

Hybrid Modeling and Simulation of plant/controller
Combinations
Citation for published version (APA):
Schiffelers, R. R. H., Pogromski, A. Y., Beek, van, D. A., & Rooda, J. E. (2009). Hybrid Modeling and Simulation
of plant/controller Combinations. In 3rd IEEE Multi-conference on Systems and Control (pp. 1384-1390). Institute
of Electrical and Electronics Engineers. https://doi.org/10.1109/CCA.2009.5281019

DOI:
10.1109/CCA.2009.5281019

Document status and date:
Published: 01/01/2009

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/CCA.2009.5281019
https://doi.org/10.1109/CCA.2009.5281019
https://research.tue.nl/en/publications/27e1ac29-063a-41a4-b776-65edfa9d03a6

Hybrid Modeling and Simulation of plant/controller Combinations

R.R.H. Schiffelers, A.Y. Pogromsky, D.A. van Beek, and J.E. Rooda

Abstract— In order to design controllers, models of the
system to be controlled (the plant), and models of the controller
are developed, and the performance of the controlled system
is evaluated by means of, for instance, simulation. The plant
and controller can be modeled in the continuous-time domain,
the discrete-event domain, or in a combination of these two
domains, the so-called hybrid domain. It is very convenient to
have all these combinations available in one single formalism.
In this paper, the hybrid χ (Chi) formalism is introduced and
used to model a simple manufacturing system consisting of
a production machine that is controlled by a PI controller
with anti-windup. The plant is modeled in the continuous-time
domain as well as in the discrete-event domain. Likewise, the
controller is modeled in both domains. Then, several (hybrid)
plant/controller combinations are made. It is shown that the
χ language facilitates modeling of these combinations, because
the individual plant and controller specifications remain un-
changed. The χ simulator is used to obtain the respective
simulation results.

I. INTRODUCTION
Today’s manufacturing systems have become highly dy-

namic and complex. In order to stay competitive, manufac-
turing systems must use a good control strategy to rapidly
respond to demand fluctuations. Simple discrete-event man-
ufacturing systems can be controlled by policies such as
PUSH, CONWIP, or Kanban (see e.g. [1]). However, as
manufacturing systems become more complex, these policies
become less effective.

Supervisory control theory [2], which is also based on
a discrete-event specification of the manufacturing system,
was proposed in the 1980’s as a more structured approach
for the control of manufacturing systems. A disadvantage
of this approach, however, is that for the control of large
manufacturing systems (or networks of such systems), super-
visory control is not very suitable due to the large state space
involved, which causes the corresponding control problem to
grow intractably large.

A different control approach is based on the use of
ordinary differential equations (ODE’s) to model a man-
ufacturing system (see e.g. [3], [4]). Such ODE models
are a continuous-time approximation of the discrete-event
system and as a result the control problem is much simpler.
Moreover, control theory for ODE’s is widely available,
which makes it attractive to work with such models.

This work was partially done as part of the Darwin project under the
responsibility of the Embedded Systems Institute, partially supported by
the Netherlands Ministry of Economic Affairs under the BSIK program,
as part of the ITEA project Twins 05004, and as part of the Collaborative
Project MULTIFORM, contract number FP7-ICT-224249.

Eindhoven University of Technology Postbus 513, 5600 MB
Eindhoven, The Netherlands. {R.R.H. Schiffelers, A.Y.
Pogromsky, D.A. van Beek, J.E. Rooda}@tue.nl

In order to design a discrete-event controller for a discrete-
event manufacturing system (plant) one could use the follow-
ing design flow.

• First, the plant is modeled in the continuous-time do-
main by means of ODE’s. Using control theory for
ODE’s, a continuous-time controller can be designed.
By means of simulation, proper controller parameters
can be chosen.

• Then, the continuous-time controller can be dis-
cretized to the discrete-event domain. Combining the
continuous-time model of the plant and the discrete-
time model of the controller enables studying the effect
of the sampling time of the controller.

• Then, the plant is modeled in the discrete-event domain.
Combining the discrete-event model of the plant and
the designed continuous-time controller, the effect of
the continuous-time approximation of the plant on the
controller design can be investigated.

