of the 
sample and the concentrations of the light elements (Z ~ 10). 

2.3.2 Stopping Power 

The stopping power for individual elements is probably the most accurately known 
quantity of the database. Some results for the stopping power for Helium is used 
below because it can useful information about the accuracy of the stopping power 
for protons. Two recent and comprehensive data sets are those of Janni [Jan 82] 
and Ziegier et al. [Zie 85]. J anni uses a semi-empirical approach and has given 
error estimates for all tabulated values, but for protons only. The error is about 
2% for 3 MeV protons averagedover 20 elements spread over the periodic table. 
The error increases for lower proton energies. The values are available in the form 
of tables in ref. [Jan 82]. 

Ziegier et al. give theoretica! formulas for the stopping power. Their values 
are available in the computer program TRIM. They have compared their results 
with experimental data. For all elements (1 ~ Z ~ 92) and all bombarding ions, 
they find an average deviation of 26% for ion energies ranging from 0-25 keV, of 
8% for ion energies between 25-200 keV and of 4% for the range 200-100,000 keV. 
These errors are averaged over all experimentai data and large deviations from 
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the average of only a few experiments can have significant impact on the value of 
the average ([Zie 85, page 166]). Therefore, Ziegier et al. give a percentage of the 
available values which are accurate within 10 or 20%. Johansson et al. [Joh 88] 
conclude that the disagreement between experimental and calculated values is 
about 1 to 2% for the proton energy range of 1-4 Me V. 

The energy range can be divided in three regions. The lowest one is the energy 
range up to the Bohr velocity, v0 25 keV /amu. In the next range, a maximum 

in the stopping power is reached at about vmax = 3v0 Z;/3
, with Zp the partiele 

atomie number. The third range is the high energy range above 1 Me V for protons. 
This is the so-called Bethe region. The uncertainty in the stopping power in the 
lowest energy region is largest but the lower energy limit of the data base is chosen 
above the Bohr velocity for protons. 

For a few selected elements, there is a very recent review of experimental data 
for the proton energy range of 10-2500 keV and the helium range of 60-7500 keV 
[Pau 91]. Forthese data, Paul et al. have given empirica} fits, which are for protons 
in general lower than the values of Ziegier et al. [Zie 85], by several percent at 
100 keV. The fitted values for Heions on Ag and Au are in better agreement with 
other data sets. The relative accuracy of the fits of Paul et al. in the region of 
51-250 keV is about 3%. Taking this into account, the uncertainty for the Ziegier 
valnes in the energy region of 100-200 keV probably does not exceed 5%. For our 
data base, we have chosen the stopping power values of Ziegier et al. [Zie 85], 
because of its accuracy and ease of use. 

The discussion above is only valid forthestopping power of individual elements. 
These values must be summed according toBragg's rule (Eq. 2.13) to arrive at the 
totalstopping power ofthe sample. Bragg's rule, however, is a postulate and there 
is an abundance of evidence of its breakdown when the sample contains molecules 
with strong chemica! honds. There can also be differences in the stopping powers 
of the sameelement in different phases (solid/liquid/gas). Many of these studies 
have been reviewed by Thwaites ([Thw 83, Thw 85, Thw 87]). Differences have 
been found between the solid/liquid phase and the gas phase for H20 and organic 
materials. The stopping power of these materials in the vapour phase can be up 
to 5-10% larger at the energy where the stopping power maximum reaches its 
maximum. At energies below the energy where the stopping power is maximum, 
the difference is still uncertain [Thw 85]. For more complex compounds, the dif­
ferences between physical phases disappear. Another major problem for Bragg's 
rule is organic compounds. In this case, the chemica} honds infiuence Bragg's 
rule. Chemica} honds change the ionization state of outer electrons. This effect 
is most important for light elements where these electrous make up a large part 
of the total number of electrons, especially for hydrogen with only one electron. 
The deviations are largest around the maximum of the stopping power. Several 
solutions are proposed [Zie 88J. One solution is the weighted summation of groups 
insteadof atoms (e.g. C-H2 ). Another solution is the so called "cores and honds" 
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approach. In this approach, the contribution of the core and valenee electrous are 
added separately. Both roodels can improve the accuracy of the total stopping 
power. The second method is included in the TRIM89 program for several com­
pounds. All differences tend to disappear for higher energies and, for ion veloeities 
above 10v0 , Bragg's rule can again be applied without corrections. 

Ziegier et al. [Zie 88] also conclude that Bragg's rule holds within 2% for com­
pounds made up of heavier elements. It can thus be concluded that the uncertainty 
inthestopping power in compoundsis between 2-3% for protons above 1 MeV. 
The uncertainty increases to 10% for lower energies. 

2.3.3 Ionization Cross Section 

A uurober of theories for the calculation of the cross sections exist. The ECPSSR 
theory, developed by Brandt and Lapicki, is most widely used. [Bra 79, Bra 81]. 
This theory is basedon the Plane Wave Born Approximation (PWBA) including 
corrections for Coulomb repulsion between projectile and target (C), polarization 
and binding energy changes via the perturbed stationary states (PSS), relativistic 
effects (R) and projectile energy loss (E). In the following paragraphs several 
tabulations based on this theory are discussed for K-shell ionization. 

There are a number of tabulations for protons based on the ECPSSR theory, 
one of Cohen and Harrigan [Coh 85], using hydragenie electron wave functions 
and another one of Chen and Crasemann [Che 85, Che 89], using Dirac-Hartree­
Slater wave functions. The latter wave functions are somewhat more realistic 
than the hydrogenic ones. The last tabulation to be discussed is from Paul et al. 
([Pau 86, Pau 89]). They have reviewed experimental data for K-shell ionization 
and have compared this with their own calculations based on the ECPSSR theory 
of Brandt and Lapicki. Paul et al. have found systematic deviations, most notably 
for low ion energies where the theory overestimates the cross sections. Based on 
the experimental values, Paul et al. have generated reference cross sections for 
protons with error estimates for all values. The error is generally less than 5% for 
medium range energies. The energy dependenee of the cross section depends on 
Z. Therefore, the energy range of the error is also dependent on Z. Large errors, 
outside the medium energy range, are found for low Z values above 1 Me V (errors 
up to 10%) and for high Z values (above Z=40) for proton energies below 1 MeV 
(errors up to 20%). The above stated regions should not be taken too strictly and 
are only mentioned to give an impression of the energy dependenee of the errors. 

The values of Cohen and Harrigan for the region of high Z and low energy are 
even higher than the values of Paul et al. due to a slightly different calculation 
[Coh 89, Lap 87]). The difference increases to a factor 2 for Z=92 and 0.3 MeV. 
However, for this Z value the energy of the X-rays produced by K-shell ionization 
is too high to he measured by a normal Si(Li) detector and the cross section too 
small. The above stated errors arealso confirmed in a recent review [Coh 90]. 
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Fig. 2.5: Oomparisou of various theoretica! ionization cross sections. The cross 
sections are normalized on the relerenee cross sections of Paul et al. [Pau 89] 
to eliminate the large energy dependence. x = ECPSSR theory of Chen et al. 
([Che 85,Che 89]), D = ECPSSR theory of Paul et al. ([Pau 89]) and <> = 
ECPSSR theory of Cohen & Harrigan ([Coh 85]). The error bars are the errors 
given by Pa.ul et al. for their reference cross sections. 

5 

5 

In Fig. 2.5 the different calculations are compared for selected values of Z. 
Generally the values of Chen and Crasemann are closer to the reference values of 
Paul et al. but their tabulations are limited to selected Z values and selected 
energies between 0.1 and 5 Me V. Maxwell et al. [Max 89] have used the tables of 
Chen and Crasemann to make fits using the semi-empirica} formula of J ohansson 
et al. ([Aks 74, Joh 76]). They have calculated the coefficients separately for all 
elements in the range 10 s; Z s; 60 for the K-shell. They reproduced the tables of 
Chen and Crasemann within 1% for proton energies between 0.3 and 3 MeV. 

The polynomial fits of Maxwell et al. are used when possible, since they 
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are based on the most accurate calculations and they facilitate fast calculations. 
Outside the energy range where the fits of Maxwell et al. are valid the calculations 
of Cohen and Harrigan are used because they are the most comprehensive. In most 
ranges relevant for PIXE the error in the K-shell ionization cross section is about 
5%. 

2.3.4 Branching ratio 

Data about branching ratios are very often given as a ratio of line intensities, the 
most used ratio is the K(J /Ko: ratio. For high Z values there can he more tran­
sitions and the Ko: and K(J line groups are made up of several sublines. For the 
K-shell there exists a widely used semi-empirical table of fitted experimental data 
of Salem et al. [Sal 7 4]. The uncertainty for the K(J /Ko: ratio is estimated to be 
about 2%. Salem et al. have used data from experiments with radioactive sourees 
or sourees ionized by pboton or electron bombardment. They have excluded data 
from ion bombardment since they claim it can create multiple vacancies and can 
alter the natural state of the atom. Scofield [Sco 74, Sco 74a] has done theoreti­
ca} calculations both using Hartree-Slater wave functions and Hartree-Fock wave 
functions. The results using the Hartree-Fock theory are in better agreement with 
experiments than the Hartree-Slater theory. Careful evaluation of experimental 
data showed a discrepancy between experiment and the Hartree-Fock theory for 
the region 22 :::; Z :::; 32. This discrepancy was confirmed by Perujo et al. [Per 87] 
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Fig. 2.6: Figure of the experimental K,8 /Ket intensity ratio divided by the theo­
retica! Hartree-Fock intensity ratio of Scofield [Sco 74]. The experimental values 
are from Salem et al. [Sal 7 4] and Perujo et al. [Per 87]. 
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who determined values for the K/3/Ka ratioforseven elements with 22 ~ Z ~ 32 
and with uncertainties rangîng from 0.7-1.2%. In Fig. 2.6 the exp~rimental K/3/Ka 
intensity ratios and the theoretica! Hartree-Fock ratios are compared. This fig­
ure shows that the discrepancy between experiment and theory extends below the 
22 ~ Z ~ 32 region. Above this region the difference between experiment and 
theory is within the uncertainty (2%) for the values of Salem et al . . For our data 
base we have used the values of Scofield (Sco 7 4] with the values of Perujo et al. 
(Per 87] for the region 22 ~ Z ~ 32. The uncertainty is estimated to be 2% except 
the region below Z = 22 where it will be larger. 

2.3.5 Fluorescence Yield 

The situation for the K-shell is quite simple because there are no subshells. The 
only quantity necessary for the K-shell is the fluorescence yield wz K· For this 
quantity there is good agreement between theoretica! calculations and experimen­
tal data. Theoretica} calculations have been performed by Chen, Crasemann and 
Mark [Che 80}, using relativistic Dirac-Hartree-Slater wave functions for 25 ele­
ments with 18 ~ Z ~ 96. Compilations were made by Krause [Kra 79] for all 
elements with 5 ~ Z ~ 110 and Bambynek [Bam 84] for 11 $ Z ~ 60. The 
compilations include bath theoretica! and experimental data. The estimated un­
certainties for the compilations of Krause and of Bambynek are as follows: 5-10% 
and 3-5% for Z is 10-20, 3-5% and 1-3% for Z is 20-30, 3% and 0.5-1% for Z is 
30-40 and 1-2% and 0.3-0.5% for Z is larger than 40. Within the uncertainties 
the experimental values agree with the theoretica} values of Chen et al. The com­
pilation of Bambynek is chosen for our data base since the uncertainties in these 
values are smallest. 

2.3.6 X-ray Attenuation Coefficient 

There are many schemes for the X-ray attenuation coeflicient p,, both experimen­
tal compilations, semi-empirica! schemes and tables based on theory. However, 
di:fferences between the various values of fJ can be as large as 10% (see the tables 
in (Joh 88] and [Cam 83]). In a recent artiele [Cam 89] various semi-empirica! 
schemes and the theoretica} values by Berger [Ber 90] are compared with high ac­
curacy experimental data from the X-ray Attenuation Project of the International 
Union of Crystallography (Cre 87]. The experimental data is collected for C, Si 
and Cu. They [Cam 89] conclude from this comparison that the theoretica! values 
agree better with experiment than the semi-empirica! schemes. For the selected el­
ements and for energies above the K-shell absorption edge, the di:fference between 
the experimental and the theoretica! values is less than 3%. For the semi-empirica! 
scheme of Thinh & Leroux [Ler 77, Thi 79]) the accuracy is estimated to he ah out 
5% except near the 1-shell absorption edges where the accuracy is 10% or worse 
[Cam 83]. This is the most widely used semi-empirica! scheme because it is easy 



Theory 37 

(b} Z=12 Si 
1.15 ,...,.....,,.,..,...,..,.,....,.....,.,............,m-r.,..,.,......,.,,.,.,...,..,.,.......,., 

1.00 1.10 

1.05 
!0.95 

-) 
:t 0.90 

i 
-) 1.00 

:t 0.95 

0.85 

10 20 30 40 
Ex [keV] 

(o) Z=29 Cu 
1.30 I"""MM'TTTTT'f"T'T"1M'TT.,..,.,..I"I""..,.,....,.,..";rrr.,..,.,..~ 

(d) Z=82 Pb 
1.5 I'T'M'TTT'M"TT.,.....,.,......,."''TT"M'TT,..,.,..,MTTTT'T"......,...., 

1.25 

1.20 

i 1.15 

-) 1.10 

:t 1.05 

1.00 

0.95 

1.4 

1.3 

i1.2 
-)1.1 
:t 1.0 

0.9 

0.8 

0.90 ~:.u.< ................. u...u ......... ..........JU...U.I.U..I..I...I.I:....U. .......... .......:l 0. 7 LJ..J..& .................. ~ ............................................................... u...I.J 

0 10 20 30 40 0 10 20 30 
Ex [keV) Ex [keV) 

Fig. 2.7: Comparison of the mass attenuation coefficient as calcula.ted by Thinh 
& Leroux [Thi 79] a.nd by Berger [Ber 90], given as the ratio of the two values. 
The abrupt changes are either caused by absorption edges or by different fitting 
regions for the valnes of Thinh & Leroux. 

40 

to apply and it has a wide range for Z (1-94) and for the X-ray energy (1-40 keV). 
The comparison in [Cam 89] was limited to the X-ray energies above the K-shell 
absorption edges. Moreover, they didn't take into account arevision made by 
Thinh & Leroux totheir scheme [Thi 79]. Therefore, we have made a compari­
son between the scheme of Thinh & Leroux and the program XGAM of Berger 
[Ber 90], see Fig. 2.7. From this figure, it can be concluded that the uncertainties 
stated above are probably still too optimistic. An uncertainty of 10% seems more 
realistic, with even larger valnes at the L-shell absorption edges. We have chosen 
to use the semi-empirica! scheme of Thinh &Leroux, because of its ease of use and 
its wide applicability. As with the stopping power, the total X-ray attenuation co­
efticient of the sample is obtained by summing the individual valnes according to 
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the mass fraction (see Eq. 2.14). There is very little information about the validity 
ofthis summation rule. However, the main contribution to the X-ray attenuation 
coefficient of X-rays comes from the photo-electric absorption coefficient rtot (see 
Eq. 2.9). Especially for low Z elements, the inner shells contribute mostly to Ttot· 

The most important factor leading to deviations of the summation rule are atomie 
bindings, which are made between outer-sheli electrons. Therefore, the summation 
rule for the X-ray attenuation coefficient will in most cases be valid although there 
might be exceptions. Also, the X-ray attenuation coefficient of individual elements 
is not known with sufHeient accuracy to allow conclusions to be made about the 
validity of the summation rule. 

2.3. 7 Scattering Cross Section 

In many cases NBS is used to determine the mass thickness of the sample and 
the concentrations of the matrix elements with Z $ 10. The matrixelementsof 
a biologica! sample, for example, are mainly C, N and 0. Forthese elements and 
three Me V protons, the Rutherford scattering crosssectionis not valid. Therefore 
alternative scattering cross sections have to be found. 

A literature survey was done [Ude 92] to find values for the scattering cross 
sections for proton scattering on C, N and 0 with an energy range as large as 
possible but at least in cl u ding the energy range 2-3 Me V. An additional condition is 
that these cross sections are available for the same scattering angle. The following 
artiel es were found to provide satisfactory data: [J ac 53] for proton scattering on 
C for the energy range 0.3-4.4 MeV and for the scattering angle 146.2° ; [Bas 59] 
forscattering on N with energiesof 1.0-3. 7 Me V and angle 147.2° ; and [Har 62] for 
scattering on 0 with energies of 2.5-5.6 Me V and angle 147.5° . The cited errors 
in the cross sections range from 3-5%. Afterwards, new data for the scattering 
cross sections for C and 0 is found in [Ami 93], which contains high precision data 
especially measured for micro-NBS analysis. The scattering angle forthese data is 
slightly different viz. 150° . The reproducibility was 3% for most of the repeated 
data points. In Fig. 2.8 both data sets are compared for C and 0. The difference 
between the two data sets is very small, within a few percent, with the exception 
ofthe resonance for 0 at about 3.5 MeV where it is much larger. The old data for 
the scattering cross section is still in use since we have fixed our measuring angle 
at 147° . Therefore, an average uncertainty of 5% is used. 
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3 Error propagation of the 
uncertainty in various quantities 
to the uncertainty in the primary 
PIXE yield and Secondary 
Fluorescence yield. 1 

The uncertainty in the PIXE yield or con centration due to the uncertainty in 
various quantities is discussed for both the primary PIXE yield · and the SF 
yield. The error propagation factor is determined, in a numerical approach, 
as the propa.gation of an uncertainty in a. quantity to the uncertainty in the 
yield or concentration. The dependenee of the error propa.gation factor on 
the X-ray and proton energies, and on the matrix composition is investigated 
for quantities, such as the ionization cross section, the stopping power, the 
X-ray attenuation coefficient, the matrix composition and the proton beam 
energy. The physical background of these dependencies is explained. This 
also facilitates obtaining a better physical insight in the formulas for the 
primary yield and the SF yield. 

3.1 Introduetion 

In this cha.pter, the influence of errors in the ionization cross section, the stopping 
power, the X-ray a.ttenua.tion coefficient, the matrix composition and the ion beam 
energy on the yield or the ca.lculated concentratien is investigated. These quanti­
ties are chosen because the propagation of errors in these quantities into the error 
of the yield is not trivia!; for all other quantities necessary for the calculation of 
the yield the propagation is straightforward. The propagation of the uncertainty 
to the yield is in most cases identical to the propagation of the uncertainty to the 
concentration. Therefore, the propagation to the uncertainty in the concentratien 
is only given where it deviates from the propa.gation to the yield. This study is 
done for both the primary PIXE yield (see Section 2.1) and for the Secondary 
Fluorescence (SF) yield (see Sectien 2.2). An estimate of the uncertainties in the 
qua.ntities of the data base is given in Section 2.3. First, the error-calculation 
theory is described in Section 3.2. Then the propagation of these errors through 
the formulas of the primary yield and the SF yield is discussed in Sectien 3.3 and 

1This cha.pter is ba.sed on an artiele by F. Munnik, P.H.A. Mutsa.ers, E. Rokita. and 
M.J.A. de Voigt published in 'Int. J. of PIXE', vol. 3/2, (1993) 145. 
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Section 3.4 respectively. The objective is to obtain a basic onderstanding of these 
formulas and of the error propagation for the above mentioned quantities. 

3.2 U ncertainty Calculation 

An important aspect of any calibration procedure is the assessment of the un­
certainties. Since we have chosen the absolute calibration method, we have to 
develop a form of uncertainty calculation to assess the influence of the uncertainty 
in various quantities on the uncertainty in the calculated concentration. Use has 
been made of general treatments of error analysis, such as [Bev 69, Bar 89], and 
of treatments more specific for ion beam analysis, such as in (Kno 79]. 

The rules determining the calculations of the uncertainties in the results are 
dependent on the type of uncertainty. Therefore, the type of uncertainty for the 
various quantities bas to he established first. A common type of uncertainty is the 
standard deviation. In this case there is a 68% probability that the 'real' value of 
a quantity is situated in an interval of plus minus one standard deviation around 
the measured value. The underlying distribution is the Gaussian distribution or 
the binomial distribution. A more simple type of uncertainty is the maximum 
deviation. This type can he used for e.g. the readingofan instrument. Often, it is 
not known what the underlying distribution for a physical quantity is. However, 
if the uncertainty in this quantity is influenced by a large number of small e:ffects, 
the uncertainty distribution may he approximated by a Gaussian distribution; 
even if the distributions for the effects are not Gaussian [Bar 89]. We assume 
that the uncertainties for the quantities needed for TT-PIXE can he treated as 
standard deviations of a Gaussian distribution because of the complex nature of 
the corresponding data. 

Once the type of uncertainty is established, we can determine the type of 
uncertainty calculation. If all quantities are independent and the uncertainties are 
standard deviations, the most commonly used rules for the uncertainty calculation 
can he applied. The most general rule for the uncertainty s

11 
in a function y of the 

quantities xl> ... , xn is in the Gaussian approximation: 

(3.1) 

with sx; the uncertainty in quantity xi. The error calculations in this study are 
based on this rule unless stated otherwise. We now define the partial uncertainty 
in y caused by the uncertainty in x i as s

11
,x, = /;;sx,. The error propagation 

factor can then he defined as: 

(3.2) 

If this factor is unity, the uncertainty in the quantity x i is linearly translated into 
the result y and if this factor is close to zero, the uncertainty in the quantity can 
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be neglected. If all the error propagation factors and the uncertainties sx, are 
known, the total uncertainty in y can be calculated according to Eq. 3.1. 

The error propagation factors to the yield for several quantities are calculated. 
The quantities are the ionization cross section u}ff<, the stopping power St, the 
X-ray attenuation coefficient f!t, the matrix compo'sition and the ion beam energy 
EP 0 • For these quantities, except for f!t, the error propagation factor cannot 
be ~alculated analytically because the formula for the yield (Eq. 2.15) contains an 
integral over E p with functions of E p that are not known analytically. For all other 
quantities, the error propagation factor is one. Ho wever, numerical calculations 
can be done using the approximation 

DY( x)( ) Y(x0 + 6) Y(x0 - 6) 
a;;;- Xo ~ 2fi (3.3) 

with x the quantity under investigation, x 0 the value of the quantity for which 
the partial error has to be calculated and {j a small step in the quantity x. The 
propagation factor for the uncertainty in x ( P z (Y, x)) is then giveh by the following 
formula: 

P(Y(Xz),x)= ( 8Y,x) jsx(x0)~Y(x0 +6)-Y(x0 -S). (3.4) 
Y(x) xo x0 2Y(x0)6/x0 

protons as bombarding particles and to K-shell X-rays. We always consider 
infinitely thick homogeneaus targets with an unknown matrix. If the word error 
is used it should be readas uncertainty. Throughout this chapter, we have always 
taken the total detector efficiency e 1. The detector solid angle n = 10 msr, 
so chosen because this is close to the value of our detector geometry. The yield is 
calculated for 1 pC of protons deposited on the target. Normally, the propagation 
factor P(Y, x) should always be positive since the relative error always is positive. 
However, we have allowed the propagation factor to becorne negative because the 
sign of the propagation factor P(Y, x) gives insight in how the yield behaves when 
the quantity x changes. The propagation factor P( c z, :c) for the uncertainty in 
the concentration due to the uncertainty in quantity x is equal to the negative 
value of P(Y, x). This is not always true when :c is the matrix composition, the 
exceptions are discussed in Section 3.3.4. 

3.3 The U ncertainty in the Primary Yield 

3.3.1 Introduetion 

Using the scherne described in the previous section, it is possible to calculate the 
total uncertainty in the yield given by the TT-PIXE forrnula (eqs. 2.15 and 2.16): 
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+ 

+ 

+ (3.5) 

The experimental uncertainties Es 8 
, --"-'--(Es ) , T (jj; ) , and lW are given in Chap-

P,o e Xz aba Xz u 

ter 4 and y(kz)' and ~ can be calculated as described in Chapter 4. The uncer­
tainties in the data base are given in Section 2.3. The error propagation factors 
can be calculated according to Eq. 3.4 and are discussed in this section. The term 
.k should only be added when element Z is not a matrix element, otherwise it cz 
is included in the term y(~~). Also, the partial uncertainty in the con centration 
due to the matrix composition, y(~~), is discussed in this section, although for 
only two matrix elements. The more complicated case of several matrix elements 
is discussed in Section 5. 7. 

In many practical cases, the concentration of the analyte element has to be 
calculated and the uncertainty in this concentration has to be known. Generally, 
the error propagation factor to the concentration is identical to that to the yield. 
The only exception is the error propagation factor for the matrix composition, 
which is different for the yield and the concentration. We discuss here the error 
propagation factor to the yield only, with the ex ception of the matrix composition 
where the error propagation factor to both the yield and the concentration is given. 
The uncertainty in the SF yield is discussed in Section 3.4. 

3.3.2 Propagation Factor for the Cross Section 

The calculation of the propagation factor for the cross section has one extra prob­
lem: the cross section depends on the proton energy E p· Eq. 3.4 is only valid if we 
assume that sqfu and óufu are constant for all proton energies Ep. As mentioned 
in Section 2.3.3, the error increases at lower proton energy especially for larger Z 
values. Nevertheless this assumption does not introduce large errors as is shown 
inSection 3.3.5. The propagation factor using Eq. 3.4 under this assumption is 

(3.6) 

A derivation is given in Appendix C. In consequence of Eq: 3.6, accurate cross 
section data is very relevant. However, when using cross section data with large 
errors the use of external thin or (preferably) thick standards reduces the error in 
the yield caused by the error in the cross section to a maximum of 5% and 1%, 
respectively [Cam 83]. 
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3.3.3 Propagation Factor for the Stopping Power and the 
X-ray Attenuation Coefficient 

The discussion for the propagation factor for the stopping power and the X-ray 
attenuation coefficient is combined because these factors are interrelated, as is 
shown later. The error in the totalstopping power can be derived from the error 
in the stopping power of single elements using Eq. 2.13 (Bragg's rule) : 

2 _ ~( )2 ......_ ss, _ v'E.(cissY 
ss, - L..J eisS; _" S - "' S 

i t L....i ei i 
(3.7) 

with ei the mass fraction of element i and S, the stopping power of element i. 
This equation can be extended since e, can also have an error as is discussed in 
Section 3.3.4. Eq. 3.7 does not give a simple dependenee of s8 .fSt on s8JS, but 
it can be simplified if we assume that sS;/ Si is identical for every element i : 

(3.8) 

The propagation factor P(Y(X z ), St) can be calculated using eqs. 3.4 and 3.8 
under the assumption that the relative error in the stopping power, s8 jSi, and 
the step in Eq. 3.4, 6s.fSp are constant for all ion energies Ep. 

J 
u(Ep )Ts(Exz ,Ep )(Hln Ts(Ex3 ,Ep)) dE 

( ) 
8Y,s, 1ss, ,..." s,(Ep) P( ) 

P(Y Xz ,St)== Y(X) 8"'- Ju(Ep)Ts(Exz,EP)dE 3.9 
z t s,(Ep) P 

This formula is a first order approximation, valid for small values of ti8 JSt; a 
derivation is given in Appendix C. For the above assumption, the same argument 
is used as for the cross section. 

For the X-ray attenuation coefficient, the derivative oY (X z )/ op1 can be solved 
analytically since Pt is independent of Ep. The propagation factor for Pt is 

J 
u(Ep )Ts(Exz ,Ep) In Ts(Exz ,Ep) dE 

P(Y(X ) ) sy,,., / 811
' s,(Ep) P (3 10) 

Z •Pt == Y(X ) p = J u(Ep)Ts(Exz,EP)dE ' · 
z t s,(Ep) P 

and 

(3.11) 

with c, the mass fraction of element i and Pi the X-ray attenuation coefficient of 
element i. The derivation of Eq. 3.10 is again given in Appendix C. 

These two propagation factors are interrelated according to the following for­
mula 

(3.12) 
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This is simply the summatien of eqs. 3.9 and 3.10. From a physical point of view, 
the two propagation factors are interrelated because the conesponding quantities 
are linked through the depth. The quantity that changes fastest as a function of 
depth, has the largest influence on the uncertainty in the yield. The propagation 
factors for St and l't are shown in figures 3.1 and 3.2 respectively for several 
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matrices. In Eq. 3.12 there are two extremities. In one extremity the propagation 
factor for the stopping power is one and the propagation factor for the X-ray 
attenuation coefficient is zero. In this approximation the error caused by the 
transmission T8 is neglected. In a practical situation this approximation is possible 
when T8 is large for all Ep. IfT8 ;::: ~ for all proton energies then T8 > -T8 1nT8 
for all Ep and it follows from Eq. 3.10 that the error propagation factor for P.t 
is very small. Note that 0 :::; T8 :::; 1 so that ln T always is negative. The 
propagation factor for P.t is very small for light matrices and large valnes of Z. For 
large val u es of Z, the X-rays of element Z have a high transmission probability, 
which is even higher for light matrices. In the other extremity, the propagation 
factorforSt is zero and for J..lt it is one. This occnrs when the X-ray transmission 
changes rapidly with changing proton energy or depth in the sample so that for 
most proton energies T8 < -T8 1nT8 . This case can he fonnd for low valnes of Z, 
especially for heavy matrices. 

