

Finding perfect auto-partitions is NP-hard

Citation for published version (APA):
Berg, de, M. T., & Khosravi, A. (2009). Finding perfect auto-partitions is NP-hard. In Abstracts 25th European
Workshop on Computational Geometry (EuroCG'09, Brussels, Belgium, March 16-18, 2009) (pp. 255-258)

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/50074adb-dd2f-47c6-a4a7-423054b3a5f4

Finding Perfect Auto-Partitions is NP-hard∗

Mark de Berg† Amirali Khosravi†

Abstract

A perfect bsp for a set S of disjoint line segments
in the plane is a bsp in which none of the objects is
cut. We study a specific class of bsps, called auto-
partitions and we prove that it is np-hard to find if a
perfect auto-partition exists for a set of lines.

1 Introduction

Many problems involving objects in the plane or
higher-dimensional space are solved more efficiently if
a hierarchical partitioning of the space is given. One
of the most popular hierarchical partitioning schemes
is the binary space partition, or bsp for short. In
a bsp the space is recursively partitioned by hyper-
planes until there is at most one object intersecting
the interior of each cell in the final partitioning. Note
that the splitting hyperplanes not only partition the
space, they may also cut the objects into fragments.

The recursive partitioning can be modeled by a tree
structure, called a bsp tree. Nodes in a bsp tree cor-
responds to subspaces of the original space, with the
root node corresponding to the whole space and the
leaves corresponding to the cells in the final parti-
tioning. Each internal node stores the hyperplane
used to split the corresponding subspace, and each
leaf stores the object fragment intersecting the corre-
sponding cell.

bsps have been used in numerous applications. In
most of these applications, the efficiency is deter-
mined by the size of the bsp tree, which is equiva-
lent to the total number of object fragments created
by the partitioning process. As a result, many algo-
rithms have been developed that create small bsps.
For example, Paterson and Yao [6] presented an al-
gorithm that computes for any given set of n dis-
joint segments in the plane a bsp of size O(n log n).
Also for many other settings—axis-parallel objects,
3-dimensional objects, fat objects, etc.—algorithms
have been developed that produce provably small
bsps; for an overview of results and applications on
bsps see the survey paper by Tóth [7].

In all of the above algorithms, bounds are proved
on the worst-case size of the computed bsp over all

∗This research was supported by the Netherlands’ Or-
ganisation for Scientific Research (NWO) under project
no. 639.023.301.

†Department of Computing Science, TU Eindhoven,
mdberg@win.tue.nl, akhosrav@win.tue.nl

sets of n input objects from the class of objects be-
ing considered. For any particular input, one may
be able to do much better than in a worst-case sce-
nario. Ideally, one would like to have an algorithm
that computes a bsp that is optimal for the given in-
put, rather than optimal in the worst-case. For n
axis-parallel segments in the plane one can compute
an optimal rectilinear bsp in O(n5) time [2]. Another
result related to optimal bsps is that for any set of
(not necessarily rectilinear) disjoint segments in the
plane one can compute a perfect bsp in O(n2) time,
if it exists [1]. (A perfect bsp is a bsp in which none
of the objects is cut). If such a bsp does not exist,
then the algorithm only reports this fact.

Thus, it is still unknown if it is possible to compute
(or maybe approximate) an optimal bsp for a set of
segments. We study this problem for a specific type
of bsps, called auto-partitions. Let S denote the set
of n disjoint input segments, R the region which we
want to partition at some point, and S(R) the set of
segment fragments in the interior of R. Then an auto-
partition uses a splitting line that contains a segment
from S(R). Fig. 1 shows a general (unrestricted) bsp
of a set of input segments and an auto-partition of it.

Since autopartitions are a restricted type of bsps,
our hope was that it would be easier to compute op-
timal autopartitions than it is to compute optimal
unrestricted bsps. Unfortunately, this turns out to
be not the case: we show that even the problem of
finding perfect autopartitions—that is, deciding if the
minimum number of cuts is zero—is already np-hard.
This should be contrasted to the result mentioned
above, that deciding whether a set of segments ad-
mits a perfect general (or unrestricted) bsp can be
done in O(n2) time. Hence, optimal auto-partitions
seem more difficult to compute than optimal unre-
stricted bsps.

2 Hardness of computing perfect auto-partitions

We consider the following problem.

Perfect Auto-Partition
Input: A set S of n disjoint line segments in the
plane.
Output: yes if S admits a perfect auto-partition(an
auto-partition without cuts), no otherwise.

We will show that Perfect Auto-Partition is

1

Finding Perfect Auto-partition is NP-hard

255

general (unrestricted) bsp auto-partition

Figure 1: Two types of bsps. Note that, as is usually
done for auto-partitions, we have continued the auto-
partition until the cells are empty.

np-hard. Our proof is by reduction from a special ver-
sion of the satisfiability problem, which we define and
prove np-complete in the next subsection. After that
we prove the hardness of Perfect Auto-Partition.