• Finally, the discrete-event model of the plant and the
discrete-event model of the controller can be com-
bined. By means of simulation, the performance of the
controlled plant can be evaluated, and the controller
parameters can be tuned.

Clearly, it is very convenient to have all these plant and
controller combinations available in one single formalism.
The combination of continuous-time models and discrete-
event models leads to so-called hybrid models. Modeling
and simulation of these hybrid models require a hybrid
formalism and associated (simulation) tools. Nowadays, there
exists a variety of hybrid modeling formalisms and associated
simulation tools, see [5] for a classification and overview.

The hybrid χ language [6], [7] is such a hybrid formal-
ism. It has a relatively straightforward and elegant syntax
and formal semantics that is highly suited to modeling.
The intended use of hybrid χ is for modeling, simulation,
verification, and real-time control of industrial systems. It
integrates continuous-time and discrete-event concepts, and
enables analysis of the dynamic behavior of hybrid processes,
of hybrid embedded systems, as well as of complete hybrid
plants. In this paper, the hybrid χ language is introduced and
used to model a simple manufacturing system consisting of a
production machine that is controlled by a PI controller with
anti-windup. The plant is modeled in the continuous-time
(CT) domain as well as in the discrete-event (DE) domain.
Likewise, the controller is modeled in both domains. Without
changing any of these individual models, the following plan-
t/controller combinations are made. The CT plant controlled
by the CT controller, the DE plant controlled by the CT

controller, CT plant controlled by the DE controller, and the
DE plant controlled by the DE controller.

The outline of this paper is as follows. In Section II,
the simple manufacturing system is described. The syntax
and semantics of the hybrid χ language are described in
Section III. Using the hybrid χ language, the manufacturing
system and its controller are modeled both in the continuous-
time domain as well as in the discrete-event domain, see
Section IV. The four plant/controller combinations and their
simulation results are given in Section V. Finally, Section VI
concludes the paper.

II. A SIMPLE MANUFACTURING SYSTEM

This section introduces a simple manufacturing system
that is considered throughout this paper. The system, as
depicted in Fig. 1, consists of a single machine producing
lots from an infinite capacity buffer. It is assumed that the
supply of raw materials to the buffer is always sufficient,
such that the machine never starves.

B

M

u(t)

y(t)

Fig. 1. Manufacturing system with buffer B and machine M .

The machine processes lots from the buffer with a process
rate u(t), which can be interpreted as the velocity at which
the machine operates. It is assumed that the process rate
cannot become negative and that it cannot exceed some
maximum rate umax. The relation for the cumulative number
of products that has been processed by the machine, y(t), is
given as

ẏ(t) = u(t). (1)

The machine can be interpreted as a pure integrator. By
using a feedback controller to set the production rate u(t) one
can control the cumulative output y(t) such that the machine
can track a given desired production yd(t). In this paper, the
reference production is given by

yd(t) = udt + yd0 + r(t), (2)

which has a part that is linear, where ud is the desired
production rate and yd0 is the desired production at t = 0 and
a bounded term r(t) = b · sin(ωt), which can be interpreted
as a – for instance seasonal – fluctuation of the demand.

It can be argued by means of the final value theorem from
linear control theory (see for instance [8]) that for r(t) = 0
a controller with integral action should be used to track the
error given by

e(t) = yd(t) − y(t) (3)

to zero. Therefore, we also choose to use an integral action
for the case where r(t) 6= 0. The simplest controller with
integral action is a PI controller.

The combination of input saturation and the integrator in
the PI controller leads to a phenomenon called integrator
windup. When the actuator saturates, the effective control
signal cannot exceed some value, which affects the system
behavior and therefore again the control signal. As a result of
this, the closed-loop performance of the system can deterio-
rate, and in some situations the system can even become
unstable. By adding a so-called anti-windup controller to
the system, this loss of performance can be counteracted
by “turning off” the integrator in the controller when the
machine saturates. In the past, many anti-windup controllers
have been proposed in literature. In this paper we use the
anti-windup design as presented in [9]. This leads to the
following equation for the control signal u(t):

u(t) =







0, yc(t) < 0
yc(t), 0 ≤ yc(t) ≤ umax

umax, yc(t) > umax

(4)

where yc(t) is given by

yc(t) = kPe(t) + yI(t),
ẏI(t) = kI(e(t) − kA(yc(t) − u(t)))

(5)

A specific choice of the controller parameters kP, kI, and
kA (satisfying kP > 0, kI > 0, and kPkA > 1, see [9]) has to
be made based on performance criteria, for instance certain
demands for the sensitivity and complementary sensitivity.