In figures 3.1 and 3.2, there also are some steps visible for the matrices com­
posed of Fe and Pb. These steps are cansed by the absorption edges of the matrix 
elements. The absorption edges cause changes in the valne of the X-ray at tennation 
coefficient and thus, via the transmission, in the propagation factor. 

3.3.4 Propagation Factor for the Matrix Composition 

An impression of the inflnence of the matrix composition can he obtained from 
figures 3.1 and 3.2. There are two possibilities for the error calculation. One is 
the calculation of the change in the yield as a function of the change in the ma­
trix composition, according to Eq. 3.4. The other possibility is the calcnlation of 
s 8 j St and s P.J P.t caused by the error in the matrix concentrations and snbse­
qnently using the propagation factor for these errors, as described in the previous 
snbsection. The errors in St and 1-'t are caused by the errors in Si and J..li of the in­
dividnal elements and the errors in the concentrations of these elements. Becanse 
of facts explained in Appendix C we have chosen to use the first metbod of direct 
calculation of the change in the yield as a function of the change in the matrix 
composition. 

For the discussion of the propagation factor, we consider a binary matrix 
AcBl-e to simplify the reasoning. In this case, the absolute value of the error 
in the concentration, se, is used instead of the relative error, ~' becanse the 
concentration is in itself a relative variable. For this value, the smallest of the 
two absolute errors scA and scB has to be taken. This is explained by the fact 
that the two concentrations cA and eB are dependent because their sum must 
he one. From this dependence, it follows that the errors in cA and eB also de­
pend on each other. To be able to use the absolute error, the propagation factor 
P'(Y(X z ), c) = qF/sc is introduced. The relation between the two propagation 
factors is P'(Y(Xz),c) P(Y(Xz),c)/c. Note, that the subscript c denotes the 
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concentration of a matrix element. This quantity is different from cz, the concen­
tration of the element of interest used in Eq. 2.15. For two types of matrix ,the 
influence of the composition has been investigated in more detail. One type is a 
matrix of ccol-c (chosen because c and 0 are the main constituents, in mass, of 
biological materialand backing foils) and the other is Fe.,Ni1_c· The propagation 
factor P'(Y(X z ), c) is displayed in Fig. 3.3 for X-rays of several elements. A posi­
tive value of P'(Y(X z ), c) implies that the yield increases with increasing C or Fe 
concentration. 

From Fig. 3.3( a), it is clear that the matrix composition plays an important role 
for light elements (Na-Cl) in a C.,01_., matrix. The yield for the light elements 
increases by about a factor of 2 for the change of a 100% 0 matrix to a 100% 
C matrix. A rough estimate of this increase can be found from Fig. 3.3(a) by 
integrating P' (Y (X z), c) over all concentrations c. The large increase is caused 
by the fact that the valnes of p, decrease by about a factor 2 for this change 
and thus the transmission probability (T8 ) increases. The uncertainty in such a 
matrix composition thus plays an important role in the uncertainty of the yield 
for light elements. The stopping power of the protons increases about 6% for the 
change of a oxygen matrix to a carbon matrix. Accordingly the yield for the heavy 
elements decreases by about the same amount, resulting in a negative value for 
P'(Y(Xz),c). For heavy elements the change in the X-ray attenuation coefficient 
is of much less importance because of its low value and hence the high transmission. 
The uncertainty in the yield due to the matrix composition is thus of much less 
importance for heavy elements. 

For the Fe.,Ni1_., matrix, the effects are less pronounced except for the yield 
of Fe, Ni and Cu (see Fig. 3.3(b)). For Na, the yield increase by about 23% for 
a change from 100% Ni to 100% Fe. This results in an average value of about 
0.2 for the propagation factor P'(Y(Xz),c). The 23% increase in yield can he 
explained by a 19% decrease of the X-ray attenuation coefficient. For Ag, the 
yield increases by ,....., 3% for a change from 100% Ni to 100% Fe. This is the 
result of a 17% decrease in the X-ray attenuation coefficient, not so important 
because of the high transmission probability. The change in the X-ray attenuation 
coefficient is partly, but not completely, counterbalanced by an increase of the 
stopping power, less than 1% increase for 3 Me V protons and 3% for 1 Me V 
protons. All elements between Na and Ag have valnes for the propagation factor 
between those of Na and Ag, with the exception of Fe, Ni and Cu. The valnes 
of the propagation factor for Cu are very large because the X-ray energy of Cu is 
above the absorption edge of Fe while it is still below the absorption edge of Ni. 
This results in a much higher value of JJz(Ex,c,.J for Fe than for Ni. Therefore, the 
yield decreases drastically when the Fe content of the sample increases, resulting 
in large positive valnes for the propagation factor for the matrix composition. 
The propagation factor P' (Y (X z), c) for the matrix composition of Fe is strongly 
influenced by the fact that it is a matrix element. In first order, the yield is linearly 
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dependent on c (cz = c for Fe). Thus P(Y(Xpe), c) ~ 1 and P'(Y(XFe), c) ~ 1/c 
which is in reasonable agreement with Fig. 3.3(h). It should he remembered that 
this discussion is only for the primary yield while for Fe there is also a SF yield. 
P'(Y(Xm), c) is determined hy the two factors mentioned ahove: the change in the 
X-ray attenuation coefficient because ExN, is still above the Fe absorption edge, 
and the linear dependenee on the matrix composition, P'(Y(Xm),c) ~ 1/(1 c) 
(in first order). 

From these facts, it can he concluded that the matrix composition plays an 
important role in the uncertainty of the yield when it leads to drastic changes in 
f-Lt and thus in the transmission. This is the case when the matrix elements have 
a low atomie number or when the X-ray energies are near to the ahsorption edges 
of matrix elements. Of course, the matrix composition also is important when the 
element of interest is itself a matrix element. 

A last point of interest is the propagation factor to the concentration cz, 
P'(cz,c) = 8

:~·c /se. P'(cz,c) = -P'(Y(Xz),c) for none matrix elements. For 
matrixelements, however, the two propagation factors to Cz and toY are different. 
Fora binary matrix AcBl-c• they can he correlated according to 

P'(cA,c) ~ -P'(Y(XA),c)+ 1/c 

P'(cB, c) ~ -P'(Y(XB), c)- 1/cB 

(3.13) 

(3.14) 

with eB = 1 - c. A derivation of these equations is given in Appendix C. Appli­
cation of Eq. 3.13 and Eq. 3.14 results in values of P'(cFe• c) that are in between 
those of Na and Ag and in values of P'(cm, c) that have a similar dependenee 
on c as those of Cu but are slightly larger. Thus, for the propagation factor to 
the concentration, there is no longer any difference between matrix elements and 
other elements. 

3.3.5 lnfluence of the lonization Depth on the Propagation 
Factor 

Another influence on the error in the yield of X-rays is the effect of the depth in 
the sample at which the ionization takes place. The depth in the sample influences 
on the one hand the energy of the protons and thus the cross section and on the 
other hand the transmission probability of the X-rays. Both the cross section and 
the transmission decrease with increasing depth. The ionization cross section has 
a maximum in the proton energy. For all elements with Z > 12, this maximum 
lies above 3 MeV. As described in Section 2.3.2, the errors in the stopping power 
and the cross section increase as the projectile energy decreases. In contrast with 
this, we assumed a constant error in the previous discussion (sections 3.3.2 and 
3.3.3). Fortunately, the increase of the error is in part cancelled hy the fact that 
the contrihution to the total yield from parts of the sample at larger deptbs is 
very small. This is illustrated in Fig. 3.4. From this figure, it is clear that 99% of 
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Fig. 3.4: Plot of the cumulative fraction of the yield as a function of the proton 
energy for two X-ray lines and two matrices. The beam energy EP,O is 3 MeV. 
The fra.ction is 0 at 3 MeV and 1 at 0 MeV. The dasbed line represents 99% of 
the total yield. 

the contri bution to the yield comes from that part of the sample where the proton 
energy is larger than 1 Me V. It can also he concluded from this figure that the 
contrihution to the yield for light elements comes from a very small top layer of 
the sample. This is caused hy the small transmission prohability of low energy 
X-rays. 

3.3.6 Propagation Factor for the Proton Bearn Energy 

Finally, we consider the effect of the proton energy Ep,o on the error in the yield. 
The heam energy E p 0 is used as the starting point of the integration over EP. 
For the calculation of this propagation factor, Eq. 3.4 is solved numerically. In 
Fig. 3.5, the propagation factor P(Y(Xz), E0) at Ep,o = 3 MeV is shown for sev­
eral matrices. The sample is assumed to he infinitely thick so that Ep,j 0. The 
propagation factor is somewhat smaller than zero for light elements, meaning a 
decrease in yield for an increase in energy. This can he explained by the fact that 
the cross section for Na and Mg reaches a maximum below 3 MeV. As discussed 
above, only the top layer contributes to the yield (see Fig. 3.4) so the contribution 
to the yield of layers in the sample where the cross section has its maximum is 
minimaL These two facts together lead to a decrease in the yield when the projec­
tile energy increases. For heavy elements, the propagation factor P(Y(Xz), E0 ) is 
about 3 to 5 depending on the matrix. The error in the beam energy is in this case 
very important, a 2% error in the beam energy leadstoa 6-10% error in the yield 
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Fig. 3.5: Plot of P(Y(X z ), Eo) as a function of the atomie number of the element, 
for w hich the yield is calculated, for various matrices. The beam energy E P,o is 3 
Me V. 
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for heavy elements. It can be explained by the fact that for heavy atoms the cross 
section increases with increasing energy, at 3 Me V by about 3% for a 1% change 
in energy for Z > 40. In Fig. 3.5, differences for various matrix compositions also 
are visible. Since the cross section does nat depend on the matrix composition, 
it must be due to an X-ray transmission change. The transmission increases for 
heavier elements and lighter matrices. Thus, the transmission is highest for a C 
matrix and heavy elements. In this case, there is a larger contri bution from deeper 
layers. In these deeper layers, at lower energies, the increase of the cross section 
by an increase of the energy is even larger, about 5% for a 1% change in energy at 
2 MeV for Z = 50. The abrupt changes for the iron and lead matrices in Fig. 3.5 
are again caused by changes in P.t produced by absorption edges in the matrix ma­
terial. It can be concluded that the optimum partiele energy ( the energy at which 
the yield is maximumfora given amount of material) is the energy where the cross 
sectionis maximum. For heavy elements (Z > 21), this maximum is not reached 
below 10 MeV. In a practical situation, there are of course other considerations 
for an optimum energy, such as the background production. 

3.3. 7 Condusion 

There are many quantities in the formula for the TT-PIXE yield (Eq. 2.15). For 
most ofthem, such as the number of protons Np, the relative error in the quantity 
may be added quadratically to give the total error in the yield. This is not possi­
bie for the quantities in the integral. Here, the partial error in the yield for this 
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quantity has to he calculated first and after that this error can he added quadrat­
ically. In this section, the various propagation factors have been calculated. In 
combination with the error estimates of Section 2.3, this leads to the following 
results : 

P(Y (X z ), u) :::::: 1 The partial error in the yield for the cross sec­
tion is about 5%. This error can be reduced 
further by using external standards. * :::::: 1-2% IP(Y(Xz), St)+ P(Y(Xz), p,t)l = 1 

!!!.. !=::i 10% 
I' 

se; !=::i 2-5% P'(Y(Xz),c) varles 

The partial error in the yield always is smaller 
than 2%. 
The partial error in the yield can be as high 
as 10% for low Z elements or for elements 
just above the absorption edges of matrix ele­
ments. 
The relative partial error in .the yield for the 
matrix composition can be very large when 
errors in the matrix composition lead to large 
changes in P.t as exemplified for Ni Ka X-rays 
in a Fea:Ni1_.., matrix. 

The partial error in the yield is in most cases 
below 5% fora beam energy of 3 MeV. For 
lower beam energies however, the part i al error 
can increase further. 

3.4 The U ncertainty in the Secondary Fluores­
cenee Yield 

3.4.1 Introduetion 

In this section, the uncertainty in the X-ray yield due to Secondary Fluorescence 
(SF), as described in Section 2.2, is discussed in detail. The SF process is rather 
complicated, so we make our analysis in two steps. First, we shall provide some 
insight in the physical meaning of the formula for SF. The aim is to understand 
the behaviour of SF under variation of several quantities, such as partiele energy, 
atomie number and matrix composition. Secondly, we want to investigate the 
influence of uncertainites in quantities, such as the cross section, the stopping 
power and the X-ray absorption coefficient on the SF yield. The propagation 
factor is treated in the same way as in the previous section. Each quantity is 
discussed in a separate paragraph, with exception of the cross section since the 
dependenee of the SF yield on the cross section is identical to that of the primary 
yield. The propagation factor for the cross section to the SF and primary yield 
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are identical : 

SySF ,0' ISO' ~ 1 
Ysp(XA,XB) u ' 

(3.15) 

under the same assumption as made in Suhsection 3.3.2. Note that the cross 
section for element B producing the primary X-rays, is used. 

The total uncertainty in the SF yield is calculated using all the quantities in 
the SF yield formulas (eqs. 2.39 to 2.43): 

( 
SySF )

2 _ ( SySF,C )
2 
+ (SQ)2 

Ysp(XA,XB) - Ysp(XA,XB) Q 

( sT )
2 

(se )
2 

(s0 )
2 

+ Ta.bs(ExJ + e(ExA) + n 

+ (b 8
b ) 

2 

+ (~) 
2 

+ (P(Ysp(XA,XB), u) u::n ) 
2 

B,X(K) B,K B,K 

+ (P(Ysp(XA,XB),St)sss)2 + (b sb )2 + (~)2 + (~)2 
t A,X(K) W A,K CA 

+ (P(YSF(XA,XB),p,) ~) 
2 

+ (P(Y5p(XA,XB),Ep,o) ;;,,)' (3.16) 

The term .!.!:... should only he added when element A is not a matrix element, oth-
cA 

erwise it is included in the term Ys;[i~;~B)' In this section, the term Ys;li!:~B) 
is only discussed for a hinary matrix. 

The total yield, including primary X-rays and SF X-rays, is giv(m hy Eq. 2.45: 

Y(XA) = Yp(XA) + LYsp(XA,XB) (3.17) 
XB 

Because some quantities in Yp and Y5 p are the same, the uncertainties in the two 
cannot he simple added according to the standard error calculation rules. Instead, 
the formulas for Yp and Y5 p have to he suhstituted in Eq. 3.17 and then the 
normal rules can he applied to obtain the uncertainty in the total yield: 
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(3.18) 

Notice that the error propagation factors to three different yields are used. Again, 
the term k should only be added when element A is not a matrix element, oth-

cA 

erwise it is included in the term y(~:). 
The uncertainty in the concentration determined from Eq. 3.17 can be calcu­

lated in a similar way as for the total yield. 

3.4.2 Energy Dependenee of the SF Yield 

The proton-beam energy Ep 0 is the initial value of the integral over Ep as can 
' beseen from Eq. 2.39. The proton energy Ep corresponds to the depth x where 

the primary X-rays of element B are produced (see Fig. 2.3). The dependenee 
of the SF yield on E P,o is illustrated in Fig. 3.6 for a Pd0.01 Sn0.99 matrix and 
several proton energies. Sn is element B and Pd is element A that produces the 
secondary X-rays under ionization by the primary X-rays of element B. The target 
thickness t is assumed to be infinite. The calculated values for the SF yield are 
given in Table 3.1. Changing EP,o has two effects. On the one hand, it changes 

Table 3.1: Table of the secondary yield fora PdomSno.99 matrix a.s a. function of 
energy. Sn is the element producing the primary X-ra.ys tha.t enha.nce the X-ra.y 
lines of Pd. The thickness is taken infinite. 

Epo 
' 

Ysp(Ko:Pd• Ko:sn) YsF~KaPd,Kas"î 
p(Kapd) 

Me V /(J..tC 10 mst) 
1 10.51 0.267 
2 446.4 0.346 
3 3195 0.419 
4 11443 0.491 

the energy for which the cross section u~,'k(Ep) and the stopping power St(Ep) 
have to be calculated. For most elements, except elements with Z :::; 12, the cross 
section increases with increasing Ep. Thus, the SF yield increases for an increase 
in Ep,o· For elements with Z :::; 12, the cross section reaches a maximum below 
E p = 3 Me V. The stopping power and the cross section are the only terms in 
Eq. 2.39 directly depending on the proton energy. The dependenee of these two 
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Fig. 3.6: lnfluence of the proton beam energy EP,o on the various terros of the 
SF yield fora Pdo.otSno.99 matrix. In Fig. (a), u';::,K(EP)/St(Ep) is given as a 
function of the depth x in the sample, at which the primary X-ra.ys (of element 
Sn) are produced. In Fig. (b), the transmission correction terros are given as a 
function of x. The transmission correction terros T reptesent the transmission of 
the A and B X-ra.ys integra.ted over all a.ngles /1 and layers L. The range for a 
given EP,o is given by the verticallines in fig. (b). 
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terms together on the proton beam energy E P,o is illustrated for a Pd0.01 Sn0.99 
matrix in Fig. 3.6(a). 

On the other hand, the change in E p 0 has no influence on the value of the 
two transmission correction terms in Eq.' 2.39 for the same value of the depth 
x, although the proton energy Ep is different at the same depth x when Epo 
changes. The change in Ep 0 , however, changes the range ofthe protons and th~s 
the interval of x needed for 'the integration. This is Ulustrated in Fig. 3.6(b) where 
the two transmission correction terros are displayed as a fundion of x. The curves 
are identical for all energies E P,o, only the range changes. 

· The two transmission correction terros are given by eqs. 2.42 and 2.43. They 
repreaent the transmission of the A and B X-rays integrated over all angles {J and 
all layers L, the layer where the secondary X-rays of element A are produced. 
For the transmission correction term To<L<x, the primary X-rays go towards the 
surface and subsequently produce the sëcoÜdary X-rays and for Tx<L<t the pri­
mary X-rays go deeper in the sample before producing the secondary-X:rays. The 
transmission correction term Tx<L<t(x) decreases monotonicallywith increasing x 
because the path lenghts increasë. The other quantity, To<L<x(x), has a maximum 
as a fundion of the depth x. The initia} increase of thë transmission correction 
term is caused by the increase of the amount of material between the depth x and 
the surface, leading to a higher integration boundery. Note that the dirneusion 
of the transmission correction terros is cm. The eventual decrease of To<L<x(x) 
is caused by the increased path lengths. The maximum in the total transmission 
correction term as a fundion of depth x is caused by a balance of amount of ma­
terial above and below the depth x and the path lenghts. The position of this 
maximum is determined by the X-ray transmission of X-rays of elements A and 
B. For heavy elements, the maximum in the two transmission correction terros 
together, ~ot' is found at larger depths since the X-ray transmission is high. This 
is the case for Fig. 3.6b where a Pd0.01 Sn0.99 matrix is used. For lighter elements, 
the maximum shifts to lower deptbs because of a decrease in transmission. From 
Fig. 3.6(a) and (b), it can be concluded that the variation of the cross section 
dominates the variation of the SF yield when the proton beam energy varies. 

Next, the propagation factor P(Y8 p(KaA,Ka:B),Ep 0 ) is discussed. It can be 
concluded from the above and Section 3.3.6 that the propagation factor to the SF 
yield is similar to the error propagation factor to the primary yield. This condusion 
is confirmed by Fig. 3.7 where the propagation factor is plotted as a fundion of 
atomie number for several proton energies. As discussed in Section 3.3.6, the cross 
section has a maximum that is below 4 Me V for Z $ 14. Near this maximum the 
cross section does not vary drastically and the propagation factor to the SF yield 
also is small. The propagation factor is very large for low proton energies because 
the cross section increases rapidly with increasing Ep, see also Fig. 3.6. Finally, 
it can be said that the proton beam energy must be high to rednee the influence 
of Ep,o· 
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is chosen as close as possible above the absorption edge of element A, see Fig. 3.13. 

CA = 0.01 and CB = 0.99. 

3.4.3 Depth Dependenee of the SF Yield 
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First, the contribution to the total SF yield as a function of depth is investigated. 
As in the previous section, the depth x is used at which the primary X-rays (of 
element B) are produced. For the calculation, the target thickness is taken to 
be infinite. For the depth x, there is a corresponding proton energy Ep. As 
for the primary yield, 99% of the contribution to the total SF yield comes from 
deptbs where the proton energy is larger than 1 MeV when Ep,o 3 MeV. This 
is illustrated in Fig. 3.8 where the cumulative SF yield is shown as a function of 
proton energy for several matrices. The cumulative SF yield remains within the 
extremities of Fig. 3.8 when the matrix elements are between Na and Pd . The 
depths, where the proton energy is below 1 MeV, do not contribute significantly 
to the total yield because of the decrease of the ionization cross section of element 
B. In contrast with the primary yield, the SF yield for light elements is not strictly 
confined to the top layers (see Fig. 3.4). 

The total sample thickness t also is a depth that may he varied. By changing 
the thickness t of the sample, the amount of material contributing to the SF 
yield can he changed without changing the proton energy Ep. In this case, the 
values for the proton energy Ep are constant for given x. When t changes, the 
integration bounderies in Eq. 2.39 are changed, resulting in different transmission 
correction terms. In Fig. 3.9, the transmission correction terms are shown for 
several thicknesses t for a Pd0_01Sn0_99 matrix at EP,o = 3 MeV. The values of 
the SF yield are given in Table 3.2. The transmission correction term for layers 
between the top and depth x, T0~L~z(x), remains identical for identical x and 



58 

1.0 

"d -Q) ..... 
1>. -<Cl ...... 
0 ...... 

'+-< 0.9 
0 

~ 
0 ..... ...... 
0 
<Cl 
s.. 
!lt. 

0.8 
0 

Matrix: Ma: X-ray: Na 
Matrix: S ; X-ray: Cl 
Matrix: Ni; X-ray: Fe 
Matrix: Sn; X-ray: Pd 

1000 
EP [keV] 

. \ .. 
·. \ 

•, I 

', \ .. 
',I 
'' 
'I ·.' 

2000 

Error propagation ... 

3000 

Fig. 3.8: The cumulative fraction of the SF yield as a function of the proton 
energy for four matrices. The mass fraction of the matrix element Bis 0.99 and 
the mass fraction of element A is 0.01. EP,o = 3 Me V and the target thickness t 
is infinite. The dashed line represents 99% of the total SF yield. 

different thickness. But the transmission correction term for deeper layers than 
x, Tx<L<t(x), decreases at given depth x for decreasing sample thickness t. This 
effect -is more pronounced for high energy X-rays. The high transmission of these 
X-rays makes it possible that a large fraction of the secondary X-rays produced 
in deep layers L in the sample can still reach the detector. To illustrate this fact, 
the matrix Pd0.01Sn0.99 is used in Fig. 3.9. For this matrix, the SF yield extends 
beyond the range of the protons. A sample thickness of 2.5 x the range results in a 
SF yield that is 10% more than the SF yield of a sample having a thickness equal 

Table 3.2: Table of the secondary yield for a Pdo.ot Sno.99 matrix as a function of 
thickness; EP,o = 3 Me V. The X-rays of Sn enhance the X-ray lines of Pd. 

t YsF(KaPd• Kasn) YsF{Kapd 1K asn} 
Yp(Kap.t) 

mg/cm2 / p,C /10 mst 
10 933 0.191 
20 2014 0.289 
30 2631 0.346 
40 2889 0.379 
100 3195 0.419 
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to the range. 

3.4.4 Concentration Dependenee of the SF Yield 
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Another point of interest is the variation of the concentrations of the two elements 
A and B. These two concentrations are related because the total mass fraction is 
one. The effect of the variation of the concentrations on the yield is illustrated 
with a two element sample AcNi1_c, where A is Ca, V or Fe. Ni then is the 
element B that produces the primary X-rays which in turn can ionize element A. 
The SF yield for these matrices is given as a function of the concentration, cA, in 
Fig. 3.10. In first order, the SF yield depends on the concentration as c x (1- c), 
see eqs. 2.39, 2.40 and 2.41. 

In full, the concentrations also influence the total stopping power St and the 
total X-ray attenuation coe:flicient Pt· For the FeeNi1_c matrix, this leads to 
an asymmetrie dependenee with a shift of the maximum SF yield to lower Fe 
concentrations. This is caused by the fact that the energy of the Ni X-rays is 
larger than the K-shell electron binding energy of Fe. Therefore, the attenuation 
coeflicient P,z(ExNJ is much larger for Z =Fe than for Z =Ni. This results in a 
much larger absorption of Ni X-rays in a sample with high Fe concentration. This, 
in turn, leads to lower values for the transmission correction terms ( eqs. 2.42 and 
2.43) and so toa lower SF yield. Fora CaeNi1 _c matrix, the SF yield is much more 
symmetrie. This is explained by two reasons. First, the difference between the Ni 
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Fig. 3.10: Dependenee of the secondary fluorescence yield on CA for several el­
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primary X-rays. The beam energy is 3 MeV and the target thickness is 100 
mg/cm2

• The curves are normalized totheir maximum values. 

X-ray energy and the K-shell electron binding energy is much larger for Ca than 
for Fe. This reduces the difference in transmission of Ni X-rays in a Ni dominated 
matrix and in a Ca dominated matrix, compared with the case of Fe. Secondly, 
the rednetion in transmission of Ni X-rays is counterbalanced by an increase in 
transmission of Ca X-rays when cca increases. This last effect is more pronounced 
for Ca than for Fe. The concentration dependenee fora VeNi1_c matrix is between 
these two extremes. 

For the discussion of the propagation factor for the concentration, we also 
consider a binary matrix to simplify the reasoning. The propagation factor for 
several AcNi1_c matrices is calculated and displayed in Fig. 3.11. In this figure, 
the absolute value of the error in the con centration is used for the same reasou as 
explainedinSection3.3.4. Thus, #;;:: = IP'(Y8p(I<aA,Ko:8 ),cA)Iscz wherescz is 
min (scA ,sc8 ). Using the first order dependenee of the yield on the concentration 
(Y8 p,...., cA x (1- cA)), it is possible to calculate the error propagation factor: 

'("'.r (K ) ) 8
Ysp cA / (1 - 2c A) P Lsp o:A,I<o:B 'cA = Y (K ' K ) scA ~ (1 ) (3.19) 

SF o:A, O:B CA -CA 
This equation is used to calculate the first order dependenee on cA in Fig. 3.11. It 
can be concluded that the propagation factor is smallest when both concentrations 
are more or less the same. In this case, the SF yield also reaches a maximum (see 
Fig. 3.10). Note that 

P(Y8 p(Ko:A,Ko:8 ),cA) =cA P'(Y8 p(Ko:A,Ko:8 ),cA) ~ 1--
1 

cA (3.20) 
-cA 
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Form Eq. 3.20 it is clear that the relative error in the SF yield is always smaller 
than or equal to the relative error in cA, provided that cA ~ 2/3. 

For small values of the concentration c A• below a few percent, Eq. 3.20 can be 
simpli:fied further. In this region, the influence of cA on St and P.t can be neglected 
and so the error in cA eau be ignored for the error estimate. The SF yield then 
depends linearly on cA and the propagation factor according to Eq. 3.4 becomes: 

(3.21) 

3.4.5 Atomie Number Dependenee of the SF Yield 

A further quantity to be investigated is the atomie number Z. A simple case is 
the variation of ZA while keeping ZB the same. Element B produces the primary 
X-rays under proton bombardment which, in turn, produce the secondary X-rays 
of element A. This case is demonstrated in Fig. 3.12 fora A0.01 Ni0.99 matrix with 
the ZA ranging from 20 to 26. In this case only the mass absorbtion eoe:fficient for 
element A, P.t(ExA), and IA (Eq. 2.40), containing the production cross section 
for X-rays of element A by X-rays of element B, are changed. The P.t(ExB) is 
hardly effected by the change of element A since element A constitutes only a 
small part of the total sample. The transmission of X-rays of element A increases 
for higher ZA values and so does the term IA which contains TA,toiEx

8
), wA,K> 

both increasing with increasing ZA, and bA K• (1- ~), both terms slightly 
' A 1K 
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Fig. 3.12: Secondary yield as function of ZA and for Ni as element B. Ep,o = 3.0 
MeV, CA 0.01 and CNi = 0.99. 

decreasing with increasing ZA. The result is au increasing secoudary yield as 
displayed in Fig. 3.12. 
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Fig. 3.13: Secondary yield as function of ZA with ZB as close above ZA as possible 
(see text). The difference AZ between ZA and ZB is given in the figure. EP,o = 
3 MeV, CA 0.01 and CB = 0.99. 

A more complicated case is the variatiou of Z of both elements. The Z value 
of element B is choseu in such a way that the Ko: X-ray of this element is as close 
as possible above the K-shell absorptiou edge of the element A. This results in a 
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maximum secondary yield for a specified element A. The dependenee of this SF 
yield as a function of the atomie number of element A is displayed in Fig. 3.13. 
From this figure, it can be seen that the yield has a maximum at around ZA = 18. 
This maximum originates from a complexity of factors. The ionization cross section 
for element B decreases drastically with increasing Z. Also, TA tot(Ex ) decreases 

' B 
with increasing Z. This effect is counterbalanced by the increase with increasing Z 
of the :fiuorescence yields of elements A and B and the two transmission correction 
terms. The steps in Fig. 3.13 at ZA = 21, 33 and 43 are caused by a step in ZB 
resulting in a step in rA,tot(Ex

8
). 