2.1 Planar monotone 3-SAT

Let U := {x1, . . . , xn} be a set of n boolean variables,
and let C := C1 ∧ · · · ∧ Cm be a cnf formula de-
fined over these variables, where each clause Ci is the
disjunction of at most three variables. 3-sat is the
problem of deciding whether such a boolean formula
is satisfiable. An instance of 3-sat is called mono-
tone if each clause consists only of positive variables
or only of negative variables. 3-sat is np-complete,
even when restricted to monotone instances [3].

For a given (not necessarily monotone) 3-sat in-
stance, consider the bipartite graph G = (U ∪ C, E),
where there is an edge (xi, Cj) ∈ E if and only if xi or
its negation xi is one of the variables in the clause Cj .
Liechtenstein [5] has shown that 3-sat remains np-
complete when G is planar. Moreover, as shown by
Knuth and Raghunatan [4], one can always draw the
graph G of a planar 3-sat instance such that the vari-
ables and clauses are drawn as rectangles with all the
variable-rectangles on a horizontal line, the edges con-
necting the variables to the clauses are vertical seg-
ments, and the drawing is crossing-free. We call such a
drawing of a planar 3-sat instance a rectilinear repre-
sentation. Planar 3-sat remains np-complete when
a rectilinear representation is given.

Next we introduce a new version of 3-sat, which
combines the properties of monotone and planar in-
stances. We call a clause with only positive variables
a positive clause, a clause with only negative variables
a negative clause, and a clause with both positive and
negative variables a mixed clause. Thus a monotone
3-sat instance does not have mixed clauses. Now
consider a 3-sat instance that is both planar and
monotone. A monotone rectilinear representation of
such an instance is a rectilinear representation where
all positive clauses are drawn on the positive side of
(that is, above) the variables and all negative clauses
are drawn on the negative side of (that is, below) the

a ∨ bxi ∨ a

xi ∨ a a ∨ b

Cj

· · · xi · · · · · · a · · ·

xi a bxi

Figure 2: replacing an inconsistent variable-clause.

variables. Our 3-sat variant is defined as follows.

Planar Monotone 3-sat
Input: A monotone rectilinear representation of a pla-
nar monotone 3-sat instance.
Output: yes if it is satisfiable, no otherwise.

Planar Monotone 3-sat is obviously in np. We
will prove that Planar Monotone 3-sat is np-hard
by a reduction from Planar 3-sat.

Let C = C1 ∧ · · · ∧ Cm be a given rectilinear rep-
resentation of a planar 3-sat instance defined over
the variable set U = {x1, . . . , xn}. We call a variable-
clause pair inconsistent if the variable is negative in
that clause while the clause is placed on the positive
side of the variables, or the variable is positive in the
clause while the clause is placed on the negative side.
If a rectilinear representation does not have inconsis-
tent variable-clause pairs, then it must be monotone.
Indeed, any monotone clause must be placed on the
correct side of the variables, and there cannot be any
mixed clauses because any mixed clause must form
an inconsistent pair with at least one of its variables.
We convert the given instance C step by step into an
equivalent instance with a monotone planar represen-
tation, in each step reducing the number of inconsis-
tent variable-clause pairs by one.

Let (xi, Cj) be an inconsistent pair; inconsistent
pairs involving a positive variable in a clause on the
negative side can be handled similarly. We get rid of
this inconsistent pair as follows. We introduce two
new variables, a and b, and modify the set of clauses.

• In clause Cj , replace xi by a.
• Introduce the following four clauses:

(xi ∨ a) ∧ (xi ∨ a) ∧ (a ∨ b) ∧ (a ∨ b).
• In each clause containing xi that is placed on the

positive side of the variables and that connects
to xi to the right of Cj , replace xi by b.

Let C′ be the new set of clauses. The proof of the
following lemma is omitted in this abstract.

Lemma 1 C is satisfiable iff C′ is satisfiable.

Fig. 2 shows how this modification is reflected in the
rectilinear representation.

By applying the above conversion to each of the at
most 3m inconsistent variable-clause pairs, we obtain

2

EuroCG’09 - Brussels, Belgium

256

a 3-sat instance with at most 13m clauses defined
over at most n + 6m variables. This new instance is
satisfiable iff C is satisfiable, and it has a monotone
representation. We get the following theorem.

Theorem 2 Planar Monotone 3-sat is np-
complete.