III. THE HYBRID χ LANGUAGE

In this section, the syntax and semantics of (a subset of)
the hybrid χ language are discussed informally. A more
detailed explanation of hybrid χ can be found in [6], [7].
Information about the freely available χ toolset can be
found at [10]. This toolset includes, amongst others, a stand-
alone simulator [11] equipped with symbolic and numerical
solvers such as MAPLE [12] and DASSL [13], and a co-
simulator [14] for simulation of models that consist of
subsystems modeled using MATLAB / SIMULINK [15] and
subsystems modeled in χ.

A. Syntax

A χ model identified by name is of the following form:

model name() =
|[var s1 : types1

= c1, . . . , sk : typesk
= ck

, cont x1 : typex1
= d1, . . . , xm : typexm

= dm

, alg y1 : typey1
= e1, . . . , yn : typeyn

= en

, chan h1 : typeh1
, . . . , hq : typehq

, mode X1 = p1, . . . , Xr = pr

:: p

]|

Here, typei denotes a type, for instance bool, nat, or real.
Notation var s1 : types1

= c1, . . . , sk : typesk
= ck denotes

the declaration of discrete variables s1, . . . , sk with their re-
spective types types1 , . . . , typesk and initial values c1, . . . , ck.
Similarly, notations cont x1 : typex1

= d1, . . . ,xm : typexm
=

dm and alg y1 : typey1
= e1, . . . , yn : typeyn

= en are used
to declare continuous and algebraic variables, respectively.

The main differences between discrete, continuous, and
algebraic variables are as follows: First, the values of discrete
variables remain constant when model time progresses, the
values of continuous variables may change according to a
continuous function of time when model time progresses,
and the values of algebraic variables may change according
to a discontinuous function of time. Second, the values of
the discrete and continuous variables do not change in action
transitions unless such changes are explicitly specified, for
example by assigning a new value. The values of algebraic
variables can change arbitrarily in action transitions, unless
such changes are explicitly restricted, for example by as-
signing a new value. Third, there is a difference between the
different classes of variables with respect to how the resulting
values of the variables in a transition relate to the starting
values of the variables in the next transition. The resulting
value of a discrete or continuous variable in a transition
always equals its starting value in the next transition. For
algebraic variables, there is no such relation. In most models,
the values of discrete variables are defined by assignments,
whereas the values of algebraic variables are defined by
equations ((in)equalities).

Notation chan h1 : typeh1
, . . . , hq : typehq

declares the
channels h1, . . . , hq , and mode X1 = p1, . . . , Xr = pr

declares mode variables X1, . . . , Xr with their respective
statement definitions p1, . . . , pr. The χ language consists of
the following statements p, q, r ∈ P :

P ::= xn := en (multi-) assignment
| eqn u equation
| delay d delay statement
| X mode variable
| b → P guard operator
| ∗P repetition
| P ; P sequential composition
| P 8 P alternative composition
| P ‖ P parallel composition
| h !en send statement
| h ?xn receive statement
| lp(xn,hn, en) process instantiation

Here, xn denotes the (non-dotted) variables x1, . . . , xn

such that time 6∈ {xn}, en denotes the expressions e1, . . . , en,
u and b are both predicates over variables (including the
variable time) and dotted continuous variables, d denotes a
numerical expression, h denotes a channel, , lp denotes a
process identifier, and hn denotes the channels h1, . . . , hn.
The operators are listed in descending order of their binding
strength as follows → , ; , {‖ , 8 }. The operators inside
the braces have equal binding strength. For example, x :=
1; y := x 8 x := 2; y := 2x means (x := 1; y := x) 8 (x :=
2; y := 2x). Parentheses may be used to group statements. To
avoid confusion, parenthesis are obligatory when alternative
composition and parallel composition are used together. E.g.
p 8 q ‖ r is not allowed and should either be written as (p 8
q) ‖ r, or as p 8 (q ‖ r).