3.4.6 Propagation Factor for the Stopping Power and the 
X-ray Attenuation Coefftcient 

The propagation factorsforthese two variables are calculated according to Eq. 3.4. 
The same assumptions as formulated inSection 3.3.3 have also to be made. Al­
though the formulas for the secondary yield (eqs. 2.39, 2.40, 2.41, 2.42 and 2.43) 
are more complicated than for the primary yield, the resulting propagation fac­
tors for the stopping power and the X-ray attenuation coefficient look much the 
same. Examples for several matrices are given in Fig. 3.14 for Ep 0 = 3 Me V. The 
dependenee of the SF yield on the stopping power St(Ep) is id~ntical as for the 
primary yield (Eq. 2.41). The dependenee ofthe SF yield on the X-ray attenuation 
coefficient is more complicated since there are more quantities: Pt(Ex), Pt(E x

8
) 
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Fig. 3.14: The propaga.tion factor for the stopping power a.nd the X-ray a.ttenu­
a.tion coeflicient as a function of ZA with ZB as close as possible a.bove ZA (see 
fig. 14). Ep,o = 3 MeV,cA = 0.01 and CB = 0.99. 
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and TA,to/Ex
8

). Also, r A,K is dependent on the X-ray attenuation coefficient 
but, since it is a fraction, equal errors counterbalance each other. Most errors 
in J.l cancel out. What remains is an exponential term, just as for the primary 
yield. In this case, this may lead to an underestimation of the importance of the 
X-ray attenuation coefficient. This is caused by the fact that TA,tot(Ex

8
), the 

photo-electric absorption coefficient (see Eq. 2.9), is a quantity in the numerator 
(see Eq. 2.40) while llt(ExJ is a quantity in the denominator (see Eq. 2.42 and 
Eq. 2.43). In our error assessment, the uncertainties in these two quantities cancel 
each other. In practice, the two uncertainties may enhance each other because the 
X-ray attenuation coefficients are needed for different sides of the absorption edge 
of element A and around absorption edges the uncertainty in the X-ray attenuation 
coefficient is largest (see Section 2.3.6). Although no direct information is avail­
able a bout the deviations of the values of the X-ray attenuation coefficients around 
absorption edges, the comparison of different databases can give some clues. The 
comparison done in Fig. 2. 7 shows that variations of tens of percents are possible 
over absorption edges. 

The propagation factor P(Y8 p(XA, X8 ),J.Lt) ~ 1 for light elements because the 
X-ray transmission is sma.II a.nd it decreases to zero for hea.vier elements when the 
X-ray transmission increases. The dependenee on ZA of P(Y8 p(X A, X B), St) is 
just opposite. The sum of both propaga.tion factors equals one, all in agreement 
with the propagation factor to the prima.ry yield. 

3.4. 7 Condusion 

In this section, we have discussed the propagation factors for the various quantities 
to the SF yield. These error propaga.tion factors can he combined with the error 
estimates of Section 2.3 to arrive at the partial errors in the SF yield for these 
quantities. This leads to the following results: 

*-: ~ 5% P(YsF(XA,Xs),cr) ~ 1 
The partial error in the yield for the cross section is about 5%. This error can be 
reduced further by using external sta.ndards. 

~ ~ 1-2% !P(YsF(XA,Xs),St)+ P(YsF(XA,Xs),Pt)l::::: 1 

The partial error in the yield for the stopping power always is smaller than 2%. 

!e.. ~ 10% 
Th/partial error in the yield for the X-ray attenuation coefficient can he as high 
as 10% for low Z elements. 

s ~ 2-5% CA P'(" (X X ) ) ...., (1-2cA) J.SF A, B,CA ""'cA(l cA) 

in first order approximation for a binary matrix. 
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The error in the matrix composition is an experimental error. Fora two element 
matrix both concentrations can he calculated with PIXE. The error in the smallest 
concentration, usually element A, determines the partial error in the yield. This 
last error is thus determined by the precision of the PIXE measurements, in cl u ding 
SF correction, but it is smaller than or equal to the relative error in cA for cA<~· 

sEspo ~ 1% P(YsF(XA, XB),EP,o):.::::: 0-15 
PO 

The pàrtial error in the yield for the proton beam energy is in most cases below 
4%, for beam energiesof 3 MeV and higher. For lower beam energies the partial 
error can increase drastically. 

3.5 Conclusions 

In this chapter, the dependenee of the uncertainty in the calculated yield on the 
uncertainty of various quantities is investigated for the primary PIXE yield and 
the SF yield. To be able to undertake this study, we have derived a formula 
(Eq. 3.4) that makes it possible to calculate numerically the infiuence of the un­
certainty in quantity x on the uncertainty in the yield. We have introduced the 
propagation factor P z (Y, x) = !.JjF / ~. This quantity makes it possible to say 
something about the infiuence of the uncertainty in x without actually knowing 
how large the uncertainty in x really is. A complex dependenee on the matrix 
composition and on the proton and X-ray energies is found for the propagation 
factors of some quantities. The results of the investigation for the primary yield 
are summarized in Section 3.3. 7 and the results for the SF yield are summarized 
in Section 3.4.7. Several interesting features have been found: The propagation 
factors for the stopping power and the X-ray attenuation coefficient are found to 
be interrelated and their sum must equal unity. This is derived mathematically 
for the primary yield and it is also found via numerical calculations for the SF 
yield. The uncertainty in the matrix composition plays an important role in the 
uncertainty in the primary yield for light elements (11 < Z < 17) in even lighter 
matrices (e.g. a CcOl-c matrix). In general, it is important when changes in ma­
trix composition lead to large changes in the X-ray attenuation coeflicient, i.e. for 
Cu and Ni X-rays in a FecNi1_c matrix. The propagation factor Pz(Y, E p 0) can 
be very large (up to 5 for Ep 0 = 3 Me V) for large valnes of Z, becoming' larger 
when the matrix becomes lighter and E p 0 becomes smaller. This dependenee is 
found for the primary as well as for the 'sF yield. The uncertainty in the yield 
due to the uncertainty in the various quantities can undergo large changes when 
the matrix composition or the proton energy is varied. To get an accurate error 
estimate it is therefore necessary to make a separate evaluation for every type of 
sample and element of interest. 



4 Experimental Setup 

The experimental PIXE setup is described in this chapter. The emphasis is 
placed on the measurements of the experimental quantities needed for the ab­
solute calihration. The quantities determined are the bea.m energy EP,o, the 
absorher thicknesses, the detector solid angle 0, a.nd the detector efficiency 
e(Exz ). New aspects are the methods used for the bea.m-energy determi­
nation a.nd the calcula.tion of the uncertainties in the detector efficiency and 
the ahsorber transmission. 

4.1 General description 

All experiments described in this thesis have been performed with the PIXE setup 
of the Eindhoven University of Technology (E.U.T.). In recent years, this setup 
has been modernized in the scope of this study. In this section, the new set up is de-­
scribed with its features. In the rest of this chapter, the values of the experimental 
quantities needed for the absolute calibration metbod are determined. The treat­
ments of the subjects in this chapter are of different lengtbs because some subjects 
are already treated extensively in literature whereas other discussions yield more 
new information, such as the beam energy calibration for a cyclotron. The aim of 
the modernization is to create a user-friendly and versatile setup, suitable for the 
measurement of a variety of samples, especially thick ones. 

The souree of the ion beam is the AVF (Azimuthal Varying Field) cyclotron 
of the E. U. T., suitable for the acceleration of protons, deuterons, 3He, and alpha­
particles with energies in the range of 2.8-26 MeV. After extraction, the beam 
passes through a Beam Guidance System (BGS). The beam transport has been 
calculated by P.H.A. Mutsaers 1. Settings for the quadrupales have been calculated 
in such a way that the partiele beam is divergent in the last segment of the BGS. 
The layout ofthe last segment ofthe BGS is given in Fig. 4.1. In this last segment, 
the beam passes through four diaphragms, three of which have a diameter of 12 
mm. The diameter of the last one is selectable without breaking the vacuum; the 
possibilities are 4, 8, or 12 mm. The diaphragms together with the divergence of 
the beam insure a reasonably uniform beam. A remotely controlled quartz plate 
can be moved into the beam line to view the shape and intensity of the beam. 
This enables a fast optimalization of the settings of the dipoles and quadrupales 
of the BGS and a qualitative check on the beam uniformity. To obtain a better 
beam uniformity, a diffuser foil can be inserted without breaking the vacuum. For 
more information about beam uniformity, see [Joh 88] and for more information 
about diffuser foils, see [Kiv 80, Coe 90]. A fifth diaphragm of 12 mm in diameter 

1 Private communication 
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Fig. 4.1: Schematic layout of the last bea.m line segment. 
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is induded in the chamber to rernove ions scattered on the diaphragrns upstrearn 
in the bearn line. Other elernents in this bearn line are the defiection plates for the 
Beam On Demand (BOD) system, described in Sectien 4.4, and a rotating vane, 
described in Section 4.3. 

The PIXE charnber is evacuated by a 170 l Turbo Molecular Pump (TMP) 
preceded by a rotatien pump. All the vacuurn equipment is controlled by PLC 
(Prograrnmable Logic Control) to insure the safe eperation of the equipment. Up 
to 80 samples can be contained in a modilied slide projector that is also PLC con­
trolled. Other equiprnent in the chamber are a Faraday cup (FC, see Section 4.3), 
an electron gun (EG), an absorber holder with absorbers (see Section 4.5), an X­
ray detector (see Section 4.6), and a partiele detector (PD, see Section 4.7). The 
electron gun is used to prevent charge build-up on thick insulating samples. The 
charge build-up results in a high Brernsstrahlung background in the X-ray spec-
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trum. This process is described by Kivits [Kiv 80] who ascribed the background 
in the spectrum to the Bremsstrahlung between voltage breakdowns. The time 
of the breakdown itself is too short to explain the background. There are several 
methods to prevent charge build-up that work equally well altough each method 
has its own drawbacks (Goc 83]. We have chosen to instaU an electron gun, in 
view of its ease of use and flexibility. The design is according to ref. (Ahl 75]. 

I 
I 

/ 

/ 
/ 

TMP 

--- ....... 
/ 

04 

Fig. 4.2: La.yout of the PIXE chamber. The a.bbreviations are: FC- Faraday cup, 
abs absorber holder with absorbers, Si(Li) - Si(Li) X-ra.y detector, D4 a.nd D5 -
dia.phra.gms, RV- Rotating Vane, PD- Partiele Detector, TMP- Turbo Molecular 
Pump. The electron gun, not depicted, is situa.ted under dia.phragm D5. The two 
dashed circles give the outline of the slide ca.roussel. 

Apart from the sections descrihing the equipment in the beam-line and the 
setup, other sections are devoted to the beam-energy calibration (Section 4.2), 
and to the data analysis, including the NBS analysis (Section 4.7). In the final 
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section (Section 4.8), conclusions and a summary of the results obtained in this 
chapter are presented. 

4.2 Beam energy calibration2 

Two new methods for the determina.tion of the bea.m energy a.re described. 
Since these are rather new methods, the discussion is extensive in compa.rison 
withother subjects. The bea.m energy thus determined is found to he 70 keV 
lower then the nomina.l va.lue. 

4.2.1 Introduetion 

The beam energy is an important quantity for the PIXE analysis, as is shown in 
Section 3.3.6. In many cases, the error propagation (defined in Section 3.3.1) is 
larger than 1, so even a small uncertainty in the value of the beam energy can have 
a large effect on the uncertainty in the calculated concentration. A limiting factor 
on the accuracy with which the beam energy is known, is the energy spread of the 
beam. For a cyclotron, this energy spread is worse than for a linear accelerator, 
such as a Van de Graaff accelerator. For our cyclotron , the energy profile is a 
near Gaussian one, with a standard deviation of about 0.3% fora proton energy of 
around 3 Me V 3 . There are several methods to measure the beam energy, butsome 
are less suited for a cyclotron because these methods need many different beam 
energies and energy adjustement with a cyclotron is a cumhersome procedure. In 
this section, two methods are described, each in a seperate subsection, for the 
beam energy determination between 3 and 4 MeV. The final subsection (4.2.4) is 
devoted to a discussion and conclusions. 

4.2.2 Measurements using elastic and inelastic scattering of 
protons 

In general, if one can measure the energy of a scattered proton from a known 
target, it is easy to calculate the proton beam energy E1. However, there is no 
way to calibrate the spectrum of scattered protons and thus to measure the energy 
of scattered protons directly because there are no proton sourees available for the 
calibration of the detector. Alp ha sourees a,re available but cannot be used because 
the response of the detector to alpha particles is different from that to protons, 
leading to a different calibration. It is, however, possible to determine the energy 
of the incoming protons E1 by combining elastic and inelasti.c scattering. 

At certain angles, the energies "of the elastically and inelastically scattered 
protons are equal. If these angles are measured and the reaction Q value for the 

2 This sectionis basedon an artiele by N. Uzunov, F. Munnik and M.J.A. de Voigt [Uzu 93]. 
3 Private communication H.L. H.agedoorn 
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inelastic scattering is known, the proton beam energy E1 can be determined. The 
energy E 1 is calculated from first principles [Uzu 93] according to 

M1 (MI+mp)Q 

m~A(01 , OE)- M} 
(4.1) 

where 

A(9,,9E) ; { (:;: !:~) (cos9E + ~t- sin' OE) - cos9l r 
+ sin2 01 (4.2) 

Here, ME and MI are the masses of the target atoms for the cases of elastic and 
inelastic scat tering, respectively; (}I and (} E are the angles of the detector at which 
the inelastic and elastic scattered protons have equal energies and mp is the proton 
mass. 

The energy E 1 can even be determined using only one element with an ap­
propriate excited state. In certain cases, the angles (}I and (JE can be identical. 
This results in a more simplified method than described above and is called the 
'cross-over' method [Hey 63, Smy 64]. 
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Fig. 4.3: Proton scattering spectrum of the LiF target bombarded with 3.5 Me V 
protons (nominal value). The angle of the detector is 65° . The backing of the 
target is a thin Au layer. The notation of the symbols is described in the text. 

For this method, we have used a conventional scattering-spectrometry setup. 
The detector is a Passivated Implanted Planar Silicon Detector (PIPS) Canberra 
PD100-12-500AM with a resolution of 15 keV. A target consisting of a LiF layer 
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(0.189 mg/cm2
) evaporated onto a gold backing (0.523 mg/cm2) is used. 7 Li and 

19F are a very suitable combination for the experiments using elastic and inelastic 
scattering because of their high cross sections for the (p,p') reaction. The nominal 
beam energy of the cyclotron is set to 3.5 MeV. The measurements are made at 
forward scattering augles between 40° and 90° . 

A typical proton spectrum from the scattering experiment is shown in Fig. 4.3. 
In this spectrum, we observe the peaks corresponding to elastically scattered pro­
tons from lithium, fluorine and gold, denoted by Li0 , F0 and Au0 • The symbol 
19F1 denotes the reaction 19F(p,p')19F leading to the excited state at 110 keV, 
19F 2 the reaction 19F(p,p')19F with Q=197 keV and 7Li1 denotes the reaction 
7Li(p,p'?Li with Q=478 keV. Another group of three closely situated peaks and 
a broadened peak are observed in the low energy region of the scattering spec­
tra (Fig. 4.3). It is found that the three peaks are due to the reactions [Pol 69]: 
19F(p,p')19F at an excitation energy of 1.346 MeV denoted according the indica­
tions above as 19F 3 ; 19F(p,p')19F at 1.459 Me V denoted as 19F 4 and 19F(p,p')19F 
at 1.554 Me V denoted as 19F 5 . The broadened peak is due to the elastic scattering 
from hydragen (1 H), which is also present in the target. Fig. 4.4 shows a plot of 
the positions of the different proton peaks versus the angle between 40° and 90° . 

For the calculation of the beam energy according to Eq. 4.1, we used the curves 
for 7 Li0 and 19F 2 , 19F 0 and 19F 1> 19F 0 and 19F 2 and from the secoud set of peaks 
the curves for Hand 19F3 , H and 19F4 , Hand 19F5 • First, a least squares fit 
is applied to the elastic and inelastic scattering data to determine the augles (}I 

and OE. Secondly, a correction of +0.3° for the angle of the unscattered beam is 
made. This correction is experimentally determined using the small angle elastic 
scattering of the protons from the gold backing at ± 16° , ± 18° and ± 20° . 
A plot is made of the Au0 peakarea, normalized to the beam charge, versus the 
angular position of the detector. The angle of the unscattered proton beam can 

Table 4.1: The calculated proton beam energy for different lines. The nomina! 
beam energy is 3.5 MeV. 

Lînes used for (JE (}I Calculated beam energy 

calibration (deg.) (deg.) (Me V) 
1Li t9F 

0> 2 65.02 88.57 3.42±0.03 
19F 19F 

0> 1 88.75 69.97 3.45±0.03 
19F 19F 

0> 2 88.75 53.21 3.43±0.06 
H 19F 

' 3 
42.29 71.67 3.430±0.016 

H 19F 
' 4 

42.29 44.60 3.436±0.014 
H t9F 

' 5 
45.06 65.31 3.428±0.018 
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Fig. 4.4: Plot of the measured peak positions of several elements as a function of 
the scattering angle 8. The drawn lines are fitted lines using standard kinematics 
calculation [Chu 78J. The notation of the symbols is explained in the text. 

he found hy taldng the average centre of the two curves at negative and positive 
angles. Thirdly, corrections for the energy loss of the protons in the target have 
to he made using the stopping power for the sample. The so found values for the 
beam energy are given in Table 4.1. From this table, it is seen that the nomina} 
energy of the cyclotron proton beam is about 70 ke V too high. 

The uncertainties in Tahle 4.1 are determined from individual uncertainties 
according to standard error calculations (see Section 3.2). The main uncertain­
ties in our experiment are the statistica} uncertainties in the fitted data, in the 
determination of the positions of the peaks, in the stopping power ( ahout 3%, see 
Section 2.3.2) and in locating the detector angles (ahout 0.08° ). It should he 
noted that the beam energy spread (about 10 keV) and the detector resolution 
influence the uncertainty in the determination of the peak position by peak broad­
ening. The peak broadening caused by the thickness of the sample ranges from a 
few to 20 keV. This broadening is so small because all the particles have to travel 
through the complete sample, whether scattered at the front or at the back of the 
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sample. The sample is rotated for larger scattering angles to minimize the differ­
ence in energy loss between protons scattered at different depths in the sample. 
The only peak for which the broadening is much larger, isthe peak of hydrogen. 
Here, the broadening is caused by the fact that the stopping power of scattered 
and not seattered protons is very different because the energy of the scattered 
protons is much lower than the beam energy. Nevertheless, the uncertainty for the 
case of scattering from hydragen and the three groups 19F 3 , 19F 4 and 19F 5 is less 
than for the other cases, which is due to the smaller statistica! error in the least 
squares fit. 

4.2.3 Measurements using (p,a) reactions 

Reactions of the type (p,a) can be used to determine the proton beam energy 
using the same experimental setup and sample as used for Subsection 4.2.2 and 
an alp ha souree for the energy calibration of the detector. 
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Fig. 4.5: High energy part of the (p,a) spectrum of the LiF target. The detector 
angle is 70° and the nominal proton beam energy is 3.5 MeV. The number of 
counts of the 19 F3 peak is multiplied by a factor of two to make it better visible. 

Three peaks are observed in the high-energy region of the spectra from the 
scattering experiment described in the previous subsection (Fig. 4.5). They are 
due to the alpha particles from the reaction 19F(p,4 He)160 with ground-state Q­
value of 8.110 MeV [Squ 56]; to alpha particles from the reaction 7Li(p,4He)4 He 
with ground-state Q-value of 17.347 Me V and to 3He particles from 6Li{p,3He)4He 
with ground-state Q-value of 4.021 MeV [Lau 66]. The alpha particles from the 
reaction 6Li(p,3He)4He appear in the region of the elastically scattered protons 
because of the low kinematica! factor and the peak is therefore diflicult to abserve 
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forsome angles. Moreover, the detector eaUbration made for alpha particles could 
not be used for the 3 He because the different masses for 3He and 4 He result in 
different detector responses. The peak from the reaction 19F(p,4 He)160 is also 
omitted since it had a low alpha yield. The analysis has been carried out only for 
the ground state alpha partiele group from the 7 Li(p,4He)4 He reaction. 

The PIPS detector is calibrated using a standard Am/Cm alpha souree with 
energiesof 5.486 Me V and 5.805 Me V for the main alpha lines. The resolution of 
the detector is 20 ke V at 5.486 Me V. For a given angle of the detector position, the 
energy of the alpha partiele peak can be measured. The energy of the incoming 
protons can be calculated from these energies using standard calculation of the 
kinematics [Chu 78] after corrections for the energy losses of the protons and the 
alp ha particles in the target materiaL The angle of the target is rotated for larger 
scattering augles to minimize the energy loss of the particles. The results for the 
calculated beam energy are given in Table 4.2. To calculate the proton beam 
energy from the reaction, we have used a program for simulation and evaluation 
of nudear reactions, SENRAS V2.11 [Viz 90]. 

Table 4.2: Table of the calculated beam energy using the 7Li(p,a )4 Hereaction for 
several angles. The calculation is described in Section 4.2.3. The nomina! beam 
energy is 3.5 Me V. 

Detector angle Rotation of the Energy of the a Beam energy 
(deg.) target ( deg.) group (MeV) (Me V) 
50.3 0 11.851 3.44±0.03 
55.3 23 11.661 3.44±0.03 
60.3 35 11.427 3.45±0.03 
65.3 35 11.154 3.46±0.03 

The uncertainty in the energy of the proton beam determined from the alpha 
particles of the reaction 7Li(p,4He)4 He is due to the uncertainties in the deter­
mination of the position of the alpha peaks. Because the energy of the alpha 
particles produced by the reaction 7Li(p,4He)4 He is much larger than the energy 
of the alp ha particles from the Am/Cm source, a large extrapolation of the energy 
calibration is needed. Therefore, these results are only an example of this metbod 
and cannot be used on their own account. 

4.2.4 Discussion and conclusions 

Two methods for the energy determination of the proton beam in the range be­
tween 3 and 4 Me V have been applied: energy determination from experiments 
with elastic and inelastic proton scattering and from (p,a) reactions. The reliabil-
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ity of the results varies from metbod to metbod and it is assessed helow. 
The scattering method used in Suhsection 4.2.2 is an extension of the so­

called 'cross-over' technique and provides a very convenient way of determining the 
energy of the proton heam. From the error analysis made for the measurements 
with tbe LiF target, it follows that the uncertainties in determining the proton 
heam energy are less than 18 keV in the case ofthe inelastic groups oflines 19 F3 , 
19F 4 and 19F 5 and the elastic group for H. The only external data needed are the 
Q-values for the inelastic scatterings, which are accurately known. 

From a point of view of the time needed for the experiments, the metbod 
using (p,a) reactions, described in Subsection 4.2.3, is favourable. However, the 
energies of the alpha particles from the reaction 7Li(p,4He)4 He are much larger 
than tbe energies of the calibration source. The use of this metbod cao only 
be justifiably when both energies are more closely matched. The external data 
needed for this metbod are the Q-values for the (p,a) reactions and the energy 
of tbe alpha particles emitted by the alpba-source. More than anytbing else, the 
results ofSubsection 4.2.3 in combination witb the results ofSuhsection 4.2.2 prove 
that the energy calibration of the partiele detector is very linear as is expected of 
this type of detector [Kno 79]. 

On the basis of the above arguments, we have decided to use the results of tbe 
second metbod (Subsection 4.2.2) as tbe best estimate of the proton heam energy. 
The results of Table 4.1 lead to an averaged systematic shift of 70 ± 10 ke V helow 
the nominal value of AVF cyclotron for the investigated energy range. 

4.3 Measurement of the number of bombarding 
particles 

The accurate measurement of the number of bombarding ions is vital for the 
calculation of the concentration of elementsin the sample (see Section 2.1). 
In this section, two methods for the measurement of the number of bom­
barding particles are described. 

Tbere are several ways to determine the number of ions passing through the 
sample [Joh 88, Chapter 3] and [Hol 72, Sta 86]. The choice of the metbod also 
depends on the type of sample to be analyzed. The main criterium for this cboice 
of measurement is the thickness of the samples compared to tbe range of the ions. 
Tbree types of samples cao he discerned: i - thin samples, tbat is tbe thickness 
is small compared to the ion range, ii - thick samples, the ion beam is stopped 
in the sample and iii - samples of intermediate thickness. The conduction of 
the sample cao also play a role in the cboice of tbe metbod. Our specifications 
for the beam current measurement are: The integrated beam current bas to he 
measured for thin, thick and intermediate tbick samples alike. The current to he 
measured ranges from 10 pA to 100 nA. We have chosen two systems to answer 
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the speci:fications: (1) A device using a rotating vane for the measurement of the 
beam current for thick and intermediate thick samples. (2) A Faraday cup for the 
measurement of the beam current for thin samples and for the calibration of the 
rotating vane measurement. 

Fig. 4.6: Design of the Faraday cup used in the PIXE setup. 

The design of the Faraday cup is given in Fig. 4.6. Partienlar emphasis has been 
put on preventing secondary and tertiary currents from escaping the Faraday cup. 
Such currents are e.g. backscattered beam particles and electrous freed in the 
beam dump or in the sample. The transport of electrous in and out the Faraday 
cup can be limited by applying a negative voltage on the suppressor ring in front 
of the Faraday cup. The effect of the suppressor was tested by measuring the 
yield per unit charge for a thin Ni layer evaporated on a polycarbonate foil as a 
function of the suppressor voltage. No effect was found for voltages between zero 
and -1000 V. The beam charge measured with the Faraday cup is digitized with 
a standard Ortec digitizer (model439) for beam currents larger than 0.5 nA. The 
resulting pulses are then counted with a scaler. For lower currents, a Keithley 
K617 is used to measure the total charge. Leakage currents measured with this 
device are typically between -1 and +1 pA. 

For intemediate thick samples, an extra problem is caused by multiple scatter­
ing. If the angular spread caused by multiple scattering exceeds 5.4°, some of the 
ions do notenter the Faraday cup. Using multiplescattering theory [Nig 59], it can 
be calculated for which thickness 98% of the scattered particles enters the Fara­
day cup. The thicknesses for a Al, Cu or Au sample leading to a 2% error in the 
charge measurement, are respectively 6.5 mgfcm2, 3.8 mgfcm2 and 1.9 mgfcm2• 

The thicknesses are upper valnes since the dirneusion of the beamspot on the 
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sample is not taken into account. For thicker samples, the ratio of charge in the 
Faraday cup versus total charge decreases. As an example, the charge has been 
measured using bath the Faraday cup and the rotating vane device for two sam­
ples. From the measurements, a ratio of 67% was found fora 9.8 mg/cm2 thick Cu 
foil and 84% for a 5.9 mgjcm2 Fe foil. Calculations using the multiple scattering 
theory yield 69% and 90% respectively, in reasonable agreement with experiment. 

Fig. 4.7: Layout of the rotating vane device as used for the measurement of the 
number of particles in the bea.m. 

The layout of the device using the rotating vane is given in Fig. 4. 7. The 
rotating vane itself is made of tungsten that has a high Rutherford backscattering 
cross section. The vane rotates with a frequency of about 3-4 Hz. The part 
of the beam intercepted by the vane is only 0.32%, thus hardly influencing the 
passing beam. The scattered particles are detected at an angle of 90° where the 
cross section is relatively high compared to more backward angles. A part of the 
measured particles is selected with a Single Channel Analyzer (SCA). The rotating 
vane makes the monitoring of beam currents down to 20 pA possible because it 
produces a high counting-rate. A disadvantage is its position at some distance 
from the sample with a diaphragm in between. This makes the device sensitive 
to changes in the beam position, angle and divergence. Periadie calibrations with 
the Faraday cup are therefore required. It is, however, not possible to place the 
diaphragm befare the rotating vane since it will have a negative effect on the use 
of the diffussor foil. The main uncertainty in this type of measurement is caused 
by the counting statistica. The beam fluctuations are another souree of error. The 
tot al uncertainty ranges from less than 1% to 5% depending on the charge and 
the stability of the cyclotron. 



78 Experimental Setup 

4.4 The Beam-On-Demand System 

A new state-of-the-a.rt system for the prevention of pile-up is described. 

Pile-up occurs when two X-rays enter the detector in such a short time interval 
that they are processed as a single event. The resulting pulse has a height some­
where between the height of a single pulse and the height of both pulses together. 
In the spectrum, this results in a continuurn beyond an X-ray peak followed by a 
sum peak (see Fig. 4.8). The energy of the pile-up depends on the time interval 
between the X-rays entering the detector. If this interval is very short compared 
to the ahaping time of the main amplifier, the energy of the pile-up is the sum 
of the individual energies; if this interval is longer, the energy corresponds to the 
continuurn between the single and sum peaks. Pile-up makes it more difficult to 
fit the spectrum and it can obscure weaker X-ray lines of other elements. 
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Fig. 4.8: Spectra of a Cu sample, withand without the BOD system. The spectra 
are norma.lized on the same charge; for the spectrum withoutBOD system this is 
the charge corrected for dead time. The rednetion of the twofold pile-up in the 
BOD spectrum is 28. 