2.2 From planar monotone 3-SAT to perfect auto-
partitions

Let C = C1 ∧ · · · ∧ Cm be a planar monotone 3-sat
instance defined over a set U = {x1, . . . , xn} of vari-
ables, with a monotone rectilinear representation. We
will show how to construct a set S of line segments
that admits a perfect auto-partition iff C is satisfiable.
The idea behind the reduction is shown in Fig. 3.

The variable gadget. For each variable xi there is a
gadget consisting of two segments, si and si. Setting
xi = true corresponds to extending si before si, and
setting xi = false to extending si before si.

The clause gadget. For each clause Cj there is a
gadget consisting of four segments, tj,0, . . . , tj,3. The
segments in a clause form a cycle, that is, the split-
ting line `(tj,k) cuts the segment tj,(k+1) mod 4. This
means that a clause gadget in isolation, would gen-
erate at least one cut. Now suppose that the gadget
for Cj is crossed by the splitting line `(si) through
the segment si in such a way that `(si) separates the
segments tj,0, tj,3 from tj,1, tj,2, as in Fig. 3. Then the
cycle is broken by `(si) and no cut is needed. This
does not work when `(si) is used before `(si), since
then `(si) is blocked by `(si) before crossing Cj .

The idea is as follows. For each clause (xi∨xj∨xk),
we want to make the splitting lines `(si), `(sj), and
`(sk) all cross the clause gadget. Then by setting one
of these variables to true, the cycle is broken and no
cuts are needed for the clause. We must be careful
that the splitting lines are not blocked in the wrong
way—for example, it could be problematic if `(sk)
would block `(si)—and also that clause gadgets are
only intersected by the splitting lines corresponding
to the variables in that clause. In the remainder of
this section we show how to overcome these problems.

Detailed construction. From now on we assume
that the variables are numbered based on the mono-
tone rectilinear representation, with x1 being the left-
most and xn being the rightmost variable.

xi

`(si)

`(si)
si

si

tj,2

tj,3
tj,0

Cj

tj,1

Figure 3: The idea behind the reduction.

x1

x2

xn

0

0

2n− 1

2n− 1 d0
d1

xi

vertical strip for
negative clauses

horizontal strip
for positive clauses

R0 R1

si

si

Figure 4: Placement of the variable gadgets and the
clause gadgets (not to scale).

The gadget for a variable xi will be placed inside
the unit square [2i−2 : 2i−1]×[2n−2i : 2n−2i+1], as
illustrated in Fig. 4. The segment si is placed with one
endpoint at (2i−2, 2n−2i) and the other endpoint at
(2i− 3

2 , 2n−2i+εi) for some 0 < εi <
1
4 . The segment

si is placed with one endpoint at (2i− 1, 2n− 2i+ 1)
and the other endpoint at (2i−1− εi, 2n−2i+ 1

2) for
some 0 < εi <

1
4 . Next we specify the slopes of the

segments, which determine the values εi and εi.
The gadgets for the positive clauses will be placed

to the right of the variables, in the horizontal strip
[−∞ : ∞] × [0 : 2n − 1]; the gadgets for the negative
clauses will be placed below the variables, in the ver-
tical strip [0 : 2n−1]× [−∞ :∞]. We describe how to
choose the slopes of the segments si and how to place
the positive clauses; the segments si and the negative
clauses are handled in a similar fashion.

Consider the set C+ of all positive clauses in our
3-sat instance, and the way they are placed in the
monotone rectilinear representation. We call the
clause directly enclosing a clause Cj the parent of Cj .
Now let G+ = (C+, E+) be the directed acyclic graph
where each clause Cj has an edge to its parent (if it
exists), and consider a topological order on the nodes
of G+. We define the rank of a clause Cj , denoted
by rank(Cj), to be its rank in this topological order.
If rank(Cj) = k then Cj is placed in a 1 × (2n + 1)
rectangle Rk at distance dk from the line x = 2n− 1
(see Fig. 4), where dk := 2 · (2n)k+1.

Before describing how the clause gadgets are placed
inside these rectangles, we define the slopes of the
segments si. Define rank(xi), the rank of a variable xi

(with respect to the positive clauses), as the maximum
rank of any clause it participates in. Now the slope
of si is 1

2·dk
, where k = rank(xi). Recall that xi is

placed inside the unit square [2i−2 : 2i−1]×[2n−2i :
2n − 2i + 1]. The proof of the following lemma is
omitted in this version.

Lemma 3 Let xi be a variable, and `(si) be the split-
ting line containing si.

3

Finding Perfect Auto-partition is NP-hard

257

`(si)
`(xj)

`(xk)

Rrank(C)

Figure 5: Placement of the segments forming a clause.

(i) For all x-coordinates in the interval [2i − 2 :
2n − 1 + drank(xi) + 1], `(si) has a y-coordinate in
the range [2n− 2i : 2n− 2i+ 1].
(ii) `(si) intersects rectangles Rk(0 ≤ k ≤ rank(xi)).
(iii) `(si) does not intersect any rectangle Rk(k >
rank(xi)).