A multi-assignment xn := en denotes the assignment of
the values of the expressions en to the variables xn.

A equation eqn u, usually in the form of a differential
algebraic equation, restricts the allowed behavior of the
continuous and algebraic variables in such a way that the
value of the predicate u remains true over time.

A delay statement delay d delays for d time units and then
terminates by means of an internal action.

Mode variable X denotes a mode variable (identifier) that
is defined at the declarations. Among others, it is used to
model repetition. Mode variable X can do whatever the
statement of its definition can do.

The guarded process term b → p can do whatever actions
p can do under the condition that the guard b evaluates
to true. The guarded process term can delay according to
p under the condition that for the intermediate valuations
during the delay, the guard b holds. The guarded process term
can perform arbitrary delays under the condition that for the
intermediate valuations during the delay, possibly excluding
the first and last valuation, the guard b does not hold.

Repetition ∗p denotes the infinite repetition of p.
Sequential composition operator term p; q behaves as

process term p until p terminates, and then continues to
behave as process term q.

The alternative composition operator term p 8 q models
a non-deterministic choice between different actions of a
process. With respect to time behavior, the participants in
the alternative composition have to synchronize.

Parallelism can be specified by means of the parallel com-
position operator term p ‖ q. Parallel processes interact by
means of shared variables or by means of synchronous point-
to-point communication/synchronization via a channel. The
parallel composition p ‖ q synchronizes the time behavior
of p and q, interleaves the action behavior (including the
instantaneous changes of variables) of p and q, and synchro-
nizes matching send and receive actions. The synchronization
of time behavior means that only the time behaviors that
are allowed by both p and q are allowed by their parallel
composition.

By means of the send process term h ! en, for n ≥ 1, the
values of expressions en are sent via channel h. For n = 0,
this reduces to h ! and nothing is sent via the channel.

By means of the receive process term h ? xn, for n ≥ 1,
values for xn are received from channel h. We assume that
all variables in xn are different. For n = 0, this reduces to h?,
and nothing is received via the channel. Communication in χ

is the sending of values by one parallel process via a channel
to another parallel process, where the received values (if
any) are stored in variables. For communication, the acts of
sending and receiving (values) have to take place in different
parallel processes at the same moment in time. In case no
values are sent and received, we refer to synchronization
instead of communication.

Process instantiation process term lp(xk, hm, en), where
lp denotes a process label, enables (re-)use of a process
definition. A process definition is specified once, but it can be
instantiated many times, possibly with different parameters:

external variables xk, external channels hm, and expressions
en.

Chi specifications in which process instantiations
lp(xk,hm, en) are used have the following structure:

pd1

...
pd j

model · · · =
|[var . . . , chan . . . , mode . . . :: p]|,

where for each process instantiation lp(xk,hm,en) occurring
in process term q, a matching process definition pd i (1≤ i≤
j) of the form

proc lp(var x
′

k : txk
, chan h

′

m : thm
, val vn : tvn

) = D :: p

must be present among the j process definitions pd 1 . . .pd j .
Here lp denotes a process label, xk denotes the ‘actual ex-
ternal’ variables x1, . . . , xk , hm denotes the ‘actual external’
channels h1, . . . , hm, en denotes the expressions e1, . . . , en,
x
′

k : txk
denotes the ‘formal external’ variable definitions

x′

1 : tx1
, . . . , x′

k : txk
, a

′

l denotes the ‘formal external’ action
definitions a′

1, . . . , a
′

l, h′

m : thm
denotes the ‘formal external’

channel definitions h′

1 : th1
, . . . , h′

m : thm
, and vn : tvn

denotes the ‘value parameter definitions’ v1 : tv1
, . . . , vn : tvn

.
Notation D denotes declarations of local local (discrete,

continuous or algebraic) variables, local channels, and local
mode definitions. The only free (i.e. non-local) variables,
and free channels that are allowed in process term p are the
formal external variables x

′

k and the value parameters vn,
the formal external actions a

′

l, and the formal external chan-
nels h

′

m, respectively. We assume that the formal external
variables x

′

k and the value parameters vn are different.