There are two methods to reduce the pile-up [Joh 88]. We have chosen the 
Beam-On-Demand (BOD) system for this purpose. The use of a BOD system 
also eliminatea the correction for dead time. Dead time is the processing time 
of the measurement system. Part of the X-rays entering the detector during the 
processing time results in pile-up (see above) and part is not processed and is 
therefore not found in the spectrum. The idea of a BOD system is not new 
[Jak 72] but progress in the development of electranies bas made improvements in 
the system possible [Zen 87]. The design of the new system is given in Fig. 4.9 



Experimental Setup 

switch switch 

to main amplifier 

Fig. 4.9: Layout of the beam-on-demand system used for the prevention of pile-up 
in the X-ray spectrum. Here, TFA stands for timing filter amplifier, LDA stands 
for leading edge discriminator, and HV stands for high voltage. 

and in an internal report [Cre 91]. 

79 

An electrostatic field between two plates is used to deflect the beam. The ion 
beam reaches the target when the plates are grounded. To deflect the beam, both 
plates are given an equal, but opposite voltage. In this way, only half ofthe voltage 
has to be applied compared with the old situation where one plate is grounded and 
the other is charged. Futhermore, the low voltages allow the use of faster switching 
semi-conductor electronica, whereas previously capacitors where used. When an 
X-ray enters the detector, a pulseis generated by the preamplifier. To trigger the 
BOD system, this signa! is transformed into a logic pulse by a fast amplifier (a 
timing filter amplifier, model Ortec 474) and a leading edge discriminator (Ortec 
584). With a gate and delay generator (Phillips 794), the time width of this pulse 
is increased to match the processing time of the measuring system. This signal is 
used to trigger the high voltage (HV) switches, which conneet the deflection plates 
with the HV power supply. The heart of the HV switches are two mosfets (Metal 
Oxide Semiconductor Field Effect Transistor) with a maximum switching voltage 
of 1000 V. This and the geometry of the system limitsits use to proton beams 
with a maximum energy of 3 Me V. The maximum energy can he increased when 
improved mosfets become available, able to switch higher voltages, or by the use 
of a cascade of mosfets. To rednee power consumption, the mosfets are operated 
periodically with a frequency of 25 kHz. This frequency is sufficiently large to 
rednee the voltage leakage from the plates to several Volts on a operating voltage 
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of 800 V. The periadie triggers for the HV switch are produced in a separate trigger 
unit. The electronic system is described in an internal report [Tin 91]. 

The system is placed rather far from the sample (1200 mm) but that was un­
avoidable since it would otherwise interfere with the eperation of the diffussor 
foil (see Fig. 4.1). The long distance between the BOD system and the sample 
increases the reaction time but it still is nat the most dominating factor. The 
reaction time of the BOD system is the time between the absorption of an X-ray 
in the detector and the completion of the switch to beam off target. Several com­
ponents contribute to this reaction time: (i) The time needed for the generation 
of a pulsein the detector and the amplification in the preamplifier. The eaUeetion 
time for a 3 mm thick detector at 77 K is of the order of 100 ns. This value is 
estimated on the speed of electrans and holes in Si [Ott 75]. (ii) The time needed 
to generate a logic pulse of the correct length; it is 250 ns. (iii) The time used by 
the trigger unitand the HV switches; it is 100 ns. (iv) The time offlight of 3 Me V 
protons to the target; it is 125 ns. At the moment, the pulse discrimination is the 
limiting factor resulting in an overall reaction time of minimal 575 ns. Because 
a cyclotron is used, the ion beam bas a pulse structure. For our cyclotron and 3 
Me V protons, the period of the bunches is 136 ns. Therefore, at least four more 
bunches will reach the target after an X-ray bas been absorbed in the detector and 
befare the beam is switched off. Without BOD system, around 230 bunches can 
contribute to pile-up. 

4.5 The Use and Calibration of Absorbers 

The analysis can be optimized by the use of a speci:fic absorber in front of 
the detector. The application of an absorber introduces an extra quantity in 
the quantitative analysis (see Eq. 2.8). The absorbers and the measurement 
of their thickness are discussed. A new aspect is the uncertainty calculation 
for the transmission through the absorbers. 

An absorber in front of the detector is used to optimize the experimental con­
ditions. In its simplest and commonly used farm, it is a thin foil or disk of a 
single light element. lts use results in a rednetion of the low energy X-rays. Since 
the background is highest at low energy, the use of an absorber reduces the over­
all counting-rate, thereby resulting in less dead time and/or enabling the beam 
current to he increased. 

In front of the detector, a rotatable wheel is positioned containing up to five 
absorbers. For standard use, a thin Be and two thick C absorbers are included. 
The Be absorber is thick enough tostop most backscattered protons. Only 3 Me V 
protons backscattered on heavy atoms have enough energy to enter the detector 
but the energy left after passing the absorber is small. The Be absorber is still 
thin enough to measure all but the lightest elements like Na and Mg. The carbon 
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absorbers can be used for the measurement of high-energy X-rays (above about 
6 keV). 

The thickness of the absorbers can be determined with several methods. The 
easiest metbod is weighing the absorber and measuring its area. Other methods 
use either X-ray sourees or samples bombarded by protons. These two methods 
have the advantage that the absorber is measured in the same way as it is used, 
i.e. the thickness is measured through the X-ray absorption in the absorber and, 
therefore, systematic errors cancel each other out. This is especially important 
for absorbers containing contaminants. These contaminants may have very little 
effect on the total mass of the absober and still have a large effect on the total X­
ray absorption coefficient for the absorber because the elemental X-ray absorption 
coefficients are very different. If the precise concentrations of the contaminants are 
not known, the use of the absorber thickness, as found by weighing and measuring 
its area, results in larger errors than the use of the thickness found by transmission 
measurements. The exception is for X-ray energies where the transmission is 
very low (T < 0.01). The measurements using X-ray sourees can be normalized 
on time, while the measurements using a proton beam have to be normalized 
on charge, which is not as precise. Also, the absorberless measurements with 
the proton beam introduce additional uncertainties because of the backscattered 
protons. Therefore, the measurements with X-ray sourees are preferred when 
possible. 

From the number of counts measured withand without the absorber, the thick­
ness can he determined according to Eq. 2.7. For the measurements, a 55Fe souree 
emitting Mn K X-rays is used. If the ratio of the number of counts with and with­
out absorber is near to one, small errors in this ratio can lead to large errors in the 
determined mass thickness of the absorb er. Because this is the case for the Mn K 
X-rays emitted by the souree and the Be absorber, the thickness determination 
of the Be absorber is supplemented by PIXE measurements of an Al sample with 
and without absorber [Win 91]. The following results have been obtained: for the 
Be absorber: pt = 9.8 ± 0.6 mg/cm2, the first 0 absorber: pt = 250 ± 6 mg/cm2 

and the second 0 absorber: pt = 360 ± 7 mg/cm2. In the rest of this work, the 
first 0 absorber is called 0250 and the second 0360. 

For PIXE experiments, these thicknesses are used to calculate the transmission 
for the X-rays of interest. The uncertainty in the transmission, resulting from the 
uncertainty in the thickness ofthe absorber, varies greatly with X-ray energy. Also, 
the uncertainty in the X-ray absorption coefficient infiuences the uncertainty in 
the transmission. The uncertainties in the thicknesses of the absorbers and the 
uncertainties in the X-ray absorption coefficients are not independent because the 
latter are used to obtain the former values. Nevertheless, for use in the error 
calculation, it is assumed that the quantities are independent. This is justified 
when the X-ray energy for which the transmission is calculated, differs greatly from 
the X-ray energy for which the calibration is done. In other cases, the uncertainties 
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Fig. 4.10: Transmission and uncertainty in the transmission for the va.rious a.b­
sorbers a.s functions of energy. Here, Be stands for the Be absorber and C250 and 
C360 for the two C absorbers with different thicknesses. 

stated below are maximum values. The uncertainty in the transmission can be 
calculated as: 

( aT )
2 

(aT )
2 

S~ = a(pt)Spt + a(p,fp/pfp (4.3) 

with sT, s pt and s p,f P the uncertainties in the transmission, the mass thickness 
and the mass absorption coe:fficient, respectively. The relative uncertainty in the 
transmission is then 

sT = -ln(T) 
T 

(4.4) 

For Be and C, there are no absorption edges in the X-ray energy region of interest 
so the uncertainty •;/; is estimated to he 10% for all X-ray energies(see Section 
2.3.6). In Fig. 4.10, the transmission curve and the uncertainty for the transmission 
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are given as a function of X-ray energy for all three absorbers. From this figure, 
it can he concluded that the absorbers should not be used for the measurement of 
elements that have a transmission of less then 0.3 since the uncertainty for lower 
X-ray energies is too large(> 10%). 

4.6 Detector Calibration 

A geometrica.l methad for the determination of the detector solid angle is 
described. The detector efficiency e(Exz) is established for all X-ray energies 
of interest (1-40 keV). The quantities needed for the ca.lculation of e(Exz) 
are determined. 

The detector solid angle 

A geometrical method is used to determine the solid angle. The solid angle can 
he found by determining the crystal surface area Adet and the distance r between 
sample and the average interaction depth ofthe X-rays in the crystal: 0 = Adetfr2 . 

The problems in determining the distance r are the localization of the crystal 
behind the window, which is only approximately known, and the average pene­
tratien depth of the X-rays in the crystal. The total distance r, however, can be 
determined by measuring the yield of an X-ray souree at two different positions 
and the distance d between these positions [Win 91]. One distance is the normal 
distance r between detector and sample and the other distance is r + d. Then, r 
can be calculated from the ratio of the yields at these positions and the distance 
d: 

(4.5) 

with Yr the X-ray yield at position r and Yr+d the yield at position r + d. Both 
yields have to be normalized on the measuring time. Using this formula for a 
number of distances and a 55Fe source, r is found: r = 50.4 ± 0.4 mm for Mn K-a 
X-rays emitted by a 55Fe source. The average penetratien depth for Mn K-a X­
rays is 29 J.Lm ( calculated according to [Han 73)). The average penetratien depth 
is a function of the X-ray energy but for energies up to 14 keV, the distance r 

remains within the estimated uncertainty. For higher X-ray energies, the average 
penetratien depth increases asymptotically to half the crystal thickness of 3 mm. 
The solid angle can therefore vary by about 6% for low- and high-energy X-rays. 

Next, the detector surface area can also be determined with an X-ray souree 
[Cam 84a, Kor 92]. The source, a 55Fe source, is collimated with two diaphragms 
with a diameter of 1 mm. One diaphragm is situated close in front of the source, the 
other close to the detector. Diaphragms and souree are mounted on a traversabie 
table. With this apparatus, horizontal and vertical scans of the detector have been 
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made. From these scans, the surface dimensions of the crystal are determined: 
vertical width = 5.68 ± 0.09 mm; horizontal width = 5.22 ± 0.12 mm. Since these 
widths are not equal, the surface area is calculated under the assumption that the 
surface shape can be approximated by an ellipsoid: Adet 23.3 ± 0.8 mm2• This 
yields a solid angle of n = 9.2 ± 0.3 msr for Mn K-a X-rays. 

A serious problem for the value of the solid angle is the dirneusion of the beam 
spot on the sample. The solid angle varies as a function of the position on the 
sample. For inhomogeneons samples, this can lead to errors in the calculated 
concentration even if a uniform beam is used. However, the variation of the solid 
angle averages out for homogeneons samples. The variation is aggravated by the 
fact that the sample surface and the detector surface are not parallel but make 
an angle of 45° with each other. To keep the influence of this varianee small, it is 
advisable to keep the beam spot on the sample small. The best metbod to keep the 
solid-angle variation small is to place the sample surface parallel to the detector 
crystal. In the current setup, the variation of the solid angle over a spot size of 
12 mm is 34 %. This reduces to 1.4% for the parallel configuration. However, 
this configuration is not possible in the current vacuum chamber. Therefore, the 
minimal beam spot area of 4 mm is used for all measurements in this thesis. The 
variation of the solid angle over the beam spot area is 11.5% in this case and it 
remains advisable to use homogeneons targets. 

Detector efficiency eaUbration 

One way to obtain the detector efficiency is by developing a model of the detec­
tor. The detector efficiencies are then determined experimentally for a number 
of X-ray energies. The values of the parameters of the model can be obtained 
from a fit of the model to detector efficiencies that are experimentally determined. 
The parameters of the model can then be used to calculate the detector effi­
ciency for every X-ray energy needed. There are many articles on this procedure 
[Cam 86a, Cam 90, Cam 91, Coh 80, Han 73, Ina 87, Paj 89, Shi 79, Shi 83]. The 
difficulty of this metbod is obtaining good experimental valnes for the detector ef­
ficiency, especially for low X-ray energies (below 5 keV). Another problem is that 
the functioning of the X-ray detector is still not fully understood. In the simplest 
model, the detector is described by several dead layers through which the X-rays 
have to pass and one layer where they have to be absorbed. The dead layers are 
first the detector window, in our case made of Be, secondly the electrical contact, 
in our case of Au, and finally an ineffective first part of the detector crystal, in 
our case Si. This last layer consists of two parts, the first part is a very thin layer 
where the detection efficiency is zero and the secoud part is a thicker layer with 
a reduced detection efficiency, this is called the layer of Incomplete Charge Col­
lection (ICC). Later roodels indude a possible layer of ice in front of the crystal 
[Coh 82]. This layer may be produced by condensation of vapour on the crystal, 
which is kept at 77 K, the temperature of liquid nitrogen. For use in the model, 
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the layer of ice can be incorporated in the Be window layer since the energy de­
pendence of the attenuation coefficients of Be and ice are very similar [Bak 87]. 
Bebind the dead layer is situated the active layer where the ahsorption of X-rays 
result in valid signals. An extra term fesc has to he included fortheescape of Si-K 
X-rays. These X-rays are produced through inner shell ionization of Si atoms hy 
fluorescence. The term fesc is calculated according to [Ree 72]. 

The detector efficiency can now he described as: 

(4.6) 

where i represents three layers: the window (Be), the contact (Au), and the dead 
crystallayer (Si) respectively, and (px)5it the thickness ofthe active layer. For low 
energy X-rays, the last term, which is the absorption probability in the active part 
of the crystal, is one. Therefore, the determination of the parameters can he split 
into two parts. The three parameters (px )i can he determined with low-energy 
X-rays and the crystal thickness can be determined with high-energy X-rays. 

First, the calibration for low-energy X-rays (below 6 keV) is discussed. Because 
the average ahsorption depth in the crystal for these X-rays is very small, the 
detector solid angle is independent of the X-ray energy. Calihrated sourees can 
he used to measure the detector efficiency; however, for low-energy X-rays (helow 
5 keV) there are no calibrated sourees available. Our approach to this problem has 
been toselect pure chemica} compounds containing both light (11 ::; Z::; 20) and 
heavier elements (such as Fe). From these compounds, solutions have been made 
using distilled water that were, in turn, deposited on AE 98 filter papers (Schleicher 
& Schuell) and dried. Because the only variabie of interest is the yield ratio of the 
light and heavy elements, it is not necessary to know the exact quantities of the 
compound deposited on the paper as long as the deposited quantities are much 
smaller than the mass of the paper. The measured yield has to he corrected for 
the self absorption of the X-rays in the paper since the paper is rather thick { 4.7 
mgfcm2) and the X-ray energies are low. For this kind of sample, Condition 16 
(Section 2.1.2) is valid and Eq. 2.21 (Section 2.1.2) can he used for the calculations. 
For these calculations, the mass thickness and the composition of the paper have 
been determined with NBS. To measure all the mass deposited on the paper the 
heam spot is made larger than the spot on the paper. The detector efficiencies 
found in this way have been used to calculate the parameters in Eq. 4.6 using a 
least squares fit. 

In a preliminary experiment, the following chemica} compounds have been 
used: NaS04 , MgS04 , Al2 (S04 )a, CaS04 , and FeS04 , [Kof 91]. All the detector 
efficiencies are relative valnes to the efficiency for Fe. Because the detector effi­
ciency cannot be larger then one, it is possible to multiply Eq. 4.6 by an extra 
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Fig. 4.11: Top: the detector efficiency as a function of the X-ray energy. The x 
are the measurement points and the line is calculated from the layer thicknesses 
found from the fit. Bottom: uncertainty in the detector efficiency calculated from 
the layer thicknesses. 

factor for use in the fit. This factor is a correction for the fact that the detector 
efficiency for Fe is not one. The results of the measurements and the least squares 
fit are displayed in Fig. 4.11. The reauiting values for the layer thicknesses are: 
Be window: 10 ± lj..tm; Au contact: 0.04 ± O.Olj..tm; Si dead layer: 0.3 ± O.lj..tm. 
The Si dead layer includes the ICC layer because only the Gaussian component 
of the peak is used. The ICC layer results in a low energy tail (see the next sec­
tion), which is added to the background during the fit. This should always be 
done during later measurements to obtain consistent results. The manufacturers 
value for the Be window thickness is 8 J..tm. From a comparison of the measured 
value with the manufacturers value, no definite condusion can be made about the 
existence of a layer of ice on the crystal since the two values are close together and 
there is no information about the accuracy of the manufacturers value. Because 
this detector was relatively new during calibration, it is still possible that a layer 
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of ice develops over longer periods of time. There is also no information from the 
manufacturer about the thickness of the other two layers but the stated crystal 
thickness is 3 mm. For each layer the uncertainty in the transmission through this 
layer is calculated according to Eq. 4.4. These uncertainties are added according 
to standard error calculation rules (see Section 3.2) to obtain the total uncertainty 
in the detector efficiency, shown in Fig. 4.11 bottom. As for the absorbers, the 
uncertainty is a maximum value since the layer thicknesses and the X-ray absorp­
tion coefficients are dependent variables for this type of calibration. From these 
measurements, it can be concluded that this is a useful metbod for the efficiency 
calibration but further work is needed to develop the method and to be able to 
use more sophisticated detector models. 

The thickness of the crystal is not accurately determined. Therefore, we use 
a thickness of 3 mm as stated by the manufacturer. An uncertainty of 0.5 mm is 
used because nothing is known about the accuracy of the value for the thickness. 

4. 7 Data Analysis 

The first step in the analysis is finding the areas of the X-ray peaks in the 
spectrum. For this purpose, the fitting program AXIL is used. Next, the 
thickness and/or concentrations of the light elements (Z :::; 10) are obtained 
using NBS. A new program bas been developed for the calculation of the 
concentrations using the data acquired in the first two steps. This program 
can also calculate tbe uncertainties according to the metbod described in 
Chapter 3. 

Spectrum evaluation 

From the PIXE measurement, a spectrum is obtained in which the x-axis represents 
the energies of the detected X-rays, often given in channel numbers, and the y­
axis the number of detected counts of given energy. From this spectrum, the yield 
Y(X z) for a certain X-ray line has to be found. This yield is the area of an X-ray 
peak in the spectrum. The determination of the peak area is complicated by the 
fact that the peak is situated on top of a background and that it may overlap with 
other peaks. There are several computer programs, based on different methods, 
available to find the peak areas. Reviews evaluating some of these programs are 
presented in [Cam 86, Wat 87]. Notwithstanding great differences in methods and 
data bases used in these programs, the results for the peak areas of thin targets 
do not diverge more than 3% [Cam 86]. For intermediate-thick and thick targets, 
the results for the peak areas are slightly worse mainly because some programs 
did not include thick target corrections. To find the peak areas in the spectrum, 
we use the program AXIL [Esp 77, Mae 86]. 

The program uses the data of Thinh and Leroux [Thi 79] for the X-ray ab­
sorption coefficients. In the program, a model descrihing the spectrum is build 
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and then the parameters of this model (including the peak areas) are found by a 
non-linear least-squares fit (NL-LSF) ofthe model to the realspectrum. The peak 
shape is represented by a Gaussian. In reality, the X-ray peaks do nothave perfect 
Gaussian shapes but they contain a low energy tail. This tail is attributed mostly 
to incomplete charge collection in the first layer of the detector crystal (see Sec­
tion 4.6). To obtain accurateareasof X-ray peaks situated on a low energy tail, the 
shape of the tail must be known. There are many articles presenting models of the 
tail and camparing it with experiments [Cam 85a, Cam 91, He 90, Ina 87, Shi 83] 
but the models are semi-empirical and the process leading to the low energy tail 
is still not fully understood. The program AXIL uses a data base of shapes for 
the low energy tail of the K X-ray lines of the elements with 12 ::; Z :5 35. Dur­
ing the fit, this shape is scaled on the peak height and added to the background. 
For our detector, the peak shape data base of AXIL gives good results for the 
elements with Z ;::: 26 (Fe) but for low Z elements ( especially Z :5 17, Cl), the 
peak shape of the data base differs from the measured peak shape. ldeally, there 
should be a tailshape data base for every detector since individnal charaderistics 
of the detector and its fabrication might influence the shape of the low energy tail 
[Joh 88]. 

The uncertainty in the peak area can be dealt with in several ways. First, 
there is the uncertainty given by the program AXIL. This uncertainty is based 
on the error matrix used in the NL-LSF and reflects the error propagation of the 
statistica! error in the number of counts in each channel. This is only correct when 
the model and the data base are perfect and there is no correlation between the 
different parameters in the model. The first two conditions are not always true 
(e.g. for the peak shape corrections). The last condition is also not true in many 
cases, e.g. for overlapping peaks. A secoud possibility to acquire an insight in 
the uncertainty is the x2 value. AXIL gives this value per peak area. Normally, 
x2 is used to check if the used model is correct. If the fit is perfect, x2 is one. 
If x2 is large, the model or the values for its parameters are probably not good, 
e.g. the background is not chosen correctly. Alternatively, it can be argued that 
the uncertainty used for the fit, the statistica! error in the number of counts per 
channel, is too small. Than, x2 can be used to correct the uncertainty in the peak 
area by multiplying this uncertainty with x. 

A last metbod of estimating the uncertainty is a simple recipe adopted by 
Clayton [Joh 88]. For this method, the calculation ofthe peak area Yp is assumed 
to be a substitute for the subtraction of a background area YB under the peak 
from the total area YT ::::YB+ Yp. For this operation, the uncertainty is easy to 
calculate using Poisson statistica and it is y'(Yp + 2YB ). To obtain the background 
area YB, it is necessary todetermine the X-ray energy width of the background. 
Clayton used an interval of ±3u around the peak centraid with u the standard 
deviation defined by a Gaussian distribution. The uncertainty in the peak area is 
sametimes changed to account for the fact that the background under the peak 
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has to be determined from adjoining partsof the spectrum: sy = J(YT + FY8 ), 

with F > 1, a factor determined by the uncertainty in Y8 . We assume that F = 1 
for a fit with the program AXIL because the background is determined taking into 
account the whole spectrum. 

Actual uncertainties can be larger in specific cases, e.g. if there are overlapping 
peaks. Valnes obtained with the above methods have been compared for a number 
of fits. It was found that the last method almost always results in larger uncer­
tainties except when x2 is very high. In view of the above discussion, it appears 
reasonable to use the last method described above to obtain uncertainties for the 
peak area. N evertheless, the uncertainty determined with any of the above meth­
ods can be misleading because changes in the fit such as a different background 
model or another fitting region can lead to much larger differences in the peak 
area than expected on the bases of the the calculated uncertainty. Therefore, it 
remains essential to visually compare the fit and the measured spectrum. 

NB S analysis 

In many cases, the matrix elements are mainly light elements with Z < 10. The 
concentrations of these elements are needed for the calculation of the total stopping 
power and the total mass absorption coefficients of the sample (see Section 2.1.1). 
Also, the thickness of the sample is needed to determine E P,J, unless the thickness 
is larger than the proton range. When secondary fluorescence (SF) can play a 
role, the value of the thickness is not needed when the thickness is considerably 
larger than the proton range (see Section 2.2). The values for these quantities 
cannot be obtained with PIXE. We have chosen to use NBS as a technique for 
obtaining these values. NBS can be used to obtain both the sample thickness 
and the concentratien of the light elements. However, NBS cannot be used for 
samples thicker than a bout half the proton range because protons scattered at the 
back of the sample must have suflident energy to leave the sample at the front 
end. Insome cases, the mass thickness (in g/cm2

) can also be found by weighing 
the sample and measuring its area, especially for thicker samples. However, for 
biologica} samples, it is often impossible to cl etermine the area of the sample. The 
advantage of NBS is that a NBS measurement can be clone simultaneously with 
the PIXE measurement, except when the electron gun is used. A spectrum can 
be obtained using a partiele detector placed at a backward angle. An extensive 
treatment of NBS is given in [Chu 78]. In this section, the emphasis is placed on 
some practical problems and on the uncertainty arising from this method. 

There are several methods to extract the desired information from a NBS spec­
trum. The most comprehensive method is making a simulation and fit this to the 
spectrum. This can be clone with the program RUMP [Doo 85, Doo 86]. Because 
the cellision of 3.0 MeV protons on light elements is not elastic, the Rutherford 
formula for the scattering cross section cannot be used. Instead, experimentally 
determined cross sections have to be used. The choice of the data and the uncer-
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tainty in it are discussed in Section 2.3.3. Since the scattering cross section bas 
to be integrated over all proton energies in the sample, the error propagation has 
to be treated in the same way as the ionization cross sec ti on for PIXE ( see Sec­
tion 3.3.2). The stopping power is calculated using the data of Ziegier et al. (see 
Section 2.3.2). An additional error is introduced by the energy straggling. This 
makes it more difficult to determine the mass thickness of all but the thinnest sam­
ples. The program RUMP can, however, take into account the energy straggling 
when making a simulation. Also, it can consider the broadening of the peak of 
mono-energetic particles due to the energy spread of the beam and the resolution 
of the detector. 

Because of the availability of the data for the scattering cross section (see 
Section 2.3.7), the detector angle is fixed at 147° ± 1° . The solid angle of the 
detector is limited by a slit of dimensions 3 x 10 mm2. The width is chosen small 
(3 mm) to limit the energy spread. This energy spread is caused by a difference 
in the kinematic factor due to the variation in the back scattering angle. By 
measuring the distance between the detector and the sample, the solid angle is 
found: QNBS 2.98 ± 0.11 msr. To arrive at an overall uncertainty for the 
thickness and the con centration of the light elements, also the uncertainties in the 
counts per channel and the charge measurement have to be taken into account. 
This metbod is described in more detail in Section 5.4, where it is applied to a 
practical problem. 

Concentration calculations 

From the peak areas in the PIXE spectrum, the concentrations have to be cal­
culated, if necessary using data from the NBS analysis. For this purpose, the 
program PANEUT (Pixe ANalysis Eindhoven University of Technology) has been 
developed. The concentrations of the elements are calculated using eqs. 2.15 and 
2.16. If the possibility of SF exists, the concentration is automatically corrected 
for the SF yield using eqs. 2.39, 2.42 and 2.43. The data base used in this program 
is discussed inSection 2.3. The integration over Ep is performed numerically by 
taking energy steps and then calculating Ll(Y(Xz)fcz) from eqs. 2.15 and 2.16 
and the thickness p8 x(Ep) from Eq. 2.5 until the total thickness is reached or 
Ep 100 keV. The value of 100 keV is the lowest value for which the cross 
section can be calculated (see Section 2.3.3) but contributions from the sample 
where Ep < 100 keV can be neglected (see Section 3.3.5). For the calculation of 
p8 x(Ep), a fixed step size is used of 10 keV but the step size for the calculation 
of Ll(Y(Xz)fcz) is increased to speed up the calculation. The step size of the 
i-tb step is calculated iD; such a way that the maximum error in Ll(Y(Xz)fcz)i 
is smaller then 2% of Ej:,~ Ll(Y(X z )/ cz )i. The maximum step size is restricted 
to 150 ke V. In tot al, the numerical calculation of the integral results in an er­
ror smaller than 1%. The calculation of the SF yield can be fitted in easily by 
calculating eqs. 2.42 and 2.43 for every energy step. This involves solving extra 
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integrals, so it takes more time. A problem that can arise when the extra integrals 
are solved numerically, is discussed in Appendix B. Another difficulty is the term 
rA tot• the photo-electric absorption coefficient, in Eq. 2.40. In our data base, only 
th~ total X-ray attenuation coefficient p. A is available and therefore this quantity 
is used instead of r. However, rA is the main component of p. A especially for SF 
where the X-ray energy, for which r is needed, is always above the absorption 
edge of element A. Therefore, for K-lines below 40 keV, the error made by using 
J.I.A instead of rA is no more than 3%. The uncertainty in the concentration is 
calculated according to the methods described in Chapter 3 and the uncertainty 
estimates for the data base are discuseed in Section 2.3. 