We can now place the clause gadgets. Consider a
clause C = (xi ∨ xj ∨ xk) ∈ C+, with i < j < k; the
case where C contains only two variables is similar.
By Lemma 3(ii), the splitting lines `(xi), `(xj), `(xk)
all intersect the rectangle Rrank(C). Moreover, by
Lemma 3(i) and since we have placed the variable
gadgets one unit apart, there is a 1 × 1 square in
Rrank(C) just above `(si) that is not intersected by
any splitting line. Similarly, just below `(sk) there is
a square that is not crossed. Hence, if we place the
segments forming the clause gadget as in Fig. 5, then
the segments will not be intersected by any splitting
line. Moreover, the splitting lines of segments in the
clause gadget—these segments either have slope -1 or
are vertical—will not intersect any other clause gad-
get. This finishes the construction. The next lemma,
whose proof is omitted, states the two key properties
of construction. We say that, a splitting line `(si) is
blocked by `(sj) if `(sj) intersects `(si) before `(si)
reaches Rrank(xi). This may prevent us from using
`(si) to resolve the cycle in the gadget of a clause
containing xi and is dangerous.

Lemma 4 The variable and clause gadgets are
placed such that the following holds:
(i) The gadget for clause (xi ∨ xj ∨ xk) is only in-
tersected by the splitting lines `(si), `(sj) and `(sk).
Similarly, the gadget for clause (xi∨xj∨xk) is only in-
tersected by the splitting lines `(si), `(sj) and `(sk).
(ii) A splitting line `(si) can only be blocked by a
splitting line `(sj) or `(sj) when j ≥ i; the same holds
for `(si).

Theorem 5 Perfect Auto-Partition is np-
complete.

Proof. We can verify in polynomial time whether
a given ordering of applying the splitting lines
yields a perfect auto-partition, so Perfect Auto-
Partition is in np.

To prove that Perfect Auto-Partition is np-
hard, take a Planar Monotone 3-sat instance and
apply the above reduction to obtain a set S of 2n +
4m segments forming an instance of Perfect Auto-
Partition. The reduction can be done such that
the segments have endpoints with integer coordinates
of size O(n2m), which means the number of bits for
describing the instance is polynomial in n + m. It
remains to show that C is satisfiable iff S has a perfect
auto-partition.

Suppose S has a perfect auto-partition. Set xi :=
true if si is extended before si , and xi := false
otherwise. Since the auto-partition is perfect, the cy-
cle in the gadget for a clause C must be broken. By
Lemma 4(i) this can only be done by a line of one of
the variables in the clause, say xi. But then si has
been extended before si(xi = true) and C is true.

Now consider a truth assignment to the variables
that satisfies C. A perfect auto-partition for S can
be obtained as follows. When x1 = true we first
take the splitting line `(s1) and then the splitting line
`(s1); if xi = false then we first take `(s1) and then
`(si). Next we treat s2 and s2 in a similar way, and so
on. So far we have not made any cuts. We claim that
after having put all splitting lines `(si) and `(si) in
this manner, we can put the splitting lines containing
the segments in the clause gadgets, without making
any cuts. Indeed, consider the gadget for a positive
clause C. Because the truth assignment is satisfying,
one of its variables, xi, is true. Then `(si) is used
before `(si). Moreover, because we treated the seg-
ments in order, `(si) is used before any other splitting
lines `(sj), `(sj) with j > i are used. By Lemma 4(ii)
these are the only splitting lines that could block `(si).
Hence, `(si) reaches the gadget for C and so we can
resolve the cycle and get a perfect auto-partition. �

References

[1] M. de Berg, M.M. de Groot, M.H. Overmars. Per-
fect binary space partitions. Comput. Geom. Theory
Appl.,1997.

[2] M. de Berg, E. Mumford, B. Speckmann. Optimal
BSPs and rectilinear cartograms. In Proc. 14th Int.
Symp. Advances Geographic Inf. Syst.,2006.

[3] M.R. Garey, D.S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Co.,1979.

[4] D.E. Knuth, A. Raghunathan. The problem of com-
patible representatives. Discr. Comput. Math.,1992.

[5] D. Lichtenstein. Planar formulae and their uses.
SIAM J. Comput.,1982.

[6] M.S. Paterson, F.F. Yao. Efficient binary space parti-
tions for hidden-surface removal and solid modeling.
Discr. Comput. Geom.,1990.

[7] C.D. Tóth, Binary space partitions: recent develop-
ments. Combinat. and Comput. Geom., 2005.

4

EuroCG’09 - Brussels, Belgium

258