B. Formal semantics

The semantics of χ is defined by means of deduction rules
in SOS style [16] that associate a hybrid transition system
with a χ model as defined in [6]. The hybrid transition system
consists of action transitions and time transitions. Action
transitions define instantaneous changes, where time does not
change, to the values of variables. Time transitions involve
the passing of time, where for all variables their trajectory
as a function of time is defined.

IV. MODELING THE COMPONENTS OF THE
MANUFACTURING SYSTEM USING CHI

In this section, the components demand, plant, and con-
troller are modeled. In Section V, these models are used to
compose the different plant/controller combinations.

A. CT model of the demand

Process DemandCT models the demand yd, as given by
Equation 2. It is parameterized by the maximum processing
rate uMax .
proc DemandCT(alg yd : real, val uMax : real) =
|[alg r : real
, var b : real = 12.5

, omega : real = 1.0
, yd0 : real = 2.0
, ud : real = uMax / 2.0

:: eqn yd = ud ∗ time + yd0 + r
, r = b ∗ sin (omega ∗ time)

]|

B. CT model of the plant

Process PlantCT models the continuous-time approxima-
tion of the plant. The production rate is given by (input)
variable u, and the cumulative number of processed products
is modeled by (output) variable y. The relation between y

and u is given by the equation eqn dot y = u that models
Equation 1.
proc PlantCT(cont y : real , alg u : real) =
|[eqn dot y = u]|

C. CT model of the controller

Process ControllerCT models the continuous-time con-
troller. The demand yd and the cumulative number of pro-
cessed products y are given as input. The unsaturated control
signal is given by (local) variable yc, and the saturated
control signal is given by (output) variable u. The system
of equations model the controller as described in Section II
by Equations 3, 4, 5. The controller is parameterized with
the maximum processing rate uMax.
proc ControllerCT(alg yd, y, u : real

, val uMax, Kp, Ki, Ka : real
) =

|[cont yI : real = 0.0
, alg yc, e : real

:: eqn e = yd − y
, u = (yc <0.0 → 0.0

| yc ≤ 0.0 and yc ≤ uMax → yc
| yc >uMax → uMax
)

, yc = Kp ∗ e + yI
, dot yI = Ki ∗ (e − Ka ∗ (yc − u))

]|

D. DE model of the plant

Figure 2 shows a graphical representation of the structure
of the discrete-event model of the plant.

c2p

gm me p2c
G M E

Fig. 2. Iconic model of DE plant.

It consists of processes modeling an infinite buffer G,
the machine M , and an exit process E. The processes are
represented by circles labeled with the name of the process.
The processes are connected via (directed) channels, that are
represented by arrows labeled with the name of the channel.
The χ model of the discrete-event plant is given below.

proc PlantDE(chan p2c!, c2p? : real , val uMax : real) =
|[chan gm, me : real
:: G(gm)
|| M(gm, me, c2p, uMax)
|| E(me, p2c)
]|

Via channel p2c the cumulative number of processed
products can be send to the controller, and processing rates
can be received from the controller via channel c2p. The
local channels gm and me connect the buffer, machine and
exit process.

The infinite buffer is modeled by means of process G.
Via channel gm, it is always possible to send a product to
the machine. In this case, a product is modeled by means
of the time-point that the product is send to the machine,
(denoted by the value of pre-defined variable time)1.
proc G(chan gm! : real) =
|[∗ gm!time]|