A final point of interest is the detection limit. If an element is not visible in the 
spectrum or if the peak in the spectrum is very small, the value of the detection 
limit can be of interest. Two types of detection limit can be distinguished: first, 
the limit of detection (LOD) and secondly, the limit of quantification (LOQ). The 
distinction is made because quantitative results near the detection limit (LOD) 
can be unreliable. The LOD is defined as 3y'(YB) and the LOQ as lOy'(YB), with 
YB determined in the same way as for the uncertainty in Yp. PANEUT uses these 
definitions to calculate both detection limits and it marks measured concentrations 
that are below one or both detection limits. 

Condusion 

In condusion, it can be said that the data analysis is an important part of the 
total analysis of a sample. If the determination of the peak areas in the PIXE 
spectrum is not executed carefully, it can lead to serious errors in the values of 
Y(Xz)· However, these errors do not always show up in the uncertainty estimate 
using one of the methods described in this section. The thickness of the sample 
and the concentration of the light elements can be determined using NBS. The 
uncertainty in the thickness depends largely on the sample itself. The uncertainty 
is larger when the sample becomes thicker because of more energy straggling. Also, 
the uncertainty increases when the sample contains more elements because of an 
increased complexity of the spectrum. The uncertainties in the concentrations 
of the light elements depend mainly on the uncertainties in the Non-Rutherford 
scattering cross sections but the complexity of the sample can also play a role. The 
error propagation of various uncertainties to the calculated con centration using the 
PIXE formula is discussed in Chapter 3. 

4.8 Conclusions 

The experimental setup and its features are described in detail in this chapter. A 
number of systems has been introduced to facilitate the measurement of a variety 
of samples. These systems indude an electron gun to prevent charge builcl-up on 
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thick, insulating targets; a beam-on-demand system to rednee pile-up and elimi­
nate the need for dead-time corrections; a new Faraday cup for the charge mea­
surements for thin samples and a rotating vane for the charge measurements for 
thick samples. 

To calculate the concentrations of the elements in a sample, the values of a 
number experimental quantities are needed. These values have also been deter­
mined tagether with an estimate of their uncertainty. The experimental quantities 
include: 

• the beam energy EP 0 , for protons in the energy range 3-4 Me V a shift of 
' 70 ± 10 keV below the nominal value of the AVF cyclotron has been found; 

• the number of bombarding partides, Np, which has to he determined for 
every measurement individually; the uncertainty varies from less than 0.5% 
for the measurements with the Faraday cup to a few % for the rotating vane 
measurements; 

• the X-ray detector solid angle Q = 9.2 ± 0.3 msr for Mn-K~ X-rays; 

• the X-ray detector efficiency e(Exz), calculated according to Eq. 4.6 and 
depicted in Fig. 4.11 ; 

• the absorber thicknesses: 
Be: pt = 9.8 ± 0.6 mg/cm2, 

C250: pt 250 ± 6 mg/cm2
, 

C360: pt = 360 ± 7 mg/cm2
; 

• the partiele detector angle, 147° ± 1° and 

• the partiele detector solid angle QNBS = 2.98± O.llmsr. 

An overall picture of the data needed for a complete analysis and the data flows 
and programs is given in Fig. 4.12. 

Further improvements of the measurements are possible but they will need a 
new vacuum chamber. There are two main points of improvement: 

1. The sample has to be rotated 45° to rednee the spread in the detector solid 
angle. This is especially important for inhomogeneons samples. 

2. A thick lead shielding around the X-ray detector is needed to rednee the 
background in the X-ray spectrum. This is important for reducing the de­
tection limit. 
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5 Evaluation of the absolute 
calibration methad in TT-PIXE 

The absolute calihration methad is evaluated. This is clone both hy dis­
cussing some theoretical aspects of the procedure and hy performing some 
experiments. The samples for the experiments include thick metal foils in 
the range of Z = 13 - 50 and some biological reference materials. 

5.1 Introduetion 

In the previous chapters, the procedure of absolute calibration for the PIXE anal­
ysis, including a formalism for the uncertainty calculation, is developed. In this 
chapter, we make an evaluation of this procedure. The evaluation contains some 
theoretica! considerations and some experiments. In the first section, the absolute 
calibration procedure is evaluated on theoretical grounds. This is clone in two 
parts. First, the morleis as described in Chapter 2 and Chapter 3 are discussed. 
This discussion includes an evaluation ofthe conditions made in Chapter 2. Next, 
the influences of the uncertainties in the quantities neerled for the absolute cali­
bration and in the experimental procedure are discussed. It is clone very briefly 
because this has been clone extensively in the previous chapters. In the follow­
ing sections, some experiments are presented. Special emphasis is placed on the 
calculation of the uncertainties in the concentrations according to the formalism 
described in Chapter 3. The samples used for the experiments are of increasing 
complexity, starting with a series of thin Ni foils for the calibration of the setup, 
analysed in Section 5.3. In the next section (Section 5.4), a set of thick mano­
elemental metal foils is analysed and in Section 5.5 two reference alloys are used. 
These analyses include the SF yield that is analysed further in Section 5.6. The 
last of the experimental sections (Section 5. 7) is devoted to the measurement of 
biological reference samples. 

5.2 Models and uncertainties 

The physical model neerled for TT-PIXE can be divided in two parts: the model 
for the primary production of X-rays and the models for the secondary produc­
tions. To calculate the primary production, two thick-target effects have to be 
taken into account: (1) The slowing down of protons in matter and (2) the ab­
sorption of X-rays in matter. To obtain the total X-ray yield of a tick target, the 
X-ray production in a small volume has to he integrated over the whole sample 
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under proton bombardment taking into account both tick-target effects {see Sec­
tion 2.1.1). In principle, this model is capable of dealing withall sorts of targets, 
also inhomogeneons targets. However, in practice often insufficient information is 
available to describe the inhomogeneons targets. Therefore, this study bas mainly 
been restricted to targets with a homogeneons matrix composition. The general 
theory of Section 2.1.1 is simplified fora number ofrelevant cases inSection 2.1.2. 
Trace elements may still he distributed inhomogeneously since they do not deter­
mine the two thick-target effects (see Condition 12 on page 18). 

There are a number of conditions and assumptions underlying the formulas 
used for TT-PIXE. Some general discussion of these conditions and assumptions 
is already presented in Section 2.1. Here, some additional discussion specific for 
our setup is presented. There are four effects that influence the unambiguous 
relation between the depth x in the sample and the proton energy E p at this 
depth (Eq. 2.5). These are energy straggling, spread in the proton energy EP,o• 
variation in the direction of the protons and multiple scattering (Assumption 1 
Assumption 4). In first order, energy straggling (see [Chu 78]) and the spread in 
EP 0 are symmetrie around an average value, so Assumption 1 is valid and the 
fact that Ep,o is not mono-energetic (Condition 2) does not introduce additional 
errors. Variation in the direction of the protons leads to spread in the beam 
angle a. The influence of the spread in a is minimal because cos a is used in the 
equations for TT-PIXE and a= 0 for our setup. Therefore, a standard deviation 
in a of 8° leads to a standard deviation of 1% in cos a. Multiple scattering causes 
an angular distribution of the protons after they have traversed a certain amount 
of materiaL This distribution broadens when the protons have reached deeper 
parts of the sample. The effect of this distribution on the yield or the calculated 
concentratien is again minimal because a 0 and there is no shift in the centre 
of the distribution. 

Condition 5 states that there is no variatien in cos (). The angle () between 
sample normal and the direction of the detector is 45° for our setup. Due to the 
solid angle of the detector, there is a variation of ±3° in () leading to a maximum 
spread of± 5.2% in cos 0. If the beam diameter is 4 mm, this leadstoa maximum 
spread of ±0.7% in cos() and this can he neglected in comparison with the spread 
due to the solid angle. Since the detector surface is a circular disk, the influence 
of the outer edges is smaller than the influence of the center. Taking this into 
account, the standard deviation in cos() is 2.9%. The term cos() is used in the 
equation Eq. 2.7 for the transmission through the target together with the X-ray 
attenuation coefficient ILt. The assumption that Condition 5 is valid, does not 
introduce additional errors, because the uncertainty in ILt (10%) is much larger 
than the uncertainty in cos(}. 

Assumption 9 states that large-angle scattering of particles in the target can 
be neglected, that is over all augles except small angles where multiple scattering 
is dominant. To estimate this effect, the Rutherford scattering cross section is 
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integrated over all scattering angles larger than 8° and all proton energies between 
1 and 3 Me V. The upper limit is the proton beam energy Ep 0 • The lower limit of 
1 Me V is chosen because 99% of the contri bution to the yield c~mes from the part of 
the target where the proton energy is still above this value (see Section 3.3.5).The 
fraction of scattered protons to the total number of protons is then found by 
multiplying this integrated value with the number of atoms/cm2 in the sample. In 
an extreme case of a thick Sn foil, this fraction is about 0.5%; that is at the depth 
in the sample where the proton energy is 1 Me V, the total number of protons 
is about 0.995 of the number at the surface of the sample. In most other cases, 
the fraction of scattered protons is much smaller and the use ofAssumption 9 is 
justified. 

A last condition to be discussed is Condition 11, which states that the indi­
vidual stopping powers and mass absorption coefficients can be added according 
to their mass fraction. In Section 2.3.2, it is conduded that Bragg's rule for the 
stopping power is valid for proton energies above 1 MeV within a few percent. 
The validity of the summation of the mass absorption coefficients is much less 
dear (see Section 2.3.6). However, systematic errors introduced when this rule is 
not valid, only become important when these errors are camparabie to or larger 
than the uncertaintîes in the individual values. 

There are several secondary processes able to create additional charaderistic 
X-rays. These processes rely on different mechanism to ionize the sample atoms. 
There are four possibilities: (1) ionization by other charaderistic X-rays, (2) ion­
îzation by secondary electrons, (3) ionization by Auger electrans and ( 4) ionization 
by Bremsstrahlungs X-rays. As explained in Section 2.2, the ionization by char­
acteristic X-rays, called Secondary Fluorescence (SF), is the only process with a 
sufficiently high yield that correction for it is necessary. The process of SF is 
similar to the primary PIXE production and can be treated in much the same 
way. The formulas involved are only valid for targets with spatially homogeneons 
matrix compositions. The formulas are however more complicated because SF is 
a secondary process (see Section 2.2). The quantities for this process are the same 
as the quantities for the primary PIXE process. There are a few extra conditions 
for SF which are discussed in Section 2.2. 

We have used a mathematica} model for the uncertainty assessment. This model 
is applied for the calculation of the uncertainty in the concentration. For this cal­
culation, all effects influencing the uncertainty in the concentration are treated 
separately. It is assumed that all these effects are independent and that the un­
certainties associated with these effects can be treated as standard deviations of a 
Gaussian distribution (see Section 3.2). Standard statistkal rnathematics canthen 
be used for the uncertainty calculation. In practice, however, not all quantities 
are independent. In some cases, the dependency of the quantities reduces their 
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influence on the uncertainty in the concentra.tion, see for example Section 4.6 on 
the calibration of absorbers. In other cases, however, the dependency may increase 
the overall uncertainty (see Section 3.4.6). 

The equations for TT-PIXE and SF conta.in ma.ny quantities. Part of the quanti­
ties are physical quantities contained in the data base, such as the stopping power, 
the production cross section, and the X-ray attenuation coefficient, and they are 
discussed in Section 2.3 together with their uncertainties. Part of the qua.ntities 
are experimental quantities, such as NP> 0, e, Tabs• Y, EP,O' EP,/' the a.ngles (} and 
o: and the matric composition. These quantities except (} and o: are determined or 
discussed together with their uncertainties in Chapter 4. The uncertainties in the 
angles 0 and o: stem from the determination of the values a.nd from other processes. 
These processes are discussed above and their effect is generally much larger then 
the uncertainty caused by the determination of the angle. The addition of all 
uncertainties to obtain the total uncertainty in the yield or the concentration is 
described in Chapter 3. 

A souree for errors not previously discussed is the sample preparation. The 
preparation of targets for TT-PIXE is often minima!, which reduces the risk of 
introducing contaminants during the preparation. There are two problems in 
partienlar that have to he considered for the PIXE analysis: One is the surface 
roughness [Cam 85] that can reduce the PIXE yield by a few percent to more 
than 10%. The other problem is the sample homogeneity. Samples taken from a 
material to he investigated are often representa.tive of the composition down to 
a certain ma.ss. The amount of material investigated by PIXE is often less tha.n 
this mass. This problem ca.n he countered by measuring several targets of the 
samemateriaL Sample inhomogeneities ca.n, however, also he introduced hy the 
sample preparation. The sample preparation always plays a role in the analysis, 
no matter what calibration metbod is used. Therefore, it is not investigated in this 
study. However, both problems described above make it possible that the total 
uncertainties in the concentrations are larger than the calculated valnes presented 
in this thesis. 

The total uncertainty, as calculated in Chapter 3, is an absolute uncertainty. 
This means that it is an estimate of the deviation from the true value of the yield 
or the concentration. The uncertainties contributing to the total uncertainty can 
he divided into two groups: statistica! uncertainties and systematic uncertainties. 
The uncertainties in NP and in the yield Y are the main statistica} uncertainties. 
The variations that occur when the experiments are repeated, are defined by these 
uncertainties. This is notwithstanding the fact that part of the uncertainty in 
these two quantities can he caused by systematic errors, e.g. the calculation of the 
background during the peak fitting procedure can introduce systematic errors in 
the peak area Y. Part of the uncertainty in the solid angle is also a statistica! 
uncertainty since the solid angle can vary slightly from day to day because the 
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detector is sometimes removed. Generally, these statistica! fluctuations are smaller 
than the systematical uncertainty in the determination of the solid angle. All 
other quantities have systematic uncertainties, thus these uncertainties do not 
influence the reproducibility of the measurements. That does not imply that these 
uncertainties are not standard deviations of a Gaussian distribution. If these 
uncertainties are caused by a large number of smaller contributions, e.g. as is 
usually the case when the valnes are measured, the underlying distrihution can he 
assumed to be Gaussian (see Section 3.2). 

5.3 Measurements of thin targets 

Befare measurements eau be done to verify thick target effects, the setup has to 
he checked with simple targets. One aspect to be checked is the reproducihility, 
which is done below. Another aspect is the measurement of thin targets, which is 
discussed next. For thin targets, the PIXE yield has to increase linear with the 
thickness or concentration. The same applies for the NBS analysis. The linearity 
of the experimental setup is illustrated by the measurement of a series of thin 
Ni samples. The samples are made by evaporating Ni on polycarbonate foils. 
The series consist of ten different thicknesses with three samples per thickness. 
The samples were analyzed using hoth PIXE and NBS with a 3 MeV proton 
beam (nominal value). The samples are so thin that the PIXE formula for thin 
homogeneaus targets (Eq. 2.17) can be used to determine the mass thickness of 
the samples. There are some contaminations of Cr, Mn, Fe and Cu in the Ni layer 
with concentrations between 0.1% and 5% and the total mass thickness is the 
summation of the thicknesses of all elements. The uncertainty in the thickness is 
found hy adding all the experimental errors and the error in the production cross 
section according to standard error calculation rules (see Section 3.2). The error 
in the production cross section is itself a function of the errors in the ionization 
cross section, the fluorescence yield and the branching ratio and it is about 6% for 
Ni (see Section 2.3). The total uncertainty in the thickness is about 7%. 

For the NBS analysis the Rutherford cross sections eau he used with an error 
margin of about 5% [Boz 90]. The mass thickness is calculated using the approxi­
mation that the beam energy in the layer is constant and thus that the scattering 
cross section is constant. For this calculation it is assumed that there is only Ni 
present in the sample because the contaminations could nat he distinguished in 
the NBS spectrum. Again the error is the summation of the experimental errors 
and the error in the scattering cross section according to standard error calculation 
rules and it is about 6%. 

In Fig. 5.1 the thicknesses determined with PIXE and NBS are compared. The 
fullline in the figure is a fit of y az + b to the data points. The uncertainty in 
the thickness is used as a weighing factor for the fit. The coefficients are found 
to be a = 1.03 ± 0.01 and b = -0.08 ± 0.02. The results from the PIXE and 
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Fig. 5.1: Thicknesses measured by NBS versus thicknesses measured by PIXE for 
a set of Ni foils. The Ni is evaporated in different thicknesses on Nuclepore foils. 
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the NBS measurements are in good agreement which means that the experimental 
quantities, such as the detector efficiency of the X-ray detector, the solid angles 
of both detectors are determined with suitable accuracy. This statement cannot 
be made about the charge measurement since the NBS and PIXE measurements 
were made simultaneously with the same charge. 

In addition to the linearity of the set up, the reproducibility is another impor-

Table 5.1: Reproducibility of the setup, demonstrated by two samples. The thick­
nesses are determined from PIXE measurements. 

Al300A Ni lOOÁ 
date t J-lg/cm2 date t J-lg/cm2 

2-12-92 8.32 12-12-92 7.01 
12-12-92 8.55 11-3-93 a 6.56 
23-12-92 8.53 11-3-93 b 6.64 

6-1-93 8.59 11-3-93 c 6.64 
8-1-93 8.43 11-3-93 d 6.75 
24-7-93 8.51 18-3-93 7.43 
31-7-93 8.07 8-4-93 6.95 

22-4-93 7.27 
31-7-93 6.92 

tot al 8.43 ± 0.18 tot al 6.91 ± 0.30 
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tant factor. To check the reproducibility, a thin Ni sample, from the above set, 
and/or a thin Al sample, also evaporated on polycarbonate, are analysed every 
measuring day. The results are given in Table 5.1. The standard deviations are 
2% for the Al sample and 4% for the Ni sample. This spread is caused by the 
statistkal uncertainties in the peak-area determination (usually < 1%), variations 
in the solid angle of the detector, which is sametimes removed and the uncertainty 
in the beam charge. Another cause can he degradation of the foils due to radia­
tien damage. There is no obvious explanation for the fact that the spread in the 
measurements of the Al foil is smaller than the spread for the Ni foil. 

5.4 Measurements of thick mono-elemental foils 

In this section, the measurements of a set of mono-elemental metal foils with 
atomie numbers ranging from 13 (Al) to 50 (Sn) are described. Forthese reference 
materials, no a-priori knowledge of the matrix composition is needed. Also, there is 
no possibility of secondary fluorescence. All the samples are homogeneaus so that 
the TT-PIXE formula (Eq. 2.15 with Eq. 2.16) can he used for the calculations. 
The set of metal foils consists of ten different elements with thicknesses ranging 
from 10 p,m to a value much thicker than the proton range. As a reference, the 
mass thicknesses have been determined by weighing the foils and measuring the 
areas; the results are called reference values. The foils have been measured using 
a 3 MeV proton beam. NBS measurements have also been done todetermine the 
thickness. Even if the proton beam is not stopped in the sample, the charge has 
been measured with the rotating-vane device because multiple scattering made 
the use of the Faraday cup impossible (see Section 4.3). Typical beam currents 
were as low as 30-50 pA, selected to limit the PIXE count rate toa maximum of 
2000-3000 counts per second. The BOD system was used to eliminate pile-up and 
the need for dead-time correction (see Section 4.4). There was no diaphragm in 
front of the detector. The spectrum fitting was done using peak-shape corrections 
where possible (see Section 4.7). For the elements heavier than Br no peak-shape 
correction is available. Typically, the use of peak-shape corrections in the fit 
reduces the peak area with 1-3%. The concentratien of the main element in the 
foils is calculated using the mass thickness determined by weighing and measuring 
the area. This is clone for both the K-a and the K-!9 lines except for Al and Si, 
where the K-a and the K-j9lines do not result in separate peaks in the spectrum. 
The results of the measurements are presented in Fig. 5.2. From these results a 
clear jump in the calculated concentrations can he noticed resulting in an increase 
of about 25% for concentrations of elements with Z > 40. Further investigations 
revealed that this jump is caused by an energy dependenee of the solid angle. The 
results of these investigations are presented next. 
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Fig. 5.2: Concentratien of the main element in severa.l meta.l foils as a function of 
the atomie number. The nomina.l proton beam energy is 3 MeV. The top figure 
shows the results for the PIXE measurements without diaphra.gm in front of the 
detector and without correction for the energy dependenee of the solid angle. 
The upper middle figure shows the same measurements corrected for the energy 
dependenee of the solid angle. The lower middle figure shows the PIXE results 
with diaphra.gm and the bottorn figure the results for the NBS mea.surements. 
When more than one measurement is done for the same sample, the results are 
averaged. The reference thicknesses are given in Table 5.2. 
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New solid angle measurements 

To obtain more information about the detector solid angle and its energy depen­
dence, the measurements described in Section 4.6 have been repeated with a 55Fe 
souree and a 241 Am source. The 241 Am souree emits Np 1-lines with energies 
of 13.9 keV (La), 17.8 keV (main L(3 line), and 20.8 keV (main L-y line) and a 
-y-line of 26.35 keV. The results of these measurements indicate that the effective 
detector area depends on the X-ray energy (see Fig. 5.3). This effect has also been 
reported in literature [Paj 89] and is attributed to the fact that the Si dead layer 
increases near the edges (see Section 4.6 for dead layer and detector model). The 
data points have been fitted to obtain a relation between detector area and X-ray 
energy. If we assume that there is a dead layer at the sides of the crystal that is 
radially symmetrie and that decreases exponentially as a function of depth d in 
the crystal, than the radius r of the effective crystal at depth d is 

(5.1) 

with a a positive constant, r0 the total radius for the crystal, and r 1 the fraction 
of the total radius taken by the dead layer at the surface of the crystal. Using this 
equation, it is possible to obtain a fitting function for interpolation of the detector 
area to all X-ray energies that is in first order: 

(5.2) 

with dav the average absorption depthof X-rays with energy Ex and a0 , a1 , and 
a2 the fitting parameters. The quantity dav is used to relate the depth in the 
crystal to the X-ray energy. The result of the fit and the data points are displayed 
in Fig. 5.3. The parameter a0 represents the total detector area including dead 
layer and it is 26.9 ± 0.9 mm2. The detector area stated by the manufacturer is 
30 mm2, which is about 10% larger. The value of a1 is 0.19 ± 0.03. This indicates 
that the dead layer occupies about 20% of the total detector area at the surface 
of the crystal. It should be remembered that Ad et (Ex z) obtained from this fit is 
not really a function of depth in the crystal but it is an average of detector areas 
weighted according to the transmission of X-rays with energy Ex. It is therefore 
not possible to make a statement about the dead layer area at the backside of the 
crystal. The newly found area for the Mn-Ka line is smaller than the old value 
(21.7 ± 0.6 mm2 compared to 23.3 ± 0.8 mm2). This suggests that the detector 
area can be influenced by the history of the detector, like ageing or temperature 
cycles of warming up to room temperature and cooling down again. 

The new valnes for the solid angle are now energy dependent: 
O(Ex) Adet(Ex)/r(Ex)· Initially, the value increases with X-ray energy since 
Adet increases and then it slightly decreases after about 20 keV because of the 
increase of average absorption depth. For the quantity Adet> the fitting function 
(Eq. 5.2) is used multiplied by a constant so that Adet is 23.3 mm2 for Mn-Ka. 
This is done because checking measurements on a thin Ni foil did not indicate 
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Fig. 5.3: Detector area determined by scans with a collimated X-ray beam for 
several X-ray energies. The solid line is a fit to the data points (see text). The 
old value of Actet for 6 ke V is 23.3 mm2

• 

a decrease of the solid angle during the period when the measurements without 
diaphragm in front of the detector were performed (see Section 5.3). The scans 
of the detector area with different X-ray energies were performed some time after 
these measurements. The uncertainty in this detector solid angle is about 5.5% 
mainly due to the uncertainty in Adet. 

The X-ray energy dependenee of both the distance r (see Section 4.6) and the 
effective detector area Adet makes it advisable to use a diaphragm in front of the 
detector. The opening of the diaphragm bas to be smaller than the smallest effec­
tive detector area including increases caused by the distance between diaphragm 
and detector crystal. This makes the solid angle independent of the X-ray energy 
and the determination also becomes more simple. A drawback is that it reduces 
the solid angle, which is a disadvantage for obtaining low detection limits. Some 
measurements have been clone with a diaphragm in front of the detector. However, 
most measurements have been clone without diaphragm. 

Revised and new measurements 

The measurements, presented in the first part of this section, have been analyzed 
again using the results of the new measurements of the solid angle. The results 
are also displayed in Fig. 5.2 and they are presented in Table 5.2. 

The uncertainty in the concentration is calculated according to Eq. 3.5. The 

Partial uncertainty in the concentration due to the matrix composition, ~, is ez 
zero since there is only one matrix element. The experimental uncertainties ~lil , 

P,O 
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Table 5.2: Results of the PIXE a.nd NBS measurements of ten mono-elemental 
foils. If the reference thicknesses are lacking, the sample is thicker than the proton 
range. The PIXE measurements are performed without dia.phragm in front of the 
detector but they are corrected for the energy dependenee of the solid angle. The 
NBS values r (= ptNss/ pt&f) areleftopen if the sample is too thick todetermine 
the thickness with NBS. 

Reference PIXE NBS 
K-o: K-{1 

z pt I spt absorber cz Sc cz se r Sr sample 
mgfcm2 % % % % % % 

13 3.52 0.02 Be 97 20 107 3.5 Al15 a 
Be 101 20 104 3.3 b 

13 Be 100 22 Al100 
14 Be 98 16 Si thick 
22 3.83 0.06 Be 95 7 88 8 100 3.3 Ti10 a 

Be 99.4 8 93 8 b 
C250 102 75 98 55 98 3.3 c 

26 6.03 0.12 Be 97 7 96 7 99 3.2 Fe 10 a 
Be 91 7 90 7 98 3.1 b 
Be 101 7 99 7 e 
C250 100 26 99 19 97 3.1 d 

29 10.4 0.2 Be 102 7 92 7 101 3.5 Cu 12 
29 Be 102 8 98 8 Cu 125 a 

Be 107 9 104 8 b 
C250 103 15 101 11 c 

41 22.79 0.09 Be 110 8 109 9 Nb 25 a 
C250 112 9 113 9 b 

42 12.98 0.05 Be 105 8 107 8 99 3.4 Mo 12.5 a 
C250 108 8 109 8 99 3.4 b 

46 13.0 0.4 C250 115 10 115 12 Pd 40 
47 26.7 0.2 C250 112 10 111 13 Ag 25 
50 9.13 0.02 102 3.6 Sn 12.5 a 

C250 107 12 102 14 102 3.6 b 

---!L.._ ST d !.a. . . Ch t 4 d __!y_ d !2. al l t d e(Exz)'Tabs(Exz)'an 0 aregtvenm aper an Y(Xz)'an Q aree cuae 
as described in Chapter 4. The error propagation factors have been determined 
aecording to the methods described in Chapter 3 and the uncertainties in the 
data base are given in Seetion 2.3. All the partial uncertainties and the error 
propagation factors are given in Table 5.3. 

The PIXE measurements have also been repeated with a 4 mm diaphragm in 
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Table 5.3: Partial uncertainties and error propagation factors for the K-a lines 
of the main elements in the foils. The letters a,b,c and d refer to the same 
measurements as in Table 5.1. Here, A stands for P(cz, llt) a.nd B stands for 
P(cz,EP,o). The uncertainties identical for all samples are * 3%, ;;. = 
10%, "Jl-L 0.6%, ::.. 5%, lf ::::; 5.5%. P(cz, a) = 1 for all samples and 

P,O az K 

P(cz, St)= 1- P(cz, Pt)· 

z vffzï ~ h ....!I_ ___!.L_ --"-"'-- A B ~ sample Q e Ta.bs bz XIK WZK cz 

13 0.2 2.3 6.7 17 0.1 4 0.68 0.16 21 Al15 
13 0.1 2.2 6.7 17 0.1 4 0.67 0.14 21 
13 0.2 2.2 6.7 17 0.1 4 0.98 0.18 22 AllOO 
14 0.1 2.2 4.4 11 0.1 4 0.97 0.35 17 Si thick 
22 0.1 2.2 2.0 0.6 0.6 2 0.26 1.3 7.9 Ti 10 
22 0.5 0.7 2.0 73 0.6 2 0.26 1.3 74 Ti 10 
26 0.1 1.1 0.8 0.2 0.2 2 0.26 1.8 7.6 Fe 10 
26 0.2 2.2 0.8 0.2 0.2 2 0.25 1.8 7.6 
26 0.1 0.7 0.8 25 0.2 2 0.26 1.8 26 
29 0.2 2.2 0.4 0.1 0.2 2 0.30 2.3 7.8 Cu 12 

a 
b 

a 
d 
a 
b 
c 

29 0.2 2.2 0.4 0.1 0.2 2 0.44 2.9 8.5 Cu 125 a 
29 < 0.1 0.7 0.4 12 0.2 2 0.44 2.9 15 Cu 125 c 
41 0.4 1.7 0.7 < 0.1 0.3 0.5 0.20 3.8 7.5 Nb 25 a 
41 0.1 0.7 0.7 1.7 0.3 0.5 0.20 3.8 7.6 b 
42 0.5 1.7 1.2 < 0.1 0.3 0.5 0.14 3.2 7.3 Mo a 
42 0.1 0.7 1.2 1.5 0.3 0.5 0.14 3.2 7.5 b 
46 0.1 0.7 4.5 1.1 0.3 0.5 0.16 4.2 8.8 Pd 40 
47 0.2 0.7 5.5 1.0 0.4 0.5 0.16 4.1 9.3 Ag 25 
50 0.4 0.7 8.6 0.9 0.4 0.5 0.07 3.3 11 Sn 12.5 

front of the detector. The results are displayed in Fig. 5.2. Forthese measurements, 
the solid angle is independent of the X-ray energy and it is determined by the 
diaphragm. Gomparing the PIXE measurements with and without diaphragm, it 
can be noted that the concentrations for elements with Z > 40 are systematically 
higher for the measurements without diaphragm. It is not dear what causes this 
deviation but a reasou could be that the dead layer in the detector crystal is not 
radially symmetrie as is assumed above. A complete 2-dimensional scan of the 
detector surface using the method described in Section 4.6 can precisely quantify 
this effect. 

For the light elements (Al and Si), the dominating factor in the total uncer­
tainty is the uncertainty in the transmission through the Be absorber. The partial 
uncertainty from the X-ray attenuation coefficient is the next largest factor. For 
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the other elements, the partial uncertainties are more evenly matched. In all cases, 
except for Al and Si, the error propagation for the X-ray attenuation coe:fficient is 
smallso that the large uncertainty in p (10 %) has no large effect on the uncer­
tainty in the concentration. 

From the measurements (Fig. 5.2), one other aspect can be noticed, that in 
some cases the concentration from the K-{3 line is lower than the concentration 
from the K-a line. It is possible that a systematic error is introduced during the 
spectrum fitting. The K-{3 line is much smaller than the K-a line. Therefore, it is 
much more sensitive to variations in the background. Variations in the calculated 
background can lead to a difference of as much as 7% in the area of the K-{3 peak 
whereas the difference in the K-a peak does not exceed 3%. 

The accuracy of the uncertainty calculation can be tested with the so-called 
chi-squared test. For this test, the reduced x~ can be used that is given by 

X~ = _1_ t ( cmeas cref) 
2 

N - 1 i=l stat i 
(5.3) 

with N the total number of X-ray lines used for the analysis. The term 1/(N 1) 
is the normalization factor for the number of degrees of freedom, which is the 
total number elements in the summation minus the number of parameters to be 
determined ( one in this case). The terms 1/ stat are used as weighting factors, 
with stat= v{s~eas + s;er)· The quantity X~ is about one if the uncertainty stat 
is calculated correctly and if the underlying statistica} distribution is a Gaussian 
or a Poisson distribution. For the measurements with diaphragm, Xk = 0.23 
which is an indication that the calculated uncertainty is overestimated (see also 
Section 5.8). 

The results of the NBS experiments arealso given in Table 5.2 and in Fig. 5.2. 
The NBS measurements can only be used for samples that are so thin that particles 
scattered at the backside of the sample can still exit the sample in the direction 
of the detector. The NBS spectrum is a block where the width of the block is the 
energy difference of particles backscattered at the front and at the backside of the 
sample. The width is converted to a mass thickness using the program RUMP 
(see Section 4.7). This is done by comparing a simulation with the measured 
spectrum and adjusting the thickness to obtain a good fit. This metbod allows for 
the correction for straggling and the detector resolution. The main uncertainties 
in this procedure are the uncertainty in the fit and the uncertainty in the stopping 
power. Both uncertainties are added according to standard error calculation rules 
to obtain the uncertainty in the mass thickness. This methad gives good results 
for all samples except for Al. The only reasou can be that the stopping power is 
too small, exceeding the estimated uncertainty. 
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5.5 NIST reference materials 

The complete calculation for both the concentration and the uncertainty, including 
SF, has been applied to two alloy samples. The samples are the reference materials 
ST 644 and ST 1223 from the NIST. The sample ST 1223 was chosen because it 
contains the right conditions for SF: the elements V (Z = 23) and Cr (Z = 24) 
are present in a predominantly Fe (Z = 26) matrix. As a comparison, also an 
alloy was obtained that does not show SF: this is a sample with a Ti (Z = 22) 
matrix and heavier minor elements ( concentrations from 0.1% to several percent). 
Both samples are thick disks. The measurements have been clone using a 3 Me V 
proton beam (nominal value, see Section 4.2) and a Be absorber in front of the 
X-ray detector but without a diaphragm. The values determined in the previous 
section are used for the solid angle. The rotating-vane device has been used for 
the measurement of the number of protons Np and of course the BOD system has 
been used to reduce pile-up and eliminate the dead-time correction. The beam 
current was about 30 pA, selected to limit the count rate to 1000-2000 counts s- 1• 

Spectra of both samples are displayed in Fig. 5.4. 

The concentrations are calculated using the absolute calibration method and 
the results are given in Table 5.4. The deviation of the measured concentrations 
from the reference concentrations is displayed in Fig. 5.5. For these two samples, 
the reduced chi-squared is x1_ = 2.43. This is an indication that the calculated 
uncertainty is too small. On the other hand, the total concentration for the two 
samples is about 100%. The deviation from 100% is smaller than the uncertainty 
in the total concentration (see Table 5.4). An important reasou for the large spread 
in the deviation is the spectrum fitting. The spectrum of sample ST 644 is still not 
very complicated, although there is a1ready some overlap of X-ray lines (see top 
figure in Fig. 5.4). The spectrum of sample ST 1223, on the other hand, is quite 
complicated with many overlapping lines, i.e. Mo-L and S-K, V-K and Cr-Ka and 
Fe-esc, Mn-K and Cr-KP and Fe-Ka, and Ni-K and Cu-K. From this point of 
view, ST 1223 is not an ideal sample for checking the SF yield, mainly because 
it contains too many elements. Our uncertainty estimation is based on a simple 
model, only taking into account the height ofthe background (see Section 4.7). The 
complications of peak overlap and di:fficulties with the background model, e.g. low­
energy tailing, are not taken into account, which may lead to an underestimation 
of the uncertainty in the peak area. It is especially for the Mo-La, the Mo-Lp, 
and the Mn-Ka peaks that the value of (cmea.s- crer)/ stat is large(> 2) due to the 
overlap of peaks. If on ground of the above discussion the three largest values of 
(cmea.s- crer)fstot are omitted from the chi-squared calculation, the new value is 
x1_ = 1.29, which is much closer to one. 

The results of the SF calculations for Cr are good, especially for the Ka line. 
This can he explained by the fact that the fitting of the Ka line is not much inftu­
enced by the spectrum overlap because the overlapping lines are small compared 
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Fig. 5.4: Spectra of the two NIST reference samples measured with 3 Me V protons. 
The X-ray lines in the figures are K-lines unless otherwise noted. The term esc 
stands for escape-lines, see Section 4.7. Top figure: sample ST 644, without SF, 
charge: 44.2 pC. The Mo-K lines (at 17-20 keV) are not displayed in this figure to 
allow better detail in the rest of the spectrum. Bottom figure: sample ST 1223, 
with SF for V and Cr, charge: 48.1 p,C. The Mo-K lines (not displayed in the 
figure) are still below the detection limits because the statistics are too low. 
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Table 5.4: Comparison of certified and measured concentrations for two NIST 
samples. Sample ST 1223 is the sample where SF occurs for Cr and V. The 
results for the K{jlines are only given if the number of counts in the K{1 peak is 
large enough for the determination of the peak area to be sufficiently accurate and 
if this peak does not overlap with larger X-ray peaks. The total concentration is 
the summation of the Ka peaks only. 

ST 644 ST 1223 
z 

WCmeM 
s,Jc cref s,Jcref CmeM scfc R(SF/P) 

% % % % % % % 
14 Si 0.327 2 0.42 19 
16 s 0.329 3 0.48 18 
22 Ti Ka 94 12 

K{3 87 12 
23 V 0.068 3 0.056 13 24 
24 Cr Ka 1.03 1.17 14 12.64 0.2 12.7 10 37 

K{3 1.04 14 11.5 9.9 31 
25 Mn 1.08 0.9 1.44 10 
26 Fe Ka 1.36 1.37 13 87 11 

K{3 1.56 13 86 11 
28 Ni 0.232 2 0.22 14 
29 Cu 0.11 13 0.081 5 0.081 14 
42 Mo Ka 3.61 3.6 9.1 0.053 2 

La 4.3 31 0.48 33 1.5 
1{3 3.5 30 0.39 34 1.6 

74 w Lo: 0.49 26 
1{3 0.58 26 

Tot al 102 10 103 8.5 

to the Cr-Ka line. For the Cr-K{3 line, there is astrong Mn-Ka line that overlaps 
the Cr-K{3 line. The calculated concentration for the Mn-Ka line is too large (see 
Table 5.4). If the surplus number of counts now contributed to the Mn-Ko: line are 
added to the Cr-K{3 line, then more than the difference between cmeas and cref for 
this line can be accounted for. The V-Ka line is a small peak on the low energy 
tail of the Cr-Ka peak, making it difficult to obtain a correct peak area. It is 
therefore difficult to pass judgement over the accuracy of the SF yield calculation 
of this line. Other elements are found in our measurements, but not in the NIST 
list of certified elements, especially forST 644. 
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Fig. 5.5: Deviation of the measured concentration from the reference concentration 
normalized on the calculated total uncertainty for the two NIST samples. The 
elements V and Cr have an important contribution of the SF yield to the total 
X-ray yield. 

5.6 Double metal foils 

To try to obtain a better picture of the effects of SF, the set of roetal foils (used 
in Section 5.4) has been used in combinations of two foils. Two series have been 
made, each with increasing ratio of SF yield to primary yield. One series is based 
on Cu (Z = 29) as element ofwhich the X-rays enhance the yield of other elements. 
The other foils a:re Al (Z = 13), Ti (Z = 22), and Fe (Z 26). The other series 
is Nb (Z = 41), Mo (Z = 42), and Pd (Z 46) enhanced by Sn (Z = 50) X­
rays. Th ere is one extra combination suitable for this examination: Mo ( Z = 42) 
and Pd (Z = 46). All other combinations are not useful because they do not 
result in a sufliciently large ratio of SF yield to p:rimary yield or they are not 
practical because the foils are too thick. In general, it is better to have the foil 
first, where the X-rays are enhanced by SF; that is at the side where the proton 
beam enters. This results in a maximum detected X-ray yield for this element 
(A in the formulas). The number of detected X-rays of the element (B in the 
formulas) producing the exciting X-rays is less due to absorption in the first foil. 
Also, the ionization cross-section increases with decreasing proton energy (in this 
series Al is the exception) resulting in a higher primary production for element B 
and a lower primary production for element A. This is advantageous because it 
increases the ratio R(SF/P). Only when the foil of element A is too thick, the 
foil order is reversed. The measurements are performed under the same conditions 
as described above for the NIST samples. The calculations of the concentrations, 
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however, impose extra probieros because now the targets contain two layers and 
are therefore not homogeneous. A special version of PANEUT (see Section 4.7) is 
written to cope with this problem. For this purpose, the integration boundaries 
for x and L in Eq. 2.37 (Section 2.2) have to he changed. A distinction has to 
he made between the two cases of first the layer with element A and next the 
layer with element B and the reverse layer order. This results in different final 
formulas for both cases. The thicknesses of the two layers determine the integration 
boundaries. For the metal foils, the thicknesses are determined by weighing and 
measuring the area (see Section 5.4). The error assessment is performed as if the 
targets are one homogeneons layer, thus using the standard program, because of 
the complexity of incorporating the uncertainty calculation in the two layer version 
of PANEUT. The calculated uncertainties are, therefore, only indications of the 
'real' uncertainties. The results of the measurements are given in Tahle 5.5. 

The ratio R(SF / P) becomes more important when the difference in Z between 
the two elements becomes smaller and when the Z of the elements becomes larger. 
The minimum difference in Z as a function of Z is given in Fig. 3.13. It should he 
noted, however, that the ratio R(SF/P) is also influenced by the thicknesses of 
the two layers. Therefore, the values cannot he compared absolutely and they only 
indicate a general trend (see Section 3.4.5). These results are obtained without a 
diaphragm in front of the X-ray detector and are corrected for the energy depen­
denee of the solid angle. They are compared with the results of the measurements 
of the single foils without diaphragm (bere called cref• see Table 5.2) to obtain 
an impression of the accuracy of the SF calculation. This procedure is foliowed 
hecause the measured concentrations for 40 < Z :5 50 are systematically larger 
for the measurements without diaphragm compared with the measurements done 
with diaphragm (see Section 5.4). The X-ray lines are divided into two groups: one 
group with X-ray lines that havenoor little SF, R(SF/P) < 1%, and the other 
group with lines that do have a SF component. The red u eed chi-squared for the two 
groups is: Xk = 0.09 for the group without SF and Xk = 1.6 for the group with SF. 
It is obvious from these results that the calculations including SF are less accurate 
than the calculations without SF. In gener al, the concentrations calculated with SF 
corrections are too low: ( cmeas- cref )/ stot = -0.4. If the SF calculations are omit­
ted the calculated concentrations are larger: (cmeas- cref)/stot = 0.5. From these 
results is seems that the contribution of the SF to the total yield is overestimated in 
the calculations. For these measurements of the targets containing heavy elements 
(Z > 40), the validity of Assumption 5 and of the assumption in Section 4.7 is 
checked. The two assumptions are: the total X-ray attenuation coefficient 1-Ltot can 
he used instead of 1-Ltot minus the coherent and incoherent absorption coefficients 
for 1-Lt( Ex 

8
) and it can he used instead of the photo-electric absorption coefficient 

rA(Ex
8

). The errors caused by these assumptions are largest for elements with 
Z > 3. For these measurements, it is found that the deviations introduced by these 
assumptions are less than 1% because the effects for 1Lt(Ex

8
) and rA(Ex

8
) partly 
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Table 5.5: Results of the measurements to examine the SF yield by using com­
binations of two mono-elemental metal foils. The first seven columns contain the 
results for the element (A) of which the X-ray yield is enhanced by SF. The last 
six columns contain the results for the element (B) of which the X-rays produce 
the SF for element A. Here, Ll.c = ( Cmea.s - Cref )/ Stot, c stands for Cmea.s and R 
stands for R( SF/ P). Note that for the Ka and K(J lines of element A, both K 
lines of element B are involved in the SF production. 

ZA line c ~ R ~c ZB line c ~ ~c e c 
% % % % % 

13 Al Ka 94 24 0 -0.17 29 Cu Ka 101 12 -0.17 
KP 98 12 -0.05 

22 Ti Ka 93 12 0.4 -0.41 29 Cu Ka 100 12 -0.24 
KP 89 13 0.6 -0.26 KP 97 12 -0.12 

26 Fe Ka 98 11 7.3 0.06 29 Cu Ka 103 12 -0.04 
KP 93 11 8.6 -0.23 KP 100 12 0.09 

42 Mo Ka 95 8 11 -1.0 46 Pd Ka 116 10 0.07 
KP 95 9 12 -1.1 KP 115 12 0.00 

41 Nb Ka 123 9 5.8 0.97 50 Sn Ka 112 12 0.30 
KP 117 9 7.5 0.50 KP 103 15 0.05 

42 Mo Ka 102 9 6.1 -0.38 50 Sn Ka 106 13 -0.06 
KP 101 10 7.5 -0.55 KP 98 15 -0.20 

46 Pd Ka 96 10 32 -1.3 50 Sn Ka 106 13 -0.06 
KP 94 11 38 -1.3 KP 101 14 -0.05 

cancel each other. It should be noted that the normalization on stot results in too 
small values. This is caused by the fact that that two measurements of the same 
type are compared. For a better comparison, only statistica! uncertainties, such 
as the uncertainties in the yield and the number of bombarding protons, should 
he taken into account. For the group with SF, the situation is more complicated 
because in this case, also the uncertainties in the SF yield have to he taken into 
account. However, fora comparison of the two groups, the normalization onstot 
is acceptable. 
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5. 7 Biological reference materials 

As a demonstration of the procedure using NBS for the determination of the ma­
trix composition, a set of biologica! reference materials, consisting offour powdered 
samples of biologica! reference materials from the IAEA, has been used. The ma­
trix composition of biological samples consists mainly of light elements (Z ::; 10) 
and therefore the NBS measurement has to he done but there is also no possi­
bility of secondary fluorescence. These powders are pressed into pellets to obtain 
thick targets, in which the beam is completely stopped. The values for the sample 
thickness are therefore not needed but the rotating-vane device has to he used to 
obtain the charge. A3 Me V proton beam was used for the measurements. Because 
of charging of the targets, the electron gun was used during the PIXE measure­
ments. This required a separate NBS measurement because of the interference of 
the electron gun with the NBS detector. Also, the PIXE measurement had to be 
done twice to obtain the concentrations of all elements. One measurement was 
done with the C250 absorber and one without any absorber. All measurements 
were done without a diaphragm in front of the X-ray detector. 
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Fig. 5.6: NBS spectrum of the biologica! sample IAEA-H-8, horse kidney. The 
spectrum is measured using 3 MeV protons, with the detector at an angle of 147° 
. The charge is 0.93 p,C. 

Fig. 5.6 gives an example of a NBS spectrum. The height of the steps in the 
spectrum gives information on the concentrations of the matrix elements. The 
first step in the spectrum ( rightmost step) results from the combined heavy ele­
ments (Z > 10) in the sample. All these elements arealso measured with PIXE. 
To simplify the NBS analysis, it is assumed that all the heavy elements can be 
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approximated by one element, S. Because hydrogen can not be measured in a 
backwards configuration, the hydrogen concentration is taken as one minus the 
concentrations of the other matrix elements. The concentrations of the matrix 
elements are then found by making a simulation with the program RUMP and 
comparing this with the measured spectrum. The results of this metbod are pre­
sented in Table 5.6. The concentrations in this table are atomie fractions and they 
have to be converted to weight fractions needed for the PIXE analysis. 

Before this conversion is clone, it has to be explained how the uncertainty in the 
atomie fraction is calculated. For this purpose a formula for the calculation of the 
atomie fraction is needed. This formula is the formula for the number of counts 
Yz,i,NBS in channel i of the spectrum from one element [Chu 78, Chapter 3]: 

y N D.u~Bs(Ep)O fzD.Ech (5.4) 
Z,i,NBS P äQ NBS cosel[f] 

(5.5) 

[E] is called the energy loss factor, and 
01 the angle between the sample normal and the proton beam 

(see Fig. 5.7), 
the angle between the sample normal and the direction of the 
NBS detector (see Fig. 5.7), 
the energy of the proton in the sample corresponding to the 
energy of channel i in the spectrum (ke V), 
the energy width of one channel in the spectrum (keV), 
the kinematic factor for scattering on element Z for an angle 
of1r-e1 e2 , 

ÁO'~BS(Ep) 
- AO.- - the differential scattering cross section for protons with energy 

Ep scattering under an angle of e1 + e2 , 

the solid angle of the NBS detector (sr), 
the total atomie stopping power for the sample (ke V 
cm2/atom); note that it has a different unit as St(Ep)· 

The angles e1 and e2 are 0° and 33° , respectively. The yield Yz; NBS fora 
'' certain element Z is obtained from the part of the spectrum left of the edge for 

that partienlar element as the height of the step in counts/channel (see Fig. 5.6). 
In analogy to the situation in a PIXE spectrum, we assume that the calculation 
of Yz,i,NBS is a more complex form of the subtradion Yz,i,NBS = ~ot,i,NBS -

YB,i,NBS with ~ot,i,NBS the total number of counts in channel i and YB,i,NBS the 
number of counts in channel i of elements heavier than element Z. The uncertainty 

in Yz,i,NBS can be estimated as Sy V~ot,i,NBS + FYB,i,NBS with F a factor 
(> 1) determined by the accuracy of the determination of YB,i,NBS· F is taken 
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Fig. 5. 7: Schematic layout of the scattering of protons in the target at the depth 
where the proton energy is Ep. 

Table 5.6: Results of the NBS a.nalysis of the four biologica! reference ma.teria.ls. 
f z is the atomie fra.ction of matrix element Z. The atomie fractions are normalized 
to one. 

sample fn stff fc sJ/f fN BJ/f fo SJ/f !Rest sJif 

% % % % % 
H-8 0.56 4.9 0.28 8.6 0.055 12 0.09 12 0.015 27 
H-4 0.56 4.7 0.28 8.3 0.055 11 0.09 11 0.015 27 

V-10 i 0.58 4.5 0.25 i 8.7 0.015 12 0.14 10 0.015 24 
A-14 0.56 4.2 I o.25 7.8 0.02 9.0 0.15 8.7 ! 0.02 16 

I 

I 

one because Y8 i NBS is determined via the simulation taking into account the 
whole spectrum: 'From Eq. 5.4 the total uncertainty can be calculated: 

+ (5.6) 

with s[e]/[€] < seJ€t < s8 z/Sz. The uncertainty in the atomie fraction of H is 
determined in a different way: s1H = Lz s]z because fn = 1- Lz fz· Finally 
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the weight fractions and their uncertainties can he calculated: 

Mz 
cz = fz (Mz) and (5.7) 

with (Mz) = Ez fzMz. 

Fig. 5.8 gives an example for IAEA-H-8 ofthe two PIXE spectra measured with 
and without an absorber. Peak-shape corrections were only used for large peaks, 
notably P, S, Cl, K, and Ca, during the spectrum fitting because peak-shape 
corrections do not imprave the fit results for smaller peaks. The beam current was 
again selected in such a way as to limit the count rate. For the measurement with 
the C absorber, it was about 2 nA resulting in a total charge of 2-3 JJC and for 
the measurement without absorber, it was about 90 pA leading toa total charge 
between 0.14 and 0.26 JJC. The measurements have been done using the BOD 
system to eliminate pile-up and the dead time correction. The final calculations 
of the concentrations have been done in an iterative way. In the first step, the 
matrix composition determined by the NBS experiment is used. In the next step, 
all elements that have a calculated concentration of more than 0.5%, are added 
to the matrix composition. The concentrations of all measured elements are then 
calculated again. This process is repeated until the difference befare and after the 
calculation of the concentrations of the matrix elements measured with PIXE is 
smaller than 1%. The results of the analysis are presented in Table 5. 7 and Fig. 5.9. 
There are some elements, which have a reference value for the concentration, but 
which are not certified. The uncertainty in the reference concentration in those 
cases is therefore left open. 

The uncertainty in the measured concentration is calculated in the same way as 
for the metal foils using Eq. 3.5. In Chapter 3 the error propagation for the matrix 
composition is treated for a binary matrix. In this practical situation, the matrix 
can consist of any number of elements. The treatment is identical as for a binary 
matrix (see Section 3.3.4) except that the square of the total partial uncertainty 
in the concentration ( s:~·c )2 is the quadratic sum of the partial uncertainties for 
every matrix element: 

(5.8) 

with cz the con centration to he determined, c;, the concentration of matrix element 
i and se., the uncertainty in this concentration. The summation is over all matrix 
elements minus the matrix element with the largest concentration. One matrix 
element can he skipped since the sum of all concentrations has to he one. Because 
the matrix concentrations are interdependent, the uncertainties in the concentra­
tions are also interdependent. Therefore, the matrix element with the maximum 
absolute uncertainty se; can he skipped. Generally, this is the matrix element with 
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Fig. 5.8: PIXE spectra. of the biologica! sample IAEA-H-8, horse kidney. The 
spectra. are mea.sured using 3 Me V protons. The top figure is the spectrum mea.­
sured without a.bsorber, charge: 0.14 p,C and the bottom figure is the spectrum 
mea.sured with the C250 absorber, charge 2.33 p,C, with a different energy scale 
to empha.size the heavier elements. 
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Fig. 5.9: Deviation of the measured concentration from the reierenee concentration 
norma.lized on the total uncertainty Stot y'(s~eas + s;er). Same valnes are nat 
shown because of their large value; they are: 0.9 for Z = 48 in H-8; 6.5 for Z = 26 
and 2.7 for Z = 35 in H-4; 5.0 for Z = 13 and 5.0 for Z = 26 in V-10. The valnes 
for A-14 milk powder are 0.43 for Z = 11, -0.47 for Z = 19 and -0.24 for Z = 20. 
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Table 5. 7: Measured and reference concentrations for all four biologica.! samples. 
The results for the light elements are obtained from the measurements without 
absorber and the results for the heavy elements from the mea.surements with 
absorber. When the uncertainty for Cref is left open, the va.lue of Cref is for in­
formation only, it is not certified. Here A stands for se/ Cref and B stands for 

Sc/Cmea.s· 

H-8 horse kidney H-4 animal muscle 
z cref A cmeas B cref A cmeas B 

i 

ppm % ppm % ppm % ppm % 
11 Na 9600 3.1 11200 22 2060 6.1 2110 22 
12 Mg 818 9.2 672 18 1050 5.6 1180 18 
14 Si 607 14 
15 p 11200 5.4 10200 15 8170 15 
16 s 9000 9280 14 8000 9220 14 
17 Cl 12600 8.4 11700 13 1890 4.4 1830 13 
19 K 11700 6.4 11600 11 15800 3.7 14800 10 
20 Ca 924 8.3 781 11 188 13 219 10 
25 Mn 5.7 4.8 8.9 39 
26 Fe 265 5.7 301 9.0 49 4.2 110 8.3 
29 Cu 31.3 5.6 32 17 4.0 8.3 6.4 29 
30 Zn 193 3.1 212 10 86 3.9 89 9.3 
34 Se 4.7 6.4 5.3a 23 
35 Br 104 11 122 9.8 4.1 15 8.6 18 
37 Rb 22.2 3.6 21 14 19 7.8 22 13 
48 i Cd 189 2.4 224 17 i 

I 

"Tlûs concentration is between the LOD and the LOQ (see Section 4. 7) 

the largest concentration. The error propagation P'(cz, ei) can he calculated as 
described in Section 3.3.1 except that if cz(ci ± ê) is calculated, ê has to added 
respectively subtracted from the matrix element with largest con centration to keep 
the sum one: 

P'( ) ,...., cz(ci + ê)- cz(ci- ê) 
Cz,Ci "' 2cz(c,)ê (5.9) 

As an example, the partial uncertainties and the error propagation factors are 
given for all elements present in sample H-8. 

The largest uncertainties are either due to poor statistica resulting in large 
uncertainties in the peak area or are due to the large uncertainty in the detector 
efficiency ( only for low Z values). The first type of uncertainty can he reduced 
by longer measuring times or for the measurements with absorber, higher beam 
currents. The secoud type ofuncertainty can only he solved by new measurements 
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Table 5.7: (continued) 

V-10 hay powder A-14 milk powder 
z cref A Cmea.s B cref A cmeas B 

ppm % ppm % ppm % ppm % 
11 Na 500 855 25 4300 11 4800 22 
12 Mg 1360 4.4 1690 18 1510 18 
13 Al 47 318 17 
14 Si 1500 14 
15 p 2300 8.7 2090 13 9600 15 
16 s 2750 14 3260 15 
17 Cl 7100 13 8930 13 
19 K 21000 19600 10 16600 3.6 15800 10 
20 Ca 21600 2.8 19100 10 13100 8.4 12700 10 
24 Cr 6.5 12 12a 57 
25 Mn 47 45 12 
26 Fe 185 3.5 305 8.0 24 17 
28 Ni 4.0 14 4.0 32 
29 Cu 9.4 4.8 9.6 19 
30 Zn 24 13 25 14 42 13 
35 Br 8 25 10.0 16 12 16 
37 Rb 7.6 3.3 5.8a I 29 21 15 
38 Sr 40 8.8 46 11 

aThis concentrationis between the LOD and the LOQ (see Section 4.7) 

to determine the detector efficiency with better accuracy (see Section 4.6). The 
only remaining large partial uncertainty is the uncertainty in the X-ray absorption 
coefficient. This uncertainty also has the largest influence for light elements and 
it can not easily be reduced. 