The machine is modeled by means of process M . Similar
to the CT model of the machine, the machine has a variable
processing rate u, and new processing rates, that are deter-
mined by the controller, are taken into account immediately.
The machine receives products x from the buffer via channel
gm, and sends the processed products to the exit process via
channel me. New processing rates u can be received from
the controller via channel c2p. Local variables tstart , tstop,
and frac denote the time-point when processing a product is
started (stopped), and the fraction of the total processing time
of a product that already passed, respectively. The model
consists of four mode definitions, Idle , Start , Working ,
and ReStart , that model the different states of the machine.
Initially, the machine is Idle. After receiving a product via
channel gm , the state of the machine changes to Start. If the
processing rate exceeds 0, the machine starts processing the
product (state Working). After processing the product, the
product is sent to the exit process via channel me. During
processing the product, the machine is interrupted when a
new processing rate is received from the controller, and the
state of the machine changes to Restart. After receiving a
positive production rate, the remainder of the product is
processed.
proc M(chan gm?, me!, c2p? : real , val uMax : real) =
|[var x, u : real = (0.0, 0.0)

, tstart , tstop , frac : real = (0.0, 0.0, 0.0)
, mode Idle = (gm?x; Start | c2p?u; Idle)
, mode Start = (u >0

→ (tstart , tstop) := (time, time + 1 / u)
; Working

| c2p?u; Start
)

, mode ReStart = (u >0
→ tstop := (1.0 − frac) ∗ 1 / u + time

; Working
| c2p?u; ReStart
)

, mode Working = (time ≤ tstop → me!!x; Idle

1This value can be used, for instance, in the exit process to calculate the
flow time of the product.

| c2p?u
; frac := (time−tstart) / (tstop −tstart)
; ReStart

)
:: Idle
]|

The exit process can always receive a product x from
the machine via channel me. Subsequently, the cumulative
number of processed products y is calculated (y := y + 1.0)
and send to the controller via channel p2c.
proc E(chan me?: real , p2c!: real) =
|[var x, y : real = (0.0, 0.0)
:: ∗(me?x; y := y + 1.0; p2c!! y)
]|

E. DE model of the controller

Process ControllerDE models a discrete-event model of
the controller. Via channel p2c, the cumulative number of
products that has been processed by the machine can be re-
ceived. New control signals are send to the plant via channel
c2p. In addition to the control parameters Kp, Ki, and Ka,
this controller is parameterized with the sampletime . Every
sample time (delay sampletime), the controller calculates the
new control signal and sends it to the plant (c2p!! u). Also,
when a product is finished (p2c?y), the control signal is
calculated immediately. The calculation of the control signal
is straightforward.
proc ControllerDE(chan p2c?, c2p!: real

, alg yd : real
, val uMax, sampletime, Kp, Ki, Ka : real
) =

|[var y, e, u : real = (0.0, 2.0, 0.0)
, yc, yI , yIdot , tprev : real = (0.0, 0.0, 0.0, 0.0)

:: ∗((p2c?y | delay sampletime)
; e := yd − y
; yIdot := Ki ∗ (e − Ka ∗ (yc − u))
; yI := yI + (time − tprev) ∗ yIdot
; yc := Kp ∗ e + yI
; u := (yc <0.0 → 0.0

| yc ≤ 0.0 and yc ≤ uMax → yc
| yc >uMax → uMax
)

; tprev := time
; c2p!! u

)
]|

V. MODELING THE DIFFERENT PLANT/CONTROLLER
COMBINATIONS

In this section, the models of the demand, plant and
controller components are combined. Note that none of
component models has to be changed/adapted, regardless of
the combination it is used in.

A. CT model of the plant and CT model of the controller

Figure 3 shows a graphical representation of the
continuous-time model of manufacturing system.

It consists of the continuous-time model of the demand
D, the continuous-time model of the plant PCT, and the
continuous-time model of the controller CCT. The plant and

yd(t)

u(t)

y(t)

CCT DPCT

Fig. 3. Iconic model of CT plant CT controller.

controller are connected by means of the (shared) variables
y(t) and u(t). These connections are visualized by means of
lines between the processes. The solid circle on these lines
denotes the process that ’determines/prescribes’ the value of
the variable (output variable), whereas the other process uses
this variable as ’read-only’ (input variable). Furthermore, the
demand process and the controller are connected by means
of variable yd(t) that models the demand over time. The χ

model is given below.
model CTCT() =
|[var uMax : real = 25.0

, Kp, Ki, Ka : real = (10.0, 20.0, 0.5)
, cont y : real = 0.0
, alg yd, u : real

:: DemandCT(yd, uMax)
|| PlantCT(y, u)
|| ControllerCT(yd, y, u, uMax, Kp, Ki, Ka)
]|

Figure 4 shows the trajectory of the error that is obtained
by means of simulation of the continuous-time model of the
manufacturing system.

-0.5

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20

CTCT()

e(time)

Fig. 4. CT plant CT controller

B. CT model of the plant and DE model of the controller

Figure 3 shows a graphical representation of the combined
continuous-time / discrete-event model of the manufacturing
system.

It consists of the continuous-time model of the demand
D, the continuous-time model of the plant PCT, and the
discrete-event model of the controller CDE. The χ model is
given below.
model CTDE() =
|[var uMax : real = 25.0

c2p!!u

y(t) p2c!y

u(t)

yd(t)
CDE DPCT

DE2A

A2DE

Fig. 5. Iconic model of CT plant DE controller.

, Kp, Ki, Ka : real = (10.0, 20.0, 0.5)
, sampletime : real = 0.01

, cont y : real = 0.0
, alg yd, u : real
, chan c2p, p2c : real

:: DemandCT(yd, uMax)
|| PlantCT(y, u)
|| DE2A(u, c2p)
|| A2DE(y, p2c, sampletime)
|| ControllerDE(p2c, c2p, yd, uMax, sampletime

, Kp, Ki, Ka)
]|

Since the modeling paradigms of the plant (continuous-
time) and controller (discrete-event) differ, they cannot be
connected directly. Using two simple ’converter’ processes
modeling an analog-to-digital converter (process A2DE), and
a digital-to-analog converter (process DE2A), the plant and
controller can be connected.
proc A2DE (alg x : real , chan h! : real

, val sampletime : real
) =

|[∗(h!x; delay sampletime)]|

Process A2DE models an analog-to-digital converter.
Variable x models the analog (input) signal. The process is
parametrized with the sample-time, given by value parameter
sampletime . Every sampletime , the value of x is sent via
channel h.
proc DE2A(alg y : real , chan h? : real) =
|[var x : real = 0.0
:: ∗ h?x || eqn y = x
]|

Process DE2A models a zero-order hold digital-to-analog
converter. The value of the analog (output) signal modeled
by variable y equals the last received value via channel h,
resulting in a piecewise-constant signal.

Figure 6 shows the trajectory of the error. A detailed
comparison between the simulation results of the different
plant/controller combinations is beyond the scope of this
paper.

C. DE model of the plant and CT model of the controller

Figure 7 shows a graphical representation of the hybrid
system consisting of a discrete-event model of the plant and
a continuous-time model of the controller.

The χ model is given below.
model DECT() =
|[var uMax : real = 25.0

, Kp, Ki, Ka : real = (10.0, 20.0, 0.5)

-0.5

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20

CTDE()

e(time)

Fig. 6. CT plant DE controller

u(t)

p2c!!y y(t)

c2p!u

yd(t)
CCT DPDE

A2DE

DE2A

Fig. 7. Iconic model of DE plant CT controller.

, sampletime : real = 0.01
, cont y : real = 0.0
, alg yd, u : real

, chan c2p, p2c : real
:: DemandCT(yd, uMax)
|| PlantDE(p2c, c2p, uMax)
|| DE2A(y, p2c)
|| A2DE(u, c2p, sampletime)
|| ControllerCT(yd, y, u, uMax, Kp, Ki, Ka)
]|

Simulating the combination of the discrete-event plant and
the continuous-time controller results in the trajectory of the
error as shown in Figure 8.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

DECT()

e(time)

Fig. 8. DE plant CT controller

D. DE model of the plant and DE model of the controller

Figure 9 shows a graphical representation of the discrete-
event system consisting of a discrete-event model of the plant
and a discrete-event model of the controller.

yd(t)

c2p!!u

p2c!!y

CDE DPDE

Fig. 9. Iconic model of DE plant DE controller.