The reduced chi-squared for all four samples is: x~ = 2.84. If the three 
largest values of (cmea.s- crer)/J(s~ea.s + s~r) are omitted, chi-squared becomes 
x~ = 0.79. This value may confirm the result obtained inSection 5.4 that the 
uncertainty calculation overestimates the 'real' uncertainty. This is notwithstand­
ing problems associated with this type of sample. One of these problems is the 
effect of small-scale sample inhomogeneities. This is a general problem for PIXE 
measurements. The stated minimum sample size for the IAEA samples is 100 mg. 
However, the amount of material detected by PIXE is much smaller, in our case 
typically 1-2 mg. This amount varies depending on the beam size, proton range 
and X-ray absorption in the sample. So, small scale inhomogeneities in an other­
wise homogeneaus sample can influence the results of a PIXE analysis. Another 
problem is the accuracy of the certified values. The certified values are averages 
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Table 5.8: Partial uncertainties and error propa.gation factors for all elements 
in sample H-8, horse kidney. Here, A stands for P(cz,/Jt) and B stands for 
P(cz, Ep,o). The uncertainties identical for all elements are !S-8 = 3%, !.!!.. = . ""' 10%, ïfL = 0.6%, ::.. = 5%, W Ri 5.5%. P(cz, u) = 1 for all samples and 

P,O uZ,K 

P(cz,St) = 1-P(cz,P.t). 

z ____!);;___ ~ ~ #:;: ___!L .2.w_ A B ::..=.z..:.=.. l.c. 
Y(Xz) Q e bz,x wz,K ez cz 

% % % % % % % % 
11 1.3 1.3 18 0 0.1 4 1.00 0.14 2.7 22 
12 3.9 1.3 11 0 0.1 4 1.00 < 0.01 2.7 18 
15 0.4 1.3 7.4 0 0.2 4 0.94 0.53 2.7 15 
16 0.4 1.3 7.1 0 0.3 4 0.88 0.79 2.6 14 
17 0.3 1.3 5.1 0 0.4 4 0.80 1.09 2.4 13 
19 0.2 1.3 3.7 0 0.5 4 0.57 1.78 1.7 11 
20 1.3 1.3 3.4 0 0.5 4 0.50 2.04 1.4 11 
25 38 1.3 1.0 0 0.2 2 0.15 3.21 0.9 39 
26 2.5 1.3 0.8 0 0.2 2 0.12 3.35 0.9 9.0 
29 15 1.3 0.4 0 0.2 2 0.06 3.70 0.9 17 
30 4.8 1.3 0.4 0 0.2 2 0.05 3.79 0.9 9.9 
34 21 0.6 0.2 4.4 0.3 1 0.02 4.08 1.0 23 
35 3.2 0.6 0.2 3.6 0.3 1 0.02 4.14 1.0 9.8 
37 11 0.6 0.4 2.8 0.3 1 0.01 4.25 1.0 14 
48 13 0.6 6.6 1.0 0.4 0.5 < 0.01 4.69 1.0 17 

of measurements based on several methods and done by several laboratories. For 
elements present in very small concentrations ( < 1ppm), there is evidence that 
this method does not result in reliable concentrations [Goe 83, Byr 87]. There 
is however no analysis of the accuracy for the elements used for our comparison 
but the stated uncertainty in the reference values is smaller than the calculated 
uncertainty for our measurements. One other factor, which influence can hardly 
be underestimated, is the peak fitting procedure. This is a complicated procedure 
where many factors can influence the results, for instanee the background determi­
nation and the overlapping of peaks. It is difficult to make an objective estimation 
of the uncertainty in the peak area determined in this way and it is sometimes 
possible to obtain larger variations in the peak area by varying parameters than 
is accounted for on the basis of one of the error-calculation methods described in 
Section 4. 7. 
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5.8 Discussion and general conclusions 

The absolute calibration metbod for PIXE analysis of elemental concentrations 
relies on a physical model of all relevant processes and knowledge of the values 
for all quantities needed to describe these processes. Therefore, in principle no 
standards for calibration are needed. The aim of this study is the evaluation of 
the achievable accuracy and the underlying sourees of inaccuracy of the absolute 
calibration metbod for thick targets (TT-PIXE). To accomplish this aim, the ab­
solute calibration procedure is set up taking into account the present knowledge 
about all relevant processes and about all relevant data. As a first step, the theory 
of both the physical processes and the error assessment are described in detail in 
Chapter 2 and Chapter 3 respectively. A complete formula is givén to calculate the 
total uncertainty in the measured concentration. The experimental setup already 
present in our group has been renovated to allow the measurement of thick targets 
needed for the evaluation of the absolute eaUbration method (Chapter 4). In this 
section, several topics are discussed, such as the detector calibration, the compar­
ison of the theoretica} description with experimental results, the main sourees of 
inaccuracy, and the prospects for the absolute calibration method. 

The detector 

An important system of the experimental setup is the detector. It is also a very 
complicated system that influences the analysis in several ways: through the solid 
angle, the detector efficiency, and through the peak shape (see the item about 
the X-ray yield on Page 125). Currently, the variations of the solid angle due to 
the dimensions of the beam spot on the target are very large. These variations 
can be drastically reduced by rotating the target 45° so that the target surface 
becomes parallel to the detector surface. This is especially important for spatially 
inhomogeneons targets. The detector efficiency including the solid angle has to 
be determined for every X-ray energy of interest. As shown in Section 4.6 and 
Section 5.4, the effects of the solid angle and the detector efficiency both depend 
on the X-ray energy. The energy dependenee of the solid angle can be avoided by 
using a diaphragm in front of the detector. In many cases, this is a viabie solution, 
but, since the diaphragm limits the obtainable detection limit for a given charge, 
this is nat always possible. 

The most direct methad of calibrating the detector is the determination of 
the detector efficiency with calibrated X-ray sources. However, the number of 
calibrated X-ray emitting radionuclide sources, particularly below 5 keV, is limited. 
This makes at least some farm of interpolation and even extrapolation necessary. 
To imprave the accuracy of the inter- and extra-polation, a detector model is 
useful. 

Measurements of external standards can be used to augment or replace the 
measurements with the X-ray sources. The type of target described inSection 4.6 
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is suitable for the measurement of the detector efficiency. The target consists of a 
filter paper containing a small amount of a chemica! compound. The detector effi­
ciency is calculated relative to one element in the compound. For this calculation, 
the production cross-sections, the matrix composition, the stopping power, and 
the X-ray attenuation coefficient are needed, but not the number of bombarding 
particles and the absolute mass of the compound. However, the uncertainty in 
the result is reduced because the valnes are only needed relative to one another. 
Another possibility is the use of very thin mano-elemental standards. The main 
problem with these standards is obtaining an accurate mass-thickness (0.1-100 
pgfcm2). Also, valnes of the production cross-section and of the number of bom­
barding particles are needed, resulting in larger uncertainties. If this standard 
contains the same element as the element of interest, it can even be used to elimi­
nate (for thin targets) or rednee (for thick targets) the influence of the uncertainty 
in the cross section. However, tbis modification of the calibration metbod cannot 
be considered an absolute calibration anymore. The measurements can be used 
in two ways for obtaining the efficiency calibration. The first metbod needs no 
detector model, but it requires the measurement of the efficiency for all X-ray 
energies of interest. Tbe second metbod needs a limited set of measurements and 
it uses a detector model to interpolate the detector efficiency. 

As we have shown, in principle, it is possible to calculate tbe detector efficiency 
directly. However, a more detailed detector model is needed and, furthermore, 
more data about the construction and composition of all detector parts are re­
quired. Because these data are not supplied by the manufacturer with sufficieri.t 
accuracy, they have to be determined. In practice, the secoud metbod is most 
useful. Moreover, since tbe detector may be susceptible to ageing, regular checks 
of the detector efficiency are required and this can also be accommodated by the 
secoud method. It is this metbod that has been used in this thesis. 

Comparison of the theoretica! description with the experimental results 

In Section 5.3 through 5.7 the results of the theoretica! description of the abso­
lute calibration are compared with some experimental results. Tbe value of this 
camparisou is limited because it is difficult to obtain good reference materials for 
PIXE analysis with accurately known concentrations. Tbis aspect also underlines 
the usefulness of absolute calibration because it can do without standards. 

In general, the calculated concentrations are within the calculated uncertainties 
in agreement with the reference values, when no SF is involved. Exceptions are 
the concentrations for elements witb Z > 40 measured without diaphragm in front 
of the detector, which tend to be about 10% too large, even when corrected for 
the energy dependenee of the solid angle. This effect is probably caused by the 
shape of the dead layer inside the detector crystal that is assumed to be radially 
symmetrie but that may he irregular (see Section 5.4). Therefore, within the 
uncertainty, no deviations from the physical model are expected. 
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From the experiments described in sections 5.5 and 5.6, it can be conduded 
that the correction for SF is necessary for targets where this process can occur. 
The occurrence of SF depends on cA, c B, and on ZB -ZA. For the elements V, Cr, 
and Fe in the NIST standards and in the double metal foils, the valnes for the SF 
corrections result in accurately determined concentrations. The ratio R(SF/ P) is, 
however, notlarge compared with uncertainties influencing the accuracy. Therfore, 
these measurements do not give conclusive evidence about the correctness of the 
SF calculation. The evidence for the heavier elements Nb, Mo, and Pd, however, is 
not so conclusive. A correction for SF is necessary but it seems that the calculated 
corrections forthese elements overestimate the SF yield (see Section 5.6). Because 
of the large scatter of the data points, it is not clear if this is due to a shortcoming 
in the model or due to experimental problems or due to problems with the values 
for the quantities needed for the calculation. 

To campare the uncertainty calculations with the experimental results, the re­
duced chi-squared has been calculated for all series of samples. The chi-squared 
values are: x~ = 0.23 for the single set of metal foils, x~ = 2.43 (or 1.291) for 
the two NIST standards, and x~ = 2.84 (or 0.791) for the IAEA standards. The 
measurements of the set of metal foils have the least complications. The x~ is also 
smallest. From this value of xi:t it can be concluded that the total uncertainty is 
about a factor of two overestimated. The IAEA samples are more complicated and 
the resulting spectrum is also more complex. The analysis is additionally compli­
cated by the fact that the matrix composition bas to be determined using NBS. 
Nevertheless, the results forthese samples also indicate that the total uncertainty 
is too large, although by a smaller factor. This condusion is not supported by 
the results from the NIST samples but in this case, the spectrum fitting is espe­
cially complicated. In total, it can be concluded that the uncertainty calculation 
is overestimated, by a factor varying from slightly larger than 1 to about 2. 

The total uncertainty in the concentration, determined by absolute calibration, 
ranges from 8-20% under optimal conditions, dep en ding on the element of interest. 
Optimal conditions mean that no extra problems arise such as a complex spectrum 
that complicates the peak-area determination. 

Sourees of inaccuracy 

There are several factors that can contribute to the overestimation of the uncer­
tainty. As explained before (see Section 5.2), the fact that not all quantities are 
really independent can result in an overestimation of the total uncertainty. An 
overestimation of the total uncertainty may also be caused by overestimation of 
individual uncertainties contributing to the total uncertainty. For quantities such 
asthestopping power, the X-ray attenuation coefficient and the ionization cross­
section, the uncertainty is an average over all values of Z and the energy. This 

1for all X-ra.y lines minus the three tha.t result in the la.rgest devia.tions from the reference 
concentrations 
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may lead to an overestimation of the uncertainties in individual cases. To resolve 
this last problem, the uncertainty estimates for these quantities have to he made 
for smaller intervals or even for individual values. On the other hand, underes­
timation may occur for the same reasons as presented above. However, in this 
thesis, more sourees of overestimation are found then of underestimation ( see also 
below). 

It should he noted that the uncertainties can he divided in two categories: 
(1) Uncertainties that contribute to the uncertainty in the concentration when the 
metbod of absolute calibration is used. (2) Uncertainties that always contribute to 
the final uncertainty, no matter what metbod is used for the PIXE analysis. The 
first group contains the uncertainties in the stopping power, the X-ray attenuation 
coefficient, the production cross section, the initia} proton energy, the angles () and 
a, the solid angle, and the detector efficiency. lt also contains the systematic parts 
of the uncertainties in the number of bombarding partides, and in the X-ray yield 
(see Section 5.2). The second group contains the matrix composition ( only for thick 
targets) and the statistica! parts of the uncertainties in the number of bombarding 
particles Np, and the X-ray yield Y(Xz)· 

The main uncertainties are caused by the X-ray yield, the matrix composition, 
the X-ray attenuation coefficient, the absorber transmission and by the detector 
efficiency. These quantities are discussed below. 

• The X-ray yield Y(Xz): This quantity is, in specific cases, very difficult 
to determine. Problems may be caused by a complicated background, by a 
complicated peak shape of the X-ray lines, by overlap of X-ray linea origi­
na.ting from the sameelement (especially for L-lines) and/or by overlap of 
X-ray linea from different elements. This makes it also difficult to determine 
a value for the uncertainty. In Section 4.7, an estimate of the uncertainty 
in the yield is presented based on the determination of the peak area result­
ing from a subtradion of a background from the total area. This is a good 
estimate for the statistica! part of the uncertainty in the X-ray yield. For 
many cases, the problems described above can result in systematic errors 
in the X-ray yield. In these cases, the uncertainties in the peak areas are 
underestimated. It should be noted that these problems are not specific for 
the absolute calibration metbod but can occur for all calibration methods, 
although, in some cases, the systematic errors may partially cancel out. 

• The matrix composition: This quantity is important for all calibration pro­
cedures although on different grounds. For the absolute calibration, it is 
important to know the composition for the calculation of the thick target ef­
fects. For the external-standard method, it is important to know the matrix 
composition to be able to choose the correct standard materiaL The precise 
matrix composition is especially important when small changes in it lead to 
large changes in the totalstopping power St or the total X-ray attenuation 
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coefficient llt (see Section 2.1.1 and Section 3.3.4). 

• The X-ray attenuation coefficient Jlt(Exz): Currently, this quantity has a 
large uncertainty of 10%. Also, the use of the summation rule (Eq. 2.14) 
may introduce additional errors. The validity of the summation rule needs 
further investigation, e.g. for C-H-0 compounds. The values of the X-ray 
attenuation coefficient are particularly important for low X-ray energies and 
above absorption edges since the values in the last case are needed for the 
SF yield. The X-ray attenuation coefficient also is a quantity that cannot 
be easily eliminated by using standards. More measurements are needed to 
determine whether the uncertainty in this quantity is overestimated or not. 

• The absorber transmission Tabs(Exz): In addition to the X-ray attenuation 
coefficient, the transmission through the absorber is a large contribution to 
the total uncertainty for low energy X-rays. It is probable that the uncer­
tainty in the transmission is overestimated because this uncertainty consists 
of two dependent uhcertainties that are treated as independent uncertainties 
(see Section 4.5). This results in an overestimation of the total uncertainty 
in the concentration. Although the uncertainties for low X-ray energies are 
largest, the measured concentrations for the Al and Si foils are very good. 
This also indicates that the uncertainty in the transmission is probably too 
large. 

• The detector efficiency e:( Ex z): The uncertainty for the detector efficiency 
for low X-ray energies cao be overestimated for the same reason as for the 
absorber transmission. For high X-ray energies, the uncertainty in the de­
tector efficiency increases rapidly, especially for the elements Ag and Sn. 
This is caused by the fact that the detector-crystal thickness is oot accu­
rately determined and we have, therefore, given a conservative estimate for 
the uncertainty in the thickness. Taking into account the low values for x~, 
indicating an overestimation of the total uncertainty, it is likely that the 
uncertainty in the detector thickness is a possihle souree of overestimation. 

The first step in the further impravement of the absolute eaUbration metbod 
should the reduction in the uncertainties in the quantities discussed above. It 
should be noted that the comparison in the present studies only is for K-lines of 
the elements from Na to Sn. However, the 1-lines are important for the analysis of 
heavy elements (Z > 57). The physical model is also valid for 1-lines. However, the 
data base for 1-lines is still not satisfactory. The main problem to he solved for the 
analysis of 1-lines is the accuracy of the production cross-section uP{,t(Ep) (see 
Appendix A). Only after this step, it becomes useful to refine the physical model, 
e.g. by including more secondary processes. Another possible refinement is the 
incorporation of multiple scattering and/ or energy straggling in the equations. All 
these refinements will probably only result in small improvements of the accuracy. 
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The improvements of the accuracy of the absolute calibration metbod have to be 
tested with measurements. For this purpose, more reliable and relevant reference 
materials are needed. It should be noticed that the impravement of the model 
and of the accuracy and precision of the available data on the one hand and 
the availability of more standard materials on the other hand should be clone 
simultaneously since the results of one of these items are needed for the other 
items as well. 

General conclusions and outlook 

The evaluation of the accuracy has shown that the absolute calibration can be used 
in practice as a calibration metbod in TT-PIXE. At present, the calculated uncer­
tainty may be quite large, but it can be reduced by determining the quantities dis­
cussed above more accurately and by removing the sourees of overestimation. As 
pointed out in the introduction, it can be useful to use a combination of calibration 
methods, especially for the eaUbration of the detector. Sofar, for simple targets, 
especially thin targets, when matching standards are available, the accuracy for 
the eaUbration with standards is better than for absolute calibration. However, 
the availability of accurately determined standards is often a problem. Absolute 
calibration is a fiexible metbod for the analysis of many different elements in many 
different matrices. In case of inhomogeneons targets and use of a microbeam, the 
use of the absolute calibration methad is virtually inescapable. For this purpose, 
we have derived a formula for which the composition of a sample may be variabie 
in two surface dimensions. As the accuracy of the physical quantities improves, 
the determination of the matrix composition of the target becomes relatively more 
important. The determination can be refined by an iterative approach for the ele­
ments with Z > 10, e.g. as applied for the NIST samples inSection 5.5. Although 
lighter elements cannot be determined with PIXE, they can be determined with 
NBS simultaneously with the PIXE measurement, as performed in Section 5.7. 
Although NBS is less sensitive than PIXE, this poses no problem since only the 
matrix elements with concentration greater than 0.5% have to be determined. A 
last aspect, although outside the scope of the thesis, is to what extend the targets 
analyzed are representative for the material to be investigated. There are many 
errors that may occur during target preparation, such as the introduetion of con­
taminants, or the loss of material or specific elements, or the change the structure 
of the materiaL 
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A L-lines 

In this appendix, the theory for the L-shell production cross-section is pre­
sented, together with the extra data for L-lines needed for the data base. 

Theoretica! description 

For higher atomie shells, the formula for the production cross section becomes 
more complicated since they have more subshells. The L-shell, for example, has 
three subshells and if a vacancy is created in one subshell, there is a possibility 
of a non-radiative transfer to a higher subshell. This process is called a Coster­
Kranig transition, denoted by its probability !{1, with s the main shell and i, j 
the subshells between which the transition takes place (from i to j). If there is a 
vacancy created in a subshell, there are three processes by which the vacancy may 
be :filled by an electron from a higher (sub )shell. The first process is the Coster­
Kranig transition which is radiationless, the second process results in the emission 
of an X-ray and the third in the emission of an Auger electron. The probability 
of all three processes fi~, w z,Li and az,Li summed must he 1. 
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Fig. A.l: Diagram showing the main K- and L-shell transitions. The nomendature 
for the transitions is the Siegbahn notation. 

For all three subshells of the L-shell, there are several lines X z, the main 
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transitions are presented in Fig. A.I. The production cross section for each of the 
three subshells is given by: 

aP{,;1(Ll/ EP) = 17ÏZ,'l1 ( Ep )wz,Ll bz,X(Ll)· (A.l) 

aP{,;1(L2)(Ep) = {17~Ll(Ep)ft2 + 17~L2(Ep) }wz,L2bZ,X(L2) (A.2) 

aP{,o;(L3)(Ep) = {17~~1(Ep)[ff2J;,3 + ft3 + ft3'] 

+17~~2(Ep)/;,3 + O'';,Ï,3(Ep)} wz,L3bz,X(L3) (A.3) 

Here, ff 3 ' is a radiative transition from the Ll to the L3 subshell. In contrast 
to the n~n-radiative Coster-Kronig transition, the radiative transitions within the 
L-shell are negligible, except for the Ll to L3 transition. The values for O'';'l,i(Ep), 

L ' wz,Li• bz,X(Li) and fi,j are generally not so well known as the values for the K-
shell (see also Section 2.3). The M-shell has five subshells and bere the situation 
becomes even more complicated than for the L-shell. Furthermore, there hardly is 
any data available for O'kc:nMi(Ep), wz,Mi> bz,X(Mi) and !l]· This means that the 
M-shell X-rays are not useful for quantitative analysis using PIXE. 

L-shell ionization cross-section 

The L-shell ionization cross section has to he calculated for three subshells sepa­
rately. Chen and Crasemann have calculated the L-subshell ionization cross sec­
tions. The tabulations of Cohen and Harrigan are also available for the L-shell. 
The data of Chen and Crasemann is fitted by Maxwell et al. [Max 89] in the 
same way as for the K-shell for the atomie numbers ranging from 22 to 92 (see 
Section 2.3.3). It is difficult to make a choice between the schemes of Chen and 
Crasemann, and of Co hen and Harrigan because of the complexity of the produc­
tion cross section for the L-shell X-ray lines (see eqs. A.l, A.2 and A.3). This 
complexity makes a comparison between the calculated ionization cross section 
and the experimentally determined production cross section very difficult. This 
is due to the necessary knowledge of the values for the Coster-Kronig transition, 
the fluorescence yield and the branching ratio for the calculation. In practice, it 
is only possible to campare the calculated production cross section with the mea­
sured production cross section. It also follows that it is difficult to give an error 
estimate for the values of the individual quantities in the formula for the L-shell 
production cross section. A discussion for the total production cross section is 
given below after all the necessary quantities are described. For the ionization 
cross section, the fits of Maxwell et al. are used when possible as in the case of 
the K-shell. For other energy and Z ranges, calculations of Cohen and Harrigan 
are used. 



136 L-lines 

Branching ratio 

For the 1-shell, many more transitions are possible, so there are more branching 
ratios. The semi-empirica} data base of Salem et al. is also available for the 
L-shell as well as for the K-shell. The estimated uncertainties range from 2 to 
8%. Beofield has performed his Hartree-Slater [Sco 74] and Hartree-Fock [Sco 74b] 
calculations for the 1-shell. The Hartree-Fock calculations were only carried out 
for 21 elements ranging from Z = 18 to Z = 94. The difference between the 
two theories is less than the spread in the experimental data. On the basis of 
the K-shell data, Campbeltand Wang [Cam 89] concluded that the Hartree-Fock 
calculations give the best results. Therefore, they have interpolated the valnes of 
[Sco 74b] using a comparison with the Hartree-Slater valnes that were calculated 
for 5 $ Z $ 104. There is also a data base available from the analysis program 
AXI1 of unknown origin. In Fig. A.2, a camparisou is made between the data 
bases described above. It is clear from this figure that there are large differences 
between the data bases of CampbeU et al. and Salem et al. , exceeding the stated 
uncertainties for the valnes of Salem. The data base used in the program AXI1 
seems to be based on the valnes of CampbeU et al. , although there are slight 
differences. The differences for the Lf32,15f Lal ratio for Z $ 52 can be due to the 
fact that the there are no valnes for the 1(315 line available in the AXI1 data base. 
The line intensities are, however, normalized on L 

At the moment, these valnes are in use for our data base because the valnes 
are nearly complete and normalized. Another advantage is that they give more 
consistent results since the same valnes are used for both the program AXI1, to 
determine the peak areas, as well as for the final calculations of the concentrations. 

Fluorescence Yield and Coster-Kranig Transition Rate 

For the 1-shell, there are three subsheUs and thus three wz,Li (i = 1,2,3) and 
five Coater-Kronig transition rates Jb. Many publications are concerned with the 
average L-shell fluorescence yield, which is not a useful quantity for the data base. 
One complete semi-empirical compilation of both subshell fluorescence yields and 
Coster-Kronig transition rates is the compilation of Krause [Kra 79] for 12 $ Z $ 
110. Unfortunately, the estimated uncertainties are rather large; for Wz Li> 10-30% 
for Z is 12-50 and 3-20% for Z larger than 50 and for Jb, 5-20% for 'all Z. The 
large uncertainties for low Z valnes are mainly due to a lack of experimental data. 
The valnes of fb change suddenly as a function of Z for the 11- and 12-subshells 
because of thresholds for various Coster-Kronig transitions. Near these jumps, 
the uncertainty in Jl; may be even larger. Chen et al. have also done relativistic 
Dirac Hartree Slater calculations for the 1-shell for 25 elements with 18 $ Z $ 100 
[Che 81]. CampbeU [Cam 88] has made interpolation schemes to obtain valnes for 
all Z. At the moment, the data of Krause is in use but it seems recommendable 
to use the interpolation schemes of Campbell, see discussion below. 
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Fig. A.2: Figure of selected line intensity ratios from the data base of CampbeU 
et al. [Ca.m 89] a.nd from AXIL divided by the theoretica! Hartree-Fock intensity 
ratio of Scofield [Sco 74b]. The top graph is for a ratio of Ll lines, the middle 
graph is for L2 lines and the bottorn graph is for L3 lines. 
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Discussion 

In total, there are two complete data bases for the production cross section. Both 
rely heavily on theoretica! calculations mainly due to a lack of good experimental 
data for all elements. One data base [Coh 86, Coh 87] contains the ionization cross 
sections ofCohen and Harrigan [Coh 85], the fluorescence yields and Coster-Krenig 
transition probabilities of Krause [Kra 79] and the branching ratios of Salem et 
al. [Sal 74]. The other one [Cam 88] contains the interpolated ionization cross 
sections of Chen and Crasemann [Che 85, Max 89], the interpolation schemes for 
the fluorescence yields and Coster-Krenig transition probabilities [Cam 88, Che 81] 
and the interpolated branching ratios of Scofield [Cam 88, Sco 74b]. CampbeU 
[Cam 88] has made a comparison of the two data bases with experimental data by 
studying the intensity ratios of major L X-ray lines for a few selected materials. 
He has concluded that the scheme of Chen and Crasemann is slightly better than 
that of Cohen and Harrigan. A comparison of the average 1-shell fluorescence 
yield by Singh et al. [Sin 90] has also led to the condusion that the calculations of 
Chen et al. [Che 81] are in good agreement with experimental data, better than 
the calculations of Cohen [Coh 87a]. 



B Calculations for the SF yield 

In this appendix, some of the calculations for the SF yield in Section 2.2 are 
explained in more detail. 

The threefold integral Eq. 2.38 can be simplified and one integral can be solved 
analytically. These calculations are performed in the following points. 

1. First a new variabie can be introduced: 

2. The integral over {J can be rewritten. In Eq. 2.38, there are two integrals 
over {3. The first one is written as 

17r/
2 

sin/3 { C } 1° -1 { C } df3 --exp --- = dcos{J --exp ---
0 cos f3 cos {J 1 cos f3 cos {J 

(B.2) 

with C = P.t(::B)p8 (L- x), (C > 0). It now is possible to make the 
transformation y = 1/ cos f3 and 1/ cos f3d cos {J = -1/ydy : 

j o -1 C joo 1 
dcos/3 -

13 
exp{-----;q} = dy -exp{-Cy} 

1 cos cos~-' 1 y 
(B.3) 

The second integral over f3 can be treated similarly. The first step is the 
transformation {J' = 1r- {3. 

17r d/3 --:-si---'n {3--::-:-exp { -C } 1° -d{J' sin( 1r - f3') exp { _-_C_} 
1( 12 cos( 1r - /3) cos( 1r - /3) 1( 12 cos fJ' cos {J' 

= r/2 
d{J' _sin_{J_' exp {_-_C_} = joo dy !_exp{-Cy} 

} 0 cos /3' cos {J' 1 y 
(B.4) 

with C = Pt(::B) p8 (x- L), (C > 0). 

3. The integration order is to integrate first over the new variabie y than over 
x and finally over L. This order can be changed to first x than L and than 
y because L, y and x are independent. This step and the above mentioned 
points change Eq. 2.38 to 
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(1Ld dNB(;e) { P.t(Ex8 ) (L ) } ;e d exp - Ps - ;e Y 
o x Ps 

l t dN (:t) { P.t(Ex ) }) + d;e B exp 8 p8 (;e- L)y 
L dx Ps 

(B.5) 

By using the absolute value IL - :tl instead of (L- x) and (x- L), the 
sommation of two integrals over x can be replaced by one integral over the 
full depthof 0 tot. It then is possible to change the integration order between 
L and x. The substition of EP for x can be made using eqs. 2.4 and 2.5. 
Finally, the integral over L with the absolute value again can be replaced by 
two integrals and the integration order between y and E p changed. 

YsF(XA,XB) 

1oo 1 1t { Jt ( E ) L } = !A(ExA,Exs) dy- dL exp - t xA Ps--o 
1 Y o Ps cos 

1td dNB(x) { P.t(Exs) IL I } x d exp - Ps - x y 
o x Ps 

f (E E )1oo d ! ftd dNB(;e) 
A XA' Xs 1 y y lo X dx 

i t { P.t(Ex ) L } { P.t(Ex ) } dL exp - A Ps (} exp - 8 Ps IL- xly 
o Ps cos Ps 

= f (E E )1EP,J dE dNB(Ep) lood 1 
A XA, XB p dE y y EP,O p 1 

(1 :r:dL { P.t(ExA) L } { P.t(Ex8 ) ( L) } exp p8 --
0 

exp - Ps x- y 
o Ps cos Ps 

+l.tdL { P.t(ExJ L } exp - p8 --
0 x Ps cos 

exp { _P.t(~x8 ) p8 (L- x)y}) (B.6) 

with x given by Eq. 2.5 and 

dNB(Ep) _ N NAv a{rod(E ) 1 
dE - P M eB B,X P S (E ) 

P B t P 
(B.7) 

4. The integral over L in Eq. B.6 can be solved. 

1:r: dL exp{(-p+ qy)L- qxy} + 1t dL exp{(-p- qy)L + q;ey} 

exp{( -p + qy)L- qxy} ':r: + exp{( -p- qy)L + q;ey} 't 
~+w o ~-w :r: 

= exp{ -px} _ exp{ -qxy} _ exp{ -px} + exp{ -q(t -x )y- pt} (B.S) 
~+w ~+w ~-w ~-w 
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with 

p = fl.t(ExA) Ps 
p8 cos(} (B.9) 

5. Eq. B.8 has to be integrated over y. The first and third term in Eq. B.8 can 
be solved analytically. 

roo dy ! exp{ -px} 
A y -p+qy 

and 

["
0 
dy -1 exp{ -px} 

}1 y -p- qy 

_ex-=-p{::.._--=-px--"-} {In q - ln 1- p + ql} 
p 

= exp{-px} {-lnq+lnlp+ql} 
p 

. (B.10) 

(B.ll) 

Putting all points together, we can arrive at a final formula for the SF yield 
(Eq. 2.39). 