The χ model is given below.
model DEDE() =
|[var uMax : real = 25.0

, Kp, Ki, Ka : real = (10.0, 20.0, 0.5)
, sampletime : real = 0.01

, alg yd : real
, chan c2p, p2c : real

:: DemandCT(yd, uMax)
|| PlantDE(p2c, c2p, uMax)
|| ControllerDE(p2c, c2p, yd, uMax, sampletime

, Kp, Ki, Ka)
]|

Simulating the combination of the discrete-event plant and
the discrete-event controller results in the trajectory of the
error as shown in Figure 10.

-1

 0

 1

 2

 3

 0 5 10 15 20

DEDE()

e(time)

Fig. 10. DE plant DE controller

VI. CONCLUDING REMARKS

In this paper, the hybrid χ language is introduced and
used to model a simple manufacturing system consisting of a
production machine that is controlled by a PI controller with
anti-windup. The plant is modeled in the continuous-time
domain as well as in the discrete-event domain. Likewise, the
controller is modeled in both domains. Then, several (hybrid)
plant/controller combinations are made. It is shown that
the χ language facilitates modeling of these combinations,
because the individual plant and controller specifications
remain unchanged. The χ simulator is used to obtain the
respective simulation results.

Current and future work entails, amongst others, modeling
and analysis of production networks and their controllers
using the design flow as sketched in this paper.

REFERENCES

[1] W. Hopp and M. Spearman, Factory Physics, 3
rd ed. New York:

McGraw-Hill, 2007.
[2] P. Ramadge and W. Wonham, “Supervisory control of a class of

discrete event systems,” SIAM Journal on Control and Optimization,
vol. 25, pp. 206–230, 1987.

[3] R. Alvarez-Vargaz, Y. Dallery, and R. David, “A study of the con-
tinuous flow model of production lines with unreliable machines and
finite buffers,” Journal of Manufacturing Systems, vol. 13, no. 3, pp.
221–234, 1994.

[4] E. Boukas, “Manufacturing systems: LMI approach,” IEEE Transac-
tions on Automatic Control, vol. 51, no. 6, pp. 1014–1018, June 2006.

[5] D. A. v. Beek and J. E. Rooda, “Languages and applications in hybrid
modelling and simulation: Positioning of Chi,” Control Engineering
Practice, vol. 8, no. 1, pp. 81–91, 2000.

[6] K. L. Man and R. R. H. Schiffelers, “Formal specification and
analysis of hybrid systems,” Ph.D. dissertation, Eindhoven University
of Technology, 2006.

[7] D. A. v. Beek, K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H.
Schiffelers, “Syntax and consistent equation semantics of hybrid Chi,”
Journal of Logic and Algebraic Programming, vol. 68, no. 1-2, pp.
129–210, 2006.

[8] G. Franklin, D. Powell, and A. Emami-Naeini, Feedback Control of
Dynamic Systems. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2001.

[9] R. van den Berg, A. Pogromsky, and J. Rooda, “Convergent systems
design: Anti-windup for marginally stable plants,” in Proceedings of
45th IEEE Conference on Decision and Control, San Diego, 2006.

[10] Systems Engineering Group TU/e, “Chi toolset,”
http://se.wtb.tue.nl/sewiki/chi, 2008.

[11] D. A. v. Beek, K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H.
Schiffelers, “Deriving simulators for hybrid Chi models,” in IEEE
International Symposium on Computer-Aided Control Systems Design.
Munich, Germany: IEEE, 2006, pp. 42–49.

[12] MapleSoft, “http://www.maplesoft.com,” 2005.
[13] L. R. Petzold, “A description of dassl: A differential/algebraic system

solver,” Scientific Computing, pp. 65–68, 1983.
[14] D. A. v. Beek, A.T.Hofkamp, M. Reniers, J. E. Rooda, and R. R. H.

Schiffelers, “Co-simulation of Chi and Simulink models,” in 6th
EUROSIM congress on Modelling and Simulation, Ljubljana, Slovenia,
2007.

[15] The MathWorks, Inc, “Using Simulink, version 6,”
http://www.mathworks.com, 2005.

[16] G. D. Plotkin, “A structural approach to operational semantics,”
Journal of Logic and Algebraic Programming, vol. 60-61, pp. 17–139,
2004.