The last term in Eq. 2.42 can give probieros when it has to be integrated numer­
ically because the function of y, which has to be integrated, contains an asymptote 
between the integration bounderies 1 and oo when p > q. A salution to this prob­
lem of numerical integration is given by Verhaar [Ver 92]. The first step is to split 
the integral in a symmetrie interval around the asymptote y = pfq and the rest of 
the original interval. The new boundery is y = pfq + (pfq- 1) = 2pfq- 1. 

1
00 exp( -qxy) 12

pfq-
1 exp( -qxy) 100 exp( -qxy) 

--=--'---"_;;..:..dy = d y + dy ( B 12) 
1 y(p- qy) 1 y(p- qy) 2pfq-l y(p- qy) . 

The integral over the secoud interval can be solved numerically. To solve the 
integral over the first interval, we subtract an integration over an extra function. 
The integration over this extra function has to be zero. This can be clone by taking 
a rotation-symmetrical function around the asymptote y = pfq. The function is 
made by taken the zerothorder Taylor expansion of exp( -qxy)jy around y = pfq 
which is qf exp( -px) and multiplying it with 1/(p- qy). 

l pfq exp(-px) 12pfq-l exp(-px) 
--,-""-:"'-_.::.._~dy = - dy 

1 pfq(p-qy) pfq pfq(p-qy) 
(B.13) 

Taking both integrals tagether results in an integral that can be solved numerically. 

1
2pfq-l exp( -qxy) [ 2pfq-l exp( -qxy) f 2pfq-l exp( -px) 

1 y(p- qy) dy- 0 }1 y(p- qy) dy- }1 pfq(p- qy) dy 

= lpfq-
1 

{ exp( -qxy) _ exp(-px)} 1 dy 
1 y pfq 2(p- qy) (B.l4) 

It can be seen that this last integration does not contain an asymptote by making 
a Taylor expansion of exp( -qxy) around y = pfq. 



C Derivation of Propagation 
Factors for the Primary Yield 

The propagation factors for the various parameters in the formula of the 
primary yield are given in Section 3.3. The calculations are carried out 
using Eq. 3.4. Here a derivation of these results is given. 

Eq. 3.4 is basedon the following relation: 

( 
sy,., ) (~ ) ~ Y(x 0 + 6)- Y(~0 - 6) s.,(~0 ) 
Y(x) 0 2Y(x0)6/x0 x0 • 

(C.1) 

For the derivations, Eq. 2.15 is used in a simplified form, without the subscripts 
P for Ep, t forSt and J.lt and S for T8 : 

Y const. j q: dE. (C.2) 

First the formula for the cross section (Eq. 3.6) is discussed. In a strict way, 
Eq. C.1 cannot he used for the cross section because the crosssectionis integrated 
over the proton energy E. To he able to use Eq. C.1, we have to assume that 
~ and !;- are constant for all proton energies Ep, as stated in Section 3.3.2. 
Substituting Eq. C.2 in Eq. C.1 with q as parameter x gives: 

t J (u+é)TdE t f (u-ó)TdE sY,a "' cons . 8 - cons . 8 sa 

Y(u) "" 2~const. J uJ dE u 
(C.3) 

Eq. C.3 can be rewritten with the same assumption to 

Sya sa 2f f{-dE 
P(Y(Xz),u) = Y(~/7i' ~ 2 f ~uJ dE= 1 (C.4) 

This result is given in Eq. 3.6. 
Next, we shall discuss the formula for the propagation factor forthestopping 

power, Eq. 3.9. Now, x must be replaced by S. ij and ~ have to he constant for 
all proton energies EP, because S is again integrated over EP. Let ti be 1 ± 6 8/ S 
then ti also is independent of E p and 

± j uT(l/1~) 
Y(S ± 88 ) = Y(St5 ) = const. ± dE. 

Sts 
(C.5) 

The transmission T to the power 1/ ti followsfrom Eq. 2.16, T = exp(const. J dff). 
Eq. C.5 can he substituted in Eq. C.1: 

const. f !L {~- T(l/~$>} dE 
S Is Is s5 

2~const. J aJ dE S 
(C.6) 
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T(l/f~) ca.n be approximated by a first order Taylor expansion round /g = 1 since 
2t is small: 

r<- 11'~) ~ T + er•=- 1) ( -
1 

) 
s (f'f)2T(l/f~)InT !~=1 

This can be used to rewrite part of Eq. C.6: 

{
T(1/f'J") T(l/f';)} ( 1 1 ) 

rt - Is ~ rt- Is (T +TinT). 

In good approximation it can be written that 

(1 1) §..s. 6 
rt- Is =-21 (2t)2 ~-2 J 

Substituting Eq. C.9 in Eq. C.8 and Eq. C.8 in Eq. C.6 results in 

sy,s f ~T(1 + lnT)dE s5 
Y ( S) ~ - f "'§'dE S 

which is the result given in Eq. 3.9. 

(C.7) 

(C.8) 

(C.9) 

(C.10) 

For the X-ray attenuation coeflicient, the derivation of Eq. 3.10 is easier since 
{)Y I 8~tt ca.n be calculated a.nalytically. It also is more accurate because llt does 
notdepend on Ep. 

>l ( j u exp{ const. JLt f df} d ) !l 
8YI8~tt = v const. S E v!Jt 

J 
uTlnT 

const. --f"LdE. (C.ll) 

This result can be used directly to give the partial error in the yield according to 
sy,,., = ( {)Y I 8~tt)s ,., : 

sy,,., _ f fTinTdE s,. 
Y(~tt) - f oJ dE IJ 

(C.12) 

The propagation factor for the matrix composition can he derived from the 
calculation of s 8 IS and s ,.I p caused by the error in the matrix eoncentrations 
and subsequently using the propagation factor for these errors, as described in 
Subsection 3.3.3. lf there are n matrix elements, there are only n- 1 independent 
concentration variables since the sum of the concentrations must be one. For a 
two element matrix AcBl-c' the following formulas ca.n be used for the errors in 
the stopping power a.nd in the X-ray attenuation coeflicient: 

L (cissY +(SA- SB)2s~ (C.13) 
i=A,B 
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s!, = 2: (cist~Y + (p,A- f.LB)2s~. (C.l4) 
i=A,B 

With cA is c, eB is 1 - c and se is the error in the concentration c. For the 
propagation factor for the matrix composition, only the second term in these 
formulas has to be used because the first terms reflect errors in the stopping 
power and the X-ray attenuation coefficient only. The second term in Eq. C.l3 
will be called s8 c and in Eq. C.14 s .. ,. The error in the yield can be calculated 

t 1 rt ; ... 

using equations 3.9, 3.10, C.13 and C.l4 and either summing the two terms for 
the stopping power and the X-ray attenuation coefficient quadratically or linearly. 
Quadratic summatien is as follows: 

(C.15) 

The linear summatien is analogous to the quadratic summatien and could be used 
as an alternative in equations C.l3, C.l4 and C.15, but it can only be used for 
maximum deviations not for standard deviations. For both types of summation, 
there exists a problem for Eq. C.l3: the stopping power depends on the proton 
energy. This implies that s8.fSt depends on the proton energy even if s8 jSi and 
se do not. Another problem is the fact that the two contributions to the error in 
the yield (Eq. C.l5) arenotindependent because (1) the propagation factors for 
S and p, are interdependent according to Eq. 3.12 and (2) both termsin Eq. C.15 
contain the error se. Therefore quadratic summation cannot be used. The linear 
summatien gives similar results as the metbod of calculating the change in the 
yield as a function of the change in the matrix composition with Eq. 3.4. In view 
of these facts, we will use this last method. 

Finally, we derive equations 3.13 and 3.14, giving the relation between the 
propagation factor to the yield and to the calculated concentratien due to the 
uncertainty in the matrix composition. A binary matrix AcBl-e is used. The 
parameter c fixes the matrix composition, it must be distinguished from the cal­
culated concentration cz. The yield canthen be written as 

Y(Xz) = czfc. (c), (C.16) 

with fc. (c) a function ofthe matrix composition c. Z can be element A orB. This 
equation can be used to calculate the propagation factor to the yield using Eq. 3.4 
for both elements. 

(c + ó)fc. (c + ó)- (c- ó)fc. (c- ó) 
cfc. (c)2ó 

fc. ( c + ó) - fc. ( c - ó) + _fc_. (.:....c_+_ó-'-) _+......,fc..,. ..... ( c_----'-ó) 
fc. (c)2ó 2cfc. (c) 

( 1 - c - 6)fc. ( c + ó) - ( 1 - c + 6)fc. ( c - 6) 
(1- c)fc. (c)26 

(C.17) 
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_ fc. ( c + 8) - fc. ( c - 6) 
- fc. (c)26 

fc. (c + 6) + fc. (c- 8) 
2(1- c)fc. (c) 

Next, the propagation factor to the concentration has to be calculated: 

P'(cz, c) = ( Ocz; 8c / Czsc) = -{) Cz z c 

{)fc.(c)/ ( )- '( () ) --a;- fc. c = -P fc. c ,c 
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(C.18) 

(C.19) 

The :first term in eqs. C.17 and C.18 is equal to P'(fc. (c), c) according to Eq. 3.4 
and the second term is approximately equal to 1/c and 1/(1 - c) respectively. 
Substituting these results gives eqs. 3.13 and 3.14. 
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/A(ExA,Ex8 ) 

L 

m' z 

mz 
Mz 

NAv 

np(A,x) 

Np 

nz(A, x) 
dNB(Ep) 

dEp 

area perpendicular to the beam direction (cm2), 

total beam area (cm2), 

total sample area perpendicular to the beam direction ( cm2), 

intersection of A5 and A8 (cm2), 

branching ratio, which is the fraction of the total K-shell X­
rays in the line Xz(K), 
mass fraction of element j in the target (g/g), 

mass fraction of element Zin the volume dAdx (g/g), 

initia} partiele beam energy (ke V), 

partiele beam energy on leaving the target or 0 (keV), 

energy of an X-ray in line Xz (keV), 

parameter described by Eq. 2.40 (cm- 1), 

depth in the target, parallel to the beam direction, where the 
secondary X-rays are produced in the SF process (cm), 

mass per unit length of element Z in area Ar of the target 
(g/cm), 
total mass of element Z in area Ar in the target (g), 

atomie mass of element Z (g/mol), 

Avogadro constant (mol- 1), 

the number of bombarding particles per unit area (cm-2), 

number of bombarding particles incident on the target, 

number of atoms of element Z per unit volume (cm-3 ), 

total number of X-ra.ys with energy Ex
8 

produced at proton 
energy Ep thus at depth x in the target (see Eq. 2.41), 



Table 

P(fc.(x),x) 

p 

q 

rA,K 

R(SF/P) 

Sj(Ep) 

St(Ep,A) 

t 

Ta.bs(Exz) 
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Yp(Xz) 
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error propagation factor for tbe uncertainty in parameter x 
to tbe uncertainty in a function of x, 
f.'t(ExA) ...EJL 

Ps cosil' 
~t(Ex8 ) 

Ps Ps, 
absorption edge ratio for tbe K-sbell of element A (see 
Eq. 2.30), 
ratio of all X-rays produced by SF to tbe X-rays produced 
by primary production, 
stopping power for element j in tbe target (keV cm2 /g), 

tot al stopping power for tbe target (ke V cm 2/ g), 

total target tbickness, parallel to the target normal (cm), 

transmission probability of X -rays with energy Ex z tbrough 
an absorber, 

transmission probability of X-rays witb energy Exz tbrougb 
tbe sample from depth x in tbe direction of tbe detector, 

transmissions of X B X-rays from layer (x, x+ dx) at angle fJ 
to layer (L, L+dL) and the transmission of XA X-rays from 
layer (L, L +dL) to tbe detector at an angle () integrated 
over all deptbs L, lying between tbe sample surface and tbe 
deptb x, and integrated over all augles fJ (see Eq. 2.42), 

transmissions of X B X-rays from layer (x, x+ dx) at angle fJ 
to layer ( L, L +dL) and tbe transmission of X A X-rays from 
layer (L, L +dL) to tbe detector at an angle () integrated 
over all deptbs L, lying between tbe deptb x and tbe back 
side t of tbe target, and integrated over all augles fJ (see 
Eq. 2.43), 

deptb in tbe target, parallel to tbe beam direction (cm), 

X-ray line of element Z, e. g. Kal or Lp3 , 

number of detected X-rays in line X z, 
number of detected primary X-rays in line X z (produced by 
protons), 

number of detected X-rays in line X A produced by X-rays 
in line X 8 , 
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Pi 
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uion (E ) Z,K P 
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angle between partiele beam and target normal, 

angle of the direction of the primary X-rays in the SF process, 

detector efficiency, this is the probability, that the energy of 
an X-ray is completely absorbed in the detector crystal, 

= Tabs(Exz)e(Exz) .f!,' 
mass absorption coeflicient of elementjin the target ( cm2 jg), 

totallinear X-ray absorption coeflicient of the target ( cm- 1 ), 

fl.uorescence yield for the K-shell, this is the probability of a 
vacancy being filled by an electron from a higher shell under 
emission of an X-ray, 
relative detector solid angle, 

total density of the sample (g/cm3), 

cross section for the production of an X-ray (cm2), 

cross section for ionization of the K-shell of element Z (cm2), 

coherent absorption coeflicient, which describes the coherent or 
Rayleigh scattering of an X-ray on an atomie electron. During 
this process their is no energy loss for the X-ray, 
incoherent absorption coeflicient, which describes the incoher­
ent or Compton scattering of an X-ray on an electron. During 
this scattering there is an energy loss for the X-ray, 

angle between the target normal and the direction of the 
detector, · 

photo electric absorption coeflicient, which describes the inter­
action whereby the energy of an X-ray is completely absorbed 
under ejection of an electron from its shell, thus creating a 
vacancy, 
photo-electric absorption coeflicient for ionization of the K­
shell of element A by an X 8 X-ray (cm-1), 

reduced Chi-squared N ~ 1 Ef:1 { ( cmeas - crer )2 
/ s;ot} . 



Summary 

In this thesis, the absolute calibration metbod for thick-target PIXE is evaluated. 
In PIXE, characteristic X-rays are released by a target under bombardment of 
accelerated particles, typically protons of a few Me V, and are detected with an 
X-ray detector. The energy ofthe X-rays is characteristic for the atom where they 
were produced and tlie elemental concentration can be calculated from the number 
of X-rays. In the absolute calibration method, this calculation is done from first 
principles using a data base of values for all quantities needed. This metbod is 
very fiexible and versatile since it does not rely on any standards. 

For thick targets, two so-called thick target effects have to be considered: ( 1) 
The particles lose energy in the target; they can be completely stopped. (2) Part 
of the characteristic X-rays can be absorbed in the target before reaching the 
detector. A secondary process, called Secondary Fluorescence (SF), can occur 
under specific conditions, viz. when particle-induced X-rays in their turn produce 
characteristic X-rays oflower Z elementsin the target. The theoretica! description 
of both the primary production and the SF production of X-rays is treated in 
Chapter 2. The underlying conditions and assumptions are given and special 
attention is paid to the physical interpretation of the equations. A selection from 
the currently available data for the values of the quantities in the equations has 
been made and the accuracy of the data is evaluated. 

Reliable error estimates for the calculated concentrations have to be obtained 
to evaluate the absolute calibration method. In Chapter 3, a metbod of error 
calculation is descri bed, introducing the error propagation factor. Whereas the 
error calculation for most quantities is straightforward, there are several quantities 
for which the error calculation is more complicated. These quantities are the 
stopping power, the X-ray attenuation coefficient, the proton beam energy, and the 
matrix composition. It is found that the error propagation factors of the stopping 
power and the X-ray attenuation coefficient for thick targets are interdependent. 

The calculation of the con centration and of its associated uncertainty is imple­
mented in a computer program. Before experimental verification was possible, the 
PIXE setup had to be modified. The new setup is described in Chapter 4. To allow 
the measurement of thick targets, several systems have been added to the experi­
mental setup: a rotating vane for the charge measurement during the analysis of 
thick targets, a new Faraday cup for the charge measurement during the analysis 
of thin targets and for the calibration of the rotating vane, a Beam-On-Demand 
system to reduce pile-up and eliminate the need for dead-time correction, and an 
electron gun to eliminate charge build-up on thick isolating targets. In addition, 
the values of several experimental quantities needed for the absolute calibration 
are determined in this chapter, together with their uncertainties. These include 
the thickness of the absorbers, the detector solid angle, the detector efficiency, and 
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the proton beam energy. 
In Chapter 5, the metbod of absolute calibration is checked experimentally 

using a number of standard materials, including a set of metal foils, used single 
to check the primary yield and used in pairs to check the SF yield, two alloys, 
and four biological reference materials. The check was limited to K-lines from 
elements ranging from Na to Sn. The detector has turned out to he a potential 
souree of errors. Particularly, it was found that the solid angle is a function of 
X-ray energy. Presumably, this is caused by the fact that the dead layer thickness 
increases at the edges of the crystal, which absorbs the low-energy X-rays before 
they can enter the active part. Several methods for the calibration of the detector 
efficiency are discussed. 

At present, the calculated total uncertainty is about 8-20% under favourable 
conditions, possibly lower because several error sourees are assumed to be inde­
pendent that are in fact dependent. Also, individual uncertainties of quantities 
used for the calculation may be overestimated, e.g. the transmission of low-energy 
X-rays through a Be absorber and the detector efficiency for high-energy X-rays. 
On the other hand, under unfavourable conditions, e.g. for complex spectra, the 
calculated uncertainty may increase substantially and, still, it may be an under­
estimation. Major contributions to the uncertainty in the concentration are the 
uncertainties in the X-ray attenuation coefficient, in the X-ray yield, in the de­
tector efficiency including the solid angle, and in the matrix composition. No 
deviations from the physical model are found within the uncertainties, although 
there are indications that the SF yield is overcalculated for K-lines of heavier 
elements (Z > 40). 

The evaluation of the accuracy has shown that the absolute calibration can be 
used in practice as a calibration metbod in TT-PIXE. At present, the calculated 
uncertainty may be quite large, but it can he reduced by determining the quau­
tities with largest uncertainty more accurately and by removing the sourees of 
overestimation. Sofar, for simple targets, especially thin targets, when matching 
standards are available, the accuracy for the calibration with standards is better 
than for absolute calibration. However, the availability of accurately determined 
standards is often a problem. Absolute calibration is a flexible method for the anal­
ysis of different elements in different matrices. In case of inhomogeneons targets 
and use of a microbeam, the use of the absolute calibration metbod is virtually in­
escapable. For this purpose, we have derived a formula for which the composition 
of a sample may he variabie in two surface dimensions. 1 

It should be stressed that, as the accuracy of the physical quantities improves, 
the determination of the matrix composition of the target becomes relatively more 
important. The determination can he refined by an iterative approach for the 
elements with Z > 10, e.g. as applied for the alloys in Section 5.5. Lighter 
elements can he measured with NBS simultaneously with PIXE, as performed in 
Sectien 5. 7. 



Samenvatting 

PIXE (Particle Induced X-ray Emission) is een analytische techniek, die al meer 
dan twintigjaar gebruikt wordt. De karakteristieke röntgenstraling, die een prepa­
raat onder een bombardement van versnelde protonen (met een energie van enkele 
MeV) uitzendt, wordt met een röntgendetector gemeten. De energie van de 
röntgenstraling is karakteristiek voor het atoom en uit het aantal gemeten röntgen­
quanta kan de concentratie van dat element in het preparaat berekend worden. 
Voor de analyse van dikke preparaten moeten twee extra effecten meegenomen 
worden: (1) de versnelde protonen verliezen energie in het preparaat; ze kunnen 
zelfs geheel afgeremd worden, (2) een deel van de geproduceerde röntgenquanta 
kan in het preparaat geabsorbeerd worden voordat ze de detector kunnen bereiken. 
In bepaalde gevallen kan een secundair effect optreden, namelijk Secondaire Fluo­
rescentie (SF). In dit geval kunnen geabsorbeerde primaire röntgenquanta op hun 
beurt weer karakteristieke röntgenstraling produceren. 

In dit proefschrift wordt de theorie van de primaire productie en de SF produc­
tie van röntgenstraling behandeld. De onderliggende aannamen worden gegeven 
en getracht wordt een inzicht te geven in de fysische interpretatie van de formules. 
Onderzocht is in hoeverre een kwantitatieve analyse van preparaten gedaan kan 
worden, die alleen berust op de berekening van de 'thick-target' effecten, dus 
zonder gebruik te maken van standaard preparaten. Deze methode hebben wij 
absolute calibratie genoemd en hiervoor zijn waardes voor alle in de formules 
voorkomende grootheden nodig. Er is een selectie gemaakt uit de op dit moment 
beschikbare gegevens en de nauwkeurigheid van deze gegevens is geanalyseerd. 
Tevens is er een foutenberekening opgezet om te kunnen bepalen hoe onzekerheden 
in deze gegevens in het eindresultaat doorwerken. De invloed van de onzekerheden 
van een aantal grootheden, namenlijk de 'stopping power', de röntgen attenuatie 
coëfficiënt, the protonbundel energie en de matrix samenstelling van het preparaat, 
op de onzekerheid in de berekende concentratie is nader bediscussieerd. Voor alle 
overige grootheden is de foutendoorwerking niet gecompliceerd. 

Al deze berekeningen zijn toegepast in een programma om uit gemeten röntgen 
intensiteiten de concentratie van een element te kunnen berekenen tezamen met 
de bijbehorende fout. Alvorens de analyse toegepast is, is eerst de al bestaande 
PIXE opstelling gemodificeerd. Er zijn een aantal systemen toegevoegd om de 
meting van dikke preparaten mogelijk te maken: zoals een electronenkanon voor 
de bestrijding van ladingsopbouw op dikke isolerende preparaten, een verbeterde 
Faraday cup voor de ladingsmeting bij dunne preparaten, een 'Rotating Vane' voor 
de ladingsmeting bij dikke preparaten en een 'Beam On Demand' systeem voor 
het reduceren van 'Pile-Up' en het elimineren van dode tijd correcties. Tevens zijn 
een aantal experimentele grootheden en de bijbehorende fouten bepaald, zoals de 
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protonbundel energie alsook de ruimtehoek en de efficiëntie van de röntgendetector. 
De ontwikkelde methode van absolute calibrate is in hoofdstuk 5 getest aan de 

hand van metingen van een aantal standaard preparaten, zoals een serie metaal 
folies, enkelvoudig gemeten om de primaire productie te controleren en in paren 
om de SF productie te controleren, twee legeringen en vier biologische referen­
tie materialen. De controle was beperkt tot K-lijnen van elementen van Na tot 
Sn. De detector bleek een potentiele bron van fouten omdat het een zeer gecom­
pliceerd systeem is. Metingen hebben uitgewezen dat de ruimtehoek van de de­
tector afhankelijk is van de röntgenenergie, omdat het detectorkristal een dode 
laag bevat waarvan de dikte groter is aan de randen van het kristal. Deze dode 
laag absorbeert laag energetische röntgenquanta waardoor het effectieve detector 
oppervlak kleiner lijkt. 

De berekende onzekerheid varieert van 8% tot 20% onder optimale omstandighe­
den. Op grond van de metingen kan aangenomen worden dat deze onzekerheid te 
groot is, in specifieke gevallen kan dit verschil zelfs oplopen tot een factor twee. 
Een mogelijke oorzaak hiervoor is dat de onzekerheden in de gebruikte grootheden 
te groot zijn ingeschat. Voorbeelden hiervan zijn de transmissie van laag ener­
getische röntgenquanta door de Be absorber en de detector efficiëntie voor hoog 
energetische röntgenquanta. De totale onzekerheid kan verder worden verkleind 
door de accuratesse waarmee de gebruikte grootheden in de formules bekend zijn 
te verbeteren. Op het moment hebben de röntgenpiek oppervalkte, de röntgen 
absorptie coëfficiënt, de matrix samenstelling en de detector efficiëntie de grootste 
onzekerheid. Binnen de huidige nauwkeurigheid zijn er geen afwijkingen gevonden 
van het gebruikte fysische model, alhoewel er indicaties zijn dat de berekening 
van de SF opbrengst voor K-lijnen van zware elementen (Z > 40) een te grootte 
waarde oplevert. 

De evalutie van de metingen heeft aangetoond, dat de absolute calibratie in 
de praktijk gebruikt kan worden als calibratie methode voor TT-PIXE. Op het 
ogenblik is de nauwkeurigheid van de calibratie met standaards nog beter dan 
die van de absolute eaUbratie indien het simpele preparaten betreft, bij voorkeur 
dunne, voorvoor een goed gelijkende standaard bestaat. Het verkrijgen van goed 
gecalibreerde standaarden is echter vaak een probleem. Absolute calibratie is 
daarentegen een veelzijdige en flexibele methode, waarvan het gebruik praktisch 
on ontkombaar is voor de analyse van inhomogene preparaten met een microbundeL 

Naarmate de nauwkeurigheid van de fysische grootheden beter wordt, wordt 
de bepaling van de matrix samenstelling relatief belangrijker. Deze bepaling kan 
worden verfijnd door een iteratieve procedure voor de bepaling van de concentraties 
van de elementen met Z > 10, zoals is gedaan voor de legeringen in sectie 5.5. De 
lichtere matrix elementen kunnen gelijktijdig met PIXE gemeten worden met de 
analyse techniek NBS, zoals is gebeurt voor de biologische materialen in sectie 5.7. 
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-1-
Foutenberekening wordt nog teveel als een puur mathematische excercitie 
gezien en nog te weinig als methode voor het verkrijgen van fysisch inzicht 
in het relatieve belang van de, voor het eindresultaat benodigde, groothe­
den. 

- Dit proefschrift, hoofdstuk 3. 

-11-
De praktische controle van grensverleggend analytisch onderzoek gelijkt 
op het kip-en-ei probleem: Zonder geavanceerde gecertificeerde referentie­
materialen kan een verbetering in een ànalytische techniek niet bewezen 
worden. Aan de andere kant vergen geavanceerde referentiematerialen 
het bestaan van een analytische techniek, waarmee de referentiematerialen 
gecertificeerd kunnen worden. 

- Dit proefschrift, hoofdstuk 5. 

-lil-
De methode om de energie van een Ht bundel te bepalen via de detectie 
van zowel Ht als alfa deeltjes met gebruikmaking van dezelfde detectorca­
libratie, zoals toegepast door Scott en Paine, is niet correct. 

- D.M. Scott and B.M. Paine, Nucl. Instr. and Meth. 218 (1983) 154. 

-IV-
De door Aloupogiannis en medewerkers voorgestelde methode om 1e gemid­
delde röntgen produktie werkzame doorsnede voor middelmatig ~kke pre­
paraten te benaderen door het middelen van de waarden van de erkzame 
doorsnede aan de voor- en achterkant van het preparaat met een wegings­
factor 2 voor de waarde van de voor kant, is in de meeste gevallen i onjuist. 

- P. Aloupogiannis, G. Robaye, I. Roelandts and G. Weber, 
Nucl. Instr. and Meth. B22 (1987) 72. 

-V-
Het gebruik van een referentie uit een artikel zonder het originele artikel op 
te zoeken heeft een aantal risico's tot gevolg. (i) Een ontwikkeling kan aan 
een verkeerde auteur worden toegeschreven. (ii) Het kan lijken dat er meer 
onafhankelijke methoden zijn om een doel te bereiken. (iii) Randvoorwaar-

/den voor het gebruik van een methode kunnen niet meer vermeld worden. 



-VI-
Terwijl veel mensen dagelijks televisiejournaals volgen voor het op peil 
houden van hun algemene kennis over de toestand in de wereld, zou die 
kennis meer gebaat zijn bij het wekelijks lezen van een nationaal of inter­
nationaal tijdschrift. 

-VII-
Nog te weinig wordt onderkend, dat het vormen van een touwgroep voor 
het begaan van een steile helling met sneeuw of ijs slechts schijnveiligheid 
biedt, terwijl het de objectieve veiligheid ondermijnt. 

-VIII-
De meeste ontwerpers van fietspaden rekenen teveel met een kruissnelheid 
van 15 km per uur en onvoldoende met racefietsers en brommers, die ook 
van deze paden gebruik moeten maken. 

-IX-
Als de huidige trend in bezuinigen bij de universiteiten zich voortzet, zijn 
er in de toekomst geen gesalarieerde wetenschappelijke onderzoekers meer, 
doch slechts onderzoekers, die gratis van de onderzoeksfaciliteiten gebruik 
mogen maken, eventueel met behoud van uitkering of wachtgeld. 

-X-
Als aangenomen wordt, dat computerspelletjes een belangrijke rol spelen 
bij de ontspanning van een promovendus, is het aan te raden om tot aan­
schaf van joysticks over te gaan; dit om slijtage aan essentiëlere onderdelen 
van de computer (toetsenbord, muis) te voorkomen. 




